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ABSTRACT 

This report summarizes the results of tests on a series of five 
concentrating solar collectors from Suntec Systems; Inc,; Hexcel 
Corporation; General Atomic Company; McDonnell Douglas Astronau­
tics Company; and Solar Kinetics, Inc. The Hexcel design per­
formed better than the others primarily because of a highly re­
flective, precisely shaped mirror that focused almost all the 
reflected light onto the absorber. McDonnell Douglas, Suntec 
Systems, and Solar Kinetics designs were down about 10% in 
efficiency at temperatures near 3000C. The General Atomic FMSC 
performed at a lower level at low temperatures because of large 
reflected light spillover, but only about 3 to 4% lower than 
the others near operating temperatures of 300oC. Even the best 
of these collectors can be significantly improved. 
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SUMMARY REPORT: 

CONCENTRATING SOLAR COLLECTOR TEST RESULTS, 
COLLECTOR MODULE TEST FACILITY 

1. INTRODUCTION 

A series of concentrating solar collectors have been tested at Sandia Labora­

tories' Collector Module Test Facility (CMTF). This facility is part of the Mid­
temperature Solar Systems Test Facility (MTSSTF), and is operated under the Depart­

ment of Energy's continuin~ program to characterize selected collector modules for 
possible future systems use (see Reference 1). The solar collectors tested may have 

important commercial applications in replacing fossil-fuel energy sources with solar 
thermal power systems for irrigation pumping, electric-utility power generation, 

combined electric power and heat energy (total energy systems), and as a source for 
high-temperature process heat. 

Five collector modules were tested between August 1977 and January 1978. The 
sponsoring companies and their collectors are: 1) Suntec Systems, Inc., Solar Linear 

Array Thermal System (SLATS)7 2) Hexcel Corp., a parabolic trough concentrator7 
3) General Atomic Co., Fixed Mirror Solar Concentrator (FMSC)7 4) McDonnell Douglas 

Astronautics Co., Fresnel lens rotating array solar collector, and 5) Solar Kinetics, 
Inc., Model T-500, a linear parabolic trough concentrator. The Suntec SLATS used 
pressurized water as a heat transfer fluid7 the others used Therminol 66. 

2. TEST OBJECTIVE 

The objective of this test series was to characterize the performance of con­
centrating solar collectors. Of primary concern were the thermal efficiency and 

thermal losses of these collectors over a temperature range from about 150°C to 

300°C. 

3. COLLECTOR DESCRIPTIONS 

Table I summarizes the collector characteristics of the five modules tested at 
Sandia. Detailed descriptions for each collector are given in this section. 

Aperture 
Area 

Collector (m2) 

Suntec 35.97 

General 16.26 
Atomic 

Hexcel 15.91 

McDonnell 15.54 

Table 1. Collector Characteristics. 

Secondary 
Aperture 

(cm) 
8.64 

5,10 

7.80 

Receiver 
Length 

(m) 

12.20 

7.16 

6.40 

17.34 

Focal 
Length Concentration 

(cm) Ratio 

305.0 35:1 

302.0 43:1 

91. 4 67:1 

92.7 24:1 

Reflector 
Surface 

Glass 

Glass 

FEK-163 
acrylic 
Cast acrylic 

Douglas Fresnel lens* 
Solar 12.7 12.20 26.7 41:1 FEK-244 
Kinetics acrylic 

*Transmission lens 
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3.1 SLATS, SUNTEC SYSTEMS, INC. 

The Suntec SLATS system is a linear Fresnel reflector system consisting of two 

bays of 10 reflectors each, a supporting structure, and a fixed receiver assembly. 

Figure 1 shows the collector system installed at Sandia. Figure 2 is an end view of 

the collector module showing the orientation of the individual reflectors and the 

receiver assembly. Note that each individual reflector is set at a slightly different 
angle so that reflected sunlight from all the reflectors converges on the fixed 

receiver aperture. The individual reflectors are mechanically linked together and 

are rotated on command of the sun tracking system to focus on the receiver. When 

not in operation, the reflectors are rotated to a face-down position. Figure 3 
shows the reflector cross section. 

