Printed February

10 MWe Solar Thermal Central Receiver Pilot Plant Total Capital Cost

When printing a copy of any digitized SAND

 Report, you are required to update the markings to current standards.H. F. Norris, Jr.

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-76DP00789

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandla Corporation.
NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of the contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subconractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof or any of their contractors or subcontractors.

Printed in the United States of America Available from
National Technical Information Service 5285 Port Royal Road
Springfield, VA 22161
NTIS price codes
Printed copy: A09
Microfiche copy: A01

UC-62
SAND83-8019
Unlimited Release
Printed February 1985

10 MWe SOLAR THERMAL CENTRAL RECEIVER PILOT PLANT TOTAL CAPITAL COST

H. F. Norris, Jr.
Solar Central Receiver Systems
Sandia National Laboratories, Livermore

Abstract

This report provides a detailed breakdown of the capital cost of the 10 MWe Solar Thermal Central Receiver Pilot Plant located near Barstow, California. The total capital requirements of the pilot plant are given in four cost breakdown structures: 1) project costs (research and development, design, factory, construction, and start-up); 2) plant system costs (land, structures and improvements, collector system, receiver system, thermal transport system, thermal storage system, turbine-generator plant system, electrical plant system, miscellaneous plant equipment, and plant level); 3) elements of work costs (sitework/earthwork, concrete work, metal work, architectural work, process equipment, piping and electrical work); and 4) recurring and non-recurring costs. For all four structures, the total capital cost is the same $(\$ 141,200,000)$; however, the allocation of costs within each structure is different. These cost breakdown structures have been correlated to show the interaction and the assignment of costs for specific areas.

The detailed breakdown structure presented here for an actual solar facility can be useful in the understanding of the costs of future central receiver plants, and may serve as a basis for standardizing the categories of plant costs. The costs of the pilot plant cannot be scaled directly to larger future plants due to the developmental nature of the pilot plant.

ACKNOWLEDGMENTS

I appreciate the help received from a number of individuals and organizations: data were welcomed from Terry 01 son--Stearns Roger, now Stearns Catalytic; Bob Gervais--McDonnell Douglas Astronautics Company; Carmen Winarski and Don Fellows--Southern California Edison (SCE); Doug Elliott--Department of Energy San Francisco Office; and Mel Frohardt and Rick Facchinello--Martin Marietta Corporation. Understanding of the cost structure was aided by Inge Kornyey of Raymond Kaiser Engineers and the work previously performed by Polydyne, Inc.

The review of the draft report by Chuck Lopez, SCE, and by Doug Elliott and Bob Gervais was helpful in keeping the details in line with the overall theme of the study.

This pilot plant cost analysis presents a detailed view of the costs for Solar One that were spent from the capital (construction) budgets of the U. S. Department of Energy (DOE) and the Associates (a group composed of Southern California Edison, which acts as principal; the Los Angeles Department of Water and Power; and the California Energy Commission). The total capital requirement stated is not meant to be an absolute value or exact figure for the pilot plant cost, but rather the cost associated with activities of design, construction and start-up of the plant as discussed in this report.

The cost values presented in the report were gathered from the files located at the plant, from telephone conversations and personal contacts, and from internally published memoranda. The detailed lists of costs by purchase order or contract, when available, are included in the appendices. Reviews of the report draft were made by members of most of the agencies that could contribute data or correct errors in the data.

The details of the plant description and the materials and equipment contained in the various plant systems were obtained from available documentation, including the Reports and Deliverable List (RADL) documents, and construction package specifications. These lists were verified by on-site inspections of visible items. The cost breakdown structures by plant system and elements-of-work were based on the Cost Data Management System (CDMS) developed with Polydyne, Inc., and Raymond Kaiser Engineers.

The cost account data were found in many levels of detail. Some accounts encompassed many activities or a large number of material items. Some of these costs for single entries amounted to over a million dollars. Other specific costs, amounting to less than $\$ 100$ total, are known for some small items. An attempt was made to obtain greater detail on the large-value accounts where an understanding of the breakdown of these costs was deemed useful.

I have allocated costs of some accounts to a number of smaller accounts to provide a more meaningful understanding of the cost breakdown. In these cases, the method used is noted. In some cases, the understanding of the account content may not be correct. The possibility of misinterpretation of the raw data is due to the lack of description that accompanied the cost value and the difficulty of communicating cost values. However, in general, the overall values or highest level costs are correct and documented.

CONTENTS

Page
Acronyms and Abbreviations 13
Summary 15
Pilot Plant Description 23
Introduction to Cost Analysis 31
Total Capital Requirements 33
Project Cost Breakdown Structure 37
Research and Development Cost 39
Design Cost 41
Factory Cost 45
Construction Cost 65
Start-up Cost 81
Plant System Cost Breakdown Structure 83
Land 85
Structures and Improvements 85
Collector System 86
Receiver System 87
Thermal Transport System 89
Thermal Storage System 90
Turbine-Generator Plant System 90
Electrical Plant System 91
Miscellaneous Plant Equipment 91
Plant Level Cost 92
Elements of Work Breakdown Structure 93
Sitework/Earthwork 94
Concrete Work 94
Metal Work 95
Architectural Work 95
Process Equipment 95
Mechanical/Piping Work 96
Electrical Work 96
Indirect Cost Elements 96
Recurring and Non-Recurring Cost Breakdown Structure 97
Discussion of Pilot Plant Cost 101
$\frac{\text { Page }}{105}$
APPENDICES 105 105
A CONSTRUCTION PACKAGE DETAILS 107
B LONG-LEAD PROCUREMENTS DETAILS 133
C SOUTHERN CALIFORNIA EDISON PROCUREMENTS 139
D SOUTHERN CALIFORNIA EDISON CONSTRUCTION PACKAGES 143
E HELIOSTAT FABRICATION DETAILS 147
F BEAM CHARACTERIZATION SYSTEM DETAILS 155
G CONTROL AND DATA ACQUISITION SYSTEM DETAILS 157
H PIPING AND VALVE DETAILS 163
I ELECTRICAL DETAILS 171
REFERENCES 187

ILLUSTRATIONS

No. Page

1. Capital Cost--Breakdown by Project Category 15
2. Capital Cost--Breakdown by Plant System 16
3. Capital Cost--Breakdown by Elements of Work 17
4. Pilot Plant Overview 23
5. Solar Facilities 24
6. Conventional Facilities 28
7. Capital Cost--Breakdown by Project Category 37
8. Heliostat 47
9. Thermal Storage System Skid-mounted Equipment 59
10. Beam Characterization System 70
11. Thermal Storage Tank 75
12. Capital Cost--Breakdown by Plant System 83
13. Receiver 88
14. Capital Cost--Breakdown by Element of Work 93
No. Page
15. Capital Cost--Project Category vs Plant System 21
16. Capital Cost--Elements of Work vs Plant System 22
17. Research and Development Cost Summary 39
18. Design Cost Summary 42
19. Factory Cost Summary 45
20. Collector System Factory Cost Summary 47
21. Heliostat Factory Cost Summary 52
22. Construction Cost Summary 65
23. Heliostat Field and Heliostat Construction Cost Summary 68
24. Start-up Cost Summary 81
25. Plant System Cost Summary 84
26. Elements of Work Cost Summary 94
27. Non-Recurring/Recurring Cost Summary 98

Organizations

Beckman	Beckman Instruments, Inc. Cyber
Cyber Systems, Inc.	
DOE	Department of Energy
Ford	Ford Motor Company
FW	Foster Wheeler
GE	General Electric
IEA/SSPS	International Energy Agency/Small Solar Power
	Systems
LADWP	Los Angeles Department of Water and Power
MDAC	MCDonnell Douglas Astronautics Company
	(Solar Facility Design Integrator)
MMC	Martin Marietta Corporation
Modcomp	Modular Computer Company
Modicon	Modicon Division of Gould, Inc.
PPG	Pittsburgh Plate \& Glass, Industries
Polydyne	Polydyne, Inc.
RRE	Raymond Kaiser Engineers
Rocketdyne	Rocketdyne Division of Rockwell International
SCE	Southern California Edison Company
SFDI	Solar Facility Design Integrator (McDonnell Douglas
	Astronautics Corporation)
SNLL	Sandia National Laboratories, Livermore (California)
S-R	Stearns Catalytic (formerly Stearns-Roger)
STMPO	DOE Solar Ten Megawatt Project Office
T\&B	Townsend and Bottum

Plant Items

B	Boiler
BCS	Beam Characterization System
CP	Air Compressor
CR	Cooler
D	Mobile Demineralizer
DA	Deaerator
DARMS	Data Acquisition Remote Multiplexer System
DAS	Data Acquisition System
DE	Polishing Demineralizer
DR	Air Dryer
DS	Desuperheater
E	Equipment
EES	Electronic Environmental Shelter
F	Afterfilter
FA	Blower or Fan
H	Heater
HAC	Heliostat Array Controller
HC	Heliostat Controller

