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ABSTRACT

This study is a thecoretical investigation of the high-
cycle fatigue damage that may result from temperature cscillations
in the boiler tube wall around the location of the point of
departure from nucleate boiling (DNB) in the McDonnell Douglas
Rocketdyne receiver subsystem for the pilot and commercial solar
power plants. The problem was analyzed using the SAHARA and
HEATMESH heat transfer codes and the GNATS structural analysis
code. For lack of better information, several rather sweeping
assumptions have been made concerning the nature of the flow
near the DNB point to allow the thermal calculaticns to be made.
The results of the structural analysis show that fatigue damage
due to DNB oscillations will not be a substantial problem in the
pilot plant, but may cause a significant reduction in the life
cf the commercial receiver. It has been found, however, that
the results are highly dependent on the nature of the internal
flow characteristics, pointing to the need for further investi-
gation of DNB oscillations so that the accuracy of the current

assumptions may be verified.
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INTRODUCTION

This study was undertaken to assess the degree of fatigue
damage which could result from thermal stress oscillations
caused by movement of the point of departure from nucleate
boiling (DNB) in the McDonnell Douglas, Rocketdyne (MDAC) pilot
and commercial receiver subsystem designs. Such oscillations
ar¥e known to occur in two phase flow heat transfer processes
especially in multiple parallel flow path channels such as in a
seventy tube pilot plant receiver panel or a one hundred and
seventy tube commercial plant receiver panell'z. The possibility
for these oscdillations to occur in MDAC's design was‘observed in
one of their subsystem research experiments (SRE) where rela-
tively high fregquency tube wall temperature variations {(~ 1/8 Hz)
were observed. Tube wall temperature oscillations of this
nature occur when the DNB point oscillatés.

Since the oscillations in the temperature distribution
cause oscillations in the stresses, there is apprehension that
a substantial reduction in receiver life could result from
fatigue induced by these cyclic stresses. This study examines
the variations in the stresses which result from the high-
frequency thermal cscillations; however, it does not treat the

problem of low cycle fatigue due to diurnal operation. The

exact nature of the flow associated with DNB oscillations is



poorly understood. This has made it necessary to make some

rather sweeping assumptions as to its character which cannot
currently be verified. Since the results of this work depend
heavily on theseaassumptions, the accuracy of the predictions

depends on the degree to which the assumptions reflect reality.

Thermal Analysis

Physical Model

As discussed in the introduction, the two phase flow and
heat transfer occurring around the DNB point are poorly
understood processes, especlally for the high heat flux
{.85 MW/m2 incident) one sided heating which exists in the MDAC
commercial receiver design. This coupled with the possibility
of flow oscillations caused by two-phase flow instabilities
makes any detailed treatment of the thermal problem impossible
in a short period of time. As a result, many simnplifying
assumptions have been made to make the thermal analysis
tractable.

The basic problem is to thermally model a given axial
position on a boiler tube as the DNB pocint moves back and
forth across it during a flow instability in a tube. As the
DNE point moves across a given point what is physically
happening is that a transition is occurring between a wetted
wall with nucleate boiling (high heat transfer) and a dry wall
with a vapor layer on it and film boiling (low heat transfer)

or visa versa. As this occurs the heat transfer coefficient
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between the wall and the fluid changes by a factor of about 20
to 100 which results in a change in the tube wall temperature
distribution. The degree of this change is dependent on
several other factors as well, such as working fluid flow
velocities, ambient conditions, and the incident solar flux on
the tube.

The assumptions used to develop the thermal model are as

follows:
1. MNeglect axial heat transfer in the beiler tube. Consider
cnly radial and circumferential heat transfer.

2. DNB doesn't occur uniformly around the tube at one
ingstant. It starts at the front 5f the tube (the side
exposed to the solar flux, qs) and progresses around
to the back, or the reverse, rewetting of the wall
starting at the back and progressing around to the
front.

3. The movement of the DNB point from the front of the
tube to the back occurs slow enocugh that it can ke
modeled by a series of steady state steps+.