The receiver assembly (see Figure 4 for cross section) is a double pass system, 

with the heat-transfer fluid entering one end of the receiver, passing the length 

of the receiver through one absorber tube, then traveling through a turnaround at 
the end and back across the receiver through the second absorber tube. The absorber 

tubes were plated with a selective black chrome to enhance solar absorption and 

minimize radiation thermal losses. 

Figure 1. SLATS Solar Collector. 

.. ~ .~. 
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Figure 2. End View of SLATS Solar Collector. 
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Figure 3. SLATS Reflector Assembly Cross Section. 
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Figure 4. SLATS Receiver Assembly Cross Section. 

The SLATS solar collector could be designed to use a low-pressure, synthetic­
oil heat-transfer fluid; however, as tested at the CMTF it was configured for use 

with 330°C water pressurized at 18.3 MPa. 
The SLATS collector was tested on CMTF's Fluid Loop 3, which supplies controlled­

temperature pressurized water as a heat-transfer fluid at temperatures from about 
120°C to 330°C. Design fluid flow rates range from 0.4 to 40 liters/min. Operating 
pressure is 18.3 MPa (2650 psig). Details concerning the design, construction, 
and operation of the CMTF fluid Test Loop 3 can be found in Reference 2. 

Preliminary analysis of the SLATS test results through October 1977 has been 
published by Suntec Systems, Inc. (Reference 3). This summary report includes test 

results obtained through February 1978. A final report will be issued by Sandia 
when additional high-temperature (330°C) testing is completed, probably in the 
third quarter of 1978 (see Reference 4). 

3.2 PARABOLIC TROUGH CONCENTRATOR, HEXCEL CORP. 
The Hexcel solar concentrator used four aluminum honeycomb mirror panels 

arranged to form a linear focus parabolic reflector (see FigureS). The reflecting 

surface was FEK 163 - an aluminized second-surface, acrylic film manufactured by 
the 3M Corp. 

The black-chrome-plated absorber was a steel tube 3.81 cm in outside diameter. 
The absorber tube had internal fins and a 3.02 cm diameter internal plug tube to 



Figure 5. Hexcel Solar Collector . 

confine the fluid flow to the tube wall area and improve heat-transfer character­

istics. To reduce conduction and convection losses, a half-cylinder of Pyrex glass 

was fitted over the absorber tube on the radiation absorbing side. The back half of 

the tube was covered with a double-layer metal shield. The inner surface of the 
metal cover was polished aluminum to serve as a secondary concentrator: insulation 

was placed between the two layers. See Figure 6 for a cross section of the Hexcel 
receiver assembly. 

The Hexcel collector and all the other collectors except the Suntec SLATS were 

tested on the CMTF's Fluid Loop 1. This fluid-loop system delivers Therminol ~6, a 

synthetic heat-transfer oil, (see Reference 5) at a controlled temperature and flow 

rate. Inlet fluid temperatures range from about 75°C to 300°C at flow rates from 

4 to 40 liters/min. Details of the construction and operation of the fluid loop 
system can be found in Reference 6. 

The Hexcel Corporation has completed analysis of test results (see Reference 

7). A Sandia Test Report has also been published (see Reference 8). 

., 
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Figure 6. Cross Section of Hexcel Receiver Assembly. 

3.3 FMSC, GENERAL ATOMIC COMPANY 
The General Atomic Fixed Mirror Solar Concentrator (FMSC) is a concave array 

of long, narrow, flat mirror facets fixed on a segment of a cylindrical surface. 
Figure 7 is a photograph of the GA FMSC collector installed at the CMTF. The array 

of flat reflecting facets produces a narrow focal line that follows a circular path 

as the sun moves. Because the focal line path is on the same basic cylindrical sur­

face as the mirror facets, the focal line can be tracked by a movable heat-receiver 
assembly that rotates about the center of curvature of the reflector module. 

