VOLUME II

When printing a copy of any digitized SAND Report, you are required to update the markings to current standards.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability to responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Printed in the United States of America Available from
National Technical Information Service
U. S. Department of Commerce

5285 Port Royal Road
Springfield, VA 22161
Price: Printed Copy $\$ 9.00$; Microfiche $\$ 3.00$

PREFACE

This report provides the results of a heliostat development program performed by the McDonnell Douglas Astronautics Company for Sandia National Laboratories, Livermore, California, under Contract 830024A. This program involved design, fabrication, and test of prototype heliostats which, when produced in high volume, support the Department of Energy goals for solar central receiver power plant economics.

Volume factory design and output costs were provided under a subcontract by the General Motors Energy Systems Group and the F. Jos Lamb Company. MDAC incorporated these costs into price analysis including factory and field installation costs, a return of investment, and profit. The price followed previous program projections and substantiated the potential for attaining DOE goals.

The heliostat design was based substantially on previous MDAC development effort. The prototype heliostat, in conjunction with MDACdeveloped controls hardware and software, exceeded all performance requirements.

The next requirement is a market demand, which will determine sales volume and in turn dictate production processes and costs. MDAC and its suppliers are ready to supply this market at any volume level. The design developed under this contract is the property of the US Department of Energy for any Government applications. MDAC reserves the commercial rights to the subsystem and components through proprietary developments by MDAC and its suppliers of controls system hardware and software, drive components, and mirror module fabrication technology.

This report consists of two volumes. Volume I summarizes the subsystem design, test substantiation, and operations and provides the MDAC price analysis and detail subsystem cost analysis. Volume Il provides the volume factory design, manufacturing process design, and factory costs as developed by General Motors Energy Systems and the F. Jos Lamb Company.

DEFINITION OF A HELIOSTAT MANUFACTURING FACILITY FINAL REPORT

prepared for
McDonnell Douglas Astronautics Company
Subcontract No. 80712011
prepared by
The Energy Systems Group GM Worldwide Truck \& Transportation Systems Center GM Technical Center
Warren, Michigan 48090
J. F. Britt

Project Manager
F. Jos. Lamb Company 5663 East Nine Mile Road

Warren, Michigan
H. L. Davey
D. A. McCarroll

JANUARY 1981
EP-80133

GM ENERGY SYSTEMS

FOREWORD

GM Transportation Systems Center (GM TSC) completed a study in December 1979, of the manufacturing cost of the McDonnell Douglas Astronautics Company solar central receiver prototype heliostat under contract to the Solar Energy Research Institute (SERI) of Golden, Colorado. That study is documented in a final report SERI/TR-8052-1, and in an executive summary report SERI/TR-8052-2. Both reports are available through the National Technical Information Service, Springfield, Virginia.

The primary objective of that study was to estimate the factory cost for the production of heliostats at production volumes of 25,000 and 250,000 units per year. The factory costs generated at those volumes were $\$ 95.99 / \mathrm{m}^{2}$ and $\$ 67.95 / \mathrm{m}^{2}$, respectively. The Policy Analysis Branch of the Solar Energy Research Institute concluded that this implied an installed price of $\$ 122.12 / \mathrm{m}^{2}$ at the 25,000 unit per year volume.

During the time that GM TSC was performing that study, the McDonnell Douglas Astronautics Company continued heliostat development activity leading to a simpler, more cost effective design identified as the McDonnell Douglas Second Generation Heliostat. The design activity was funded under a Sandia Laboratories contract. McDonnell Douglas has subcontracted GM Transportation Systems Center of General Motors Corporation to assist in the development of plant and manufacturing costs associated with the production of 50,000 McDonnell Douglas Second Generation Heliostats per year. The factory cost generated at that volume is $\$ 64.13 / \mathrm{m}^{2}$.

ENERGY SYSTEMS

TABLE OF CONTENTS

Section	Title	Page
1.0	INTRODUCTION	1-1
	1.1 Contract Participants	1-1
	1.2 Scope of Work	1-1
	1.3 Data Sources	1-2
2.0	HELIOSTAT DESIGN	2-1
	2.1 Mirror Module	2-1
	2.2 Reflector Support Structure	2-4
	2.3 Reflector Assembly	2-4
	2.4 Azimuth Drive	2-4
	2.5 Actuator Assembly, Elevation	2-8
	2.6 Support Assembly, Elevation Drive	2-8
	2.7 Azimuth/Elevation Drive Assembly	2-8
	2.8 Main Beam	2-11
	2.9 Pedestal Assembly	2-11
	2.10 Drive/Pedestal/Main Beam Assembly	2-11
	2.11 Heliostat Assembly	2-11
3.0	STUDY APPROACH	3-1
	3.1 Cost Breakdown Structure	3-1
	3.2 Indentured_Parts List	3-1
	3.3 Manufacturing Analysis	3-3
	3.4 Plant Design	3-3
	3.5 Labor Development	3-4
	3.6 Cost Extension	3-4
	3.7 Factory Cost	3-5
4.0	COSTING GROUND RULES	4-1
	4.1 Plant Site, Structure and Equipment	4-3
	4.2 Tools	4-4
	4.3 Purchased Parts, Material and Supplies	4-5
	4.4 Labor	4-6
	4.5 Taxes, Fuel and Utilities	4-6
5.0	HELIOSTAT PLANT	5-1
	5.1 Site	5-1
	5.2 Plant Layout	5-1
	5.3 Reflector Assembly	5-11
	5.4 Cost	5-11
6.0	HELIOSTAT MANUFACTURING DESCRIPTION	6-1
	6.1 Production Flow	6-1
	6.2 Processes and Equipment	6-3
	6.3 Packaging	6-3
7.0	HELIOSTAT MIRROR, SPECIAL REQUIREMENTS	7-1
	7.1 Fusion Glass	7-1
	7.2 Mirroring Line	7-1

© ENERGY SYSTEMS

TABLE OF CONTENTS (cont.)

Section	Title	Page
8.0	HELIOSTAT PRODUCTION COSTS	8-1
	8.1 Cost Approach	8-2
	8.1.1 Purchased Parts	8-2
	8.1.2 Labor (Direct/Indirect)	8-2
	8.1.3 Tools and Equipment	8-3
	8.1.4 Production Plant Costs	8-3
	8.2 Cost Summaries	8-4
	8.2.1 Full Production	8-4
	8.2.2 Three Production Rates	8-5
	8.2.3 Heliostat Cost Summary, Component Detail	8-5
	8.2.4 Burden and Labor Per Heliostat Unit	8-5
	8.2.5 Outside Tooling and Plant Costs	8-7
	8.2.6 Investment Per Heliostat Unit	8-8
	8.2.7 Shipping Rack Analysis	8-8
	8.2.8 Labor Rate Analysis	8-9
	8.2.9 Industrial Engineering Summary	8-10
	8.2.10 Heliostat Tools and Equipment	8-10
	-	
APPENDIX A	INDENTURED PARTS LIST	A-1
APPENDIX B	TOOL AND LABOR ROUTING	B-1
APPENDIX C	PRODUCT COST ESTIMATE	C-1
APPENDIX D	TYPICAL LABOR DEVELOPMENT	D-1
	LIST OF ILLUSTRATIONS	
Figure	Title	Page
2-1	McDonnell Douglas Second Generation Heliostat	2-2
2-2	Reflective Unit	2-3
2-3	Reflector Support Structure	2-5
2-4	Reflector Assembly	2-6
2-5	Azimuth Drive	2-7
2-6	Azimuth Drive with Housing and Cover	2-9
2-7	Support Assembly, Elevation Drive	2-10
2-8	Main Beam	2-12

@ ENERGY SYSTEMS

LIST OF ILLUSTRATIONS (cont.)

Figure	Title	Page
2-9	Pedestal Assembly	2-13
2-10	Azimuth/Elevation Drive/Main Beam Assembly	2-14
2-11	Drive/Pedestal/Main Beam Assembly, Racked for Shipping	2-15
2-12	Reflector Assemblies, Racked for Shipping	2-16
3-1	Cost Breakdown Structure	3-2
5-1	Heliostat Plant Site	5-2
5-2	Plant Layout	5-3
5-3	Team Weld Assembly	5-7
5-4	Line Weld Assembly	5-9
5-5	Mirror Module Manufacture and Reflector Assembly	5-13
5-6	Reflector Final Assembly	5-15
6-1	Production Flow	6-2
6-2	Reflector Assembly Shipping Configuration	6-4
6-3	Drive/Pedestal/Main Beam Assemblies, Racked for Shipping	6-5
7-1	Corning Glass Wōrks, Blacksburg, Virginia	7-2
B-1	Lamb Two Station Shuttle Machine	B-13
B-2	Lamb Nine Station Shuttle Machine	B-21
B-3	Lamb Six Station Shuttle Machine	B-22
B-4	Dollar Electric Main Beam Welding Line	B-25
B-5	Lamb Eight Station Shuttle Machine	B-27
B-6	Lamb Four Station Shuttle Machine	B-28
B-7	Lamb Eight Station Shuttle Machine	B-30
B-8	Lamb Three Station Shuttle Machine	B-32
B-9	Lamb Seven Station Shuttle Machine	B-33
B-10	Lamb Six Station Shuttle Machine	B-34
B-11	Lamb Six Station Shuttle Machine	B-36
B-12	Lamb Four Station Dial Machine	B-48

때 ENERGY SYSTEMS

LIST OF TABLES

ENERGY SYSTEMS

1.0 INTRODUCTION

This is the final report of a study conducted by GM Transportation Systems Center to develop the definition of a heliostat manufacturing facility with a production capacity of 50,000 units per year.

In order to provide a self-contained document, this final report contains information from the Heliostat Production and Cost Analysis (Final Report, SERI/TR-8052-l) completed for SERI (December 1979).

1.1 CONTRACT PARTICIPANTS

In June 1980 the McDonnell Douglas Astronautics Company, McDonnell Douglas Corporation contracted with the GM Transportation Systems Center, General Motors Corporation to provide services and assist in the development of a conceptual design for a heliostat manufacturing facility sized to produce 50,000 heliostats per year and to aid in estimating facility and manufacturing costs. The heliostat design used in this effort is one developed by the McDonnell Douglas Astronautics Company (MDC) under contract to Sandia National Laboratories, Livermore, and is a refinement of the design used by GM Transportation Systems Center (GM TSC) in performing a 1979 heliostat production evaluation and cost analysis study for the Solar Energy Research Institute (SERI).

The F. Jos. Lamb Company (Lamb) of Warren, Michigan, was the major subcontractor to GM TSC and developed processing, tooling requirements, machine estimates and the plant layout for the manufacture of the MDC heliostat.

The Harrison Radiator Division of General Motors developed labor estimates and performed the cost extension required to develop a heliostat factory cost and other GM Divisions and Staffs provided aid and consultation.

Edgar G. Wright, P.E. of Lockport, New York, provided industrial engineering consulting service during the contract effort.

1.2 SCOPE OF WORK

The work activity involved the collection and generation of engineering data on the specified heliostat design and a detailed buildup of all manufacturing costs. In addition, required capital investment was estimated and a factory layout defined.

© ${ }^{\text {an }}$ ENERGY SYSTEMS

The manufacturing processes, labor development, material costs and plant configuration resulting from the contract effort for this study are based on detailed design and engineering data. Therefore, the final factory cost is a figure based on collected detail and is not an estimate generated to meet a predetermined target cost. The production evaluation is based on current technology and all cost figutes are expressed in 1980 dollars.

1.3 DATA SOURCES

The heliostat design data was provided by MDC on detail and assembly drawings, in basic manufacturing and process data and during interchanges with $M D C$ personnel at Huntington Beach, California; Warren, Michigan and Lockport, New York. The heliostat itself is a pedestal mounted, non-inverting, azimuth and elevation tracking unit having a mirrored glass reflecting surface of $57 \mathrm{~m}^{2}\left(612 \mathrm{ft}^{2}\right)$.

Fusion-glass manufacturing and cost data was provided by the Corning Glass Works of Blacksburg, Virginia.

Float glass (back lite) cost data were provided by C-E Glass of Pennsauken, New Jersey.

Mirroring process and cost data were provided by Binswanger Mirror Products of Memphis, Tennessee.

Rolling mill cost data was provided by the Van Huffel Tube Corporation of Warren, Ohio.

Reflector support structure welding data was provided by the Dollar Electric Company of Madison Heights, Michigan.

In addition to the aforementioned major data sources, outside vendors were contracted and quotations or engineering cost estimates obtained for all material and purchased parts.

뜨 ENERGY SYSTEMS

2.0 HELIOSTAT DESIGN

The heliostat design studied was developed by the McDonnell Douglas Astronautics Company under contract to Sandia National Laboratories, Livermore. The current design does not have an inverted stow mode eliminating the need for a separate stow actuator, and has an inverted azimuth drive that mounts in the top of the pedestal. Design efficiency has been improved over early designs by adding two mirror modules to increase the reflective surface area, (l4 modules, each 4 ft by 11 ft) and reorienting the heliostat so its long axis is parallel to the ground thus reducing shadowing and blocking.

The design is characterized by reflective panels consisting of laminated glass sheets with bonded sheet metal stringers which stiffen the panel and are used to fasten it to the support structure as shown in Figure 2-1. The reflector support structure is fabricated from roll-formed sheet metal sections which are welded together. The azimuth drive, main beam, elevation drive support assembly, and pedestal are all fabricated through cutting, forming, and welding of steel material. The harmonic drive gearing in the azimuth drive is made up of fabricated steel elements which are machined. Drive motors, azimuth drive input gearing, and the elevation jack are purchased components. Electrical and electronic elements of the signal and power circuits are fabricated in the assembly plant using the following purchased items: electronic components, printed circuit boards, and electrical wire and connectors.

2.1 MIRROR MODULE

The reflective unit is a 4-foot by ll-foot laminated glass fabrication. Construction detail is shown in Figure 2-2.

The front lite of the reflective surface is 0.060 inch low-iron fusion glass manufactured by the Corning Glass works of Blacksburg, Virginia. The rear surface of the front lite is plated with pure silver, overplated with copper and finally sprayed with a protective coating of mirror backing paint.

The back lite is 0.188 inch thick window grade float glass which is bonded to the front lite in an autoclave using a polyvinyl butyral sheet as the adhesive.

Silicone adhesive is applied to all four edges of the mirror module, to seal out moisture, and a metal channel is fitted over each edge for mechanical protection. The channel is formed of painted steel.

FIGURE 2-1. MCDONNELL DOUGLAS SECOND GENERATION HELIOSTAT

EW ENERGY SYSTEMS

FIGURE 2-2. REFLECTIVE UNIT

은 ENERGY SYSTEMS

Metal shims are bonded lengthwise to the glass lamination using a commercial adhesive, Stabond, and then hat-shaped sheet metal stringers are bonded to the shims using 3 M EC 3532 as an adhesive. Each stringer has been roll formed from . 063 inch steel and has two clinch nuts attached for use in securing the mirror module to the reflector support structure. Detail of the stringer, shim configuration is in Section 2.3 (Figure 2-4), Relector Assembly.

