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OPTICAL MODELING OF BLACK CHROME SOLAR SELECTIVE COATINGS 

J. N. Sweet and R. B. Pettit 
Thermophysical Properties Division 

Abstract 

The spectral reflectance of an electroplated black chrome solar selective 

coating depends on both plating process variables and on the subsequent time-

temperature history experienced by the coating. The details of the plating process 

determine the nature of the coating microstruct~e and morphology while subsequent 

thermal aging in air results in oxidation of metallic chrome in the coating. 

Various investigations of coating microstructure are reviewed and the results of 

these studies are used to develop a tentative picture of the microstructure of 

black chrome films plated from the Harshaw Chromonyx bath. In this model, the 

hlack chrome film is composed of roughly spherical particles NQ.2 ~ in diameter 

which lIIay tend to cluster together. These particles in turn are composed of small 

(~O.02 ~m) crystallites of metallic chrome and various oxides of chrome. The 

film void volume fraction appears to be~O.6 and results from both voids between 

the particles and voids within the particles. Even though the exact distribution 

of metallic chromium, void, and oxides within the particles has not been deter-

mined, the microstructural picture has been idealized to facilitate calculations 

of the spectral reflect~nce for films deposited onto nickel substrates and for 

freestanding or stripped films. In the idealized model, the metallic chromium 

is assumed to be in the form of spherical crystallites with concentric shells 

of Cr203 and the crystallite volume fraction is assumed to increase with 

depth into the film. Various experimental data are utilized to define film 

thickness, average volume fraction of Cr + Cr203' and volume ratio of Cr to 

Cr + Cr203' Both the Maxwell-Garnett (MG) and the Bruggeman effective 



! 

medium theories for the dielectric constant of a composite media are reviewed. 

The extension of the MG theory to high inclusion volume fractions is discussed 

and it is demonstrated that the dielectric constant for a cubic array of cubic 

inclusions is very similar to the MG dielectric constant at all volume fractions. 

Various forms of the MG theory and the Bruggeman theory are then utilized in 

reflectance calculations for both regular and stripped films. The results 

indic~te that the MG formalism provides the best overall description of the 

optical response of black chrome films. The predicted dependence of solar 

aver~gerl absorptance on coating oxide content is similar to that observed 

experimentally. Both model and experiment show that the solar absorptance 

initially decreases slowly as the amount of Cr203 increases, however a rapid 

decrease occurs when the Cr203 content passes ~70 vol %. This work has 

led to the conclusion that coating degradation is caused primarily by oxidation 

of the metallic chrome crystallites at elevated temperatures. 
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I. Introduction 

Black chrome (Cr) electroplated films are now widely used for making solar 

selective coatings on the receiver tubes in concentrating systems. At tempera-

., tures T ~ 250°C, little difficulty has been experienced with this coating over 

periods of several years. For operating temperatures in excess of 300°C, moderate 

to severe coating degradation has been observed. This degradation is accompanied 

by a decrease in the solar absorptance as and, in severe cases, the coating 

becomes brownish or nonblack to the eye. As a result of the observed coating 

degradation, additional process development work has been conducted in an attempt 

to determine the values of important plating variables which optimize coating 

s~rvivabllity.l,2 In addition, efforts have been directed toward determination 

of the coating microstructure and development of an optical model which can 

explain coating degradation in terms of chemical or structural changes in the 

b~ack Cr. The purpose of this paper is to describe these studies and to show how 

the resultant microstructural model can explain the changes in as and the coating 

emittance £ in terms of oxidation of Cr crystallites in the coating. A preliminary 

version of some of the major results of this study has been previously presented. 3 

Selective solar absorbers have long been known to be desirable for making 

concentrating systems work efficiently. This is particularly true for systems 

which work at moderate concentration ratios, C ~ 50, and relatively high tem­

peratures, T ~ 300°C. The general improvements in efficiency when operating in 

this concentration ratio and temperature range have been discussed by Seraphin~4 

In a specific test of a parabolic trough concentrator operating at 316°C, 

Treadwell reports an improvement in overall efficiency by a factor of 2 or more 

when a receiver tube coated with Pyromark paint (as = 0.98, £ ~ 0.90) was replaced 

with a black Cr plated tube (as ~ 0.97, £ = 0.28).5 The actual improvement in 

efficiency when a selective coating replaces a nonselective coating on a receiver 
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depends on the details of the receiver construction but it appears that the use 

of selective abs.orbers in line focus systems will be indispensible. 4 Since solar 

systems are designed for long life operation (~lO-20 yrs), the stability of 

the selective coating must be good at normal operating temperatures. A stable 

coating is defined as one in which (xs and E change by at most a few percent 

over the operating life of the concentrator. Loss of flow accidents can also 

result in very high transient receiver temperatures before the concentrator 

can be driven off focus. As a result of these considerations there is great 

interest in developing a high performance selective coating with good thermal 

stability properties. Black Cr exhibits good optical performance but its stability 

has frequently been inadequate for some applications. However, no replacement 

coating is 'pre$ently available for production applications, although some have 

been tested in the laboratory.4,6,7 Until a new and more stable coating is 

ac.tually available for production purposes, there will be a need to continue 

developing and improving the black Cr process in order to increase thermal sta-

bility. In addition, there is some hope that protective coatings can be developed 

which might help to reduce black Cr degradation at high temperatures. 8 

In this report we discuss the nature of the present understanding of plated 

black. Cr coatings. Sec. II contains a review of the history of blacker studies 

and development programs in the U. S. and France. In Sec. III experimental 

studies of coating microstructure are reviewed and the results of recent experi-

ments in this area are discussed. The development of a theoretical optical· 

model of a black Cr coating is described in Sec. IV and the theoretical results 

are compared.with experiment in Sec. V. The results of this analysis are dis-

cussed in Sec. VI where it is shown that Cr oxidation appears to be the prime 

cause of coating degradation. The conclusions of this study are then set 

forth with some recommendations for future activity in the black Cr area. 
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II. History of Black Cr Development for Solar Applications 

The first mention of black Cr as a prospective solar selective absorber 

was made by Tabor in 1959. 9 It was considered as a possihle replacement for Ni 

black in space applications where high stability was required. Tabor reports 
! 

that he was unable to get reliable optical data from his e1ectrodeposited black 

Cr coatings because the surface was rough. It was not until 1974 that any 

detailed study of the optical properties of black Cr coatings was made. At that 

time, McDonald 10 reported results on the spectral reflectance of a coating 

plated from a proprietary bath developed by the Harshaw Co.ll McDonald measured 

a solar absorptance of 0.87 and a l200C emittance of 0.09 for a coating deposited 

0, a bright nickel plated steel substrate. Approximately a year later Pettit 

and Sowell l2 reported more extensive results on black Cr films plated from the 

Harshaw bath. They found that, on a rough Nusat Ni substrate, coatings with a 

solar averaged absorptance as ~ 0.95 and 300°C emittance e(3000C) ~ 0.25 could 

be formed. Limited thermal stability tests were made but it was reported that 

heating for 70 h in air at 400 C reduced as by ~lO%. More extensive thermal 

aging studies were conducted by Masterson and Seraphin13 on black Cr coatings 

plated at Sandia and the Honeywell Corp. They observed the now familiar result 

. that the absorptance "edge" in the reflectance vs wavelength characteristic 

shifted to shorter wavelengths after heating coatings at 500°C for "'2h. This 

shift results in a decreased solar absorptance and also a decrease in emittance. 

After prolonged~heating at temperatures of 550 and 600°C the absorptance edge 

moved back out to longer wavelengths, possibly indicating that a change in the 

degradation mechanism had occurred. 

In view of the fact that line focus parabolic concentrators were expected to 

operate at temperatures T < 330°C with occasional excursions to much higher tem-
'" 

peratures under loss of flow conditions,14 additional studies of black Cr thermal 
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stability were undertaken. Initial results of these studies indicated that 

coating stability appeared to be variable, with some coatings exhibiting an un­

changed as after 25-50 11 at 350 C while others showed a decrease of 6-10% in as 

after the same exposure.1 5 The coatings were examined using Auger sputter pro­

filing techniques, but no significant differences were observed between stable 

and unstable coatings at that time. Both types of coatings exhibited evidence 

of considerable oxidation after exposure at 300 or 350°C. 

Continuing studies on the effect of plating variables on coating stability 

indicated that, for the Harshaw Chromonyx bath, the trivalent Cr concentration 

appeared to be the major factor in determining thermal stability.16 By reducing 

the Cr 3+ concentration from its standard value of 16 gil to 8 gil, the coating 

stahility appeared to be greatly improved. For the stable coatings as was 

reportf!d to be unchanged after aging at 350°C for over 1800 h. In this investi~ 

gation, the unstable coatings exhibited significantly greater oxide formation 

than the stable coatings 'after thermal aging. The effect of plating variable 

variation on the' optical.properties and stability of plated black. Crhas been 

the subject of several recent studies. 2,17,18 

There have be.en several different variations of the black Crplating process 

discuss~d in the literature. The current procedure for plating parabolic trough 

receiver tubes using the Harshaw Chromonyx bath has been described in detail by 

Pettit and Sowell. l An alternate bath, designated as a tetrachromate bath, has 

b~en developed by Sivaswamy, Gowri, and Stenui19 and coatings plated from this 

bath have been evaluated by Cathro. 20 These coatings exhibited spectral 

reflectance and emittance characteristics close to those reported for the 

Har,shaw coatings.12 · Cathro'scoatings were stable (showed no change in absorp­

tance or emittance) a·fter a month of vacuum aging at 300°C. No higher 

temperature testing was reported. Driver, Jones, Riddiford and Simpson have 
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reported some data on optical properties of black Cr films plated on Cu sub­

strates. 21 They used an unspecified plating process, designated as the "Chrome­

Black" process, and reported optical properties which again were qualitatively 

similar to those found for films plated from the Harshaw bath. Spitz, Van Danh, 

and Aubert have reported results on films plated from two baths which they desig­

nated A and B.22 Bath A was the tetrachromate bath recommended by Sivaswamy, et 

al. 19 which must be cooled during plating while bath B was another formulation 

which could be plated at ambient temperatures. The dependence of as and .E on 

annea;ting time for the coatings produced by Spitz, et ale after air annealing at 

250, 300 and 350°C was very similar to that reported by Pettit for coatings 

plated from a Harshaw bath. 15 From these results, it appears that all plated 

black Cr coatings hehave in a qualitatively similar fashion, at least from an 

optical viewpoint. 

In spite of the simularity in optical properties, the microstructure of these 

coatings appears to be highly dependent on the details of the plating process and 

the amount of thermal aging experienced. Since coating microstructure will be 

discussed in detail in the next section, only the major results and differences 

between various coatings will be described here. Coatings plated using the Har­

shaw process are composed of agglomerated particles, roughly spherical in shape, 

with a mean diameter dependent on the plating process, typically in the range 

· .... 0.05 -0.2 j.lm. These agglomerated particles appear to be composed of a mix­

ture of fine metallic Cr crystallites and oxides of Cr. The coatings appear to 

be highly porous, as determined from film thickness and areal density measurements. 

It is estimated that the film void volume fraction is ~0.6. Coating thicknesses 

are typically in the range 0.1-0.5 j.lm. In contrast to these results, films 

plated using bath B of Ref. 22 are composed of needle like agglomerates oriented 

predominately normal to the substrate surface. 25 The needles are reported to 
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he 0.15-0.35 ~m long and ~0.05-0.08 ~ in diameter. After annealing at 350 0 c 

for 24 hr, the needles became more spherical in shape. In the case of Harshaw 

bath plated films, the spherical particles retain their shape and size after 

aging. 23 It appears that the Harshaw bath and a tetrachromate type bath produce 

black Cr films with similar optical properties but very different microstructural . 

..:haracteristics. The structure of coatings produced from other baths has not 

been discussed in the literature. 

Since the black Cr film structure is highly dependent on the plating pro-

Gegs, it is also reasonable to conclude that the thermal aging charactecistics 

ofa coating will be very dependent on the type of plating process utilized. 

In addition, for a given process, the aging characteristics can be expected to 

depend on the details of that process. An example of this is the previously 

mentioned identification of the dependence of thermal aging on the bath Cr 3 + 

conGentration for the Harshaw process. Generally, it has been found that ther-

mal aging causes a conversion of the metallic Cr crystallites in the film to 

oxides of Cr, principally Cr2030 . The kinetics of this oxidation process I 
I 

depend on the coating structure, as will be di$cussed in the following secti<j>no 

This oxidation may be preceeded or accompanied by other changes in the film, 

such, as water evolution or possibly a shift in coating thickness. 26 

B' 
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III. Summary of Experimental Results 

A. Introduction 

In this section, experimental results regarding the composition and 

structure of the black chrome coating are summarized. The results reprerent a 

compilation of published data obtained from a variety of investigators. i Also 

included is a description of the optical properties of the coating as a func-

tion of several plating variables. Finally changes in the coating afterl thermally 

heating in both vacuum and air are discussed. 

As previously mentioned, there are a variety of electroplating chr~mium baths 

that can produce a solar selective deposit.l,l9,2l,22 i 
However most of ~he pub-

1 
I 

lished research deals with the composition and structure of coatings obtained from 

the Harshaw Chromonyx bath. ll In addition, this coating is widely used in the 

U.S. solar industry for both flat plate and concentrating solar collectors. There-

fore the properties of this coating will be emphasized in this section. However, 

significant differences with other black chrome coatings will also be pointed out. 

B. Film Composition 

The.majority of investigators have shown that the black chrome coatings 

consists primarily of metallic chromium together with chromium oxide in the form 

cr203 •23 ,24,26-29 The identification of chromium atoms and oxygen atoms has been 

we1l established from Auger electron spectroscopy studies, while x-ray photo-

electron spectroscopy (XPS) has confirmed that the oxygen is present as Cr203. 

This same overall composition has been observed for coatings deposited onto 

polished bulk nickel, electroplated nickel,23 302 stainless steel,28 copper24 

and gold. 26 

Recent experimental results presented by Zajac, et al. 26 have led them to 

postulate that a significant amount of the oxygen in the coating is present in 

the form Cr(OH)3. Other investigators have seen the presence of a hydroxide, 
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but only on the surface of the coating. 28 In addition, infrared absorption 

bands associated with a hydroxide species have not been observed. 24 ,29 Thus 

the presence or role of a hydroxide in this coating needs further investigation. 

By ion sputtering through the coating to the substrate, a compositional depth 

profile can be obtained. Unfortunately the profiling does not represent the film 

composition at a plane within the coating which is parallel to the substrate. 

This results because the coating contains a large fraction of voids in addition 

to having a rough surface texture (these points will be discussed later). For 

example, in sputtering through a black chrome coating deposited onto a 

polished nickel substrate, 30 'the sputtering time (ion dose) required to pass 

through the nickel/film interface is approximately equal to 40% of the sputtering 

time required to reach the substrate. Nevertheless, most investigators find that 

the oxygen content within the ·film decreases as the substrate is approached, 

while the chromium content increases. The surface composition of the coating is 

entirely Cr203' which would be expected since upon exposure to the atmosphere, 

metallic chromium forms a thin cr20 3 film approximately 15-20A. 3l By assuming 

that the film is composed of only metallic chromium and Cr203' integration of the. 

sputter profiles leads to a measure of the relative amount of each constituent. 

Holloway, et al. 28 determined that the relative volume fraction of cr20 3 to (Cr + 

Cr20 3 ' was in the range ~ 0.30-0.44, while Zajac, et al. 26 calculated a value of 

0.49 for this fraction. Assuming that the coating is composed of spherical par-

o 
ticles with a mean diameter of 750 A (see next section), a 40 vol % Cr20 3 shell. 

surrounding a central core of metallic chromium would have a thickness of 120 ~. 

o 
At a 30 vol % value for Cr20 3 , the shell thickness is reduced to 80 A, a value 

which is still considerably higher than the thickness of the natural oxide that 

forms on bulk metallic chromium. Thus it appears that some of the oxide is 

probably located within the. particles. 

10 
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Compositional results reported by Spitz, et a1. 22 also note that their coating 

is largely chromium and oxygen. From x-ray diffraction analysis, they also 

identifiedCrH2 but could not identify this phase from electron diffraction on 

thinned samples. Additional studies25 of this film also identified Cro2 , CrO, 

Cr304 and Cr03' although the Cr203 was the major oxide constituent. The Cr03 was 

present only at the outer. surface (~200 1) of the coating. 

C. Film Structure 

Structural information on the coating is obtained primarily from scan-

ning electron microscopy (SEM) and transmission electron microscopy (TEM). While 

samples for SEM studies can be studied directly, all investigators have been 

unsuccessful in mechanically stripping the black chrome coating from nickel 
I 

Bubstr~tes for TEM observations. Therefore two approaches have been utilized: 

n) The black chrome coating is electroplated onto a thin nickel foil. After 

plating, the foil is ion sputtered from the back side until a small hole 

is produced. The black chrome film exposed around the edges of the hole can be 

examined in the electron microscope. 22, 24 Changes in the coating (such as 

annealing, ion damage, etc.) caused by the ion sputtering must be considered. 