One mirror facet near the center of the module \S tangent to the basic cylin­
drical curvature of the module. The remaining mirror facets,are set at different 
,angles such that all reflect incident,light to the focal point. See References 9 
and 10 for a more complete description of the optical principles of the FMSC. 

The FMSC modules tested at the CMTF were constructed from reinforced cast 

concrete. The concrete modules were cast over a precision metal mold. A transferable 
film adhesive was used to fasten the 43 second-surface, silvered-glass mirror facets 

to the concrete surface. 
The FMSC heat receiver assembly moved along a circular path to track the re­

flector focal point, Figure 8 illustrates the movement of the receiver around the 

reflector at different times of the day and year. In all positions, the receiver is 
aimed at the tangent mirror facet. 

The internal construction of the FMSC receiver assembly is quite different 

from that of the Suntec SLATS receiver (see Figure 9 for a cross-sectional view). 
The black-chrome-plated absorber tube was a ~lattened oval supported inside by an 
aluminum channel enclosure and surrounded by a highly effective silica-foam insula­
tion. The secondary concentrators had polished-aluminum mirrors on their inner 
surfaces to assist in concentrating sunlight onto the absorber surface. 

General Atomic has completed preliminary analysis of the FMSC test results 
(Reference 9), and a Sandia report of test results has also been completed (Refer­
ence 11). 



Figure 7. General Atomic FMSC. 
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Figure 9. FMSC Heat Receiver Assembly Cross Section. 

3.4 FRESNEL LENS ROTATING ARRAY SOLAR COLLECTOR, McDONNELL DOUGLAS CO. 
The McDonnell Douglas Fresnel Lens Rotating Array Solar Collector used cast 

acrylic, linear Fresnel lenses to concentrate sunlight upon a series of absorber 
tubes. The collector was an aluminum box 5.94 m long x 3.63 m wide x 1.07 m deep. 
It was mounted on a pedestal to allow full sun tracking in both azimuth and eleva­
tion. Figure 10 is a photograph of the collector. The front illuminated face of 
the collector was a series of eight sections of linear Fresnel lenses focusing 
sunlight on four receiver assemblies within the box (see Figure 11). For fluid flow, 
the four individual absorber tubes contained an inner plug tube to confine the 
fluid flow to the wall area of the absorber. 

The receiver assemblies, shown in cross section in Figure 12, contained a 
black-chrome-plated, steel absorber tube; secondary reflectors to aid in capturing 
stray sunlight; and a low-iron glass cover to minimize thermal convection losses. 
The whole receiver assembly was insulated with glass fiber batts and glass cloth. 

,Test results from the.McDonnell Douglas Fresnel lens collector are being 
analyzed and a report is in preparation (see Reference 12). 



Figure 10. McDonnell Douglas Linear Fresnel Lens 
Rotating Array Solar Collector. 
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Figure 11 . McDonnell Douglas Solar Collector. 
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Figure 12. McDonnell Douglas Receiver Assembly. 

3.5 LINEAR PARABOLIC TROUGH CONCENTRATOR, SOLAR KINETICS, INC. 

The Solar Kinetics Model T-500 solar collector is a linear parabolic trough 
concentrator. The parabolic mirrors were constructed in 6.1 m lengths~ two of these 
mirrors were placed end-to-end to form a row 12.2 m long for testing at Sandia. 

Two such rows were tested~ the configurations of the two rows were not identical. 
A photograph of the Solar Kinetics installation at the CMTF is shown in Figure 13. 

The linear parabolic mirror was an aluminum monocoque construction. Precision 
aluminum castings were used for internal bulkheads, and the skin was IS-gauge, heat­

treated, T6 aluminum sheet. The reflective surface was FEK-244, a second-surface, 
aluminized-acrylic film by the 3M Co. 



