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1.0 INTRODUCTION AND SUMMARY

Boeing Engineering and Construction Campany (BEC), under contract with Sandia
National Laboratories, Livermore, submits herein the conceptual design and
cost analysis report of an enclesed plastic heliostat for a 50-MW, central
receiver solar themal electric power plant. This work was perfbrmed under
Contract 20-9944, |

The purpose of this study was to analyze the most recent design of the Boeing
enclosed plastic heliostat for cost and campare results with a reference
second generation glass hgliostat case provided by Sandia National
Laboratories, Livemmcre (SNLL). In addition, sensitivities of busbar energy
costs to variations in cép‘ital cost (installed cost), operation and

maintenance cost and overall reflectivity ( P t2) were evaluated,
1.1 Design and Cost Overview

The conceptual design developed is shown in Figure 1-1. It consists of an
overcoated polymethylmethacrylate (PMMA) film reflector membrane on a tubular
aluminum support structure, thermoformed polyvinylidene;fluoride (PVDF) |
enclosure, pedestal, drive actuator, support blower and a screw-anchor/cable
tie-down system. No controls design work was performed., The tie-down system
reacts wind loads (lift and drag) and up-load due to internal pressurization,
Provision is made for rénoval and replacement of the enclosure once in the
30-year life of the plant. Manufacture of the heliostat canponents was
planned at a central facil'ity in Phoenix, Arizona while final assambly occurs

at the power plant sites,

Costs for heliostat materials, labor, transportation, factory and site were
etimated. The HEICAT code, provided by SNLL, was used to campute capital
cost. SNLL provided a Second Generation reference case for camparison
purposes. Figure 1-2 shows the overall installed cost camparison, as well as
canponent cost camparisons. The greatest cost advantages of plastic

heliostats are seen to lie with the reflector and drive mechaniam.
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Installed cost data for the BEC plastic heliostat and the reference heliostat
data for a "straw man" 50-MW, power plant were input to DELSOL 2 (modified by
SERI for enclosed heliostats). A plant was designed and busbar energy (BBEC)
.canputed, Results are shown in Figure 1-3. In total plant terms the Second
Generation helicstat cost is 15% greater than the BEC plastic heliostat.
However, the helicstat accounts for only part of the BBEC costs (49% for
Second Generation; 32% for BEC plastic). When Second Generation balance-of-
plant costs are subtracted, one can see the BBEC attributable to heliostats.
Figure 1~4 shows that the Second Generation heliostat costs are approximately
38% higher than BEC plastic heliostat costs., The added balance—of-plant costs
caused by plastic heliostats, resulting fram larger field and taller tower,

are included in this assessament.
1.2 Conclusion

This study shows that plastic enclosed heliostats offer a significant
opportunity for collector subsystam cost reduction, The Second Generation
reference case heliostats are estimated to be nearly 40% more expensive. In
terms of BBEC for the entire plant, use of plastic heliostats result in a 15%

overall savings.
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2,0° STUDY GROUND RULES

The primary objective of the study was to select a size and design optimized
plastic enclosed heliostat and campare its energy costs with those of a SNLL
provided Second Generation glass/steel reference case heliostat. To make the
camnparison consistent Sandia specified the power plant that would be the basis
for both analyses. The production rate is 50,000 heliostats per year (or
equivalent area). Table 2.0-1 provides the plant performance requiraments and
analysis assumptions, Heliostat requirements follow Second Generation

specifications issued by SNLL (see section B in Appendix).



Table 2.0-1 System Requirements and Study Assumptions

Site:

Location
Longitude
Latitude
Altitude

Topography

Annual weather factor

Design Point:

Day

Hour

Insolation

Ambient temperature

Insolation Profile:

Model
Precipitable water
Relative pressure
Sunshape
Visibility

Receiver Subsystem:
Receiver type

Working fluid
Absorptance

Radiation and convection loss

Flux limit

Tower type

Barstow, CA
116.83°W
34.87°N

593m (1946 ft)
Flat, unrestricted boundaries
0.83

March 21, Day 81
Solar noon

950 W/m2

15°C (59°F)

Meinel

20mm

93% of sea level
Limb-darkened sun
25 km

Cylindrical external receiver
Molten salt

0.965

0.17

0.80 MWy/m2

Concrete (> 120m)



Table 2.0-1

Electric Power Generation Subsystem:

Plant rating
Turbine type
Cycle efficiency

Total parasitic load fraction

Thermal Energy Storage Subsystem:

Storage medium
Solar rultiple
Round trip efficiency

Economic Factors:

Cost basis

Contirgency

Spare parts

Irdirect costs

Capital escélation

General inflation

Interest during construction
Years to construction start
Plant lifetime

Fixed charge rate

Discount rate

Heliostat lst yr O&M

Bal. of plant lst yr O&M
Plant factor

System Requirements and Study Assumptions (continued)

50 Mwe

Steam

0.42 (design point)
0.399 (off-design)
0.065 {of gross cutput)

Molten salt
1.5
1.0

1983s

0%

0%

16%

8%

8%

10%

0

30 years
15,9%
9.96%
1.7% (glass)
1.5%
100%



3.0 HELIOSTAT CONCEPTUAL DESIGN

The previous plastic enclosed heliostat design was prepared by BEC in 1978
(Reference 3-1) and is shown in Figure 3-0. It was believed that redesign of
the base/foundation, pedestal and drive actuator could produce additional
significant cost reductions., The design presented here reflects same
revisions to the previous work, but is by no means camplete. The ultimate,
least cost enclosed heliostat will require further design effort.

Figure 3-1 is the heliostat installation drawing. The conceptual design was
prepared to a level of detail that pemmitted design analysis and reasonably
accurate camponent pricing. Additional effort will be required to refine the
design and produce drawings suitable for prototype fabricaticn,

The following paragraphs present the design by camponent, Sare camponents
have changed little fram previous studies, others represent new, cost-saving

approaches.

3.1 Performance Requirements

Design of the heliostat was based upon functional, performance, design and
construction requirements derived fram Sandia's general specification, A10772,
fram the Second Generation Heliostat Program. These requiraments were
allocated to each of the major elaments which were to be designed; reflector,
enclosure, controls, base-foundation and drive. Requirements are described in

Appendix B of this volume,

3.2 Reflective Assembly

The reflective assambly consists of a bi-axially stretched reflective acrylic
over-coated, aluminized polymethylmethacrylate membrane bonded to a
light-weight circular aluminum frame (Figure 3-2)., The overall diameter of
the reflective assembly is 8.78m (28.8 ft.). This size was selected on the
basis of the cost/size optimization as discussed in Section 3.,7. The
reflector is gravity focused by pre-tensioning the reflective membrane during

10
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assembly. This process results in a controllied sag due to gravity. The
controlled sag produces a parabolic reflector with a predictable focal length.
The pre-tension stress level is set at different values depending upon the
helicstat field zone.

3.2.1 Reflector PFrame

The reflector frame consists of four circular rim segments, four T-fittings,
four spokes and a center hub. The rim segments use 0.8l am (0.032 in,) wall
10.2 em (4.0 in,) aluminum alloy tubing while the spokes are made of 0.12 cm
{0.049 in,) wall 10.2 an {4.0 in,) alumimm alloy tubing. The T-fittings and
center hub are alumimm alloy castings., Reflector frame joints are made by
adhesive bonding.

3.2.2 Reflector Mambrane

The reflective membrane is made by adhesive joining panels of 0.010 cm

(.004 in.) thick aluminized polymethylmethacrylate film. An acrylic overcoat
is provided to protect the aluminum surface fram oxidation. This material was
selected over previocusly specified metalized polyesters because of its
established resistance to ultraviclet degradation, Wwhile polyester is less
expensive, field testing has failed to provide any long-temm weatherable
polyesters. '

During the course of this study four metalized f£ilm material samples were
received fram suppliers for evaluation. Included were:

Material Supplier
Acrylic coated, aluminized, PMMA 3M Campany
Acrylic coated, silvered, polyester 3M Campany

Stainless coated, silvered, polycarbonate Deposition Technclogy Inc.
Stainless coated, silvered, FEP Teflon Deposition Technology Inc.

14



The 3M samples were of films currently on the market while the Deposition
Technology 'samples were first-try lab samples. The samples were measured for
specular reflectivity on the Boeing bi-directional reflectameter. The results
of the measurements are shown in Figure 3-3. The results show that the
silvered polyester would be preferred for its high initial reflectivity. This
material demonstrates the high levels of reflectivity that can be obtained.
The use of silver and the smoothness of the polyester film make the high
reflectivity possible. Weatherability, however remains to be proven.

The silvered polycarbonate had high reflectivity at large cone angles but
dropped off considerably at the desired small cone angles., The silvered
teflon perfomed poorly, demonstrating the difficulties of metalized
fluorocarbons. The aluminized PMMA sample had a specular reflectivityQg =
.86 at a cone argle of 0.14°. This material represents reflectivity that is
available now and would require minimal development for heliostat

application,

3.3 Drive Mechanism

The azimuth and elevation drives shown in Figure 3-4 use gearboxes
specifically designed for the heliostat by the Winsmith Campany. The gearbox
utilizes a planetary reduction gear drive of 15376:1 gear ratio. This drive
consists of two campound stages of 124:1 gear ratio each, and all camponents
are designed for mamufacturing by die cast or powdered metal procedure.

Each stage has two planet gears meshing with ring gears of identical I.D., but
with a difference of 2 teeth between stationary and moving ring gear. This
simplified design principle has been used successfully on a large number of
applications, including the axitﬁuth drive for the second generation heliostat
drives for Boeing. The number of teeth of each stage is the same, 20 for the
sun gear, 20 for the planets, 60 for the stationary ring gear, and 62 for the
output ring gear. The difference is in the diametral pitch which is 24 for
the first, and 16 for the second stage, Efficiency is calculated as 42%
overall,

15
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313 are sketches of the concepts of the trade study. Table 3-1 lists the
results of the study in tems of cost, technical confidence of attachment and
suitability to all terrains. A brief description of each concept follows:

Metal Dish (Figure 3-5)

This is the concept fran the Prototype BHeliostat Contract (Reference 3-1)
which consists of a steel base dish shell which is supported by a steel
tubular ring and vertical tubular steel supports. The vertical supports are

connected to individual concrete, poured in place, foundations.

Concrete Ring (Figure 3-6)

The ground is excavated to provide a below grade base and access tunnel. A
concentric concrete ring of sufficient mass to react pressurization and
aerodynamic loads is poured in plaée. The enclosure is fastened to the
concrete ring with metal strips and fasteners. The inside flcor is lined with
plastic sheeting. The pedestal is attached to a poured in place foundation.

Concrete Ring-Rebar Truss (Figure 3-7)

A concrete ring of sufficient mass to react aerodynamic loads and a pedestal
foundation are poured in place. Rebar trusswork extends up fram the concrete
ring to support the plastic film base shell ard enclosure interface.

Concrete Ring - Pipe Strut (Figure 3-8)

A concrete ring with 4 spokes of sufficient mass to react aerodyamic load is
poured in place. Pipe struts connect the base ring to the plastic film base
shell and enclosure interface. The pedestal mounts to the hub formed by the

intersecting spokes. This design has no earth penetrations.

19
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Concrete Cones (Figure 3-9)

Equally spaced concrete cones provide the reaction mass to aerocdynamic loads.
Connectors at the top of the cones fasten to the plastic film base
shell/enclosure interface. The pedestal mounts to a poured in place concrete

foundation.

Screw-In Anchors (Figure 3-10)

Equally spaced graund anchors are cable connected to the plastic film
base/enclosure interface. The cables are pretensioned such that they retain
sare tension under 90 mph wind loadings. The pedestal mounts to a poured in

place concrete foundation.

Overhead Cable (Figures 3-11, 3-12)

The heliostat reacts aerodynamic loads through the pedestal and an overhead
wire rope cable. A plastic film base is used. Load spreading pads must be
provided at top of enclosure and at intersection of base shell and pedestal.
Poles capable of supporting the cable and reacting wind loads are required,

Earth-Filled Plastic (Figure 3-13)

The graund is excavated to form a cylindrical below-grade base hole and access
tunnel. The cylindrical base is installed and partially backfilled with earth
to provide aerodynamic reaction mass. The pedestal mounts to a poured in

place concrete foundation.
3.5.2 Selected Configuratibn

Examination of Table 3-1 shows the screw-in anchor concept to be the most
econamical. It can be seen that it's econany lies primarily in low material
cost, but is also among the least labor and tooling intensive. The technique
of attachment earned medium confidence as campared to the high priced steel
dish and concrete ring which received high confidence. Terrain versatility

was also medium camwpared to the totally above ground concrete ring with pipe
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TABLE 3-1
ENCLOSURE & REFLECTOR BASES
TRADE STUDY CONCEPTS
30 FOOT DIA ENCLOSURE

> B

o€

]
CONCEPTS MATERIAL %gggfl‘m&; TOTAL COST COST RANK ATTACHMENT SUITBA?\ILLLITY FINAL
COST potves 1983§ CONFIDENCE | cooat RANK
METAL DISH 804 287 1091 8 HI LO 8
CONCRETE RING | 503 211 714 7 HI MED 6
CONCRETE RING-REBAR TRUSS 424 180 605 3 MED MED 3
CONCRETE RING-PIPE STRUT 425. 173 598 2 MED HI 2 |>
CONCRETE CONES 508 176 . 684 6 MED MED 7
SELECT
SCREW IN ANCHORS 322 144 466 1 MED MED 1 ——
OVERHEAD CABLE 485 163 648 5 LO LO 4
EARTH FILLED PLASTIC 501 140 641 4 Lo Lo 5
INFORMATION SOURCES: ﬁ> @ SUPPLIER QUOTES B> ALTERNATE CONCEPT FOR DIFFICULT
® PROTOTYPE HELIOSTAT CONTRACT TO EXCAVATE TERRAIN

® VENDOR CATALOGS
® ENGR ESTIMATES
[g> @ MEANS COST DATA
® PROTOTYPE HELIOSTAT CONTRACT
@ EQUIPMENT SUPPLIERS
® LABOR RATES: SAND A H.LCAT MANUAL + INFLATION



strut which was the only high rating. The second ard third ranked concepts
were essentially equal in cost. The concrete ring with pipe-strut is favored
because of its terrain independence. This design was selected as the

alternate base/foundation for difficult soils.

Figures 3-14 through 3-17 are conceptual drawings of the selected
base/foundation.