Plant Items (continued)

HFC	Heliostat Field Controller
HVAC	Heating, Ventilating and Air Conditioning
HXC	Heat Exchanger
ILS	Interface Logic System (Interlock)
JB	Junction Box
MCS	Master Control System
ME	Turning Gear Motor
Metro	Meteorological Equipment
MVCU	Multi-Variable Control Unit--the Control Loop Processor
OCS	Operational Control System
P	Pump
PR	Centrifuge
RB	Receiver Boiler Panel
RLU	Red Line Unit
RP	Receiver Preheat Panel
SDPC	System Distributed Process Control
SHIMMS	Special Heliostat Instrumentation and Meteorological
	Measurements System
SIL	System Integration Laboratory (at MDAC, Huntington Beach)
SWS	South Weather Station
T-G	Turbine Generator
TK	Tank
TSS	Thermal Storage System
TSU	Thermal Storage Unit
UMU	Ullage Maintenance Unit
UPS	Uninterruptible Power Source
V	Vessel

Other
Approximately
Specific cost unknown, but included in total cost Advanced Conceptual Design Architectural and Engineering Contractor-Furnished Equipment Construction Package Central Receiver Test Facility Field Design Change Request Fiscal Year
General and Administrative Government-Furnished Equipment
Long-Lead Procurement
Megawatt Electric
Operations and Maintenance
Plant Support Subsystems
Reports and Deliverable List
Research and Development
Uniform Building Code

Summary

The cost of the 10 MWe Solar Thermal Central Receiver Pilot Plant is given in four breakdown structures: 1) project cost, 2) plant system cost, 3) elements of work cost, and 4) non-recurring and recurring costs. For each structure the total capital requirement is the same $(\$ 141,200,000)$, but the allocation of the costs is different. Summaries of the four cost breakdown structures are given below. However, caution should be exercised in using these summary costs without investigating further in this report as to the source, content, and circumstances associated with that cost.

The project costs (Figure 1) include R\&D costs, design costs, factory costs of engineered equipment, construction costs, and start-up costs. Costs structured in this way are useful in examinations of costs of future plants, since similar parts, such as heliostats or storage tanks, may be used. The new plant may not have to pay for R\&D costs since they have already been paid, or the engineering design costs may be greatly reduced.

Throughout the report, as a convenience to the reader, the actual costs are rounded-up/rounded-off to provide a common, recognizable total capital cost--\$141,200,000.

Figure 1: Capital Cost--Breakdown by Project Category

The total capital costs broken down by project category are:

Research and Development
Design--Final and Preliminary
Factory Costs
Construction Costs
Start-up Costs
Round-up, Miscellaneous Round-off
Total Capital Costs
\$ 4,868,145
\$ 28,804,112
\$ 60,095,479
\$ 43,011,283
\$ 4,384,368
$\$ \quad 36,613$
$\$ 141,200,000$

Plant System Cost

The plant system cost breakdown structure includes charges assigned to major parts of the plant (Figure 2). These areas consist of land, structures and improvements, the solar thermal portion of the plant, the turbine-generator plant system, the plant electrical system, miscellaneous plant equipment, and plant-level costs. The solar thermal portion can be further divided into systems, including collector, receiver, thermal transport, and thermal storage systems. The breakdown by plant systems is useful if analysis is to be performed that considers only parts of the plant. Separating costs into these plant systems allows an understanding of system costs and the possibility of comparing the costs of other technologies with those of the solar thermal central receiver concept. This breakdown is also needed if scaling of different-sized plants is attempted.

Figure 2: Capital Cost--Breakdown by Plant System

Plant-level costs are those costs that are difficult to assign to individual plant systems. A total capital cost breakdown by the plant systems is as follows:

Land
$\$ \quad 0$

Structures and Improvements
\$ 4,686, 315
Collector System
Receiver System \$49,211,297

Thermal Transport System
\$ 22,570,587
Thermal Storage System
Turbine Generator Plant System
Electrical Plant System
\$ 7,517,434

Miscellaneous Equipment
\$ 13,176,982

Plant Level
Round-up
\$ 10,140,783
\$ 11,355,488 989,134

Total Plant Cost
\$ 21,515,368
\$141,200,000

Elements of Work Cost

The elements of work cost breakdown structure consists of sitework/earthwork, concrete work, metal work, architectural work, process equipment, mechanical and piping, electrical work and indirect cost elements. This cost breakdown is of interest to A\&E firms, since many of the construction subcontracts will be organized by this breakdown. It is also useful when scaling new plants in the early design phases. The total capital cost segregated by elements of work categories (Figure 3) is as follows:

Figure 3: Capital Cost--Breakdown by Element of Work

Elements of Work Cost

```
Sitework/Earthwork
Concrete Work
Metal Work
Architectural Work
Process Equipment
Mechanical/Piping Work
Electrical Work
Indirect Cost Elements
Round-up, Miscellaneous Round-off
```

Total Capital Costs

```
$ 1,272,344
$ 3,417,007
4,641,180
    1,703,718
    55,454,738
    14,199,637
$ 9,528,456
$ 50,946,303
36,617
```

$\$ 141,200,000$

Non-Recurring and Recurring Costs

The above three cost breakdown structures include both non-recurring and recurring costs. The non-recurring costs at the pilot plant include charges for basic research and development, special pilot plant solar system instrumentation, data-recording systems, meteorological measurement systems, excessive factory and tooling amortization, unique engineering design, and extra program and construction management. The non-reçurring costs would not be expected to be incurred in future plants*. The recurring costs include charges for off-the-shelf equipment that could be purchased from several sources and installed using standard practices. Separation of the total capital costs into non-recurring and recurring costs follows:

	Non-Recurring		Recurring	
Research and Development	$\$ 4,668,145$		$\$ 00,000$	
Design--repeat 15\% of design	$\$ 24,465,336$		$\$ 4,163,776$	
(except Visitors Center)				
Pilot Plant Features				
Visitors Center w/ design	$\$$	583,403	$\$$	0
SHIMMS Factory \& Construction	$\$ 1,115,295$	$\$$	0	
Data Acquisition System	$\$ 1,085,695$	$\$$	0	
Factory Planning, Tooling	$\$ 4,221,379$	$\$$	744,949	
Other Factory, Construction	$\$$	0	$\$ 82,224,589$	

[^0]Non-Recurring and Recurring Cost (continued)

Start-up	$\$ 3,726,713$		$\$ 65,655$	
Program Management	$\$ 3,912,416$		690,426	
Construction Management	$\$ 3,397,973$		$\$ 5,305,639$	
	$\$ 47,176,355$		$\$ 93,987,034$	
			$\$$	36,611

Total Capital Costs
$\$ 141,200,000$

If the non-recurring and recurring costs are allocated to the major plant systems, the results would be as follows:

Non-Recurring Recurring
Land
Structures and Improvements
Collector System
Receiver System
Thermal Transport System
Thermal Storage System
Turbine-Generator Plant
Electrical System
Miscellaneous Equipment
Plant Level

Round-up, Miscellaneous Round-off
Total Plant Cost

$\$$	0	$\$$
$\$ 1,131,878$	$\$ 3,554,437$	
$\$ 11,756,630$	$\$ 37,454,668$	
$\$ 5,707,596$	$\$ 16,862,991$	
$\$ 2,040,959$	$\$$	$5,476,475$
$\$ 1,777,236$	$\$ 11,399,746$	
$\$ 2,942,967$	$\$ 7,197,816$	
$\$ 7,205,608$	$\$$	$4,149,880$
$\$ 325,515$	$\$$	663,619
$\$ 14,287,966$	$\$ 7,227,402$	
$\$ 47,176,355$	$\$ 93,987,034$	

$\$ \quad 36,611$
$\$ 141,200,000$

Correlation of Cost Breakdown Structure Data

The pilot plant total capital requirements itemized above by several cost breakdown structures can be correlated to each other. This correlation is useful to show the interaction and the assignment of costs for specific areas. The cost breakdown detail is not known well enough in some areas (e.g., start-up costs for each plant system) to have entries, even though costs were incurred. The lack of this detail is not obvious in the previous sections or pie-charts, but surfaces when the cost data are correlated.

One correlation is displayed in Tables 1 and 2. These tables present the costs that are available with the project category and the elements of work shown as a fuction of plant system, respectively.

Conclusions

The majority of costs, and certainly the major ones, are included in this cost data set. Some costs, such as those for land, evaporation pond, rented equipment, and costs after April 1982 are omitted. The various breakdown structures, along with the presentation of typical items employed in a solar thermal central receiver power plant, should be of value to future builders, investors, and users of solar thermal central receiver plants.