Figure 13. Solar Kinetics Solar Collector. 

The Solar Kinetics receiver assembly consisted of a black-chrome-plated steel 

tube inside a Pyrex glass tube. The absorber tube was 2.54 cm in diameter. Four 

different internal configurations were tested (see Figure 14): 

1) an empty tube, 
2) the tube with a flat, twisted tape spiraling down the center of the tube, 

3) a spiral spring along the inner tube wall, 

4) both the spring and the twisted tape. 
The purpose of these different absorber configurations was to determine any 

efficiency difference due to greater fluid flow turbulence and the effect these 
configurations would have on the pumping pressure required to achieve the desired 

flow rates. 

Two variations in the Pyrex glass absorber tube cover were also tested. One 
collector row was fitted with a glass tube of 5.08 cm inside diameter and the other 
row with a glass tube of 4.45 cm inside diameter. Losses and efficiency were then 

measured for each receiver assembly with air, argon, or a vacuum in the annulus 

space between the absorber tube and the glass tube cover. 

All the other collectors tested used electric motors for obtaining mechanical 

motion for sun tracking; Solar Kinetics used a hydraulic system. The hydraulic system 
had a unique advantage: sufficient hydraulic fluid was stored under pressure in an 

accumulator to drive the system out of focus in case of power failure that would 

cause a loss of fluid flow through the receiver. 

17 



Figure 14. Solar Kinetics Receiver Turbulence Generators. 
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4. PERFORMANCE TEST DEFINITIONS 

Two performance tests were of primary importance. These were the peak thermal 

efficiency at solar noon and the receiver thermal 1055. 

where 

Heat gain (or loss) was calculated from 

Q "' m C .:IT 

Q heat gain, kJ/hr 
m mass flow rate of fluid, kg/hr 

Cp specific heat of fluid, kJ/kg, °c 
~T in/out temperature differential, °c 

The flow rate and temperatures of the heat-transfer fluid were measured; den­

sity and specific heat were calculated from the average receiver temperature. 

where 

Efficiency was calculated from 
Q/A 

'1 -1-

'1 solar collector efficiency 

Q heat gain, W 

A collector aperture area, m2 

I insolation, w/m2 

Loss measurements were normally made in the morning until about 1 hour before 

noon. For complete temperature and flow stabilization, efficiency testing was 

conducted at a single temperature and flow rate from about 1 hour before noon until 

about 1 hour after noon. This procedure ensured good definition of the peak noon 

efficiency. Loss testing was then resumed for the rest of the day. All-day efficiency 
tests were an exception to the above procedures; these were run continuously all 

day at a constant flow rate and constant input temperature to define the concen­
trator's efficiency with varying insolation and changing sun angles. 

Figure 15 is a sample of the data obtained during an efficiency test; Figure 

16 is a sample of thermal 1055 data. Blocks of data such as these were obtained 

about every 3 minutes during a test run. A "good" efficiency data point consists of 

at least one of these la-point averaged data blocks, obtained near solar noon, 

during which input and output temperatures changed by 0.1 DC or less, flow rate 
varied by 0.1 liter/min or less, delta temperature remained within 0.1 DC or less, 

and insolation was above 950 W/m and constant to about 1%. 
The magnitude of the solar radiation was not quite 50 important for 1055 test­

ing, but losses do vary with insolation, therefore a reasonably high and steady 
solar input was required for a "good" 1055 data point. Other requirements for a 

1055 test were the same as for efficiency testing. 

In addition to the above, temperatures, flow rate, insolation, etc., had to be 

nearly as stable as described for at least 5 to 10 minutes before the "good" data 
point to be believable. In most cases, every effort was made to maintain stable 
conditions for about 30 minutes. 