Base Shell

The .01 cm (.004 in.) base shell is made by thermoforming Kynar 1100 (Pennwalt
Kynar/acrylic alloy) in a manner similar to the forming of the enclosure.
Instead of free blowing the shell it will be blown against a flat surface to
form the flat bottom shown in Figure 3-14. The pre-form blank diameter will
be the same as for the enclosure so that mating flanges will result. Clamping
angles are provided at the base shell/enclosure interface to assure leak tight
closure ard to provide connection points for the ground anchoring system. An
air tight port with a removable cover is provided for access during
installation and for unscheduled maintenance activities over the heliostat

operaticnal life, (See Figure 3-15,)

Ground Anchors

8ix screw-in ground anchors provide the reaction to wind induced loads. An
autcmatic installation machine installs the six anchors and augers the
pedestal pile hole during a single set-up to assure concentricity. The upper
end of the anchor includes an eye to which the tie cable is attached. The
other end of the tie cable is connected to the base/enclosure interface clamp
angle. Special tooling allows setting the tie cables to the desired
pre-tension. An analysis of wind loads and heliostat reactions (see Section
3.6) estimated the load in a ground anchor to be 3360 1b. in a 90 MPH wird
(see Figures 3-14, 3-15 and 3-16).
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Pedestal

The pedestal is a steel reinforced concrete, double tapered, truncated cone.
It tepers fram the ground plane up to the drive connection, and from the
graund plane downward into the hollow pile. It is pre-fabricated on site.
Details are shown in Figure 3-16 and 3-17. During installation the pedestal
is simply lowered into the cast hollow pile which has tapered internal walls
that mate with the lower end of the pedestal. Concrete-to-concrete friction
precludes rotary motion during reflector operation. The upper end of the
pedesfal includes a cast-in mounting for installation of the drive unit.

Air Supply

To limit deflection of the protective enclosure the air supply system
maintains an enclosure pressure equal to or greater than the wind impact
pressure generated by a 40 m/s (90 MPH) wind. The simplicity of the system
results in a high reliability over its 30 year life. A layout of the air
supply assembly is shown in Figure 3-18. Four camponents make up the system;
a prefilter, blower, a primary filter and a pressure relief valve. These
canponents are located external to the heliostat in a sheet metal cannister
above the HC enclosure. The maximum power consumption of the air supply
system is 15 watts,

A positive internal pressure 6.9 KN/m2 (0.1 psig) above external ambient

pressure is required to maintain clearance between the inflated enclosure’ and
the reflector structure during specified-40 m/s (90 MPH) wind velocity. This
differential pressure was calculated by integrating the wind impact pressure

distribution over the frontal area of the protective enclosure.

Ambient temperature and pressure variations result in the requirement for
variable air flow into ard cut of the enclosure. This variable flow rate plus
steady state leakage are additive, The air supply system must be sized for
the maximum demand, coinciding with the worst—case climatic conditions, to
canpensate for this flow rate variation. Analysis of climatic data for New
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Mexico indicates that to maintain constant pressure, flow rate will vary
between +0.04 m3/min (+1.48 cfm)to -0.05 m3/min (-1.73 cfm), the minus sign

indicating flow out of the enclosure.

Enclosure leak rate is considered a negative flow and is detemined by _
summing the individual points of leakage. A total leak rate of 0.006 m3/min
(0.2 cfm) has been estimated.

Canbining the above rates indicates that the air pump must supply a peak air
flow of 0.05 m3/min (1.68 cfm) at 6.9 KN/m? (0.1 psig) and that the enclosure
must vent a total of 0.043 (1.53 cfm) at 6.9 KN/m2 (0.1 psig).

In operation, ambient air is drawn through the system prefilter, then a
primary filter through the blower and expelled into the enclosure. As shown
in Figure 3-18 a pressure relief valve has been incorporated in the manifold
to vent excess blower air and air fram the enclosure which occasionally must
be relased due to ambient temperature or pressure changes. The pressure
relief valve incorporates a sharp-edged seat and ball poppet. Relief pressure
is detemmined by the weight of the ball versus the net unseating force
generated by the internal heliostat pressure. This scheme eliminates springs
which are difficult to tune and prone to failure.

Incaning air first passes through a Gelman type-E glass-fiber depth-filter,
then through a Gelman Acropor membrane filter with a pore size of 0.45 um. A
layer of glass scrim separates the two filter medias. The first filter layer .
will entrain 99.7% of the total mass of airborne particulate. 99.99% of the
ramaining mass will be filtered out by the membrane layer.

The various camponents of the air-supply package are mounted external to the
heliostat in a formed sheet metal cannister. The cannister is designed to

prevent water fram entering the system. Pressurized air is transferred fram
the cannister to the heliostat through a 1.6 cm (0,63 in,) diameter air hose
which connects the cannister supply port to a penetration fitting on the base
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shell., Air flow within the cannister is directed by integral sheet metal
manifolding. The bonnet of the cannister is retained by a single wing nut.

3.6 Enclosure

The protective enclesive (Figure 3-14) is a transparent fluorocarbon
(polyvinylidene fluoride) material thermoformed to a spherical shape. The
spherical enclosure is truncated at a 45° angle from the spherical center to
interface with the -base dish (also themoformed fluorocarbon). Flanges exist
on both the enclosure and the base shell that are of equal diameter and width
to allow mating and fastening.

The diameter of 9.15m (30.0 ft.) provides a clearance of 18.3cm (7.2 in.) from
the reflector support ring. This clearance accaumodates assembly and
installation tolerances pius enclosure deflection due to maximum design winds.
The enclosure film thickness is 0.01 an (.004 in.).

3.6.1 Material

Kynar resin prcoduced by Pennwalt is the selected enclosure material. Previous
experience by BEC with Kynar grade 460 resulted in small thermoformed dames
with measured: transmittance of 0.88. Higher values are probable with process
variations such as surface polishing or anti-reflective coating. Pennwalt
recently announced a new Kynar grade identified as Kynar 700. The purpose of
the new grade is to improve formability through reduced viscosity. Most
properties are the same as Kynar 460. BEC tested a laboratory sample of
oriented 4 mil Kynar 700 and found the specular transmittance to be 0.87. The
improved grade 700 may prove to be superior in the thermoforming and extrusion

process.
3.6.2 Load Analysis

Details of the structural analysis which support the design are described in
the following sub-sections.
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Design Loads = The principle loads-acting on the enclosure are

those caused by the erwirorment {(wind, snow, ice, and
earthquake), and the internal static air pressure used to
support the membrane enclosure. Previous studies have shown
that wind loading is the critical envirormental load. Only
wind loads will be treated here. Undisturbed wind above smooth
terrain is known to assume logarithmic velocity profile,
according to atmospheric boundary layer theory. Design wind
profiles are camonly specified by power laws which give
results similar to a logarithmic description. These take the

form:
a
V, = VREF (z)
o
where V, = Wind velocity at height 2 above ground
VREr = Wind velocity at reference height HREF
a =

Exponent affecting shape of profile
. The specification requires that:

1) heliostats be designed for wind according to a power law with Hpgp
egual to ten meters, and a equal to 0.15, and

2) heliostats shall survive a maximum wind velocity, including
gusts, of 40 meters per second (90 mph) at ten meters above

the ground without damage.

Reference 3-3 gives the following eqguations for lift and drag respectively.

L = K, q R? where Kp = Lift coefficient
D=Xkpq R2 ' Kp = Drag coefficient
q = Wind dynamic pressure
R = Dame radius
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The 1lift, drag and pressure lift forces acting on the heliostat due to the
peak survival wind of 40 meters per second (90 mph) were estimated to be:

LIFT LOAD L = 27,500 Newtons (6184 1b.)
DRAG IOAD D= 9,160 Newtons (2061 1b.)
PRESSURE LIFT = 12,800 Newtons (2881 1b.)

Transparent enclosure film thickness is controlled by the internal pressure
and the allowable stress of the film. The internal pressure of 6.9 KN/mz (0.1
psig) is exerted to balance the external wind pressure resulting fram a 90
mph wind (at 32.5 ft. elevation). The yield strength of the oriented
polyvinylidene fluoride has been measured to be 69.0 MN/m2 (10,000 psi). For
a 9.15m (30 ft.) enclosure the film thickness was calculated to be 0.0lcm
(.004 in.) wusing the approach outlined in Reference 3-3.

Reaction to the enclosure/base shell sphere to wind loads is through the 6
ground anchors. ~ Figure 3-19 shows the worst case loading configuration where
maximum drag occurs in a plane containing 2 anchors; one at maximum tension,
one nearly relaxed. The reactions of the 6 anchors are shown, with the
maximum reaction = 3362 1lb. The anchor system was designed accordingly (see
Section 3.5 and Figures 3-14, 3-15 and 3-16).
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3.7 Size Trade Study

A study was performed to assist in the selection of the most cost effective
size for the heliostat. Previous studies (References 3-1, 3-4) generally
selected diameters in the region of 25 to 35 feet. It was believed that a
better size optimization could be performed using the DELSOL and HELCAT codes
than was previously possible. (Brief discussions of the HELCAT and DELSOL
codes are given in sections 5.0 and 6.0,). Heliostats in the size range of 8
feet through 37 feet were considered. | '

3.7.1 Plant BusBar Energy Cost vs. Heliostat Size

The first analysis was performed with the DELSOL code. It was assumed that
heliostats of all sizes could be fabricated and installed for $50/m2, The
intent of the analysis was to determmine what effect heliostat size had on
other plant costs such as land, tower, receiver, etc. The DELSOL code has
provision for perfectly focused or perfectly flat reflectors, Both cases were
run., Figure 3,7-1 shows the results of this analysis.

Larger sizes are favored in temms of busbar energy costs. For non-focusing
(flat) heliostats greater than approximately 20 feet in diameter size increase
offers no advantages. For focusing heliocstats the large size advantage
continues up through 30 feet, but appears to be disappearing. Unless small
heliostats (<20 feet) can be shown to cost less in temms of S$/m2 than large
heliostats, the conclusion is that the best choice would be for a heliostat
about 30 feet in diameter. Heliostat installed costs for 3 sizes were
estimated and are discussed in the following paragraphs.

3.7.2 Heliostat Installed Cost vs, Size -

Installed costs for three sizes, 8 ft., 30 ft., and 37 ft., were estimated.
These costs were obtained with the use of HELCAT code. The costs include
materials, labor, purchased camponents, factory, land, transportation, and
econamic parameters such as cost of money, inflation, return to investors,

etc,
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While determining costs for the three sizes it became apparent that costs for
wiring and controls would be constant without regard to size. No strategy
was developed that allowed for reduced wiring and controls costs with reduced
size. Other heliostat camponents did not exhibit this problem. Therefore,
cost estimates were prepared for the three sizes with and without wiring and
controls costs included. The HELCAT results are shown in Figure 3.7-2.

Figure 3.7-2 shows that below 30 ft. the installed cost increases dramatically
if wiring and controls are included. However, even if wiring and contrdls are
excluded the cost in $/m2 of the 8 ft. heliostat is 35% higher than the 30 ft.
heliostat. The graph shows that even if the costs of wiring and controls
could be made constant in $/m2 the relative cost of small heliostats is
significantly greater than the large ones for the designs and sizes of this
study.

3.7.3 Size Selection

Both overall plant cost and installed heliostat cost considerations indicated
that a diameter of 30 ft. is substantially more cost effective than smaller
diameters. Also, diameters larger than 30 ft. appear to offer little or no
cost advantage. The size selected for this study was therefore 30 ft. -

3.8 Focusing Study

The BEC plastic heliostat design utilizes gravity focusing rather than active
focusing. No provision exists for gravity sag focusing in DELSOL. The DELSOL
code model has provision for perfect focusing (focal length - slant range) and
no~focusing (perfectly flat). Neither of these cases would be quite
attainable for practical reasons. (A perfectly flat reflector would require

near infinite tensile stress).

Gravity focusing was approximated by dividing the heliostat field into
annular zones, determining average elevation angles and establishing the
required film stress to obtain the desired gravity sag for each zone. During
the day the elevation angle would deviate about the average. The standard
deviation was calculated. DELSOL analyses were performed for the gravity
focus approximation and non-focused and perfect focused cases., These analyses
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provided intercept efficiency versus time of day. Figure 3.8-1 is a plot of
the 3 cases and the gravity plus lgcase (this latter case gives the intercept
efficiency obtained when the heliostat elevation angles are one standard

deviation off the average).

Figure 3.8-1 shows that the simulated gravity focus + 16 is quite close to
the perfect focus case except for 4 and 5 hours before ard after solar noon.
Even then the departure is only about .5% loss in intercept efficiency.

Since losses in intercept efficiency are made up by adding helios._tats to outer
field rows the .5% loss will be amplified by a factor of perhaps 2 or 3. This
can be demonstrated by referring back to Figure 3.7-1, a plot of relative
busbar cost versus heliostat diameter for peffect focus ard flat mirrors. The
difference between perféct focus and non~focus for a 30 ft. diamei:e‘r: heliostat
is about 5% in temms of busbér’ energy costs. Returning to Figure 3.8-1, it is
seen that the intercepﬁ effiﬁ:iency difference between perfect focus and
non-focus is about 2%. Therefore, approximately 6% greater BBEC wbi{ld be
incurred because of 2% decrease in intercept efficiency. Similarly,‘-a 1.5%
increase in BBEC would result fram a .5% decrease in intercept efficiency. The
1,5%, or approximately 1.65 mils/kW hr, is the additional energy cost due to

gravity focusing.,

The additional energy costs due to gravity focusing can be avoided if active
foausing can be provided to the reflector aésembly. The active focusing,
obviously, will add back some costs because of required systems and Hardware.
An estimate of the heliostat hardware additional costs for active focusing
that would equal the energy cost avoidance (elimination of gravity costs) can
be made. Assume 40% of BBEC are attributed to heliostat and BBEC = 110
mils/kW hr. The heliostat portion of the BBEC is then about 44 mils/kW hr.
Fran above the energy costs avoidance of active focusing is 1.6 mils/kW hr or
3.6%. If the helicstat installed cost is $2700, the active focusing hardware
could cost (.036) 2700 = $97.00. If the entire $97.00 is spent on active
focusing hardware no cost benefit has been realized, since the avoidance

equals the expenditure.

47



5174

o

-——® PERFECT FOCUS
—x GRAVITY FOCUS

-—O GRAVITY + 10
=11 FLAT MIRROR

TNTERCEPT
EFFICIENCY
97
.96 —
.95
4
SOLAR
NOON

1 2 2 4

TIME, HOURS

FIGURE 3.8-1
INTERCEPT EFFICIENCY VS. TIME OF DAY




Based upon the above analyses active focusing was not included, since it was
considered unlikely that active focusing hardware could be provided for much
less than the break-even allowance of $97.00. The analysis was an

approximation, however, and further experimental and analytical work in this

area is warranted.

Variations in temperature will cause changes in membrane stress. Previous
work described in Reference 3-1 predicted a change of + 30% in membrane stress
across the temperature range of 60°C to -30°C. The gravity focus analysis
presented in 6.1.2 showed that the intercepted energy was not very sensitive
to variations in focal length (fram Figure 3.8-1 .999 for perfect focus to
.977 for flat mirror).
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4.0 HELIOSTAT MANUFACTURING AND INSTALLATION PLAN

The smaller camponents and detail parts which are readily shipped by truck-or
rail will be procured fram off-site sources. Large camponents such as the
reflector, base dish and enclosure will be manufactured at the Central
Manufacturing Facility (CMF). Table 4-1 is the make/buy list for heliostat
canponents. Mamufactured canponents are packaged and shipped to the Site
Assembly Building (SAB) directly. Assembly of the reflector and final
assembly of the heliostat prior to field installation will be performed in a
SAB (see Figure 4-1).