The breakdown of the cost data should be used to understand a total cost data set. Some of the data, such as for the conventional portion of the plant, may be representative of future plants, while data for the solar portion, which contains extraordinary costs, may be useful but neither directly applicable nor scalable to future plants. The costs for this pilot plant cannot be scaled directly to arrive at the cost of a 100 MWe privately constructed plant for several reasons: 1) the pilot plant is a scale model of a 100 MWe plant and was not optimized at the 10 MWe size; 2) the indirect costs are representative of a developmental plant; 3) the high collector and receiver costs are a function of the small production quantity and early design; and 4) the interest during construction is not typical due to the government financing. A future report will examine the usefulness of the pilot plant cost data set to different-sized plants and to other solar thermal technologies.

TABLE 1
CAPITA. COST-PPREECT CAIEGORY vS PLANT SISTEM

PLANT SISTENS	R8D	LESIGN	FACTURY	CONSTRET	START-UP	SUBTOTAL	TOTAL
Structures/Improverents	0	820,265	110,003	3,756,047	-		4,686,315
Collector System							49,211,297
Field	0	253,926	688,534	3,764,738	-	4,707,198	
Heliostats	4,868,145	3,494,482	30,978,366	2,198,071	-	41,539,054	
BCS	0	550,428	416,635	182,804	416,776	1,566,643	
SHIMS	0	283,107	316,63	798,622	-	1,398,402	
Receiver System							22,570,587
Receiver	0	3,727,093	13,779,978	3,115,890	-	20,622,961	
Tower	0	0	-	1,947,626	-	1,947,226	
Themal Storage System	0	2,090,866	4,712,618	6,373,499	-		13,176,983
Themal Transport Systen	0	2,401,128	2,402,786	2,713,520	-		7,517,434
Turbine-Generator Plant	0	3,462,314	3,698,550	2,979,919	-		10,140,783
Electrical System							11,355,487
Master Control	0	6,354,544	2,079,636	91,753	-	8,525,933	
Balance	0	741,678	558,767	1,529,109	-	2,829,554	
Miscellaneous Equiprent	0	382,959	352,943	253,232	-		989,134
Plant Level	0	4,241,322	0	13,306,454	3,967,592		21,515,368
Total Cost	4,868,145	28,004,112	60,06,479	43,011,284	4,384,368		141,163,388

- Specific cost unknown, but included in total cost

TABLE 2
CAPITAL COST-EEEMENIS of WORK vS PLANT SYSTEM

PLANT SYSTEM	EARTHMRK	CONCRETE	METAL	APCHITECT	EQIPMEN	MECHATICAL	EECTRICAL	INIPECTS	SUBTOTAL	TOTAL
Structures/Imprunt	79,646	194,989	133,309	1,703,718	24,7ه	889,469	124,210	820,265		4,886,313
Collector Systen										49,211,295
Field	476,698	1,193,945	0	0	-	0	2,782,629	253,926	4,70,198	
Heliostats	0	0	0	0	30,978,356	2,198,07	-	8,362,627	41,539,064	
BCS	0	15,007	165,752	0	62,617	159,08	63,670	550,428	1,566,642	
SHIMS	0	39,691	73,000	-	299,644	0	702,959	233,107	1,398,401	
Receiver System										22,570,587
Receiver	0	0	0	-	13,448,173	2,12,953	1,324,742	3,72,003	20,62,901	
Tower	-	196,56	1,750,870	0	-	-	-	-	1,947,626	
Thermal Storage	-	909,098	2,256,659	-	4,519,846	2,740,341	660,172	2,000,866		13,176,962
Thermal Transport	-	60,967	252,809	-	1,041,845	3,639,884	120,800	2,401,128		7,517,433
T-G Plant	-	673,191	8,781	-	3,62,158	2,210,667	163,672	3,462,314		10,140,783
Electrical System										11,355,488
Master Control	0	0	0	-	0	0	2,171,390	6,354,544	8,525,934	
Balance	-	132,134	0	-	554,683	0	1,401,059	741,678	2,820,554	
Misc. Equipment	-	1,139	0	-	352,709	239,174	13,153	382,959		989,134
Plant Level	0	0	0	0	0	0	0	21,515,368		21,515,368
Total costs	1,272,344	3,417,007	4,641,180	1,703,718	55,454,738	14,199,637	9,528,456	50,946,303		141,163,383

- Specific cost unkrown, but included in total cost

Pilot Plant Description

The 10 MWe Solar Thermal Central Receiver Pilot Plant (Figure 4), also known as Solar One, is the world's largest solar electric generating station (Ref. 1-5). Solar One is a cooperative effort of the Department of Energy (DOE), Southern California Edison (SCE), the Los Angeles Department of Water and Power (LADWP), and the California Energy Commission (CEC). As a pilot-scale research and development experiment, it will demonstrate technical feasibility, economic potential and environmental acceptability of the solar thermal central receiver concept. The solar portion of the facility was designed and constructed under the direction of the DOE, and the turbine-generator facilities were designed and constructed by SCE.

Figure 4: Pilot Plant Overview
The project has been constructed in the Mojave Desert on 130 acres (52.5 hectares) of Southern California Edison Company's Cool Water Generating Station east of Daggett, California, and approximately 12 miles (19.3 km) east of Barstow, California. The site is at a latitude of 34.87° North and a longitude of 116.83° West. The site is contained in the western half of Section 13, Township 9 N - Range 1E, San Bernardino County: San Bernardino Meridian. The reference location for the pilot plant is N $501,260.00 \mathrm{E} 2,349,950.00$. The nominal elevation of the site is $1,946 \mathrm{ft}(593 \mathrm{~m})$ above mean sea level.

The plant is designed to produce at least 10 MWe, after supplying the plant parasitic power requirements, for a period of 4 hours on the plant "Worst Design Day" and for a period of 7.8 hours on the plant "Best Design Day." During actual plant operation, the plant capability and electrical output will depend on the current sun and atmospheric conditions. During certain periods of the year (near noon, from March through September), the plant energy production can exceed the 12.5 MWe gross turbine-generator rating. In this case, excess energy can be diverted to charge the thermal storage system.

Plant Systems

The central receiver concept being demonstrated at Solar One integrates the solar facilities with the conventional power plant facilities. Each of these facilities is composed of a number of plant systems. These systems are described briefly below.

Solar Facilities--The solar facilities (Figure 5) include the collector system (which includes the beam characterization system), the receiver system, and the thermal storage system. These systems

Figure 5: Solar Facilities
do not operate independently of each other. The flow of fluids is accommodated in the thermal transport system, while the coordination of operation is handled by the master control system. The thermal transport and master control systems are also integrated with the conventional turbine-generator facilities.

Collector System--The collector system directs the sunlight onto and off of the tower-mounted receiver in a controlled and safe manner. The system includes 1818 heliostats (mirrors), each $423 \mathrm{ft}^{2}\left(39.3 \mathrm{~m}^{2}\right)$ in reflective area, that reflect the sunlight on the receiver surface. With computer instructions issued every 8 seconds, the heliostats rotate in two axes, reflecting the sunlight onto the proper portion of the receiver. Each heliostat stands about $23 \mathrm{ft}(7 \mathrm{~m})$ tall and is about $21 \mathrm{ft}(6.4 \mathrm{~m})$ wide. These heliostats were made by Martin Marietta Corporation (MMC) for the Department of Energy (DOE).

To assess the characteristics of the beam reflected from the heliostat to the receiver, the beam characterization system (BCS) is used. The BCS hardware consists of four video cameras, each of which views an elevated target mounted beneath the receiver. The cameras are located in the collector field along the four access roads. The data obtained with the BCS provide tracking correction (bias) values that are input into the heliostat computers.

Receiver System--The receiver system consists of a water-steam boiler that heats the feedwater to superheated steam. The boiler is composed of 6 preheater panels and 18 boiler panels. Each preheater panel weighs about 7000 bs (3182 kg), and each boiler panel weighs about $8500 \mathrm{lbs}(3864 \mathrm{~kg})$. The preheaters are arranged with two sets (3 panels each in parallel) in series, and the 18 single-pass-to-superheat boiler units are in parallel.

The exposed portion of the receiver panels is about 45 ft (13.7 m) tall and on the periphery of a $23 \mathrm{ft}(7 \mathrm{~m})$ diameter cylinder. The 70 -tube panels incorporate Incoloy 800 tubing painted black with Pyromark. The receiver tube external walls reach temperatures up to $1150^{\circ} \mathrm{F}\left(621^{\circ} \mathrm{C}\right)$.

The panels can absorb as much as $\mathbf{Q} .35 \mathrm{MWt} / \mathrm{m}_{2}^{2}$ over the receiver surface area, which totals about $302 \mathrm{~m}^{2}\left(3252 \mathrm{ft}^{2}\right)$. The receiver is rated at 43.4 MWt. The steam produced by the receiver is rated at $950^{\circ} \mathrm{F}\left(510^{\circ} \mathrm{C}\right)$ and $1465 \mathrm{psia}(10.1 \mathrm{MPa})$ at a flow rate of $112,000 \mathrm{lb} / \mathrm{hr}(50,794 \mathrm{~kg} / \mathrm{hr})$.