(2) Alternatively, the black chrome film is electrodeposited onto a substrate, 

.such as iron or copper, which can be chemically etched away.23,26 Iron is 

preferred since the black chrome coating deposited on this substrate does not 

I 
have high mechanical stresses and is therefore easier to remove in 1argejsections. 

! 
I 

SEM observations show the coating to be a particulate deposit with approxi-
I 

mately spherical particles with a diameter in the range 500-1000 1. 23 ,24,27 
I 

Micrographs taken at various stages during the e1ectrodeposition indicat¢! that the 
I 

particle size remains relatively constant within the film. 23 However, I~natiev, 
i 

et a1.27 report that upon sputtering away the first ~300 A of a 1000 A thick 

I 
film, larger elliptical particles are observed. An indication of ellipt~cally 
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shaped particles has not been reported from TEM studies. 23 ,24 The SEM studies 

also indicate that the film has a high volume fraction of voids. The resulting 

uneven surface texture makes the·determination of a film thickness difficult. 

Lampert24 reports a film thickness of mechanically polished samples of 0.7-1.0 

11m while· Zajae, ~~ 81. 26 measured 8 thickness of ~0.26 11m for a similar 

film. Recent measurements in this laboratory resulted in a film thickness in 

the range 0.4-0.7 11m. 

Electron diffraction analyses of as-deposited film indicate the presence 

of both metallic chrome and Cr203. Chrome crystallite diameters are typically 

in the range 100-10001. Lambert24 has determined a mean chromium crystallite 

o 
size of ~150 A. Since this size is much less than the average particle 

diameter observed in SEM studies, each particle must contain many metallic 

ehromium crystallites. 

Diffuse diffraction rings, corresponding approximately to crystalline 

Cr203' are also observed. 23 ,24 Thus the chromium oxide in the film exists either 

o 
as an amorphous material or.as extremely small grains (~10 A). The distribution 

of the oxide within each particle has not been established. Thus the oxide 

could be in the form of a thin coating on the chrome crystallites and/or in an 

amorphous state ·between the crystallites. 

The·areal density of the deposit has been measured 3,26 as ~5.8 x 10-5 

g/cm2 •. Using a film thickness of 0.26 I1m26 and a film composition of 70 vol % 

chromium metal and 30 vol % Cr203, leads to an average volume packing fraction 

of only 33%. Because this parameter is important for optical modeling of the 

film, more data concerning its value should be obtained. 

Again, the -structure of black chrome films produced by Spitz, et al22, 25 

are very different from the Harshaw Chromonyx coating discussed above. Their 

films consist of a needle-like morphology, with the needles orientated normal 
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to the substrate. The needles are from 1500-3000 K long and 500-800 K in diameter. 

The film thickness was approximately 0.32 1Jlll. The metallic chromium in the film 

is also in the form of small crystallites, with diameters from 40-70 A. 

D. Reflectance Properties 

The near-normal hemispherical reflectance properties were first measured 

by McDonald in 1975. 10 From the short wavelengths to approximately 1.2 ~, the 

hemispherical reflectance is relatively constant at a value of ROQ.04 ref1ectarice 

units (1.00 reflectance units = 100% reflectance). Beyond 1.2 ~ the reflectance 

gradually increases until at 5-8 IJlll it reaches a value of -0.80 reflectance 

units. The change from low to high reflectance value in this region will be 

referred to as the ;'transition". region or reflectance edge. From 5-8 IJll to 

25 !-lm, the reflectance is roughly constant and closely matches the hemispherical 

reflectance properties of the substrate materia1. 24 Thus the coating is highly 

absorbing over the solar spectral region (0.3-1.5 ~), and becomes partially 

transparent to radiation above ~5 1Jlll. These reflectance characteristics have 

been obtained for almost all types of black chrome coatings and for a variety of 

substrates, including nickel, copper, stainless steel, etc. 

At a constant plating current density, increasing the plating time causes 

the transition region to shift to longer wave1engths. 24 The resulting effect 

on the solar absorptance and the 100°C and 300°C emittance properties are shown 

in Figure III-1. 32 Note that the solar absorptance rapidly increases to a 

maximum value of -0.95 as the plating time increases, while both the 100°C and 

300°C emittances increase almost linearly over the range shown. Results obtained 

for different plating current densities are identical if the same current density/ 

time product is. obtained. Thus a coating plated at 300 mA/cm2 for 2 minutes 

has the same optical properties as a coating plated at 150 mA/cm2 for 4 minutes. 
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The surface roughness of the substrate has only a minor effect on the 

reflectance properties. Pettit and Sowell12 have shown that depositing the 

coating on a rough (or dull) nickel substrate enhances the solar absorptance 

value slightly (~4-5%) compared to the same coating deposited on a smooth 

(or bright) nickel substrate. In addition the solar absorptance for the coating 

deposited on the rough nickel substrate remains higher as a function of incident 

angle. 

E. Thermal Aging Charactedsics 

Considerable effort has been aimed at determining the thermal aging 

chara~teristics of deposited coatings, with the goal of determining the degrada-

tion mechanism(s) and improving the high temperature resistance of the coating. 

Sowell· and Pettit2 ,15 have shown that for the Harshaw coating, the thermal 
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stability is a strong function of the plating bath composition. Small changes, 

particularly in the trivalent chromium concentration, can improve the thermal 

stability dramatically. It is suspected that the stability of coatings obtained 

from other plating baths may also be sensitive to their composition. B~cause 
! 

of this effect, it is not possible to compare degradation rates obtained by 

different investigators. However, several characteristic changes in the 

coatings which occur upon heating have been seen by several investigators. 

These characteristics are summarized below. 

Most researchers have found little change in the solar absorptance after 

heating to temperature~ below 250°C in air, although some of the metallic chromium 

has oXidized. 15 ,26,33 Above 300°C in air, the solar absorptance can decrease 

6-10% after only tens of hours. 15 During this heating, the emittance decreases 

slightly, but not enough to compensate for the larger decreases in as. Analysis 

of the coating~ shows a continued oxidation of the metallic chromium to cr203.15 

However the surface morphology remains unchanged during these heat treatments, 

although the coating thickness may increase by no more than 10-20%. TEM studies 

show that the metallic chromium crystallite size does not change but that the 

diffuse diffraction rings from the amorphous or small grain Cr203 become crysta1-

° The average Cr203 grain size is in the range -400 A. line in nature. 23 ,33 

Thus the primary change in the coating after heating between 250-400°C appears 

to be an oxidation of the metallic chromium in the film to crystalline Cr203. 

Zajac, .~ a1. 26,30 have extensively studied the compositional changes in 

coatings deposited on nickel substrates after heating in vacuum (pressure < 5 x 

10-8 torr) for short times to temperatures as high as 550°C. At ~150°C, water 

and hydrogen are driven from the coating. Heating to 350°C for 12 hours causes 

very little change in the coating optical properties. After 450°C for 12 hrs 

the solar absorptance decreases substantially, while the oxygen to chromium 
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ratio decreases as a function of depth into the film. In addition there is some 

indication of nickel diffusion into the black chrome coating. Heating to 550°C 

for 12 hrs results in considerable diffusion of nickel into the coating while 

the optical response has a metallic like behavior (increased reflectance at 

short wavelengths). Some agglomeration of the particles was also noted. 
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IV. Theory of Composite Medium Optical Response 

A. Maxwell-Garnett Effective Medium Theory 

From examination of the experimental data discussed in the preceeding 

! 
section it has become apparent that black Cr is a composite medium composed of 

Cr metal, var.ious Cr oxides, and possibly other compounds such as water. This 

material is not very dense as the data discussed in Sec. III shows. The void 

volume fraction of black Cr films is typically 20.6. In order to calculate the 

spectral reflectance of a black Cr film, a model for the complex dielectric 

constant of the film is required. It may be expected that this dielectric 

constant will depend on the dielectric constants of the constituent materials 

.in the film, the volume fractions of the constituents, and the size and shape 

of the constituent "particles" in the film. The general theory of dielectric 

constants and conductivities of inhomogeneous media has been reviewed recently 

by Landauer34 and the application of this theory to the spectral selectivity of 

composite materials has been discussed in detail by Sievers. 6 Since both of 

these review articles contain extensive references to the primary literature 

on the subject, we shall cite only those references which are germane to our 

specific discussions of calculations for black Cr films • 

. Since there are two major theories used to calculate inhomogeneous media 

dielectric.constants and many parameters which enter into each theory, the 

number of possible calculations is very large. Indeed, it may well be possible 

to fit either theory to a given body of data by adroit choice of the parameters. 

This contention is supported by the existence of a rather large number of papers 

which have compared calculated to experimental results for black Cr films under 

.a variety of conditions. 25 ,26,35-40 Despite the existence of this work, there 

does not appear to be a unifying theme or a general model which explains in a 

qualitativ~ or semiquantitative way all observed black Cr phenomena. It is the , . 
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purpose of this section to review some of the major theories of the dielectric 

response of composite media and to indicate the influence of microstructure on 

dielectric properties. The results of this section are used in Sec. V to develop 

a model from which the coating optical reflectance can be calculated. 

One of the major theories used to calculate composite medium dielectric 

constants is called the Maxwell-Garnett (MG) theory.41 J. C. M. Garnett set 

forth this theory for the response of composite media to optical frequency 

electric fields, but as discussed by Landauer,34 the MG dielectric function had 

previously been derived by others for static fields and is equivalent to the 

well known Clausius-Mossottt, relation. The major assumption used in deriving 

the MG dielectric constant ~MG is that the composite medium is composed of 

isolated. inclusions of one or more materials in a continuous host or matrix 

material. By isolated, it is meant that the perturbation fields produced in 

the. matrix by the presence of an inclusion do not extend to other inclusions. 

In other words, the electric field which polarizes the included particles is the 

field in the matrix far from any of the particles. A functional form for EMG 

can be calculated. for the case in which the inclusions are ellipsoidal particles 

with a specified distribution of eccentricities and orientations. This is pos-

sible because the field is constant in both magnitude and direction inside an 

ellipsoidal body which is polarized by a uniform electric field. 

The other major theory of dielectric functions for composite media is the 

Bruggeman symmetrical effective medium theory.42,43 In this theory, the matrix 

and the imbedded particles are treated on an equal footing; i.~., they are both 

I 
considered to be in particulate form and more or less symmetrical to each other. 

The field which polarizes a "particle" in the medium is considered to be the 

effective or average field which exists in the medium far from the "particle" in 

question. Another.way of stating this is to say that the field in the medium is 
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composed of an average or effective field plus a field which varies rapidly in 

space with a variation distance on the order of a typical particle line~r dimen-

sion. The net polarization produced by this varying field is assumed to be small 

or negligible as compared to the polarization produced by the average field. 

Again, 1n the case for which the particles of inclusion and matrix are ellipsoidal 

in shape with known distributions of eccentricities and orientations, an exact 

equation can be derived for the effective dielectric constant EB' Howev~r,· 

unlike the Maxwell-Garnett case in which the equation for 9MG is linear in €MGt 

the equation for EB is a polynomial equation with an order determined by the· 

number of different types of particles in the medium. Hence solution of the 

equation for EB in cases where particles with many different shapes and 

orientations are present is a formidable task. 

The ideas discussed above may be illustrated more clearly by considering a 

i 
derivation of the two effective dielectric constants similar to that first proposed 

by Bragg and Pippard44 and later by Genzel and Martin. 45 The model sY$temunder 

consideration is shown in Fig. IV-l(a). An incident plane polarized eiectromag­
+ 

netic wave with an electric field strength Eo = IEol and a propagation;vector 

of magnitude ko is incident normally on a slab of composite material. The dashed 
\ , 

path in Fig. IV-I(a) is used to establish the continuity of the x-comp?nent of 

the electric field across the material boundary. Performing a surface: integral 

of the Maxwell "curl E" equation over the surface bounded by the dashed line 

yields the result, 

I -'061 + f 'x(x,O,O+)dx 

6'-

(IV-I) 
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+ In Eq. (IV-l), c = speed of light, w = angular frequency of the wave, Ex(X,O,O ) 

is the x component of the electric field evaluated just inside the composite 

medium. Since w = 2'Jtc/",0' where "'0 = free space wavelength, and Bo = Eo outside 

the mecUum, Eq. (IV-l)· reduces to, 

(IV-2) 

If the wavelength is sufficiently long such that "'0 » ~z, then the right hand 

side of Eq. (IV-2) is negligible and we find the usual assumed result that the 

external field Eo is equal to the average field in the medium, Le., 

(IV-3) 

In effective medium theory, the average field E inside the medium, as given by 

the right hand side of Eq. (IV-3), is assumed to be related to the average polari-

zatibn P via the relation, 

41tP (e: - l)E (IV-4) 

where e: is the average or effective dielectric constant of the medium. 

Actual composite films such as black Cr frequently have surface roughness 

variations on a scale ~ 0.1 1Jlll. Since we are interested in wavelengths down to 

a minimum, "'0 ~ 0.2 ~, the condition "'0 » ~z is not always satisfied for 

real systems if ~z is required to be larger than the RMS surface roughness. 

However, at these short wavelengths it will be seen that the Cr particles in the 

film are very strongly absorbing, leading to a very small reflectance for Ao'~ 1 

~. Thus, although the approximations in the theory are somewhat suspect at 
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short wavelengths, in actual practice this does not appear to be a serious 

limitation. 

To derive the MG effective dielectric constant EMG' the actual "model" 

system shown in Fig. IV-l(a) is replaced by an idealized system as shown in 

IV-l(b). In the idealized system, the isolated inclusions are replaced by 

ellipsoidal particles and it is assumed that they are sufficiently isolated 

that the field in the matrix material is essentially constant at a value Em· 

(b) 

(a) 

---------~ 

IV-l (a) An incident electromagnetic wave with field strength Eo and propa-
-+ gation vector ko = (2rr/Ao) z impinges on a composite medium in the 

half-space z > O. The composite medium is composed of a continuous 
matrix phase and isolated inclusions. The dashed line indicates 
the path of integration for deriving Eq. (IV-2). 

(b) An idealization of the composite structure in (a). The irregularly 
shaped inclusions are replaced by ellipsoidal particles. 

If· i is an index which is summed over all orientations and eccentricities of 

idealized inclusions and fi is the volume fraction of inclusions of type i, 

then 

EX = I fiE~n(i) + (1 - f)Em 
i 

(IV-5) 

21 



In Eq. (IV-5), f is the total volume fraction of inclusions, f = Lifi and E~n(i) 

is the x component of the constant field inside an ellipsoidal inclusion. If the 

ellipsoidal inclusions have a scaler dielectric constant e:c and are aligned 

with a principal axis along the x direction in a homogeneous medium with dielectric 

constant Em' then the internal field strength is given by the relation,44 

(IV-6) 

whereLi = depolarizing factor for a particle of the ith type. The average 

polarization, P, may be written as, 

P ~ '\ f·P· + (1 - f)Pml l f ~ ~ 

(1/41t)[I fi(e:c - l)Ein(i) + (1 - f)(Em - l)EmJ (IV-7) 

Equating 4n times Eq. (IV-7) to (e: - l)E in Eq. (IV-4), with E = LfiEin(i) + 
i 

(1 - f)Em, yields the fundamental relation of MG theory (with € + e:MG), 

+ (1 - f)(e:m - l)Em (IV-8) 

Ein(i) from Eq'. (IV-6) is then substituted into Eq. (IV-8) yielding a common factor 

Em which can be cancelled from each term. The resultant equation can be easily 

solved fore:MG and the solution can be cast in the form, 

(IV-9) 
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where the polarizability factors, ai are defined by 

(IV-lO) 

In order to compare the result given in Eq. (IV-9) with other forms which 

have been presented in the literature, we consider some special cases which can 

be derived from Eq. (IV-9). For a single type of inclusion, with all particles 

aligned with the same principal axis in the x direction, Eq. (IV-9) becomes 

= € [1 + f(l - L)a] 
m 1 - fLa 

(IV-H) 

Frequently, the included particles are assumed to be prolate spheroids or ellip-
: ~ 

soids of revolution in which two principal axes are equal and the third axis is 

longer. If a, b, and c are the principal axes for a prolate spheroid, a = band 

a < c. Then the depolarizing factors are given by,46 

L'" 1 I r R.n[r+(r2-l)1/2]-1~ 
c (r2 - 1) (r2 - 1)1/2 J 

(IV-12) 

r ,.. cia 

As cia + ~ (cigar shaped particles), 

(Iv-13) 

In some situations, oblate spero ids are postulated. In this case, two principal 

axes are again equal but the third axis is shorter than the equal axes. For this 

case the depolarizing factors are given by, 
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-1)1/2]l 

r ~ 
(IV-14 ) 

As r + 00 (IV-15) 

La = Lb + 1T/4r 

For spherical particles, L = 1/3 for all axes. In all cases, La + Lb + Lc = 1. 