Final assembly at the SAB includes fabrication of the reflector, assembly of
the heliostat, and pressurization of the enclosure. The campleted heliostat
is transported to the prepared heliostat site where the pedestal is inserted
in the pile and anchor cable connections are made. The transporter serves
as the final assembly base as well as the site installation fixture.

4.1 Manufacturing (CMF)

The CMF consists of several buildings with a total floor area of approximately
280,000 ft2 located on 17 acres of land. Production of enclosures, base
shells and reflector membrane material fram polymer resins occurs at the CMF.
Concepts for the CMF buildings are shown in Figure .4-2.

4,1.1 Enclosure Fabrication

Two mamufacturing lines are required to meet the annual production
requirements of 50,000 enclosures per year. The lines, as shown in Figure
4-2, consist of three extruders that take Kynar resin amd recycled Kynar scrap
and form 8 foot wide strips which are subsequently welded and cut and result
in prefoms which are then mounted in the fixture and thermoformed
(thermofoming is described in detail in Reference 4-1). The campleted
enclosures are packaged for shipment to the SAB. Approximately 120,000 ft2 of
factory floor space are required.

50



Table 4-1, Make/Buy List

Make (M)

Item Buy (B) Drawing Number
Reflector structure M SK61003
Relfector membrane M SK61003

" Azimuth/elevation drive B SK61005
Controls/wiring B -
Enclosure M SK61002~1
Air supply B SKe1006
Base shell M SK61002-1
Ground anchor B SK61004
Pile M SK61004
Pedestal M

SK61007
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4.1.2 Base Shell Fabrication

The two manufacturing lines for base shell production are very similar to
those used in enclosure production. Iess factory area (100,000 ft2) is
necessary because of smaller size of the base and the simpler handling

requirements.
4.,1.3 Reflector Membrane Fabrication

Two PMMA extruders provide 36 inch unoriented material to be fed into the
3-1/2 axial by 3-1/2 logitudinal biaxial orientation frame. Sixty inch wide
rolls of oriented film are produced. The PMMA film is then aluminized in a
vacuum metalizer. Finally an aluminum overcoat is applied. The finished film
rolls are shipped to the SAB where reflector fabrication is performed.

4.2 Site Assembly {SAB)

4.2.1 Reflector Fabrication

The reflector structure parts are assembled and bonded in the SAB. This
operation is followed by the application of the flat foamed surface shown in
Figure 3-2. The reflector membrane is also formed at the SAB by bonding
together 6 strips of metalized PMMA f£ilm manufactured at the CMF. The
membrane is stretched to the desired tension and bonded tc the flat surface of
the reflector structure.

4.2,2 Heliostat Assembly

The following is the sequence of heliostat assembly:
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(1) A base shell and pedestal are mounted on the assembly/transporter

fixture.

(2) The drive unit is installed on the pedestal. Power and signal wires
are routed and connected to base penetrations. '

(3) The reflector is installed on the drive unit.

{4) The enclosure is lowered over the reflector ard connected to the base
shell. Anchor cables are connected to base/enclosure interface flange.

(5) The heliostat is inflated and pressurized.

(6) The drive system is operated to verify function and clearances.

(7} The transporter tractor is connected to the fixture in preparation for
transit to the site. The temporary air supply {(on tractor) is

connected to maintain pressure during transit., (See Figure 4-3).

4.3 Heliostat Installation

Heliostat pedestal piles are installed at the surveyed locations in the field.
They consist of reinforced tapered, hollow, concrete piles. The installation
equipment consists of a drill platfom and an anchor driving apparatus mounted
on a motorized tractor vehicle. One set of this equipment drilling pile
holes, setting molds and installing ground anchors is capable of preparing 40
heliostat sites in an eight hour shift, A follow-up vehicle will fill the
pile mold with concrete. The pile is allowed to cure ard is covered to avoid
collection of debris.

The factory assembled, functiocnally checked, and internally clean helicstat
arrives at the site fram the SAB over plant dedicated roads. This vehicle ard
transport fixture is shown in Figure 4-3. The fixture is that utilized in the
plant assembly process. It provides a clamping support to the pedestal for
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(1) A base shell and pedestal are mounted on the assembly/transporter

fixture.

{2) The drive unit is installed on the pedestal. Power a"n_d signal wires
are routed and connected to base penetrations. '

(3) The reflector is installed on the drive unit.

(4) The enclosure is lowered over the reflector and connected to the base
shell. Anchor cables are connected to base/enclosure interface flange.

(5) The heliostat is inflated and pressurized.

(6) The drive system is operated to verify function and clearances.

(7) The transporter tractor is connected to the fixture in preparation for
transit to the site., The temporary air supply (on tractor) is

« connected to maintain pressure during transit. (See Figure 4-3).

4,3 Heliostat Installation

Heliostat pedestal piles are installed at the surveyed locations in the field.
They consist of reinforced tapered, hollow, concrete piles. The installation
equipment consists of a drill platfomm ard an anchor driving apparatus mounted
on a motorized tractor vehicle. One set of this equipment drilling pile
holes, setting molds ard installing ground anchors is capable of preparing 40
heliostat sites in an eight hour shift. A follow-up vehicle will fill the
pile mold with concrete., The pile is allowed to cure and is covered to avoid

collection of debris.

The factory assembled, functionally checked, and internally clean heliostat
arrives at the site fram the SAB over plant dedicated roads. This vehicle and
transport fixture is shown in Figure 4-3. The fixture is that utilized in the
plant assembly process. It provides a clamping support -to the pedestal for
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support during transit and installation., The heliostat and fixture is lowered
until the pedestal seats in the pile. The cables connecting the
enclosure/base flange are connected to the ground anchors and cable tension is
set to the desired values.

The power connection to the blower is transferred froam tractor power to field.
The assembly fixture is now removed from the heliostat, returned with the
transporter vehicle to the SAB, and recycled into the assembly line.

The power and signal wiring connecticn is now made to the heliostat

controller, the ground connection made, and the heliostat is ready for
functional checkout and alignment processes.,
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5.0 HELIOSTAT INSTALLED COSTS

Cost estimates were prepared for the component procurement, fabrication,
assembly and installation of the BEC enclosed plastic heliostat. Prices for
materials, tooling, transportation and equipment :and quantities of required
labor, facilities and land were obtained from manufacturers, previous studies
or engineering estimates. The HELCAT code was used to compute the "Total
Required Revenue" in capital dollars per heliostat. This section covers the
model parameters, estimate inputs and the computed cost by cost breakdown
structure, profit center and total required revenue.

5.1 Analysis and Model Inputs

Pricing was based upon a production rate of 50,000 heljostats per year at a
central manufacturing facility located in Phoenix, Arizona., Manufactured
components were shipped by truck to the various southwestern sites and
assembled in site assembly buildings. All costs are in 1983 dollars, When
cost data was used from previous studies the data was inflated at 6%/yr to the
1983 value,., Labor rates used were:

Factory - -$10.58/hr
Site Craft - $17.23/hr
" Qutside - $33.50/hr

Table 5.1-1 shows the input parameters used in the HELCAT calculations.

The reflector membrane material is manufactured at the CMF and shipped in 60
inch wide rolls to the SAB where it is used to make the membranes. Pricing
for all factory equipment and labor for reflector material is included in (BS
4410, Also included under CBS 4410 are some equipment and facilities costs
for the SAB reflector final assembly requirements.l The reflector structure
parts are assembled at the SAB prior to installation of the membranes.
Transportation costs from the CMF to the SAB are included.

1subsequent to completion of the cost analysis it was discovered that the SAB
facility costs had been included as a factory cost, being improperly charged
against 50,000 heliostats per year rather than the 8,000 heliostats at a site.
Assuming a reusable temporary Butler-type building for heliostat assembly and
existing site warehousing for other site support activities, the impact on
site costs would be an approximate 1 1/2 to 2% increase.
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TABLE 5.1-1

HELCAT

PARAMETER MATRIX

OPTIDNS AND MODEL PARAMETERS

FACTORY SITE TRANSPORTATION

1 DURATION OF COST PROJECTION - YEARS l10.000 10.000 10.000
2 BASE RATE DIRECT LABOR COST - $/HOUR 10.580 17.230 15.000
3 BASE RATE PROD FACILITY COST - $/SQFT 50.000 0.000 0.000
4 LAND COST FOR PROD FACILITY - $/ACRE 20000.000 0.000 6.000
5 THFLATION RATE .060 .060 .060
6 RETURN TO BOND HOLDERS -102 .102 .102
7 RETURN TO EQUITY HOLDERS -166 .1686 .166
3 COMBINED INCOME TAX RATE .500 .500 .500
9 INVESTMENT TAX CREDIT .100 .100 .100
10 EQUITY FRACTION .800 .800 .800
11 PROPERTY TAX AND INSURANCE FRACTION .040 .040 .040
12 PURCHASED MATERIAL SCRAP FRACTION .010 .010 .010
13 MAINTEHANCE FRACTION .020 040 040
14 GENERAL AND ADMINISTRATIVE FRACTION .090 0.300 g.000
15 WORKING CAPITAL FRACTION .170 0.000 0.000
16 RAW MATERIAL SCRAP FRACTION -030 .030 .030
17 TOOLING LIFETIME (ACCOUNTING) - YEARS 5.000 5.000 5.000
18 EQUIPMENT LIFETIME (ACCOUNTING) - YEARS 10.04900 10.000 10.0400
19 FACILITY LIFETIME (ACCOUNTING) - YEARS 30.000 30.000 30.000
20 FACILITY CORSTRUCTION PERIOD - YEARS 3.000 0.000 0.000
21 FACILITY PLANT ENGINEERING FRACTION .100 0.000 0.000
22 FACILITY STARTUP QUANTITY 20000.000 6.000 0.000
23 CO57T REDUCTION COEFFICIENT ~ START UP -920 0.000 0.000
24 TOOLING LIFETIME (TAX) - YEARS 3.000 3.000 3.000
25 EQUIPMENT LIFETIME (TAX) - YEARS 8.000 2.000 3.000
26 FACILITY LIFETIME (TAX) - YEARS 25.000 25.000 25.000
27 BASE RATE TRANS COST - $/LB .035 .035 .035
28 INDIRECT FRACTION - LABOR .270 .300 .300
29 INDIRECT FRACTION - MATERIAL .004 0.009 0.000
30 INDIRECT FRACTION - TOOL'G,EQUIP'T,FAC'Y .006 0.000 0.000

SPECIAL COST MATRICES

CATEGORY FACILITY LABOR TRANSPORTY

NUMBER $/5Q FT $7HR (UHITS VARY)

1 40. 9.00 650,000 S$/TRKLOAD
2 60. 12.00 130,000 $/TRKLOAD
3 80. 18.00 0,000
§ 100. 21.00 0.000
5 120. 25.00 0.000
6 140. 30.00 0.000
7 0. g.00 0.000
3 0. 0.06 0.000
9 0. 0.00 0.000



The drive actuator was designed by BEC and Winsmith and the production was
priced by Winsmith. The CBS 4420 factory costs show this item as a flow
through cost.

Transportation directly to the site was priced by BEC.

BEC prepared no design or cost estimate for wiring and controls for the Second
Generation Heliostat program. It was beyond the scope of the present program

to perfdnm such a design effort, so the cost estimate was made based upon the

Second Generation contractor's average. Controls were considered a purchased

item under CBS 4430, while field wiring was included as a purchased item under
CBS 4460 (site construction). '

The base shells are thermoformed at the CMF, packaged and shipped to the SAB.
Pricing for all factory equipment and labor ta manufacture preforms and
thermoform base shells was included in CBS 4440, Also included were costs for
purchase of air supplies, materials, tooling and labor for miscellaneous parts
and necessary factory facilities and land.

Factory costs for the enclosure manufacture included purchase of the Kynar
resin, preform extrusion tooling, thermoforming equipment, labor, facilities
and land and appear in CBS 4450. Packaging and transportation costs were also
estimated. |

CBS 4460, site cost, includes estimated costs for final assembly, field
wiring, site survey, installation and checkout, fnitial calibration, and site
equipment to support these operations. Equipment for cleaning of enclosures
was also priced.

Appendix A Tists the cost estimates that were input to the analysis,
5.2 Apalysis Results

A summary of the results of the analysis are shown in Table 5.2-1. (see
Appendix A for detailed results). A cost matrix of six cost breakdown
structure headings by three location (factory, transportation, site)
categories is provided. The total installed cost is seen to be $2636.20 per
heliostat. For a 59mZ heljostat this converts to $44.68/m2,
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REFLECTIVE
ASSEMBLY
6410

FACTORY 327.21
TRANSPORTATION 40.95
SITE

TOTALS 368.16

TABLE 5.2-1 HELIOSTAT COST ANALYSIS RESULTS

DRIVES

4420

251,00
.26

251.26

COST SUMMARY BY PROF1T CENTER
TOTAL REQUIRED REVEHUE

BEC PLASTIC SELECTED DESIGN B

PRODUCTION YEAR

CONTROLS

4430

417.75
g6.90
.00

417.75

1

FOUNDATION/  ENCLOSURE ASSY/INSTALLATION

PEDESTAL (INCL FIELD WIRING)

6440 4450 4460 TOTALS BY LOCATION
388.61 527.15 9.09 1920.81
26.00 52.0¢ 119.21

0.00 596.18 596.18
414.61 579.15 605.27

TOTAL FOR TOTAL REQUIRED REVENUE 2636.20
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Figure 5.2-1 campares BEC plastic enclosed helicstat costs with the reference
case. The most impressive savings occur in the reflective assembly and drive
mechanism costs. No savings was attempted in the controls category. The cost
of the plastic heliostat base/foundation plus the protective enclosure was
about equal to the reference case base/foundation. Site costs (including
field wiring) were approximately egquivalent.

63



6.0 POWER PLANT ENERGY COSTS

Analyses were perfommed to determine the power plant delivered energy costs,
or BBEC (bus-bar energy costs). In addition, energy cost sensitivities to
variations in heliostat capital ccst, heliostat O&M costs (operation and
maintenance) and heliostat optical properties (/OT'?) were evaluated., The
DELSOL camputer code, with modifications for plastic enclosed heliostats, was
employed for the analyses. The following paragraiahs discuss the analysis
approach, tools and results.

6.1 Plant Performance and Cost Analysis

The objectives of the plant analysis subtask have been to determine the
performance and cost of candidate enclosed plastic heliostat designs and to
canpare the results with similar data from a glass heliostat design. The
plant analysis approach is illustrated in Pigure 6.1-1. Plastic and glass
helicstat cost and perfomance were evaluated while the non—heliostat
subgystems were held constant. The study perfommance requirements and
analysis assumptions presented earlier in Table 2.0~1 were used to maintain a
consistent camparison between the two helicstat types. The following
subsections discuss the analytical tool used to perform these evaluations,

The reference glass heliostat case will alsoc be presénted.
6.1.1 Plant Analysis Ccmputer Code

The analytical tool used to perform the plant performance and cost
calculations was a modified DELSOL 2 code developed by SERI (ref. 6.1-1) to
evaluate enclosed plastic heliostat designs. The modified code was campared
to the standard DELSCL 2 code (ref, 6.1-2)} and was found to reasonably account
for the additional optical losses experienced with enclosed heliostats.

