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ABSTRACT 

This paper presents a methodology for analyzing the economic feasi­
bility of solar energy systems based upon a life-cycle costing criterion. 
Both residential and commercial solar energy systems may be handled. 
The analysis provides for a comparison between solar and conventional 
energy systems. This methodology has been adapted for use in Sandia 
Laboratories 1 systems analysis work in solar-mechanical energy storage, 
solar photovoltaics, solar irrigation, and solar total energy. 

3 



4 

ACKNOWLEDGMENT 

Much of the work presented in this paper evolved from interactions with 

members of the Solar Heating and Cooling Branch's Working Group on 

Systems Simulation and Economic Analysis. The methodology presented 

here is a documentation of the techniques currently in use by many mem­

bers of this group. 

• 



Introduction 

LCC Methodology 

Description of Inputs 

System Costs 

Financial Parameters 

Time Parameters 

Othe r Inputs 

Calculation of Present Values (PVs) 

PV of Initial System Cost 

PV of Yearly Interest Payments 

CONTENTS 

PV of Yearly Depreciation Charges 

PV of Investment Tax Credit 

PV of Recurring Costs 

PV of Salvage Value 

LCC of Solar Energy System 

LCC of Conventional Energy Systems 

Economic Feasibility 

Conclusion 

APPENDIX A -- Suggested Input Values for Calculating the LCC of an SES 

APPENDIX B -- Derivation of Equations Used in LCC Methodology 

APPENDIX C -- Numerical Illustration 

APPENDIX D -- Treatment of Inflation in an Economic Analysis 

Figure 

1 

D-l 

ILLUSTRATIONS 

LCC Methodology 

Relationship Between AC
o

' AC
j 

and AC 

Page 

7 

8 

9 

9 

10 

11 

11 

11 

12 

12 

13 

13 

13 

14 

14 

15 

15 

16 

17 

19 

27 

35 

9 

39 

5-6 



A METHODOLOGY FOR DETERMINING THE ECONOMIC FEASIBILITY 
OF RESIDENTIAL OR COMMERCIAL SOLAR ENERGY SYSTEMS 

Introduction 

There are many criteria by which the economic feasibility of a solar energy system (SES) 

can be assessed. This paper presents a methodology for analyzing the economic feasibility of a 

residential or commercial solar energy system based upon a life-cycle costing criterion. The 

methodology takes into account both the initial costs of purchasing a system and the recurring 

costs associated with operating the system throughout its lifetime. Financial parameters reflec­

ting the state of the economy in general and the economic position of the system's owner in partic­

ular are also necessary. The output of the model is the life-cycle cost (LeC) of the solar energy 

system, which may then be compared to the LCC of a conventional energy system io order to de­

termine economic feasibility. 

Life-cycle costing is a convenient method for treating expenditures and receipts that occur 

at different periods of time. Due to the existence of an interest rate, a dollar received today and 

invested at the interest rate is worth more than a dollar received at a later date. Therefore, it is 

not possible to sum the various costs of an SES occurring through time to determine its total LCe. 

Instead, it is necessary to bring expenditures and receipts occurring at different periods of time 

to an equivalent basis. The techniques and formulas for moving sums of money back and forth 

through time may be found in any engineering economics text." 

An LeC may be expressed in two different ways, either as a present value (PV) or as an 

annual cost (AC). The present value may be thought of as the amount of money necessary at the 

beginning of system operation which, if invested at the discount rate (defined below), would pay 

for all costs of purchasing and operating the system throughout its lifetime. The annual cost is 

equivalent to the PV, but instead represents the yearly amount that must be invested at the dis­

count rate throughout the system's lifetime to pay for all system costs. Both these quantities 

may be calculated using this methodology. 

The methodology is designed to handle both residential and commercial applications. These 

ownership categories must be treated differently, due to differences in the tax laws. A commer­

cial enterprise is allowed to take tax deductions for operatiog and maintenance costs. energy costs, 

property taxes, interest on loan payments and depreciation. A homeowner is allowed to deduct 

only property taxes and interest on loan payments. The equations for both cases reflect this dif­

ference. 

* For instance", Principles of Engineering Economy, Grant, Ireson, Leavenworth. 
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Although the methodology is designed primarily to determine the LCe of an SES, the Lee of 

alternative conventional energy systems must also be found in order to determine the SES's 

economic feasibility. The same methodology may be used to determine the Lee of conventional 

systems, provided inputs reflecting conventional system costs are used. Once the Lees of both 

the SES and a conventional alternative are found, a quantity called solar savings is calculated: 

Solar Savings Lee . - Lee 
conventional solar 

The solar savings term represents the total life-cycle savings of the SES over its conventional 

counterpart. If the solar savings term is positive, the SES is competitive and its economic 

feasibility has been demonstrated on a life-cycle costing basis. However, if the solar savings 

term is negative, the conventional system is still the less expensive alternative over the period 
',' 

under analysis. 

Lee Methodology 

A number of inputs are necessary for calculating the Lee of solar energy systems. These 

inputs are listed in Table I and are described below. Suggested nominal values for many of these 

inputs are presented in Appendix A. 

TABLE I 

Inputs for LCe Analysis 

d Discount rate ND Accounting lifetime 

D Percent down payment NM Borrowing period 

e Energy escalation rate OM Miscellaneous costs 

F Backup energy cost P Property taxes 

g General inflation rate SV Salvage value 

Interest rate t Income tax rate 

I Investment tax credit Yo Year of operation 

Ie Initial system cost yp Price year 
p 
N Period of analysis 

The methodology uses these inputs for calculating the present value of several quantities 

necessary to determine Lee. A flow chart of the methodology is shown in Figure 1. 

~'It must be emphasized that although this methodology can be used to determine economic 
feasibility, the results arrived at are necessarily limited by the accuracy of the inputs used. Many 
of these input values will be difficult to estimate. Hence, the results will be based on a number of 
assumptions, and should be treated as approximations to what the true situation would be if all 
input values were known with certainty. 
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Figure 1. LCC Methodology 

The inputs necessary for calculating LCC can roughly be divided into three categories; 

system costs, financial parameters, and time parameters. 

System Costs - - System costs include all costs of purchasing, operating and maintaining the 

SES. All system costs should be expressed in price year dollars. 