In a recent analysis of the spectral reflectance of a black Cr type selective 

absorber, Granqvist and Hunderi38 used a slight modification of Eq. (IV-11). If 

this equation is rewritten in the form, 

e: '1 + (2/3)fex[j3/2)(1 -
m l 1 - f~ [3L] 

3 

L)LI 
I 

(IV-16) 

the Gtanqvist and Hunderi (GH) form is obtained by setting the quantities in 

square brackets equal to unity, with the result that the depolarizing factor 

appears only in the quantity ex as given by Eq. (IV-10). The difference in the 

two formulations results from differences in the derivations, as discussed by 

Cohen, Cody, Cou1ts, and Abe1es 47 and by Landauer. 34 Both formulations yield 

identical results for spherical inclusions with L = 1/3 but differ appreciably 

in the case of ~eed1e shaped particles oriented parallel to the incident electric 

field (L + 0) or plate shaped particles with the small axis parallel to the field 

(L + 1). 

Another case of frequent interest is one in which the inclusions are assumed 

t6 be randomly distributed, both in orientation and in eccentricity. A theoretical 

model of this sort has been outlined by O'Neill and Ignatiev. 48 To derive their 

result, we first assume that·the ellipsoids are distributed with their principal 
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axes randomly oriented along the x, y and z directions and that the eccentricities 

(r - cIa) are distributed according to a distribution function per) such that 

p(r)dr - the fraction of inclusions with eccentricities between rand (r + dr). 

Then, fi in Eq. (IV-9) is replaced by the expression, 

fi + p(r)dr !. 
3 

(IV-17) 

and the summation in Eq. (IV-9) becomes an integration over r and summation over 

the principal axes, I.e., 

co 

1 + f [dr pCr) t [1 - L jCr)]ajCr) I 
(IV-18) 

In Eq. (IV-1S) the j index runs over the ellipsoid axes a, band c and the Lj 

functions are given by Eqs. (IV-12) or Eqs. (IV-l4) for prolate or oblate ellip-

soids respectively. O'Neill and Ignatiev assume that only prolate ellipsoids 

are present (1 ~ r < co) and that they are distributed log-normally in r. They 

use the mean and standard deviation of the distribution as fitting parameters in 

addition to other parameters. 

It is frequently assumed that Eq. (IV-1S) applies to the case in which the 

ellipsoidal inclusions have completely random orientations and are not necessarily 

directed along the space x, y and z axes. This can be shown to be true for the 

special case in which ellipsoids of a given type (given a, b, c) have their major 

axis, say c, distributed uniformly with respect to solid angle. This is shown 

in Appendix A. The result for the dielectric constant is identical to Eq. (IV-1S). 
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B. Extension of ·the Maxwell-Garnett Theory to High Fill Factors 

The Maxwell-Garnett theory, as derived above, obviously breaks down when 

the distance between inclusions become small. The basic result, Eq. (IV-9), was 

derived by assuming that the field inside an inclusion is given by Eq. (IV-6), 

the field which would exist inside an isolated particle. To gain a qualitative 

understanding of the potential limits of validity of the MG theory, we consider .a 

simple cubic lattice of spheres, with the lattice constant = L and the sphere 

diameter = rp' The volume fraction f is then given by f 

spheres are just touching, L= 2rp and f = n/6 = 0.524. When the spheres are 

separated by more than a sphere diameter, the effects of sphere-sphere interac-

tions (multipole effects) are small and the spheres can be considered essen-

tially isolat.ed. In this case, L = 4rp and f = 1t/48 = 0.065. Thus, for f ..G 

0.1, the approximations used to derive the MG dielectric constant are not valid. 

An alternate derivation of the MG dielectric constant, Eq. (IV-ll), from 

electromagnetic scattering theory increases the upper bound of f for which the 

theory is applicable. In this type of derivation, a calculation is made of the 

scattering from a random unit cell embedded in the effective medium. The effec-

tive dielectric constant is found by imposing the requirement that this cell not 

contribute to the scattering of an incident plane electromagnetic wave. 49 ,50 A 

random unit cel.l is ,considered to be composed of a spherical inclusion of radius 

a and dielectric constant Ec with a concentric shell of medium with dielectric 

constant Em and outer radius b. The radii a and b are chosen such that the 

volume fra.ction of inclusions in the medium is given by f = (a/b)3.; Fig. IV-2 

shows a cell of this type embedded in a homogeneous effective medium with die lec-

tric constant * E • Smith49 and Niklasson, Granqvist, and Hunderi 50 show that the 

imposition of the requirement that this unit cell not contribute to scattering 

26 



IV-2 A random unit cell in a composite 
with an effective dielectric con­
stant E*. This cell is considered 
to be made up of a core of radius 
a wi th dielectric constant E and 

c 
a shell of thickness t = b - a 
and dielectric constant E • m 

of an incident electromagnetic wave to lowest order in an expansion parameter 

'* leads directly to the result, € = €MG. The expansion parameter is k'*b, where 

. .. '* . '* k'* 1,s the effective medium propagation vector, 27ft). , with). = wavelength in the 

medium. From consideration of higher order terms in the scattering amplitudes, 

Smith49 shows that the maximum volume fraction can be extended to f max i 0.5 for 

particle sizes typical of those found in black Cr films. 

An alternate approach to deriving an expression for the effective dielectric 

constant of a medium with isolated inclusions is to find the dielectric response 

of a medium composed of a uniform periodic array of inclusions. Dielectric con-

stants found this way would presumably be more accurate for f ~ 0.5 than theMG 

expression, Eq. (IV-9). McPhedran and McKenziesl have performed an electrostatic 

calculation for the dielectric constant of a simple cubic (SC) lattice of spherical 

inclusions, and McKenzie, McPhedran, and Derricks2 have extended this calculation 
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to body centered cubic (BCC) and face centered cubic (FCC) spherical arrays. 

These calculations w.ere performed by finding an approximate solution to Laplace I s 

equatlon for the potential inside a unit cell of the lattice. The solution was 

expressed in terms of an infinite series expansion in spherical harmonics, 

Y~m(Oi,$l)' where ai and $i are the polar angles of the radius vector extending 

from the center of the ith cell to a field point in a "central" cell where the 

periodic potential is being calculated. The solution was calculated in terms of 

two expansion parameters, Ma = tmax and M$ ( tmax representing a truncation 

of the series expansion. For the special case, Ma = 4 and M$ = 0, an explicit 

formula can be written for the dielectric constant E:MM of the spherical arrays. 

The expression is given by, 

E:MM = 1 - 3f/D(f) (IV-l9) 

where f "volume fraction of spherical inclusions and the function D(f) is defined 

by, 

1 ~ C T fl1/3 + C T 2f22/3 
where g(f) = __ --,2r--5_~_rTPr--3-5-__ -

T-1 + b f7/3 - C T f6 
3 2 4 5 

The quantities Tn are defined by 

(IV-20) 

and the constants an, bn and cn are defined in Table IV-l for the three types of 

lattices. 
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Table IV-1. Parameters Characterizing eMM' Eq. (IV-20) for SC, BCC, and FCC 
Lattices of Spherical Inclusions 

Quantity 
a1 
b1 
b2 
c1 
c2 
c3 
c4 

f max 
fc 

SC 
1.3045 
0.01479 
0.4054 
0.1259 
0.5289 
0.06993 
6.1673 

'IT /6 '" 0.524 
0.592 

BCC 
0.057467 
0.166117 
1.35858 
0.000950738 
0.733934 
0.134665 
0.0465862 

.f3'IT/8 '" 0.680 
0.730 

FCC 
0.0047058 
0.130683 
1. 20500 
0.00603255 
5.73021 
8.20884 
0.295595 

n:rr /6 ... 0.740 
0.828 

The quantity f max in Table IV-I is the volume fraction at which the spherical 

irclusions touch each other. The quantity fc is the volume fraction at which the 
I 

approximation, Eq. (IV-19), diverges for the case ec .... 00, em '" 1. A.s Me and 

M, are increased, the· numerical calculations of McKenzie, et al. 52 show that 

fc .... f max for this special case. 

Another periocUc. structure for which calculations can be made is that of an 

. array of cubes •. This structure has the advantage that all volume fractions 

·.·.0· .. f'" 1 are accessible. However, an exact calculation of the p:>tential of this 

structure when p:>larized by a uniform electric field has not, to our knowledge, 

been made. The induced dipole moment of an isolated dielectric cube subjected 

to a uniform field has been calculated by Fuchs 53 using an integral, equation 

technique. We have verified the accuracy of Fuch's calculation and have also 

. performed the calculation using an alternate integral equationd.erived by Van 

Bladel. 54 In both .cases we obtained essentially. identical results for both 

real and ·complex dielectric constants. This calculation was done because the 

results reported by Van Bladel for real dielectric constants (Fig. 3.18 of Ref. 

54) differ from those computed from Fuchs' result. We feel that the res~ ts in 

Ref. 54 are in error. The calculations are discussed in Appendix B. 
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Fuchs shows that, for a cube subjected.to a uniform field along one of 

the cube axes, the average dipole moment per unit volume and unit electric 

field or average susceptibility is given by, 

x = (IV-2l) 

where e:c = dielectric constant of the cube material and X-l (e:c ) = 41t /( e:c - 1). 

The constants c m and nm for m = 1 to 6 are given by Fuchs. He shows that a 

Maxwell-Garnett composite medium with cubic inclusions has a dielectric constant, 

e: c 
[ 

41tfe: X + 

m 41tfE:mX + 

(E 
C (IV-22) 

This reduces to Eq. (IV-ll) with L = 1/3 when 41tX goes to the spherical particle 

result, 41tX + [(Ec/Em ~ 1)-1 + 1/3)-1. 

+ 
A cubic array of cubes subject to a uniform field Eo applied in the y direc-

tion is shown in Fig. IV-3. The unit cells of the structure are indicated by the 

da·shed lines. One eighth of a unit cell is shown in Fig. IV-4. Due to the 

symmetry of the problem, the potential has to be calculated only for 1/16 of a 

unit cell, as indicated by the dashed lines. By symmetry,the planes defined by 

y ... 0 and y = 1 in Fig. IV-3 are equipotential surfaces and the planes defined by 

z ... 1 ,x ~ 0, and z == x are surfaces for which the normal derivative of the 

potential vanishes. The average dielectric constant of this structure is found 

by computing the average electric displacement 0 produced by applying a unit 

potential between the planes y ... 0 and y ... 1. 

In analogy with calculations of the electrical or thermal conductivity of 

distributed structures, the effective dielectric constant may be found by breaking 
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Top view of an nrray of dielectric cubes subject to a uniforrt applied 
external field i::. 'rhe daRhed lines indicate unit cells in the 
medium. 

o 

z 

y 

x 

IV-4 One eighth of a unit cell from Fig. IV-3. Only one-half of this 
portion of the cell needs to be analyzed. The shaded region indicates 
the inclusion boundaries on the reduced 1/16 cell used for analyses. 
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the structure up into a number of elements and then assigning each element a 

"resistance" defined by the element geometry.55 The total resistance of the 

structure is then found either numerically or analytically if the number of 

elements is sufficiently small. Variations in results reported in the literature 

are usually a result of differences in the ways various authors break a given 

structure up into finite elements. 

Projections of the structure shown in Fig. IV-4 on the x-z, x-y, and y-z 

planes are shown in Fig. IV-5 where the various elements we have used are labeled. 

The resistor network shown in Fig. IV-5(c) is combined with a parallel resistor, 

RX representing the resistance of region 4 in Fig. IV-5(a). The total resultant 

network is shown in Fig. IV-G. The various resistors are assigned the values, 

3,1 2 

4 3 z 

x (b) 

z Rb 

(a) 
x Ry 

Rc 

y 
(c) 

Rc¥ Rp 

IV-5 Projections ~f the 1/16unit cell in Fig. IV-4(a) projection on the x-z 
plane, (b) projection' on the x-y plane, (~) projection on the z-y plane 
showing assignment of resistors to various parts of the structure. Resistor 
R4 , assigned to the upper triangular shaped region in (a) is not shown. 
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R4 .. 1/[(1 - <5 2)/2] R c .. (1 - <5)/(<52/2) (IV";23) 

Ra "" 1/[2(1- <5)] Ra .. Ra .. p/<5 

Rb • (1 - <5/2)/[<5(1 - <5)] Ry .. p/2<5 

R .. (1 - <5)/(2<52 ) 
lJ 

In Eq. (IV-23), p .. (ec /em)-l and <5 .. half length of a cubic inclusion. The 

effective dielectric constant of the structure is found by finding the equivalent 

conductance of the network in Fig. IV-6. 

If the shunt resistors RlJ and Ry are assumed not to be present, then the 

result found is identical to that reported by son Frey56 for an equivalent thermal 

conductivity calculation, 

(IV-24) 

The volume fraction is related to <5 by f a <5 3 or <5 .. f1/3. The result of our 

calculation with the shunt resistors included is, 

IV-6 Equivalent circuit used to 
calculate the effective dielec­
tric constant €* ofEq. (IV-25). 
The "resistor" values are 
given in Eq. (IV-23). 
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€*(o) = €m[(l _'0)2 + 2A/B] (IV-25 ) 

0/2)0 + 2(1 - 02) + 2po(1 - 0)] 

0/2) + 2(1 - 0)2] 

A = 0(1 - 0)[po/2 + (1 - 0)][02 /2 + (1 

+ 02[0/2 + p(l - o)][po(l - 0) + 0(1 

2 
B = ~' [po(l - 0) + 2(1 - 0)2 + 0(1 - 0/2)] 

2 

+ 0(1 - 0/2)[po + 2(1 - 0)][0/2 + p(l - 0)] 

+ (1 - o)(po + 1 - 0)2 

w,' it h p = C' / C' and ~ = f 1/3 • <-m <-c U 

Consideration of the physics of the problem indicates that Eq. (IV-25) is 

likely to be most valid at high volume fractions when the shunt flux in the z 

direction is relatively small. At small volume fractions there will be a large 

z directed flux and the Fuchs expression, Eq. (IV-22), should be more accurate, 

since full consideration of shunt flux was automatically taken into account in 

the isolated cube polarization calculations. 

The Bruggeman dielectric constant can be derived easily from a model of the 

composlte similar to that shown in Fig. IV-l(a). In Fig. IV-7 a composite is shown 

in which both the matrix and the inclusions are in a particulate or symmetrical 

form. The most significant field polarizing a "particle" of either matrix or 

inclusion is assumed to be the mean field in the composite, EB• Then, the average 

field is obtained by summing the internal particulate fields over all regions, 

i.e ~, 

E = EB = L fjEin(j) 
j 

(IV-26) 

where the index j runs over particles of both types (matrix and inclusion) and 

over all orientations and eccentricities. Implicit in this procedure is the 

replacement of the actual particulate medium by a set of approximating ellipsoids, 
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IV-7 A Bruggeman composite medium in the half-space z > O. The inclus~ons 
(shaded regions) and matrix (clear regions) are assumed to be topologic­
ally equivalent and randomly distributed. 

sim,ilar to the replacement in the Maxwell-Garnett case. In this case, however, 

the replacement is not as physically meaningful because the whole composite space 

cannot be filled with ellipsoids in contact. Using Eq. (IV-6) for the internal 

field expression, with the polarizing field Em replaced by EB, and Em replaced. 

by EB. Eq. (IV-26) yields, 

Es = L EBEBfj 
, or 

LjEj + (1 - L.) E j J B 

(IV-27) 

L 
f. 

J = 1 
j Lj .:1.+ (1 - Lj) 

(IV-28) 

EB 

Eq. (IV-28) is the fundamental relation of the generalized Bruggeman theory. In 

Eqs. (IV-27) and (IV-28), Ej = Ec for inclusion particles and Ej = Em for 

matrix particles. I 

Since Eq. (IV-28) is not linear in EB, it, has been utflized 

only in certain special and highly restricted cases where it can be explicitly 

solved. 
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'For the special case of one type of inclusion and one type of matrix par-

ticle, Eq. (IV-28) reduces to a second order equation in €B which is soluble in 

closed form. if it is assumed that the inclusions are ellipsoidal with a de-

polarizing factor L and the matrix particles are spherical, then Eq. (IV-28) 

becol1\es, 

(IV-29) 

where S = l/L and y is given by, 

y = Em[S(l - f) - 1] + Ec[3f - 1] (IV-30) 

In the even more restricted case in which the inclusions are spherical with 

L .. 1/3, the solution to Eq. (IV-28) is given by34 

(IV-3l) 

where y = [3(1 - f) -1 ]Em + (3f - l)€c 

A situation of interest in black Cr calculations is that of an assembly of 

coated spheres in a medium of dielectric constant Em' An isolated coated 

sphere in a uniform field behaves in a manner analogous to that of a single ma-

terial sphere. If the coated sphere has a core with dielectric constant €c 

and radius rc and a shell with dielectric constant ES and thickness t s , then 

tIle dielectric constant characterizing the coated sphere is, 57 

(IV-32) 
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The quantity g is the ratio of core volume to total particle volume and is given 

by, g • [rc/(rc + t s )]3. Eq • (IV-32) may be easily verified by solving Laplace's 

equation in spherical coordinates for an isolated coated sphere subject to a 

uniform external field. The resultant perturbation field is equivalent t<? that 

produced by a uniform sphere of radius" rc + t s ' with a dielectric const,nt 

given by Eq. (IV~32). Lamb, Wood and Ashcroft have pointed out that Eq. (IV~32) 

is equivalent to the MG spherical particle result, Eq. (IV-ll) with g = f, L - 1/3, 

and ES - €m. 57 In calculations on black Cr coatings, Eq. (IV-32) will be used 

for €C8' with €c • €Cr and €8 • €Cr 0 , while €m will be assumed to be unity. 
2 3 

C. Optical Properties 

In order to perform reflectance calculations, values are required for 

the compl~x·index of refraction of the materials in the reflecting system. This 

index of refraction is defined by the relation 1'( .. n + jk, where nand k are the 

real and imaginary parts of the index respectively and j = /-1. The index of 

refraction n and the complex dielectric constant € = €1 + j€2 are related by 

the formula, 

'il .. €1/2 (IV-33 ) 

Eq. (IV-33) may be used to express €1 and €2 in terms of nand k to yield, 

(IV-34 ) 

€2 = 2nk 

A1ternattve1y,n and k maybe expressed in terms of €1 and €2via the relations, 
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The n and k values ,used for Cr and Ni in the wavelength interval 0.2 ~m ~ A ~ 

5.0 ~m are shown in Fig. IV-S. For Cr, the n and k values reported by John~on 

an4 Christy 58 were used for A ( 2 ~m and those reported by Barker and Ditzen-

berger60 were' used for A )2 ~m. Although both references report the same 

general dependence of nand k on A in the region 1 ~m i A ~2 ~m, they do not 

agree exactly on the magnitude of nand k. Consequently the nand k values shown 

in Fig. IV-8 were derived by smoothly joining the Johnson and Christy short wave-

length data with the Barker and Ditzenberger long wavelength data. 

