Analytical Studies of a Parabolic Line Concentrator Utilizing an Aluminum Honeycomb Support Structure and a Thin
 Glass Reflector Laminate

BEST AVAILABLE COPY

TOTAL PAGES: 84
Includes all paginated and Non-
Paginated Pages.

Essued hy Sandia Nationtal Lahoratories, operated for the United Sites Departanent of Enerty by Sundau Cimpotation.
YOTlCE: This repori was prepared an an account of work sponsored by an agency of the Noted States Govermment. Neither the United States Government nor any arency atheteof
 Yrspustsithitiv for the uccuracy, cimpleteness, or usefulness of any foformation, apparatios, product st pratcs dischosed, or wopresent that its use would not infrime privately -Wwed rigins Refortnce herein to uny spectic commercial product, process, or metviee
 maply its endonsedment, rweoramendation, or favoring by the Uaited States Govemment qupresivit therem do nat nacessinily state or refiect thoge of the Untited States
Printed in the United Statesof America
Available from
National Technical InformationService
U.S. Department of Commerce5285 Port Royal RoadSpringfield, VA 22161
Price: Printed Copy $\$ 8.00$; Microfiche A05

SAND80-1583
Unlimited Release
Distribution Category UC-62

ANALYTICAL STUDIES OF A PARABOLIC LINE CONCENTRATOR UTILIZING AN ALUMINUM HONEYCOMB SUPPORT STRUCTURE AND A THIN GLASS REFLECTOR LAMINATE*

J. Richard Koteras

Division 5523
Sandia National Laboratories**
Albuquerque, NM 87185

Abstract

Results (stresses, displacements, and equivalent slope errors) are presented from finite element analyses made to evaluate a design for a parabolic trough solar concentrator. The concentrator consists of a reflector laminate (made of thin glass bonded to sheet metal backing) whirh is mechanically formed and bonded to a stiff parabolic support (made of aluminum honeycomb bonded to steel skins) with a 2 meter (6.6 foot) aperture. Analyses were first made to determine a length for the concentrator such that it would meet certain performance and survivability criteria under wind and gravity loadings. These studies were made with a model for the concentrator only. The concentrator model was then combined with a model for a support mechanism, and this combined structure was studied for several wind and gravity loadings. A design characterized by a six meter (twenty foot) long concentrator was found to meet performance criteria and had sufficiently low glass stresses in a 40.23 meter per second (ninety mile per hour) wind.

[^0]The author wishes to thank S. B. Martin, R. C. Reuter, Jr., and S. Thundborg, Jr., for their assistance during the analysis phase of this project. The comments and suggestions from S. B. Martin, R. T. Othmer, and R. C. Reuter, Jr., regarding the initial draft of this report are greatly appreciated.

Page

Abstract. 3
Introduction. 6
Concentrator Dimensions 6
Preliminary Studies 9
Concentrator Length 14
6.0 m Long Concentrator Combined With Support Mechanism 37
Conclusions 68
Bibliography 70
Appendix A. 71
Appendix B. 78

The following report discusses structural studies for a parabolic trough solar concentrator. The concentrator consists of a reflector laminate bonded to a stiff support structure. The reflector laminate consists of thin (on the order of 0.254 mm (0.01 in) to 0.508 mm (0.02 in) silvered glass bonded to a sheet metal backing. The studies were made to determine a reflector laminate-support combination which met certain structural and optical criteria. All of the computer results presented for the various studies discussed in this report are from the structural analysis code NASTRAN [1].

CONCENTRATOR DIMENSIONS

The trough under study has a parabolic cross-section with a ninety-two degree rim angle and a two meter aperture. The values for various cross-section parameters are shown in Figure 1. The length of the concentrator is one of the dimensions which varies in the studies that are presented. It is desirable to have a long concentrator so as to minimize the number of supports and drive mechanisms required for an entire collector system. The length of a concentrator is limited by the fact that one wants to avoid a "thick" support so as to minimize the weight per unit area and, in some instances, simplify fabrication, handling, shipping, and installation.

Laminates for the concentrator are shown in Figure 2. One laminate has glass which is 0.254 mm (0.01 in) thick, and the

$\phi=$ rim angle $=92^{\circ}$
$\mathrm{w}=$ aperture width $=2 \mathrm{~m}$
$f=$ focal length $=0.428 \mathrm{~m}$
$h=$ height $=0.5178 \mathrm{~m}$
$a=0.5178 \mathrm{1} / \mathrm{m}\left(\right.$ from $\left.y=a x^{2}\right)$

Figure 1. Parameters for Cross-Section of Parabolic Reflector

Figure 2. Reflector Laminates and Support for Parabolic Reflector
other laminate has glass which is $0.508 \mathrm{~mm}(0.02 \mathrm{in})$ thick. The laminate is bonded to the support by a 0.254 mm (0.01 in) thick layer of adhesive. The support structure consists of an aluminum honeycomb core bonded to steel skins.

PRELIMINARY STUDIES

There were some preliminary studies done not only to determine a possible length for the concentrator, but also the construction of the support structure, i.e., core and skin thickness. These initial studies were done with a finite element model of the concentrator consisting solely of plate elements. This model is shown in Figure 3. The view in Figure 3 shows the mesh for the concentrator in a flattened shape. The global coordinate system for the concentrator is shown in Figure 4. All loading conditions which are discussed for the preliminary studies are symmetric about the cross-sectional plane cutting the trough midway along its longitudinal axis. Because of tlis, only half the concentrator is modeled. The trough is simply supported at three points that cannot move vertically (in the $+Y$ direction), but they are free to move in and out of the $X-Y$ plane.