1. Initial cost of SES. The total initial cost of purchasing an SES for a home or a business. 

This should include the cost of a backup unit, if necessary, for use when solar energy is insufficient 

to satisfy the load demand. 

2. Yearly miscellaneous costs. The yearly cost of operation, maintenance and insurance of 

the SES, including the cost of minor repairs and parts. Any other yearly costs may also be included 

"Major replacements of system components are sometimes necessary when all system compo­
nents do not have the same lifetimes. These replacement costs are not rigorously handled in this 
methodology. However, a factor to account for replacement costs may be included in yearly miscel­
laneous costs. One possible way of doing this is to allocate some fixed percentage of the initial cost 
of the SES yearly to account for replacement costs. This yearly cost would then be added to the 
other miscellaneous costs, and would be available to pay for major replacements when they occurred. 
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3. Yearly property. taxes. The annual amount of property taxes paid on the SES. 

4. Auxiliary or backup energy costs. The yearly cost of the energy that must be purchased 

to supply the load when solar energy is insufficient. This includes either off-site sources (e. g., 

utilities) or on-site backup (e. g., diesel fuel). 

5. Salvage value of SES. The residual value of any SES components at the end of the period 

of analysis. 

Financial Parameters - - The financial parameters include both general economic conditions 

and the SES owner's particular economic situation. The inputs needed are as follows: 

1. Nominal discount rate. The rate of return desired by the homeowner or businessman 

on his investment in the solar energy system. This is often taken to be the opportunity cost of 

money--what one could receive by investing in his next best alternative. The nominal discount 

rate should include, as a minimum, a component for inflation and a component that reflects the 

real rate of return on money--the rate that would prevail if there were no inflation. It may also 

be desirable to include a component for risk in the discount rate. 

2. Interest or borrowing rate. The cost of borrowing money to the homeowner or business. 

For the homeowner, this may be his mortgage rate, if the SES is an installation on a new residence. 

Interest rates that prevail in the current market should be used. These include a component that 

reflects the real cost of money and a component for inflation, as in the discount rate. 

3. Percent down payment. The fraction of the initial cost of the solar system that is paid 

by the purchaser; i. e., not borrowed. 

4. Effective income tax rate. Should include both federal and state taxes. Since state taxes 

are deductible on the federal return: 

t ~ state + federal - (state x federal) 

Both the federal and state rates should be the marginal tax rate on the next dollar of additional 

income. 

5. General inflation rate. The yearly rate of inflation in the economy, which is assumed 

constant throughout the period of analysis. Although the inflation rate is difficult to estimate, its 

particular value is not crucial as long as an equivalent inflation component is included in both the 

interest and discount rates. A discussion of several methods of treating inflation in this type of 

analysis is found in Appendix D. 

6. Energy escalation rate. The constant yearly rate of increase in the price of conventional 

forms of energy. May be different for different energy forms. The energy escalation rate should 

be derived from the expected real increas e in the cost of energy and the general inflation rate as 

follows: 

e [(1 + inflation). (1 + real) 1 - 1 



Time Parameters --. The time parameters deal both with system life and with date of sys­

tem operation as follows: 

1. Price year for SES costs. It is necessary to choose a reference year for expressing the 

costs of the SES. In other words, all costs for the SES should be expressed in dollars of one 

particular year, referred to in this methodology as the price year. Included are the initial cost, 

yearly miscellaneous costs, yearly backup energy costs, yearly property taxes, and salvage value. 

2. Year of operation of the SES. Year in which the SES begins operation. 

3. Period of analysis. Number of years over which the economic analysis will be performed. 

This is usually just the lifetime of the SES, but may be less if a salvage value for the system is 

assumed. 

4. Borrowing period. Number of years available to pay back the loan taken out on the SES. 

5. Accounting lifetime. Number of years over which depreciation is to be carried out. 

May be less than the period of analysis due to the availability of accelerated depreciation methods. 

Other Inputs --

1. Investment tax credit. The amount of money allowed as a one-time tax credit by federal 

and state governments in the first year of operation. Since this is not expected to vary with infla­

tion, it should be expressed in dollars of the year of operation. 

2. Depreciation method. The federal tax laws allow several different methods of deprecia­

tion. A choice of straight-line or sum-of-the-years-digits depreciation is given in this methodology. 

Calculation of Present Values (PVs) 

Given the inputs stated above, it is necessary to calculate a number of present values in order 

to derive the LCC of an SES. (PVs are determined as of the year of first operation.) This is most 

easily done by use of a present value function, PVF. This function can be used to determine the 

PV of a yearly expenditure which escalates at some fixed percentage each year and then is dis­

counted over a number of years. 

Let 

where 

PVF(A,B,C) 

PVF(A,B,C) 

1 
x-=-B 

C 
1 + A for A B 

A discount rate, B escalation rate, C ~ number of years. 

A derivation of this function and some special uses of it are given in Appendix B. 
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PV of Initial Syster(l Cost -- The PV of initial system cost is made up of two components; 

the initial downpayment plus the PV of yearly payments necessary to pay back the loan taken out to 

purchase the SES. Before these can be calculated, inflation in the cost of the SES between the 

price year and the first year of operation must be accounted for. To do this, the initial cost of the 

SES in dollars of the first year of operation must be derived: 

y -y 
Ie = Ie

p 
• (1 + g) a p 

The PV of yearly loan payments is: 

PVLOAN = (1 -
PVFCd,O,NM! 

D) • Ie • PVF(i,O,\IJ if N .:: \I 

[

PVFCd ° N) (1 + i) \I - (1 + i)N 
PVLOAN = (1 - D) • Ie. PVF(l :0:\1) + [. \I 

(1 + d)N. (1 + 1) 

ifN<N. 
M 

Equation (3) gives the PV when the period of analysis is shorter than the borrowing period. 

This entails calculating not only the PV of the loan payments but also the PV of the remaining loan 

balance at the end of the period of analysis (the second term in Eq. (3)). The derivation of the 

formula for remaining loan balance is shown in Appendix B. When the analysis period is longer 

than the borrowing period, as in (2), it is necessary to calculate only the PV of the loan payments. 