The modifications made by SERI to DELSCL 2 were in two areas: (1) effective

mirror reflectance, ardd (2) dame shadowing ard blocking. These topics are
briefly discussed in the following paragraphs.
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Effective Mirror Reflectance

An enclesed plastic optical analysis must account for two passes of the solar
energy through the dome material plus one reflection from the plastic
reflector, The transmission of the dame material is known to vary with
incidence angle. Also, the incidence angle between the sun's rays and the
dame vary over the dame. This variation also deperds upon the heliostat
position in the field, time of day and day of year. An analysis was performed
to evaluate these effects on the dame transmittance value,

The transmittance of the dame material is illustrated in Figure 6.1-2. BEC
has measured the transmittance of dame materials as a function of incidence
angle using the test setup illustrated in Figure 6.1-3. Typical transmission
data nomalized to the zero incidence value are presented in Figure 6.1-4.
These data represent the expected incidence angle variation for a
well-developed, polished plastic film. Also presented in Figure 6.1-4 is
similar data assuming transmission through a f£ilm with an index of refraction
of n = 1.418. The agreement between the two curves is consistent with similar
findings at SERI (Reference 6.1-3),

The optical model considered in integrating the transmittance over the dame is

illustrated in Figure 6.1-5. The integration analysis follows that of -

Reference 6.1-4. In that reference, the integrated . 2-pass transmittance, T '
; : 5
is given by —2 2K . 2 K
"X = Z Awr dudv- (U~ cosb)
K=0

where

In

ubrt & , integration variables
w:e“/go < |, ratio of heliostat radius to dame radius
incidence angle between solar rays and heliostat normal
curve fit coefficients obtained fram 7°(¢)data,
2 - S 2K
'C(g)“&,éAKS’N ?

incidence argle between incaming solar rays and normal

&
hn n

to dane surface

Least squares curve fitting méde to the data of Figure 6.1-4 produced the Ag
coefficients shown in Table 6.1-1. These data were used to solve for the
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integrated transmittance values shown in Figure 6.1-6. These data are
nordimensionalized by the square of the normal incidence transmittance.
Several values of the heliostat to dame radius ratio are shown. The w = 0.96
line would be most typical of BEC enclosed plastic heliostat designs. The
data in Table 6.1-1 and Figure 6.1-6 are also consistent with similar data
calculated by SERI (ref. 6.1-5).

A further analysis was perfomed to account for the variation in the incidence
angle over a typical heliostat field as a function of time of day and day of
the year. The DELSOL 2 program was used to produce a field layout typical of
what would be expected for a plastic enclosed heliostat (data fram the BEC
Prototype Heliostat program, Ref. 6.1-6 was used). With that field layout
(10864 helicostats, radial stagger pattern), the incidence angle,q? ; between
the heliostat nommal and the incamirng solar rays was calculated for each
sector of the field. Using the integration methods used to produce Figure
6.1-6 yielded the 'El for each sector of the field. Weighting the giector
values by the number of heliostats per seci:_oi: , a field-averaged T value was
calculated. The weighted, field averaged T is 0.93 times the square of the
normal transmittance,

Similar calculations can be made as a function of time of day and day of year.
Those data are presented in Table 6.1-2. These data show that the field
averaged ’Ez remains nearly constant at 0.93 of the nomal transmittance
squared. It was concluded that a single, appropriately chosen transmittance
value could represent the dame transmission over the entire year. For example
if the nomal transmittance was @,-1 = (.88, then
Z"- 0.93 (0.88)2 = 0.72
with the mirror reflectance value 1O+ an effective mirror reflectance value
can be defined
[ eff =p ;{7(!"2
assuming the above T value ard ,O = 0.86, then in this case
/O eff = 0.86 x 0.72
= 0.62
This value can be inmput into the DELSOL 2 program as the heliostat reflectance
(DELSOL 2 parameter RMIRL).
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Table 6.1-1. Two Pass Dome Transmittance Curve
Fit Coefficients

S ,
T 5o =_Zo A, siné+ B
L=

i A
0 + 0.779685
1 - 1.101869
2 + 10.60400
3 - 35.91640
4 + 48.03514
5 - 22.31322
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TABLE 6.1-2

Field Averaged, Two-Pass Dome Transmittance
Data Normulized to Zero Incidence

DAY OF YEAR
| Hour of Day | 354.75 35,38 81.0 126.63 | 172.25
: i | |
0 0314 L9314 L9319 9326 | .9330
1 0314 L9314 L9318 ¢ .9326  .0228
. = IR
2 9316 .9315 .9318 .  .9324 . .9327
3 9323 .9320  .9319 - .9323  .9326
4 9327 .9326 9326 .9324
5 9332 9331 .9327
6 9335 .9331
Daily Average : .9316  .9316  .9320 9326 .9327
* Hours !
Operation 6.6 7.73 9.61 11.08  11.69
Plant Stop |
Time
(Zenith-75°) | 3.3l 3.86 4.80 5.54 5.84
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Dame Shadowing and Blocking

The major modification made by SERI to the DELSOL 2 code was to add a
calculation of shadowing and blocking due to the dane enclosure material. The
additional shadowing ard blocking is illustrated in Figure 6.1-8. Heliostat
number 1 shadows a part of heliostat number 2. The shadowing of mirror 2 by
mirror 1 represented by area Aj would be calculated by the normal DELSOL 2
routines, However, the dame shadowing represented by regicn A; would not.
Also, since the enclosure material is not opaque, the dame "halo" region must
account for the dame transmission. The SERI modifications used to calculate
the dane shadowing are Aj weighted by the radial intensity function of the
partially transmitting dame material. This dame shadowing and blocking factor
is then added to the mirror shading and blocking factor.

A first order estimate of the dame shading and blocking can be made by
considering the halo region of the dame as being opaque. Using the same
geanetry as in Figure 6.1-8, the total shadowing by mirror plus dame would be

given by
SpeM = A1 +A =Bl (1+82)
Ay Ay |
without the dame, the blocking is given by
Sm = Al/By

These ratios can be calculated and plotted against the heliostat centerline to
centerline spacing as shown in Figure 6.1-9. These data show that the dame
shadowing is only important when the heliostats overlap slightly, i.e., when
the centerline-to-centerline distance is > 1.7 dame radii. Figure 6.1-9 shows
the dane adding about 28% more at 1.7 dame radii or 58% more at 1.8 dame

radii.

These data show that dame shadowing and blocking losses should add at most
0.01 to the total plant shadowing and blocking loss factors. This result is
consistent with previous BEC dame shadowing and blocking evaluations (ref.

6 01-6) .
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6.1.2 Gravity Focus Analysis

A plastic membrane reflector stretched over a support ring will deflect
causing a catenary-type surface. For the small membrane deflections
experienced in the BEC reflector, the surface is very nearly a paraboloid.
With the assumption of a parabolic surface, the focal length, £, of the
gravity focused membrane can be calculated as a function of the membrane
stress,J , the membrane density, Pm , and the elevation argle,oX, by the
followirg

feo T/pwm

SIN &

This relationship is illustrated in Figure 6.1-10. The mirror elevation angle
can be calculated as a function of position in the field, time of day and day
of the year. Assuming a constant membrane stress of ¢ = 1000 psi ard a
membrane density of 4, = 0.043 lbm/in3, the focal length can also be
calculated over the field. As can be seen the focal length varies both
radially anmd azimuthally around ‘the field. As the sun moves, the elevation
angle amd hence the focal length change. '

The DELSOL 2 heliostat focusing options are: no-focus (flat mirrors), focal
length equal to slant range (perfect focus) and user defined focal lengths.
The last option is intended to allow a selection of focal length in each
heliostat row radially fram the tower. However, to calculate annual
perfomance and optimize the field size, tower height, and receiver
dimensions, the focal lermgths per row are maintained constant. There does not
exist a heliostat camputer code which will allow the continucusly changing
reflector focal length.

In order to produce an approximation to the gravity focus case, a DELSOL 2 run
was made for a perfectly focused heliostat, i.e., all focal lengths were set
equal to the slant range. With this field layout, the gravity focused focal
lengths that would be experienced were calculated for each field sector for
the afternoon of day 81, March 21. The average focal length in each radial
row was calculated. Also calculated was the standard deviation for each focal
length average. An hour-by-hour performance calculation was made using DELSOL
2 and the gravity focused focal lengths, The resulting performmance data were
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canpared to the perfect focus ard no focus data for the same heliostat field.
These data have been previously presented in Figure 3.8-1.

6.1.3 Enclosed Heliostat Performance

Figure 6.1-11 presents the design point and annual average plant performance
for the selected enclosed plastic heliostat design.

6.2 Glass Heliostat Reference Case Performance

The heliostat design and perfomance data listed in Table 6.1-3 were provided
by sandia based on their evaluations in the second generation heliostat
program. The cost data supplied by Sandia were in 1980$. The cost basis for
this study is 1983$. An inflation rate of 6%/year was assumed to bring
canponent ccsts to 1983 levels, The assumed unit cost data are presented in
Table 6.1-4.

Based on the performance reguirements of Table 2.0-1, the heliostat
performance of Table 6.1-3, and the unit cost data of Table 6,1-4, the
modified DELSOL 2 code was employed to produce an optimized system design. The
field layout is illustrated in Figure 6.1-12. The design point ard annual
average plant performance is given in Figure 6.1-13. Table 6.1-5 presents a
sumary of the plant design and ccst data. The estimate of busbar energy cost
fran this system is 127 mils/kwhr,

6.3 Heliostat Operation and Maintenance

Operation ard maintenance cost expressed as a percent of installed cost is the
required input to DELSOL. Operations costs consisted primarily of a plant
operator, labor and electrical power required by the blowers, drives and
controls. Maintenance is divided between materials (and equipment) and labor.
Needed materials include washing materials, filters and pre-filters,
replacement parts, and the scheduled replacement enclosures. Labor
requirements are scheduled (enclosure replacement, heliostat washing, filter
changes, aligrment checks) and unscheduled (replacement of failed camponents).
The cost of the enclosure replacement machines is included as a maintenance
item. Heliostat washing equipment and maintenance trucks were included in
heliocstat capital costs under CBS 4460, Site Costs.
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Table 6.1-3.

Heliostat width

Heliostat height

Reflectivity

Ratio of mirror area
to total area

Canting

Cant focal length

Panel focal Tength

No. of cant panels

Std.
Std.
Std.
Std.

deviation elevation
deviation azimuth
deviation surface normal
deviation reflected vector

82

Reference Heliostat Performance Data

8.66m
6.86m
0.92

0.957

on axis

slant range

2.0 tower heights vertical
6.0 tower heights horizontal
14

0.0002

0.0002

0.0012 (horiz. and vert.)
0.0000 (horiz. and vert.)



Component

Heliostat {incl. wiring)
Land
Tower cost parameters

Ref. receiver cost

Ref. receiver area

Ref. rec. pump cost

Ref. storage pump cost
Ref. piping cost - hot
Ref. piping cost - cold
Ref. TES contaimment cost
Ref. TES medium cost
Ref. heat exchanger cost
Ref. EPGS cost

Fixed cost

Table 6.1-4.

Unit Cost Data

19833

DELSOL

Varfab

CH

CL
CTowWl
CTOW2
CTOW3
CREC1
ARECRF
CRPREF
CSPREF
CHPREF
CCPREF
CSTREF
CSTRMD
CHEREF
CEGREF
CFIXED

2
Te

* 113.15 (1983$) = 95 (1980$) x (1.06)3
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Unit Cost

113.15§/M2*

2.50 $/M2

3.403 X 1063
-2.622 X 104s/m2
1.6534 X 102 §/M2
2.92 X 106

1084m2

7.539 x 109%

- 1.6966 x 105%

1.483 x 104 $/m

0. $/m

5.161 x 1063

3.618 x 106g
1.7135 x 106s

30.67 x 106%
7.865 x 106s
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Table 6.1-5. Glass Heliostat Reference Case Plant Design Summary

Number of heliostats 6609
Land area, kmé 1.94
Mirror area, km 0.37
Tower height, m 110m
Receiver height, m 16.8m
width, m 12.0m
b
Direct capital cost, 1063 85.59 100
Land 4.85 5.67
Heliostat 41.95 49.01
Tower 2.58 3.01
Receiver 2.04 2.38
Piping 3.17 3.70
Pumps 0.37 0.43
Storage 5.83 6.81
EPGS | 16.09  18.80
Heat Exchangers 0.86 1.01
~ Fixed 7.87 9.19
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A canponent reliability analysis was performed by the Boeing Aerospace Campany
on the plastic heliostat design to determine failure rates for blowers,
filters, drive actuators, drive motors ard ground anchor assemblies. Control
system failure rate data was detemined for the BEC Prototype Heliostat study
(Reference 3-1) and was used again here.

Heliostat washing costs were based on the BEC Second Generation estimate of 8
washes per year, using 3 machines with 2 operators per machine. Approximately
$8.00 per year per helicstat for washing materials was allotted.

Table 6.3-1 summarizes first year maintenance and operation costs in termms of

$/neliostat ard $/m2. The total cost is $1.94/m2 which equates to 4.34% of
the heliostat capital cost of $44,68/m2,
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Table 6.3~1. Operation and Maintenance Cocst Summary

Element

Maintenance
Materials:
Enclosure replacement
Encl. repl. machines
Washing mat'l.
Filters/prefilters

26 gearboxes
124 motors
98 blowers
3 danes
3 refl.
3 bases
67 HC

Labor - Unscheduled
HC repairs
Drive (G-bcx + motor)
Blower
Enclosure
Reflector
Base

—Scheduled
Enc. replace
Enc. Wash
Filters

Align. check

Field Operations

Field Power
Blower, drives, controls
TCTALS
$ O/M = 1.94
44,68

$/Hel .—¥r,

38.17
1.39
8.00

.40

4.84

3.66

4.39
24.97
«56
1.72

15.90

9.56
114.94

x 100 = 4.34
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.66
.024
.13
.006

.082

.062
.004
.002
.000
.000
.000

.074
.423
.00%
.028

.269

.162
1.94



6.4 Bus-Bar Energy Cost

Results fran the DELSOL analyses are given in Table 6.4~-1. The levelized BREC
was determined to be 110 mils/kW-hr for the BEC plastic heliostat. This
canpares to 127 mils/kiW-hr for the reference case heliostat., Figure 6.4-1
shows side-by-side camparisons of the ';:wo power plant cases.