. 3 .4.5 .7 1.0 

A(,un) 

2.0 

2 

3 . 5.0 

IV-8 Real, n, and imaginary, k, parts of the complex index of refraction for 
Cr and Ni as derived from Refs. 58-60. 
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The real and imaginary parts of the complex index of refraction for Ni were 

similarly obtained by interpolating between short wavelength data repor,ted by 

Johnson and Christy 58 and longer wavelength data reported by Siddiqui and 

Trehern~.60 In this case, the two sets of data joined quite well. 

The optical dielectric constant for Cr203 has been derived from reflectance 

measurements on single crystals by Renneke and Lynch6l and by Lucovsky, Sladek, 

and Allen. 62 In Ref. 61, £1 is reported to be 6.1 or 6.2 for the incident 

electric field vector parallel or perpendicular to the crystal C axis respec-

tlvely, while Ref. 62 gives £1 = 5.7 or 6.0 for these two cases. £2 is 

est~mate4 to be very small at optical frequencies, £2 ~ 5 x 10-3 • Frank and 

Momberg63 report an index of refraction n ~ 2.4 for a reactively evaporated 

Cr203 film, corresponding to £1 a 5.8. Frequently, the oxide in black Cr films 

1s assumed to be in an amorphous phase and the oxide index of refraction is used 

as an adjustable parameter in matching theory to experiment. 7,26 We have taken 

the point of view that since the oxide grows in crystalline form around the Cr 

crystallites in the coating during aging, the values ncr 0 = 2.5 and kcr 0 = 0 
. 2 3 2 3 

are appropriate for use in these calculations. 

D. Comparison of Model Dielectric Constant Dependence on Volume Fraction 

One of the goals of this investigation was to decide which of the model 

dielectric constants for inhomogeneous media yielded the best agreement between 

calculated and experimental spectral reflectance curves for black Cr films. 

Niklasson and Grandqvist64 have examined and reviewed the subject of bounds on 

the values of the effective medium dielectric constant and have demonstrated, 

for a system of spherical Co particles in an Al~3 dielectric matrix, that a 

number of different theoretical formulations can lead to large variations in 
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the calculated spectral reflectance. They concluded that microstructural infor-

mation is essential in determining the correct effective medium theory to utilize. 

It would appear from the microstructural studies described in Sec. III that 

black Cr films are composed of. fine metallic Cr particles, possibly with oxide 

coatings distributed in a matrix and that there is not topological equivalen;ce 

between the particles and the matrix. Hence the MG theory might be felt to be 

more applicable a -priori. This is the point of view expressed by Smith65 and by 

Sievers. 66 There is, however, some uncertainty about the precise nature of ;the 

black Cr microstructure, especially the character of the matrix. This will ,be 

discussedrnore fully· in Sec. V-B. In this section, the fundamental dependence 

of the various effective medium dielectric constants on inclusion volume frac-

. tion, f, will be discussed. The inclusions will be taken to be Cr particles 

and the ma tr ix air with Em = 1. 

For simplicity in the following analysis, the inclusions will be assumed 

to be spherical with Li 1/3 for all i. The solar spectrum covers the wave-

length region, 0.2 ~m < A < 2 ~m and hence it is of interest to examine the 

behavior of the various dielectric constants in this interval. For illustrative 

purposes, we shall display some calculated results for A = 1 tJm. For this 

wavelength, Fig. IV-8 and Eqs. IV-34 can be used to find the real and imaginary 

parts of ECr: ECr (1 ~) = -1.05 and ECr (l ~) 
1 2 

24.44. For spherical 

particles, the MG result, Eq. (IV-l1) becomes, 

~G = 
(ECr + 2) + 2 f (Ecr - 1) 

(Eer + 2) - f(Ecr - 1) 
(IV-36) 

As f + 0, EMG + 1 and as f + 1, EMG + ECr' as it must. As f varies from 0 to 1, 

EMG varies smoothly between 1 and ECr. However, for A ~ O. 2 ~, 'Eer"» 1, 
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and hence the common term ECr + 2 in the numerator and denominator of Eq. (IV-36) 

will tend to keep IEMGI close to unity until f becomes quite large. In contrast 

to this type of behavior, EB assumes characteristics of ECr at much low~r f 

values than does EMGo The expression for EB in Eq. (IV-31), with Em = 1, can 

be written as, 

(IV-37) 

y 2 - 3f + (3f - l)ECr 

rrom Eq. (IV-37) it can be seen that EB is essentially linear in Ecr with a 

coefficient of 3f - 1. 

Plots of EMG and EB in the complex E plane (E = E1 + jE2) are shown in 

Fig. IV-9, for spherical Cr inclusions in an air matrix and A = 1~. Each 

trajectory is labeled with the inclusion volume fraction as a parameter, with 
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IV-9 Trajectories of E
MG 

and 
EB at A = I ~m in the 
complex E plane for Cr 
spherical inclusions in 
an air matrix. The 
labeled points on the 
trajectories represent 
volume fractions of Cr 
associated with those 
points • 
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the a'rrows on the trajectories pOinting in the direction of increasing f. It 

can be seen that EMG retains the characteristics of the medium until fairly 

high f values are attained, while EB develops a large imaginary component at 

relatively low volume fractions. The imaginary component k of the complex index 

of refractlon, as calculated from the second of Eqs. (IV-35) is shown in Fig. 

IV-IO for A = 1 ~m. It is evident that kB increases much more rapidly with 

increasing f than does kMG. Substantial differences between kMG and kB occur for 

0.05 i f i 0.90. Since k is responsible for producing absorption in films, the 

Bruggeman theory will lead to higher predicted absorptances than the MG theory, 

at a given wavelength. 

The substantial deviation ofEB from EMG shown in Fig. IV-9 for f 2 0.2 

is an example of what is called a "percolation" phenomena. 34 Percolation refers 

to the sudden onset of electrical conduction at a critical value of f in a com-

posite consisting of conductlng inclusions in an insulating matrix. In the 

dielectric mixture case, this is equivalent to a situation in which IEc/Eml + ~. 

It has long been known that the Bruggeman theory has a "percolation threshold" 

at f N 0.33, while the MG theory predicts a finite conductivity for any non-zero 

value of f. 34 For Cr particles in a vacuum matrix, IEc/Eml = 24.5 and so EB 

display characteristics of percolation behavior near f ~ 0.3. However, as shown 

in Fig. IV-lO, there is no sudden onset of percolation, as would be indicated by 

a sudden increase of kB relative to kMG, for this system. 

A comparison of the volume fraction dependence of several of the model 

dielectric constants discussed above is shown in Fig. IV-H. In this figure, 

the results are plotted for a MG medium with spherical inclusions (EMG, soli~ 

line, solid circles), a face centered cubic array of spheres calculated from 

Eqs. (IV-19) and (IV-20) (EMM(FCC), large dashed line, triangles), the son Frey 

dielectric constant from Eq. (IV-24) (ESF, dot-dash line, solid squares), the 
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"resistor model" dielectric constant from Eq. (IV-25) (ERes' dot-dash line, X 

symbols), and the dielectric constant found from Eq. (IV-22) for an MG effective 

medium with cubic inclusions (EF' short dash line, open circles). The plotting 

symbols on the curves represent the points at which the adjacent f values are 

assumed. It is evident that the son Frey and resistor model predict essentially 

identical results and that these results are close to those for an MG medium 

with spherical or cubic inclusions. The McPhedran and McKenzie dielectric con-

stant for an FCC array of spheres remains very close to EMG until f 2 0.7. As 

shown in Table IV-I, the limit of validity for an FCC array is f ( 0.74. 
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IV-ll . Comparison of the trajectories of several model dielectric constants. EB 

and .E MG are the same as in Fig. IV-9. E is from Eq. (IV-25). E is 
. Res SF 

from Eq. (IV-24). E (FCC) is the face-centered cubic version of E , 
MM MM 

Eqs. (IV-l9) and (IV-20) and Table IV-l. E is from Eq. (IV-2l) and 
Ref. 53. F 

From the above analysis, based on electrostatic calculations, it can be seen 

that a composite medium with a periodic array of inclusions can have an effective 

dielectric constant similar to €MG, even at very high volume fractions. We 

speculate that a nonperiodic or random array of roughly spherical (or cubic) in-

inclusions can also have a dielectric constant dependence on volume fraction 

similar to that of €MG' 

E. Effect of Particle Eccentricity 

rhe presence of highly eccentric absorbing inclusions with the long axis 

in the plane of the film will increase absorption at a given wavelength because 
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these particles are more easily polarized than are spherical particles. The 

result has been demonstrated explicitly by Van de Hulst who shows that the ab-

sorption cross section of an isolated inclusion is proportional to the imaginary 

part of the polat'izability, Eq. (IV-10), in the limit where the wavelength is 

much larger than the inclusion length. 67 Eq. (IV-10) shows that the polariza-

bility, a, increases as the depolarizing factor L decreases, and Eq. (IV-13) 

shows that L decreases approximately as r-2 as the eccentricity r increases. 

This effect has been discussed by Granqvist and Hunderi 39 who show that the 

absorptance ata given wavelength does in fact increase as the particle 

eccentricity increases in the plane of the film. This increased absorptance 

effect can be illustrated by using Eq. (IV-1l) for £MG and considering a 

film consisting of chrome prolate spheroids in a medium with £m - 1. The c 

axis of the particles is aligned along the direction of the incident electric 

Held. Fig. IV-12 shows the imaginary part of the refractive index, kMG and 

kB vs the chrome particle cIa ratio at A = 1 ~m and f = 0.1. The inset to 

Fig. IV-12 shows the assumed geometry, with prolate ellipsoidal particles 
-+ 

having their c axes aligned with the incident E vector. ~G increases very 

rapidly with increasing cIa, indicating rapidly increasing absorption with 

increasing eccentricity. The variation of the complex MG dielectric constant 

with particle eccentricity is shown in Fig. IV-13. The solid lines are the 

trajectories of £MG with increasing f for r = 1, 2, 4 and 6. The dashed 

lines represent trajectories of increasing r for constant f and the dot-dash 

line represents £B for r = 1. From this figure it is evident that as the 

eccentricity increases, £MG acquires more of the characteristics of £B. 

In the limit cIa -+ ~ or L -+ 0, Eq. (IV-11) may be used to show that, 
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IV-12 Imaginary part of the complex 
index of refraction vs particle 
eccentrici ty for prolate ellip­
soidal Cr inclusions in an air 
matrix at f = 0.1 and A = 1 wm. 
The inset shows the assumed geo­
metry with the ellipsoid c axes 

-+ 
aligned along the incident E 
field direction c = length of the 
semi-major axis and a = length 
of the semi-minor axis. 

(IV-38) 

Thus for a system of highly eccentric oriented particles, EMG approaches the 

volume averaged dielectric constant. 

In contrast to the EMG behavior, EB ... Em as L ... 0 and kB consequently 

decreases as shown in Fig. IV~12. Eqs. (IV-29) and (IV-30) may be used to show 

that, for f < 1, EB ... Em independent of the value of Ec as L ... 0 (8 ... (0). This 

occurs because EC occurs only in the denominator of one of the terms in Eq. (IV-28) 

and it is multiplied by L. Hence in the Bruggeman theory absorption is increased 

somewhat as highly eccentric metal particles become more spherical and in the MG 

theory high absorption is produced by the high eccentricity included particles. 
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F. Reflectance Calculations 

Traipctori0S of r in . MG 
the complex E plane at 
A = 1 ~m as a function 
of f and r = cia. The 
solid lines show the 
variation of E

MG 
with f 

at constant r and the 
dashed lines show the 
variation of EMG with r 

at constant f. For com­
parison, EB is shown by 
the dot-dash trajectory. 
It can be seen that E

MG 
becomes more like EB as 

r increases. 

The calculation of reflectance for a system of uniform layers and normally 

incident radiation can be performed in a straightforward way by the Rouard's method 

as described in detail by Heavens68 and summarized by Chang and Hall. 35 In this 

technique, the model system illustrated in Fig. IV-l4 is considered. This system 

consists of N layers of material, indexed by the letter k, each with a uniform 

dielectric constant uk- nk + jkk and a thickness dk as shown. The substrate is a 

uniform semiinfinite material with an index of refraction uN+l. The reflectance of 

the N layer stack is found by first calculating the reflectance for a system com-

posed of the substrate and the Nth layer and then back calculating the reflectance 
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IV-14 (a) Model film structure used in optical reflectance calculations. The 
film consists of· N layers on semi-infinite substrate. Layer k has a 
t~hickness d k • A plane ele~tromagnetic wave with an electric field 
~o· and propagation vector k = (2n/A )x is incident from the left. 
·00 

(b) V.wiation of the electric field strength within layer k. E(d
k

) is 
related to E(O) by Eq. (IV-31). 

of system composed of the (N - l)st layer and joint Nth layer-substrate system. 

The reflectance coefficient for the Nth layer-substrate interface is given by,35 

(IV-38) 

RN+l is the ratio of the reflected to incident electric field strength at the 

interface between layers Nand N + 1. The complex reflectance or Fresnel coef-

ftcient for the Nth layer may now be found from the relation, 

(IV-39) 

where oN = 21TdNnN/Ao and RN is found from Eq. (IV-38) by replacing N by N - 1. 

The Fresnel coefficient for the generaY kth layer is, 
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The calculation of th~ Fk proceeds via the scheme FN + FN-l + 

the stack reflectance R is given by, 

,.., 
where Fl*is the complex conjugate of Fl' 

(IV-40) 

--••• F1, and 

(IV-41) 

A model stack is illustrated in Fig. IV-l4(a). For a wave with a free space 

wavelength Ao traveling to the right in the kth layer, the ratio of the electric 

field strength at the right boundary to that at the left boundary is, as shown in 

Fig. IV-l4(b), 

E(dk)/E(O) (IV-42) 

Eq. (IV-42) shows that the traveling wave is attenuated by a factor exp[-2nkkdk/~] 

in crossing the kth layer and hence a large value of kk leads to large absorptance 

in the kth layer. 

For calculations with graded layer black Cr films, the film is broken up into 

a large number of layers, typically ~75-l00, each with its own Cr particle volume 

fraction, fCr(xk)' where xk is the centerline coordinate of the kth layer. Two 

model functions have been utilized for reflectance calculations, a general power 

law function given by 

(IV-43) 

and a sinusoidal or sigmoid function given by, 

1t - • (1tK) fcr(x) = fCr-min + - (fCr - fcr-min)s~n --
2 . 2L 

(IV-44) 
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In Eqs. (IV-43) and (IV-44), fCr is the average chrome volume fraction, fCr-min is 

the Cr volume fraction at the film top surface, and L = film thickness. Most of 

the oalcu1ations were done with the power law profile, Eq. (IV-43) and fCr-min = 0, 

as the sigmoid distribution, Eq. (IV-44) did not typically yield good agreement. 

with experimental data. When Eq. (IV-43) is used, the maximum value of n is 

restricted for· a givenfCr by the requirement fCr(L) ( 1, yielding, n + 1 ( l/fCr. 

Typically, fcr ~ 0.2 and thus n ~ 4. 
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v. Comparison - Theory vs Experiment 

A. EXperimental Reflectance Measurements 

The major objective of the modeling research has been to develop a physical 

model of a black Cr coating which can explain the observed spectral reflectance 

data. TWo distinct types of experimental measurements have been made. In the 

principal series of experiments, the spectral hemispherical reflectance, R(X), has 

been measured over the wavelength interval, 0.45 ~m ( X ( 2.5 ~, for black Cr 

films plated on smooth and rough Ni substrates. These measurements have also been 

made after the coatings have been thermally aged in air at various temperatures. 