4. The phase change temperature is 600F. The nucleate
boiling heat transfer coefficient (hm) is 50,000
Btu/ftz—hr-F, and the film boiling heat transfer

coefficient (h_.) is 500 - 1000 Btu/ftz-hr—F for the

f
pilot plant and 1000 - 2300 Btu/ftz-hr—F for the

commercial plant++.

A more realistic transient case was looked at and will be
discussed in the results.

++The smaller number is precpesed by Sandia and the larger by

MDAC.
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5. Because of the symmetry in a boiler tube papel it isr
only necessary to model one-half of a boiler tubé; h

The first and third assumptions were made purely tow“
simplify this preliminary analysis. Thé second assuﬁption’
should be reasonable because the highest heat transfer rates
and the highest tube wall temperatures occur at the front‘of the
tube which is exposed to the highest scolar flux. The phase
change or beiling temperature and range of heat transfer coeffi-
cients used are reasonable for the MDAC receiver design pfesented
in their PDPR. The final assumption of symmetry needs no
justificagion. These assumptions, eventhough they simplify the -
thermal problem drastically, should still give reasonable
temperature distributions.

The tube actually modeled is a boiler tube on the north
facing panel which is exposed to the highest solar flux and has
the highest tube wall temperatures. It is felt this panel is
the worst case from a thermal stress point of view.

The resulting thermal model is illustrated in Figure 1.

Two dimensional heat conduction occurs in the tube walls. The
boundary conditions are the incident solar flux with a cosine
distribution caused by the curvature of the tube, reradiation
and convection of energy to the atmosphere, and boiling heat
transfer inside the tube divided into two regimes. Film boiling
ocCcurs over some angle Bf measured from the front of the tube

with nucleate boiling over the remaining portion. Finally, the

back and lines of symmetry on both sides of the tube are

insulated boundaries.

12



T .
ambient

Q

convection

{r

qconduction

NSNS

T
beiling

q (6

nucleate
boiling Weld
~We

RLTtlltwthvhhhawhh.

Insulated

Figure 1. Schematic of Thermal Model.

(8)

13



The solar absorptance and thermal emittance are 0.95 and
0.90 respectively for the coating used by MDAC. The heat
transfer coefficient on the oﬁter surface is estimated to be
3.63 Btu/ftz-hr-~F.3 Also the boiling temperature is assumed
to be 600F as stated before and the ambient air temperature is
70F. These are all reasonable numbers for design conditions
for the MDAC receiver.

The actual solution of the problem was accomplished using
the SAHARA4 and HEATMESH5 heat transfer codes. These codes
solved for the radial and circumferential temperature distri-
bution in the tube wall by a finite difference technigque. The

number of the nodes used to solve the wall conduction problem

for the given boundary conditions are shown in Figure 2. The

large y dimension on the tube is explained in the structural

analysis section following.

Thermal Resulits

Some representative‘results from thg thermal model are
shown in Figures 3 through 10. What is plotted on these
figures are the temperature for each nodeushown in Pigure 2
and isotherms with 20F increments between them.

Figures 3 and 4 are for the pilot plant solaxr flux levels
(0.3 MW/mz) and boiling heat transfer conditions. Figure 3a
is a steady state case with nucleate boiling over the entire
inner tube surface. Figure 3b has film boiling over the front
90° of the tube and nucleate boiling on the back, and Figure 3c¢

ig for film boiling over the entire inner surface. Figure 4 is
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the same case as Figure 3 except the film boiling coefficient
is a factor of 2 larger, and the 180° nucleate boiling case is
the same as in Figure 3a so it is not repeated. Figures 5 and
6 are for commercial plant sgolar flux levels (0.85 MW/mz) and
boiling heat transfer coefficients. Other than that, their
interpretation is the same as Figures 3 and 4.