The PV of total initial system costs then becomes 

PVSYS D . Ie + PVLOAN 

(1 ) 

(2) 

(3 ) 

(4) 

PV of Yearly Interest Payments -- Because interest payments are tax-deductible, it is neces­

sary to calculate the PV of the interest portion of each yearly loan payment. This can be done in 

closed form as follows: 

[ 

. (. 1 \ PVF(d,O,N1l] 
PVINT = (1 - Dl • Ie • PVF(d,l,N1l' 1 - PVFCi,O,\IJ) + PVF(l,O,\IJ (5) 

where 

A derivation of this equation can be found in Appendix B. 



PV of Yearly Depreciation Charges -- Two possible methods of depreciation are given in this 

methodology. Straight-line depreciation provides for equal yearly depreciation charges over the 

accounting lifetime. The yearly depreciation charge, Dr is 

D. 
J 

IC - SV where j 1, ... , ND 

Sum-of-the-years-digits (SOYD) depreciation provides for acceleration of yearly depreciation 

charges. The yearly charges decline over the accounting lifetime, with a larger fraction of the 

initial cost depreciated in the earlier years of system life as compared to the straight-line method. 

The yearly depreciation charge in this case is 

(Ie - SV) • 
~ - j + 1 

ND • eND + 1) 

2 

The equations for the PV of depreciation charges are 

Straight-line: 

where 1, ... ,ND 

1 PVDEPD = (Ie - SV) • N . PVF(d,O,NDl 
D 

Sum -of-the-years - digits: 

(6) 

PVDEPD (Ie - SV) • 
2. [ND - PVF(d,Q,NDlj 

N
D

• eND + 1) • d 
(7) 

A derivation of (7) is found in Appendix B. 

PV of Investment Tax Credit -- It is assumed that the investment tax credit is received at 

the end of the first year of operation. Its PV is therefore 

PVITC 
I 

1 + d 

PV of Recurring Costs -- Recurring costs include yearly miscellaneous costs, yearly 

property taxes, and yearly backup energy costs. It is assumed that both miscellaneous costs and 

property taxes will escalate yearly at the rate of general inflation. However, any escalation rate 

may be used in place of the general inflation rate in the following formulas. Backup energy costs 

will rise at the energy escalation rate. The equations are 

(8) 
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y -y 
PVMISC = OM • PVF(d,g,N) • (1 + g) a p 

y"y 
PVPROP p. PVF(d,g,N) • (1 + g) 0 p 

Y -Y 
PVENER = F • PVF(d,e,N) • (1 + e) 0 p 

The PV factor escalates from the point of first operation, so an additional factor is neces­

sary to escalate the costs from the price year to the year of operation. 

PV of Salvage Value - - Salvage value is a one-time receipt occurring at the end of the period 

of analysis. It repres ents the residual value of all SES components; i. e., what they could be sold 

for. This was originally expressed in price year dollars. Assuming that the value of the salvaged 

equipment will rise due to inflation, 

y +N-y 
PVSV = SV • (1 + g) 0 P 

(9) 

(10) 

(11) 

(1 + d)N (12) 

LCC of Solar Energy System 

Given the above present values. it is now possible to calculate the PV and AC of an SES under 

both residential and commercial ownership. 

The total PV is calculated by summing the PVs of all system costs, minus the PVs of tax­

deductible items and receipts, using a given tax rate. The equations are 

Residential: 

Commercial: 

TPV
R 

= PVSYS + PVMISC + PVENER 

+ (1 - tJ . PVPROP - t • PVlNT - PYlTC - PVSV 

1 
Ar. = TPVR • 

-j{ PVF(d,O,N) 

TPV = PVSYS + (1 - t) • 1p\l]\lISC + PVPROP + PVENERJ 
C 

- t • [PVDEPD + PVINTJ - P\T[TC - PVSV 

1 
TPVc • PVF(d,O,Nj 

The equations for residential ownership reflect the tax deductibility of property taxes and interest 

on loan payments. Presently. miscellaneous and energy costs are not deductible for a homeowner. 

The equations for commercial ownership reflect the tax deductibility of miscellaneous costs. 

property taxes. energy costs, interest payments and depreciation. 

• 



The conversion to AC. is performed by dividing by the PVF for a zero escalation rate (i. e. , 

B = 0). The reciprocal of this factor is often referred to as the capital recovery factor (CRF). 

The CRF is commonly used to determine the payments necessary to amortize a sum of money 

over some period of time at a specified interest rate. In this situation, it is used to find the 

annual amount necessary to pay for all SES costs. 

LCC of Conventional Energy Systems 

The above equations are also applicable for calculating the LCC of any conventional energy 

system, providing the proper inputs are used. Specifically, the total cost of the conventional sys­

tem should be input as initial system cost. Yearly miscellaneous costs should include the cost of 

operating and maintaining the conventional system. The total cost of purchasing energy for the 

conventional system should be input in place of the backup energy cost. Finally, financial arrange­

ments for purchasing a conventional system may be different from those for an SES, and these 

should be taken into account when determining the conventional system's LCC. 

The situation is simplified in the case where the SES's backup unit is identical to the conven­

tional system that would otherwise be in use. The initial costs of the backup unit and the con­

ventional system may be ignored, and the SES's initial cost becomes the incremental cost of the 

SES over its conventional alternative. The LCC of the conventional system is determined by 

looking solely at the LCC of purchasing energy for that system (the LCC of the SES must still 

include the cost of purchasing backup energy). The comparison essentially becomes one of purchas­

ing a solar energy system vs purchasing energy to run a conventional one. 

Economic Feasibility 

Economic feasibility of an SES is determined by comparing the LCC (either PV or AC) of the 

SES to the LCC of any conventional alternative. This may be done in a variety of ways, but a 

convenient method is to examine the life-cycle savings of the solar system over those of its COn­

ventional counterpart: 

Solar Savings LCC . - LCC conventional solar 

If the solar savings term is positive, the solar energy system is less expensive than its conventional 

alternative over the period of analysis. The economic feasibility of this system given a life-cycle 

costing criterion is proven. However, if the solar savings term is negative, the conventional sys­

tem is the less expensive one, and the SES is not economically feasible on a life-cycle costing 

basis. An example demonstrating the determination of economic feasibility is shown in Appendix C. 