The receiver is supported on a steel tower that holds the top of the receiver $300 \mathrm{ft}(91.5 \mathrm{~m}$) above the desert floor. The tower is anchored to a $54 \mathrm{ft}(16.5 \mathrm{~m})$ square by $4 \mathrm{ft}(1.2 \mathrm{~m})$ thick, 1500 -ton concrete foundation that is approximately $9 \mathrm{ft}(2.7 \mathrm{~m})$ below the grade level.

Thermal Storage System--The thermal storage system centers around a large cylindrical tank. The storage tank or thermal storage unit (TSU) is $45 \mathrm{ft}(13.7 \mathrm{~m})$ high and $65 \mathrm{ft}(19.8 \mathrm{~m})$ in diameter. The 946,000 -gallon ($3,580,610$ liter)-capacity tank is filled with 7,000 tons $(6,349,200 \mathrm{~kg})$ of rock and sand, and about 240,000 gallons (908,000 liter) of thermal oil (Caloria HT-43). The tank is heavily insulated and sits on an insulating concrete foundation. The tank wall varies in thickness from 1-1/8 in. (28.6 $\mathrm{mm})$ at the bottom to $1 / 4 \mathrm{in} .(6.4 \mathrm{~mm})$ at the top. The insulation is $1 \mathrm{ft}(0.3 \mathrm{~m})$ thick on the sides, and $2 \mathrm{ft}(0.61 \mathrm{~m})$ thick on the top.

The thermal storage system can provide enough energy to operate the turbine-generator for a period of 4 hours at a net power level of 7 MWe . The rating is at $28 \mathrm{MWe}-\mathrm{hr}$, but there is also capacity to provide seal steam and energy to start the plant. The oil in the thermocline tank varies from about $575^{\circ} \mathrm{F}\left(302^{\circ} \mathrm{C}\right)$ at the top to about $425^{\circ} \mathrm{F}\left(218^{\circ} \mathrm{C}\right)$ at the bottom.

The energy is transported into and out of the thermal storage system through heat exchangers. One dual-train heat exchanger transfers energy from the receiver-heated steam into the storage oil. The charging heat exchangers include condensers and subcoolers. The other dual-train heat exchanger reverses the process by transferring energy from the hot oil into steam that is fed to the admission port of the turbine-generator. The extraction heat exchangers include preheaters, boilers, and superheaters. The admission steam is at a lower temperature and pressure than the main steam from the receiver $--575^{\circ} \mathrm{F}\left(302^{\circ} \mathrm{C}\right)$ and $385 \mathrm{psia}(2.66 \mathrm{MPa})$.

The oil is circulated in the thermal storage system using two pumps for the charging trains and two for the extraction trains. Each of these pumps is driven by a 200 hp variable-speed motor.

Thermal Transport System--The specific systems such as the receiver system, the thermal storage system and the turbine-generator plant system are interconnected by the thermal transport system. It includes piping, pumps, valves, heat exchangers, thermal transport fluids and equipment to condition the thermal transport fluids.

The piping includes the riser that carries feedwater to the receiver and piping that carries feedwater to the thermal storage heat exchangers; it also includes the downcomer that carries superheated steam to the turbine and piping that carries steam from the thermal storage heat exchangers to the admission port of the turbine-generator. The main steam piping is mostly 6 in . (152 mm) and 10 in . (254 mm) diameter, while the feedwater piping is mainly $2-1 / 2 \mathrm{in} .(63.5 \mathrm{~mm})$ and $4 \mathrm{in} .(101.6 \mathrm{~mm}$) diameter.

Pumps included in the thermal transport system are the receiver feedwater pump and 800 hp driver and the thermal storage feedwater pump and 125 hp driver.

Heat exchangers include the desuperheaters and flash tanks used in the receiver and thermal storage systems.

Equipment used to condition the thermal transport fluid includes the inline demineralizer and the feedwater heaters and feedwater deaerator. The turbine extractions feed three feedwater heaters and one deaerator. The receiver steam and the thermal storage steam both use this equipment.

Master Control System--The master control system interconnects the various solar and conventional plant systems. The master control system is used both for control and for data acquisition. The system includes computers, graphic displays and recorders.

Conventional Power Plant Facilities--The items that make up the conventional portion of the plant include the turbine-generator, the electrical switchyard and tie-in to the SCE grid, general buildings and equipment for plant operation and maintenance, and general site improvements (Figure 6). The conventional power plant facilities are also integrated with the thermal transport system and the master control system as described above. The various major systems are described below:

Turbine-Generator Plant System--The 12.5 MWe gross turbine-generator is a machine designed by General Electric for cyclic duty. It is the same general machine used for marine drives. The turbine has two steam inlet ports--one high-pressure port for receiver (main) steam and a lower pressure port for thermal storage (admission) steam. The rated turbine thermal-to-electric efficiency from receiver steam is 35%, and from thermal storage steam, 25%. The turbine can accept up to $112,000 \mathrm{lb} / \mathrm{hr}(50,794 \mathrm{~kg} / \mathrm{hr})$ of receiver steam at $950^{\circ} \mathrm{F}\left(510^{\circ} \mathrm{C}\right)$ and $1465 \mathrm{psia}(10.1 \mathrm{MPa})$, and up to 105,000 $1 \mathrm{~b} / \mathrm{hr}(47,619 \mathrm{~kg} / \mathrm{hr})$ of thermal storage generated steam at $525^{\circ} \mathrm{F}$ $\left(274^{\circ} \mathrm{C}\right)$ and $385 \mathrm{psia}(2.66 \mathrm{MPa})$. The turbine-generator can operate down to less than 5% of rated capacity.

The turbine condenser rejects heat to a 3 -cell cooling tower that is part of the circulating water system. Each cell uses a 2 -speed $60-h p$ fan. The circulating water is pumped between the turbine condenser and the cooling tower by two $100-\mathrm{hp}$ motor drivers.

Structures and Improvements--A number of facilities are required to operate and maintain a power plant regardless of the source of the fuel. Such facilities include the administration building, security building, restroom facilities, control building, visitor center, warehouse, raw/service water building, and secondary fire pump building. Site improvements include the site fencing, parking lot and waste disposal.

Cooling Tower

Turbine-Generator

Figure 6: Conventional Facilities

Electrical Plant System--The electrical plant system includes the equipment and facilities to get the electricity from the generator into the SCE grid. The system also includes items to operate the plant, such as transformers and the switchyard, not associated with a specific plant system.

Miscellaneous Equipment--The miscellaneous equipment associated with the pilot plant includes items that are used on a number of the plant systems, but cannot be specifically charged to any system. These include the service and instrument air system that uses two 75-hp driven air compressors, nitrogen blanketing system, equipment cooling water system that uses a $30-\mathrm{hp}$ driven pump, water sampling system, and the 1.4 MWe auxiliary steam system. The systems that use these equipment are the receiver, thermal storage, thermal transport, and turbine-generator plant.

The objective of the 10 MWe Solar Thermal Central Receiver Pilot Plant is twofold: (1) to establish the technical feasibility of a solar plant of the central receiver type, and (2) to obtain sufficient development, power production, and operations and maintenance ($0 \& M$) data to indicate the potential for economical operation of utility-scale power plants of a similar design. This report presents a cost analysis of the pilot plant total capital cost.

The purpose of this cost analysis is to provide both a clear, detailed breakdown structure for solar thermal central receiver plant costs and a cost data set of the pilot plant costs in this breakdown structure. The former has broad application to those who plan new power production plants, those who analyze alternate energy sources and technologies, and those who need to promote confidence in cost estimates for potential investors in central receiver systems. The latter has a narrower application, but still necessary, to those who need to understand the pilot plant costs better. The detailed costs in this report should point out why the pilot plant capital costs are not representative of the costs of future central receiver plants. The cost data set also provides a checklist of types of costs that can be incurred in building a solar plant and a traceability of the pilot plant costs.

The conceptual design of the pilot plant was completed in July 1977. The plant design was started in May 1979, and construction was completed in April 1982. The pilot plant total capital cost (up to April 1982) includes charges that can be considered final design, and perhaps preliminary design or research and development, as well as the construction costs. However, the plant was not totally complete in April 1982 and further costs have been incurred since that date.

Although the total capital requirements of the pilot plant can be identified, they cannot be understood unless they are separated into meaningful categories. The proper separation and detail can provide confidence in the cost data and the completeness of the overall charges.

In this report, total capital requirements are broken down in four structures: (1) project cost, (2) plant system cost, (3) elements of work cost, and (4) recurring and non-recurring cost. The reason for providing the cost detail in each of these structures varies, as explained below.

The project cost breakdown structure includes R\&D costs, design costs, factory costs of engineered equipment, construction costs, and start-up costs. Costs structured in this way are useful in examinations of costs of future plants, since similar parts, such as heliostats, may be used. The new plant may not have to pay for R\&D costs since they have already been paid, or the engineering design costs may be greatly reduced.