The first model studied was a three meter long trough. The support structure consisted of 0.0381 m (1.5 in) thick aluminum honeycomb covered by $0.3302 \mathrm{~mm}(0.013 \mathrm{in})$ thick steel skins. This support structure combined with a laminate made of $0.508 \mathrm{~mm}(0.02 \mathrm{in})$ glass bonded to a 1.016 mm (0.04 in)

- - support points

Figure 3. Finite Element Mesh for Initial Structural Studies

Figure 4. Global Coordinate System for Mesh Shown in Figure 3

Table 1.
Deflections for 3.0 Meter Long Reflector: support - 0.0381 m honeycomb, 0.3302 mm steel 0.3302 mm steel skins; laminate - 0.508 mm glass, 1.016 steel backing; gravity acting in -y direction.

Global Coordinates

x meters	y meters	z meters	u meters
-1.0000	0.0349	1.5000	9.9046×10^{-6}
-0.8611	-0.0989	1.5000	4.9616×10^{-6}
-0.7116	-0.2207	1.5000	1.6648×10^{-6}
-0.5502	-0.3261	1.5000	1.9015×10^{-7}
-0.3765	-0.4095	1.5000	-8.5262×10^{-8}
-0.1916	-0.4638	1.5000	-4.3750×10^{-9}
0.0	-0.4828	1.5000	0.0

Deflections

radianns
$-9.1146 \times 10^{-6} \quad-3.9446 \times 10^{-5}$
$-1.4388 \times 10^{-5} \quad-3.3549 \times 10^{-5}$
$-1.8532 \times 10^{-5} \quad-2.0956 \times 10^{-5}$
$-2.0857 \times 10^{-5} \quad-7.9991 \times 10^{-5}$
$-2.1472 \times 10^{-5} \quad 2.0114 \times 10^{-7}$
$-2.1186 \times 10^{-5} \quad 2.1660 \times 10^{-6}$
$-2.0951 \times 10^{-5} \quad 0.0$
steel backing was subjected to gravity loading (gravity acting in the $-Y$ direction in Figure 4!. For this particular construction and loading configuration, the deflections along the center cross-section were extremely small. The deflections for the center cross-section are listed in Table 1.

Because of these small deflections, it was decided that: longer concentrator lengths and thinner honeycomb sections should be considered. Additional studies revealed that concentrator lengths greater than or equal to 4.875 m (sixteen ft) and a honeycomb thickness of $0.0254 \mathrm{~m}(1.0 \mathrm{in})$ should be considered in future analyses. The analyses leading to these conclusions were based on the mesh shown in Figure 3. A number of approximations in the model shown in Figure 3 resulted in a structural representation which was too stiff, although not by a large amount. This model was sufficiently accurate for the determination of the construrtion of the support. It was also good enough to give an estimate for a reasonable concentrator length corresponding to some given support cross-section. The model was not good enough, however, to give an accurate picture of the stresses in the concentrator. Because of the shortcomings of the model used for the preliminary studies, the preliminary studies will not be discussed in detais. Instead, a more detailed description of some subsequent studies will be presented. In these subsequent studies, the approximations which lead to an overly stiff structural representation are eliminated. The
studies described in more detail concern the determination of concentrator length and the behavior of a combined concentrator and support mechanism.

CONCENTRATOR LENGTH

The study to determine concentrator length is based on the mesh shown in Figure 3. Rows of elements are added or subtracted to the length of the concentrator so that the model represents a 4.875 m (sixteen $f t$), 6.0 m (twenty ft), or 7.5 m (twenty-four ft) long parabolic concentrator. For all three concentrator lengths considered, the support structure is made of $0.0254 \mathrm{~m}(1.0 \mathrm{in})$ thick aluminum honeycomb with 0.508 mm (0.02 in) thick steel skins. The plates used in the model are such that the bending stiffness can be specified independently of the membrane stiffness. In addition to the plate elements, beam elements are placed along the edges and end of the concentrator. For the actual concentrator, channels are placed along the edges of the honeycomb support structure. Beam elements are included in the model to reflect the effects of the edge and end channels. Three points, those indicated in Figure 3, are constrained in the vertical direction. The rotational degrees of freedom θ_{x} and θ_{y} are also constrained at these three points. The points are free to move i.i the Z and X directions and to rotate about the Z-axis.

The support bonded to the thicker laminate is analyzed for three lengths. The support bonded to the thinner laminate
is analyzed for the 6.0 m concentrator. The properties of the composite sections cunsisting of support plus concentrator laminate are given in Appendix A. The cross-section used to approximate the channels along the edges and ends are also shown in Appendix A.

Some results obtained from putting gravity loads on the concentrator will now be discussed. For gravity acting in the $-Y$ direction, the centerpoint deflections in the vertical direction for the support bonded to the thicker laminate are listed in Table 2. A plot of these vertical deflections (which are the maximum deflections along the vertex) versus concentrator length on log-log paper shows that deflections vary as ℓ^{4}, where ℓ is concentrator length (Figure 5). This is the same behavior that a simply supported beam loaded under its own weight exhibits.