15 



16 

Conclusion 

There are many criteria for determining economic feasibility of a solar energy system. 

This methodology has presented only one such criterion, life-cycle costing. Although in some 

instances other criteria such as payback periods or rates of return may be more appropriate, 

life-cycle costing is still valuable for providing a true indication of the economic worth of a sys­

tem over its lifetime. 
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APPENDIX A 

Suggested Input Values for Calculating the LCC of an SES 

The following input values have been suggested in a recent DOE report," 

Residential Commercial 

OM __ 0.015· IC O. 015 • ICp P 
P O. O. 

d 0.10 0.10 

0.085 0.08 

D 0.20 0.30 

0.30 0.50 

g 0.05 0.05 

e (electricity or oil) 0.07 0.07 

e (natural gas) 0.10 0.10 

N 20.0 20.0 

NM 30.0 25.0 

ND 20.0 

I O. 0.10 . IC 

SV O. O. 

"An Analysis of the Current Economic Feasibility of Solar Water and Space 
Heating, Office of the Assistant Secretary for Conservation and Solar 
Applications, January 1978, DOE!CS-0023. 
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APPENDIX B 

Derivation of Equations Used in LCC Methodology 

Present Value Function (PVF) 

The PVF determines the PV of an expenditure of $l/yr that is escalated at some fixed 

percentage each year and then discounted over a number of years. 

Let A discount rate 

B escalation rate 

C number of years 

The PV of a $1/ yr expenditure escalated at B and discounted at <~ is 

C 

PVF(A,B,C) 2: 
i=l 

(1 + B)i-1 

(1 + A) 1 

This assumes no escalation in the first year. This may be simplified as follows: 

=_1_+ l+B 
PVF(A,B,C) 1 + A 2 + ••• + 

(1 + B)C-l 

(1 + A)C (1 + A) 

1 
- 1 + A 

~ + (1 + B)C-1] 
I+A ... + Cl 

(1 + A) -

Summing the geometric series in brackets: 

PVF(A,B,C) = 1 ! A • [
1-n:!C] 
0~ 
~ - \1 + A 

QED 

Any yearly expenditure that is expected to escalate at some rate may be multiplied by PVF(A. B. C) 

in order to determine the total PV of all the expenditures. 
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For the case where A = B, 

C 

PVF(A,B,C) = ~ 
i=l 

(1 + A)i-1 

(1 + A)l 

For the special case E O· 

PVF(A,O,C) 

C 

~ 
1 

(1 + A) 
i=l 

C 
1 + A 

1 
A 

(1 + A) C - 1 

A • (1 + A)C 

When the escalation rate equals zero, the PVF is used simply to find the PV of a constant 

yearly expenditure, such as loan payment. The reciprocal of the PVF with B = 0 is commonly 

referred to as a capital recovery factor (CRF). When multiplied by an initial sum of money, the 

CRF determines the periodic payment necessary to pay back that sum of money at interest rate A 

over C periods. 

PV of Remaining Loan Ealance 

The PV of the remaining loan balance must be calculated when the period of analysis is shorter 

than the borrowing period. 

N period of analysis 

NM borrowing period 

d discount rate 

EO 
B. 

J 
E. 1 J-

P 

interest rate 

initial loan amount 

loan balance at end of year j 

interest at end of year j 

constant yearly payment necessary to pay back loan in NM years 

1 



Therefore: 

(1 + i) • BO - P 

(1 + i) • [(~ + i) • BO - p] - P 

(1 + i) 2 • BO - (1 + i) • P - P 

- (1 + i)j-2 • P - ... - (1 + i) • P - P 

Therefore: 

B
j 

(1 + i)j • BO - P • [(1 + i)j -1 + (1 + i)j -2 + .•• + (1 + i) + 1] 

. [1 - (1 + i) j ] 
(1 + i)J • BO - P. 1 _ 1 - 1 

The remaining balance at the end of the period of analysis, N, is 

The payment, p, can be obtained by multiplying the initial loan balance, BO' by the capital re­

covery factor: 

"""="17;--;,,,, = BO' [i . (1 + i) NM] 
P = BO • PVF(i,O,~) ~ 

(1 + i) - 1 

21 



22 

Therefore: 

i • (1 ~ i) NM • [1 _ 

(1 + i) M - 1 

(1 + i)N] 
i 

[

N N+N j (1 + i) M - (1 + i) M 

(1 + i) ~ - 1 

N+N
M i) (1 + i)N + (1 + i) ~ -

[

(1 + i) \1 - (1 + i)N] 

(1 + i) ~ - 1 

The PV of the remaining loan balanc e is then 

PV of Yearly Interest Payments 

QED 

It is necessary to find the PV of yearly interest payments due to the tax deductibility of 

these payments. Let 

N period of analys is 

NM borrowing period 

Nl min (N,N
M

) 

interest rate 

d discount rate 

EO initial loan amount 

balance at end of year j E. 
J 

I. i· E. 1 = interest at the end of year j 
J J-
P = constant yearly payment necessary to pay back loan in NM years 

The PV of yearly interest payments is 

Nl 1. 
PVINT = L: _---,1---,­

j=l (1 + d)J 



Now: 

Therefore: 

N1 
PVINT = L 

j=1 

Nl 

L 
j=1 

i 

i • BO • 

r. 
J 

i· B
j

_1 

i 1(1 + i)j-l • BO + p. [1 - (1; i)j-l]! 

i • (1 + i)J . B + . -1 i • BO • [1 (1 +i i) j -1] 
a PVF(i,O,~) 

= i 

(1 + i)j-l BO Nl BO Nl (1 + i)j-l 

(1 + d)J 
+L 

(1 + d}J 
L 

j=1 PVFCi,O,~) . j=1 PVF(i,O,~) 

Nl (1 + i}j,1 EO Nl 
1 EO N1 

j~1 G+dl.j "" PVF(i,O,~) L 
(1 + d) J PVF(i,O,~) L 

j=l j=1 

QED 

PV of Sum-of-the- Years -Digits (SOYD) Depreciation Charges 

• BO 

(1 + d)j 

(1 + i)j-l 

(1 + d)J 

A closed form for the PV of yearly depreciation charges using the SOYD depreciation method 

may be derived. SOYD provides for acceleration of depreciation charges in the early years of 

system life. 