The plant system cost breakdown structure includes charges assigned to major parts of the plant. These areas consist of land, structures and improvements, solar thermal portion of the plant, turbine plant system, plant electrical system, miscellaneous plant equipment, and plant-level costs. The solar thermal portion can be further divided into systems, including collector, receiver, thermal transport and thermal storage. Plant-level costs are those costs that are difficult to assign to individual plant systems. These include program and construction management charges and architectural and engineering fees. Although total costs are known, the distribution is unknown; no attempt to distribute plant-level costs was made.

The breakdown by plant systems is useful if analysis is to be performed that considers only parts of the plant. Separating costs into these plant systems allows an understanding of system costs and the possibility of comparing the costs of other technologies with those of the solar thermal central receiver concept (Ref. 6,7). The comparisons can be made with wind, photovoltaic, nuclear, and fossil technologies if enough detail is available. This breakdown is also needed if scaling of different-sized plants is attempted.

The elements of work cost breakdown structure consists of sitework/earthwork, concrete work, metal work, architectural work, process equipment, piping and electrical work. This cost breakdown is of interest to A\&E firms, since many of the construction subcontracts will be organized by this breakdown. It is also useful when scaling new plants in the early design phases.

Finally, a recurring and non-recurring cost breakdown structure is useful to assess the costs of future plants. The recurring costs include charges for off-the-shelf equipment that could be purchased from several sources and installed using standard practices. Non-recurring costs at the pilot plant include charges for basic R\&D, special pilot plant solar system instrumentation, data-recording systems, meteorological measurement systems, excessive factory and tooling amortization, unique engineering design, and extra program and construction management. In order to determine the cost of another plant like the pilot plant, the costs must be identified as either recurring or non-recurring.

The costs associated with designing, building and operating this first-of-a-kind plant are not expected to be typical of a utility-scale power plant. The costs of energy from the pilot plant would no doubt be greater than those of either the next 10 MWe power plant of a similar design or a larger power plant that uses the same technology or a more advanced technology due to the non-recurring costs incurred.

Total Capital Requirements

The pilot plant total capital requirements amounted to about $\$ 140,700,000$. These requirements were primarily funded by the construction (capital) budgets of the DOE and SCE/LADWP. A breakdown of this source of funds is presented in this section so that future traceability and re-creation of the requirements are possible. Some funds were also provided from operating and capital equipment budgets to complete the operating plant.

The major expenditures were made from 1978 through April 1982 (Ref. 8,9). Most of the SCE/LADWP funds were used for the conventional portion of the plant, while the DOE funds were concentrated on the solar portion. However, some funds from each participant were used for items that are considered to belong to the other part of the plant.

Funds were spent for research and development contracts, developmental equipment contracts, construction contracts, materials and equipment purchases, and services contracts. These contracts and purchases consisted of some R\&D costs (heliostats and glass), some engineering design costs not directly charged to factory costs (master control and beam characterization systems), some factory costs including engineering design costs (heliostats, receiver and thermal storage components), government-furnished equipment (GFE) that are either long-lead procurement items or equipment used in previous programs, 4 DOE prime construction packages, 11 T\&B prime construction packages (Ref. 10), SCE purchases, SCE construction contracts, construction management (T\&B and SCE), architectural and engineering ($S-R$) and program management (MDAC and SCE).

Some construction contracts covered a number of plant systems-e.g., piping and mechanical, electrical and insulation. Many equipment and materials purchases incorporated R\&D or extraordinary engineering design costs. Expenditures for major contracts or subcontracts were only part of the costs for the individual plant systems. For example, the MDAC/Rocketdyne receiver contract expenditure was a large fraction of, but not the total, receiver system cost.

[^1]Some of the equipment and material (primarily long-lead items) was furnished outside the construction subcontract but was installed by the construction subcontractor; items without long-lead times were generally provided and installed by the subcontractors. The construction subcontract prices include all charges for labor and materials, some design engineering, field overhead and indirects. The prices include all field design change requests (FDCR), which numbered 291 through about February 1982.

A breakdown of the total capital requirements is as follows:
Research \& Development Contracts

Phase 1 Heliostat Development-MMC
Phase 1 Heliostat Development-MDAC
Glass Development-PPG
Subtotal Research \& Devlopment Contracts
Developmental Equipment Contracts
Installed Heliostats-MMC (Appendice E. 2
\& E.3)
Receiver-MDAC/Rocketdyne
Thermal Storage-MDAC/Rocketdyne
Master Control/SHIMMS-MDAC (Appendix G)
Beam Characterization System-MDAC (Appendix F) $\$ 1,073,602$
Subtotal Developmental Equipment Contracts $\$ 68,754,084$

Construction Contracts

Contract Prime-DOE (Appendices A.1, A.2, A.3, and A.6)

Contract Prime-T\&B (Appendices A.4, A.5, and A.7-A.12)
Contract Prime-SCE/LADWP (Appendix D)
Subtotal Construction Contracts
Equipment and Material Purchases

Long-Lead Purchases-SFDI/S-R (Appendix B)	$\$ 2,764,738$	
Purchases-SCE/LADWP (Appendix C)	$\$ 5,370,000$	
Glass Purchase-Ford (Appendix E.1)	$\$ 8$	823,818
Subtotal Equipment \& Material Purchases	$\$ 8,958,556$	

\$ 2,939,344
\$ 27,180,031
\$ 35,905,571
\$ 16,003,641
\$ 5,719,877
\$ 10,051,393
(2,939,344
\$ 18,825,687
$\$ 5,415,000$
\$ 8,958,556

Other Costs	
Construction Management-T\&B	\$ 5,855,342
SFDI-MDAC	\$ 12,056,781
Program Management-\$4,602,842	
Design/Integration-\$4,341, 322	
Checkout/Startup -\$3,112,617	
Plant Support Systems A\&E-S-R	\$ 2,448,937
Design and Construction ManagementSCE/LADWP	\$ 10,565,000
Subtotal Other Costs	\$ 30,926,060
Total DOE \& SCE/LADWP Construction Budget	\$140,686,876
SHIMMS Capital Equipment \& Operating	
Budget Funds	
SFDI/MDAC (\$93,778 Capital Equipment,	\$ 204,093
\$110,315 Operating)	
T\&B (Capital Equipment)	\$ 227,899
Round-up	\$ 88,132
Total Capital Requirements	\$141,200,000

On the following pages, these costs are further detailed within the four breakdown structures.

Project Cost Breakdown Structure

The project cost breakdown structure for the pilot plant can be divided into several major elements. These elements exist to some degree in all major projects. (Specific charges may be placed in different elements by various accounting systems.) The divisions are:

- Research and development (R\&D) costs
- Design costs
- Factory costs for equipment, assemblies, and subsystems
- Construction costs
- Start-up costs

Costs structured in this way (Figure 7) are useful in examinations of costs of future plants, since similar parts, such as heliostats or storage tanks, may be used. The new plant may not have to pay for R\&D costs since they have already been paid, or the engineering design costs may be greatly reduced.

Figure 7: Capital Cost--Breakdown by Project Category

The total capital costs broken down by project category are:
$\left.\begin{array}{lll}\text { Research and Development } & \$ 4,868,145 \\ \text { Design--Final and Preliminary } & \$ 28,804,112 \\ \text { Factory Costs } & \$ 60,095,479 \\ & & \$ 43,011,283 \\ \text { Construction Costs } \\ \quad \text { Construction Packages } & \$ 27,506,758 \\ \quad \text { Installation of Heliostats } & \$ 2,198,071 \\ \quad \text { Construction Management (T\&B) } & \$ 5,178,266 \\ \text { Construction Management (SCE) } & \$ 3,316,667 \\ \text { Construction Package Support } & \$ 208,679\end{array}\right)$

Each of the major elements is discussed in more detail in the following sections.

Research and Development Costs

Research and Development Costs

The pilot plant design, factory fabrication and assembly of major parts, and field construction were preceded by research and development funded by the DOE and private industry. Some of these R\&D costs can be associated directly with the pilot plant project costs.

Other R\&D expenses can be indirectly associated with the pilot plant costs, but were not (by definition) part of the DOE construction budget. Costs of this nature could apply to the Phase I heliostat development costs and the 5 -tube and 70 -tube tests that enabled the pilot plant receiver to be designed and built. These R\&D funds, although a part of the DOE operations budget, should have reduced the actual costs of the pilot plant collector system and receiver system.

The approximate costs that were incurred in the DOE operations budget (and hence not included in the construction budget) for the fiscal years of roughly 1977 to 1980 were as follows:

Phase I Heliostat Development-

MDAC	$\$ 8,571,000$
MMC	$\$ 8,072,000$
Honeywell	$\$ 7,509,000$
Boeing (heliostat only)	$\$ 1,420,000$
Receiver Development-	
5-Tube	
70 -Tube	$\$ 90,000$
	$\$ 950,000$

The only R\&D item expense included in the DOE construction budget is that for pilot plant heliostats. A competition between MMC and MDAC was held before selection of the pilot plant heliostat. Another R\&D cost associated with heliostats was for glass development from Pittsburgh Plate \& Glass (PPG). These costs were incurred during fiscal years 1979, 1980, and 1981, with most of the costs in FY 1979, as shown in Table 3.