Several general results can be noted from these figures.
First, the tube wall temperatures are fairly sensitive to the
film boiling coefficient used. Second, for nucleate boiling
most of the solar energy absorbed is transferred through the

front of the tube with the back remaining relatively cool

compared to the front. This means the main resistance to heat
transfer is in the tube. The resistance provided by nucleate
boiling is negligible. Conversely, when film beoiling occurs

on the inner tube surface it results in a larger resistance to
heat transfer at that surface forcing some of the absorbed
solar energy around to the back of the tube causing higher
temperatures there, as well as over the rest of the tube.
Another result shown is the very high temperature gradients
for the commercial plant flux levels.

The steady state results such as in Figures 3 through 6
were used in the thermal stress analysis. Figures 7 through 10
are transient cases for the pilot and commercial plant examined
just from a thermal point of view. Figure 7 is a series of
results showing film boiling starting at the front of the tube
and in a five second period progressing arotaind to the back of

the tube. Part a is steady state nucleate bolling at time zero,
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b is after 3.33 seconds, and ¢ is after 5.0 seconds. Figure 8

is the reverse with nucleate boiling starting from the back

and progfessing to the front of the tube in five seconds.
Part a is after 1.7 seconds , b 1s after 3.33 seconds, and
¢ 1is after 5.0 seconds. The interpretations of Figures 9 and

10 are respectively the same as Figures 7 and 8 except that

they are for the commercial plant solar flux levels and boiling
conditions.

The important thing to note in these figures is in the
case where nucleate boiling starts at the back of the tube and
progresses to the front; very large temperature gradients can
develop over the front of the tube with the back remaining
relatively cool (Figures 8b and 10b). These are larger than
anj noted in the steady. state thermal analysis used in the
thermal étress problem and could result in larger thermal

stresses in the tube.

Structural Analysis

The response of the McDonnell Douglas receiver tube to
fluctuations in temperature cased by osciallation of the DNB

point has been studied using the GNAT86 finite-element computer

code.

Physical Model

The receiver tube is modeled using the finite-element mesh

shown in Figure 11. Only half of the tube is modeled since it

is symmetric about the centerline. It may be observed that one
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of the coordinates is very large {order of 104) when compared
to the dimensions of the tube. This is a result of representing
the receiver tube which is actually straight as a torus. This
change from the actual structure was necessary to model the
problem within the restrictions imposed by GNaTS which is a
two-dimensional code. In the receiver, the tube is not restrained
in the axial direction sc that it may expand when it is heated.
However, the tube is constrained so that it must remain straight.
For an inelastic-analysis these conditions cannot be modeled by
plane stress or plane strain, but if the tube is modeled as a
large toroid it can expand when heated without inducing a net
axial force, thus more accurately representing the problem at
hand. Even though the tube is modeled as a toroid, the major
diameter is so large compared to the minor diameter (approxi-
mately 20,000 times larger) that there should be no noticeable
effect on the results.

The material properties used in the analysis are shown
in Table 1. Since the ability to accommodate temperature
dependence of the material properties was not included in the
version of GNATS used here, it was necessary to choose a single
set of properties. The properties selected represent aﬁnealed
Incoloy 800 at 800°F. This temperature was chosen because it
is approximately the mid~point of the range of temperatures
experienced during thermal c¢ycling in the commercial plant.
Since the material properties vary slowly with temperatufe (see
Figure 12} over the range of interest (600 ~ 1000°F), this is

not a serious drawback. After yielding, it is assumed that the
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TABLE 1

MATERIAL PROPERTIES OF INCOLOY 800 AT 800°F7

Young's Modulus 24.4 x 106 psi
Yield Strength . 33000 psi
Ultimate Tensile 74500 psi
Strength
Uniform Elongation 41%
Poisson's Ratio .36
material undergoes kinematic strain hardening. This assumption

appears most conservative since hardening which occurs from
strain in one direction does not increase the strength of the

material when straining is reversed.