Let D. 
J 
d 

depreciation charge at end of year j 

discount rale 

N D accounting lifetime 

IC initial system cost 

SV salvage value 
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The yearly depreciation charge is 

Therefore: 

ND ~ j +1 _ 2 • (IC ~ SV) 
(TC " SV) • ND • eND + 1) - ND • eND + 1) • (ND -

ND D. 

PVDEPD = L -C1-+....oI.J-
d

)""J 
j=l 

_ 2 • (IC - SV) 
- ND • eND + 1) 

_2 • eIC ~ SV) 
- ND • eND + 1) 

2 

ND 
A closed form for} 

j 
-"--...,. may be determined as follows: 
(1 + d)j H 

ND • 
S = "_.oLJ _-,- 1 _.::::2_ .... 

j";;{ (1 + d)J = 1+0 + (1 + d)2 + 

ND 
... + --"'--.:iN~ 

(1 + d) D 

S 1 + 2 + 
1+0 = (1 + d)2 (1 + d)3 

•.. + 
N ~ 1 ND 

D + _--==--.".-" 
N N +1 

(1 + d) D (1 + d) D 

1 

+ 1) 

S 1 1 + 1 + 
S ~ 1+0 = 1 + d + (1 + d) 2 (1 + d) 3 

• .• + ---"'.--;C;N-

(1 + d) D 
N +1 

(1 + d) D 

N +1 
(1 + d) D 

ND 
= PVF(d,O,ND) ~ --"--..N.,-c+T1 

(1 + d) D 



Therefore: 

s = 1 ~ d • PVF (d, 0, N
D

) _ __N-'D'-----;:;N~ 
(1 + d) D 

1 + d 
=-d-

N 
(1 + d) D - 1 

N 
d • (1 + d) D 

d 

d 
N 

(1 + d) D 

1-1+1 
(1 + d) D - (1 + d) - ND . d 

N 
d2 • (1 + d) D 

Returning to the original equation: 

PVDEPD = 2 • (Ie - SV) • IN . 
ND • eND + 1) L D 

_ 2 . (Ie - SV) • [N . 
- ND • eND + 1) D 

N+1 
(1 + d) D - (1 + d) - ND . d 

PVF(d,O,ND) - N 

d2 • (1 + d) D 

1-1 
(1 + d) D - 1 

N 
d • (1 + d) D 

N+1 
(1 + d) D -

d • N • (1 + d)ND - d • ND - (1 + d)ND+1 + 1 + d + ND • d + d • (1 + d)ND-d 
= 2 • (IC - SV) • _----'D=--_____ -----., ___ ---,:; ______ =--______ _ 

d2 • (1 + d)ND • ND • (N
D 

+ 1) 

[ 

ND PVF(d,O,ND)] 
= 2 • (IC - SV)' d. ND • (N

D 
+ 1) - d • ND • CNu + 1) 

[

ND - PVF(d,O,ND) ] 
= 2 • (IC - SV) • d. ND • (N

D 
+ 1) QED 

25-26 



I 

-. 



APPENDIX C 

Numerical Illustration 

The methodology may best be illustrated by use of a numerical example for both the residen­

tial and commercial applications. The examples given below are purely hypothetical and are used 

strictly to illustrate the methodology. No generalizations about the economic feasibility of solar 

energy systems should be drawn from these examples. 

Residential Application 

A homeowner is contemplating purchasing a solar energy system with an electric resistance 

backup unit for his new home. If he does not purchase the SES, he will instead install a gas furnace. 

He is interested in looking at the LCCs of these two alternatives. The cost data in 1978 dollars 

are as follows: 

Initial cost of SES: ICp = $6000 (including backup) 

Backup electricity cost: F = $lOO/year 

Initial cost of gas furnace: ICp = $1800 

Conventional natural gas cost: F = $250/year 

Year of operation: y = 1979 
o 

The values for all the other inputs necessary to do the analysis are found in Appendix A. (The 

assumption is made that either system will be financed as part of the purchase of the home. ) 

Using these inputs, the homeowner can calculate the LCC of both the solar and conventional sys­

tems. 

LCC of Solar Energy System --

PV of initial system cost: 

IC = 6000' (1. 05)1 = 6300 

[ 
PVF(. 1, 0, 20) 

PVLOAN = (1 - .2) • 6300 . PVF(. 085, 0, 30) + 
(1. 085)30 - (1. 085)20 

(1. 1)20 . [(1.085)30 

(1 - .2) • 6300 • [1~: ;; + 
11.56 - 5.11 4447 
6.73' [11.56 

PVSYS .2 . 6300 + 4447 5707 
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PV of yearly interest payments: 

PVINT (1 - .2) • 6300 • [PVF (.1, .085, 20) • (.085 - PVF (. 0~5, 0, 30») 

PVF (.1, 0, 20) ] 
+ PVF (.085, 0, 30) 

(1 - .2) . 6300' [16.01 • (.085 - .093) + 1~: ;~] 3344 

PV of recurring costs: 

OM = .015 . 6000 90 

PVMISC 90 • PVF (.1, .05, 20) • (1. 05)1 

90 • 12.11 . 1. 05 1145 

PVPROP 0 

PVENER = 100· PVF (.1, .07,20) . (1.07)1 

100 • 14.16 • 1. 07 1515 

Given the above PVs, it is now possible to calculate the LCC of the SES: 

TPV
R 

PVSYS + PVMISC + PVENER 

+ (1 - t) • PVPROP - t . PVINT - PVITC - PVSV 

5707 + 1145 + 1515 + 0 - .3' (3344) - 0 - 0 7364 

7364 7364 
PVF (.1, 0, 20) 8.51 

865 

Given either $7364 at the beginning of system operation or $865/year for 20 years, the homeowner 

could fully pay for his SES. 

LCC of Conventional Energy System -- The same PVs must be calculated to find the LCC of 

the conventional system, using conventional costs as inputs: 



PV of initial system costs: 

IC = 1800· (1.05)1 1890 

PVLOAN = (1 _ .2)' 1890 • [PVF (.1, 0, 20) + 
PVF (. 085, 0, 30) 

= (1 _ 2)' 1890 . [~ + 11. 56 - 5.11 ] = 1334 
• 10.75 6.73· [11.56 -1] 

PVSYS = .2 • 1890 + 1334 1712 

PV of yearly interest payments: 

PVINT (1 - .2)' 1890' [PVF (.1, .085, 20)' (.085 - PVF (. 0~5, 0, 30)) 

PVF (.1, 0, 20)] () [ 6 ( 093) + PVF(.085, 0, 30) = 1 -.2 • 1890' 1 .01' .085 -. 