Efficiency and 1055 measurements were supplemented as required with measure­

ments from other tests to define the collector's advantages and shortcomings. In 

most cases, measurements were made of the absorptance and emissivity of the absorber 

surface. When possible, differential pressure measurements were made over a range 
of flow rates to ascertain the pumping power requirements. 

19 



SOLAR KINETICS COLLECTOR EFFICIENCY TEST 

JULIAN DAN 7 HOUR 12 MINUTE 54 (SOLAR TIME) 

6.61 (DEG C) AMBIENT TEMPERATURE (DEG F) 43.9 
133 WIND DIRECTION, DEGREES 
10 WIND SPEED, MPH 

******NORTH COLLECTOR ONLY****** 

TEMP TEMP SOLAR DELTA FLOW EFFICIENCY 
IN OUT WATTS/M"2 TEMP LITERS/MIN PERCENT 

264.72 273.39 1037.1 8.76 19.14 42.6 
264.72 273.33 1038.4 8.75 19.14 42.5 
264.72 273.33 1039.2 8.66 19.13 42 
264.72 273.33 1039.6 8.76 19.1 42.4 
264.72 273.33 1041 8.52 19.15 41.3 
264.72 273.33 1045.1 ' 8.69 19.15 41.9 
264.72 273.39 1044.7 8.71 19.15 42.1 
264.72 273.39 1044.6 8.78 19.11 42.3 
264.72 273.33 1043.1 8.76 19.14 42.3 
264.67 273.28 1041. 3 8.71 19.15 42.2 

10 POINT AVERAGES 

264.715 273.343 1041. 41 8.71 19.136 42.16 

AVG EFFICIENCIES: N= 42.16 S= 47.81 TOTAL= 42.69 

Figure 15. Typical Data Printout for Efficiency Test. 

SOLAR KINETICS THERMAL LOSS TEST 

JULIAN DAY 357 HOUR 14 MINUTE 18 (SOLAR TIME) 

11.33 (DEG C) AMBIENT TEMPERATURE (DEG F) 52.4 
24 WIND DIRECTION, DEGREES 
10 WIND SPEED, MPH 

*****SOUTH COLLECTOR LOSS ONLY***** 

TEMP TEMP FLOW DELTA WATTS 
IN OUT LITERS/MIN TEMP GAIN/LOSS 

175.56 174.5 19.06 -.89 -524.903 
175.56 174.56 19.04 -.91 -536.154 
175.56 174.56 19.03 -.93 -547.683 
175.61 174.56 19.04 -.89 -524.403 
175.56 174.56 19.04 -.91 -536.154 
175.56 174.56 19.05 -.95 -559.989 
175.56 174.5 19.02 -.97 -570.935 
175.56 174.5 19.03 -.97 -571.185 
175.56 174.56 19.04 -.99 -583.297 
175.56 174.56 19.05 -.91 -536.404 

10 POINT AVERAGES 
175.565 174.542 19.04 -.932 -549.111 

Figure 16. Typical Data Printout for Thermal Loss Test. 
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5. TEST RESULTS 

5.1 SLATS, SUNTEC SYSTEMS, INC. 
Figure 17 shows efficiency data accumulated to date as a function of output 

temperature. Figure 18 is the same efficiency data plotted as a function of average 
receiver fluid temperature above ambient temperature divided by direct insolation. 

Because of instabilities in temperature and flow-rate control systems, the data on 
the Suntec collector are not considered "good" data, as defined earlier. These 

instabilities probably caused some of the scatter in the data shown in Figure 17. 
The curve, however, is believed to be a reasonable representation of the collector's 

performance. Additional testing is planned after modifications to improve the fluid 
loop control systems. Additional testing will also extend high-temperature efficiency 

measurements to about 340°C. 
Two data points in Figure 17 illustrate the effect of an accumulation of dust 

and dirt on the mirror surfaces of the collectors. A decrease in efficiency of about 
6% is typical of effects seen on several other collectors. 