2.2 REFLECTOR SUPPORT STRUCTURE

The reflector support structure is assembled by spot welding roll formed sheet steel components together with gussets, backing plates and angle braces. The assembly shown in Figure 2-3 comprises an inboard cross beam, an outboard cross beam, two diagonal beams, two gussets, two backing plates and four angle braces. Fabrication requires cutting the beams after receipt from the steel roll forming mill, and then welding the beams and the reinforcing plates, gussets and angle braces. For this study, two changes have been made in the reflector support structure to reduce manufacturing cost.

1. The inboard cross beam has square cut ends instead of diagonally clipped ends, simplifying the processing.
2. The diagonal beam flanges are not cut, simplifying processing and reducing the number of different parts by eliminating the need for right and left hand beams.

2.3 REFLECTOR ASSEMBLY

The reflector assembly (see Figure 2-4) is fabricated by bolting seven mirror modules to the support structure using studs driven into the clinch nuts previously assembled into the mirror module stringers. Nuts are driven onto the studs where they project through the inboard main beam and outboard cross beam.

After the reflector assembly is complete it is racked for shipment; for a detailed illustration see Section 2.11 .

2.4 AZIMUTH DRIVE

The azimuth drive (Figure 2-5) provides two levels of reduction gearing between the drive motor and the circular spline. The input ratio is obtained through a purchased "Helicon" gear set with a ratio of l62:1. The output harmonic drive ratio is 242:l. The harmonic drive consists of a machined flexible spline, a three-lobe wave generator, a flexible bearing, a circular spline and an input shaft. The

FIGURE 2-4. REFLECTOR ASSEMBLY

@ ENERGY SYSTEMS

FIGURE 2-5. AZIMUTH DRIVE

빼 ENERGY SYSTEMS

flexible spline is fixed to the bottom of the azimuth housing by 12 plug welds. The wave generator is driven by the input shaft and produces distortion of the bearing and flexible spline at three points as it rotates. The circular spline contains gear teeth which mate with the flexible spline, and bearing grooves for the wire race bearing which joins the circular spline and the azimuth housing. The input shaft is machined and center-bored to allow the power and control cables to be routed from the elevation motor and sensors to the heliostat controller. The drive housing includes holes for the mounting bolts which join the drive unit to the pedestal.

For this study, four changes have been made in the azimuth drive assembly to facilitate production and lower manufacturing costs. First (l), 12 plug welds are used in place of 12 pins and collars to mount the circular spline to the bottom of the azimuth drive housing. Second (2), the housing itself is now fabricated from a deep drawn part, reducing the amount of gear oil needed to fill the housing as well as simplifying the manufacturing process. Third (3), the filler block has been replaced by a toroid formed from two drawn parts connected with a snap joint. Fourth (4), the azimuth drive cover is now a stamping. These detail design changes are shown in Figure 2-6.

2.5 ACTUATOR ASSEMBLY, ELEVATION

The actuator assembly consists of an elevation jack, a drive motor, an incremental encoder electrical assembly, and various electrical and mechanical components.

2.6 SUPPORT ASSEMBLY, ELEVATION DRIVE

The elevation drive support assembly (Figure 2-7) is a casting that supports the main beam/reflector assembly and provides an attach point for the elevation actuator assembly. It is fixed to the azimuth drive/pedestal assembly by four bolts. This is a modification of the prototype where a weldment was used.

2.7 AZIMUTH/ELEVATION DRIVE ASSEMBLY

This assembly is an intermediate assembly not identified in the cost breakdown structure, but which occurs as a necessary element in the manufacturing process. The assembly contains the drive motors and mechanisms for the azimuth and elevation tracking functions as well as most signal and control electronics, and cables associated with heliostat operation.

FIGURE 2-6. AZIMUTH DRIVE WITH HOUSING AND COVER

FIGURE 2-7. SUPPORT ASSEMBLY, ELEVATION DRIVE (ID22439-1)

2.8 MAIN BEAM

The main beam (Figure 2-8) is a fabricated weldment to which each reflector assembly is attached with 8 bolts. Tabs welded to the main beam provide attach points for the elevation drive support assembly and the elevation actuator.

2.9 PEDESTAL ASSEMBLY

The pedestal assembly (Figure 2-9) comprises a steel ring welded to a truncated cone which is, in turn, welded to a pipe. Subsequently, the lower end of the pipe is expanded to provide a 44 inch taper. Figure 2-9 shows the cutout for mounting the electrical/control junction box, but does not show the box itself.

2.10 DRIVE/PEDESTAL/MAIN BEAM ASSEMBLY

In the production process the elevation drive, azimuth drive, and main beam assembly are joined together by the elevation drive support assembly (see Figure 2-10). Together with the control electronics and power cable harnesses the drive/main beam assembly comprises the azimuth/elevation drive main beam assembly. This assembly is married to the pedestal in a final in-plant assembly process and the drive/pedestal/ main beam assembly thus created is then racked for shipping (Figure 2-11).

2.11 HELIOSTAT ASSEMBLY

The heliostat arrives at the installation site in the form of two major assemblies, the reflector assembly (Figure 2-4), and the drive/pedestal/main beam assembly shown racked for shipping in Figure 2-11. The reflector assembly is shipped three to a rack (Figure 2-12) and the drive/pedestal/main beam assembly is shipped four to a rack.

At the site, two reflector assemblies are married to one drive/pedestal/main beam assembly to form a complete heliostat, thus three racks of drive/pedestal/main beam assemblies together with eight racks of reflector assemblies provide for twelve complete heliostats. The assembly process is straightforward and uncomplicated. Each reflector assembly is attached to the main beam by eight bolts (see Figures 2-4 and 2-8) after the drive/pedestal/main beam assembly has been erected on its foundation. The completed heliostat is shown in Figure 2-1.

FIGURE 2-8. MAIN BEAM (ID22464-1)

FIGURE 2-9. PEDESTAL ASSEMBLY(1D22461-1)

뜨 ENERGY SYSTEMS

FIGURE 2-10. AZIMUTH/ELEVATION DRIVE/MAIN BEAM ASSEMBLY

回

FIGURE 2-11. DRIVE/PEDESTAL/MAIN BEAM ASSEMBLY, RACKED FOR SHIPPING

回energy systems

FIGURE 2-12. REFLECTOR ASSEMBLIES, RACKED FOR SHIPPING

ENERGY SYSTEMS

3.0 STUDY APPROACH

The intent of this study is to provide the definition of a heliostat manufacturing facility capable of producing 50,000 heliostats per year and to generate the manufacturing costs associated with that level of production. This requires a cost breakdown structure, a bill of materials or parts list, preferably fully indentured, a detailed manufacturing analysis, a plant design, the development of the labor associated with the manufacturing processes and finally an extension of costs.

3.1 COST BREAKDOWN STRUCTURE

A cost breakdown structure defines the categories into which the various costs of manufacturing a product can be placed. The cost breakdown structure also effectively collects the work effort to be performed into categories which are product related and, thus, can be referred to as a work breakdown structure. Figure $3-1$ is the cost breakdown developed for the heliostat. The control or identification numbers, lD22XXXX, of the cost breakdown structure are those used by McDonnell Douglas in their drawing and part numbering system for the Second Generation Heliostat.

3.2 INDENTURED PARTS LIST

One basic document used in a production cost analysis is the "bill of materials." The bill of materials lists every item, part, or raw material required to complete the manufacture and assembly of the heliostat. Primary reference for each item is the drawing or part number which refers to the cost breakdown structure. Where applicable, items are identified by a commercial part number or referenced to a drawing number. Unit quantities, material specification, form, shape, and weight are indicated, and the material source is shown.

In this study an indentured parts list was used in lieu of a bill of materials. The indentured parts list combined information from a bill of materials together with material and purchased part costs. The primary reference is the part number taken directly from the McDonnell Douglas part numbering system for the Second Generation Heliostat. This is followed by the part or material name or description, the quantity, the make (M) or buy (B) designation and finally the unit cost in 1980 dollars. The indentured parts list was generated by McDonnell Douglas and then modified and updated by GM TSC and the F. Jos. Lamb Co. to reflect the specific heliostat configuration costed in this study. The indentured parts list is Appendix A to this document.

ENERGY SYSTEMS

3.3 MANUFACTURING ANALYSIS

The objective of this task was to define the information on materials, methods and labor as required to conduct a manufacturing analysis. Each step in the fabrication and assembly of the heliostat from the initial receipt of material (raw or purchased part) through the final assembly and packaging for shipment was addressed in accomplishing this objective.

The work defined under the manufacturing analysis provides the basis for developing a manufacturing cost per heliostat at the selected production volume, 50,000 heliostats per year. In addition, to provide some insight to the variability of manufacturing cost as a function of production level changes, manufacturing costs were developed for 75 percent and 125 percent of plant capacity at the standard volume.

Manufacturing equipment, tooling, fixtures, and other devices required in processing and/or assembly operations were identified for each step in the manufacturing process. Each step of the manufacturing process was then listed on tool and labor routing sheets. The tool and labor routing sheets present the manufacturing process, in terms of operation description, the machine cycle time, the machine description, tools and gauges, percent scrap, tool costs, and the capital costs for machines. Background effort required to provide the information contained on the tool and labor routing sheets included the development of a specific process for each operation listed. Spindles, speeds, feeds (rate, stroke, time) and thrust are examples of the detail level to which the manufacturing process was analyzed.

The manufacturing analysis is the foundation upon which the plant design is based and from which the labor development took place. The "Tool and Labor Routings" for the McDonnell Douglas Second Generation Heliostat at a production rate of 50,000 units per year are Appendix B to this document.

3.4 PLANT DESIGN

To complete the manufacturing cost analysis, a manufacturing plant configuration must be defined. The plant design must consider whether the facility is new construction or a renovated structure, and must address all appropriate OSHA and EPA regulations. In addition, plant design and size is a function of the quantity and type of production machines necessary to manufacture a product at a given production rate. The production rate is a function of the production efficiency and the annual production volume. This study of heliostat manufacture considers a 2 shift, 5 day, 48 week per year operation with a production efficiency of $67-1 / 2$ per cent. The design and specification of the heliostat manufacturing

제 ENERGY SYSTEMS

equipment has been adjusted for this efficiency so that an annual volume of 50,000 heliostats can be produced. This means that any machine producing a single part for the heliostat must be capable of producing at least 19.29 parts per hour (74,074 parts per year) at 100 per cent efficiency in order to meet the 50,000 parts per year volume. In terms of productive machine time the part cycle is 187 seconds at this efficiency.

For this study, a dedicated facility of new construction was chosen as the plant configuration. Factors considered in defining the plant for cost analysis were geographic location, land requirements including allowance for possible expansion, available labor and supporting vendor industry, heliostat transportation requirements, material availability and the physical configuration of the building(s) necessary for an integrated manufacturing site. In addition, all factors associated with the manufacturing process, such as welding fumes, humidity control, air temperature control, and bay height for hoist clearance were factored into the plant design.

Section 5.0 discusses the result of this activity and shows the plant developed.

3.5 LABOR DEVELOPMENT

The development of the labor content of the manufacturing process is a complex, time-consuming procedure. This activity requires an effort similar to the depth of study required for processing development.

Appendix D, Typical Labor Development, shows the type of detail used to generate the labor content for the manufacturing process. The appendix is provided to show how the labor data that is included on the Tool and Labor Routing Sheets was developed.

The Harrison Radiator Division of General Motors is the lead division for solar energy development and has an active program for the design, test and evaluation of flat plate collector systems. Harrison Radiator participated with GM TSC in the manufacturing cost study of the McDonnell Douglas prototype heliostat for SERI in 1979 and because of that background and their solar expertise were chosen to participate in the current study. Using information provided by the F. Jos. Lamb Co. on "Tool and Labor Routings" (see Appendix B), the Harrison Radiator Division did the labor development and subsequently the cost extension for the manufacturing cost analysis.

Edgar G. Wright, an industrial engineering consultant of Lockport, New York, provided substantial service in the area of labor development and performed the material handing analysis for this study.

© ENERGY SYSTEMS

3.6 COST EXTENSION:

The objective of this task was to bring together the details of cost and cost related factors such that the total manufacturing cost for the production of heliostats could be estimated. Facility costs, fixed and variable production costs, material costs, burden costs, and all other allocated cost factors are considered in developing the total factory cost on a per unit (heliostat) basis. All costs, including material cost, labor hours, labor rate, labor cost, burden rate, and burden cost are collected on the Product Cost Estimate sheets to show the total manufacturing cost. The Product Cost Estimate sheets are contained in Appendix C.

3.7 FACTORY COST

It is important for the reader to understand that from its inception this study of heliostat production costs intended to develop what is known as a "factory cost."

Factory cost is:
the sum of all costs necessary to place a finished product on the factory dock ready to ship.

Factory cost does not include:
shipping, field installation, profit, return on investment, distributed general and administrative expenses, state or local product or inventory taxes, general commercial expense, sales and advertising costs, public relations costs, or any other profit and loss items.

Outside tooling and plant costs can be added to factory cost in order to provide a per square meter equivalent factory cost including the extraordinary investment for tools, precious metals, mirroring, glass making and gear making investments.

© ENERGY SYSTEMS

4.0 COSTING GROUND RULES

Ground rules under which the definition of a heliostat manufacturing facility and the development of manufacturing costs can take place were generated and jointly agreed on by GM TSC and MDC. Included in these ground rules are those which govern the design and operation of the facility capable of producing 50,000 Second Generation Heliostats per year. This MDC heliostat design comprises the following elements:

- Reflector Assembly
- Drive/Pedestal/Main Beam Assembly
- Main beam
- Controller
- Power and control cable harnesses
- Pedestal
- Foundation

Under the costing ground rules, the controller, foundation and erection system are not part of this study. However, all elements associated with the reflector assembly, the elevation/azimuth drive assembly, the main beam, the power and control cable harnesses and the pedestal as produced in a manufacturing facility and prepared for shipment to a site are considered in the cost analysis. Under this guideline, the cost breakdown structure (CBS) was finalized (see Figure 3-1).

Costing ground rules cover the methods to be used in the generation of cost estimates for all elements pertinent to a single heliostat. These elements include:

- Land and Improvements
- Plant Structure and Equipment
- Special Tools
- Standard Tools
- Purchased Parts
- Raw Material

뜬 ENERGY SYSTEMS

- Consumable Supplies
- Taxes
- Direct Labor
- Indirect Labor
- Plant Engineering
- Other Appropriate Cost Factors

The level of design detail available from MDC falls into three general categories:

- Manufacturers' information on available components which are assembled into the heliostat
- Assembly and detail drawings of heliostat components together with engineering instruction sheets
- Functional descriptions of electronic and electrical hardware

In addition to these data, information was made available by MDC on mirror lamination, mirror module assembly and the harmonic drive.