At first glance one might conclude that the reference case heliostat costs
only 16% more than the plastic helicstat. However, the heliostat only
accounts for 31.7% and 49,0% of the plant costs for plastic and reference
case, respectively. When balance of plant costs are subtracted a more
realistic picture of cost advantage is seen. Figure 6.4-2 makes this
canparison, which is shown to be approximately 38%.
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Table 6.4-1. BEC Plastic Heliostat Power Plant Description

Heliostat

Heliostat refl. area: 59.03me

Heliostat optical performance: 022 = .75
Heliostat installed cost: $44.68/me

Levelized first year heliostat O/M cost: 4.34%

Plant

Elec. power: 50MWe

Tower height: 140 meters

Receiver dimensions: Diameter - 12.0 meters
' Height - 17.25 meters

Number of heliostats: 8018

Land area: 2.424km2

Plant cost: $66.63 x 106

Heliostat costs: $21.15 x 106

Balance of plant cost: $45.48 x 106

Annual elec. production: 167,243 MWa-hr

Levelized BBEC: 110.49 mils/kW-hr
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16

2ND GEN, REF CASE 50 WMe FIELD BEC PLASTIC 50 Mde FIELD

A
A N
T 1050M
825M
Y Yy
N
589M 750M
No. of Heliostats 6609 No. of Heliostats 8018
Land area - . 1.96 KM2 Land Area 2.42 KM2
Tower Helght 110M Tower Helght 140M
Recelver Helght 16.8M Receiver Helght 17.3M
Diameter 12.0M Diameter 12,0M
Level ized BBEC 127 MILS/KW-HR Level ized BBEC 110 MILS/KW-HR
% Hellostat Cost 49,0% % Hellostat Cost 31.7%

FIGURE 6.4-1 POWER PLANT COMPARISON



Hellostat bus-bar energy cost, mil/ kw-hr (1983 $)
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88 Higher cost

Balance of plant
cost substracted

Heliostat costs

Additional bal.
of plant costs

D

BEC Plastic
Capital 45 $/M2

0/M y,34%

2ND GEN. REF. CASE
113 $/M2
1.70

FIGURE 6.4-2 BBEC COMPARISON
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6.5 Sensitivity Analyses

6.5.1 BBEC Sensitivity to Heliostat Capital Cost

Energy costs were detemined for the BEC plastic and reference heliostats with
the values for installed costs increased by 30% and decreased by 30%. These
data, along with baseline values are plotted in Figure 6.5-1. The
sensitivities are identified by the slopes of the plots. For one dollar of
savings per square meter the BEC plastic heliostat would save 0.95 mils/kW-hr,
while the reference Secornd Generation heliostat would save 0.57 mils/ kW-hr.

Figure 6,5-2 is a non-dimensionalized plot of sensitivities. 1In this form the
differences in absolute costs are ignored and the relative sensitivities are
canpared. Fram this point of view the reference heliostat is more sensitive

to capital cost variations,
6.5.2 BBEC Sensitivity to O/M Cost

Energy costs were determined for the BEC plastic and Second Generation
reference case heliostats with the values for O/M costs increased by 30% and
decreased by 30%. These data, along with baseline values are plotted in
Figure 6,5-3. The sensitivities are identified by the slopes., For one
percent of savings the BEC plastic heliostat would save 3.92 mils/kWw-hr, while
the reference Second Generation heliostat would save 7.76 mils/kW-hr.

Figure 6.5~4 is a non~dimensiocnalized plot of O/M sensitivities. In this form
the differences in absolute costs are ignored and the relative sensitivities
are canpared. Fram this point of view the BEC heliostat is more sensitive to

0O/M cost variations.
6.5.3 BBEC Sensitivity to Optical Properties
Energy costs were determined for the BEC plastic helicstat with values for/)f’ 2

for enclosure arnd reflector materials now avdilable, for the baseline
materials ard for theoretically optimum materials./O T2 values are:
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1.06

SENSITIVITY COMPARISON
PERCENT 0&M
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BEC .
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-~
7
1.02 //
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$113.15/m
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1.00
.98
.96
.94
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FIGURE 6.5-4 NON-DIMENSIONALIZED SENSITIVITY BBEC/0&M
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oT?2 Materials

.67 Aluminized PMMA; Kynar
.75 Aluminized PMMA; Specular Kynar
.85 Silvered film; AR coated Kynar

BBEEC data is plotted in Figure 6.5-5. The plot is approximately linear, with
the slope’ indicating the sensitivity. For one unit of0T2 improvement, .8
mil/kWw-hr savings would be realized. For instance, if the baseline value of
.75 is improved to .85 (ten units), an improvement of 8 mils/kW-hr would
result. Obviously, improvements in 2~ are the most effective.
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7.0 CQONCLUSIONS AND RECCMMENDATIONS
7.1 Conclusions

Plastic enclosed heliostats cffer a significant opportunity for collector
subsystem cost reduction. In this study the reference case glass heliostat
was estimated to have a 150% higher capital cost and nearly 40% higher busbar
energy cost cost for a 50-MW, power plant. Further analysis and develcpment
is needed to arrive at the optimum design and to evaluate the péyoff more

precisely.
7.2 Recamendations for Future Research and Development

Areas identified as requiring further research and development are discussed
here, The work is catagorized into "near term" and "longer temm" depending
upeon whether the period of accamplishment would be in the next year or before
1990.

7.2.1 Near Term (1983-1984)

Design and cost analyses should contimue to detemmine capital and busbar
energy costs at high production rates of abcut 250,000 heliostats per year.
This production rate is approximately what would be required to provide 1000
to 2000 MW, additional power per year. It is also the rate at which the
minimum achievable capital cost is expected to occur, Commercial
fabricator(s) would be employed to assist with the production analysis and

pricing.

| Design and fabrication of scale model prototypes is recammended. Camplete
heliostats in the diameter range of 7 to 10 feet should be fabricated and
installed in the field at a southwestern U.S. site for long tem exposure
testing. Thermoformed KYNAR enclosures would be preferred, but gore-formed
enclosures could be provided at some cost savings. Experience fram these
prototypes would be applied to a next generation of larger prototypes.
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while gravity-sag focus was favored over active focus using the analytical
tools available at this time, it is recammended that a more thorough analysis
be performed, This would require same code writing or possible modification
of the existing DELSOL code.

7.2.2 Longer Term (Before 1990)

Thermoforming of large diameter enclosures in at least 2 or 3 steps is
recanmended. This will allow step-wise process development before cammitting
to the large expense of a final, large themmoforming facility. Diameters 'of
less than 10 feet, 20 feet ard finally 30 feet are envisioned. Optical and
mechanical properties evaluations would be performed at each size level to
verify process controls before moving on to the next size.

A continuing materials develcopment program is essential to obtain optimum
perfoming polymeric films. Reflectivity improvements may be realized through
surface improvements of the metallized PMMA or posible silverization of PMMA
or KYNAR. Improvements in the transmissivity of KYNAR may be achieved by
surface coatings or treatments. In addition alternate materials should be
investigated on a contimuing basis.,

New ideas in the area of wiring ard controls should be pursued. At this time

these costs account for about 30% of the capital cost of a plastic heliostat
and are assumed fixed without respect to heliostat size.
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4410
4420
4430
4440
4450

4460

COST BREAKDOWN STHICTURE

DEFINITION

Reflective Assembly

Drives

Controls

Foundation Pedestal

Enclosure

Assembly/Installation (including
field wiring)
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MODEL OPTIONS

STRAIGHT LINE DEPRECIATION

HELCAT OPTIONS AND MODEL PARAMETERS

WITH NO LEARNIKRG CURVE COST REDUCTIONM

PARAMETER MATRIX

FACTORY SITE TRANSPORTATION
1 DURATION OF CCOST PROJECTION - YEARS 10.0600 10,000 10.000
2 BASE RATE DIRECT LABOR COST - $/HOUR 10.580 17.230 15.000
3 BASE RATE PROD FACILITY COST - $/SQFT 50.000 0.000 0.000
% LAND COST FOR PROD FACILITY -~ S$/ACRE 20000.000 9.000 6.000
5 INFLATION RATE L0690 .060 .060
6 RETURN TO BOND HOLDERS .102 .102 102
7 RETURN 10 EQUITY HOLDERS .166 .166 .166
8 COMBINED IHCOME TAX RATE -560 .500 .500
9 INVESTMENT TAX CREDIT .100 .100 .100
10 EQUITY FRACTION .800 .800 .800
11 PROPERTY TAX AND INSURANCE FRACTICN .040 .040 040
12 PURCHASED MATERIAL SCRAP FRACTION .0190 .010 .010
13 MAINTENANCE FRACTION 020 .040 .040
14 GENERAL AND ADMINISTRATIVE FRACTION 090 0.000 0.000
15 WORKING CAPITAL FRACTION 170 0.000 0.000
16 RAW MATERIAL SCRAP FRACTION .030 .030 .030
17 TOOLING LIFETIME (ACCOUNTING) - YEARS 5.000 5.000 5.000
18 EQUIPMENT LIFETIME (ACCOUNTING) - YEARS 10.0060 10.000 10.000
3519 FACILITY LIFETIME (ACCOUNTING) - YEARS 30.000 30.000 30.000
120 FACILITY CONSTRUCTION PERIOD - YEARS J.coc 0.000 0.000
21 FACILITY PLANT EHGINEERING FRACTION .108 ¢.000 0.000
22 FACILITY STARTUP QUANTITY 20000.000 ¢.000 0.000
23 COST REDUCTION COEFFICIENT - START UP .92¢ 6.000 0.000
24 TOOLING LIFETIME (TAX) - YEARS 3.000 3.000 3.000
25 EQUIPMENT LIFETIME (TAX) - YEARS §.000 8.000 8.000
26 FACILITY LIFETIME (TAX) - YEARS 25.00¢ 25.000 25.000
27 BASE RATE TRANS COST - $/LB 035 .035 .035
28 INDIRECT FRACTION - LABOR .270 .300 .300
29 INDIRECT FRACTION - MATERIAL 004 0.000 0.000
30 INDIRECT FRACTVTION - TOOL'G,EQUIP'T,FAC'Y .006 0.000 0.000
SPECIAL COST MATRICES
CATEGORY FACILITY LABOR TRANSPORT
HUMBER $75Q F7T $/HR (UNITS VARY)
1 40. 9.00 650.000 $/TRKLOAD
2 60. 12.00 130.000 $/TRKLOAD
3 80. 18.¢06 0.000
4 100. 21.08 0.000
5 120. 25.00 ¢.000
6 140. 30.00 0.000
7 0. 0.00 0.000
8 0. ‘ 0.00 6.000
9 0. 0.00 0.000

REFERENCE QUANTITY, COST REDUCTION COEFFICIENT

FACTORY SITE/TRANSPORT



086"
086"

‘'o0004
‘Ta0D0%

06"
096"

‘T00d0s
“°00000T

409v1
SIVIYdLVW

A-5



BEC PLASTIC SELECTED DESIGN B
4410 FACTORY €O0O575

KEY TO ENTRY TYPES

M=RAW MATERIALS

5=SUPPLIES AND CONSUMABLES
B=BUILDING OR FACILITY SIZE
X=TRANSPORTATION REQUIREMENTS

ITEM

ENTRY TYPE=M 4410
SOURCE:RYERSON

ENTRY TYPE=M 4410
SOURCE: ROHMEHAAS
ENTRY TYPE=M 4410

SOURCE:BEC PROTOTYPE

P=PURCHASED MATERIALS
T=TOOLING

A=LAND FOR PRODUCTION FACILITY
Y=SITE-RETAINED CAPITAL

QUANTITY UNITS

REFLECTOR STRUCTURE
REFLECTOR MEMBRANE PMMA RESIN

REFLECTOR MEMBRANE ADHESIVES

ENTRY TYPE-E 4410 PROCESS EQUIP. PMMA EXTRUDER
SOURCE:PENHNALT EST.
ENTRY TYPE=E %410 PROCESS EQUIP. BIAXIAL ORIENT.
?- SOURCE:PENNWALT EST.
GENTRY TYPE=E 4410 PROCESS EQUIP. METALIZER
SOURCE:AIRCO TEMESCAL
ENTRY TYPE=E 4410 PROCESS EQUIP. COATER
SOURCE:BEC EST,
ENTRY TYPE=E 4410 PROCESS EQUIP. SCRAP GRINDER
SOURCE:PENNUWALT
ENTRY TYPE=E 4410 FPROCESS EQUIP. MEMBRAME PANELS
SOURCE:BEC EST.
ENTRY TYPE=E 4410 PROCESS EQUIP. MEMBR TO STRUCTURE
SOURCE:BEC PROTOTYPE
ENTRY TYPE=L 4410 FACTORY LABOR REFL. MEMBRANE CMF .1490E+01
SOURCE:BEC EST.
ENTRY TYPE=-B 5410 REFLECTOR FACILITIES CHNF .6000E+05
SOURCE:BEC .
ENTRY TYPE=A 4410 REFLECTOR LAND CMF -4000E+01

SOURCE:BEC

ENTRY TYPE=Q 44140

REFLECTDR QTY-YR

.5000E+05

HRS

SQFT

ACRE

YR

L=DIRECT LABOR HOURS

E=EQUIPMENT -

Q=QUANTITY

Z=SUBCONTRACTS AND FLOW-THROUGH EXPENSES

UNIT
COs5T

TOTAL
COSF

162.00 ~ HELIOSTATY

20.14

/ RELIOSTAT

10.71

/7 HELIOSTAT

500000.

2000000,

6000000,

1900000,

50000.

150000.

1660000,

7 HELTOSTAT



L=y

TOTAL PURCHASED MATERIALS= 0.00 $/HELIOSTAT

TOTAL RAW MATERIALS= 192.85 S/HELIOSTAT

TOTAL (BASE RATE CDS5T CATEGORY) DIRECT LABOR= 1.4400 HRS/HELIOSTAY
TOTAL CONSUMABLES= 0.00 $/HELIOSTAT

LARD REQUIRED= 4.0000 ACRES

PRODUCTION FACILITY (BASE RATE COST CATEGORY) SIZE= 60000. 5Q FT
TOTAL EQUIPMENT COS5T= 11360000. $

TOTAL TOOLING CO5T= 0, $

QUANTITY= 50000. 7 YEAR

TOTAL DIRECT LABOR COST= 15.24 $/HELIOSTAT

TOTAL PRODUCTION FACILITY COST Joop000. $



ENTRY TYPE=Z

ENTRY TYPE=Q

8-V

BEC PLASTIC SELECTED DESIGH B

4420 FACTORY COSTS

KEY TO ENTRY TYPES

M=RAK MATERIALS

5=SUPPLIES ARD CONSUMABLES
B=BUILDING OR FACILITY SIZE
X=TRANSPORTATION REQUIREMEHNTS

P=PURCHASED MATERIALS
T=TOOLING '

A=LAND FOR PRODUCTIORN
Y=SITE-RETALNED CAPIT

ITEM

4420 GIMBAL ACTUATOR

SOURCE:WINSMITH

6620 GIMBAL QTY/YR

TOTAL PURCHASED MATERIALS= 0.00 $/HELIOSTAT

TOTAL RAW MATERIALS= 0.00 $/HELIOSTAT

TOTAL (BASE RATE COST CATEGORY) DIRECT LABOR= 0.0000
TOTAL COHSUMABLES= 0.00 S/HELIOSTAT

LAKRD REQUIRED= 0.6000 ACRES

FRODUCTION FACILITY (BASE RATE COST CATEGORY) SIZE=
TOTAL EQUIPMENT COST= 0. $

TOTAL TOOLING COST= 0. $

QUARTITY= 50000. 7 YEAR

TOTAL SUBCONTRACTS AND FLOW-THROUGH EXPENSES= 251.00

0.