Plots of stress in the upper surface of the glass are shown in Figures 6 through 13. The stresses plotted in all the figures do not account for any prestressing in the glass. Stresses arising from prestressing and thermal expansion need to be added (or subtracted) from the results plotted in the figures. A stress denoted by σ_{ℓ} is in the direction of the longitudinal axis of the concentrator. A stress denoted by σ_{t} is in the direction of a tangent so the concentrator surface that lies in a cross-section plane. The directions of σ_{ℓ} and σ_{t} for a typical quadrilateral element are shown in Figure 3.

Table 2.

Center Point Deflections for Reflector. Reflector experiences gravity load only in -y direction. Results are for a support bonded to the thicker laminate.

Reflector length-meters
4.875
6.0
7.5

Uy-meters
1.1250×10^{-4}
$.2 .4469 \times 10^{-4}$
5.7561×10^{-4}

Figure 5. Plot of Centerpoint Deflections Versus Reflector Length. Reflector experiences gravity only load in -y direction. Results are for a support bonded to the thicker laminate.

Figure 7. σ_{t} for edge and vertex elements of 6.0 m long concentrator. The concentrator consists of a support bonded to the thicker laminate. Gravity only acts on the concentrator in the $-Y$ direction.
 laminate. Gravity only acts on the concentrator in the $-Y$ direction.

Figure 9. σ_{t} along cross-sections of 7.5 m long concentrator. The concentrator consists of a support bonded to the thicker laminate. Gravity only acts on the concentrator in the $-Y$ direction.

Figure 10. σ_{ℓ} for edge and vertex elements of 4.875 m lo:2q concentrator The concentrator consists of a support bonded to the thicker laminate. Gravity only acts on the concentrator in the -y direction.

 direction.

The curves depicting the stresses in the glass are based on the stresses calculated at the centroids of the plate elements in the model. Figures 6, 7, and 8 show a plot of the values of σ_{t} calculated at the centroids of elements along the vertex and elements along the edge. By plotting values of σ_{t} at various cross-sections of the parabolic concentrator, the values for σ_{t} can be extrapolated to the vertex and edge. At the free edge of the parabolic concentrator, the value of σ_{t} is zero. Figure 9 gives the plot of σ_{t} for two cross-sections - one close to the center cross-section and the other along a cross-section near the end region. Figures 10, 11 , and 12 show a plot of the values of σ_{ℓ} calculated at the centroids of elements along the vertex and edge. As in the case with σ_{t}, values for σ_{ℓ} at the edge and vertex can be obtained by plotting σ_{ℓ} at various cross-sections. Figure 13 gives two cross-section plots of σ_{ℓ}. The edge and vertex values bound the values of σ_{ℓ} between the two cross-sections shown. The values for σ_{t} and σ_{ℓ} in all instances are inaccurate near the supported end of the concentrator. The support points generate stress concentrations in the concentrator, and the mesh is not accurate enough to model these concentrations in detail. As a result, some of the elements near the end of the concentrator have large gradients across them and predict excessively large stresses.

Stresses in the upper surfaces of the glass for the 6.0 m long concentrator made up of the support bonded to the
thinner laminate are shown in Figures 14 through 17. These results are also for the case of gravity acting in the $-Y$ direction. The thinner laminate has little effect on the σ_{t} stresses, as can be seen by comparing Figures 7 and 14. The σ_{ℓ} stresses near the center cross-section go up by approximately thirty percent, however, for the case with the thinner laminate. This is evident when one compares Figures 11 and 16. Figures 15 and 17 are cross-section plots.

Stresses in the glass serve as one means of evaluating the structure. Another means of evaluating the structure is by calculating equivalent slope errors for various points on the surface of the trough when it undergoes deflections due to wind and gravity loads. The equivalent slope error for a point undergoing deflections Δx and Δy and rotation δ in a cross-sectional plane (Figure 18) is given by

$$
\begin{equation*}
\Delta / R_{1}=\left[2 \delta+\left[\Delta x x_{1}-\Delta y\left(f-y_{1}\right)\right] / R_{1}^{2}\right] \tag{1}
\end{equation*}
$$

In equation $1, x_{1}$ and y_{1} are the original coordinates of the point of interest, f is the focal length of the parabola, and R_{1} is given by

$$
R_{1}=\left[x_{1}^{2}+\left(f-y_{1}\right)^{2}\right]^{1 / 2} .
$$

The quantity R_{1} is the distance from the focal point to the point of interest.
 laminate. Gravity only acts on the concentrator in the -Y direction.

. Gravity only acts on the concentrator in the $-\mathbf{y}$ direction.

Figure 17. σ_{ℓ} along cross-sections of 6.0 m long concentrator. The concentrator consists of a support bonded to the thinner laminate. Gravity only acts on the concentrator in the -y direction.

Figure 18. Notation for Equivalent Slope Errors

Tables 3 and 4 show some equivalent slope errors for the 7.5 m long concentrator (made of the support bonded to the thicker laminate) for two loading conditions. The results in Table 3 are for the case where the concentrator is tilted forty-five degrees from the $X-Z$ plane. The trough is subjected to combined wind and gravity loads as shown in Figure 19. The pressure distribution across the aperture of the concentrator for a 13.41 mps (thirty mph) wind is also shown in Figure 19. This distribution varies linearly across the aperture and produces a moment similar to that which arises from wind tunnel results for a concentrator tilted at a similar angle to the wind.