The drawings provided by MDC were analyzed to define processing and fabrication tooling. For component fabrication through an outside supplier, a cost quotation or an engineering cost estimate was obtained. For fabrication completed in the manufacturing plant, tooling and fabrication costs were developed.

For components or parts for which detail design data did not exist, commercially available hardware meeting the functional requirements of the design were selected, approved by MDC, and costs obtained.

A particular production level was chosen for this study by McDonnell Douglas. That level is 50,000 heliostats per year, shipped. In general, the costs associated with each subassembly were collected and identified. These costs include: tools, raw material, purchased parts, and direct labor. Costs which could not be directly identified with a particular subassembly were collected on a yearly basis, divided by the production volume and added to the total cost. These costs include: land, plant, consumables, taxes, indirect labor and plant engineering.

The following paragraphs give the detail costing methods which governed the generation of estimates for each cost element of the heliostat.

© ENERGY SYSTEMS

4.1 PLANT SITE, STRUCTURE AND EQUIPMENT

The selection of a general area for the location of a heliostat production facility is influenced by the need to be close to a major potential market area for repowering sites. The selected area includes the states of Texas, New Mexico, Colorado, Arizona, Utah, Nevada, and California. The need to be central to this area is influenced by the shipping costs for completed heliostat components. These components are of low density and shipping costs will be reduced if short-haul trucking can be used between the manufacturing plant and the repowering site. Central states in this general area include: Arizona, Colorado, New Mexico, and Utah. These four states were finally selected for a more detailed comparison of the following factors:

- Availability of energy and water
- Availability of industrial sites
- Availability of skilled and unskilled labor
- Availability of supporting industry
- Building costs
- Labor costs
- Taxes

Land costs vary considerably, but have relatively little effect on total cost. Therefore, they are not included in the list of factors affecting site selection. In general the availability of the factors listed precludes the selection of smaller urban areas. This limitation and the consideration of a central shipment point narrowed the selection process to the following cities:

- Phoenix, Arizona
- Tucson, Arizona
- Denver, Colorado
- Albuquerque, New Mexico

Data for these four cities are compared in Table 4-1. These data do not indicate significant differences among the locations studied for a plant site. For the purpose of the manufacturing cost analysis, cost data was developed using Tucson as the plant site.

TABLE 4-1. PLANT LOCATION DATA COMPARISON

	Total Labor Availability in Area (Mfg. Related)	Supporting Industry	Building Costs (Index)	Labor Costs (Avg. Hourly March 1988)
Phoenix	65,000	yes	102.6	$\$ 7.20$
Tucson	12,000	yes	101.0	$\$ 6.78$
Denver	96,000	yes	100.5	$\$ 7.15$
Albuquerque	14,000	yes	100.0	$\$ 5.87$

ENERGY SYSTEMS

The plant is of modern, single story design incorporating both high and low bay areas. The plant features concrete slab construction with a steel structure. The plant is air conditioned with humidity control, fully sprinklered and has waste water treatment at the secondary level. plant equipment is included for electric arc welding, compressed air, process water and battery charging for the materials handing equipment. Enclosed areas are provided for the welding and plating areas. These areas have metal walls and special air handing. A plant layout was generated and shows locations that have special requirements for air handing, air filtration, and water treatment such as welding and machining areas.

The plant and equipment cost estimates consider generally applicable building code requirements. A budgetary cost estimate for the building and equipment is generated. The annual cost for the building and equipment is generated by amortizing the investment. This annual cost is applied over the appropriate yearly production volume. Estimates of land and improvements costs are developed in current (1980) dollars.

All plant equipment is identified and cost quotes obtained or catalog prices used for standard machines or equipment. All special machines are developed to the point of detailed concept sketches and cost estimates obtained from suppliers of similar equipment.

Outside storage areas are provided for two and one-half days of heliostat production. This uncovered storage pad for heliostat components in shipping racks has an area of 452,000 square feet. The plant site is improved for access and storage and is completely fenced. The plant site size is 40 acres. The site size has been selected to provide for possible future expansion.

4.2 TOOLS

Special tools are those units which must be designed and fabricated for heliostat production. These may include: material handling equipment, conveyors, hoists, adhesive application equipment, cleaning tanks, welding fixtures, bonding equipment and assembly equipment.

Summary design definition for this equipment is established and engineering costs generated or budgetary quotes obtained. The capital cost of this equipment is amortized to determine an annual cost. This annual cost is divided by the production volume and the piece cost applied to the corresponding element of the heliostat assembly.

Standard tools are those items which are available from tool suppliers on a regular basis and may include modifications specific to heliostat production. These items include: flame cutters, vertical turret lathes, numerical control lathes,

쓰N ENERGY SYSTEMS

automatic lathes, hydrosize machines, punch presses, multiple drill stations, numerical control and standard mills, submerged arc and spot welders, saws, broaches and grinders.

Production machine tool catalogs have been consulted to select machines for heliostat production. For each machine, the vendors have submitted budgetary cost information. The capital cost of this equipment is amortized to determine an annual cost. The annual cost is divided by the heliostat volume and the piece cost will be applied to the corresponding element of the heliostat assembly.

4.3 PURCHASED PARTS, MATERIAL AND SUPPLIES

Price quotations, catalog prices, or vendor supplied engineering estimates are used to provide costs for all purchased parts.

Purchased parts include items which are in production at outside sources and special design items which are made to heliostat design requirements. These items include: glass, mirroring, rolled steel sections, weldments, steel stock, motors, gears, bearings, screw jacks, miscellaneous hardware, cable, electronic components, printed wiring boards and controls.

Supplier quotes, catalog prices, or budgetary costs have been obtained for all purchased parts at the production volume. The piece cost, based on these data, is applied to the corresponding elements of the heliostat assembly.

Raw material purchased for the production operation includes: steel, wire, adhesives, material for plating operations, chemicals for cleaning and plating, and packaging materials.

Supplier quotes or cost estimates are obtained for raw material sufficient to meet the production volume. The piece cost, based on these costs, is applied to the corresponding elements of the heliostat assembly.

Consumable supplies required for heliostat production include: energy (gas - oil - electric), water, welding supplies, grinding materials, machine tool bits, soldering supplies. Estimates for the annual consumption of these materials have been developed and costs generated for the 50,000 unit production volume. These annual costs are divided by the production volume and the piece cost applied to the corresponding element of the heliostat assembly.

(쓰 ENERGY SYSTEMS

4.4 LABOR

Tooling and routing sheets are prepared for each component of the heliostat assembly to be processed in the assembly plant. The analysis of these sheets included developing the skill level requirements for each labor operation and determining the labor content. Based on the skill level requirements and the plant site location, average wage rates have been determined. For each heliostat component, the direct labor hour content, multiplied by the skill rate, is added to the piece cost.

Indirect labor requirements include: plant supervision, inspection, materials handling and maintenance. Based on the direct labor force in each plant, the indirect headcount has been estimated. Using the appropriate labor rates, the annual cost of indirect labor has been computed. The annual cost is divided by the annual production volume to determine the cost for each heliostat unit.

The initial, one-time plant engineering activities represent a substantial investment. These costs have been estimated and amortized. Annual costs generated by the amortization schedule are divided by the production volume to achieve a unit heliostat cost. In addition, the cost of continuing annual plant -engineering activities has been estimated, divided by the production volume, and a unit heliostat cost established.

4.5 TAXES, FUEL AND UTILITIES

State, and local property taxes which are applicable to the production site, plant and equipment have been estimated for the area of the plant site in Tucson, Arizona. The applicable tax rates are applied to the capital evaluation to determine an annual tax. The annual cost is divided by the production volume and added to piece cost for each heliostat assembly.

ENERGY SYSTEMS

5.0 HELIOSTAT PLANT

Development of the heliostat plant configuration paralleled the manufacturing process development on an interactive basis. The final plant layout was available after the completion of manufacturing processes and determination of the necessary outside storage. The plant itself is configured of bays, $60^{\prime} \mathbf{x} 60^{\prime} \mathbf{x} 30^{\prime}$ and $60^{\prime} \mathbf{x} 40^{\prime} \mathbf{x} 30^{\prime}$, with an eight inch reinforced concrete floor (3 lbs per square foot of $3 / 4$ " rebar) and fabricated steel walls. The $60^{\prime} \mathrm{x} 40^{\prime}$ bays require 12.5 lbs of steel per square foot and the $60^{\prime} \mathrm{x} 60^{\prime}$ bays require 18 lbs of steel per square foot. The plant is air conditioned, by a 1200 ton a / c unit, and humidity is controlled. The plant electrical power requirement is estimated at 7500 kVA including air conditioning. The plant is fully sprinklered with an $8^{\prime \prime}$ fire loop around the building and a 200,000 gallon ground suction tank as a source. The site is fully fenced with a monitoring system installed for fire and security.

5.1 SITE

The heliostat plant site chosen is in the general area of Tucson, Arizona. The site, -shown in Figure 5-1, is fully improved, perimeter fenced, and sized to allow for possible plant expansion. The site dimensions are approximately 1610 feet by 1080 feet for a total parcel size of 40 acres.

5.2 PLANT LA YOUT

The plant layout for the 50,000 unit annual volume heliostat production is shown in Figure 5-2. The plant design is single-story slab construction of high-bay configuration. The plant has floor area of approximately 260,000 square feet.

The plant has facilities for the manufacture of the following operations:

- Mir.ror laminating
- Support structure pressing and welding
- Reflector panel assembly
- Azimuth drive housing machining
- Flex spline, wave generator, bearing retainer, and circular spline machining
- Main beam fabrication and welding

凹 ENERGY SYSTEMS

FIGURE 5-2. PLANT LAYOUT

酓 ENERGY SYSTEMS

- Azimuth and elevation drive assembly
- Electronic/electrical component fabrication and assembly
- Final assembly
- Shipping

Major supplier items which are shipped into this plant include the following:

- Mirrored front lites
- Float glass back lites
- Roll formed sections for the support structure
- Azimuth drive and pedestal weldments
- Electronic parts, printed circuit boards and wiring
- Drive motors and the elevation actuator

A major portion of the plant is occupied by the processing equipment for the reflective surface assembly. This processing includes glass laminating which is accomplished using polyvinyl butyral sheet as an adhesive. Curing takes place in the autoclaves shown in the upper left of Figure 5-2. After laminating is complete, shims, stringers, and the edge seal are added and finally the reflective surface assembly is attached to its support structure to become the reflector assembly. Completed reflector assemblies are racked 3 to a rack and stored for shipment in the staging area external to the plant.

Machining and assembly of the drive components takes place in the various areas at the rear of the plant. The electronic/ electrical fabrication occurs in the closed area which is near the final assembly area. Completed drive units are stored in racks in the staging area which is external to the plant.

Located nearest the offices and general parking area is the automated weld and assembly line for the reflector support structure. Due to the length of the inboard and outboard beams and the size of the diagonal beams this activity posed a challenge. Two possible assembly techniques are shown in the isometric figures that follow. Figure 5-3, Team Weld Assembly, shows a straightforward, manpower intensive team welding concept. Figure 5-4, Line Weld Assembly, shows the manufacturing process that was incorporated in this study.

圆energy systems

圆energy systems

© ENERGY SYSTEMS

5.3 REFLECTOR ASSEMBLY

The line layout to accomplish mirror module manufacture and subsequent reflector assembly was a major challenge due to the space requirements for autoclaving, time requirements for adhesive and paint cure and the difficulty in handling due to the size of the completed reflector. Figure 5-4 is a schematic plan view of the reflector assembly line. The final assembly of the mirror module to the reflector support structure is accomplished without assembly labor by using automatic stud drivers, nut drivers and material handling equipment. Figure $5-5$ is a perspective drawing of the reflector final assembly line.

5.4 COST

The cost of suitable industrially zoned land in the Tucson area is estimated at $\$ 16,000$ per acre with a resultant cost of $\$ 640,000$ for an unimproved 40 acre site. An estimated $\$ 160,000$ will be the cost of improving the site and thus a total cost of $\$ 800,000$ will be incurred for a 40 acre improved plant site.

The total cost for the plant building and the staging area slab that is external to the plant is estimated to be \$36,000,000.

The following cost elements were included in the development of total plant cost:

- Architecture
- HVAC (including humidity control)
- Process plumbing
- Process sewers
- Process waste treatment to the secondary level
- Sanitary plumbing
- Sanitary sewers
- Compressed air supply
- Makeup air supply
- Exhaust air filtration to EPA requirements
- Firehouse including diesel and electric pumps
- Fire loop for water supply

FIGURE 5-4. REFLECTOR ASSEMBLY LINE

GM ENERGY SYSTEMS

- Underground suction tank
- Building sprinklers
- Fire and proprietary monitoring system
- Reinforced concrete flooring
- Electrical power substation
- Electrical power distribution
- Site perimeter fencing
- Reinforced concrete staging area outside of building
- Parking lot pavement
- Building permits, surveys and contingencies

This list, while not exhaustive, provides the scope of costs considered. Check points of costs associated with recently constructed (since 1977) manufacturing plants were obtained and compared to the developed estimate for the heliostat plant.

Costs estimated in this study are reported in 1980 dollars. If current trends in construction costs continue, future cost projections should include an annual inflation factor of 10 to 12 percent.

GM ENERGY SYSTEMS

6.0 HELIOSTAT MANUFACTURING DESCRIPTION

One of the first tasks completed in this study was the definition of production flow in terms of purchased parts and materials, manufacturing process sequencing, final assembly, and packaging. All make/buy decisions are shown in Appendix A. The production flow definition was followed by process development, equipment definition and the completion of tool and labor routings. The last element of the manufacturing process to be considered was packaging.

6.1 PRODUCTION FLOW

A representation of material and processing flow through the plant is shown in Figure 6-1.

For the 50,000 production volume, major purchased items include:

- Glass and mirroring
- Roll-formed steel sections
- Pedestal tube
- Torque tube weldment
- Elevation support
- Azimuth drive housing parts
- Drive motors and elevation actuator
- Electronic components

Plant processing includes:

- Mirror module laminating
- Support structure die cutting and welding
- Reflector unit assembly
- Main beam fabrication
- Elevation drive support
- Azimuth drive housing fabrication
- Harmonic drive welding and machining (Flex spline, wave generator, bearing retainer, and circular spline)

ENERGY SYSTEMS

- Azimuth and elevation drive assembly
- Electronic and power cable fabrication
- Inspection and packaging for shipment

6.2 PROCESSES AND EQUIPMENT

A complete description of the manufacturing process, operation by operation, is contained in Appendix B on the Tool and Labor Routings. In addition to process description, the Tool and Labor Routings also include the process cycle time, the direct labor content and the cost of capital equipment and tools for each manufacturing process.

6.3 PACKAGING

Packaging for shipment was a major concern for in addition to the temporary storage problem in the staging area, height, weight and width had to be considered for highway movement of the reflector and drive/pedestal/main beam assemblies.

The storage/shipping rack for the reflector assembly is shown in Figure 6-2. Three assemblies are mounted in each rack, supported as shown, and held in place by shipping bands at two points. As racked, the assemblies are within the 96 inch highway width regulation and when mounted on a low-boy trailer, meet height clearance restrictions for Interstate or major U.S. Highways.