Loads

Two sources of loads in the structure have been considered:
the internal pressure and the thermal variations. The value
used for the internal pressure is 1550 psi and represents the
boiler pressure at the operating condition. The thermally
induced stresses are a result of applying a‘'series of tempera-
ture distributions to the tube cross-section. The segquence in
which the calcplated temperature distributions are applied to
the receiver tube has been selected to provide a reasonable
representation of the strain cycles which could be encountered
due to DNB oscillations. The cycle selected consists of

starting the tube at 70°F; bringing it to a nucleate boiling

29



condition around the entire circumference with a water
temperature of 600F; initiating film boiling at.  the hotest
(front) part of the tube; increasing the size of the film
boiling zone in roughly 30° increments (that is 30° on each
side of the tube) until the entire tube has transformed to film
boiling; and finally assuming that nucleate boiling begins at
the back of the tube and progresses toward the front of the

tube in 30° increments until the entire tube is again in nucleate

beoiling. The cycle from nucleate to film to nucleate boiling is
repeated as often as necessary to establish a steady state stréin
cycle. It is anndwn how well the temperature fluctuations
chosen represent the sequence of events in the boiler, but it

is hoped that this selection covers the range of possible:

strain states fairly well.
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RESULTS AND DISCUSSION

Pifot Planit

The results of the calculations for the pilot plant
indicate that the entire tube remains elastic and that the
strain ranges are low encugh that no fatigue damage will
occur. Since_the tube remains elastic, it is unnecessary to
cycle through the various temperature conditions repeatedly.
The equivalent strain (as defined in ASME Code Case 1592--8)8
for both film boiling coefficients investigated (500 and 1000
Btu/ftZ—hr—F) are shown 1in Figures 13a and 13b. These corres-
pond to the highest temperature element (Pt A in Figure 1l1)
and the element with the greatest cyclic strain (Pt B in
Figure 11), respectively. The total strain range for each
case is listed in Table 2. The values shown all fall below
the allowable stress levels for lO6 cycles as defined in ASME
Code Case 1592 (see Figure 14). Further, cother data r9
indicate they fall below the endurance limit as well, so that
these oscillations do not contribute to an overall reduction
in the life of the receiver at pilot plant flux levels. It is
interesting to note that the most highly strained state of the
tube does not occur with all film boiling, but rather when
the circumference is about equally divided between nucleate

(back half) and film (front half) boiling, indicating that it
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TABLE 2

EQUIVALENT STRAIN RANGES FCOR PILOT PLANT FLUX LEVELS

h

£ Maximum Equivalent
Point (Btu/ft2-hr-F) Temp. at This Strain
Point (F) Range
A 500 820 .071%
B 500 764 .081%
A ‘ 1000 . 764 .045%
B 1000 701 ' .052%

is necessary to consider states between the two extreme boiling

states in order toc determine the worst case strain cycle.

Commencial Plant

Operation at the commercial plant fiux levels substantially
increases the thermally induced strains and may result in a pre-
dictedAfatigue life considerably less than the deéign life of
the plant. For the commercial plant two values of the film
boiling coefficient wére again used in the analysis: 1000
Btu/ftz—hr-F proposed by Sandia and 2300 Btu/ftz—hr—F supported
by the contractor. The results of the calculations point out
the importance of establishing an accurate value.

When a film boiling coefficient of 1000 Btu/ftz-hr—F is
used, there is a substantial reduction in the fatigue life
of the receiver tube. The commercial plant computations

conducted using GNATS indicate the presence of a substantial
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amount of initial yielding as indicated in Figures 15a and 15b
which show contours of effective plastic strain typical of the
steady state cycle. It can be seen fhat the contoﬁrs of effectiﬁe
plastic strain are unchanged in both figures indicating thatr
V'after initial yielding the structure has "shakendown" to
elastic action. The eguivalent strain ranges fdr the highest
temperature and greatest strain points are listed in Table 3
and shown in Figures l16a and 16b for twoc cycles of nucleate

to film boiling. These strain rangés correspond tc a fatigue
life of approximately 2 x 105 cycles using the recommended life
curves in Figure i4. Since an oscillation with a 10 second
period completes 4 x 107 cycles in 30 years of 10 hour days,

it is clear that this will lead to an unacceptably.short life.
As short as two months if the oscillation occcurs continuocusly
at one location. When this result is considered in combination

with diuwrnal cyecles, the problem is even worse.