The concentrator must be designed so that in the 13.41 mps wind, the equivalent slope error Δ / R_{1} is less than 6.0 milliradians. The computer studies indicate that the 7.5 m long concentrator can meet this requirement. For the 7.5 m length, however, it appears that the glass stresses will be excessive in a 40.23 mps (ninety mph) wind. The 6.0 m long concentrator will easily meet the slope error requirements for a 13.41 mps (thirty mph) wind, and the glass stresses in the survival wind conditions (40.23 mps) will be appreciably lower than those in the 7.5 m concentrator. Based on these considerations, it is desirable to examine the 6.0 m long concentrator in greater detail, i.e., with a refined mesh in the attachment region and a support mechanism included in the model. The next section discusses a more

Slope Errors for 7.5 m Long Reflector Subject to Gravity Load in -y Direction. The reflector is made up of the support bonded to the thicker laminate.

Location		Deflections				Slope Error/R ${ }_{1}$
$\mathrm{x}^{(1)}$-meters	$y^{(2)}$-meters	z-meters	Δx-meters	Δy-meters	ס-2入ians	
0.0	-0.4828	3.75	0.0	-5.76×10^{-4}	0.0	$\begin{array}{r} \Delta / R_{1} \\ 0.0 \end{array}$
0.1916	-0.4638	3.75	4.06×10^{-6}	-5.88×10^{-4}	1.28×10^{-4}	-1.92×10^{-4}
0.3765	-0.4095	3.75	9.78×10^{-6}	-6.22×10^{-4}	2.37×10^{-4}	-2.96×10^{-4}
0.5502	-0.3261	3.75	3.27×10^{-5}	-6.71×10^{-4}	3.16×10^{-4}	-2.96×10^{-4}
0.7116	-0.2207	3.75	6.87×10^{-5}	-7.26×10^{-4}	3.63×10^{-4}	-2.32×10^{-4}
0.8611	-0.0989	3.75	1.15×10^{-4}	-7.82×10^{-4}	3.85×10^{-4}	-1.41×10^{-4}
1.0000	0.0349	3.75	1.68×10^{-4}	-8.35×10^{-4}	3.93×10^{-4}	-4.10×10^{-5}

(1) $x_{1}=x$
(2) $\mathrm{Y}_{1}=\mathrm{y}+\mathrm{f}=\mathrm{y}+0.4828$

Table 4.
Slope Errors for 7.5 m Long Reflector Subject to Combined Wind and Gravity Loads. The reflector is made up of the support bonded to the thicker laminate.

	Location			Deflections		Slope error
$x^{(1)}$-meters	y-meters	z-meters	Δx-meters	Δy-meters	δ-radians	Δ / R_{1}
0.0	-0.4828	3.75	2.44×10^{-4}	-6.20×10^{-4}	1.71×10^{-3}	2.91×10^{-3}
0.1916	-0.4638	3.75	2.77×10^{-4}	-9.64×10^{-4}	1.87×10^{-3}	2.50×10^{-3}
0.3765	-0.4095	3.75	3.81×10^{-4}	-1.32×10^{-3}	2.02×10^{-3}	1.92×10^{-3}
0.5502	-0.3261	3.75	5.53×10^{-4}	-1.68×10^{-3}	2.12×10^{-3}	1.54×10^{-3}
0.7116	-0.2207	3.75	7.80×10^{-4}	-2.03×10^{-3}	2.19×10^{-3}	1.46×10^{-3}
0.8611	-0.0989	3.75	1.05×10^{-3}	-2.36×10^{-3}	2.22×10^{-3}	1.59×10^{-3}
1.000	0.0349	3.75	1.35×10^{-3}	-2.67×10^{-3}	2.24×10^{-3}	1.87×10^{-3}

(1) $x_{1}=x$
(2) $y_{1}=y+f=y+0.4828$

$$
\begin{aligned}
& \mathrm{P}_{1}=55.16 \text { Pascals } \\
& \mathrm{P}_{2}=110.32 \text { Pascals }
\end{aligned}
$$

Figure 19. Combined Wind and Gravity Load Configuration Used on 7.5 m Long Reflector for Slope Error Study
detailed study of a 6.0 m long concentrator.
6.0 m LONG CONCENTRATOR COMBINED WITH SUPPORT MECHANISM

The mesh for the 6.0 m long concentrator is shown in Figure 20. The view in Figure 20 shows the mesh for the concentrator in a flattened shape. None of the support structure is shown. More data is given for the mesh in, Appendix B. Appendix B shows the mesh for the support mechanism combined with the concentrator.

Two loading configurations are presented in detail for the combination concentrator-support mechanism. For the first loading configuration, the concentrator is pointing in the $+Y$ direction and gravity is acting in the $-Y$ direction. Symmetry conditions are imposed on the support pylon, so that the pylon appears to have a concentrator mounted on either side of it. Deformed shapes for this particular loading are shown in Figures 21 through 23.