FACILITY
AL

QUANTITY UNITS

.5000E+05

HRS/HELIOSTAT

Se@ FT

$/HELIOSTAT

L=DIRECT LABOR HOURS

E=EQUIPMENT

Q=QUANTITY

Z=SUBCONTRACTS AHD FLOW-THROUGH EXPEMNSES

UNIT TOTAL
€O5T COST
251.00 7 HELIQSTAY

/YR



BEC PLASTIC SELECTED DESIGH B
9430 FACYORY COSY¥S

KEY TO EHTRY TYPES

M=RAW MATERIALS

S=SUPPLIES AND CONSUMABLES
B=BUILDIHG OR FACILITY SIZE
X=TRAHNSPORTATION REQUIREMENTS

ITEM

ENTRY TYPE=Z 4430 CONTROLS
SOURCE:2HD GEN CONTRACTOR AVG

ENTRY TYPE=Z 4430 CONRTROLS BCS
SOURCE:SANDIA ZND GEN
ENTRY TYPE=Q 4430 CONTROLS QTY

TOTAL PURCHASED MATERIALS=
TOTAL RAW MATERIALS=

TOTAL (BASE RATE COS5T CATEGORY) DIRECT LABOR=

P=PURCHASED MATERIALS
T=TOOLING

A=LAND FOR PRODUCTION FACILITY
Y=SITE-RETAINED CAPITAL

E=ZEQUIPMERT
Q=QUANTITY

QUARTITY UNITS UNIT
CosT

.5000E+05 /YR

0.00 S/HELIOSTAT
0.00 $/HELIOSTAT

0.0000 HRS/HELIOSTAT

i: TOTAL CONSUMABLES= 0.00 $/HELIOSTAT
LAND REQUIRED= 0.0000 ACRES
PRUDUCTION FACILITY (BASE RATE COST CATEGORY) SIZE= 0. Sq FT
TOTAL EQUIPMENT COST= 0. $
TOTAL TOOLING COST= 0. $
QUANTITY= 50000. 7 YEAR
TOTAL SURCOHTRACTS AKRD FLOW-THROUGH EXPENSES= %17.75 $/HELIOSTATY

L=DIRECT LABOR HOURS

2=SUBCOHTRACTS AND FLOW-THROUGH EXPENSES

TOTAL

COsT

399.00 ~ HELYOSTAT
18.75 7 HELIOSTAT



BEC PLASTIC SELECTED DESIGH B
4440 FACTORY COSTS

KEY TO ENTRY TYPES

M=RAW MATERIALS P=PURCHASED MATERIALS L=DIRECT LABOR HCURS
S=SUPPLIES AND CONSUMABLES T=TOOLING E=EQUIPMENT
B=DBUILDING OR FACILITY SIZE A=LAND FOR PRODUCTION FACILITY Q=QUANTITY
X=TRANSPORTATION REQUIREMEHTS Y=SITE-RETAINED CAPITAL Z=SUBCONTRACTS AND FLOW-THROUGH EXPENSES
ITEM QUANTITY UNITS UNIT TOTAL
€asT cosT
ENTRY TYPE=M 4440 BASE DISH KYNAR 108.00 ~ HELIOSTAT
SOURCE:PENHIALT
ENTRY TYPE=M 4440 SUPPORT/FOUNDATION/BLOWER 163.00 /7 HELIOSTAY
SOURCE:BEC '
ENTRY TYPE=S 4440 BASE PACKAGING %.00 /7 HELIOSTAY
SDURCE:BEC
ENTRY TYPE=T 4640 TOOLING KYNAR EXTRUSION CMF 1200000.
SOURCE:PENNWALT/BEC
~ENTRY TYPE=T 4640 TOOLING KYNAR THERMOFORMING CMF 600000.
1, SOURCE:PENNIALT/BEC
ENTRY TYPE=T G440 TOOLING SUPPORT PARTS CMF 200000,
SOURCE:BEC
ENTRY TYPE=L 46460 LABOR KYNAR THERMOFORMIKNG CMF -1000E+01 HRS 7 HELIOSTAT
SOURCE:BEC
ENTRY TYPE=L 4440 LABOR SUPPORT PARTS CMF -5500E+00 HRS - HELIOSTAT
SOURCE:BEC
ENTRY TYPE=B 4440 BASE FACILITY CHF -1000E+06 SQFT
SOURCE:BEC
ENTRY TYPE-A 4440 BASE LAND .6000E+01 ACRE
SOURCE:BEC
ENTRY TYPE=Q 46440 BASE QTY .5000E+05 ~rYR
TOTAL PURCHASED MATERIALS= 0.00 S/HELIOSTAT
TOTAL RAW MATERIALS= 271.00 S/HELIOSTATY
TOTAL (BASE RATE COST CATEGORY) DIRECT LABOR= 1.5500 HRS/HELIODSTAT
TOTAL COHSUMABLES= 4.00 $/HELIOSTAT
LAND REQUIRED= 6.0000 ACRES
PRODUCTION FACTILITY (BASE RATE COST CATEGORY) SIZE= 100000. 5Q FT
TOTAL EQUIPMENRT COST= $

0.
TOTAL TOOLIHG COS5T= 2000000, $
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BEC PLASTIC SELECTED DESIGN B
4950 FACTORY COSTS

KEY TO ENTRY TYPES

M=RAW MATERIALS P=PURCHASED MATERIALS L=DIRECT LABOR HOURS
S=SUPPLIES AND CONSUMABLES T=TOOLING E=EQUIPMENT
B=BUILDING OR FACILITY SIZE A=LAND FOR PRODUCTION FACILITY Q=QUANTITY
X=TRANSPORTATION REQUIREMENTS Y=SITE-RETAIRED CAPITAL Z=SUBCONTRACTS AND FLOW-THROUGH EXPENSES
ITEM QUANTITY UNITS UNIT TOTAL
cosT COsT
ENTRY TYPE=M 4450 ENCLOSURE KYNAR 364.00 ~ HELIOSTAT
SOURCE:PENNWALT
ENTRY TYPE=S 4450 ENCLOSURE PACKAGING 2.00 s HELIOSTAT
SOURCE:BEC
ENTRY TYPE=T 4450 ENCOSURE TOOLING EXTRUDER CMF 1800000,
SOURCE:PENNWALT/BEC
ENTRY TYPE=T 4650 ENCLOSURE TOOLING THERMOFORM CMF 750000,
SOURCE:PENHWALT/BEC
$ENTRY TYPE=L 4650 FACTORY LABOR CHMF .2500E+01 HRS -/ HELIOSTAT
] SOURCE:BEC
N ,
ENTRY TYPE=B 4650 ENCLOSURE FACILITY CMF -1200E+06 SQFT
SCURCE:BEC
ENTRY TYPE=A 4450 ERCLOSURE LAND .7000E+01 ACRE
SOURCE:BEC
EHTRY TYPE=Q 4450 ENCLOSURE QTY -5000E+D5 /YR
TOTAL PURCHASED MATERIALS= 0.00 S/HELIOSTAT
TOYAL RAMW MATERIALS= 364.00 S/HELIOSTAT
TOTAL (BASE RATE COST CATEGORY) DIRECT LABOR= 2.5000 HRS/HELIOSTAT
TOTAL CONSUMABLES= 8.00 $/7HELIOSTAT
LAND REQUIRED= 7.0000 ACRES
PRODUCTION FACILITY (BASE RATE COST CATEGORY) SIZE= 120000. 5Q FT
TOTAL EQUIPMENT COST= 0. $
TOTAL TOOLING COS5T= 2550000. $
QUANTITY= 50000. / YEAR
TOTAL DPIRECT LABOR COST= 26.45 S/HELIOSTAT

TOTAL PRODUCTION FACILITY COST 6000000. $



BEC PLASTIC SELECTED DESIGN B
%460 FACTORY COSTS

KEY TO EHTRY TYPES

M=RAK MATERIALS P=PURCHASED MATERIALS L=DIRECT LABOR HOURS
S=SUPPLIES AND CONSUMABLES T=TOOLING E=EQUIPMENT
B=BUILDING OR FACILITY SIZE ASLAND FOR PRODUCTION FACILITY Q=QUANTITY
X=TRANSPORTATION REQUIREMENTS Y=SITE-RETAINED CAPITAL Z=SUBCONTRACTS AND FLOW-THROUGH EXPENSES
ITEM QUANTITY UNITS UNIT TOTAL
cosT coST
ENTRY TYPESB 4460 REFLECTOR FACILITIES SAB .4000E+05 SQFT
SOURCE:BEC
TOTAL PURCHASED MATERIALS= 0.00 $/HELTOSTAT
TOTAL RAW MATERIALS= 0.00 $/HELIOSTAT
TOTAL (BASE RATE COST CATEGORY) DIRECT LABOR= 8.0000 HRS/HELIOSTAT
TOTAL CONSUMABLES= 0.00 $/HELIOSTAT
LAND REQUIRED= 0.0000 ACRES
PENDUCTION FACILITY (BASE RATE COST CATEGORY) SIZE= 40000. SQ FT
TOTAL EQUIPMENT COST= . $
3= TOTAL TOOLING €OST= 0. $
Lo QUANTITY= 0. / YEAR

w TOTAL FRODUCTION FACILITY COST 2000000.

DEFAULT QUANTITY USED IN PROFIT CENTER CALCULATION
DEFAULT QUANTITIES = 30000.(FACTCORY), 5400.(TRANSPORY/SITE)



BEC PLASTIC SELECTED DESIGN B
4660 SITE COSTS

KEY TO ENTRY TYPES

M=RAW MATERIALS P=PURCHASED MATERIALS L=DIRECT LABOR HOURS
STSUPPLIES AND CONSUMABLES T=TOOLING E=EQUIPMENT
B=BUILDING OR FACILITY SIZE A=L AND FOR PRODUCTION FACILITY Q=QUANTITY
X=TRANSPORTATION REQUIREMENTS Y=SITE-RETAINED CAPITAL Z=SUBCONTRACTS AND FLOW-THROUGH EXPENSES
ITEM QUANTITY UNITS UNIT TOTAL
CosT cosT
ENTRY TYPE=L 4460 SITE LABOR .5400E+01 HRS - HELIOSTAT
SODURCE:BEC
ENTRY TYPE=M 5460 FIELD WIRING 326.00 - HELIOSTAT
SOURCE:2ND GEN CONTRACTOR AVG
ENTRY TYPE=L 4460 INST. €0 LABOR : -3300E+01 HRS / HELIOSTAT
SOURCE:BEC
ERTRY TYPE=T 4460 SITE TODLING -3000E+01 YR 50000.
SOURCE:BEC
&HTRY TYPE=L 4460 SITE SURVEY .2500E+00 HRS / HELIOSTAT
1 SODURCE:BEC
z .
ENTRY TYPE=Z 4460 INITIAL CALIBR. 7.18 7 HELIOSTAT
SOURCE:BEC
ENTRY TYPE=Y 4460 SITE EQUIPMENT 1200060,
SOURCE:BEC
ENTRY TYPE=Y 44690 WASHING EQUIP. 225000.
SOURCE:STAR EQUIP. CO, .
ENTRY TYPE=Y 4460 MAINT VANS ‘ 3o000.
SOURCE:BEC
ENTRY TYPE=Q 4660 INST C/0 QTY .8000E+04 rSTE
TOTAL PURCHASED MATERIALS= 0.00 S/HELIOSTAT
TOTAL RAW MATERIALS= 326.00 S/HELIOSTAT
TOTAL (BASE RATE COST CATEGORY)> DIRECT LABOR= 8.9500 HRS/HELIOSTAT
TOTAL CONSUMABLES= 0.00 S/HELIOSTAT
WEIGHTED EQUIPMENT COST= 0, $ TIMES YEARS USED - SITE
QUANTITY= 2000. / SITE
TOTAL SUBCONTRACTS AND FLOW-THROUGH EXPEMSES= 7.18 $/HELTIOSTAT

TOTAL SITE-RETAINED CAPITAL= 375000.00 §
TOTAL DIRECT LABOR COST= 156.21 S/HELTOSTAT



BEC PLASTIC SELECTED DESIGN B
4410 TRANSPORTATION CDSTS

KEY TO ENTRY TYPES

M=RAW MATERIALS P=PURCHASED MATERIALS L=DIRECT LABOR HOURS
S=SUPFLIES AND CONSUMABLES T=TOOLING E=EQUIPMENT
B=BUILDING OR FACILITY SIZE A=LAND FOR PRODUCTION FACILITY Q=QUANTITY
X=TRANSPORTATION REQUIREMENTS Y=SITE-RETAINED CAPITAL Z=SUBCONTRACTS AND FLOW-THROUGH EXPENSES
ITEM QUANTITY UNITS UNIT TOTAL
cosT COsST
ERTRY TYPE=X 4410 REFL TRANS TO SITE .6300E-91 TRUCKLOADS
SPECTAL TRAMSPORTATION COST CATEGORY 1
SOURCE:BEC
ENTRY TYPE=Q 410 REFLECTOR QTY/SITE .8000E+04% /5TE
TOTAL PURCHASED MATERIALS= 0.0¢0 S/HELTIOSTATY
TOTAL RAW MATERIALS= 0.00 $/HELIOSTAT
TOTAL (BASE RATE COST CATEGORY) DIRECT LABOR= 0.0000 HRS/HELTIOSTAT
TOTAL CONSUMABLES= 0.60 S/HELIOSTAT
WEIGHTED EQUIFMENT COST= 0. $ TIMES YEARS USED - SITE
QUANTITY= 3000, # SITE
%’ SPECIAL TRANSPORTATION COST CATEGORY 1 = .063 TRUCKLOADS
s INFUT (NOT COMPUTED) TRANSPORTATIOH COST 40.95 $

(2]



BEC PLASTIC SELECTED DESIGN B
4420 TRANSPORTATION COSTS

KEY TO ENTRY TYPES

M=RAlL MATERIALS P-PURCHASED MATERIALS L=DIRECT LABDR HOURS
S=SUPPLIES AHD CONSUMABLES T=TOOLING E=EQUIPMENT
B=BUILDING OR FACILITY SIZE A=LAND FOR PRODUCTION FACILITY Q=QUANTITY
X=TRANSPORTATION REQUIREMENTS Y=SITE-RETAINED CAPITAL Z=SUBCONTRACTS AND FLOW-THROUGH EXPEMSES
ITEM QUANTITY UNITS URIT - TOTAL
. COsT CosT
ENTRY TYPE=X 4420 DRIVE TRANS T0 SITE .4000E-D3 TRUCKLOADS
SPECIAL TRANSPORTATION COST CATEGORY 1
SOURCE:BEC
ERTRY TYPE=Q 4429 DRIVE QTY TO SITE .3000E+04 rSTE
TOTAL PURCHASED MATERIALS= 0.00 S/HELIOSTAT
TOTAL RAW MATERIALS= 0.00 $/HELIOSTAT
TOTAL (BASE RATE COST CATEGORY) DIRECT LABOR= 0.0000 HRS/HELIOSTAT
TOTAL COHSUMABLES= .00 S/7HELIOSTAT
+ WEIGHTED EQUIPMENT COST= 0. $ TIMES YEARS USED s SITE
t QUANTITY= 8000, s SITE
= SPECIAL TRANSPORTATION COST CATEGORY 1 = .000 TRUCKLODADS
INPUT (NOT COMPUTED) TRANSPORTATION COST .26 $