Drive/pedestal/main beam assemblies are racked four to a rack for storage and shipping as shown in Figure 6-3. The external dimension of the rack allows three racks to fit on a standard 45 foot flat bed trailer, meet Interstate and U.S. Highway width regulations and have adequate height clearance on all Interstate, U.S. and most secondary highways.

The number of racks and their cost to meet the study objective of 50,000 heliostats per year produced and shipped is discussed in Section 8, Heliostat Production Costs.

FIGURE 6-3. DRIVE/PEDESTAL/MAIN BEAM ASSEMBLIES,RACKED FOR SHIPPING

(쓰 ENERGY SYSTEMS

7.0 HELIOSTAT MIRROR, SPECIAL REQUIREMENTS

There are special requirements associated with fusion glass due to its limited availability. In addition, because of the fragility of the large, thin glass sheets, it is desirable to perform the mirroring function at the fusion glass works to minimize handling and shipping.

7.1 FUSION GLASS

Fusion glass as specified for the back mirrored front lite of the reflecting surface is available at only one source, the Corning Glass Works of Blacksburg, Virginia. The present capacity of that source does not meet the 50,000 unit per year heliostat production volume requirement, however, there is more than sufficient space in Corning's Blacksburg facility to add capacity, and to install a mirroring line on site. This would avoid the additional handling and shipping problems that would be incurred if the .060" fusion glass lites had to be sent elsewhere for mirroring. Corning supplied the plant layout shown in Figure $7-1$ with the fusion glass expansion shown by dashed lines on the left side of the plant. Although modification of the tank is required, a single tank is sufficient to feed both the existing and the added line.

Corning has estimated that the cost of expanding the melting furnace, adding a new forehearth, forming process, annealer, take-out, and handling equipment will cost between $\$ 7,312,500$ and $\$ 12,187,500$ in 1980 dollars. This cost includes structural, mechanical and service elements to support the added equipment as well as the design, engineering and installation of the line. This cost does not include the cost of 160,000 grams of precious metals required to implement the new process.

The cost of the fusion line expansion as used in this study is $\$ 9,750,000$ and the cost of precious metals is $\$ 2,443,000$; both costs are in 1980 dollars.

7.2 MIRRORING LINE

Large, thin glass sheets are fragile and to minimize the handling and shipping problems, the possibility of installing a mirroring line at the output end of the fusion glass line at the Corning Glass Works in Blacksburg, Virginia was explored. Joint meetings with Corning and Binswanger Mirror Products established the practicality of such an installation, and subsequently Binswanger provided the following information. The cost of installing a 7,800 square foot per hour mirroring line at Corning in Blacksburg is $\$ 750,000$. Binswanger would

EN ENERGY SYSTEMS

lease the line space and operate the line to produce a silvered/coppered/painted surface on the fusion glass for 35 cents per square foot (.35/ft ${ }^{2}$) F.O.B. Blacksburg. This price does not include the amortization of the capital required for line installation. The above costs are those used in this study.

때 ENERGY SYSTEMS

8.0 HELIOSTAT PRODUCTION COSTS

Heliostat production costs have been developed from the processing, machines, and plant designs for the designated 50,000 unit annual volume of heliostat manufacture. Purchased parts and materials costs were developed from material price requests which were completed for each component of the heliostat. The actual forms used in this analysis are contained in Appendix C of this report. In all cases, material price quotes were obtained from vendors for each purchased heliostat component.

From the machine and plant designs, tool and labor routing sheets were prepared. These forms indicate the operations to be performed, timing for manual and automatic operation, and prices for special tools and equipment. Copies of these forms are contained in Appendix B of this report. All special machine designs were developed to the point of detailed concept sketches, and cost estimates were made by suppliers of similar equipment. Where standard machine tools are used, budgetary cost estimates or quotations were obtained from the vendors.

Average hourly labor rates for persons engaged in manufacturing in the southwestern area of the United States were used to establish the base hourly rate in the manufacturing plants. This rate, $\$ 7.27$ per hour, was adjusted for typical fringe benefits and labor efficiency.

Plant costs were estimated and reflect current rates for construction in the southwest.

Actual tax rate information for the selected site location of Tucson, Arizona, was used in determining real estate and property taxes.

The factory cost totals for the two production volumes show the allocation of labor, material, burden, fringe benefits, special tools, and plant engineering for each unit of heliostat production at the 100 percent capacity level and provides a factory cost of $\$ 3,655.37$. Outside tooling and plant costs which are required to meet supply are also indicated; when these costs are included the total per unit heliostat costs are $\$ 3,684.49$. The corresponding cost per square meter of heliostat surface area is \$64.64.

The total heliostat cost for production volume adjusted to 75 percent of capacity is $\$ 3,819.09$ at the 37,500 volume. The corresponding cost per square meter of heliostat surface area is $\$ 67.00$.

쓰 ENERGY SYSTEMS

The total heliostat cost for production volume adjusted to 125 percent of capacity is $\$ 3,603.73$ at the 62,500 volume. The corresponding cost per square meter of heliostat surface area is \$63.22.

The breakdown of the burden cost, on a per unit basis for both fixed and variable burden have been indicated in Section 8.2.5. The most significant portion of the burden account is for taxes and depreciation on the buildings and plant equipment.

The totals indicated have been depreciated to obtain the expense values shown in the burden account. Buildings are depreciated over 40 years, equipment and machinery depreciated over 10 years, and special tools depreciated over 5 years.

Outside tooling and plant costs are summarized in Section 5.2. Outside expenses result from rolling mill tools, mirroring equipment, glassmaking equipment, and gear tooling. These costs are amortized over a lo-year period on a straight line basis.

8.1 COST APPROACH

8.1.1 PURCHASED PARTS

The item labeled "Material" in subsequent cost tables includes all the raw materials and purchased parts required for the manufacture of the heliostat unit; examples are: glass, adhesive, steel, weldments, packaging, materials, etc. All indirect material costs are collected as a variable or fixed burden expense.

8.1.2 LABOR (Direct/Indirect)

Direct labor includes all straight time wages of employes who perform manufacturing operations which enhance the value of the heliostat unit and/or who participate directly or indirectly in processing operations which enhance the value of raw materials and purchased parts. Direct labor includes inspectors, some material handlers, and machine attendants, as well as productive operators.

Indirect labor is a burden expense and comprises the following categories:

- Supervision
- Clerical
- Foremen, superintendents and all other supervisory positions
- Factory clerks and checkers; office clerks and typists

㓵 ENERGY SYSTEMS

- Material handling
- Truckers, crane operators, and other material handlers not included in direct labor
- Building and property attendants
- Machine, tool, and die setting
- Drafting and engineering
- Inspection - Inspectors of supplies, tools, and materials

8.1.3 TOOLS AND EQUIPMENT

Expense tools and equipment costs are collected as a burden expense. These items include:

- Tools - cutters, drill bits, hand tools, etc.
- Equipment - jigs, fixtures, machines, special holding devices, bins, racks, etc.
- Office furniture and equipment.

The equipment, including shipping racks, is depreciated over a lo-year period using the double declining balance method with the first year convention.

Special tools are collected as a factory cost item and depreciated over a 5-year period. Straight line depreciation is used.

8.1.4 PRODUCTION PLANT COSTS

The total capital needed for the plant is approximately $\$ 88,600,000$ of which $\$ 36,000,000$ is for the building and \$800,000 for land.

The buildings are depreciated over a period of 40 years and the land is not depreciated. Total annualized costs for the buildings and land, and investment per heliostat unit are in the sections that follow.

Building depreciation is performed by the straight line method using a rule of thirds. That is, straight line depreciation is followed at an annual rate of three and three quarters percent (3.75\%) for the first 160 months (1/3 x 40 years), then at an annual rate of two and one-half percent
(2.5\%) for the second 160 months (1/3 x 40 years) and finally at an annual rate of one and one-quarter percent for the third 160 months ($1 / 3 \times 40$ years). The second year's depreciation is taken as the average annualized cost for estimating purposes.

8.2 COST SUMMARIES

This section includes all of the numbers derived from the study assembled in tabular form.

8.2.1 FULL PRODUCTION

Table 8-1 reflects the estimated factory cost of heliostats produced at a mature facility operating at 100 percent of capacity where that design capacity includes allowances for machine, labor, and manufacturing efficiencies.

TABLE 8-1. MDC SECOND GENERATION HELIOSTAT TOTAL COST (DOLLARS PER UNIT)
PRODUCTION VOLUME: 50,000 UNITS PER YEAR

Direct Labor	90.80
Material	$2,921.36$
Variable Burden	187.06
Fixed Burden	299.05
Variable Fringe	63.30
Fixed Fringe	36.93
Overtime	4.39
Night Shift	3.60
Cola*	10.03
Special Tools	28.68
Product Engineering	12.17
Factory Cost	$3,655.37$
Outside Plant and Tool Costs	29.12
Total Cost Per Heliostat	$3,684.49$
Total Cost Per Square Meter	64.64

[^0]
ㄸㅐㅔ ENERGY SYSTEMS

8.2.2 THREE PRODUCTION RATES

Table 8-2 reflects the estimated cost of a heliostat produced at a mature facility operating at a reduced production rate (75 percent) and at an increased production rate (125 percent) compared to the standard volume (50,000 units per year) where total labor hours have been adjusted to accomplish the change in manufacturing rate.

TABLE 8-2. MDC SECOND GENERATION HELIOSTAT TOTAL COST (DOLLARS PER UNIT), THREE PRODUCTION RATES

Production Volume (Units Per Year) (Percent of Plant Capacity)	$\begin{gathered} 37,500 \\ 75 \% \end{gathered}$	$\begin{gathered} 50,000 \\ 100 \% \end{gathered}$	$\begin{gathered} 62,500 \\ 125 \% \end{gathered}$
Material	2,921.36	2,921.36	2,921.36
Labor	90.80	90.80	90.80
Burden	713.63	602.36	535.59
Special Tools and Product Engineering	54.47	40.85	32.68
Factory Cost	3,780.26	3,655.37	3,580.43
Outside Plant and Tool Costs	38.83	29.12	23.30
Total Cost	3,819.09	3,684.49	3,603.73
Total Cost Per Square Meter	67.00	64.64	63.22

8.2.3 HELIOSTAT COST SUMMARY, COMPONENT DETAIL

Table 8-3 comprises the detail cost per heliostat identified by the cost breakdown structure.

8.2.4 BURDEN AND LABOR PER HELIOSTAT UNIT

All indirect material, indirect labor and other costs of a similar nature incurred by the factory while performing manufacturing operations are burden expense. These costs are summarized in Table 8-4.

TABLE 8-3. MDC SECOND GENERATION HELIOSTAT TOTAL COST (DOLLARS PER UNIT), COMPONENT DETAIL PRODUCTION VOLUME: 50,000 UNITS PER YEAR

	Material	Labor	Burden	Special Tools and Prod. Eng.	Outside Plant and Tool Costs	Total
Drive/Pedestal/Main Beam Assembly (1D22475-1)						
. Actuator Assembly, Elevation	412.17	1.28	8.48			421.93
Support Assembly, Elevation Drive	192.96	3.47	22.90			219.33
Azimuth Drive	392.82	39.72	262.56			695.10
Main Beam	105.40	14.74	97.47			217.61
Pedestal	140.47	4.51	29.80			174.78
Final Assembly	42.66	7.62	50.38			100.66
Factory Cost	1,286.48	71.34	471.59	31.36		1,860.77
Total Cost	1,286.48	71.34	471.59	31.36	1.02	1,861.79
Reflector Assembly (1D22456-1)					-	
Mirror Module (14)		9.58	63.28			1,202.14
Reflector Support Structure (2)	466.24	3.14	20.77			490.15
Final Assembly	39.36	6.74	44.57			90.67
Factory Cost	1,634.88	19.46	128.62	9.49		1,792.45
Total Cost	1,634.88	19.46	128.62	9.49	28.10	1,820.55
Heliostat						
Factory Cost	2,921.36	90.80	602.36	40.85		3,655.37
Total Cost	2,921.36	90.80	602.36	40.85	29.12	3,684.46
Total Cost per Square Meter	51.38	1.60	10.57	. 72	. 51	64.64

ENERGY SYSTEMS

TABLE 8-4 . MDC SECOND GENERATION HELIOSTAT BURDEN AND LABOR DETAIL (DOLLARS PER UNIT)
PRODUCTION VOLUME: 50,000 UNITS PER YEAR

	Fixed	Variable	Total
Supplies	--	11.60	11.60
Tools	13.83	5.85	19.68
Utilities	21.44	15.72	37.16
Maintenance	2.70	28.34	31.04
Scrap	--	87.51	87.51
Taxes and Depreciation	233.34	--	233.34
Direct Labor	--	90.80	90.80
Indirect Labor-Hourly	1.93	8.39	10.32
Indirect Labor-Salary	24.04	14.74	38.78
Sundry	1.77	14.91	16.68
Total	299.05	277.86	576.91

8.2.5 OUTSIDE TOOLING AND PLANT COSTS

Due to the speculative nature of the projected heliostat production scenario, certain vendors were reluctant to include investment costs in their quotes. These costs are collected in Table 8-5.

TABLE 8-5. OUTSIDE TOOLING AND PLANT COSTS

Rolling Mill Tools and Scotchbrite Equipment (Van Huffel)	132,000 Mirroring Line (Binswanger)
Stamping Tools and Dies (Bossert)	750,000
Corning Glass Works	508,800
Fusion glass line	
Precious metals	$9,750,000$
Total Investment	$2,443,000 *$

*Included as a cost per unit of $\$ 6.84$ (14 percent per year).

ENERGY SYSTEMS

8.2.6 INVESTMENT PER HELIOSTAT UNIT

The total investment required to produce the McDonnell Douglas Second Generation Heliostat at a production rate of 50,000 units per year is summarized in Table 8-6.

TABLE 8-6. MDC SECOND GENERATION HELIOSTAT REQUIRED INVESTMENT (DOLLARS) PRODUCTION VOLUME: 50,000 PER YEAR

Plant	$\$ 36,000,000$
Land and Improvements	800,000
Machinery and Equipment	$41,250,000$
Tools	$8,150,000$
Operations	$2,970,000$
Total	$\$ 89,170,000$

8.2.7 SHIPPING RACK ANALYSIS

Tables 8-7 and 8-8 summarize the shipping rack analysis and the resultant cost for the drive/pedestal/main beam assembly and the reflector assembly.