Initial measurements on SLATS were made with an aluminized Teflon film on the 
reflector surfaces; these reflectors were unsatisfactory due to problems with 

mechanical precision and poor specular reflectivity. As a result of the preliminary 
tests, new reflectors were installed using silvered glass and a different mechanical 
design (see Figure 3). All data used in this report were obtained using the glass 
mirrors. 

The glass mirror reflectors installed were not of the best quality, but were 
leftovers from construction of the 260 m2 SLATS field installed at the Sandia Mid­

temperature Solar Systems Test Facility. The focal pattern from these reflectors 
is not optimum; light spills over both sides of the receiver assembly. Attempts 

have been made to correct this spillover, and further corrections will be made to 
improve the SLATS efficiency. 

Figure 19 shows the thermal loss measured in the SLATS receiver as a function 
of temperature. Loss is shown in watts(W), W/m length of receiver, and in w/m2 of 

collector aperture. The curve is a least-squares fit to the data. These losses are 
relatively high. The receiver assembly (Figure 4) had a relatively wide aperture 

because of the two side-by-side absorber tubes; this tends to increase radiation 
losses. In addition, the glass-fiber batt insulation is not as effective as some 
other insulations (see Figure 20). 

5.2 PARABOLIC TROUGH CONCENTRATOR, HEXCEL CORPORATION 
Figure 21 shows the measured efficiency of the Hexcel linear parabolic trough 

solar collector. Figure 22 is the same efficiency data plotted as a function of 
average receiver ·fluid temperature above ambient temperature divided by direct 
insolation. The efficiency of this collector was the highest yet measured at the 
CMTF (this is probably due to the quality of the mirror surface and the accuracy 

of the focal line). Virtually no light missed the absorber tube. No dependance of 
efficiency on fluid flow rate could be detected. Figure 23 shows the Hexcel all 
day efficiency. 

Measurements of the absorptance and emittance on Hexcel's black-chrome-plated 

absorber tube indicated that the absorptance was not optimum before testing began 
at the CMTF (Reference 8). The absorptance decreased further during the test series, 
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causing the measured efficiency to be about 4% lower than would have been possible 
using an optimum black-chrome-coating with an absorptance of about 0.95. The Hexcel 

thermal loss is shown in Figure 24. 

5.3 FMSC, GENERAL ATOMIC COMPANY 
Figure 25 shows an efficiency curve obtained from the GA FMSC. Figure 26 is 

the same data plotted as a function of average receiver fluid temperature above 
ambient temperature divided by the direct insolation. The thermal efficiency per­
formance of this collector fell well below predicted values. The difficulty was 
traced to inaccuracies in the reflective mirror surface, which caused the focal 

line to be too wide, spilling light outside the receiver aperture. This effect was 
documented by recording the reflected light intensity in a series of scans across 

the focal line at the receiver. Figure 27 is the result of several of these scans, 
showing that several mirror segments did not all focus their light in a band narrow 

enough to be captured within the receiver aperture. In Figure 27, Curve 2 would 
have fallen almost entirely within the aperture. The remaining curves have sub­
stantial portions falling outside the aperture. Overall, only about 71% of the 
light from the mirrors was captured by the receiver. Additional data on this problem 

can be found in Reference 11. 
Preliminary measurements on a new FMSC module installed in the Systems Test 

Facility demonstrated a 90% capture of the reflected light. This should produce an 
efficiency of about 53% at 300°C, a notable improvement over the 42.5% measured on 

the test module at the CMTF. 
Figure 28 shows thermal loss from the GA FMSC receiver. These losses are small 

--the loss per unit length of receiver is among the lowest measured at the CMTF. 
The exceptionally low conductivity of the Microtherm insulation used in the receiver 

(see Figure 20) and secondary concentration to a smaller active receiver area are 
believed responsible for the low loss. One loss measurement was made with the re­

ceiver window removed; as expected, this allows air conduction and convection to 
greatly increase the thermal loss. 