BEC PLASTIC SELECTED DESIGH B
4440 TRANSPORTATION COSTS

KEY TO0 ENTRY TYPES

M=RAW MATERIALS P=PURCHASED MATERIALS L=DIRECT LABOR HOURS
S=SUPPLIES AND CONSUMABLES T=TOOLING E-EQUIPMENT
B=BUILDING OR FACILITY SIZE A=LAND FOR PRODUCTION FACILITY Q=QUANTITY
X=TRAHSPORTATION REQUIREMENTS Y=SITE-RETAIRED CAPITAL Z=SUBCONTRACTS AND FLOW-THROUGH EXPENSES
ITEM QUANTITY UNITS UNIT TOTAL
cosY COST
ENTRY TYPE=X 444640 BASE TRANS TO SITE .4000E-01 TRUCKLOADS
SPECIAL TRANSPORTATION COST CATEGORY 1
SOURCE:BEC
ENTRY TYPE=Q 4460 BASE QTY T0 SITE .8000E+04 /STE
TOTAL PURCHASED MATERIALS= 0.00 $/HELIOSTAT
TOTAL RAW MATERIALS= 0.00 $/HELIOSTAT
TOTAL (BASE RATE COST CATEGORY) DIRECT LABOR= 0.0000D HRS/HELIOSTAT
TOTAL COHSUMABLES= 0.00 $/HELIOSTAT
WEIGHTED EQUIPMENT COST= 0. $ TIMES YEARS USED 7 SITE
QUANTITY= 8000, s SITE
%’ SPECIAL TRANSPORTATION COST CATEGORY 1 = . 040 ;RUCKLUADS

v INPUT (NOT COMPUTED) TRANSPORTATION COST 26.00



BEC PLASTIC SELECTED DESIGN B
4650 TRANSPORTATION COSTS

KEY TO ENTRY TYPES

M=RAW MATERIALS P=PURCHASED MATERIALS L=DIRECT LABOR HOURS
S=SUPPLTES AND CONSUMABLES T=TOOLING E=EQUIPMENT
B=BUILDING OR FACILITY SIZE A=LAND FOR PRODUCTION FACILITY Q=QUAHNHTITY
X=TRANSPORTATION REQUIREMENTS Y=SITE-RETAINED CAPITAL Z=SUBCONTRACTS AND FLOW-THROUGH EXPENSES
ITEM QUANTITY UNITS UNIT TOTAL
cosT COST
ENTRY TYPE=X 4950 - ENCLOSURE 70 SITE .B0GO0E~01 TRUCKLDADS
SPECIAL TRAHSPORTATIOH COST CATEGORY 1
SOURCE:BEC
ENTRY TYPE=Q 4450 ENCLOSURE QTY TO SITE .BOOOE+04 ~/STE
TOTAlL PURCHASED MATERIALS= 0.00 S/HELTOSTAT
TOTAL RAW MATERIALS= 0.00 $/HELIOSTAT
TOTAL (BASE RATE COST CATEGORY) DIRECT LABOR= 0.0000 HRS/HELIOSTATY
TOTAL CONSUMABLES= 0.00 $/HELIDSTAT
WEIGHTED EQUIPMENT COST=. 0. $ TIMES YEARS USED - SITE
QUANTITY= 8000. /7 SITE
1 SPECIAL TRANSPORTATION COST CATEGORY 1 = .080 TRUCKLOADS
& INPUT (HOT COMPUTED) TRANSPORTATION COSYT 52.00 $



61-v

HELIOSTAT COST MODEL
DETAILED BREAKDOWN

BEC PLASTIC SELECTED DESIGN B
4410 - REFLECTIVE ASSEMBLY

FACTORY COSTS
PRODUCTION YEAR 1

TOTAL REQUIRED REVENUE

DIRECT MATERIALS
PURCHASED MATERIALS
RAW MATERIALS
SCRAP

DIRECT LABCOR

CONSUMABLES

INDIRECT COSTS
MAINTENANCE, PLANT ENGINEERING
OTHER INDIRECTS

CAPITAL REPLACEMENT ALLOWANCE

PROPERTY TAX AND INSURANCE

GENERAL & ADMINISTRATIVE
INTEREST EXPENSE

INCOME TAXES

RETURN TO EQUITY HOLDERS

OTHER EXPENSES
ANHUALIZED ONE-TIME COSTS

0.00
192,85
5.79

198.64

15.24
6.00

12.28

20.38
7.01

23.14

3.58
20.89
23.29

3z27.21
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HELTOSTAT COST MODEL
DETAILED BREAKDOWN

BEC PLASTIC SELECTED DESIGN B

4420 - DRIVES
FACTORY COSTS
PRODUCTION YEAR 1

TOTAL REQUIRED REVEKUE

- DIRECT MATERIALS
PURCHASED MATERIALS
RAW MATERIALS
SCRAP
DIRECT LABOR

CONSUMABLES

INDIRECT COSTS )
MAINTENANCE, PLANT ENGINEERING
GTHER INDIRECTS

CAPITAL REPLACEMENT ALLOWANCE

PROPERTY TAX AND INSURANCE

GENERAL & ADMINISTRATIVE
INTEREST EXPEMNSE

INCOME TAXES

RETURN 70 EQUITY HOLDERS

OTHER EXPENSES
SUBCONTRACTS & FLOW-THROUGH

0.00
0.00
0.00

251.00

0.00

¢.08
0.00

Qo

.40

.00
.00
.90

o o a 9

-90

251.090

251.00
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HELIOSTAT COST MODEL
DETAILED BREAKDOWN

BEC PLASTIC SELECTED DESIGH B

6430 - CONTROLS
FACTORY COSTS
PRODUCTION YEAR 1

TOTAL REQUIRED REVENUE

DIRECT MATERIALS
PURCHASED MATERIALS
RAW MATERIALS
SCRAP

DIRECT LABOR

CONSUMABLES

INDIRECT COSTS
MAINTENANCE, PLANT ENGINEERING
OTHER INDIRECTS :

CAPITAL REPLACEMENT ALLOWANCE

PROPERTY TAX AND INSURANCE

GENERAL & ADMINISTRATIVE
INTEREST EXPENSE

INCOME TAXES

RETURN TO EQUITY HOLDERS

OTHER EXPENSES :
SUBCONTRACTS & FLOWM-THROUGH

0.00
0.00
0.00

%#17.75

0.00

0.00
g.00

0.00
9.00

0.00
0.00
g.00
6.00

417.75

417.75
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HELIOSTAT COST MODEL
DETAILED BREAKDOLUN

BEC PLASTIC SELECTED DESIGN B
444G - FOUNDATION/PEDESTAL

FACTORY COSTS
PRODUCTION YEAR 1

TOTAL REQUIRED REVENUE

DIRECT MATERIALS
PURCHASED MATERIALS
RAW MATERIALS
SCRAP

DIRECT LABOR

CONSUMABLES

INDIRECT COSTS
MAINTENANCE, PLANT ENGINEERING
OTHER IHDIRECTS

CAPITAL REFPLACEMEHWT ALLOWANCE

PROPERTY TAX AND INSURANCE

GENERAL & ADMINISTRATIVE
INTEREST EXPENSE

INCOME TAXES

RETURN TO EQUITY HOLDERS

OTHER EXPENSES
ANNUALIZED ONE-TIME COSTS

0.00
271.00
8§.13

279.

29.
.96
.64

14

16.

13

.40
.00

. 04

.68
.82

30

¢0

.14

388.61
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HELIOSTAT COST MODEL
DETAILED BREAXDOWN

BEC PLASTIC SELECTED DESIGN B

4450 -~ ENCLOSURE
FACTORY €OSTS
FRODUCTION YEAR 1

TOTAL REQUIRED REVENUE

DIRECT MATERIALS
PURCHASED MATERIALS
RAW MATERIALS
SCRAP

DIRECT LABOR

CONSUMABLES

INDIRECT COSTS
MAINTENANCE, PLANT ENGINEERING
OTHER INDIRECTS

CAPITAL REPLACEMENT ALLOWANCE

PROPERTY TAX AND IHSURANCE

GENERAL & ADMINISTRATIVE
INTEREST EXPENSE

INCOME TAXES

RETURN TO EQUITY HOLDERS

OTHER EXPENSES
ANHUALIZED ONE-TIME COSTS

.00
.00
.92

.42
.48

.06

374.

26.
.00

39.
.15
18.
.54

24

92

45

.90

.19

24

83

.06

527.15
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HELIOGSTAT COST MODEL
DETAILED BREAKDOWHN
BEC PLASTIC SELECTED DESIGN B
6460 - ASSEMBLY/INSTALLATION
FACTORY COSTS
PRODUCTION YEAR 1

TOTAL REQUIRED REVENUE

DIRECT MATERIALS

PURCHASED MATERIALS 0.00
RAW MATERIALS 0.00
SCRAP 06.00
DIRECT LABOGR
CONSUMABLES
INDIRECT COSTS
MAINTENANCE, PLANT ENGINEERING -80
OTHER INDIRECTS .24

CAPITAL REPLACEMENT ALLOWANCE
PROPERTY TAX AND INSURANCE

GENERAL & ADMINISTRATIVE
INTEREST EXFENSE

INCOME TAXES

RETURN 70 EQUITY HOLDERS

OTHER EXPENSES
ANRUALIZED ONE-TIME CGSTS .51

8.00
0.00

.88
.80

.28
.41

2.50
-2.66

.51

.09
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HELIOSTAT COST MODEL
DETAILED BREAKDOWN

BEC PLASTIC SELECTED DESIGN B
4460 - ASSEMBLY/INSTALLATION

SITE COSTS
PRODUCTION YEAR 1

TOTAL REQUIRED REVENUE

DIRECT MATERIALS
PURCHASED MATERIALS
RAW MATERIALS
SCRAP

DIRECT LABOR

CONSUMABLES

INDIRECT COSTS
MAINTENANCE, PLANT ENGINEERING
OTHER INDIRECTS

CAPITAL REPLACEMENT ALLOWANCE

PROPERTY TAX AND INSURANCE

GENERAL & ADMINISTRATIVE
INTEREST EXPENSE

INCOME TAXES

RETURN TO EQUITY HOLDERS

-

OTHER EXPENSES
SUBCONTRACTS & FLOW-THROUGH
SITE-RETAINED CAPITAL

335.
0.00
326.00
9.78
154.
0.
47.
75
46.26
3
0
56,
7.18

46 .88

78

21
00

01

-19
.29

.00
.15
.55
.96

06

596.18
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HELIOSTAT COST MODEL
DETAILED BREAKDOWN
BEC PLASTIC SELECTED DESIGN B
4410 -~ REFLECTIVE ASSEMBLY
TRANSPORTATION COSTS
PRODUCTION YEAR 1

TOTAL REQUIRED REVENUE

DIRECT MATERIALS
PURCHASED MATERIALS
RAW MATERIALS
SCRAP

DIRECT LABOR

CONSUMABLES

INDIRECT €OSTS
MAINTENANCE, PLANT ENGINEERING
OTHER INDIRECTS

CAPITAL REPLACEMENT ALLOWANCE

PROPERTY TAX AND INSURANCE

GEHERAL & ADMINISTRATIVE
INTEREST EXPENSE

TNHCOME TAXES

RETURN 70 EQUITY HOLDERS

OTHER EXPENSES
TRANSPORTATION CHARGES

0.00
0.00
0.090
0.00

0.00

¢.00

0.00
0.00
0.00

0.¢60

0.00

0.00

0.00

0.00

0.00

40.95

40.95

40.95



L2-Y

HELTOSTAT COST MODEL
DETATLED BREAKDOWN
BEC PLASTIC SELECTED DESIGN B
4420 - DRIVES
TRANSPORTATION COSTS
PRODUCTION YEAR 1

TOTAL REQUIRED REVENUE

DIRECT MATERIALS
PURCHASED MATERIALS
RAW MATERIALS
SCRAP

DIRECT LABOR

CONSUMABLES

INDIRECT COSTS
MAINTENANCE, PLANT ENGINEERING
OTHER INDIRECTS

CAPITAL REPLACEMENT ALLOWANCE

PRGPERTY TAX AND INSURANCE

GENERAL & ADMINISTRATIVE
INTEREST EXPENSE

INCOME TAXES

RETURN TO EQUITY HOLDERS

OTHER EXPENSES
TRANSPORTATION CHARGES

(NN
ocooo
XN~

.26

0.00
0.00

0.00

0.00

.26

.26
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HELIOSTAT COST MODEL
DETAILED BREAKDOWN
BEC PLASTIC SELECTED DESIGN B
44640 - FOUNDATION/PEDESTAL
TRAHSPORTATION COSTS
PRODUCTION YEAR 1

TOTAL REQUIRED REVENUE

- DIRECT MATERIALS
PURCHASED MATERIALS
RAW MATERIALS
SCRAP
DIRECT LABOR

CONSUMABLES

INDIRECT COSTS
MAINTENANCE, PLANT ENGINEERING
OTHER INDIRECTS

CAPITAL REPLACEMENT ALLOWANCE

PROPERTY TAX AND INSURANCE

GENERAL & ADMINISTRATIVE
INTEREST EXPENSE

INCOME TAXES

RETURN TO EQUITY HOLDERS

OTHER EXPENSES
TRANSPORTATION CHARGES

0.00
0.00
0.00
0.00

0.00

0.00

0.00
0.00
6.00

0.00

0.00

0.00

.00

¢.00

8.00

26.00

26.00

26.00
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HELIOSTAT COST MODEL
DETAILED BREAKDOWN
BEC PLASTIC SELECTED DESIGN B
4450 -~ ENCLOSURE
TRANSPORTATION COSTS
PRODUCTION YEAR 1