In another experiment, a black Cr film was plated onto a steel substrate and was 

subsequently removed from the substrate by chemically etching the steel. 23 The 

stripped black Cr film was then placed, with the original substrate side down, onto 

a glass substrate~ The original substrate side was grayish in color, indicating 

the presence of.a high metal volume fraction on that side. The spectral reflec­

tance of both sides of this stripped film was then measured. 

The measured spectral reflectances of two black Cr films plated onto nickel 

from different baths and aged for various times at 450°C are shown in Figs. V-I and 

V-2. The variation seen in R(X) characteristics for these films is typical of 

that which is observed in practice and is probably a result of variation in coating 

microstructure produced by variations in plating process variables or in plating 

bath chemical concentrations. The coating in Fig. V-l develops a "bump" or an· 

interference peak at X ~ 0.9. ~ as thermal aging progresses and the position of 

the rapid reflectance rise or reflectance "edge" shifts to shorter wavelengths. 

It can be seen that a significant change in the nature of the R(X) curve has 

occurred in the first l2h of aging, with the edge becoming significantly steeper. 

This is felt to be a result of the evolution of volatile materials trapped in the 

coating during the plating process. Zajac, Smith and Ignatiev26 have reported 

the desorption of H2' "20' CO and C02 in coatings heated above 300·C. 
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V-J Experimental spectral reflectance R(A) of a black Cr film aged in air 
at 450 C for various times as shown. This film develops an "inter­
ference" bump at A '" 0.9 11m as aging progresses. 

The R(X) characteristics shown in Fig. V-2 do not indicate the formation 

of a significant interference peak. Instead, the reflectance at short wavelengths 

appears to increase approximately uniformly as aging progresses. The thermal 

stability of the two coatings is also quite different. The solar averaged absorp-

tance; as' for the coating in Fig. V-l changed from as = 0.97 to as = 0.94 after 

46 h of aging while, for the coating in Fig. V-2, the initial as == 0.96 was 

reduced to as - 0.85 after only 30 h. 

B. Coating Structural Model 

A structural model of a black Cr coating is required in order to calculate 

theoretical R(X) characteristics using the procedure described in Sec. IV-E. 

The model is derived from the results of various microstructural investigations, 
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as dlscussed in Sec. III-C, and from other measurements such as film areal density 

and thlckness. The SEM and TEM studies discussed in Sec. III-B,C indicate that 

black Cr films are highly porous and contain a mixture of various Cr oxides and 

Cr metal in the form of small metallic crystallites. The detailed nature of the 

oxides is still unknown, but after a coating has been thermally aged for a rela-

tively short time, the principal oxide observed by selected area electron dif-

fraction is Cr203. For modeling purposes, we have elected to represent a black 

Cr coating as a mixture of Cr metal, crystalline Cr203, and void volume. The 

Cr metal and Cr203 are assumed to be present at their bulk densities. 

The major constituents of a black Cr film, as seen in SEM studies, are roughly 

spherical particles ,.,,(J.2 j.lm in diametet'. Inside these particles are the Cr 

crystallites, Cr203, and probably additional void volume. This additional void 

volume may include 'non-dense amorphous Cr oxides of various types. For the pur-

poses of this discussion, the term void represents a material with a real dielec-

tric constant, Em ~ 1. The nature of the distribution of the Cr and Cr203 in-

side these particles is still not resolved. The Cr may be in the form of distinct 
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crystallites, each surrounded by a shell of Cr203 as indicated schematically in 

Fig. V-3(a). ~nother possible model is that of an assembly of Cr and Cr203 crys-

tallite particles, as shown in Fig. V-3(b). Still another possibility is that of 

a distribution of Cr crystallites in a Bruggeman type matrix of Cr203 and void, 

as shown in Fig. V-3(c). Still other hypothetical structures may be developed 

from combinations of these basic structures. 

V-3: 
(a) 

(b) 
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Model structure for a black Cr "particle." In this structure, the particle 
is composed of a n~mber of Cr crystallites, each surrounded by a shell of 
Cr20 3 • The space between the crystallites might consist of a non-dense, 
amorphous oxide. 
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V-3 (c) Distribution of Cr crystallites in a Bruggeman matrix of cr
2

0
3 

and void. 

In modeling a coated sphere film (Fig. V-3(a», the core dielectric constant, 

£e' is replaced by the coated particle dielectric constant, Ecs ' as given by 

Eq. (IV-32). In all our calculations, we have assumed that only spherical coated 

particles are present, so that the depolarizing factors Li = 1/3 for all 1. Both 

Bruggeman and Maxwell-Garnett mixtures of void and coated particles have been used 

to calculate model R(~) results. For coatings with both Cr and Cr203particles 

(Fig. V-3(b», the MG dielectric constant, Eq. (IV-9), has been utilized with fl 

fCr and f2 = fCr 0. For coatings of the type shown in Fig. V-3(c), Eq. (IV-31) 
2 3 

was used to calculate the medium dielectric constant with Ec = ECr ° ' Em = 1, 
2 3 

and f = fCr ° in that equation. 
2 3 

Then Eq. (IV-II) has been utilized with Ec = 

ECr' and Of = fcr. Since plated films used in our studies typically had average 

thicknesses in the range -0.2-0.5 ~, they appear to be composed of several 

layers of particles oof the type shown in Fig. V-3. For the purpose of making 

reflectance calculations,we assume that the highly heterogeneous film can"bere-

placed by a film which is made up of a number of slices, as shown in Fig. IV-14(a). 

In a thin slice at depth x it is assumed that the volume fractions of Cr, Cr203' 

and void are constant. This amounts to a "smearing" of the film in sections paral-

leI to the surface plane such that the constituent concentrations in any section 
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have their average values for the depth of that section. If the average volume 

fractions of Cr, Cr203' and void at depth x are fCr(x), fCr ° (x) and fv(x) 
2 3 

respectively, then, at any x, 

fCr(x) + fCr ° (x) + fv(x) = 1 
2 3 

(V-l) 

The coordinate x is measured from the front surface of the film with the substrate 

located at x = L. In the future, we shall refer to the average constituent volume 

fractions at depth x as just volume fractions to avoid confusion with averages 

taken over the whole film depth. In order to make connection with experimental 

Auger sputter profile results, we replace the fundamental volume fractions fCr(x) 

and fcr ° (x) with the total volume fraction f(x) and the relative volume fraction 
2 3 

of Cr to Cr + er203' Q(x). These new quantities are defined in terms of the 

original volume fractions by, 

and, 

. f(x) = fer (x) + fer ° (x) 
2 3 

Q(x) = fer(x)/[fer(x) + fCr ° (x)] 
2 3 

The inverse relations are, 

and, 

fcr(x) Q(x)f(x) 

fcr ° (x) = [1 - Q(x)]f(x) 
2 3 

Frequently, the average .value of these various quantities is desired. The 

average of a quantity, fi(x) is defined via the relation, 
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L 

f1 = i f f1 (x)dx (V-G) 

o 

where L = film thickness. 

Within this model, the average film density, p, is given by, 

(V-7) 

If both sides of Eq. (V-7) are mUltiplied by L, the densities can be interpreted 

as areal mass densities, Ps (gm/cm2). A number of measurements of Ps have 

been reported, as discussed in Sec. III-C. These experiments were all conducted 

on films stripped from Fe substrates and the results are, therefore, not neces-

sarily typical of film deposited onto Ni substrates. 3 ,26 However, they do furnish 

a basis for performing initial calculations. We have used a value, Ps s 7 x 10-5 

g/cm2, typical of the lower range of thermally stable coatings, as discussed by 

Pettit, Sweet and Sowe1l. 3 

The.coating thickness which should be utilized in calculations of this type 

is to some extent indeterminate. Coatings typically have a surface roughness 

variation on the order of a particle size, or about 0.2 ~m, and the thickness, 

as measured from SEM micrographs of stripped films, is typically in the range L ~ 

0.2-0.5 ~m. If PCr and PCr 0 have their measured bulk values, .1.14 and 5.22 
2 3 

g/cm3 respectively, then Eq. (V-7) yields, 

= 7.14fCr + 5.22fCr 0 
2 3 

(V-S) 
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For various values of L or Ps' Eq. (V-8) may be used to calculate the maximum 

possible values of fer or fer 0 by assuming that one or the other of these quan-
2 3 

titles is zero. Table V-1 shows the results of this calculation for p = 7 x 10-5 
s 

g/cm2 and L - 0.4 and 0.5 lJm. 

Table V-l. Maximum Possible Values of fCr or fcr203 for L 
from Eq. (V-8). 

0.4 IJl1l and 0.5 1Jl1l, 

L ( !Jln) 

0.4 0.25 

0.5 0.20 

fcr ° -max 
2 3 

0.34 

0.27 

The Auger data discussed in Sec. III-B indicate that as-deposited films are heavily 

oxidized, with Q ~ 0.6. As the coating oxidizes, the areal density increases'and 

possibly the f~lm thickness increases as well. In light of these uncertainties, 

we have elected to assume that f' = fCr + fcr
2
0

3 
is a fixed quantity and that L 

remains at its initial value as the coating ages.' For a 0.4 IJl1l film, a value 

of f = 0.30 has been assumed and for a 0.5 !Jln film, a value f = 0.25 has been used. 

There is no direct experimental evidence which yields the functional form of 

f(x} directly. Films stripped from Fe substrates appear gray or metallic on the 

"substrate" side, indicating a large value of fCr(L}. The rough nature of a 

black Cr film suggests that f(O} ~ O. We have used the power law form, Eq. (IV-43) 

for f. The requirement, f max = f(L} .. 1, can be used with Eq. (IV-43) to set the 

limit, n + 1 < l/f, where n = exponent in the power low relation. For f = 0.30, ' 

nmax = 2.3 and for f = 0.25, nmax = 3.0. For baseline calculations, we have used 

n = 2 when f = 0.30 and n = 3 for f = 0.25. Effects of varying n from these 

nominal values will be discussed in the next section. 
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- _.- --------------
The relative volume fraction of Cr, Q(x), as given by Eq. (V-3) can be deter-

mined experimentally from Auger sputter profile data. This experimental deter­

mination has been discussed by Holloway, Shanker, Pettit and Sowell. 28 Some 

results derived from this work are shown in Fig. V-4. A number of assumptions 

1. 0 __ ---...---r----r--..,-----, 

a 0.5 

o 
o 0.2 1.0 

V-4 Relative volume frac.tion of Cr to (Cr + cr
2

0
3

), Q(x) as obtained from Auger 
sputter profile data for an as-deposited fllm and for the same film aged for 
3682 h at 400 C. 

have to be made to derive the Q(x) relation from Auger_ Cr and 0 signal level vs 

sputter time data,69,70 so these derived relations must be considered, at best, 

semiquantitative in nature~ As-deposited films are typically characterized by 

a nonlinearQ(x) characteristic which can be described reasonably well by a 

function of the form, 

I -XIX) 
Q(x) = Qmax\l - e 0 (V-9) 

where Qmax and Xo are parameters. Q is related to Qmax and Xo by, 

(V-lO) 
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The parameters, Qmax and Xo are chosen in an iterative fashion or by nonlinear 

least squares techniques to yield a good fit between Eq. (V-9) and a measured n(x) 

characteristic, such as the one shown in Fig. V-4 for an as-deposited film. ; 

After thermal aging, the Q(x) characteristic becomes linear and can be 

described by a function of the form, 

Q(X) = iQx/L (V-H) 

As will be seen in the next section, for Q = 0.5, use of either Eq. (V-II) or 

Eq. (V-9) in a reflectance calculation yields essentially the same result, showing 

that Eq. (V-II) is adequate for calculating R(A) at all times. 

The multilayer reflectance calculation procedure described in Sec. IV-F is 

used to calculate R(A). In this model, we typically have used 95 layers~ although 

the results are not significantly altered by using only 50 layers. A model of a 

with f ~ x3, f .. 0.25 and n .. 0.25 is shown in Fig. V~5. In the ith film sHce, 

f(x) and Q(x) are constant with the values f(xi) and Q(xi) respectively as shown 

in Fig. IV-S. The coordinate xi is given by, xi = (i - 1/2)(L/N), where N = number 

of layers. After the spectral reflectance is calculated, the solar averaged 

absorptance, as' is found by averaging the spectral absorptance A(A) = l-R(A) 

over an airmass 1.5 solar spectrum ~(A), 

<Xl 

f ~(A)[l - R(A)]dA 

o 
<Xl f ~(A)dA 

o 

(V-12 ) 

The temperature dependent normal emittance e:N(T) is found by averagingA( A) over 

the Planck blackbody distribution function, 
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V-5 Model film structure used for reflectance calculations with f(x) a: x3 and 
&l(x) linear. The ~ilm is broken up into discrete layers as discussed in 
Sec. IV-E. The it film slice is assumed to have uniform properties f(x.) 
and l1 (x. ) . ~ 

~ 

~g(T'A)[l - R(A»)dA 

o 
~ (T) = -.;;;.--------

co 

where g(T,A)is defined by, 

~ geT, A)dA 

o 

(V-13 ) 

(V-l4) 

where c = speed of light, h = Planck's constant, and kB = Boltzman's constant. 

These calculations were done in practice by performing 20 point weighted averages 

of [1 - R(A)] as described by Lind, Pettit and Masterson. 71 
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The relationship between the hemispherical emittance EH(T) and the normal 

emittance depends on the nature of the emitting surface. Sievers gives the 

relation, EH(T) - (4/3)~(T) for good conductors (~ + 0).6 Through use of 

the simple "Drude" theory of metals, the ratio EHlEN can be calculated as a 

. 72 
function of EN. For ~ ... 0.1, this ratio has the value, ~/EN .. 1.2. For the 

purpose of making approximate calculations for black Cr-metal substrate systems, 

we have used a factor of 1.2 to convert EN to EH. 

c. Calculated Results 

1. Verification of com~uter Code: The computer code written for calcula­

tinc,{ the normal reflectance of a multilayer stack was checked by solving a nunber 

of.testproblems for which analytical solutions exist. As a further check, some 

of t.lu~· results reported by Granqvist and Hunderi38 were duplicated. In Fig. 3 of 

Ref •. 3S, results are presented for the reflectance of a uniform 1 IJltl thick Maxwell":' 

Garne.tt layer of spherical chrome particles in an air matrix on both Cu and Ni 

substra~es. The dielectric function used was Eq. (IV-16) with L = 1/3 and the Cr, 

Ni aridCu optical data were taken from the same sources. OUr. results agreed quite 

well with those in Ref. 38· for both types of substrates a'nd over the wavelength 

interval, 0.3 IJ.m <: A <: 5 IJ.m. The maxill\um deviations between the tWo calculations 

occurred.at the longer wavelengths and were <10%. The RMSdeviation was .... 2%. 

Thes.edeviations are probably a result of variations in derived values of the 

. real and imaginary parts of the index of refraction, neAl and k(A), for the 

various materials, as found from the primary reference sources. For Cu, n( A) 

andk(A). were obtained from the AlP Handbook. 73 A calculation of R( A) for bare 

Cu re~r6duced the Granqvist and Hunderi result to within .... 5% at wavelengths in the 

O. 3-5p.m range. The calculated reflectance of bare Ni also agreed well with the 

calculated results in Ref. 38 and agreed very closely with our measurements of the 

reflectance of bright Ni in the wavelength range 0.35-2.5 1Jm. 
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2 •. Reflectance of Black Cr Films on Ni-MG Model: In this section, cal­

culated R(A) results are presented for two model hlack Cr films on Ni substrates. 

The Maxwell-Garnett dielectric function for spherical inclusions, Eq. (IV-ll) 

with L = 1/3, has heenused together with the coated sphere dielectric constant 

from Eq. (IV-32). The particle cares are assumed to be metallic Cr and the 

coatings Cr203. Table V-2 shows the parameters used in the two calculat~ons. 

Table V-2. Parameters for Model Reflectance Calculations 

Parameter Mode1-A Mode1~B 

Film thickness-L(~m) 0.40 0.50 

Avg fill factor-f 0.30 0.25 

f(x) power 1aw-n 2 3 

f(L) 0.90 1.00 

n function linear linear 

Fig. V-6 shows results for Mode1-A and Fig. V-7 for Model B. Q(x) has been 

chosen as a linear function and the average value Q is shown as a parameter. As 

Q increases, the "edge" or position of steep rise in the reflectance curve moves 

toward shorter wavelengths and, at small values of Q, the short wavelength 

reflectance increases appreciably. It is only when the reflectance for A < 1 ~m 

assumes an appreciable magnitude that the solar averaged absorptance, (ls' deviates 

appreciably from its value at large values of Q. Fig.V-8 shows the predicted 

variation of (ls with the quantity (1 - n) for the two models (curves A and B), 

together with some experimental data for thermally stable (curve S) and unstable 

(curve U) black Cr. 28 The quantity (1 - Q) represents the relative volume 

fraction of Cr203 in the coating, i.e., the fraction of material per unit volume 

in the coating which is Cr203. Experimentally, this quantity was derived from 

Auger sputter profile data. 28 
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V-7 Calculated spec:tral reflectance of a black Cr coating with parameters of 
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Both the experimental and the theoretical curves in Fig. v-a show the same 

general kind of behavior: as remains relatively constant until the relative 

volume fraction of Cr203 is ~ 70%. Then as starts to decrease rapidly with 

additional oxide formation. The theoretical dependence of as on (1 - n) repre­

sents one of the most significant predictions derived from the KG theory. 