TABLE 3: RESEARCH AND DEVELOPMENT COST SUMMARY

	FY1979	FY1980	FY1981	Total
MMC	2,167,527	104,751	50,934	\$ 2,323,212
MDAC	2,229,879	272,725	18,329	\$ 2,520,933
PPG				\$ 24,000
Total Plant				
R\&D Cost	4,397,406	401,476	69,263	\$ 4,868,145

Most or all of these costs would not be incurred for a future plant since heliostats of various designs can currently be ordered from at least three heliostat manufacturers.

Some other R\&D costs allowed the pilot plant costs to be directly reduced and thus are recurring rather than non-recurring costs. These include the two HAC computers that were provided to the pilot plant from the R\&D effort. This cost was estimated to be $\$ 200,000$ (See Appendix G.3).

The total pilot plant R\&D cost charged to the total capital requirements is $\$ 4,868,145$. Most projects would amortize this type of cost over many units, but here the entire cost is applied against this single pilot plant facility.
Total Research and Development Cost $\quad \$ 4,868,145$

Design Costs

Design Costs

The design costs, even though included in many engineered equipment costs, should be separated for this first-time plant. Much of the solar-related equipment was of a developmental nature, and thus the costs were for unique items, with little history as compared with that for turbine-generators, pumps, etc. These design costs are shared not only by one-of-a-kind items, but also by small numbers of similar items such as the 1818 heliostats.

Even the conventional plant items were burdened with relatively high design costs. Necessary engineering expenses for these items are somewhat independent of the capacity of the plant item; thus the design cost is a large fraction of the total equipment cost, when the equipment capacity is small. For example, a small capacity turbine-generator set costs nearly the same to design as a larger unit.

The way the design costs are provided by the various contractors for the pilot plant is that the program management costs (as opposed to the fabrication management costs) are often stated as part of the design or engineering costs. The cost for engineered equipment required program management that was consistent (high) with the developmental nature of the products. These costs are generally not separable and are reported as a single cost in this report except for the heliostats.

The SCE design costs were for earthwork, visitor's center, office complex, control building, utilities, fencing, underground piping and electrical installations, turbine-generator procurement, and turbine-generator and equipment foundations. The SCE engineering and construction account was stated as one cost*. This cost is burdened by employee benefits, corporation overhead, and funds used during construction.

[^2]The design costs for the receiver system and the thermal storage system are based on data provided by T\&B and MDAC. A system integration laboratory (SIL) was developed by MDAC to allow simulation of both the master control subsystem and the beam characterization subsystem at Huntington Beach, California. The SIL proved very useful in the design and development of the plant control system, as well as in training plant operating personnel. The cost for this facility is included in the design costs of the master control subsystem.

As in the case of the R\&D accounts, the design account does not include some expenses that were incurred because of the developmental nature of the pilot plant. Several agencies were used by the DOE to manage, monitor, review, and assess the progress of the experimental program. These included SNLL, ETEC, Aerospace, and UCLA.

Part of the funds for the SHIMMS design were provided to the SFDI from the capital equipment and operations budget.

The design prices charged to the pilot plant for the various plant systems include direct labor, overhead, travel expenses, G\&A and fee.

A summary of the design costs is shown in Table 4.

TABLE 4: DESIGN COST SUMMARY

Structures and Improvements
\$ 820,265
Collector System
\$4,581,943
Receiver System
\$ 3,727,093
Thermal Transport System
Thermal Storage System
Turbine-Generator Plant
Electrical System
Miscellaneous Equipment
Plant Level Design/Integration
\$ 2,401,128
\$ 2,090,866
\$ 3,462,314
\$ 7,096,222
382,959

Total Plant Design Cost
$\$ 28,804,112$

A breakdown of the the design costs incurred for the pilot plant are listed below:

Structures and Improvements - SCE
Visitor's Center design, utilities
$\begin{array}{ll} & \$ 175,000 \\ \text { Other SCE design } & \$ 645,265\end{array}$
Collector System
Collector Field
S-R Support \$ 153,926
SFDI/U of Houston
\$ 100,000
Heliostats--MMC
Engineering Design \$2,157,336
Program Management \$1,337,146
Beam Characterization System--MDAC
Hardware Design
Software
S-R Support-Target
\$ 236,658
\$ 224,327
\$ 89,443
SHIMMS--SFDI
Heliostat Instr.
Metro. Design
\$ 93,778
\$ 189,329
Receiver System--MDAC/Rocketdyne
Steam Generator ($\$ 277,929 \mathrm{FW}$)
Core Structure
\$ 775,612
\$ 83,989
Controls \& Instrumentation \$ 526,898
Mechanical
Electrical
System Support
Indirects
S-R Support-Tower Integration

Thermal Transport System--MDAC/S-R/SCE
$\$ 1,018,099$
$\$ 1,383,029$
\$ 820,265
\$4,581,943
$\$ 3,727,093$
\$ 2,401,128

Design Costs (continued)
Thermal Storage System--MDAC/Rocketdyne

Heat Exchangers	$\$$	212,256
Mechanical	$\$$	217,914
Electrical	$\$$	71,195
TSU	$\$$	173,876
Controls \&		
Instrumentation	$\$ 397,939$	
System Support	$\$$	279,833
Indirects	$\$$	280,351
S-R Support	$\$$	457,502

Turbine-Generator Plant--SCE $\$ 3,462,314$
Electrical System
Master Control--MDAC

Controls Deve1.	$\$ 2,767,557$
Hardware Design	$\$ 852,856$
Software Design	$\$ 2,085,712$
SIL	$\$ 587,494$
S-R Support	$\$ 60,925$

Plant Electrical--SCE
Miscellaneous Equipment--SCE \$ 382,959
SFDI Plant Design/Integration--MDAC
\$ 2,090,866
\$7,096,222
\$4,241,322

Factory Costs

Factory Costs

Factory costs of engineered equipment include product design and engineering, tooling design and fabrication, program management and planning for the factory and production, amortization of the factory facility and equipment, various factory overheads, the product materials, labor, and shipping charges to the plant site. In this report, factory costs have been segregated where possible. However, in many cases the cost of an item produced in a factory or purchased from a supplier appears as a direct material cost at the construction site.

The total costs of these individual purchased materials amount to millions of dollars and should be broken down further. Some items are standard equipment, such as a pump and driver or a transformer. These items have established costs and will have similar costs on subsequent purchases for other plants. Other items, such as heliostats, receiver panels, and thermal storage heat exchangers, are original designs made specifically for the pilot plant. Significant charges were incurred prior to fabrication and during the factory fabrication and assembly that would not be incurred again for a subsequent plant. These one-time costs need to be identified so costs for future plants of a similar design can be appropriately decreased.

In this section, the factory costs are broken down by plant systems. A summary of these costs is shown in Table 5. The factory costs for each of the plant systems are described in detail below.

TABLE 5: FACTORY COST SUMMARY

Structures and Improvements
Collector System
Receiver System
Thermal Transport System
Thermal Storage System
Turbine-Generator Plant
Electrical Plant
Miscellaneous Equipment
Total Plant Factory Costs
\$ 110,003
\$32,400,198
\$13,779,978
\$ 2,402,786
\$ 4,712,618
\$ 3,698,550
$\$ 2,638,403$
\$ 352,943
$\$ 60,095,479$

Structures and Improvements--The structures and improvements account contains several factory-produced items that are delivered to the site for installation by a subcontractor. One example is the pumps that were provided as long-lead purchases by the SFDI but installed by a construction package subcontractor.

The structures and improvements account also includes several plant subsystems in which the equipment was furnished and installed by the subcontractor. These subsystems include raw water supply, waste drain, electrical and heating, ventilating and air conditioning (HVAC). The HVAC subsystem includes such items as air conditioners, humidifiers, fans, and other HVAC equipment that cannot be specifically charged to another system account. Few of these individual costs are known and many are not shown below, but are included in the total construction package charges in the construction section of this report.

Fire Protection

Primary electric pump P705 (LLP) \$ 12,499
Secondary diese 1 pump P706 (LLP) $\$ 29,601$
Jockey pump P707 (LLP)
\$ 1,074
Controllers for 3 pumps
Fire extinguishers
Power Cable (LLP)
\$ 1,050
Control Cable (LLP)
\$ 3,330
Raw Water Supply
Raw water pumps (1/2 cap.) P703,P704
Power Cable (LLP)
\$ 10,253
Control Cable (LLP) \$ 431
Waste Drain
0il-water separator SE701
Separator waste water pumps P711, P712
0il sump pump P714
Separator sludge pump P716
TSU area sump pump P717
Maintenance area sump pump P718
TSS flash tank drain pump P307
Bldg 702 sump pump P715
Polishing demin. sump pump P936,P937 \$ 20,900
Electrical
Motor Control Centers MCC C (LLP)
\$ 6,651
Power Panels and Transformers
PP3, PP6, PP7
Lighting Panels and Transformers
LP3, LP6, LP7, LP8
HVAC
Other Structures \& Improvements Cable (LLP)794

Misc. Directs and Distributed Indirects SCE
Misc. Directs \& Distributed Indirects (LLP)
$\$ 3,807$

Total Structures \& Improvements Factory Costs Identified
\$110,003

Collector System--Items made in a factory for the collector system include parts of heliostats (Figure 8), parts of the beam characterization system, special instrumentation and parts of the heliostat electrical field wiring.