TABLE 3

EQUIVALENT STRAIN RANGES FOR COMMERCIAL PLANT FLUX LEVELS

h_ . .
£ Maximum Equivalent

Point (Btu/ftz—hr-F) Temperature (F) Strain Range
A 1000 1053 -12%
B 1000 889 .15%
A 2300 933 .062%
B 2300 748 .082%
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In contrast, the results are substantially different if
a film boiling coefficient of 2300 Btu/ft’~hr-F is assumed.
There is still a substantial amount of plastic deformation as
evidenced by Figures 17a and 17b. However, the entire
structure again exhibits "shakedown" to elastic action and
the equivalent strain ranges {(listed in Table 3 and depicted
in Figures 18a and 18b) are much smaller. In fact, they are
bélow the endurance limit strain range so that no reduction in
life is expected.

A creep analysis of the tube has not been performed,
since it does not appearrto be warranted at this time in
c@nnectibn with the fatigue problem. The reason for this lies
principally in the relatively low temperétures and stresses
involved. If the hotest point on the tube at the commercial
plant flux levels were to be held at 30,000 psi, it would not
fail for 20,000 hrs or roughly 30 times as long as its
predicted fatigue life. Thus creep does not appear to be a
significant problem currently. Alsc contributing to the
decision not tc do a creep analysis is the fact that lack of

adequate knowledge about the internal flow prohibits an

accurate time history of temperature and stress to be developed,

so that any results obtained would be of guestionable value.
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CONCLUSTONS

The results of this study indicate that at the pilot
plant flux levels (g.3 MW/mz) and reasonable film boiiing
coefficients (500 - 1000 Btu/ftz—hr-F), fatigue damage due to
oscillations of the pecint of departure from nucleate boiling
will not be a significant factor in reducing the 1life of the
receiver tube. At the commercial plant flux levels {.B85 MW/mz)
there may be appreciable fatigue damage due to these oscilla-
tiong. If a film boiling heat transfer coefficient of 1000
Btu/ftz—hr—F is assumed, the equivalent strain range predicted
corresponds to a fatigue 1life which could be as low as 0.5% of
the desired 1ife of the plant. On the other hand, if a film §
boiling heat transfer coefficient of 2300 Btu/ftz—hr-F is
assumed, the resulting strain range is not large enough to

have a significant effect on the life of the receiver. This
great vari;tion in the commercial plant results points out that
these calculations are highly dependent on the nature of the
flow inside the tube. Since the characteristics of this flow
are currently poorly defined, the conclusions drawn here may be

subject to substantial change if the assumptions made concerning

the internal flow are inaccurate.
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Recommendations

The following recommendations have resulted from this

study.

1.

The temperature distribution is highly dependent on
the heat transfer coefficient assumed for boiling

heat transfer. Further study of the MDAC receiver

design should be conducted to accurately determine
this parameter.

The assumptions made about the oscillating DNB point
were made based on some experimental results but
mainly on intuition. Since they do appear to have a
significant effect on tube life, this area should be

investigated further to gain a better understanding

. of instabilities in the DNB point. The probable time

and position of occurrence in boiler tube as well as

the frequency and magnitude of the oscillation should

be determined.

Three dimensional thermal studies should be considered
since heat transfer in the axial direction could damp
out some of the tube wall temperature variations seen

at the DNB point in the two dimensional study conducted-

here.

With a better understanding of DNB oscillations a
transient thermal model should be developed to look
for-possible worst case thermal stress situations.
Three dimensional elastic studies should be considered
to assess the degree to which the axial temperature

variations mentioned in recommendation 3 reduce the
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6.

strain cycles experienced when compared to the present
two-dimensional analysis.
A study should be made of creep effects in the

superheater end of the receiver tubes to determine

whether or not significant creep will occur.
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