5.4 FRESNEL LENS ROTATING ARRAY SOLAR COLLECTOR, McDONNELL DOUGLAS 
Figure 29 shows the measured efficiency of the McDonnell Douglas linear Fresnel 

lens rotating array solar collector; Figure 30 shows same efficiency data plotted 

as a function of average receiver fluid temperature above ambient divided by direct 

insolation. In this case, this presentation of the efficiency data has increased 
the data scatter. Note that this collector did show some sensitivity of efficiency 
to the fluid flow rate. A slight redesign of the absorber tube could optimize this 
collector for lower flow rates if necessary in a systems design. 

Figure 31 shows the performance of the McDonnell Douglas collector when operated 

at a constant temperature and flow rate throughout the day. The efficiency shown in 
Figure 31 is slightly lower than normal before 10:00 a.m. because the fluid system 

was still being heated, causing unstable, rising temperatures at the collector input. 
The measured efficiency increased about 4% at 10:15, when stabilized operating 
temperatures were established. The advantage of the fully tracking design is 
immediately apparent: the collector can operate at near peak efficiency for about 

3 hours off solar noon, and falls only about 4% in efficiency at four hours off 
solar noon (an hour when the efficiency of an east-west trough collector is 

29 
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approaching zero). Over an 8-hour day such as the one shown in Figure 31, an 

energy recovery of about 11.2 MJ/m2 could be obtained. 
The measured efficiency of the McDonnell Douglas collector did not reach 

pretest expectations. The primary reason for the lower efficiency was probably the 
transmission characteristics of the cast-acrylic Fresnel lenses. They had a solar 
spectrum transmissivity of only about 70%, compared to the 80% obtainable through 
an optimum piece of acrylic. Another factor may have been alignment of the absorber 
tube with the focal line. During the test, one of the absorber tubes was observed 
to be slightly offset from the focal line over part of its length. The misalignment 

was not corrected, and the loss of efficiency from this cause is not presently known. 
Extensive data was recorded on magnetic tape during the tests on the McDonnell 

Douglas collector. Included in this recorded data are efficiency measurements on 

two of the four individual absorbers inside the collector; data has not yet been 
analyzed to determine any differences between the four sections that would make 
the tot~l collector efficiencies quoted here not representative of the collector's 

real capability. Further information should be available soon. 
Figure 32 shows the thermal losses measured on the McDonnell Douglas collector, 

shown in watts (W), W/linear meter of heated pipe within the collector, and w/m2 of 
collector aperture area. 

5.5 LINEAR PARABOLIC TROUGH CONCENTRATOR, SOLAR KINETICS, INC. 
Figure 33 is the result of efficiency testing on one 12.2 m length of Solar 

Kinetics linear parabolic trough collector. Figure 34 presents the same efficiency 
data as a function of average receiver fluid temperature above ambient temperature 
divided by direct insolation. The maximum efficiency achieved was not as high as 
had been predicted; the reason was traced to a manufacturing problem. The bulkheads 
used to provide the parabolic shape to the monocoque construction are normally a 
one-piece precision aluminum casting. These castings were not available in the full 

aperture width when the test collector was being assembled, so a shorter casting 
was used. An aluminum extrusion about 15 cm wide was then used on each side to fill 
out the full aperture width. The parabolic surface from the casting-extrusion 
interface outward was not sufficiently precise, causing considerable reflected 
light to miss the receiver. 

An experiment was conducted to attempt a definition of the problem. The outer 
15 cm of each side of the mirror was masked with black plastic and efficiency was 
measured; the measurement was then repeated with the mask removed. Calculations 

indicate that the mirror center has an optical efficiency of about 90%, while the 
outer 15 cm has a much lower optical efficiency, about 75%. The design tested to 
date is not representative of normal construction. Negotiations are under way with 

the builder to obtain a new mirror assembly, which would be constructed with one­
piece castings. The new mirror should exhibit improved performance. 