8.51 ] 
+ 10.75 = 1003 

PV of recurring costs: 

OM .015' 1800 27 

PVMISC 
1 

27 . PVF (. 1, .05, 20)' (1. 05) 

PVPROP 0 

PVENER 250· PVF(.l,.1. 20)' (1.1)1 

27· 12.11' 1.05 343 

250' 18.18 . 1.1 5000 

Given the above PVs, it is now possible to calculate the LCC of the conventional system: 

TPV R = PVSYS + PVMISC + PVENER + (1 - t) • PVPROP - t· PVINT - PVITC - PVSV 

1712 + 343 + 5000 + 0 - .3 • 1003 - 0 - 0 = 6754 

6754 6754 
AC R = PVF (.1, 0, 20) 8.51 794 

Given either $6754 at the beginning of system operation or $794/year for 20 years, the homeowner 

could fully pay for the conventional energy system. 
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Economic Feasibility -- To determine economic feasibility, we must look at the solar 

savings term: 

Solar Savings LCCconventional - LCCsolar = 6754 - 7364 = -610 

Since the solar savings term is negative, the SES in this particular example is not economically 

feasible, based on a life-cycle costing criterion, and the homeowner would save money by install­

ing the conventional system. 

Commercial Application 

Let's now assume instead that the above systems are being considered for installation on a 

small office building. The cost inputs are tbe same, with commercial values for the inputs in 

Appendix A being used. 

LCC of Solar Energy System --

PV of initial system cost: 

IC = 6000· (1. 05)1 = 6300 

PVLOAN = (1 _ .3)' 6300 • [PVF (.1, 0, 20) + ...0(.::.1:.:' 0::,:8=i),,25_-.--'(.::.1:.:. 0::..:8::..:),,20:0-_] 

PVF (. 08, 0, 25) (1. 1)20 • [(1.08)25 - 1 J 

PVSYS .3 • 6300 + 3763 5653 

PV of yearly interest payments: 

PVINT = (1 - .3)' 6300· [PVF(.l, .08. 20)' (08 _ 1 ) 
: PVF (. 08, 0, 25) 

PVF (.1,0,20) ] 
+ PVF (. 08, 0, 25) 

S. 51] 
+ 10.67 

2589 

(1 - .3) • 6300' [15.36' (.08 - .0937) 

.\ 

I 



PV of yearly depreciation charges: 

Assume SOYD depreciation 

PVDEPD = 6300' 

PV of investment tax credit: 

2· [20 - PVF (.1, 0, 20)] 
20 • 21 • (. 1) 

I = • 1 • 6300 630 

PVITC 

PV of recurring costs: 

630 
1.1 

573 

6300. 2· [20 - 8. 51] 
20 . 21 • (. 1) 

3447 

PVMISC, PVPROP, and PVENER have the same values as in the homeowner case. 

It is now possible to calculate the LCC of the SES for this commercial application: 

TPV C = PVSYS + (1 - t)· (PVMISC + PVPROP + PVENER) - t· (PVDEPD + PVINT) 

- PVITC - PVSV = 5653 + (1 - .5)' (1145 + 0 + 1515) -.5· (3447 + 2589) 

- 573 - a = 3392 

3392 
PVF (.1, 0, 20) 

3392 
8.51 

399 

LCC of Conventional Energy System --

PV of initial system cost: 

IC c 1800· (1. 05)1 1890 

PVLOAN (1-.3)' 1890' [
PVF (.1,0,20) 
PVF (. 08. 0, 25) + 

(1. 08)25 - (1. 08)20 

(1. 1)20. [(1.08)25 -

[8.51 6.85-4.66 ] 1129 
(1 - .3)' 1890 '[10.67 + 6.73' (6.85 _ 1) c 

PVSYS .:3' 1890+ 1129 1696 

PV of yearly interest payments: 
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PVINT (1 - .3)· 1890' [PVF (.1, .08, 20) • (.08 - PVF (. O~, 0, 25») 
-t 

+ PVF(.l, 0, 20) ] 
PVF (.08, 0, 25) 

(1 - .3)' 1890' [15.36 . (.08 - .0937) + 1~:~~]~ 777 

PV of yearly depreciation charges: 

Assume SOYD depreciation 

PVDEPD 1890, 2· [20 - PVF (.1,0, 20)J 
20' 21 • (. 1) 

PV of investment tax credit: 

.1' 1890 189 

PVITC 
189 
1.1 

PV of recurring costs: 

172 

1890 . 2· [20 - 8. 51 J 
20 • 21 . (. 1) 

1034 

PVMISC, PVPROP, and PVENER have the same values as in the homeowner case. 

It is now possible to calculate the LCC of the conventional energy system: 

TPV
C 

PVSYS + (1 - t)· [PVMISC + PVPROP + PVENERJ 

- t· (PVDEPD + PVINT) - PVITC - PVSV 

- . 5 . (1034 + 777) - 172 - 0 3290 

3290 
PVF (. 1, 0, 20) 

3290 
8. 51 

387 

1696 + .5· (343 + 0 + 5000) 

Economic Feasibility -- We can nOw determine the economic feasibility of this commercial 

solar installation: 

Solar Savings ~ LCC - LCC 
conventional solar 

3290 - 3392 

-102 



Again the SES in this .example is not economically feasible given a life-cycle costing 

criterion. 
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APPENDIX D 

Treatment of Inflation in an Economic Analysis 

Introduction 

There are several different methods of dealing with inflation in an economic analysis. Infla­

tion is an economic fact of life, yet its treatment in various studies is by no means standardized. 

The issues involved in treating inflation when analyzing an investment decision will be discussed 

in this Appendix. In, order to illustrate the effect of these issues a hypothetical capital investment 

will be examined. It will be shown that the evaluation of an investment decision can vary depend-
:-:~ 

ing on the method chosen for dealing with inflation. 