TABLE 8-7. DRIVE/PEDESTAL/MAIN BEAM ASSEMBLY (1D 22475-1) SHIPPING RACK ANALYSIS

Production Volume:50, 000 Heliostats per year Assemblies per day: 208 Assemblies per rack:	
Number of Racks	
At plant	260
In plant for loading	104
In repair	26
In route	260
At site	260

Estimated Cost: \$1,327,690

ENERGY SYSTEMS

TABLE 8-8. REFLECTOR ASSEMBLY (1D22456-1) SHIPPING RACK ANALYSIS

| Production Volume: | 50,000 Heliostats per year |
| :---: | :---: | :---: |
| Assemblies per day: | 416 |
| Assemblies per rack: | 3 |
| Number of Racks | |
| At plant | 693 |
| In plant for loading | 277 |
| In repair | 69 |
| In route | 693 |
| At site | 693 |

Estimated Cost: \$7,420,375

8.2.8 LABOR RATE ANALYSIS

To arrive at a representative labor rate for the heliostat direct labor, U.S. Department of Labor figures for seven southwestern states were averaged and extrapolated to provide a composite labor rate estimated for september 1980. A labor efficiency factor was applied, and an industry premium added. The results of this analysis are shown in Table 8-9.

ENERGY SYSTEMS

TABLE 8-9. LABOR RATE (DOLLARS PER HOUR)*

	$\begin{aligned} & \text { March } \\ & 1979 \end{aligned}$	$\begin{aligned} & \text { March } \\ & 1980 \end{aligned}$	September 1980 (est.)
California	\$6.79	\$7.44	\$7.77
Nevada	6.88	7.36	7.60
Utah	6.03	6.88	7.31
Arizona	6.40	7.14	7.51
Colorado	6.60	7.13	7.40
New Mexico	5.12	5.72	6.02
Texas	6.27	6.96	7.31
AVERAGE	\$6. 30	\$6.96	\$7.27
Labor efficiency factor - 92 percent			$\frac{\$.63}{7.90}$
Industry factor $=115$ percent			1.19
Labor rate used			\$9.09

*U.S. Department of Labor

8.2.9 INDUSTRIAL ENGINEERING SUMMARY

Table 8-10 provides an example and some insight into the level of detail to which the manufacturing process, as displayed on the Tool and Labor Routings, was reviewed.

Table 8-1l summarizes the industrial engineering results in determining the production labor hours and operators earned at the standard volume (50,000 units per year).

8.2.10 HELIOSTAT TOOLS AND EQUIPMENT

The detail and totals for the cost of heliostat tools and equipment as partitioned under the cost breakdown structure are shown in Table 8-12.

ENERGY SYSTEMS

TABLE 8-10. EQUIPMENT REQUIREMENT ANALYSIS (TYPICAL)
Azimuth Drive Housing (Oper. \#20, Page B-19)

Equipment Required (Original) Bullard Templa-Turn Vertical Turret Lathe (4) Installation Special Tools (4) Durable Tools (4) Nondurable Tools (4)	\$1,720,000 258,000 49,600 7,500 2,500
TOTAL	\$2,037,600

Recommendations:

1. Reduce equipment from four to three units.
2. Develop a three to five day parts bank (624-1040 pieces) as a reserve in the event of major equipment downtime.
3. Provide full relief during lunch, washup and personal time to achieve maximum uninterrupted output from the three machines.
4. If required, (due to excessive machine downtime) use overtime to stretch bank days on hand for emergency.

Equipment Required (Revised)	
Bullard Templa-Turn Vertical	
Turret Lathe (3)	$\$ 1,290,000$
Installation	193,500
Special Tools (3)	37,200
Durable Tools (3)	5,625
Nondurable Tools (3)	1,875

TABLE 8-11. MDC SECOND GENERATION HELIOSTAT STANDARD HOURS AND
OPERATORS EARNED BY CLASSIFICATION - SUMMARY

	Per 100 Pieces	No of Pieces	Per 100 Heliostats	Assembly	Welding \& Machining	Material Handling	Inspection	Rework	Downtime	Misc.
Mirror Module	7.522	14	105.308	62.986	--	22.652	14.000	--	3.794	1.876
Reflector Support Structure	17.288	2	34.576	--	22.500	4.000	2.000	4.500	1.126	. 450
Final Assembly	24.091	2	48.182	--	--	25.936	12.968	6.666	1.946	. 666
Packaging	13.000	2	26.000	--	--	--	--	--	---	26.000
Pedestal, Weld	30.478	1	30.478	--	13.580	8.000	4.500	3.516	. 679	. 203
Pedestal, Paint	19.125	1	19.125	--	6.250	9.250	3.000	. 500	--	. 125
Azimuth Drive Housing, Weld	22.892	1	22.892	--	15.385	2.600	3.500	--	1.005	. 402
Azimuth Drive Housing, Machine	29.210	1	29.210	--	19.668	2.000	2.000	4.134	1.034	. 374
Main Beam, Weld	128.078	1	128.078	--	88.250	8.000	8.000	17.650	4.413	1.765
Main Beam, Machine	34.126	1	34.126	--	18.750	8.000	2.500	3.750	. 938	. 188
Elevation Drive Support, Machine	38.113	1	38.113	--	21.692	6.500	3.500	4.939	1.235	. 247
Flex Spline	11.040	1	11.040	--	4.723	3.000	1.000	. 945	. 236	1.136
Circular Spline	53.049	1	53.049	--	31.188	9.000	3.000	7.438	1.560	. 863
Wave Generator	26.146	1	26.146	i	16.749	2.500	2.000	3.650	. 838	. 409
Drive Shaft	13.346	1	13.346	--	6.287	3.000	2.000	1.558	. 315	. 186
Bearing Retainer, Azimuth	22.831	1	22.831	--	10.847	5.500	3.000	2.570	. 643	. 271
Cover and Retainer, Paint	11.563	1	11.563	5	6.250	3.000	2.000	. 250	--	. 063
Azimuth/Elevation Drive, Assembly	127.275	1	127.275	95.525	--	8.000	8.000	15.000	--	. 750
Azimuth/Elevation Drive, Paint SUBTOTAL	25.688	1	25.688 (807.026)	(158.511)	$\begin{gathered} 12.500 \\ (294.619) \end{gathered}$	$\begin{gathered} 8.250 \\ (139.188) \end{gathered}$	$\begin{gathered} 4.000 \\ (80.968) \end{gathered}$	$\begin{gathered} .750 \\ (77.816) \end{gathered}$	(19.762)	$\begin{gathered} .188 \\ (36.162) \end{gathered}$
Incremental Encoder	14.106	2	28.212	11.876	--	4.000	12.336	--	--	--
Sensor/Controller Cable	5.528	5	27.640	13.055	--	9.585	5.000	--	--	--
Motor/Controller Cable	5.528	2	11.056	5.222	--	3.834	2.000	--	--	--
Encoder Cable	4.228	2	8.456	3.832	--	2.834	1.790	--	--	--
Sensor Cable	2.459	5	12.295	5.210	--	4.585	2.500	--	--	--
Motor Cable	2.222	2	4.444	1.054	--	2.392	1.000	--	--	--
Encoder/Controller Cable	5.200	2	10.400	4.566	--	3.834	2.000	--	--	---
Elec. Installation, Az/El Drive	37.500	1	37.500	25.000	--	6.250	6.250	--	--	--
SUBTOTAL	---	--	(140.003)	(69.815)	--	(37.312)	(32.876)	--	--	--
Final Assembly	51.900	1	51.900	12.500	--	25.400	4.000	--	--	--
Packaging	10.000	1	10.000	---	--	--	--	--	--	10.000
TOTAL (Std. hours/100 units)			998.929	240.826	294.619	201.900	117.844	77.816	19.762	46.162
Average Daily Build Schedule: Total Earned Hours per Day:	208 Hel	stats	2078	501	613	420	245	162	41	
Total Earned Manpower per Day:			260	63	77	52	31	20	5	12
Labor Breakdown by Classification:			1008	24.28	29.68	20.08	12.08	7.78	1.98	4.68

TABLE 8-12. MDC SECOND GENERATION HELIOSTAT TOOLS AND EQUIPMENT (DOLLARS) PRODUCTION VOLUME: 50,000 PER YEAR

	Tools			Total	Equipment	Total
	Special	Durable	Nondurable			
$\begin{aligned} & \text { Drive/Pedestal/Main Beam Assembly } \\ & \text { (lD22475-1) } \end{aligned}$						
Pedestal, Paint	--	--	--	--	622,167	622,167
Pedestal, Weld	282,594	39,968	17.459	340,021	838,326	1,178,347
Azimuth Drive Housing, Weld	70,168	25,060	5,012	100,240	612,910	713,150
Azimuth Drive Housing, Machine	1,452,100	58,220	19,407	1,529,727	4, 171,963	5,701,690
Main Beam, Weld	125,370	44,775	8,955	179.100	867.180	1.046.280
Main Beam, Machine	1,870,000	70,500	23,500	1,964,000	3,662,400	5,626,400
Elevation Drive Support, Machine	1,899,000	147,200	23,900	2,070,100	3,734,000	5,804,100
Flex Spline	46,700	7.700	87,920	142,320	370,645	512,965
Circular Spline	81,200	23,100	50,450	154,750	2,085,740	2,240,490
Wave Generator	50,600	12,650	6,050	69,300	1,661,930	1,731,230
Drive Shaft, Azimuth	102,405	48.783	13,522	164,710	552,580	717,290
Bearing Retainer, Azimuth	190,300	$77.000^{\text {i }}$	13,200	280,500	1.124,875	1,405,375
Cover and Retainer, Paint	--	---	10,000	165000	393,740	393,740
Azimuth/Elevation Drive, Assembly	120,000	35,000	10,000	165,000	2,382,500	2,547,500
Azimuth/Elevation Drive, Paint	--	--	--	--	216,500	216,500
Incremental Encoder	--	--	--	--	73,750	73,750
Sensor/Controller Cables	--	--	--	--	3,000	3,000
Motor/Controller Cable	--	--	--	--	1,200	1,200
Encoder Cable	--	--	--	--	44,300	44,300
Sensor Cables	--	--	--	--	1,000	1,000
Motor Cable	--	--	--	--	400	400
Encoder/Controller Cable	--	--	--	--	1,200	1,200
Elec. Installation, Az/El Drive	--	--	--	--	119,750	119,750
Final Assembly	--	--	--	--	45,508	45,508
Shipping Racks	---	---	--	---	1,327,690	1,327,690
TOTAL	6,290,437	589,956	279,375	7,159,768	24,915,254	32,575,022
Reflector Assembly (1D22456-1) Mirror Module			--			7,617,696
Reflector Support Structure	508,125	101,720	13,079	622,924	4,072,691	4,695,615
Final Assembly		1.720	,	622,92	559,475	559.475
Shipping Racks	--	--	--	--	7,420,375	7,420,375
TOTAL	--	--	--	--	19,293,472	20,293,161
Heliostat Total	7,170,237	691,676	292,454	8,154,367	44,213,726	52,368,133

凅 ENERGY Systems

APPENDIX A

INDENTURED PARTS LIST

1022^{-9}
 HELIOSTAT ASSEMBLY
 SEP 221980

SEP 221980

HELIOSTAT ASSEIBLY

> 1DC 59
> HELIOSTAT ASSEMBLY

$$
\stackrel{1 \text { D22 }}{\substack{9 \\ \text { HELIOSTAT ASSEMBLY }}}
$$

HELIOSTAI ASSEIMBLY

SEP 22 :

回 energy systems

APPENDIX B
TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

DPERATION - $=60$
$\frac{\text { APPROXIMATE SLDON AREA }}{17: 0^{\prime \prime} \times 16^{-0}}$

FIGURE B-I. LAMB TWO STATION SHUTTLE MACHINE

TOOL AND LABOR ROUTING

TOOL AND LABDR ROUTING

TOOL AND LABOR ROUTING

FIGURE B-4. DOLLAR ELECTRIC MAIN BEAM WELDING LINE

TOOL AND LABOR ROUTING

뜨 ENERGY SYSTEMS

omcarton's20

gexperion - 90

DART: MAIN GEAN
Pr* に:306

FIGURE B-6. LAMB FOUR STATION SHUTTLE MACHINE

TOOL AND LABOR ROUTING

回 ENERGY SYSTEMS

FIGURE B-7. LAMB EIGHT STATION SHUTTLE MACHINE

TOOL AND LABOR ROUTING

PART－EIEVATION DRIVE SUPPART
pectation－mis
$\frac{\text { APPROXIMATE FLOOR AREA }}{16.0 .15 \cdot 0^{\circ}}$

FIGURE B－8．LAMB THREE STATION SHUTTLE MACHINE

 yperation -3C

FIGURE B-10. LAMB SIX STATION SHUTTLE MACHINE

TOOL AND LABOR ROUTING

Sta $-\frac{5}{2}+4$	JAC-x	S7A - 1×4		
	10¢E			

Sra\%	Sta-2ek	570×3 \%er	$5 \mathrm{Sm} 4 \mathrm{fe4}$	-sm²9er	$570^{*} 6$
uncosor					10LE

figure b-ll. LAMB SIX Station shuttle machine
B-36
tool and labor routing

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

國 energy systems

FIGURE B-12. LAMB FOUR STATION DIAL MACHINE

B-48

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

tool and labor routing

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

TOOL AND LABOR ROUTING

EM ENERGY SYSTEMS

APPENDIX C PRODUCT COST ESTIMATE

PRODUCT COST ESTIMATE

PRODUCT COST ESTIMATE

PRODUCT COST noTIMATE

PRODUCT COST ESTIMATE

PRODUCT COST rstimate

	4N080					Main	am							1 of 1
	PART			MATERIAL				LABOR				BURDEN		$\begin{array}{\|c\|} \hline \text { TOTAL MFG } \\ \text { cost } \\ \hline \end{array}$
	Name	Number	Quan.	Spec.	Wgt/BM	Price	Cost	Dept	Hrs/C/BM	Rate	Cost	Rate	Cost	
1	Pin (Same 1022475-3)	1D22464-19	4	P		1.50	6.0000		-					
2	Bearing TFE Lined	1022415-1	2	P		4.50	9.0000		-					
3	Stiffener	1D22464-33	1	P			. 3000		-					
4	Channel	1022464-31	2	P		1.20	2.4000		-					
5	Stiffener	1022464-29	1	P			. 5200		-					
6	Stiffener	1D22464-27	1	P			1.0000		-					
7	Pad	1022464-25	2	P		2.20	4.4000		-					
8	Bar	1D22464-17	4	P		2.39	9.5600		-					
9	Gusset	1D22464-15	2	P		. 94	1.8800		-					
10	Lug	-11	2	P		3.03	6.0600		-					
11	Lug	-9	2	P		2.68	5.3600		-					
12	Lug	-7	2	P		4.84	y. 6800		-					
13	Web	-5	2	P		2.93	5.8600		-					
14	Body	-3	2			21,69	43.3800		-					
15	Main Beam	-1	1				-		128.078		Weld			
16									34.126		Mach			
17														
18	Total						105.4000		162.204	9.09	14.7443	661	97.4598	217.6041
19														
20														
21														
22														
23														
24														
25														
26														
27														
28														
29														
30														
31														
32														
33														
34														
35														
36														
37														
38														
39														