Figure 35 was obtained from two all-day tests at a constant input temperature 
and flow rate. The upper curve represents an input temperature of 150°C; the flow 
rate was changed from 19 liters/min to 38 liters/min at mid-day. No significant 

change in efficiency was found. The "glitches" in the curves resulted from slight 
problems with sun tracking equipment. 

The lower curve in Figure 35 was the result of an input temperature of 2500C. 

From 8 a.m. to 4 p.m., about 11.5 MJ/m2 could be obtained from this collector at 
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lSOoC, or about 8.9 MJ/m2 at 2S0°C. As with other east-west oriented trough collectors, 

less end spill-off would occur when the Solar Kinetics collectors are placed in long 
rows in a large field, so somewhat larger amounts of energy per square-meter would 

be available than are indicated by our test results. 
Because of temperature limitations on Teflon spacers and hoses, the Solar 

Kinetics collector tested was limited to an output temperature of about 287°C. 
The other collectors were all tested to output temperatures around 31SoC. An output 
temperature of 287°C is not a fundamental limitation of the Solar Kinetics collector, 
since simple replacement of the Teflon parts allows operation at higher temperatures. 

Figure 36 is the result of thermal loss testing on the Solar Kinetics collector. 
These losses are quite low. Analysis of loss data on the collector is not complete 

--Figure 36 is based on only a small number of loss points taken with air in the 
annulus space between absorber tube and the glass cover. Preliminary data indicate 

even lower losses are possible if argon or a vacuum replace air in the annulus space. 
Further information may be obtained from Reference 13. 
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6. CONCLUSIONS 

Figures 37 and 38 show efficiency plots for all the collectors. The Hexcel 
design performed better than the others, primarily for one reason: a highly re­
flective, precisely shaped mirror that focused almost all the reflected light onto 

the absorber. 
The McDonnell Douglas, Suntec Systems, and Solar Kinetics designs were down 

about 10% in efficiency at temperatures around 300 0 Cf these three exhibited 
essentially similar thermal efficiency performance. 

The General Atomic FMSC performed at a lower level at low temperatures, due 
to large reflected light spillover. However, because of very low thermal losses, 
the FMSC thermal efficiency performance was only about 3 to 4% lower than the 
others near operating temperatures of 300°C. 

The magnitude of actual thermal loss cannot be directly compared between the 

various collectorsf they differ too widely in size and design concept. It is 
difficult to find a loss parameter for normalization of all designs in the same 

sense as an efficiency comparison. When compared on the basis of loss per linear 
foot of receiver, those with small receivers, such as Solar Kinetics, and those 
with buried, well-insulated absorbers, such as GA and McDonnell Douglas, exhibit the 

lowest losses. This comparision may be unfair to a system such as the Suntec SLATS, 
which by virtue of its design concept must use a relatively large, wide receiver 
assembly. 

Another comparison of losses that can be made is loss per unit of collector 
aperture. This method tends to penalize low-concentration-ratio collectors such as 
Solar Kinetics and McDonnell Douglas, over a high-concentration-ratio system such 
as that of Hexcel. 

Figures 39 and 40 compare thermal loss for both loss per unit area and loss 
per unit length of receiver. These and many other characteristics must be considered 
in a decision as to which would be best suited for a given application. 

From all the problems encountered with these collectors during their test 
series, the technological immaturity of solar collector designs is apparent. Even 
the best can be significantly improved. Most of the design, manufacture, and 
operational problems encountered with all the collectors tested appear to be easily 
correctable, leading to substantial gains in efficiency, especially for those on 
the lower end of the efficiency scale. 

Though not outlined in this report, the testing apparatus caused almost as 
many operating problems as the tested devices. Lessons learned here also have 
applications in preventing problems and improving reliability of future operational 
solar thermal systems. 
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