Figures 24 and 25 show plots of stresses in elements along the vertex and along the edge. The value of σ_{ℓ} near the center cross-section is larger for the concentrator-support mechanism combination than for the concentrator by itself. This is evident when one compares Figure 25 with Figure 11. The differences in the σ_{ℓ} stesses have to do with the different support mechanisms in the two models. The support points for the model shown in Figure 3 have several degrees of freedom rigidly constrained. For the concentrator-support
centerline
of reflecto

Figure 20. Mesh Used for Reflector in Combined Reflector Support Mechanism Studies

世开

Figure 21. 6.0 m Long Reflector with Support Mechanism under Gravity Load - End View; Symmetry Conditions on Support Pylon

Figure 22. 6.0 m Long Reflector with Support Mechanism under Gravity Load - Side View; Symmetry Conditions on Support Pylon

Figure 23. 6.0 Long Reflector with Support Mechanism under
Gravity Load - Top View; Symmetry Conditions
on Support Pylon

Figure 24. σ_{t} for edge and vertex elements of 6.0 m long concentrator with support mechanism. The concentrator consists of a support bonded to the thicker laminate. Gravity only acts on the concentrator in the -Y direction.

mechanism, none of the support points on the concentrator are rigidly constrained. All degrees of freedom associated with the attachment points between the concentrator and support mechanism have some flexibility. Increasing the flexibility at the support points on the concentrator produces greater values for the stress σ_{ℓ}.

Plots of stresses in the regions surrounding the attachment points are shown in Figures 26 through 30. Stress concentrations occur near the attachment points. Figures 26 through 29 show plots of σ_{t} with increasing distance from the attachment points. The concentrations decay rather rapidly as one moves away from the attachment points. The attachment points are located along a cross-section that is 0.9525 m (3.75 in) from the end of the concentrator. A plot of σ_{ℓ} at a cross-section $0.127 \mathrm{~m}(5.0 \mathrm{in})$ from the end of the concentrator is shown in Figure 30. The magnitudes of the concentrations for σ_{t} are larger than those for σ_{ℓ}.

The first loading condition is also studied for the case where there are no symmetry conditions on the support pylon. Symmetry conditions left on the center section of the concentrator simulate the case of a single concentrator loaded symmetrically about its center cross-section. The deformed configurations for this case are shown in Figures 31 through 33. A plot of the σ_{ℓ} stresses for elements along the edge and vertex are shown in Figure 34. The maximum value for σ_{ℓ} is slightly larger than the maximum value for σ_{ℓ} shown in

Figure 26. σ_{t} along cross-section of 6.0 m long concentrator with support mechanism. The concentrator consists of a support bonded to the thicker laminate. Gravity only acts on the concentrator in the -Y direction. The cross-section shown is $0.127 \mathrm{~m}(5.0 \mathrm{in})$ from the end of the concentrator.

Figure 27. σ_{t} along cross-section of 6.0 m long concentrator with support mechanism. The concentrator consists of a support bonded to the thicker laminate. Gravity only acts on the concentrator in the $-\mathbb{Y}$ direction. The cross-section shown is $0.22225 \mathrm{~m}(8.75 \mathrm{in})$ from the end of the concentrator.

Figure 28. σ_{t} along crossmsection of 6.0 m long concentrator with support mechanism. The concentrator consists of a support bonded to the thicker laminate. Gravity only acts on the concentrator in the $-Y$ direction. The cross-section shown is $0.28575 \mathrm{~m}(11.25 \mathrm{in})$ from the end of the concentrator.

Figure 29. σ_{t} along cross-section of 6.0 m long concentrator with support mechanism. The concentrator consists of a support bonded to the thicker laminate. Gravity only acts on the concentrator in the $-Y$ direction. The cross-section shown is $0.38809 \mathrm{~m}(15.28 \mathrm{in})$ from the end of the concentrator.

Figure 30. σ_{t} along cross-section of 6.0 m long concentrator with support mechanism. The concentrator consists of a support bonded to the thicker laminate. Gravity only acts on the concentrator in the $-Y$ direction. The cross-section shown is $0.127 \mathrm{~m}(5.0 \mathrm{in})$ from the end of the concentrator

Figure 31. 6.0 m Long Reflector with Support Mechanism under Gravity Load - End View; No Symmetry Conditions on Support Pylon

Figure 32. 6.0 m Long Reflector with Support Mecharism under Gravity Load - Side View; No Symmetry Conditions on Support Pylon

Figure 25, which is for the case with symmetry conditions on the support pylon. The symmetry conditions on the support pylon make it stiffer and this leads to the lower stresses shown in Figure 25.

For the second loading condition, the concentrator is rotated so that it points in the +x direction. Gravity acts in the -Y direction and there are wind loads in the -X direction. The wind loads correspond to a 13.41 mps (thirty mph) wind in one case and a 40.23 mps (ninety mph) wind in another case. Symmetry conditions are imposed on the support pylon.

The deflections for the case with a 13.41 mps (thirty mph) wind are shown in Figures 35 through 37. Stress plots are shown in Figures 38 through 41. As in the previous studies, the values for σ_{t} are larger than those for σ_{ℓ} in the region of the attachment points. Figures 38 and 39 show cross-section plots of σ_{t} near the attachment points. The concentration decays rapidly as the distance from the attachment point increases. Figures 40 and 41 show σ_{ℓ} at two cross-sections - one near the attachment area and the other at the center. Both of these curves show a number of reverses in curvature along the cross-section. This complex behavior arises from the interaction of the wind and gravity loads; which are of the same order of magnitude. The gravity load causes the top of the concentrator to rotate forward. The wind load opposes this motion somewhat by trying to make

Figure 35. 6.0 m Long Reflector with Support Mechanism under Combined Wind (13.41 mps) and Gravity Loads Side View; Symmetry Conditions on Support Pylon