PRODUCT COST ESTIMATE

	Date 4N080			Drive/Pedestal/Main Beam Fin				Asse	mbly				Sheet 1 of 3	
	PART			MATERIAL				LABOR				BURDEN		$\begin{gathered} \text { TOTAL MFG } \\ \text { cOST } \\ \hline \end{gathered}$
	Name	Number	Quan.	Spec.	Wgt/BM	Price	Cost	Dept	Hrs/C/BM	Rate	Cost	Rate	Cost	
1	1" Black Shrink Tubing	STM0069-							--					
2		13-A6-92		P	$4{ }^{\text {a }}$. $09 / \mathrm{in}$. 36		--					
3	$\frac{1}{\frac{1}{2} \text { " }}$ " " "	DPM2617-15		P	4 "	. $05 / \mathrm{in}$. 20		--					
4	\#222 SJ Hire	8451		P	6^{1}	. $0950 / \mathrm{ft}$. 5700		--					
5	\#18 AlJG Hire	8918		P	30^{7}	. $1070 / \mathrm{ft}$	3.2100		--					
6	Splice	A1A	1	P			. 0600		--					
7	Plug, Filler	225-0072-000	2	P		. 715	. 0300		--					
8	Contact, Socket	110238-0085	5	P		. 07	. 35		--					
9	" Pin	110238-0040	3	P		. 04	. 12		--					
10	Connector	120-1869-000	1	P			. 3700		--					
11	Cable, Assy. Pedestal1	1022514501	1				--							
12														
13														
14	Split Lock liasher	. 190	1	P			. 0100		--					
15	Roundhead Screw	190-32UNF												
16		-2AX. 50	1	P			. 0100							
17	Jumper	ST263-1666	1	P			. 6500							
18	Clamp	5T253C6	1	P			. $10 \times \mathrm{n}$							
19	Electrical Inst,													
20	Pedestal	1022445-1	1				--							
21														
22	Promixity Switch	4C2P-1839												
23		1A-60	1	P			. 6900		--					
24	1/8" Dia Black Shrink													
25	Tubing	DPM2617-15		P	$1{ }^{17}$. 0225		--					
26	1" " " "	STM0069												
27		-13-A6-02		P	4"	. 09	. 36		--					
28	Contact, Socket	110238-0085	1	P			. 10.90		--					
29	Contact, Pin	-0040	1	P			. 0400		--					
30	Connector	120-1807-00才	1	P			. 3700		--					
31	Sensor, Elec. Assy.	10224.14-501	1						5.528					
32									2.459					
33	Proximity Switch	C2P-1839												
35		-1A-60	6	P		. 69	4.1400		--					
	1/8" Dia Black													
353637	Shrink Tubing	DPM2617-15		P	$4 \frac{11}{21}$. 06	. 2700		--					
	1" " "	STM0069-13												
38		B6-02		P	12	. 0225	. 2700		--					
	Contact, Socket	10278-0085	6	P		. 07	1.200		--					

C-6

PRODUCT COST ESTIMATE

	Date $\quad 4 \mathrm{~N} 080$			Drive/Pedestal/Main Beam Final Assembly									Sheet 2 of 3	
PART				MATERIAL				LABOR				BURDEN		$\underset{\substack{\text { TOTAL MFG } \\ \operatorname{cost}}}{ }$
	Name	Number	Quan.	Spec.	Wgt/BM	Price	Cost	Dept	Hrs/C/BM	Rate	Cost	Rate	Cost	
1	Contact, Pin	110238-0040	6	P		. 04	. 2400		--					
2	Connector	120-1809-000	3	P		. 37	1.1100		--					
3	Sensor, Elec. Assy.	1D224.14-1	3				--		16.584					
4									7.377					
5	Jumper	ST268-09CC	1	P			. 6500		--					
6	Hex Cap Screw	. 250-28UNF												
7		. 2 AX .50	1	P			. 0100		--					
8	Cotter Pin	. $062 \times .50$	1	P			. 0100		--					
9	Nut	AN 130-15	1	P			. 0800		--					
10	Hasher	An960-1616	1	P			. 0900		--					
11	Split Lock Masher	. 875	4	P		. 07	. 2800		--					
12	" " "	. 500	8	P		. 02	. 1600		--					
13	Hexnut	. $250-20$ UMC												
14		-2B	8	P		. 005	. 0400		--					
15	Split Lock Washer	. 250	26	P		. 003	. 0780		--					
16	Hex Cap Screw	.250-20UNC												
17		-2A X. 88	8	P		. 012	. 0960		--					
18	" "	. 250-20UNC												
19		$-2 \mathrm{~A} \times .75$	2	P		. 011	. 0220		--					
20	" " "	. 250-20UNC												
21		-2A $\times .50$	16	P		. 009	. 1440		--					
22	Hexnut	.190-32UNF												
23		-2B	2	P		. 003	. 0060		--					
24	Split Lock Hasher	190	2	P		. 016	. 0320		--					
25	Flat Head Brass Scr.	. 190-32UNF												
26		-2A $\times .75$	2	P		. 02	. 0400		--					
27	Shaft	A3-17	2	P		. 195	. 3900		--					
28	Washer	5710-245-90	2	P		. 02	. 0400		--					
29	"	5710-67-10	30	P		. 02	. 6000							
30	Magnet	M2	2	P		. 1650	. 3300							
31	Set Screw	MAS1081				. 02	. 0400							
32		-6A19P	2	P			. 400							
33	Set Screw	NAS1081												
34		-4A12P	1	P			. 0200							
35	Bo7t	NAS1308-15	8	P		. 99	7.9200							
36		NAS 1316-420	1	P		1.30	1.3000							
37	"	NAS1314-16	4	P		. 98	3.9200							
38	Cotter Pin	MS24665-377	2	P		. 04	. 0800							
39	""	MS24665-374	1	P			. 03.00							

PRODUCT COST ESTIMATE

	Date 4N080			Drive/Pedestal/Main Beam Final Assembly								Sheet 3 of 3		
	PART			material				LABOR				BURDEN		$\begin{aligned} & \text { TOTAL MFG } \\ & \text { COST } \end{aligned}$
	Name	Number	Quan.	Spec.	Wgt/BM	Price	Cost	Dept	Hrs/C/BM	Rate	Cost	Rate	Cost	
1	Hinge. Half Assy.	1D22405-503	1	P			. 1300		--					
2	Pin	-9	1	P			. 0300		--					
3	Angle	-3	1	P			. 1300		--					
4	Hinge, Half Assy.	-501	1	P			. 1300		--					
5	Pin	-7	7	P			. 0300		--					
6	Angle	-3	1	P			. 1300		--					
7	Hinge, Half Assembly	-1	1	P			. 1300		--					
8	Cover Elevation Dr.	1022594-1	1	P			. 1600		--					
9	Pin, Rod End	1022478-1	1	P			. 1500		--					
10	Pin, Hinge	1022455-1	1	P			3.0000		--					
11	Cap, Rod End Pin	1D22438-1	2	P		. 08	. 1600		--					
12	Mount, Sensor Output	1D22433-1	1	P			. 1200		--					
13	Pin, Trunnion	1022432-1	2	P		2.52	5.0400		--					
14	Base	1022419-5	1	P			--		--					
15	Plate	-3	1	P			--		--					
16	Bracket, Elev. Sensor	-1	1	P			4100		--					
17	Bracket, Magnet, Elev	1D22418-1	1	P			. 1000		--					
18	Mount, Elevation Sen	1D22417-1	2	P		. 1600	. 3200		--					
19	Cover, Elevation Sen	1022416-1	1	P			. 6200		--					
20	Dr/Pedestal/Ma in Beam													
21	Assembly	10 22475-1	1						41.900					
22														
23				PACK			--		10.000					
24														
25	Total						42.6605		83.848	9.09	7.6218	661	50.3801	100.6624
26														
27														
28														
28293031														
31														
313233														
32 33 34														
32 34 35 3														
353633838														
39														

PRODUCT COST ESTIMATE

	Date 4 N 080				Azimuth Drive								Sheet 1 of 5	
	PART.			MATERIAL				LABOR				BURDEN		$\begin{gathered} \text { TOTAL MFG } \\ \text { COST } \end{gathered}$
	Name	Number	Quan.	Spec.	Wgt/BM	Price	Cost	Dept	Hrs/C/BM	Rate	Cost	Rate	Cost	
1	11/2 Orange Shrink													
2	Tubing	DPM2617-15		P	$\frac{1711}{}$.24/in	06		--					
3	1" Black Shrink	STM0069-												
4	Tubing	-13-A6-02		P	28"	.09/in	2.52		--					
5	$\frac{1}{2}$ " " "	DPM2617-15		P	$4^{\prime \prime}$.05/in	20		--					
6	1/8" " "	-		P	9"	.0225/in	2025		--					
7	$1 \frac{1}{2 \prime \prime}$ White " "	"		P	$\frac{1}{4} 11$.24/in	. 06.		--					
8	$1^{\frac{1}{2}}{ }^{\prime \prime}$ Yellow "	"		P	$\frac{1}{4}{ }^{\prime \prime}$.24/in	. 06		--					
9	$1^{\frac{1}{2}}{ }^{\prime \prime}$ R Red	1		P	$\frac{1}{4}{ }^{1 \prime}$.24/in	. 06		--					
10	Wire \#22-2SJ	8451		P	145^{\prime}	.095/ft	13.775		--					
11	Wire \#18 AWG	8918		P	100^{1}	.1070/ft	10.7000		--					
12	Splice	AIA	4	P		. 03	. 1200		--					
13	Grommet	351-1634-												
14		000	2	P		. 4450	. 8900		$=$					
15	Plug, Filler	225-0072-												
16		000	4	P		. 0125	0500		-					
17	Contact, Socket	110238-0085	27	P		. 07	1.89		--					
18	Contact, Pin	110238-0040	31	P		. 04	1.24							
19	Connector	120-1870-												
20		000	1	P			. 3300		--					
21	"	120-1804-												
22		000	2	P		. 2900	. 5800		--					
23	π	120-1865-												
24		000	1	P			. 4400		--					
25	"	120-1893-												
26		000	1	P			. 3700		--					
27	"	120-1869-												
28		000	2	P		. 3600	. 7200		--					
29	Wire Harness	1D22514-1	1						5.528					
30									2.222					
31	Clamp	M321919												
32		WDG-6	1	P			. 0500							
33	1" Shrink Tubing B7k	STM0069												
34		13-A6-02	1	P	$4 "$. 09	. 36		--					
35	Receptacle	120-1805-												
36		000	1	P			. 3700		--					
37	Grommet	351-1634-												
38		000	1	P			. 4500		--					
39	Grommet	351-1641-	2	P		. 4400	. 8800		--					
		000												

PRODUCT COST ESTIMATE

	Date 4N080					Azim	Drive						Sheet ${ }^{2}$ of 5	
	PART			MATERIAL				LABOR				burden		$\begin{gathered} \text { TOTAL MFG } \\ \text { cost } \end{gathered}$
	Name	Number	Ouan.	Spec.	Wgt/BM	Price	Cost	Dept	Hrs/C/BM	Rate	Cost	Rate	Cost	
1	Receptacle	120-1870-												
2		000	1	P			. 3300		--					
3	"	120-1806-												
4		000	1	P			. 3700		--					
5	Washer	M5353338-43	1	P			. 0020		--					
6	Nut	NAS671-10	1	P			. 0800		--					
7	Washer	NAS620-10L	2	P		. 01	. 0200		--					
8	Screw	NAS601-6P	1	P			. 0200		--					
9	Electrical Install.	1D22596-1	1						5.528					
10									2.222					
11	Proximity Switch	LC2A1839												
12		-1A-60	1	P			. 69		--					
13	1/8" Blk Shrink Tubin	DPM2617-15		P	$1{ }^{11}$. 0225	. 0225		--					
14	1" " " ${ }^{\text {" }}$	STM0069-												
15		13-A6-02		P	4"	. 09	. 36		--					
16	Contact, Socket	110238-0085	1	P			. 07		--					
17	Contact, Pin	110238-0040	1	P			. 04		--					
18	Connector	120-1807-												
19		000	1	P			.3700		--					
20	Sensor, Electronic													
21	Assy.	1022414-503	1						5.528					
22									2.459					
23	$1^{\prime \prime}$ Black Shrink	STM0069												
24	Tubing	-13A6-02		P	4"	. 09	. 36		--					
25	Connector		1	P			. 3700		--					
26	Strap	PLT8H-LP0	1	P			. 1800		--					
27	Washer	NAS 620-6	8	P		. 0050	. 0400		--					
28	Lock Washer	NAS5338-41	8	P		. 0020	. 0160		--					
29	Screw	NAS601-5P	6	P		. 0170	. 1020		--					
30	Cover, Incremental													
31	Encoder		1	P			. 1700		--					
32	Vane		1	P			2.8200		--					
33	Screw	M524693-C28	2	P		. 03	. 0600		--					
34	Washer	NAS620-6	1	P			. 0100		--					
35	Screw	NAS601-10P	1	P			. 0200		--					
36	Clamp	NAS1715-DST	1	P			. 0500		--					
37	Spacer	NAS4300-3-												
38		20	1	P			. 0100		--					
39	Socket Contacts	110238-0085	5	P		. 07	. 35		--					

PRODUCT COST ESTIMATE

	Date 4 N080			MATERIAL ${ }^{\text {M }}$								Sheet 3 of		
PART				MATERIAL				LABOR				BURDEN		$\begin{gathered} \text { TOTAL MFG } \\ \text { COST } \end{gathered}$
	Name	Number	Ouan.	Spec.	Wgt/BM	Price	Cost	Dept	Hrs/C/BM	Rate	Cost	Rate	Cost	
	Pin Contacts	110238-0040	2	P		. 04	. 08		--					
2	Grommet	M535489-122	2	P			. 0500		--					
	1/8" Black Shrink													
4	Tubing	DPM2217-15		P	$3^{\prime \prime}$. 0225	. 0675		--					
	Splice	AIA	1	P			. 0600		--					
6	Wire	A22-2SJ		P	6^{1}	. 095	. 59		--					
7	Ink	CMP3627												
8	-	-37875		P			. 0100		--					
	Solder	DPM3891		P			. 0300		--					
10	Micro Switch	4 A VIC-T1	2	P		7650	1.5300		--					
11	I.C.	DM7830-JB	1	P			4.9800		--					
12	Resistor	RCR056512JS	2	P		. 05	. 1000		--					
13	Capacitor	M39014-101												
14		1513	1	P			. 3400		--					
15	PWB Incremental													
16	Encoder	1022574-1	1	P			. 1200		--					
17	CCA	1022573-1	1	P			3.0000		--					
18	Incremental Encoder													
19	ETectrical Assembly		1	.					14.106					
20									8.456		Encode	Cabl	s (2)	
21	Motor	1022487-501	1	P			60.9300		10.400		Encode	Cont	roller ca	ble (2)
22	Azimuth Motor/Incremen	tal												
23	Encoder Elec. Assy.		1				--							
24														
25	Grease	Alundia Epl		P	4\#	. $40 / 1 \mathrm{~b}$	1.600		--					
26	Gear 0il	Mobile 626		P	4 qt	.25/9t	1.000		--					
27	Adhesive(1P20025-Chass	1)DPM3279		P			. 1200		--					
28	Plastic Gasket ${ }^{\text {Product }} 749 \times 1$	DPM5793		P			. 2500		--					
29	Tape $\frac{1}{2 \prime \prime}$ " wide Antiseize													
30	mil T-2773D	PPM2766		P	${ }^{1}$. $05 / \mathrm{ft}$. 0500		--					
31	Clamp	5T253C6	1	P			. 1000		--					
32	Plug	B/8-18NAPT	2	P		. 0650	.1300		--					
33	pug	1/8-27ANPT	1	P			. 0500		--					
34	Bracket	TA4064E0610	1	P			. 0700		--					
35	Split Lock Washer	. 375	16	P		. 007	. 1120		--					
36	Hex Cap Screw	375-24 UNF												
37		-2Ax 1.75	16	P		. 039	. 6240		--					
38	Split Lock Washer	. 250	12	P		. 003	. 0360		--					
39	Hex Cap Screw	-250-20UNC	4	P		. 011	. 0440		--					