1.00--------------, 

0.95 

0.90 

0.85 

0.80 

0.75 0.0 0.2 0.4 0.6 

1-0 

)(\ 
\ . \ 

\ \ 
\ 

0.8 1.0 

V-8 ,Solar absorptance vs relative volume fraction of cr
2

0
3

, 1 - SG. Curves S' 
(solid circles) and U (solid triangles) represent experimental data for 
stable and unstable films respectively. Curves A and B are results calcu­
lated from Models A and B. Curve MG/B is a result calculated from the MG 
model with a Bruggeman cr20

3
/void matrix. Curve MG{Cr, cr

2
0

3
) is a result 

calculated assuming an MG mlxture of Cr and Cr
2

0
3 

in an air matrix. 
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For values of n > 0.5, the R(A) curve is not too sensitive to the exact form 
"'" 

of n(x). A comparison of R(A) behavior for a linear n(x) function and a satu­

rating exponential n(x) function, Eq. (V-9), is shown in Fig. v-9 for the Model B 

case. In the exponential case, nmax = 0.76, Q = 0.57, and xo/L = 0.26 while for 

the linear case, n - 0.5. The bump in theR(A) curve at A '" 4 llm for the linear 

n(x) case is a consequence of fCr(x) + I as x + L in the Model B case, with n = 

0.5. This is probably not physically meaningful because a 100%'Cr volume fraction 

could probably not be achieved in practice. If the f(x) ,.., x3 distribution is trun-

cated at f max '" 0.8, the bump is removed but R(A) for A ~ 3 llm is· unchanged.' 

The solar averaged absorptances, as'· 0.981 for.the exponentiai n function and 

as· 0.986 for the linear n function, are essentially identical. 

The effect .onR(>") of using a variable number of layers in the multilayer 

reflectance calculation is shown in the.Mode1 B j!a1culation of Fig. V-lO.for the 

'case in 'which:rr -0.4. In this figure, results are shown for 25, 50 and 75 layers. 

The'SO and 75 layer cases produce 'essentially identical resu1ts.while the 25 layer 

case indicates. a small devi8tion. In all of the calculated results reported here, 

95 layers hav~ been 1,1sed; 'adding more' layers does not improve the accuracy. of ·the 

calculation. 

3., .Effect of Variation' of Model Parameters: Within the framework of 

the.Maxwell-:-Garnett dielectric functi6n~continuously graded. power lawCrc6ncen-

tration model, there are three fundamental parameters whlch.determinethe nature 

of the spectral reflectance •. These parameters are: the coating thickness, L; the 
, - . . 

power law exponent, n from Eq. (IV-42); and the average material volume fraction, 

f from Eq. (V-6). A region in {n - L - f} parameter space can be found such that 

'. the calculated R(A) characteristics are in good agreement with experiment but 

.the parameters' cannot be uniquely determined. Various experimental results do, 

however, impose ,some limits on the magnitudes of these parameters, as discussed 
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in the preceeding section. We shall now examine the effect of individual varia-

tions of these parameters on R(A) and then consider the effects of joint varia-

tiona. As an aid in making this examination, we define (following Granqvist and 

Hunderr 38 ) the cutoff wavelength, AC as the wavelength at which the reflectance 

is equal to 50%, i.e., R(AC) = 0.5. In all of the following calculations, the 

Q function was defined as, Q(x) = 1, although the' results are not changed much 

if Eq. (V-ll) with Q = 0.5 is used for Q(x). Fig. V-llshows the effect of' 

varying coating thicknesswithn. and f held constant. In this calculation, n = 2, 

f .. 3 and L" 0.3, 0.4, and 0.5 Jlm. 'As L increases it can be seen ;that AC 

increases. This effect was previously demonstrated by cranqvist and Hunderi for 

uniform coatings (,:1 ~ 0) on eu substrates with f =0.1. 39 
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. v-II Effect of variable coating.thickness on film reflectance. As L increases, 
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/ 

The effect of varying n with Land f held constant is shown in Fig. V-12. 

In this case, L - 0.4 ~m, f = 0.25, and n = 1, 2 or 3. As n increases, AC again 

increases and the reflectance for A < Ac decreases appreciably. The effect of 

varying f. with fixed Land n is shown in Fig. V-B. In this calculation, L .. 0.4 

~m, n .. 2 and f .. 0.2, 0.25 and 0.3. As f increases, AC moves to longer wave-

lengths and the short wavelength reflectance decreases. Comparing Fig. V-12 and 

Fig~ V-13, it can be seen that the effect on R(A) of increasing either F or n i~ 

qualitatively similar. Fig. V-14 indicates the effect of increasing f for a 

coating with L - 0.3 ~m and a linear grade, n = 1. In this case, the short 

wavelength reflectance stays large until f becomes quite large. 

! 
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V-l2 Effect of variable grading power law on film reflectance. As n increases, 
A increases. Parameters used in the calculation are L = 0.4 ~m, f = 0.25, 
-c 
~ = 1.0. 
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From the above discussion, it is evident that AC can be increased by in-

creasing either L, n or f. However, an examination of Figs. V-II through V-14 

indicates that only in certain cases does the reflectance remain small for A < AC; 

then increase abruptly near AC' and approach -0.9 for A > AC. These cases 

correspond to situations in which f max = (n + 1)£ is large, f max ~ 0.9. 

A diagram of n, L, f parameter space is shown in Fig. V-IS. The surface with 

f .. 1/(n + 1) is that for which f(L) = 1 while that for £ = 0.9/(n + 1) corresponds 

to f(L) = 0.9. ,tf'f(L) falls within these limits, the reflectance for A <AC 'is 

generally small., If the wavelength and parameter dependence of the reflectance 

is represented by the notation R(A\n,L,"f), then t~e equation, 

R (A c \ n, L ,"f) = O. 5 (V -15 ) 

defines a surface in n,L,f parameter space, for a given value of AC. The portion 

ofthissur.face contained between the surfaces f = l/(n + 1) and f = 0.9/(n + 1) in 

Fig. 'V::,15 represents the region in parameter space in which the cutoff wavelength = 

Acand R( ).'< AC) is small. The dashed line in Fig. V-IS represents, approximately, 

a line on the surface defined by Eq. (V-IS) for AC ... 3 lJm. The locations of 

the models de~ignated A and B are shown on this line. The line can be described, 

in an approximate. way, by the parametric equations, 

£ = 0.95/(n + 1) (V-16 ) 

niL .. 5 

A set of R(A\n,L,f) calculations using parameters determined from Eq. (V-16) 

is shown in Fig. V-16. The four sets of parameters used are designated 1-4 and the 

coordinates of these points are indicated in Fig. V-IS. The wavelength variation 

in R'isvirtually identical for cases 1-3, while case 4 shows a small deviation, 

with AC < 3 lJm. 
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The functions R(hln,L,f) can also be characterized in an approximate way 

by the two usual parameters, as and EN(300°C). For cases 1-3 in Fig. V-16, as -

0.99 and EN(300 C) - 0.11-0.14. For case 4, as = 0.96 and EN(300°C) = 0.11. For 

sets of parameters with nand f specified by the first of Eqs. (V-16) but with 

L > n/5, hC will shift to longer wavelengths, with a consequent increase in 
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V-IS Surfaces in n-L-f parameter space which bound a volume in the space for which 
R(A) is small for A<A • The upper sheet is defined by f = l/(n + 1) and 
the lower sheet by f =cO•9/(n + 1). The dashed line corresponds to A ~ 
3.0 ~m. The parametric locations of models A and B are indicated. Tfie 
numbers 1-4 represent sets of parameters for the R(A) calculations shown in 
Fig. V-16. The approximate (n, L, f) coordinates for calculations by Zajac, 
et al. 26 and Richie, et al. 2S are also shown. 

71 



£N(300°C). For L, < n/5, hC shifts to shorter wavelengths and both as and 

£N(300 C) decrease. 
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V.,... 16 $pectral reflectance of black Cr films with (n, L, f) coordinates as indicated 
iri Fig. V-IS. 

Coordinates of sets of parameters used in two reflectance calculations 

rep~rted in the literature are also shown in Fig. V-15. 25 ,26 The calculation of 

Zajac~' et a1. 'was performed for three discrete layers of elliptical particles with 

f - 0'.38, L :- 0.2 l,l'm, and an approximate linear grade (n == 1). n(x) was also 

approxJmate1y linear with n '" 0.7. Although the conditions fo'r this calculation 

are not the sallie as for our calculations, the point in parameter space lies close 

to that predicted by'Eqs. (V-16).' The presence of highly eccentric ,particles 

results in shifting hC to longer wavelengths in their calculation. The calculation 

of Richie, et a1. also involves elliptical particles and utilizes the McPhedran 

and McKenzie SC dielectric function. Their approximate parameters are f = 0.4, 
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L 3 0.28~m, n ". 1.5. Again, this set of parameters is approximately that given 

by Eqs. (V-16). Thus there seems to be a tendency for different investigators to 

use parameter sets located close to the dashed line in Fig. V-IS when calculating 

spectral reflectance curves of unaged black Cr. 

One additional feature which can be added to the basic Maxwell-Garnett graded 

layer model is the presence of a front surface oxide layer. Fig. V-17 shows the 

result of a calculation using model-A with n = 0.3 and front surface Cr203 layers 

o 
of 20, 30 and 40A. The main effect of the front surface oxide is to increase 

the short wavelength reflectance. This is similar to the increase in the short 

. wavelength reflectance shown in the experimental R(A) curve in Fig. V-2. Thus it 

is possible to explain this type of data by postulating the growth of a relatively 

thin uniform oxide layer on the film. 
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with a thickness d as indicated on the figure. Other parameters are ox _ 
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4. Effect of Using Alternate.Dielectric Functions: All of the calcula-

tions reported above were made.using the basic Maxwell-Garnett (MG) dielectric 

function with spherical particles, Eq. (IV-H) with L • 1/3. In this sectiop we 

examine the effect of employing alternate model dielectric functions in these 
I 

calculations •. 

The McPhedran and McKenzie (MM) theory described briefly in Sec. IV-A g,ives 

the 'static (A ,. 00) dielectric constant for a simple cubic (SC)array of spher,es. 

Since it includes multipole effects, as compared to the MG theory which only' in-

cllidesdipoleeffects, presumably it will be more accurate at high volume fractions. 

TheM =4 version of the MM SC theory dielectric function, Eqs. (IV-19) and ;(IV-20), 

is valid for 0 ( f <0.524, wher.e the upper limit is the volume fraction at ~hich 

the spheres in a 'simple cubic lattice start to touch each other. It is not ;clear 

how the MM dielectric function should be extended to higher volume fractions. The. 
, . 

results of a reflectance calculation using both the MM SC and MG theories for' a 

linearly graded film with f ,.. 0.25 and f max = 0.5 is shown in Fig. V-lB. Th~ MG 
. , ' 

theory predicts .a higher reflectance at all wavelengths, with the maximum per­
. I 

certt~gedeviation, ~25%, occurring at A ~ 1.2 ~m. Both curves do, however, ! 

. hav~ the same general shape. For the MG case, as = 0.80 and for the MM case:,. 

as "0.85. From this, and other calculations, it can be concluded the MM and;MG 

dielectr:ic functions produce observable but not marked differences in R(A). : 

. The Bt'uggeman dielectric function, Eq. (IV~3l), is symmetrical with respect· 
i 

to the.dielectric constants of host and inclusion, and it applies at all volume 

fractions. However, the studies of. coating microstructure discussed in Sec.; III-B , 

tend to indicate that black Cr films are not a Bruggeman type mixture of Cr/Cr203 
I 

parUcles and air. Several calculations were performed using the spherical 

particle Bruggeman dielectric function Eq. (IV-3l) with e:m = 1 and e: c = E:cs ,; as , 
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V-IS Comparison of the reflectance of a model black Cr film as calculated with 
the Maxwell-Garnett (MG) theory and the McPhedran, McKinzie (MM) simple 
cubi.c array theory. The calculation was performed for a linearly graded. 
film (n = 1) with f = 0.25 and f 0.5. 

max 

given by Eq. (IV~32). Fig. V-19 shows the result of a calculation with n = 3, f = 

0.2, and L - 0.4 ~m for three values of Q. The n = 1 result (no oxide coating) 

shows that the Bruggeman dielectric function can yield results which are in good 

agreement with experimental R(h) results for as-deposited films. However, as Q 

decreases, the cutoff wavelength increases, as does as. Fig. V-20 shows the 

results of a calculation in which n = 3, f = 0.25, and L = 0.5 ~m, with Q(x) 

linear and Q - 0.3 and 0.4. In this case hC shifts to shorter wavelengths as Q 

increases, but the large bump in the n = 0.4 curve at h ~ 3 ~m dissappears when 

fi" ... 0.3. As a result as increases from 0.97 to 0.98. In general, the Brug-

gemari theory predicts that as will increase as Q decreases when the coated sphere 

dielectric constant is used for €c. 
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Another model which was examined was that of a Maxwell-Garnett mixture of Cr 

particles in a Bruggeman matrix of air and Cr203 particles, Fig. V-3(c). Eq. 

(IV-11) with L - 1/3 was used to find the dielectric constant for the film, with 

the po1arizabi1ity function a, as given by Eq. (IV-10) determined using EC = 

€Cr' while Em was calculated from £B in Eq. (IV-31), with Em = 1 and €c = 

In calculating €B' f in Eq. (IV-31) was set at fCr ° 
2 3 

and in calculating EMG in Eq. (IV-H), f was set at fCr. Some typical results of 

using this dielectric function model are shown in Fig. V-21. For this calculation 

the parameters used were L = 0.5 ~m, f = 0.25, and n = 3; thus this calculation 

can be compared with the Model B results shown in Fig. V-7. This comparison shows 

that the hybrid MG-Bruggeman model (Fig. V-21) predicts much larger changes in 

R(A) with decreasing n than does the basic MG model (Fig. V-7). This effect 

causes as to decrease more rapidly with an increasing volume fraction of Cr203 for 

this hybrid model. Fig. V-8 compares the variation of as with the relative 

volume fraction of Cr203 [ = (1 - n)] for the various models as well as some 

experimental data. For the regular MG model (Model B), as remains constant until 

(1 - n).G 0.5, while for the hybrid curve (MG/B) model,. as starts decreasing 

at small values of (1 - "0). 

Another possible black Cr microstructure is a Maxwell-Garnett assembly of 

Cr particles and Cr203 particles in an air matrix, Fig. V-3(b). A calculation 

of R(~) was performed using Eg. (IV-9) for the dielectric function with fl = 

fer and f2 = fer 0 • The particles were assumed to be spherical with Ll = L2 = 
2 3 

1/3. A result of this calculation is shown in Fig. V-22. Model A conditions 

were assumed and Q varied over the range 0.2-0.5. Again, ~c shifts to shorter 

wavelengths with decreasing Q but the shift is larger than that found with the 

coated sphere MG model. The variation of as with (1 - Q) is shown in Fig. v-a, 
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curve MG(Cr, Cr203)' This dependence of as on (1 - Q) is similar to that found 

for the hybrid model. 

From the calculations in this section, it can be seen that all of tne 

Maxwell-Garnett based models predict the same qualitative features: a shift of 

Xc to shorter wavelengths as (1 - Q) increases, with consequent decreases in 

both as and £(T). The experimentally observed variation in as with (1 - Q) 

is predicted most accurately by the coated sphere MG model, but even with this 

model, the calculated as decreases somewhat more rapidly at large values of 

(1 - Q) than does the observed as' 

D. Results of EXperiments and Calculations with Stripped Films 

The reflectance measurements described above were all made on black Cr 

films plated onto thick Ni substrates. Although these measurements yield valuable 

information about the nature of the film structure, they do not uniquely specify 

this structure. In an attempt to better define the structure and optical proper-

ties. of biack Cr, several experiments were performed on films removed from their 

substrates. For these experiments, black Cr films were plated onto thin (-.025 

em) iron substrates and then the iron was slowly removed by etching the plated 

structure in a dilute nitric acid/methanol mixture. 23 If the substrates and 

films were unsupported in the etchant bath, the black Cr films broke up. When 

the substrate was placed on a glass slide during etching, the black Cr films 

adhered to the glass after the substrate had been completely removed. 