Figure 36. 6.0 m Long Reflector with Support Mechanism under Combined Wind (13.41 mps) and Gravity Loads End View; Symmetry Conditions on Support Pylon

Figure 37. 6.0 m Long Reflector with Support Mechanism under Combined Wind (13.41 mps) and Gravity Loads Top View; Symmetry Conditions on Support Pylon

the concentrator "open up." The interaction of these two loads is reflected in the complex curves for the stress σ_{ℓ}. The deflections for the case with a 40.23 mps (ninety mph) wind are shown in Figures 42 through 44. A plot of σ_{t} near the attachment points is shown in Figure 45 . For this particular case, the wind loads are beginning to dominate the gravity loads. With wind acting alone, the plot for σ_{t} would be symmetric about the vertex. Gravity effects introduce asymmetry into the plot. Figure 46 shows a cross-section plot for σ_{ℓ} at the center of the concentrator. As in the previous plot, the dominance of the wind loads shows up by the fact that the curve is nearly symmetric about the vertex.

Figure 42. 6.0 m Long Reflector with Support Mechanism under Combined Wind (144 kph) and Gravity Loads - Side View; Symmetry Conditions on Support Pylon

Figure 43. 6.0 m Long Reflector with Support Mechanism under Combined Wind (144 kph) and Gravity Loads - End View; Symmetry Conditions on Support Pylon

Figure 44. 6.0 m Long Reflector with Support Mechanism under Combined Wind (144 kph) and Gravity Loads - Top View; Symmetry Conditions on Sipport Pylon

CONCLUSIONS

From the studies which have been made, a 6.0 m (twenty ft.) long parabolic trough solar concentrator appears to be capable of meeting performance and survivability criteria. The concentrator consists of a reflector laminate (made of 0.508 mm (0.02 in.) thick glass and 1.016 mm (0.01 in.) thick steel backing) bonded to an aluminum honeycomb support (made of $0.0254 \mathrm{~m}(1.0 \mathrm{in}$.$) thick honeycomb aluminum core with 0.508$ mm (0.02 in.) thick steel skins). A 6.0 m concentrator consisting of a thinner reflector laminate (made of 0.254 mm (0.01 in.) thick glass and 0.508 mm (0.02 in.) thick steel backing) also appears to be able to meet survivability and performance criteria. The thinner laminate has thirty per cent higher stresses than the thicker laminate.

Computer models which utilize the combined rigidity of the reflector laminate and aluminum honeycomb support structure indicate that a 7.5 m (twenty-four ft.) long concentrator made with the thicker laminate is capable of meeting the restriction that Δ / R_{1} be less than or equal to 6.0 milliradians in a 13.41 mps (thirty mph) wind. The value for Δ / R_{1} for the 7.5 m long concentrator does not exceed 3.0 milliradians in a combined wind (13.41 mps) and gravity load. This is with the concentrator oriented at a forty-five degree angle to the wind. The values for Δ / R_{1} are, of course, smalin for the 5.0 m
concentrator for the same loading configuration.
Although the 7.5 m concentrator does meet the performance criterion in a 13.41 mps wind, the stresses in the glass become too large in a 40.23 mps (ninety mph) wind. Hence, the survivability criterion is not met. The 6.0 m concentrator meets the optical performance in a 13.41 mps wind, and the glass stresses are within acceptable limits in a 40.23 mps wind for those cases studied. For the loadings considered, the largest stresses for a combined wind and gravity load on a concentrator-support mechanism arise at the center of the concentrator and at the points where the concentrator attaches to the support mechanism. For the case of a 40.23 mps wind loading with the concentrator pointing in a horizontal direction and the wind blowing into the concave side, the maximum tensile stress in the glass is near the attachment points and has alue of 7.0 MPa (~ 1000 psi). If the wind is reversed, the maximum tensile stress in the glass is near the center and has a value of 7.0 MPa ($\sim 1000 \mathrm{psi}$). All of the stresses just discussed for the glass are from models which utilize the combined stiffness of the reflector laminate and aluminum honeycomb support structure in the concentrator model.

The conclusion that a 6.0 m concentrator would meet performance and survivability criteria was made on a limited number of loading conditions. The loading conditions which were studied were assumed to be some of the more severe. A more complete analysis would examine other loaling conditions to confirm this assumpt.on.

Bibliography

1. NASTRAN User's Guide: Level 15, NASA Report CR-2504, Prepared by Universal Analytics, Inc., Los Angeles, April 1975.

Appendix A

For multilayer plates, such as that shown in Figure A.l, it is necessary to calculate parameters defining the bending and membrane stiffness of the plate. The bending stiffness, denoted by D, for an n layer plate is given by

$$
D=\sum_{i=1}^{n}\left\{\left[1 / 3\left(a_{i}^{3}-a_{i-1}^{3}\right)-1 / 2\left(a_{i}^{2} z_{n}-a_{i-1}^{2} z_{n}\right)\right] E_{i} /\left(1-v_{i}^{2}\right)\right\}
$$

where z_{n} denotes the neutral axis of the section. The neutral axis for a multilayer plate is given by

$$
z_{n}=\left[1 / 2 \sum_{i=1}^{n}\left(a_{i}^{2}-a_{i-1}^{2}\right) E_{i}\right] /\left[\sum_{i=1}^{n} E_{i}\left(a_{i}-a_{i-1}\right)\right]
$$

For a single layer (homogeneous) plate, the above equations give

$$
\begin{gathered}
D=E t^{3} /\left[12\left(1-v^{2}\right)\right] \\
\text { and } \\
z_{n}=t / 2
\end{gathered}
$$

where t is the thickness of the single layer. The membrane stiffness is characterized by

$$
K_{M}=\varepsilon_{i=1}^{n}\left[\left(a_{i}-a_{i-1}\right) E_{i}\right]
$$

The construction of two reflector laminate-support combinations is given in Tables A. 1 and A. 2 along with values for D and K_{M}. The values for D and K_{M} are used tc define properties for the plate elements used in the finite element studies.