C-11

PRODUCT COST ESTIMATE
4N080
Azimuth Drive
Sheet 4 of 5

	Date 4 N 080			Azimuth Drive									Sheet 4 of 5	
	PART.			MATERIAL				LABOR				BURDEN		$\begin{gathered} \text { TOTAL MFG } \\ \text { COST } \end{gathered}$
	Name	Number	Ouan.	Spec.	Wgt/BM	Price	Cost	Dept	Hrs/C/BM	Rate	Cost	Rate	Cost	
	Hex Cap Screw	250-20unc												
2		-2Ax. 63	8	P		. 010	. 0800		--					
3	Hexnut	. 190-32UNF-												
4		28	2	P		. 003	. 0060		--					
5	Split Lock Washer	. 190	20	P		. 016	. 3200		--					
6	Flat Head Brass Screw	. 190-32UNF												
7		-2Ax. 88	1	P			. 0220		--					
8	Round Head Screw	. 190-32UNF												
9		-2Ax. 50	15	P		. 004	. 0600		--					
10	" \quad "	. 190-32UNF												
11		-2Ax. 38	4	P		. 004	. 0160		--					
12	Washer	AN970-3	3	P		. 016	. 0480		--					
13	Magnet	12	1	P			. 1600		--					
14	Expansion Chamber	1010-104000	2	P		2.605	5.2100		--					
15	Key	NA5558-1212												
16		-15	1	P			. 0500		--					
17	Key	NAS558-606												
18		-24	1	P			. 0500		--					
19	Washer	N-08	1	P			2300		--					
20	Washer	W-06	1	P			2300		--					
21	Nut	N-08	1	P			. 6700		--					
22	Nut	N-06	1	P			. 6700		--					
23	Vitron Seal	9651	1	P			9800		--					
24	Seal	506-325G	2	P		. 98	1.9600		--					
25		2-459V747-												
26		75	1	P			. 4900		--					
27	"	2-386V747-												
28		75	1	P			. 4900		--					
29	-11	2-275V747-												
30		75	1	P			. 6500		--					
31	"	2-133V747-												
32		75	1	P			. 2600		--					
33	Bearing	106-KS22	1	P			. 8100		--					
34	Bracket, Elec. Azimut	1022411-1	1	P			. 1000							
35	Azimuth Drive Cover		1	P			6.7600		--					
36	Mount		1	P			1.4600		--					
37	Tube - Brg.		1	P			2.9900							
38	Tube		1	P			8.5000		--					
39	Shel1		1	P			7.4200		--					

PRODUCT COST totIMATE

	Date $4 \mathrm{NOV80}$	1				Azim	D Drive					Sheet 5 of 6		
PART				MATERIAL				LABOR				BURDEN		$\begin{gathered} \text { TOTAL MFG } \\ \operatorname{cost} \end{gathered}$
	Name	Number	Quan.	Spec.	Wgt/BM	Price	Cost	Dept	Hrs/C/BM	Rate	Cost	Rate	Cost	
1	Retainer		1	P			12.75		129.210		Mach			
2	Weld Assy., Housings	1022474-1	1						22.892		Weld			
3	Bracket, Elec Azimuth	1022411-501	1	P			. 1000		-					
4	Washer	1022593-5	1	P					--					
5	Tube	1D22593-3	1	P			4.9800		--					
6	Tube Assembly	1022593-1	1	P										
7														
8	Bass	$1022442-7$	1	P					--					
9	Tube	1022442-5	1	P					--					
10	Pan	1022442-3	1	P			4.1500		--					
11	Lube Pan Assy.	1022442-1	1	P										
12														
13	Filler Block Flex													
14	Spline	1022422-1	1	P			5.4500		--					
15	Bushing, Guide Dr.													
16	Shaft	1022481-1	1	P			. 5000		--					
17	Spacer, Shaft Seal	1022449-1	1	P			. 6900		--					
18	Brkt, Magnet, Azimuth													
19		1022424-1	1	P			1.1000		--					
20	Retainer, Turret													
21	Bearing	1D22489-1	1	P			19.9000		22.831					
22	Shaft, Harmodic Dr.													
23	- Input	1022495-1	1				4.8700		13.346					
24	Plate Bearing Ret.	1022482-1	1	P			. 5200		11.563	Paint	Cover \&	Retai	ner	
25	Shim Helicon Gear	1022485-1	4	P		. 045	. 1800							
26	Shim Turret Bearing	1022443-1	1	P			1.6000		--					
27	Gear-Helicon Output	1D22486-1	1	P			15.0000		--					
28	Wire Race - Outer		2	P										
29	Wire Race - Inner		2	P										
30	Balls		52	P			22.8600							
31	Bearing Kit - Turret	1022490-1	1	P										
32	Diaphram Hub (Collar)		1				. 7900							
33	Circular Spline		1				36.4600		53.049					
34	Flex Spline		1				10.7700		11.040					
35	Wave Generator Brg.		1	P			83.1800		--					
36	Wave Generator Plug		1				6.6600		26.146					
37	Harmonic Drive Kit	1022499-1	1				--							
38														
39														

PRODUCT COST ESTIMATE

	Date 4NOV80			Azimuth Drive								Sheet 6 of 6		
	PART			MATERIAL								BURDEN		$\begin{aligned} & \text { TOTAL MFG } \\ & \text { COST } \end{aligned}$
	Name	Number	Quan.	Spec.	Wgt/BM	Price	Cost	Dept	Hrs/C/BM	Rate	Cost	Rate	Cost	
1	Azimuth Drive	1022494-1	1				--		127.275		Assy			
2									25.688		Paint			
3									37.500					
4														
5	Total						392.8155		436.989	9.09	39.7223	661	262.5644	695.1022
6														
7														
8														
9														
10														
11														
12														
13														
14														
15														
16														
17														
18														
19														
20														
21														
22														
23														
24														
25														
26														
27														
28														
29														
30														
31														
32														
33														
34														
35														
36														
37														
38														
39														

PRODUCT COST ESTIMATE

	Date 4N080			Actuator Assembly - Elevation								Sheet 1 of 2		
	PART			MATERIAL				LABOR				BURDEN		$\left\{\begin{array}{c} \text { TOTAL MFG } \\ \operatorname{cosT} \end{array}\right.$
	Name	Number	Quan.	Spec.	Wgt/BM	Price	Cost	Dept	Hrs/C/BM	Rate	Cost	Rate	Cost	
1	Shroud	1022595-501	1	P			. 8900		--					
2	Shroud	1022595-1	1	P			1.1000		--					
3	Sleeving, Black	STM0069												
4	Shrink Tubing	-12-A6-02		P	4"	. 09	36		--					
5	Socket	110-238-0085	57	P		07	49		--					
6	Pin	110-238-0040	06	P		. 04	24		--					
7	Plug	120-1869-00	01	P			. 3700		--					
8	Plug	120-1808-000	01	P			. 3700		--					
9	Clamp	S0985C600	2	P		. 0650	.1300		--					
10	Clamp	S09856500	3	P		. 0633	. 1900		--					
11	Clamp	ST253C6	1	P			. 1000		--					
12	Clamp	ST253C2	2	P		2500	. 5000		--					
13	Washer	NAS620-10L	3	P		. 0070	. 0210		--					
14	Washer	NAS620-6	6	P		. 0050	0300		--					
15	Washer	MS35338-41	2	P		. 0020	. 0040		--					
16	Screw	NAS610-5P	6	P		. 0015	. 0090		--					
17	Washer	MS35338-43	3	P		. 0020	. 0060		--					
18	Screw	NAS610-6P	3	P		. 0300	. 0900		--					
19	Cover-Incremental													
20	Encoder			P			. 1600		-					
21	Vane			P			1.0000		--					
22	Screw	MS24693-628	2	P		. 0300	. 0600		--					
23	Tubing	RJ102-3/8		P	8"	. $0213 / \mathrm{in}$.	. 1700		--					
24	Washer	NAS620-6	1	P			. 0050		--					
25	Screw	NAS601-10P	1	P			. 0200		--					
26	Clamp	NAS1715-057	1	P			. 0800		--					
27	Spacer	NAS4300-3-20	01	P			. 0500		--					
28	Socket Contacts	110238-0085	5	P		. 07	. 35		--					
29	Pin Contacts	110238-0040	2	P		. 04	. 08		--					
30	Grommet	M535489-122	1	P			0500		--					
31	1/8" Black Shrink													
32	Turbine	DPM2617-15		P	3"	. 0225	. 0675		--					
33	Splice	AIA	1	P			. 0600		--					
34	Wire, \#22-28J	8451		P	21^{\prime}	. 095	1.995		--					
35	Ink	DPM3627-												
36		37875		P			. 0100		--					
37	Solder	DPM3891		P			. 0300		--					
38	Microswitch	4AVIC-TI	2	P		. 7650	1.5300		--					
39	I.C.	DMT830JB	1	P			4.9800		--					

PRODUCT COST ESTIMATE
Actuator Assembly - Elevation
Sheet 2 of 2

APPENDIX D

TYPICAL LABOR DEVELOPMENT

This appendix has been extracted from the Heliostat Production and Cost Evaluation - Final Report, SERI TR-8052-1, December 1979. It is provided as an example so the reader can see the methodology by which the labor data was developed for the tool and labor routing sheets.

```
HOUSING - AZIMUTH DRIVE - (25,000/YR)
```

SUMMARY DATA

*Recommend reduction of equipment from (4) to (3) machines, and fully relieve, including wash-up and lunch periods. This would provide a daily (less downtime and scrap) average output of $130 /$ day (daily average production volume for $25,000 / y r$. @ 104/day).

```
HOUSING - AZIMUTH DRIVE - (25,000/YR)
```

OPERATION \#20 1 Operator/2 Machines (@ 732.2 Secs./Cycle Time at Machine)

Operation to be relieved for all personal, wash-up and lunch periods. This due to two principal reasons: (1) Long cycle time of operation;
(2) To bring production volume level up closer to other operations on this part.
Additionally, if tool changes should be necessary the total output (with one mach. down per time) would not be reduced too drastically. Planned tool changes should be made at end of shift, through the period between shifts, and at the beginning of the 2nd shift (also at end of 2nd shift, when necessary).

```
AVAILABLE MACHINE OPERATING TIME/SHIFT (2 MACHS.)
    Plus: Lunch Period of 30 Mins (x 2 Machs.)
        Total Available Production Time
\begin{tabular}{rr}
960 & Mins \\
60 & Mins \\
\hline 1,020 & Mins
\end{tabular}
    Less: Check Station for Tools, etc. at Startup (2 x 5) 10 Mins
        Startup Mach. #1 (#2 Down x 6.1) 6.1 Mins
        Shutdown Mach. #2 (#1 Down x 6.1)
        6.1 Mins
        Cleanup at End of Shift (2 x 10 Mins)
                        Available Machine Operating Time/Shift
\(\frac{\text { 20 Mins } \quad 42.2 \mathrm{Mins}}{977.8 \mathrm{Mins}}\)
```

SHIFT PRODUCTION ($8 \mathrm{Hrs} .+30$ Mins Lunch)
977.8 Mins/Shift $\div \frac{732.2 \text { Secs/Cycle }}{60 \text { Secs/Min }}=80.15$ PCS/Shift

DAILY PRODUCTION ($16 \mathrm{Hrs} .+2 \times 30$ Mins Lunch)
80.15 PCS/Shift x 2 Shifts
$=160.30 \mathrm{PCS} / 2$ Shifts
Less: 5\% Machine Downtime
$=152.29$
3\% Scrap Loss
$=147.72$

```
HOUSING - AZIMUTH DRIVE - (25,000/YR)
```

OPERATION \#30 1 Operator/3-Sta. Machine (@ 380 Secs./Machine Cycle)

Operation to be relieved for all personal time only. Normally this operation to be shut down for the washup-lunch period. During this shutdown and between shifts the equipment should be checked for tools quality, etc. to minimize downtime during planned operating time.

AVAILABLE MACHINE OPERATING TIME/SHIFT
Less: Check Station for Tools, etc. at Startup

5 Mins	
3 Mins	
5 Mins	
3 Mins	
10 Mins	26 Mins

SHIFT PRODUCTION (8 Hrs.)
454 Mins/Shift $\div \frac{380 \text { Secs/Cycle }}{60 \text { Secs/Min }}=71.69$ PCS/Shift (8.96 PPH Avg.)

DAILY PRODUCTION (16 Hrs.)

```
    71.69 PCS/Shift x 2 Shifts
    = 143.38 PCS/2 Shifts
    Less: 10%* Machine Downtime
        = 129.04
        3% Scrap Loss
        = 125.17
```

*In-Line Machines Projected Downtime @ 10%

```
HOUSING - AZIMUTH DRIVE - (25,000/YR)
```

OPERATION \#40 1 Operator/4-Sta. Machine (@ 361 Secs./Machine Cycle).

Operation to be relieved for all personal time only. Normally this operation to be shut down for the washup-1unch period. During this shutdown and between shifts the equipment should be checked for tools quality, etc. to minimize downtime during planned operating time.

*In-Line Machines Projected Machine Downtime @ 10%

$$
\text { HOUSING - AZIMUTH DRIVE - }(25,000 / \mathrm{YR})
$$

OPERATION 50A 1 Operator/5-Sta. Machine (@ 305 Secs./Machine Cycle). Operation to be relieved for all personal time only. Normally this operation to be shut down for the washup-lunch period. During this shutdown and between shifts the equipment should be checked for tools quality, etc. to minimize downtime during planned operating time.
AVAILABLE MACHINE OPERATING TIME/SHIFT 480 Mins Less:Check Station for Tools, etc. at Startup 5 Mins $1 / 2-C y c l e ~ L o s s ~(A v g) ~ f o r ~ L u n c h ~ S h u t d o w n ~$. 5.5 Mins
SHIFT PRODUCTION (8 Hrs.) $450 \mathrm{Mins} / \text { Shift } \div \frac{305 \text { Secs } / \text { Cycle }}{60 \text { Secs } / \mathrm{Min}}=88.53 \text { PCS/Shift (11.07) }$
DAILY PRODUCTION (8 Hrs.)88.53 PCS/Shift $\times 2$ Shifts $=177.06$ PCS/2 Shifts Less: 10\%* Machine Downtime $=159.35$ 3% Scrap Loss $=154.57$.