Theoretical Concepts 

It is essential to define several concepts before proceeding with the method discussion, the 

first being the difference between current and constant dollars. Current dollars are dollars that 

reflect the inflation present in the economy. Society pays for its goods and services in current 

dollars. Constant dollars are dollars from which inflation has been removed--dollars that have 

been deflated or adjusted for changes in the price level. Constant dollars reflect only real changes 

in the relative price of goods and services and are always expressed in terms of some reference 

price year. 

This can be illustrated by looking at the Gross National Product (GNP) of the United States. 

The GNP for 1977 in current 1977 dollars was $1889.6 billion, 10.70/0 higher than 1976's current 

dollar GNP of $1706. 5 billion. Much of that increase was due to an overall rise in the prices of 

the goods and services that make up the GNP, rather than an actual increase in the volume of 

those goods and services. One year's inflation can be removed from the 1977 GNP in order to ex­

press the 1977 GNP in constant 1976 dollars."" This becomes $1789.4 billion. Therefore, the 

real increase in the volume of goods and services over 1976 was 4.90/0. By expressing the GNP in 

constant dollars, all effects of inflation are removed, and it is possible to look at the real increase 

in the volume of goods and services produced. 

-!: 
For a more rigorous treatment of the methods of handling inflation, see "Engineering 

Economy and the Two Rates of Return--Mixed Mode Computations." Sanford Baum, AIlE 
Transactions, March 1978. --

,,,', N 
Current dollars are adjusted to constant dollars by dividing by (1 + g) where g is the 

inflation rate and N is the number of years of inflation being removed. The value of g from 1976-
1977 was 5.60/0. 
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The second concept. that is important in understanding inflation is the difference between 

nominal or market interest rates and real interest rates. Nominal or market interest rates are 

rates that include a component for inflation. The nominal rates prevailing in today's market are 

high due to the high inflation rates the US has been experiencing in recent years. Real interest 

rates are inflation-free. They represent the real time cost of money- -the rates that would pre­

vail if there were no inflation. Inflation is primarily responsible for the difference between real 

interest rates of 2-3% and the nominal interest rates of 8-9% that occur in today's market." 

Current vs Constant Dollar Analysis 

An analysis that treats inflation may be done in either current or constant dollars. In the 

current-dollar analysis, inflation is included in all cost estimates. All costs are expressed in cur­

rent dollars; i. e., the actual out-of-pocket dollar costs for the investor in the year in which they 

occur. Nominal interest and nominal discount rates are used."'" The analysis is illustrated by the 

following example: 

Assume a commercial enterprise exists that is interested in making a capital investment. 

The data are as follows: 

Capital investment, CI 

Miscellaneous yearly expense, OM 

Downpayment, D 

Nominal interest rate, 

Nominal discount rate, d 

Real discount rate, d I 

Inflation rate, g 

Income tax rate, t 

Number of years, N 

Depreciation 

$10,000 

$100 at the beginning of year 

100/0 

100/0 

10% 

3.774% 

6% 

50% 

5 

straight line 

(These data are for illustrative purposes only and do not reflect any estimate of true economic 

values. ) 

"Given a nominal interest rate, i, and an inflation rate, g, it is possible to find the real 
interest rate, ii, as follows: 

i I 
1 + i 
1 + g 

- 1 

The assumption is that the only difference between nominal and real interest rates is that due to 
inflation. This neglects any other components, such as risk, that may have some influence on this 
difference. 

'''''In 'this discussion, the term "interest rate" will be used to refer to the cost of borrowing 
money. The term "discount rate" will refer to the rate of return an investor wants on his invest­
ment. Both may be expressed in either nominal or real terms. 



, 

We want to look at the total cost of this investment over its lifetime. This may be expressed in 

two ways--either as a present value (PV) or as a levelized annual cost (AC). The PV is determined 

by discounting each yearly cost back to year zero and then summing the discounted values. The 

levelized AC is determined by multiplying the PV by the capital recovery factor (CRF). 
~);: 

The yearly cash flows are as follows: 

Current Dollars ($) 

Loan 
Year Payment 

Taxes 
Saved 

Miscellaneous Yearly Cost PV of 
Interest Depreciation 

0 

1 2374 900 2000 

2 2374 753 2000 

3 2374 590 2000 

4 2374 412 2000 

5 2374 216 2000 

1503 

1433 

1355 

1269 

1175 

Expenses in Current $ Yearly Cost 

106 

112 

119 

126 

134 

1000 

977 

1053 

1138 

1231 

1333 

Total PV 

1000 

888 

870 

855 

841 

828 

5282 

Miscellaneous expenses have been inflated yearly at 6% and are in current dollars. as are the other 

payments. Each yearly cost is obtained as follows: 

Yearly cost 

Taxes saved 

Loan payment + Miscellaneous expenses - Taxes saved 

.5 • (Interest + Depreciation + Miscellaneous expenses) 

The total present value of the yearly costs in year zero is $5282. The levelized annual cost. AC. 

obtained by multiplying by the CRF for a 10% discount rate. is $1393. 

Suppose instead the analysis is done in terms of constant dollars. Inflation is not included 

in the miscellaneous expenses. A real rather than nominal discount rate must be used to discount 

the yearly costs. A more subtle effect appears in the loan payments. interest. and depreciation 

charges. These payments were initially expressed in current dollars. but the real value of these 

payments declines through time if inflation is present. To express these payments in constant 

dollars. they must be deflated to year zero by the inflation rate of 6%. (Year zero in this context 

becomes both the reference year for constant dollars and the year as of which all PVs are calcu­

lated.) The cash flows become 

});: 

The technique called "discounting" is accomplished by multiplying each yearly cost by the 
discount factor. 1/ (1 + d)t. where t is the number of years from year zero. The levelized annual 
cost is determined by multiplying the PV by the capital recovery factor. 

[d' (1 + d)N]/[(1 + d)N - 1J • 
These terms are more fully described in Principles of Engineering Economy. Grant. Ireson and 
Leavenworth. 
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Constant Dollars ($) 

Loan Taxes Miscellaneous Yearly Cost PVof 
Year Payment Interest Depreciation Saved Expenses in Constant $ Yearly Cost 

0 1000 1000 

1 2240 849 1887 1418 100 922 888 

2 2113 670 1780 1275 100 938 870 

3 1993 496 1679 1138 100 955 855 

4 1880 326 1584 1005 100 975 841 

5 1774 161 1495 878 100 996 828 

Total PV 5282 

The PV of the yearly costs in this constant dollar case, using the real discount rate of 3.774% is 

again $5282. 

is $1179. 