The channels along the edges and end of the reflector are shown in Figure A.2. The cross-sectional properties used to define the structural characteristics of the channels are given in Figure A.3.

Table A. 1.
Properties for Support Bonded to Thin Laminate
$\left.\begin{array}{ll}\left.\begin{array}{l}\text { Material } \\ \text { Glass } \\ \text { Adhesive } \\ \text { Steel }\end{array}\right\} \text { Reflector laminate } & .000254 \\ \text { Adhesive } & .000127 \\ \text { Steel } \\ \text { Honeycomb } \\ \text { Steel }\end{array}\right\}$ Support $\quad .000508$

Properties of Materials in Layers

Material	E	v		ρ
	Elastic Modulus	Poisson'	Ratio	Density
Steel	200.0 GPa	0.30		$7850 \mathrm{~kg} / \mathrm{m}^{3}$
	(29.0 $\times 10^{6} \mathrm{psi}$)			$0.282 \mathrm{lb} / \mathrm{in}^{3}$
Glass	68.95 GPa	0.24		$2297 \mathrm{~kg} / \mathrm{m}^{3}$
	(10.0 $\times 10^{6} \mathrm{psi}$)			$0.083 \mathrm{lb} / \mathrm{in}^{3}$
Adhesive	3.4475 GPa	0.37		$1661 \mathrm{~kg} / \mathrm{m}^{3}$
	(5.0 x $10^{5} \mathrm{psi}$)			$0.060 \mathrm{lb} / \mathrm{in}^{3}$
Honeycomb	0.2758 GPa	0.48		
	(4.0 $\left.\times 10^{4} \mathrm{psi}\right)$			
	Composite Properties of Laminate Plate			
$D=5.3725 \times 10^{4} \mathrm{~Pa}-\mathrm{m}^{3}$				
$\mathrm{K}_{\mathrm{M}}=3.3063 \times 10^{8} \mathrm{~Pa}-\mathrm{m}$				
$z_{n}=.018230 \mathrm{~m}$				

Table A. 2.
Properties of Support Bonded to Thick Laminate

Material		Thickness m
Glass		. 000508
Adhesive	Reflector Laminate	. 000127
Steel		. 001016
Adhesive		. 000254
Steel		. 000508
Honeycomb	Support	. 0254
Steel		. 000508

Material
E
Elastic Modulus Poisson's Ratio

Density
Steel

$$
\begin{aligned}
& 200.0 \mathrm{GPa} \\
& \left(29.0 \times 10^{6} \mathrm{psi}\right)
\end{aligned}
$$

0.30
$7850 \mathrm{~kg} / \mathrm{m}^{3}$

Glass

$$
68.95 \mathrm{GPa}
$$

0.24
$0.282 \mathrm{lb} / \mathrm{in}^{3}$
$2297 \mathrm{~kg} / \mathrm{m}^{3}$
$\left(10.0 \times 10^{6} \mathrm{psi}\right)$
$0.083 \mathrm{Lb} / \mathrm{in}^{3}$
Adhesive
3.4475 GPa
0.37
$1661 \mathrm{~kg} / \mathrm{m}^{3}$
(5.0 x $\left.10^{6} \mathrm{psi}\right)$
$0.060 \mathrm{lb} / \mathrm{in}^{3}$
Honeycomb
0.2758 GPa
0.48
(4.0 $\left.\times 10^{4} \mathrm{psi}\right)$

Composite Properties of Laminate Plates
$D=6.2068 \times 10^{4} \mathrm{~Pa}-\mathrm{m}^{3}$
$K_{M}=4.4975 \times 10^{8} \mathrm{~Pa}-\mathrm{m}$
$z_{n}=.02072 \mathrm{~m}$

Figure A.1. Notation for Multilayer Plate

Figure A.2. Edge and End Channels for Concentrator

Edge Channel.

End Channel

A = area of cross section
$I_{1}=$ area moment of inertia about 1 axis
$I_{2}=$ area moment of inertia about 2 axis
$J \quad=$ polar moment of inertia

Figure A.3. Section Properties for Edge and End Channels for Concentrator.

Appendix B

The mesh used for the finite element model of the concentratorsupport mechanism combination is shown in Figures B. 1 through B.3. The support consists of a pedestal which is topped by a portion of the drive mechanism. Both of these components of the support are modeled with beam elements. The drive mechanism is attached to a plate, which is also attached to two ribs. The plate and ribs are attached to the concentrator at four different locations. The plate is modeled with plate elements and the ribs are modeled with beam elements.

Aluminum plates (doublers) 0.01524 mm (0.06 in.) thick are added to the honeycomb support at the attachment points. The equivalent properties of some of the plates elements in the concentrator are specified so that the bending and membrane stiffness of the doubler-honeycomb-laminate combination are correctly modeled. The elements are indicated in Figure B. 4.