*In-Line Machines @ 10\% Downtime

TAG RELIEF - For Continuous Operation - Lunch Shutdown

(2) Shutdown Relief @ 10 Mins

20 Mins 26 Mins	
	46 Mins
	$\frac{15 \text { Mins }}{61 \text { Mins }}$

Therefore:
Relief operator can take own personal relief (46 minutes + washup) plus relieve total of (6) machine operators (7 hours only available due to policy of no relief 15 minutes after startup of shift, 15 minutes before and 15 minutes after lunch, and 15 minutes before shift end).
Relief calculated thus at $\frac{100 \%}{6 \text { oper. }}=16.7 \%$ Relief Allowance/Oper. Relieved (6 oper. @ 61 mins +51 mins for self +60 mins no relieve $=477$ mins $/ \mathrm{shift}$)

TAG RELIEF - For Continuous Operation, Including Washup and Lunch
(2) Shutdown Relief @ 10 Mins
(3) Personal Relief $(9+9+8)$

Total Relief/Operator for Personal
(1) Relieve for Washup Before Lunch

26 Mins
(1) Relieve for Lunch Period
(6) Allowance for Walk to Relief Station @ 3 Mins

Total Relief Operator Time/Operator Relieved

46 Mins
5 Mins
30 Mins
18 Mins
99 Mins

Therefore:
Relief operator can take own personal relief (46 minutes +5 minutes washup) plus relieve maximum of (3) machine operators (7 hours only available - see above note). As this leaves a fair amount of time for "other" work relief calculation based on 3 operators @ 99 minutes +51 minutes for self $=348$ mins. $\frac{348 \text { Mins. Rel. Time }}{480 \text { Mins. }}=72.5 \%$ Rel. $\div 3$ Operators Rel'd. $=24.2 \% /$ Operator. 480 Mins. Avail. Time (480 Mins./Shift - 348 Mins. Relief Time = 132 Mins. Available for "other" work)

[^1]MANPOWER REQUIREMENTS @ 250,000/YEAR

ZINC GALVANIZING (3 Systems)	OPERATORS	MAINTEN.	SWEEPERS	MAT'L. HDLRS.	TOTALS
Azim. Hsg./Drag Link	$3+3=6$		$1+1=2$	$1+1=2$	$3+3=6$
Pedestal	$3+3=6$			$3+3=6$	
Torque Tube Ass'y.	$3+3=6$				$3+3=6$
Gen'l. Area	$-9+9=18$	$1+1=2$	$1+1=2$	$1+1=2$	$12+12=24$

TOTAL HELIOSTAT

$\begin{aligned} & \mathrm{B} / \mathrm{M} \\ & 4418 \text { Reflective Unit } \\ & (\$ 4418 \text { Not in } B / M) \end{aligned}$	$\frac{25 \mathrm{~K}}{(\mathrm{SH} / 100)}$	$\frac{250 \mathrm{~K}}{(\mathrm{SH} / 100)}$
4411 Reflective Surface (Total for 12)	95.808	47.460
4412 Mirror Back Structure (Total for 2)	30.400	30.400
4413 Assembly \& Bond (Refl. Unit) (Total for 2)	41.000	44.150
4420 Drive Unit (\#4420 Not in B/M)	-	-
```4421 Azimuth (Azim. Dr. Ass'y.) (Azim. Hsg.-Galv.) (Bearing Retainer) (Circular Spline) (Drive Shaft) (Flex Spline) (Housing-Azim. Dr.) (Housing-Azim. Dr.-Weld) (Wave Generator) (Sub-total)```	56.390   -   31.590   58.182   (Purch)   45.058   82.832   (Purch)   27.435   $(301.487)$	$\begin{array}{r} 16.238 \\ 3.200 \\ 39.238 \\ 28.775 \\ 7.787 \\ 48.151 \\ 18.364 \\ 40.527 \\ 29.240 \\ \hline(231.520) \end{array}$
```4422 Elevation (Drag Link-Elev. Dr.) (Elev.-Dr. Ass'y.) (Drag Link-Weld) (Drag Link-Galv.) (Main Beam Ass'y.) (Torque Tube-Elev. Dr.) (Torque Tube-Galv.) (Sub-total)```	$\begin{gathered} 16.750 \\ 59.000 \\ \text { (Purch) } \\ - \\ \text { (Purch) } \\ 35.167 \\ \hline(110.917) \end{gathered}$	$\begin{array}{r} 2.576 \\ 40.000 \\ 4.924 \\ 3.200 \\ 5.100 \\ 2.788 \\ 6.400 \\ \hline(64.988) \end{array}$
4423 Motor Total	24.400	15.150
4424 Position/Limit Indicator	22.718	19.984
4425 Power Supply/Distribution	92.839	79.672
4426 Ass'y. Dr./Pedestal/Electr. (\#4426 Not in B/M)	-	-
4433 Control/Signal Eq't.	37.454	30.069
```4451 Heliostat Support Structure (Pedestal & Found. Cap.) (Pedestal & Taper Pipe-Galv.) (Support Structure-Final) (Sub-total)```	$\begin{gathered} \text { (Purch) } \\ - \\ \left(\frac{41.900}{41.900)}\right. \end{gathered}$	$\begin{array}{r} 18.741 \\ 6.400 \\ 41.100 \\ \hline(66.241) \end{array}$
TOTAL (Std. Hrs./100 Units)	798.923	629.634




## UNLIMITED RELEASE

INITIAL DISTRIBUTION

```
U.S. Department of Energy
600 E Street NW
Washington, D. C. }2058
Attn: W. W. Auer
 G. W. Braun
 K. Cherian
 W. Hochheiser
 J. E. Rannels
```

U.S. Department of Energy
San Francisco Operations Office
1333 Broadway
Oakland, CA 94612
Attn: R. W. Hughey
For: S. D. Elliott
U.S. Department of Energy
Solar Ten Megawatt Project Office
P. 0. Box 1449
Canoga Park, CA 91304
Attn: M. Slaminski
USAF Logistics Command
P. O. Box 33140
Wright-Patterson AFB
Ohio 45433
Attn: G. Kastanos
University of Houston
Houston
Solar Energy Laboratory
4800 Calhoun
Houston, TX 77004
Attn: A. F. Hildebrandt
L. L. Vant-Hull
AMFAC
700 Bishop Street
Honolulu, HI 96801
Attn: G. St. John
ARCO
911 Wilshire Blvd
Los Angeles, CA 90017
Attn: J. H. Caldwell, Jr.
ARCO Power Systems
Suite 301
7061 S. University Boulevard
Littleton, CO 80122
Attn: J. Anderson
F. Blake

```
Arizona Public Service
P. O. Box 21666
Phoenix, AZ }8503
Attn: D. L. Barnes
 For: E. Weber
Bechtel National, Inc.
P. O. Box }396
San Francisco, CA 94119
Attn: E. Lam
 For: J. B. Darnell
 R. L. Lessley
Black & Veatch
P. 0. Box }840
Kansas City, MO }6411
Attn: C. Grosskreutz
 For: J. E. Harder
 S. Levy
Boeing Engineering & Construction
P. O. Box }370
Seattle, WA }9812
Attn: R. L. Campbell
 R. Gillette
 J. R. Gintz
Chevron Research
P. O. Box }162
Richmond, CA 94804
Attn: L. Fraas
Chevron Oil Research
P. O. Box 446
La Habra, CA 90631
Attn: W. Peake
 For: J. Ploeg
 W. Stiles
Electric Power Research Institute
P. O. Box 10412
Palo Alto, CA 93403
Attn: J. Bigger
El Paso Electric Company
P. O. Box }98
El Paso, TX 79946
Attn: J. E. Brown
Exxon Enterprises-Solar Thermal Systems
P. O. Box 592
Florham Park, NJ 07932
Attn: P. Joy
 For: D. Nelson
 G. Yenetchi
```

```
General Electric Company
Advanced Energy Programs
P. O. Box }866
Philadelphia, PA }1910
Attn: A. A. Koenig
General Electric Company
1 River Road
Schenectady, NY 12345
Attn: J. A. Elsner
 For: R. N. Griffin
 R. Horton
GM Transportation System Center
GM Technical Center
Warren, MI 48090
Attn: J. Britt
Houston Lighting and Power
P. O. Box }170
Houston, TX 77001
Attn: J. Ridgway
Jet Propulsion Laboratory
Building 520-201
4 8 0 0 ~ O a k ~ G r o v e ~ D r i v e
Pasadena, CA 91103
Attn: E. Cuddihy, For: H. Bank
 J. Sheldon, For: W. Carley
 V. Truscello, For: W. Carroll
Los Angeles Water and Power Dept.
1 1 1 \text { North Hope Street}
Los Angeles, CA }9005
Attn: B. M. Tuller
Martin Marietta Corporation
P. 0. Box }17
Denver, CO }8020
Attn: P. R. Brown
 A. E. Hawkins
 L. Oldham
 H. C. Wroton
McDonnell Douglas Astronautics Co.
5301 Bolsa Avenue
Huntington Beach, CA }9264
Attn: P. Drummond
 R. L. Gervais
 D. A. Steinmeyer
 L. Weinstein
```

```
Northrup, Inc.
302 Nichols Drive
Hutchins, TX 75141
Attn: J. A. Pietsch
Pacific Gas and Electric Co.
7 7 \text { Beale Street}
San Francisco, CA 94105
Attn: P. D. Hindley
 For: J. F. Doyle
 A. Lam
Pacific Gas and Electric Co.
3400 Crow Canyon Road
San Ramon, CA }942
Attn: H. Seielstad
 For: J. Raggio
Public Service Co. of New Mexico
P. O. Box 2267
Albuquerque, NM }8710
Attn: A. Akhil
Research and Development
Public Service Co. of Oklahoma
P. O. Box 201
Tulsa, OK }7410
Attn: F. Meyer
Hub City Division
Safeguard Power Transmission Co.
P. 0. Box 1089
Aberdeen, SD 57401
Attn: R. E. Feldges
Sierra Pacific Power Co.
P. O. Box 10100
Reno, NV 89510
Attn: W. K. Branch
Sol ar Energy Research Institute
1617 Cole Boulevard
Golden, CO }8040
Attn: L. Duhham, TID
 G. Gross
 B. Gupta
 L. M. Murphy
 R. Ortiz, SEIDB
 J. Thornton
```

```
Solar Thermal Test Facility
User Association
Suite 1205
First National Bank East
Albuquerque, NM }8711
Attn: F. Smith
Southern California Edison
2244 Walnut Grove Road
Rosemead, CA 91770
Attn: J. Reeves
 For: C. Winarski
Southwestern Public Service Co.
P. 0. Box 1261
Amarillo, TX 78170
Attn: A. Higgins
Standard Oil of California
5 5 5 ~ M a r k e t ~ S t r e e t
San Francisco, CA 94105
Attn: S. Kleespies
US Gypsum
101 S. Wacker Drive
Chicago, IL 60606
Attn: Ray McCleary
US Water & Power Resources Service
Bureau of Reclamation
Code 1500 E
Denver Federal Center
P. O. Box 25007
Denver, C0 }8022
Attn: S. J. Hightower
 For: W. Moore
Westinghouse Corporation
Box }1086
Pittsburgh, PA 15236
Attn: J. J. Buggy
 For: R. W. Devlin
 W. Parker
Winsmith
Division of UMC Industries
Springville, NY 14141
Attn: W. H. Heller
K. R. Miller, 3153
G. E. Brandvold, 4710; Attn: J. F. Banas, 4716
J. A. Leonard, 4717
B. W. Marshall, 4713; Attn: D. L. King
A. B. Maish, 4724
```

R. G. Kepler, 5810; Attn: L. A. Harrah, 5811
J. G. Curro, 5813
F. P. Gerstle, 5814
J. N. Sweet, 5824; Attn: R. B. Pettit and E. P. Roth
T. B. Cook, 8000; Attn: A. N. Blackwell, 8200
B. F. Murphey, 8300
C. S. Hoyle, 8122; Attn: V. D. Dunder
R. J. Gallagher, 8124; Attn: B. A. Meyer
D. M. Schuster, 8310; Attn: R. E. Stoltz, 8312, for M. D. Skibo
A. J. West, 8314
W. R. Even, 8315
R. L. Rinne, 8320; Attn: C. T. Yokomizo, 8326

For: L. D. Brandt
L. Gutierrez, 8400; Attn: R. A. Baroody, 8410
R. C. Wayne, 8430
D. E. Gregson, 8440
C. M. Tapp, 8460
C. S. Selvage, 8450
T. D. Brumleve, 8451
v. Burolla, 8451
W. R. Delameter, 8451
C. L. Mavis, 8451
H. F. Norris, Jr., 8451
W. S. Rorke, Jr., 8451
D. N. Tanner, 8451
S. S. White, 8451
A. C. Skinrood, 8452
W. G. Wilson, 8453

Publications Division, 8265, for TIC (27)
Publications Division, 8265/Technical Library Processes Division, 3141
Technical Library Processes Division, 3141 (3)
M. A. Pound, 8214, for Central Technical Files (3)


[^0]:    *Cost of Living Allowance

[^1]:    EXPAND TIME INDICATED AT 45 SECONDS (of Total 120 Second Cycle)
    

    MULTIPLE MACHINE (2) SETUP
    
    
    $\mathrm{L}=\mathrm{Load}$
    $\mathrm{U}=\mathrm{Un} 1 \mathrm{oad}$
    禽
    $=$ Mach. Oper. Time
    

    RECOMMEND:
    (2) Operators on (4) Machines - (2 Bridge Cranes to Service Setups)
    (1) Operator for Truck-Moving of Containers (Supply \& Fin'd. Parts), Relief, Trouble Shooter, Machines, etc. (3 Operators to Work as a Team)
    $\begin{array}{ll}\text { Therefore: (4) Machines Required Instead of Indicated (5) Machines } & (-\$ 80,000) \\ & \text { (2) Overhead Crane Monorails Instead of (3) Indicated } \\ (-\$ 20,000)\end{array}$
    RATE INFORMATION
    155/Hours Available from (2) Operators Plus (1) Supply, Relief Operator (3 Operator Team)
    Therefore: $\frac{155 \mathrm{PPH} \times 8 \mathrm{Hrs} / \mathrm{Shift}}{3 \text { Oper. } \times 8 \mathrm{Hrs} / \mathrm{Shift}}=51.67 \mathrm{PPH} /$ Operator
    Due to Some Time Losses Inherent in an Overlapping Cycle Operation Use: 50 PPH for Est.