Figure 8: Heliostat
The total collector system factory cost is summarized in Table 6.

TABLE 6: COLLECTOR SYSTEM FACTORY COST SUMMARY

Heliostats	\$30,978, 356
Collector Field Electrical	\$ 688,534
BCS	\$ 416,635
SHIMMS	\$. 316,673
Collector System Total Factory Cost	\$32,400,198

Heliostats--When the pilot plant heliostats were fabricated, heliostat parts for a central receiver plant located in Spain (sponsored by the International Energy Agency) were made at the same time by the same factories and under the same contract. However, the total contract expenses of the Barstow heliostats and the IEA heliostats have been allocated separately, so the total price noted in this report for the pilot plant heliostats is correct. The pilot plant heliostat cost is part of the construction funds, while the IEA heliostats were charged to the operating expense account. The method of subtracting the IEA costs for individual accounts was based on data provided in Appendix E.

Spare parts for the heliostats were provided from the operations budget as an operating expense of about $\$ 135,000$.

Two major heliostat items were made in factories and delivered to the Daggett airport facility for final assembly with other parts.* These were the mirror modules made at Pueblo, Colorado, and the controllers--heliostat controllers (HC) and heliostat field controllers (HFC) made at Denver, Colorado.

Some other major parts were purchased from suppliers and also shipped to the Daggett airport facility for final assembly. These included parts for the rack assembly--torque tube and bar joists; drive mechanism assembly--gear drive, motors, encoders, control arms, cable harness and pedestal interface adapter; and pedestal assembly.

An approximate breakdown of the factory costs for the 1818 pilot plant heliostats follows. The costs for the heliostats are provided in as-spent dollars (Ref. 11). The fee is included in the costs, so the value is actually the price paid.

Mirror Module Fabrication--The mirror modules were made at Pueblo, Colorado, using subcontracted labor. The management and supervision were provided by MMC. The modules were fabricated from January 1981 through August 1981 at a rate varying from a minimum of 100 to a maximum of 200 modules per 24 -hour day (3 shifts).

[^3]The direct materials prices for the pilot plant heliostats included the following:

Aluminum honeycomb	
Glass (DOE contract with Ford)	
Silvering glass	
Coil steel	
Clips	
Doublers	
Glues and sealers	
Cybond	
Dow 795	
Versilok	$\$ 220,087$
\quad Base	$\$ 74,174$
Accelerator	$\$ 171,310$
Polyisobutylene (PIB)	$\$ 35,560$
Semkips	$\$ 76,138$
	$\$ 68,957$

Rivnuts
\$ 73,593
Miscellaneous parts
Total direct materials cost
Freight Cost for Materials into Pueblo
Total Materials \& Freight Cost @ Pueblo
$\$ 150,130$
\$6,031,542
\$ 194,635
\$6,226,177
\$2,582,451
\$ 823,818
804,247
541,219
272,100
137,732
646,226

Cybond \$220,087
Dow 795 \$74,174
Versilok Base \$171,310
\$ 35,560
\$ 76,138
\$ 68,957

The cost of glass before cutting, storing, handling, and recutting was about $\$ 0.30 / \mathrm{ft}^{2}$. Additional costs were incurred for storage, cutting, and handling to bring the total glass costs charged to the 1818 heliostats to $\$ 1.07 / \mathrm{ft}^{2}$. About 20% of the glass that was delivered was not used in the heliostats at the pilot plant. See Appendix E2 for further details concerning the cost of the pilot plant glass.

Labor costs (including overhead and travel and relocation expenses), costs for the facility lease at Pueblo, costs for the materials used for tooling, and G\&A were incurred in the production of the mirror modules.

Subcontracted manufacturing labor Management/Supervision

Total Labor \& Overhead
Facility lease Materials for tooling G\&A

Total Indirects
Total Price of Mirror Modules
\$2,123,042
\$ 911,309
\$3,034,351
\$1,095,563
\$1,328,940
$\$ 755,997$
\$3,180,500.
\$12,441,029

Heliostat Controller Fabrication--The 1818 heliostat controllers (HC) and 64 heliostat field controllers (HFC) were fabricated at Denver, Colorado, by MMC. The fabrication took place from November 1980 through May 1981. The two heliostat array controllers (HAC's) were furnished during the Phase I R\&D program. Items other than these GFE computers ($\$ 44,544$ or $\$ 24.50$ per heliostat from the operations budget) are part of the controls account, as are miscellaneous other items.

The cost of the direct materials for the heliostat controls are:

HC/HFC	$\$ 1,350,320$
Computer accessories	$\$ 195,417$
Miscellaneous parts	$\$ 151,039$
Total direct materials	$\$ 1,696,758$
Freight on materials into Denver	$\$ 124,569$
Total materials \& freight	$\$ 1,821,326$

The cost of labor, including overhead and travel expenses, tooling materials, manufacturing materials, and G\&A for the heliostat controllers was:

Manufacturing labor	$\$ 1,035,096$	
Management/Supervision		37,287
Tooling Materials	$\$$	409,177
Manufacturing Materials	$\$ 0,250$	
G\&A	$\$$	436,775
Total Labor \& Indirects		
Controls Price	$\$ 1,968,585$	

The above parts were then shipped to the Daggett assembly facility along with parts from suppliers. The major heliostat assemblies made at the Daggett facility were the reflective assembly and the drive mechanism assembly. These assemblies used the same facility and personnel; costs for each are difficult to separate, except for the direct materials.

Reflective Assembly--The reflective assembly consists of 12 mirror modules and the rack assembly. The rack assembly consists of the torque tube and four bar joists.

Final assembly took place at the Daggett airport from February 1981 through September 1981 at a rate varying from 2 to 18 assemblies per 8-hour day.

The cost for the direct materials is as follows:
Mirror modules (from the Pueblo facility) \$12,441,029
Torque tube $\quad \$ 1,349,011$
Bar joists
\$ 307,478
Direct materials cost for reflective assembly
\$14,097,517

Drive Mechanism Assembly--This mechanism is composed of the gear drive with housing, the two gear motors and two encoders, the two control arms, the cable harness and the pedestal interface adapter. The parts were made elsewhere and were shipped to Daggett for assembly. The final assembly of the drive mechanism took place from November 1980 through July 1981 at a rate varying from 1 to 18 assemblies per 8-hour day.

The direct materials costs for the major parts of the drive mechanism assembly are as follows:

Gear drive (with housing) \$5,489,560
Motors \$ 592,959
Encoders \$ 557,690
Control arms \$ 522,730
Cable harness \$ 330,876
Pedestal interface adapter \$ 372,545
Drive mechanism assembly direct materials cost
\$7,866, 341

Pedestal Assembly--Factory-made pedestals were delivered to the site for installation on the foundations.

Charges for direct materials for the pedestal are:
Pedestal \$ 935,488
Miscellaneous parts \$ 262,374

Pedestal assembly direct materials cost \$1,197,862

The cost for labor at the Daggett assembly facility includes overhead and travel and relocation expenses. The MMC management/supervision cost includes expenses for final assembly as well as for the site installation. (It was assumed that one-half was for final assembly and the other half for site installation.) Other costs include freight charges for all of the material shipped into Daggett, lease charges for the airport facility, tooling materials, and G\&A as follows:

Subcontracted assembly labor
\$ 1,038,023
Management/Supervision \$ 573,543
Freight into Daggett
Lease
\$ 752,579

G\&A

Tooling materials
Start-up materials
427,285
240,485
19,525
975,284
Total cost for Daggett assembly
$\$ 4,026,725$
Total price for heliostats before installation, including glass cost
$\$ 30,978,356$

The factory cost for the heliostats is summarized by major part and cost element in Table 7.