TOTAL REQUIRED REVENUE

DIRECT MATERIALS
PURCHASED MATERIALS
RAW MATERIALS
SCRAP

DIRECT LABOR

CONSUMABLES

INDIRECT COSTS
MAINTENANCE, PLANT ENGINEERING
OTHER INDIRECTS

CAPITAL REPLACEMENT ALLOWANCE

PROPERTY TAX AND INSURANCE

GENERAL & ADMINISTRATIVE
INTEREST EXPENSE

INCOME TAXES

RETURN TO EQUITY HOLDERS

OTHER EXPENSES
TRANSPORTATION CHARGES

0.00

o0
S

o0
oo

.00
.00
.00
.00

Q o o o

52.00
52.00

52.00



FACTORY
TRANSPORTATION
SITE

TOTALS BY COMPORENT

COST SUMMARY BY PROFIT CENTER
TOTAL REQUIRED REVENUE

BEC PLASTIC SELECTED DESIGN B

PRODUCTION YEAR 1

4410 4420 4430 4440
327.21 251.00 417.75 388.61
40.95 .26 0.00 26.00
0.00 0.00D

368.16 251.26 §17.75 414.61

TOTAL FOR TOTAL REQUIRED REVENUE

4450

527.15
52.00

579.15

4460

596.18

605.27

2636.20

TOTALS BY LOCATION

1920.81
119.21
596.138



FACTORY
TRANSPORTATION
SITE

TOTALS BY COMPONENT

4410

198.64
0.00

198.64

4420

¢.00
0.00

CO0ST SUMMARY BY PROFIT CENHTER

DIRECT MATERIALS

BEC PLASTIC SELECTED DESIGN B

PRODUCTION YEAR

4630

0.00
0.00
0.00

TOTAL FOR DIRECT MATERIALS

1

4440

279.13
0.00
0.08

279.13

4450

374.92
0.00

374.92

4460

0.00

335.78

335.78

1188.47

TOTALS BY LOCATION

852.69-
0.00
335.78



FACTORY
TRANSPORTATION
SITE

TOTALS BY COMPONENT

e~y

4410

15.24%
0.00

15,24

4420

p.oe¢
0.00

0.0¢0

COST SUMMARY BY PROFIT CERTER
DIRECT LABOR

FRODUCTION YEAR

4430

BEC PLASTIC SELECTED DESIGN B

6460

16.40
0.00
0.00

16.40

TOTAL FCR DIRECT LABOR

4450

26 .45
0.00

26.45

4460

154.21

154.21

212.30

TOTALS BY LOCATION

58.09
0.c0
1564.21



FACTORY
TRANSPORTATION
SITE

TOTALS BY COMPONENT

4410

20.38
0.00

20.38

4420

0.00
0.00

COST SUMMARY BY PROFIT CENTER
CAPITAL REPLACEMENT ALLOWANCE

BEC PLASTIC SELECTED DESIGN B

PRODUCTION YEAR

4430

0.00
6.00
0.00

TOTAL FOR CAPITAL REPLACEMENT

1

4440

9.68
0.00
0.00

9.68

5650

12.18
0.00

12.18

ALLOWANCE

4660

.88

3.19

46.31

‘TOTALS BY LOCATION

43.12
0.00
3.19



FACTORY
TRANSPORTATION
SITE

TOTALS BY COMPONENT

4410

7.01
0.00

4420

0.00
0.00

COST SUMMARY BY PROFIT CENTER
PROPERTY TAX AND INSURANCE

BEC PLASTIC SELECTED DESIGH B

PRODUCTION YEAR

4430

0.00
0.00
0.00

0.00

1

4440

%.82
0.00
0.00

4.82

4450

6.19
0.00

TOTAL FOR PROPERTY TAX AND INSURANCE

4460

.80

.29

19.11

TOTALS BY LOCATION

18.82
0.00
.29



FACTORY
TRANSPORTATION
SITE

TOTALS BY COMPONENT

T
[ 7% ]
~J

COST SUMMARY BY PROFIT CENTER
GENERAL & ADMINISTRATIVE

BEC PLASTIC SELECTED DESIGN B

PRODUCTION YEAR 1

4410 4420 4430 4440
23.14 6.00 0.00 29.30
¢.00 8.00 0.00 0.90
g.00 0.00

23.14 0.00 0.00 29.30

4450

39.94
0.09

39.94

TOTAL FOR GENERAL & ADMINISTRATIVE

4460

.28

0.00

.28

92.66

TOTALS BY LOCATION

92.66
8.00
0.00



FACTORY
TRANSPORTATICON
SITE

TOTALS BY COMPONENT

b=
1

(93]
[0 4]

4410

3.58
0.00

3.58

4420

0.00
n.oo

g.00

COST SUMMARY BY PROFIT CENTER

INTEREST EXPENSE

BEC PLASTIC SELECTED DESIGN B

PRODUCTION YEAR

4430

0.00
0.00
0.00

0.00

TOTAL FOR INTEREST EXPENSE

1

46460

2.46
0.0¢
g.400

4450

3.15
0.00

3.15

4460

.41

.15

.56

TOTALS BY {0CATION

9.60
0.0¢C
.15



*ACTORY
‘RANSPORTATION
iITE

OTALS BY COMPONENT

6E-v

44190

20.89
0.0¢0

20.89

6620

0.00
0.0¢

COST SUMMARY BY PROFIT CENTER
INCOME TAXES

BEC PLASTIC SELECTED DESIGHN B

PRODUCTION YEAR 1

4430 4440
0.00 14.64
0.00 0.00
0.00 0.00
0.00 16.64

TOTAL FOR INCOME TAXES

4450

18.83
0.00

18.83

4460

2.50

-55

3.05

57.41

TOTALS BY LOCATION

56 .86
0.00
.55



FACTORY
TRANSPORTATION
SITE

TOTALS BY COMPONENT

COST SUMMARY BY PROFIT CENTER
RETURR TO EQUITY HOLDERS

BEC PLASTIC SELECTED DESIGN B

PRODUCTION YEAR 1

4410 4420 4430 4440
23.29 0.00 0.00 16.00
0.900 0.00 0.00 0.00
0.00 0.00

23.29 0.00 0.060 16.60

4450

20.5%
0.00

20.54

TOTAL FOR RETURN YO EQUITY HOLDERS

4460

2.66

.96

63.45

TOTALS BY LOCATION

62.49
0.00
.96



4410
FACTORY 2.79
TRANSPORTATION 40.95
SITE
TOTALS BY COMPONENT 43.74
I=
1
=
—

COST SUMMARY BY PROFIT CEMYER
OTHER EXPENSES

BEC PLASTIC SELECTED DESIGN B

PRODUCTION YEAR 1

4420 4430 4440
251.900 417.75 3.14
.26 0.00 26.00
0.00 0.90

251.26 417.75 29.14

TOTAL FOR OTHER EXPENSES

4450

" 4.06

52.00

56.06

4460
.51

54.06

54.57

852.52

TOTALS BY LOCATION

679.25
119.21
54.06



APPENDIX B

1.0 PERFORMANCE REQUIREMENTS

1.0.1 Performance Requirements

Primary perfomance characteristics for collector subsystem and certain
elements were established; these are listed in Table 1-1. 1In addition,
secondary perfommance characteristics were also prescribed for the subsystem
and certain elements; they are listed in Table 1-2.

1.1 DESIGN AND CONSTRUCTTION REQUIREMENTS

1.1.1 General Design Requirements

The collector subsystem is intended for use by public and private electric
utilities, and by cammercial firms which use high-quality heat for industrial
processes., Thus, prime considerations in designing the collector are
perfomance, durability, reliability, safety, and acceptale life-cycle costs.
General design and construction requirements were established which are
canpatible with these considerations; they are summarized in Table 1-3.

1.1.2 Envirommental Design Criteria

The collector subsystem is intended to be used with electric power ard
industrial process heat (IPH) plants located in the southwestern United
States. Thus, the erwirormental design criteria are based, in part, on
conditions expected in that region of the country; they are summarized in
Table 1-4,

B-1



TABLE 1-1 Collector Subsystem Primary Performance Reguirements

COFPONENT REOUIREFENT ()

o REFLECT 95I OF REDIRECTED
ENERGY ON RECEIVER AT <60

o FUNCTION DURING ALL PLANT
STEADY-STATE MODES

o POYER INCREMENTS IN TRACKING
MODE OF <102

0 EMERGENCY DEFOCUS TO < 3%
PCKER [N 120 SECONDS

SYSTEM

0 AVERAGE STRUCTURAL SUPPORT
STATIC DEFLECTIONS < ¢ t7mzi»
FOR MIRROR NORMAL, EACH AXIS
(12 M/S WIND; OO - S00C; AMY

COLLECTOR LOCATION; ALL ORIENTATIONS; NO
FIELD GRAVITY; HO TEMPERATURE

EFFECTS)

o HEAT FLUX ON UNIRRADIATED
PORTIONS OF RECEJVER
<2500 H/W2

¢ 901 OF REFLECTED ENERGY
YITHIN THEORECTICAL BEAM
SHAPE + 1.8 MRAD FRINGE FOR
60 DAYS WITHOUT ALIGNMENT
(0 WS WIND; 09 - S00C;
GRAVITY; ALL ORIENTATIONS;
ANY LOCATION; HELIOSTAT
TRACKING)

© BEAM POINTIHG ERROR <215
MRAD EACH AXIS (SAME CONDI-
TIONS AS BEAM QUALITY)

o STRUCTURAL DEFLECTION
(EXCLUDING FOUNDATION) s ¢ 12
MRAD {12 M/S WIND, 00 - 500C,;
ALL ORIENTATIONS; ANY LOCATION,
NO GRAVITY; NO WAVINESS; NO -

FACET MISALIGNMENT)
0 2-POIKT AIMING

HEL1DSTAT

FOUNDATION| o TILT OR TORSIONAL ROTATION
(2° ABOVE < + 0.5 HRAD (12 WS WIND;
GROLND) PLASTIC DEFLECTION FROM
22 W/S HIND)

o PLASTIC DEFLECTION < + 0.15
FRAD (SINGLE 22 M/S WIND

(D Tolerances are 1 sigma values.



TABLE 1-2 Collector Subsystem Secondary Performance Regquirements

COMPONERT | REQUI REMENT

o FEET PERFORMANCE 8 12 WS
WIND, 09 - 509C, GRAVITY

o TRACK WITH DEGRADED PERFOR-
MANCE WHEN WIND IS 16 M/S

o INITIATE STOW FRON EXTERNAL
SIGNAL

o INCORPCRATE LIGHTKING
PROTECTION

INSOLATION ON UNPROTECTED
COXPOKENTS)

o REQUIRE MIRIMUM MAINTENACE

o ANHOUNCE ANY COMPONEMT
FAILURE TO HAC

o PROVIDE FAULT ISOLATION INFOR-
PATION ON CRITICAL COMPONENTS

o MIKINIZE HAZARDS TQ OPERATIONS/
MAINTENANCE PERSONNEL AND THE
puBLIC

o CAPABLE OF BEING POSITIONED

FOR STOW, CLEANING OR
HEL10STAT MAINTENARCE =15 MINUTES
(FROM ANY OPERATIONAL
ORIENTATION

o COKTROL HELIOSTATS BY
CONTROLS COMPUTER
o SAFE BEAM CONTROL STRATEGY
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TABLE 1-3 cCollector Subsystem Design and Construction Reguirements

COMPORENT REQUEREMENT

o 30 YEAR LIFE

o COMMERCIAL DESIGN AND
CONSTRUCTION STANDARDS (UBC/
19765 AISCM/8TH EDITION;
NATJOMAL ELECTRIC CODE; NEMA
AND MS-454%

o OFF-THE-SHELF COMPONENTS

SYSTEM o TOLERATE POWER TRANSIENTS

o MINIMIZE SUSCEPTIBILITY TO AND
GENERATION OF EMR

o CORRCSIDN PROTECTION ON ALL
PARTS

o COMPONENTS OR ASSEMBLIES
TRANSPORTABLE BY TRUCK

o0 WORKMANSHIP CONSISTENT WITH
600D COMMERCIAL PRACTICE

o ALL MAJOR ELEMENTS AND
ASSEFBLIES TO HAVE NAMEPLATES

o LIKE PARTS TO BE INTER-
CHANGEABLE
o DESIGN TO FACILITATE
" OPERATON AND MAINTENACE;
USE MS-1472 AS GUIDE

COLLECTOR | o NOT BE VULNERABLE TO
FIELD EXTENSIVE FIRE DAMAGE

o HELIOSTATS NOT DIRECTLY
ADJACENT T0 A FIRE SHOULD
NOT SPREAD TO OTHER PARTS
OF THE FIELD

o MAINTAIN STRUCTURAL INTEGRITY
IR ANY POSITION INA 22 WS
WIND

o KO ELEVATION OR AZIMUTH DRIFT
IX DRIVES

o SURVIVE ]9 »m HAIL @ 20 W/S
IN ANY ORIENTATION

o WITHSTAND AND/OR OPERATE WHEN
SUBJECTED TO WIND-INDUCED
YIBRATIONS

o ENVIRQRMENTALLY SEALED DRIVES
o COST-EFFECTIVE STOWAGE

HEL]OSTAT

o COST-EFFECTIVE REFLECTIVITY
AND AREA
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5-4

TABLE 1-4 Environmental Design Criteria for Produstion Collsctor Subt jstem

Functianal Capability Required \han Subjectad Te
fnvironmental Conditions aof 3.!00: Shown Wnile
Eavironmental Operating Not Operating
Condition
Startup and Steering Dafocusing Stowing Structural In~ Survival
Shutdown tearity
{Any Position)
Gravity Local Local Local Locel Lacal Local
Earthquske . . . - UBC Selsaic uBC Setsmic
Tone ) lons 3
¥ Smeed {Inclues Guses) |5 16 s o to 12w 0 12 16 w/s 0 ta 22 gss Dty 2 W8 0 thru g /s
Rise RAte " 1%.01 ass? - 6,00 ;! 0.01 m/3 0.01 w/s 0.0V w/s 0.0l ws
Dust Devils (Cyclonic 0 to 16 m/s 0 to 12 w/s 0 ta |7 ws 0to il ws 0 to 17 m/s 0 to 17 a/s
Winds) An
ol Any Any Any Any 4 Ay
An;::t:'mru Worlzontal | £10° il s10* et ot £0°
Tespersture @) -9 to 500 0 to 509¢ 0 to 50°C 0 to 509C =30 to 50%¢ -30 to S0°C
Pr;c:pltot|on
4 750 wm
Annusl Avera 750 - - 750 = 750 m
24-Hour ;:“g. $75m - - S75m %75 tsl; 275
ice/Freezing Rain < 50m . - = 50 m % 30 m € 50 =
T 11 :
Kall i
Dlametar - - - =5 20 ma " 20m % 25 am
Speed - - - =20 m/s # 20 m/s =22} ws
Spectal Gravity - - - - 0.9 0.8 0.9
Temparature o - - 0 thru 6.79C 0 thru 8.79C 0 thru 6.70C
L]
24-Hour Rate 0.3 m - - 0.3m 0.3 0.l m
Mex. Loading 250 P - - 250 Pa 250 Pa 250 Pa
Insolation
Max Flux 1100 w/nd 100 w/a? 1100 w/ 1100 wed 1100 27e2 1100 w/a?
Rate of Change 0] ® ® 0] ® ®
Lightning » .
Maal 200,000 AWS 200,000 AMPS 200,000 AMPS 200,000 NWPS 200,000 APS 200,000 N¥S
m:.c“:nuf:mu Loss of ) Hello ok Loss of | Halo ok Loss of 1 Helio ok Loss of | Hel10 Ok (o4s of | Helin ok Loss of I Hello ok
Adjacent HIt () Hinkmize Damage  Minimize Damage  Ninimize Damags  Minimile Damage|  pigimize Damege  Niniwize Damege

Notes:

(D Paragraph referencas are to Sandla specification AIOIT2, Rev, 6, 10-10-79

(D Damage to be minimized subject to appropriate cost/risk Vimits (T8O},

@ Collector shall be capable of performance indicated when subjected tg flun changes associated with
passage of opaque cloud; flux shall be essuned to drop from 1100 w/m2 to O w/m? and return to 1100 w/ml,

(D For components Installed in an uncontrolled enviromment.
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