_.0 

Examination of the stripped films on glass showed that the back or substrate 

side (x - L) was gray in color,indicating the presence of a high metal volume 

fraction at that surface. The front side remained black in appearance after the 

stripping operation. Although the side next to the glass was gray, it is defi­

nitely possible that this side of the black Cr film could have been altered by 

the etching process. 
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Experimental results of spectral hemispherical reflectance measurements for 

two different stripped films are shown in Figs. V-23 and V-24. The film geometry 

is shown on the inset in Fig. V-Z3. In both cases, the black side reflectance 

is small at short wavelengths and then increases to a maximum at a wavelength in 

the range i-3 \.1m. The "gray" side reflectance is appreciable at short wave-

lengths and has a broad maximum. For the gray side reflectance in Fig. V-23, the 

rapid decrease near A = 0.3 \.1m is probably a result of absorption in the glass 

subs.trate. The gray side reflectance is also affected to some extent by the 

reflections produced by the glass substrate. Typically, ·these substrates produce 

a reflectance of about 4% for each surface at wavelengths A > 0.4 \.1m. -
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V-23 Experimental spectral. reflectance for a stripped black Cr film as.measured 
with light incident on the front or black (B) side and on the back or gray 
(G) side. The rapid drop in the gray side R(A) at A < 0.3 \.1m is probably 
a result of absorpti'ince in the glass substrate at short wavelengths. 
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V-24 Experimental reflectance of another film stripped from a steel substrate. 
Curve G is the reflectance for light incident on the back or gray side and 
curve 8 is for light incident on the front or black side. 

The stripping operation probably produced some damage to or alteration of the 

black Cr films. SEM examination of the black side of one film indicated that the 

surface morphology was similar to that of a regular black Cr film plated on a 

smooth Ni substrate. A calculation of stripped or bare film reflectances using 

model-A parameters and Q = 0.4 is shown in Fig. V-2S. Both the gray and black 

side reflectances are significantly higher in magnitude than the experimental 

reflectance shown in Figs. V-23 and V-24. If the assumption is made that the 

stripping operation removes some of the black Cr film at the substrate side, then 

agreement between theory and experiment might be significantly improved. Fig. 

V-26 shows the result of a calculation in which L was reduced from 0.4 ~m to 

0.3 ~m and f reduced from 0.3 to 0.2. The reflectance magnitudes are now in 

reasonably good agreement with the experimental results and both exhibit maxima 

near ~ = 1 urn. The oscillation in the gray side reflectance at A < 1 um is 
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V-25 Calculat~d spectral reflectance for a stripped film with n = 3, L 0.4, 
and f '" 0.3. 
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V-26 Calculated spectral reflectance f£.r the stripped film in Fig. V-25 with L 
decreased from 0.4 to 0.3 ~m and f reduced from 0.3 to 0.2. 
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a result of "interference" effects produced by the planar uniform film. Changing 

the film thickness from 0.3 ~m to 0.4 ~m while leaving all other parameters 

at their original values changes the shape and position of these oscillations 

but does not produce any other significant effect. Results of this alternate 

calculation are shown in Fig. V-27. From this result, we conclude that these 

oscillations are artifacts produced by the uniform thickness film used in the 

model. 
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V-27 Calculated spectral reflectance for the same stripped film as in Fig. V-26 
but with L increased to 0.4 ~m. 

It is interesting to compare the results in Fig. V-26, calculated using the 

Maxwell-Garnett dielectric function, with results from a similar calculation in 

which the Bruggeman dielectric function is employed. Fig. V-28 shows the results 

of the Bruggeman calculation. The peaks in both the gray and black side reflec-

tances are displaced to a longer wavelength and both reflectances have larger 
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V-2B ' Spectral refiectance of a model Bruggeman black Cr stripped film using 
the,same param~ters as in Fig. V-26. 

peai<magnitudes; This behavior is a direct consequence of the more "metallic" 

nature of the Bruggeman dielectric function at high volume fractions relative to 

the MG function. As a result, a Bruggeman film tends to act as an intrinsic 

selective, absorber, Le., an. absorber whose selective properties do not depend on 

the presence of a metallic substrate. This effect can be more graphically i11us­

tratedbY,co~par1ng MG and Bruggeman calculations for a situation in which the 

maximum volume fraction; f(l.)~ is large. Fig. V-29 shows the result of an MG 

calculation fora Mode1-A filin with f(L) .. 0.9 and f- 0.3. This result can be 

compared to the MG result shown' in Fig. V-27 in which the only change is a reduc-, 

tian of f from, 0.3 to 0.2. As f increases, the magnitudes of both the gray and 

b1acksic\e ref1ectances increase and the peaks 'in both curves move to the longer 

wavelengths. The Bruggeman results for a Model-A film are shown in Fig. V-30 

and are quite markedly,dlfferent'from the MG results of Fig. V-29. In parti~ular, 

84 



. ' 

~ .. 
• 0 
III 
0 

... 

I 
0 

" 0 

II! 
0 

~ 
0 

1'1 
0 

:;J .. 
0 

Gray SIde 

\ 
.•.... / .... 

..... ··/(Black Side 
. ........ . 

~ 
0 

0.2 1.0 5.0 

,\( m) 

i 
V~29Spcctral. refl.ectance for a model-A MG black Cr stripped film. 

I 

1 

I 
I ~ 

I 
.. 
G! 
0 

~ 

~ 
~ 
0 

" 0 

~ 
II! 
0 

~ 
a: 0 

C'f 
0 

:;J .. 
. 0 
~ 
0 

0.2 

Gray Side "-... 

Black Side 

.... ..... 
1.0 . 

,\ (I'm) 
5.0 

V-3D Spectral reflectance for a model-A Bruggeman stripped film. The calculated 
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the black side reflectance (dashed line) for A i 4JJm is essentially unchanged 

from the case in which a substrate is present. This intrinsic selective nature 

of Bruggeman absorbers has previously been discussed by Berthier and Lafait74 

and i~ a consequence of the "percolation" effect discussed in Sec. IV-D. 
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VI. Discussion and Conclusions 

From the experimental results and the various calculations described in the 

preceeding section, we have concluded that the MG model provides a reasonable 

basis for explaining the optical behavior of black Cr coatings and that thermal 

aging of black Cr is primarily caused by oxidation of Cr crystallites in the 

coating. 'This aging is accompanied by a shift of AC to shorter wavelengths 

with a consequent decrease in both as and £H. A major prediction of the 

theory, as shown in Fig. v-s, is that as will decrease slowly with increasing 

Cr203 content until substantial oxidation has occurred (small -n). Then, further 

decreases in Q lead to large decreases in as. The microstructure investigations 

described by Pettit, Sweet and Sowell show that the clustering of the large par­

ticles which make up the coating (see Fig. V-3) can be correlated with the coating 

thermal stability.3 In more stable coatings, the particles tend to cluster to­

gether and this clustering is presumed to inhibit oxidation of Cr crystallites in 

the particles. 

There have been two major previous efforts to compare experimental black Cr 

spectral reflectance data with the predictions of various theories. 74 ,75 Berthier 

and Lafait74 utilized a model black Cr film with three layers. The top layer was 

0.1 lJm in thickness and consisted of Cr203 cones or cylinders with air in the 

v9id space. The next layer was 0.3 lJm of Cr in a Cr203 matrix, with the depen­

dence of the volume fraction of Cr on depth in the layer determined from ESCA 

data in a manner analogous to that which we used to determine our n(x) function. 

The functional form given by Berthier and Lafait (Fig. 4 of Ref. 74) is very 

similar to the experimental n vs x/L curve shown in Fig. V-4 for an as-deposited 

specimen. Our value of nmax ~ O.S is also in reasonably good agreement with 

their indicated value of nmax ~ 0.6 ± 0.1. The next layer was a 0.04 lJm thick 

layer of Ni/Cr cermet to simulate surface roughness and the film was assumed to 
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be on a semiinfinite Ni substrate. No information was presented on the sensitivity 

of the resulting calculations to the model parameters discussed above. 

Berthier and Lafait concluded that their spectral reflectance data for unaged 

samples was best fit by the Bruggeman theory. However, in their derivation of the 

Cr volume fraction from ESCA data, they assumed that the 0.3 ~m Cr/er203 po~tion 

of the film was 100% dense, with no accompanying void volume. This in turn results 

in a maximum volume fraction, fer-max = 0.6 in their theory. Thus, their model 

did not satisfy our requirement, Eq. (V-16), which leads to fmax .G 0.9. Aswe 

have demonstrated, the Bruggeman theory can also yield good results with our model 

for as-deposited films (see Fig. V-19 with n - 1.0). Thus, the type of comparison 

presented by Berthier and Lafait does not provide a definitive test of the theory. 

Another comparison·of the predictions of various effective medium theorie. 

has been made by Zajac. 75 The ·experimenta1 data used was the specular reflectance 

of a black Cr fil~ both unaged ~nd aged at 350 0 e for 12 hand 450 0 e for 12 h. 

In the Zajac. structural model, there are three layers of particles, with the top 

layer being 0.04 ~m thick and the two bottom layers 0.08 ~m thick. The layers 

were each comp~sed of oxide coated Cr particles and, in fitting theory to experi­

ment, several parameters were adjusted. These included the layer fill factor fit 

the layer Q value Qi, and the index of refraction of the oxide coatings. In 

addttion, a lognormal. distribution of prolate spheroids was assumed, with an 

average eccentricity parameter, r :0 2 and standard deviation parameter or = 3. 

The parameter·s used in the lognormal distribution are x = r - 1 and 0r,49 with the 

probability density function being defined by 

(VI-I) 

with x = r - 1. Using Eq. (VI-l) with x = 1 and or = 3 it is easy to show that 

10% of the particles·have r ) 5. These particles are much more strongly absorbing 
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than the spherical particles, as indicated by the rapid increase of the imaginary 

part of the index of refraction with increasing eccentricity as shown in Fig. IV-12 

for A • 1 ~m. The net effect of postulating the existence of highly eccentric 

particles in a film is to make that film more strongly absorbing at short wave-

lengths and at lower metallic volume fractions. With reasonable values for the 

parameters discussed above, Zajac, et al. find good agreement between calculated 

and experimental reflectance spectra. 26 ,75 

Zajac has also reported some results on the reflectance R and transmittance 

T of a stripped film. 75 In this case, the data reported are the nand k values 

associated with the complex index of refraction, as derived from a model of a 

uniform film with n(A) and k(A) characterizing the whole film at wavelength A. 

The film thickness was assumed to be 0.2 ~m and the experimental measurements 

wer.e made on a film mounted on an AgC1 substrate. Ro.) and T(A) data were not· 

presented directly, but using the formalism discussed in Sec IV-E, R(A) and TO.) 

could be calculated from the single layer version of that theory. The calculated 

reflectance for Zajac's film is qualitatively similar to that shown for the black 

side of one of our films, Fig. V-23. It is small at short wavelengths and has a 

peak value, Rmax ~ 0.2 near A = 2 ~m. In calculations using model dielectric 

constants, Zajac found the best agreement between theory and experiment for n(A) 

and k(A) when either the Bruggeman or the MG theory with a log-normal particle 

eccentricity distribution were employed. When a single MG layer with a low f value 

was used, agreement was poor. From this comparison between theory and experiment, 

Zajac concluded that the Bruggeman theory was probably the best 'effective medium 

theory for describing black Cr since it was valid at all volume fractions and it 

led to qualitatively correct predictions for n(A) and ko.) for a stripped film. 

As discussed in Sec. V-D, the results of our stripped film reflectance measure­

ments indicate that the reflectance in the wavelength region 0.2 ~m ( A < 1.0 ~m is -
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substantially different f~r the two sides of the film. Thus it would appear that 

the film cannot be treated as a uniform composite medium characterized by a single 

complex index of refraction or dielectric constant. The MG graded layer model 

leads to calculated reflectances for the two sides which are in reasonably good 

agreement with experiment although the calculated gray side reflectance is some-

what higher, than the measured reflectance. The Bruggeman theory, for the same 

grading profiles, does not predict the correct reflectance spectra. On the basis 

of these results, we have concluded that the MG theory provides a better overall 

descdption of reflectance phenomena for black Cr than does the Bruggeman theory. 

It appears that optical measurements alone cannot be used to uniquely specify 

the microstructure of a composite MG type of coating. This occurs because several 

different effects can lead to the same type of optical behavior. In particular, 

the absorption in an MG layer can be increased either by increasing the metallic 

voluinefractionor by increasing the particle eccentricity (see Fig. IV-B). The 

basic'MG theory seems to remain valid at high metal volume fractions, at least 

in the case of 'cubi,c inclusions. In the case of spherical inclusions, the MG 

theory remains valid until the spheres are almost touching. The exact trajectory 

followed by EMG in the complex plane as f increases depends on the average par-

ticle shape and on the details of the particle shape distribution function. 

Within the framework of our spherical inclusion, graded fill factor MG model, 

we 'have seen that the spectral reflectance depends on three basic parameters; 

the coating thickness L, the average fill factor f, and the exponent describing 

the grading profile n. Both f and L can be estimated from experimental measure-

ments and these parameters in turn determine n through Eqs. (V-16).There'is no 

direct independent evidence for the correct value of n to use. .In our model, 

within the uncertainty in f and L, the value of n falls in the range 2 < n < 3. '" ,.., 

If n could be determined independently, the problem could be further parameterized 
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by introducing a distribution of particle shapes. The parameters of the distri­

bution could then be chosen to provide agreement with experiment. Thus, our 

and other existing models must be viewed as somewhat phenomenological in nature 

in that they contain a surplus of parameters which can be arbitrarily adjusted 

to match theory to experiment. More details of the coating microstructure are 

needed to further define the existing models. As discussed in Sec. V-A, the 

exact details of the microstructure of the ~ 0.2 ~m particles which make up a 

typical black Cr film are unknown. Additional TEM and Auger studies are planned 

in an attempt to further define the structure and morphology of the materials 

in these particles. 

In summary, we have presented the results of reflectance calculations for a 

model black Cr system which are in good agreement with experimental data. The 

results of these calculations indicate that the changes in R(X) which occur 

during thermal aging are a result of oxidation of Cr crystallites in the coating. 

As the crystallites oxidize, the reflectance edge shifts toward short wavelengths, 

with a consequent decrease in both as and eH' When the relative volume 

fraction of Cr to (Cr + Cr203) drops to 0.30, the solar absorptance starts to 

drop rapidly with further oxidation. 

If this picture of a black Cr coating is correct, then improvements in the 

coating thermal stability can only be made by reducing the oxidation rate of the 

Cr crystallites in the coating. The oxidation at a given temperature is con­

trolled by the film structure, which determines how easily oxygen mo1ecdles can 

get to the surface of a Cr crystallite in one of the particles which make up 

the coating. Structures in which these particles tend to cluster together appear 

more resistant to oxidation than do more open structures. Careful control of 

plating process variables is required in order to reliably produce black Cr films 

with these oxidation resistant structures. 
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Appendix A 

Dielectric constant of an MG Medium with Randomly Oriented Ellipsoidal Inclusions 

The general equation for eMG' Eq. (IV-a), contains terms of the form, 

2ifiEin(l)' where fi '"" volume fraction of the ith species of inclusion and 

Ein(i) is the internal field in this species in the direction of the applied 

+ 
field, Eo' In this Appendix, we derive the result, Eq. (IV-IS) for the MG 

dielectric constant of a random spatial distribution of ellipsoidal inclusions. 

We shall assume that the inclusions in the medium are all prolate or oblate 

spheriods which can be specified by their eccentricity r and by a set of Euler 

+ 
angles Q = (~,~ e), as shown in Fig. A-I. ~ is the usual Azimuthal angle, and 

e the usual polar angle, while the angle ~ represents a rotation of an ellipsoidal 

"inclusion about its own internal long (z') axis. We also assume that the dis-

+ 
tribution function, fer, Q) defining the random distribution of inclusions is 

separable into an eccentricity component and an angular component, 

+ + 
fer, Q) = p(r)g(Q) (A-I) 

In Eq. (A-l), per) is the volume fraction of ellipsoids with eccentricities in 

+ + 
the range r to r + dr and g(Q)dQ is the probability that a given ellipsoid will 

+ 
have Euler angles within the differential volume dQ in (~,~,e) space. Using 

Eq. (A-l), the sum, LifiEin(i) can be written, 

f 
+ + + 

p(r)dr g(Q)Ein(r,Q)dQ (A-2) 

+ 
/::.Q 

+ 
In Eq. (A-2), the range /::.Q is specified by, 0 < ~ < n, 0 < e < n/2, 0 < ~ < n. 

+ + 
" To find an expression for Ein(r,Q), we consider a situation in which Eo = Eox, 

+ 
as shown in Fig. A-l. The problem is to find the components of Eo in the rotated 
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z 

y 

A-I Euler angles (tP , r/I, 6) describing the orientation of an ellipsoid. The x', 
y', Zl axis system is fixed in the ellipsoid while the x, y, z axis system is 
.fixed in space. In describing a rotation, the ellipsoid is first tipped by 
an angle 8, then rotated in the x-y plane by an angle tP and finally rotated 
by an angle r/I about the z I axis. 

or principal axis coordinate system and then use Eq.(IV-6) for the internal field 

produced by an external field along a principal axis. Goldstein76 shows that the 

• 
coordInates of a vector r in the primed system are related to those in the 

unprimed system by the matrix equation, 

• + 
(r)' = Ar (A-3) 

+ + + 
where the transpose of r, as designated by rT, is given by rT = (x,y,z). The 

matrix A is specified by, 

cosWC6s~ - cosesin~sin~ cos~sin~ + cosecos~sin~ sin~si.ne 1 
cos~sine 

cose . 