The levelized annual cost, AC , obtained by multiplying by the CRF for 3.774%, 
o 

Both the current and constant dollar analyses yield identical present values, although the 

levelized annual costs are different. There is a direct relationship between these two levelized 

costs. The current dollar levelized cost, AC, is the amount of current dollars needed in each 

year of system operation to pay for all system costs. The constant dollar levelized cost, AC
o

' 

is the amount of constant zero-year dollars needed in each year of system operation to pay for all 

system costs. However, AC
o 

may also be viewed as the amount of money needed in year zero, 

which if escalated yearly at the inflation rate would pay for all systems costs. The yearly costs, 

AC., represent the current yearly expenditures needed to cover all system costs and are derived 
J 

as follows: 

AC. AC (l+g)j forj I, .... N 
J 0 

The yearly amounts necessary in this example are 

1 

2 

3 

4 

5 

AC. 
J 

1250 

1325 

1404 

1488 

1578 

The PV of the AC. terms using a 10% discount rate again equals $5282. The relationship between 
_J ':' 

AC
o

' ACr and AC is shown graphically in Figure D-l. 

"Much of this discussion was adopted from information presented in "The Cost of Energy 
from Utility Owned Solar Electric Systems, A Required Revenue Methodology for ERDA/EPRI 
Evaluations," Jet Propulsion Lab, June 1976, ERDA/JPL-1012-76/3. 
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Figure D-l. Relationship Between AC 0' AC j' and AC 

Given the relationships stated above, it is possible to calculate either AC or AC given the 
o 

other. We know that the PVs are equal in both the current and constant dollar cases. Therefore: 

AC 
AC 0 

CRF
d

, CRF
d 

(D-1) 

AC 
AC' CRF

d
, 

0 CRF
d 

This relationship is especially useful for calculating AC
o 

given AC, thereby avoiding the need to 

calculate the constant dollar cash flows. 

It is illustrative to view another way of arriving at the above relat ionship. We know that the 

PV of the levelized annual costs, AC, and of the AC. terms using discount rate, d. are equal. 
J 

That is 

Therefore: 

N 

L 

AC. 
J 

AC . (1 + g)j 
o 
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Summing the geometric series: 

AC • 
o 

N 

~ 
j= 1 

AC • (1 + g) 
o (d - g) 

AC 
CRF

d 

For Eqs. (D-l) and (D-2) to be equivalent, one must show that 

Now CRFd' 
d I • (1 + d I )N 

(1+d/)N_ 1 

~ 
(d - g) 

Also d' was derived from d and g as follows: 

d' 

Therefore: 

The Zero lnflation Rate Case 

1 + d _ 1 
1 + g 

1 

(~)N _ 
1 + g 

(~ _ 1). (~)N 
l+g l+g 

(
1 + d)N _ 1 
1 + g 

(~). (~)N l+g l+g 

(1 + g) 
(d - g) 

QED 

The use of either the current or constant-dollar method of dealing with inflation assumes 

that inflation is a fact of life that must be dealt with in economic studies. A popular method of 

dealing with inflation in many recent studies is to assume that there is no inflation whatsoever 

(D-2) 



in the economy; i. e., that the inflation rate is and will continue to be zero. Under this scenario, 

current and constant dollars are equivalent since all dollars, regardless of the year in which they 

occur, have the same purchasing power. This method requires that both real interest and discount 

rates be us ed which are free of inflation. The analysis can be illustrated by continuing with the 

example above. A real interest rate, i " must be calculated: 

i I 
1 + 0.1 
1 + 0.06 - 1 0.03774 

The yearly cash flows in the zero inflation case are 

Zero lnflation ($) 

Loan Taxes Miscellaneous 
Year Payment Interest Depreciation Saved Expenses 

0 

1 2009 340 2000 1220 100 

2 2009 277 2000 1189 100 

3 2009 211 2000 1156 100 

4 2009 143 2000 1122 100 

5 2009 73 2000 1087 100 

The PV of the yearly cash flows using the real discount rate of 3.7740/0 is 

annual cost is $1175. 

Yearly PVof 
Cost Yearly Cost 

1000 1000 

889 857 

920 854 

953 853 

987 851 

1022 849 

Total PV 5264 

$5264. The levelized 

The zero-inflation case answers are very close to those calculated using the constant­

dollar analysis. This leads many analysts to aSSume zero inflation, since it is simpler to do and 

does not require deflating of current dollar payments. However, since this method does assume 

a zero-inflation rate, it can only be considered an approximation to reality when inflation is 

present in the economy. The magnitude of the error introduced into the analysis by this assump­

tion may be difficult to estimate, and it is often no more difficult to treat inflation rigorously as it 

is to set it equal to zero. 

There is one special case where the constant-dollar and zero-inflation methods yield identi­

cal results. This is in the case of an investment in a nondepreciable asset that is financed com­

pletely without borrowing. In this situation, the fixed current dollar loan payments and deprecia­

tion charges are nonexistent, and there is no necessity to deflate them to constant dollars. How­

ever, in the more usual Case of a depreciable asset that is partially financed by borrowing, the 

two methods yield different results. 
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Conclusion 

We have seen three different methods of treating inflation--the current-dollar, constant­

dollar, and zero-inflation approaches. The first two methods assume that inflation exists in the 

economy, while the third assumes inflation equals zero. The current- and constant-dollar analyses 

will always yield identical PVs. The zero-inflation case will yield a PV different from that in 

the other two cases, except in certain cases where the PV will again be identical. 

Any of these methods may be used when analyzing an investment decision. If it is desired 

to treat inflation rigorously, the analysis should be done in either current or constant dollars. If 

one chooses to disregard inflation, the zero-inflation case method may be used to obtain an approxi­

mation to the other methods, although the limitations of this approach must always be kept in mind. 

In all cases, the analyst should make clear the assumptions he is making regarding inflation. 

I 
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