Figure B.1. End View of Concentrator - Support Mechanism Combination.

nedestal

Figure B.2. Side View of Concentrator - Support Mechanism Combination.

Figure B.3. Top View of Concentrator - Support Mechanism Combination.

Figure B.4. . Plate Elements with Equivalent Stiffness to Represent Doubler-Honeycomb-Laminate Construction (Ind.cated by Shaded Areas).

Distribution:
J. Vidum

Acurex Corporation
485 Clyde Avenue
Mountain View, CA 94042
G. Hutchinson

Solar Kinetics, Inc.
8120 Chancellor Row
Dallas, TX 75247
V. Reese

Suntec Systems, Inc. 2101 Wooddale Drive
St. Paul, MN 55119
M. Delgado

Del Manufacturing Co.
905 Monterey Pass Road
Monterey Park, CA 91754
J. R. Schuster

General Atomic Company
P. O. Box 81608

San Diego, CA 92138
G. Branch

Hexcel Corporation
11711 Dublin Blvd
Dublin, CA 94566
A. Stocker

Harrison Radiator Division
General Motors
Lockport, NY
J. F. Britt

Technical Center General Motors Corp.
Warren, MI 48090
J. Hamilton

Exxon Enterprises
P. O. Box 592

Florham Park, NJ 07923
W. W", Dickhart

Budd Company
Fort Washington, PA 19034
A. F. Shoemaker

Corning Glass Co.
Corning, N. Y. 14830
J. R. Williams
Energy Resources Center
Honeywell, Inc.
2600 Ridgeway Parkway
Minneapolis, MN 55413
M. Faeth

Highland Plating
1128 N. Highland
Los Angeles, CA 90038
H. J. Sund

Ford Aerospace \& Communications
3839 Fabian Way
Palo Alto, CA 94303
P. Bender

Ford Glass Division
300 Renaissance Center
P. O. Box 43343

Detroit, MI 48243
W. J. Nagle

Ford Motor Co.
Room E-3184
Scientific Research Labs
Dearborn, MI 48121
R. C. Frounfelter

PPG Industries, Inc.
1 Gateway Center
Pittsburgh, PA 15222
D. L. Thomas

PPG Industries, Inc.
Glass Research Center
Box 11472
Pittsburgh, PA 15238
R. E. Cook

Donnelly Mirrors, Inc.
49 West Third Street
Holland, MI 49423
C. M. Lemrow

Electrical Products Division Corning Glars Works
Corning, NY 14830
C. G. Lawson

Union Carbine Corp
P. O. Box X

Oak Ridge, TN 37830
C. M. Lemrow

Electrical Products Division
Corning Glass Works
Corning, NY 14830
M. Mitchel

Jacobs Engineering Co.
251 South Lake Avenue
Pasadena, CA 91101
J. N. Epel

The Budd Company
Plastic R\&D Center
356 Executive Drive
Troy, MI 48084
Jerry Flynt
Haveg Industries, Inc.
12837 E. Imperial Highway
Santa Fe Springs, CA 90670
J. Rogan

McDonnell Douglas Astro. Co
5301 Bolsa Avenue
Huntington Beach, CA 92647
Solar Energy Res. Inst. (3)
1536 Cole Blvd
Golden, CO 80401
Attn: B. Gupta
B. L. Butler
M. Cotton
U. S. Dept of Energy (3)

Albuquerque Operations Office
P. O. Box 5400

Albuquerque, NM 87185
Attn: J. Weisiger
D. N. Pappas
W. P. Grace
U. S. Department of Energy

San Francisco Operations Office
1333 Broadway
Oakland, CA 94612
ATTN: W. D. Nettleton
U. S. Department of Energy (8)

Division of Central Solar Tech.
Washington, D. C. 20545
Attn: G. W. Braun
M. U. Gutstein
J. E. Rannels
M. E. Resner
U. S. Department of Energy (2)

Agricultural \& Industrial Process Heat Cons. \& Solar Application
Washington, DC 20545
Attn: W. W. Auer
J. Dolland

1472 L. G. Rainhart
1500 W. A. Gardner
1550 F. W. Neilson
1552 O. J. Burchett
1556 S. A. Ingham
2320 K. Gillespie
2323 C. M. Gabriel
2324 R. S. Pinkham
2326 G. M. Heck
3161 J. E. Mitchell
3700 J. C. Strassell
4000 A. Narath
4231 J. H. Renken
4700 J. H. Scott
4710 G. E. Brandvold
4721 V. L. Dugan (5)
4721 J. V. Otts
4722 J. F. Banas (25)
4723 W. P. Schimmel
4725 J. A. Leonard
5500 O. E. Jones
5510 D. B. Hayes
5520 T. B. Lane
5523 R. C. Reuter, Jr.
5523 J. R. Koteras
55% W. Herrmann
5810 R. G. Kepler
5811 L. A. Harrah
5813 J. G. Curro
3141 T. L. Werner (5)
3151 W. L. Garner (3)
3154-4 R. P. Campbell (25)
for DOE/TIC

[^0]: * This work was supported by the U. S. Department of Energy
 Contract $\mathrm{DE}-\mathrm{AC} 094-76 \mathrm{DP} 00789 \mathrm{Cl}$