A = - sin~cos~ - cosesin~cos~ - sin~sin~ + cosecos~cos~ 

sinesin~ - sinecos~ (A-4) 
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The inverse of A is given by 

[CO.~CO.~ - cos8sin<j>siOljl - sin1jlcos<j> - cos8sin<j>cosljl slnesin~ 1 
A-I .. cosljlsin<j> + cos8cos<j>sinljl - sinljlsin<j> + cos8cos<j>cosljl sin8cos<j> 

sin8sinljl sin8cosljl cos8 (A-5) 

+ II 

Usirtg Eq. (A-3) with r = x yields, 

+ -Am (r)' 

[CO*O.~ - cos8sin<j>sinljl 

1 
"" - sinljlcos<j> - cos8sin<j>cosljl (A~6) 

sin8sin<j> 

+ + 
The applied field in the primed frame is now given by (Eo)' = Eo(r)'. From Eq. 

(IV-6), the internal field along jth primed axis is given by, 

E'in(j) (A-7) 

where the index j specifies x',y', or z' and Lj is the associated depolarizing 

.factor, as given by Eq. (IV-12) or (IV-14) for prolate or ~blate spheroids 

respectively. 
+ 

In ~rder to find the x component of Ein so that the integration in Eq. (A-2) 
+ 

can. be performed, Ein is transformed back to the original coordinate system via 

the prescription, iin = A-l(iin)'. This yields the relation, 
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2 
+ (sin~cos. + cos9sintcos~) 

€cLy + (1 - Ly)€m 

+ + 

(sin9sinp) 

(A-8) 

2 I (A-9) 

If g(n) is known, the n integral in Eq. (A-2) can be performed, using Eq. (A-9)· 
+ 

for Ein(r,n) and Eqs. (IV-12) or (IV-14) for the Li as functions of r. 

A case of special interest is one in which the ellipsoidal inclusions have the 

internal rotation angle, ~, uniformly distributed in the range 0 ( ~ ( ~ and have 
+ + 

their major axes distributed uniformly with respect to solid angle X, when X is 

sp~cified by 9 and ~. 
+ 

Then, g(n) + (1/~2)sin9 and 

[ 
+ + + 

g(n)Ein(r,n)dn 

~n 

(A-lO) 

o o o 

Us1.ngEq •. (A-9) in Eq. (A-tO), it is easily shown that the integral of each 

angular term in Eq. (A-9) produces a factor of 1/3. The final result is, 

1 (A-H) 

j=l 

96 



Eq. (A-II) for Ein(x) is the basis for the factors of f/3, which appear in Eq • 

. (IV-18). For uniform distributions it can be easily shown that Ein(y) = Ein(z) = 
+ + 

o and hence Eo and Ein are in the same direction. In cases where the ellipsoid 

major axes have a preferred spatial orientation, the applied and average inter-

nal field may not be pOinted in the same direction. 
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Appendix B 

Cube Polarization Calculations 

The purpose of this appendix is to discuss calculations of the polarization 

of a dielectric cube subjected to a uniform external field. It is well known 

that the polarization in a solid body will not be uniform if the polarizable 

object in a uniform external field is nonellipsoidal in shape. Since the polari-

zation in the body is caused by the total internal electric field, and this field 

in turn is produced by both the external sources and by the induced polarization, 

it is reasonable to conclude that this type of problem will have to be solved 

self-consistently for the polarization "charges." This is in fact the case, 

·and several different formulations of the problem are possible. 

Various integral equation formulations for solving problems of this type 

have been discussed by Jaswon and Symm77 and in a compact way by Lindholm. 78 

We shall examine two different surface integral equations which can be used to 

calculate the polarization and then apply both methods to the specific case of 

. a cube in a uniform field. 

Fig. B-1 shows an arbitrarily shaped homogeneous body in a uniform external 
+ + 

field Eo' The polarization in the body P(x) produces a potential of the fom, 

-+ -+ 

=- / 
P(x') • dS' 

I~ ~'I 
(B-1) 

InEq. (B-1), the first integral is a volume integral over a1;1. internal regions of 
+ 

the. body and the second int.egral is over the body surface. The displacement D, 
+ + 

·elect~ic field E, and polarization P in the body are related by the equation, 

+ + + 
D = E + 41rP (B-2) 
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B-1 

Surtace-S' 

z 

polarizable Body 
~--y 

x 

b '" t d to a uniform external, 
Polarizable body with a dielectric constant to: su Jec e-+ ' 

surface Of the body is designated by 5' and the vector x 1S a 
field. The ' t d b tors 

Po' 1'nts 0' n the surface of the body are de1snga e Y vec 
positionvector~ 

.' 3t, • 

• + 
The fields D and E are, by assumption, related to each other through the diel~ctric 

;1 

con,stant, 

• • 
D = c:E 

• • -+ •• 

(B-3) 

Us!ngthe Maxwell equation, V • D = 0 yields, V • D = V • c:E = c:V • E + E • Vc: • 

• Since the body is assumed to be homogeneous , Vc: .. 0 and hence V • E = 0 inside the, " 

, ',',:' , .. .' 
body. Thus Eq. (B-2) plus the conditions V • E = V • D ,= 0 yields V • P = 0 inside 

the body. As I:l'result, only the second term of Eq. (B-1) contrib~te,s to ct>p' 

, -+ • • • .' • • • The total fie1dE(x) inside the body is given by E(x) = Eo + Ep(x), where Ep "" 
•• •••• 3 

Since V(l/Ix - x'l) = -(x - x')/Ix - x'i , we can write, 

• • E(x) 
••• , -+ 

- x')P(x') • dS' 

I~ _ ~'1 3 
(B-4) 
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Eq.· (B-4) is the starting point for Fuch's calculation. 54 Inside the body, the .. .. .. .. 
fields E(x) and p(x) are related through the material susceptibility, X -(£ - 1)/4n, 

.. .. .. .... . A .. 

by P(x) - XE(x). If we let x be a point infintesimally inside the body, and n(x) 

be the outward directed normal at that point, then the normal component 'of the 
. .. + A" + .. 

.. polarization at x is Pn(x) .. n(x) • P(x). Taking the dot product of Eq. (B-4) with 
A·" + A+ +.. + .. 
n(x) and using the relation dS' = n(x')dS', and substituting P(x)/x for E(x) in .. 
Eq~ (B-4) yields the integral equation for Pn(x), 

(B-S) 

.. .. 
In Eq. (B";'S) , the points x and x' are both on the surface of the body and hence .. .. 
there is a singularity at x "" x'. This singularity is removable77 and the 

equation can easily be cast in the form, 

A-+ -+ -+ -+ 
n(x) • (x - x')P (x')dS' n (B-6) 

.. .. 
where the prime on the integral indicates that an infintesimal region near x "" x' is 

to be omitted. 

To demonstrate this singularity removal in an elementary way, we consider the .. 
integral over a small portion t.S' of the surface S' near x, as shown in Fig. B-2(a). .... .. .. 
As x .. x', Pn(x') .. Pn(x) and can be taken outside the integral, resulting in, 

I A" ... .. 
n(x) • (x -x')dS' 

I; - ;, P (B-7) 

t.S' 

To evaluate Eq. (B-7), we use the geometry shown in Fig. B-2(b), with p = I; - ~'I = 

(r2 + t.z2)1/2. The integral becomes 
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21f " rmax 
+ f f rdr I Az I PI Pn(x) Lim de 

Az+o 0 0 (r 2 + l!.z2 )3/2 

rmax 
+ I rdr = -21fP (x) Lim l!.z n (r2 + l!.z2)3/2 l!.z+o 

0 

Ev~luating the integral results in, 

f 
" " l!.S' 

+ " I [2 " 2 -1/2 ] I + 21fPi\(x) Lim "tl!.Z (rmax + l!.z ) - l/l!.z 
l!.z+o 

+ 
- -21fP (x)" n " 

(B-8) 

Eq.(B~8) shows that the removal of the singularity is essentially independent of 
+ 

the radlus rmax of the circular region centered about x. 
+ 

"An alternate formulation yields an equation for the potential $(x) on the 

surface. Van Bladel presents a clear derivation of this equation through use 

of "Green's theorem. 54 The result is, 

H;)/2 - ~a(;)/(£ + 1) - (1/4.) (: ~ ~) f ~(;') :n.llx 1 x'll dS' (B-9) 

5' 
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"(x) 
¥ s· 

.-- x' x-

B-2 (a) A small portion of the body 
surface showing the vectors 
~, on the surface and ~ 
infintesimally displaced in­
ward from the surface n(~) 
is the outward normal at ~. 

1\ 

n 

r x' 
I 
I 

aZI8 (x-x') 
I 
I 
-t 

X 

(b) Geometry used to evaluate the 
integral in Eq. (B-7) 65' is a 
circular region on the surface 
with radius r. 6z = infintesimal 
displacement distance of vector 
-+ x from the body surface. 

In Eq. (B-9), the d.erivative alan' is the directional derivation in the direction 
. A . + + 

()ftheunit vectorn'andthe singularity at x = x' has been removed. Using the 
+ +' . + + A + + A + + 

relation, a/an'(l/ix - x'l) = V'(l/ix - x'l) • n' = (x - x') • n'llx - x'13, 

Eq. (B~9) can be rewritten in the form, 

I 
A 

• n'dS' (B-lO) 

S' 

. Comparison of Eq. (B-6) and Eq. (B-IO) shows that both equations are similar in 

structure • 

. The quantity of most interest is the net dipole moment of the polarized body, 

(B:-ll) 
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Fuchs 53 shows that this integral can be converted to the surface integral, 

(B-12) 

so p can be found directly from the solution of Eq. (B-6). Van B1ade1 shows that 

p can also be found from the re1ation,55 

+ 
P :I - (E -1) f + 1\ + 

4>(x' )n(x' )dS' (B-13) 

S' 

+ 
so pcan also be derived directly from the solution of Eq. (B-10). 

·The integral equations, (B-6) or (B-10) are solved by breaking the object 

surface ·up into a number of discrete regions and then converting the equations 
+ 

into a number of inhomogeneous linear equations for the quantities Pn(xi) or 
+ + . 

,(xi), where·xi is the position vector of the "center" of subregion i. For 

bodies which have a degr~e of sy.mmetry with respect to the applied field, it is· 

necess·ary to find Pn or ,over only a portion of the object surface. For a cube 

in a uniform field, only one quarter of the "top" surface and one eighth of the 

"front". surface need to be considerecl (the fundamental region) ,. as shown in 

Fig. B~3. The normal polarization or· potential at all· other points on the cube 

surface can be found from the associated quantities in the fundamental region, 

shown ~ross-hatched in Fig. B-3. In our calculations, each cube face was broken 

up into an n x n grid of square subareas, where n - odd integer. The special 

case, n .. 5 is shown in Fig. B-3. . 

For the normal polarization formulaVon, Eq. (B-6), the integral equation 

is converted to a matrix equation, 

(B-14) 

104 



where X and Yare N component column vectors and A is an N x N matrix. The quan-

tity N = number of values of Pn in the fundamental region and is related to n by 

N • (n + 1)(3n + 5)/8. There are L = [en + 1)/2]2 values of Pn associated with 

,the top surface and N - L values of Pn associated with the front surface~ The 

transposes of X and Yare given by, 

(B-1S) . . ., 

Y T = Eo (0,. • ., 0, l, • • ., 1) 

z 

y 

B-3 Cube ~sed in the polarization or potential calculations with n = 5. The 
shaded area is the fundamental region over which the calculation is per-
for.med. 

The matrix A has diagonal elements, Aii = Y = 2n(€ + 1)/(€ - 1), and off 

diagonal elements Aij derived from the quantities Rij' given by,' 
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+ + 

(B-16 ) 

'. . 1\ 

[n Eq. (B-16), ni is the outward directed unit normal for subregion i on the cube 

Rurface and hSj is the area of subregion j. The Aij are found by summing Eq. 

(B-16) overall points equivalent to point j by symmetry outside the fundamental 

region, taking into account sign reversals produced by the symmetry conditio~, 

Pn(x,y,z) ~ -Pn(x,-y,z) •. The'cube was assumed to have unit dimension and he~ce 

6S J ". hS - 1/n2• ' 

For the potential formulation, Eq. (B-lO), the applied potential was defined 
I 

+ 
by 'a(X) a ~EoY' Eq. (B-10) was then cast in the form, (B-14) with Eq. (B-15) 

replaced by, 

" 'N) (Bi-17) 

yT -[-2/(& + l)](Yl' •• ,', YL' 0.5, •• " 0.5) 

In Eq. ,(B-16) the quantltiesyr;' 1 = 1, L are the y coordinates of the top face, 

points in the fundamental region. The A matrIx is defined by, 

Alj = 1; i = j 

and A1j - y-1 Lj,Qij" where the sum is over points j' on the cube surface 

equivalent to j in the fundamental region and Qij Is defined by, 

(B-18) 

The solution of Eq. (B-14) was done through use of the Sandia Laboratories 

Mathematical Library Subroutine (CAXBI), a routine for solving nonsingular systems 
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of complex linear algebraic equations. 79 Typically, the solution for an 11 x 11 

subregion array (n - 11) takes about five seconds on a CDC 6600 computer. 

The results of a calculation using a real dielectric constant £ are ~hown 

1n Fig. B-4. The particle.susceptibility Xpis defined by the relation, 

Xp = Py/Eo (B-19) 

where Py = average y component polarization in the partic'le. The dipole moment 

is relatec;l to Xp via the relation, p = VXpEo, where V = particle volume.' 

For ellipsoidal particles, Py ~ Py = constant and Xp can be calculated 

. explicitly.. Using Eq. (IV-6) for the internal electric field plus the relation 

P - XEin, it is easy to show that the ,ellipsoidal particle susceptibility is 

given by, 

£ - 1 (B-20) 
£L + 1 - L 

'where L-depolarizing factor in the field direction. Fig.B-4 shows the result 

using Eq. (B-20) for a sphete, with L = 1/3, as compared to the numerical calcu­

lation for a cube found using the "polarization" formulation, Eqs. (B-6) and 

(B-12). It 'can be seen that the particle susceptibilities for a cube and a sphere 

are reasonably close to each other for small £, with a maximum variation-16% 

as £ +~. This result is in agreement with the well known engineering practice 

of approximating Xp of rectangular parallelpipeds from the corresponding Xp 

of an inscribed elli~soid. 

'The calculation is sli9htly sensitive to the number of subregions/face, n2• 

We have used n = 11 beca,use of computer memory limitations. However, trial 

calculations with values of n up to 19 indicate that Xp for n = 11 is probably 
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within -3% of the limiting case, n = =, value. Table B-1 shows an example 

of this for E = 20. The extrapolation to n = = was performed by fitting Xp to an 

-1 . . 
expression of the form. Xp (n) = a + ~n ,where a and ~ are constants. In the 

limit, n + =, Xp + a. The value of a Obtained from a least squares fit to i 

the Xp results in Table B-1 waS 0.2401 and the 95% confidence region for a wtis 

-4 +1.8 x 10 • There is no theoretical reason that Xp should depend on n in this 
. I 

fashion, but over the region of n' investigated, the fit is quite good, with an 

estimated standard error s =6.2 x 10-5 • 
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Table B -I. Dependence of Xp on number of subregions/side, n 

n Xp 

3 0.2146 

5 0.2259 

7 0.2300 

9 0.2321 

11 0.2336 

13 0.2346 

15 0.2354 

Extrapolated 17 0.2360 

19 0.2365 

00 0.2401 ± .0002 

The results of a calculation using the "potential" formulation, Eqs. (B-10) and 

(a-13) were very close to those shown in Fig. a-4. The maximum deviation was· 
. ! 

The potential formulation i, 

constants because the dipo11 

"2% at high dielectric constants, e: > 1000. - more 

difficult computationally at high dielectric moment, 

as calculated from Eq. (B-13), involves multiplication of a very large fa!ctor, , . 

(.e: .~ 1), times a small factor, the potential surface integral. Hence, S$ll 
I 

errors in calculating the cube front surface potential can produce large krrors 

inc~lculating the dipole moment. Using the potential formulation, Van ~ladel 

: found a limiting value, Xp '" 0.135 as e: + 00. We feel that this result i1 in 
I 
I 
i . error. 

For a Cr particle at A. = 1 j..IItI, e: = -1.049 + 24.4 j. In this case the 
I 

sphere particle susceptibility is, from 

O.030j while the cub.e susceptibility is 

Eq. (B-20), X(sphere) = 0.237 + 
P 

i 

X (cube) = 0.277 + O. 043j. Thus t!he 
p i 
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two susceptibilities remain close, even for complex E. As stated in Sec. IV-A, 

Fuchs has derived an analytical expression, Eq. (IV-2l), which can be used to 

calculate X (cube) to sufficient accuracy for the types of calculations dis-p 

cussed in this paper. 
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