TABLE 7: HELIOSTAT FACTORY COST SUMMARY
Heliostat Cost by Major Part:
Reflective Assembly \$14,097,517
Drive Mechanism
\$7,866,341
Controls
Pedestal
\$ 3,789,912
Assembly/Indirects/Freight into Facilities
\$ 1,197,862
$\$ 4,026,725$
Heliostat Total Factory Cost
\$30,978, 356

Heliostat Cost by Cost Element:
Direct Material
Management/Supervision Labor, Travel
Manufacturing Labor
\$18,448,991
\$ 1,522,139
\$4,196,162
Facility Lease and Equipment Depreciation
Tooling Materials
\$ 1,522,848
Manufacturing, Start-up Materials
$\$ 1,978,602$

Freight into Facilities
\$ 1,071,784
G\&A
$\$ 2,168,056$
Heliostat Total Factory Cost
\$30,978,356

[^4]Collector System Field Electrical--Factory-furnished electrical equipment associated with the collector system are of two types: long-lead purchases (LLP) that were provided to the electrical contractors for installation, and the equipment supplied by the electrical contractors. The contractor-supplied material costs are not known, but the LLP items are as follows:

Collector field lighting power cable
5000 volt load interrupter switchgear Spare parts

9,903

I/F control cabinets -2 each
Heliostat power centers--14 each
Spare parts
Watt transducers
Watt transducers cable
Power cable--5000 V
Power Distribution Cable-600 V \$146,912
4C \# $4 \quad 16,000 \mathrm{ft} \quad \$ 32,472$
4C \# $6 \quad 11,000 \mathrm{ft} \quad \$ 17,889$
4 C \# 8 3,140 ft \$ 5,478
4C \#10 105,000 ft \$ 91,073
Coaxial Control Cable \$194,973
RG22M 190,000 ft \$191,595
RG22 4,500 ft \$ 3,378
Grounding Cable
1C \#10 7,000 ft \$ 759
Misc. Directs \& Distributed Indirects
Total Collector Field Electrical Factory Cost
$\$ 688,534$

[^5]Beam Characterization System--Another part of the collector system that incurred factory costs is the beam characterization system (BCS). Most of the factory-produced items, unless noted, were obtained by MDAC. The cable was a long-lead procurement by MDAC/S-R. The costs for BCS items made in a factory before delivery to the site were:

BCS Target \& Shutter Control (LLP)
Targets (4) \& Shutters (12)
\$ 96,589
Target Painting
\$ 31,050
SFDI/MDAC-Supplied Equipment
$\$ 195,841$
Tower-Located Equipment
Radiometers (16)
MODACS III A/D
BCS Video Assembly
Video Cameras Cameras Receiver Units
BCS Camera Control
Control Room Equipment Equipment Room Equipment
Data Evaluation Room Equipment
Electrical Equipment
MCC 6
BCS Power Cable (LLP) \$ 3,747
Control Cable (LLP)
\$ 5,522
RG11 Coaxial Cable (LLP)
\$ 32,869
Other Instrumentation Cable (LLP)
\$ 247
Misc. Directs and Distributed Ind. (LLP)
Total BCS Factory Cost
$\$ 50,770$
$\$ 416,635$

Special Instrumentation--Special instrumentation was
provided for meteorological weather stations and for the heliostats. Since the weather information can affect the operation of the collector system, all of the costs are listed here. It is assumed that one-half of the meteorological station expense was design and the remainder was equipment. As mentioned before, some of the SHIMMS costs $(\$ 93,778)$ was paid for from the capital equipment and operations budgets. These costs include:

```
Weather Station Power
    4160/120 V transformer
    Power Panels PP8 & PP9
Meteorological Station
    Equipment (SFDI)
        Remote Aquisition Systems (6)
        Data Behavior Analyzer
        SHMS 905--Cyber
        Translator--Climet Instruments
```


Special Instrumentation Costs (continued)

Spares (SFDI)	$\$$	7,484
Meteorological Sta Power Cable (LLP)	$\$, 888$	
Meteorological Sta Control Cable (LLP)	$\$$	10,101
Instrumentation Cable (LLP)	$\$$	124
Heliostat Instrumentation		
Equipment (SFDI)		
Misc. Directs \& Distributed Indirects (LLP)	$\$$	102,831
Total SHIMMS factory cost	$\$$	3,916
Total Collector System Factory Cost	$\$ 8$	$\$ 16,673$

Receiver System--The factory costs of the receiver system include those for a steam generator composed of six receiver preheat panels RP201-RP203 and RP222-RP224, eighteen receiver boiler and superheat pane1s RB204-RB221, and two spare receiver boiler/superheat panels RB225 and RB226 (\$72,000 from operations budget). A core support to which the panels are mounted and a transition structure which mates the core support to the tower structure complete the receiver structure. Controls and instrumentation, other general or miscellaneous charges, and indirects are also part of the factory costs. These items were designed and fabricated before being sent to the construction site for final assembly.

Rocketdyne produced the receiver in two phases. The price of the first phase $(\$ 4,997,879)$ included fabrication of the various parts and the facility to produce these parts. Long-lead items were also procured. The price of the second phase ($\$ 8,016,961$) included the continuing facility tooling and the fabrication and assembly of the receiver parts. The design costs are shown in the design section of this report. A breakdown of these receiver factory costs is based on data supplied by T\&B.

Other factory costs were incurred. These include costs for long-lead purchases of $2-1 / 2 \mathrm{in}$. and larger pipe and pipe fittings and electrical cable by S-R and a distributed amount of the SDPC equipment provided by Beckman Instruments through a subcontract to the SFDI. It is assumed that the SDPC equipment cost was shared equally, in thirds, by the receiver system, the thermal storage system, and the turbine-generator plant system.

Receiver System Factory Costs

Steam generator	$\$ 6,423,001$
Controls \& instrumentation	$\$ 82,500$
Solid state relay box	
Remote station 1 equipment	
General	
Misc. material \& labor	$\$ 1,438,230$
Engr \& mfg planning	$\$ 1,776,592$
Engr \& mfg tooling design/fab	$\$ 1,211,134$
Indirects	
Misc. directs \& indirects	$\$ 1,345,383$
Subtotal MDAC/Rocketdyne receiver	
\quad factory cost	

2-1/2 in. and larger pipe and fittings (LLP) \$ 160,470
Power panels \& associated transformers PPA, PP1, RSP1
Remote station panel RSP3
Power cable (LLP)
\$ 7,740

Control cable (LLP)
Other instrumentation cable (LLP)
Remote station RS1 I\&C cable (LLP)
Misc. directs \& distributed indirects (LLP)
SDPC equipment ($1 / 3$ of Beckman cost)
\$ 295
\$ 72,878
\$ 14,126
\$ 76,296
ILS 101--Beckman
SDP 101-110--Beckman
Subtotal other receiver system factory costs
$\$ \quad 765,138$
$\$ 13,779,978$

Thermal Transport System--Some items for the thermal
transport system were built at a factory and delivered to the plant site for installation. Major items include feedwater pumps, and feedwater conditioning--heaters, deaerator, demineralizers, and other heat exchangers to condition the steam flow during start-up.

The costs of major factory-produced items, mostly provided by SCE, include:

Receiver feedwater pump P917 (LLP)	$\$ 314,216$	
Bingham-Willamette 800 hp		
P917 power cable (LLP)	$\$$	2,162
P917 control cable (LLP)	$\$$	86

Thermal Transport System Factory Costs (continued)
TSS feedwater pump P903 125 hp
$\$ 34,000$
Condensate storage tank Tk902
\$ 33,254
Atlas tank 24,000 gallon
Condensate hotwe 11 pump P907
\$ 11,700
Peerless pump 75 hp
Condensate polishing system
\$ 247,400
Crane Cochrane
Acid, caustic day tanks Tk908/Tk909
Joor Manufacturing
Heater H905 w/Tk909
Acid feed pumps P931,P932 \&
Caustic feed pumps P919,P920 Gregory Pump
Caustic dilution water HXC E910
In-line demineralizer vessels V901,V902
Regeneration vessel $V 903$
Sluice water pumps P939, P940
Feedwater Htrs E902, E903, E904
\$ 127,600
Struthers-Wells
Deaerator DA901 (3rd point heater)
$\$ 33,000$
Marley Co (Chicago Heater)
Main steam desuperheater DS901
Graham
Auxiliary steam desuperheater DS902
Water treatment transfer pump P710
Acid storage tank Tk915 \$ 11,000
Joor Manufacturing
Acid transfer pump P935 \$ 2,062
Gregory Pump
Caustic storage tank Tk916 \$ 6,000
Joor Manufacturing
Caustic transfer pump P943 \$ 6,700
Condenser/Deaerator chemical feed J. Crowley

Ammonia tank Tk914 \& pump P934
$\$ 3,500$
Ammonia drum \& pump
Hydrazine tank Tk913 \& pump P933
\$ 3,500 Hydrazine drum \& pump
Piping spools 2-1/2 in. \& larger alloys (LLP) \$ 259,265
Piping (SCE) \$ 210,000
Valves
SFDI (LLP)
Valve spares (LLP)
\$ 119,813
SCE (LLP)
\$ 12,214
Valves (SCE)
Non-return
Relief
Gate, globe, check
Control
Motor-operated
\$ 39,695

Mor
\$ 47,296
\$ 11,800
$\$ 27,500$
$\$ \quad 50,000$

Thermal Transport System Factory Costs (continued)

Hangers (LLP)	29,623	
Snubbers (LLP)	$\$$	103,839
Power cable (LLP)	$\$, 795$	
Control cable (LLP)	$\$$	962
Instrumentation cable (LLP)	$\$$	3,754
Structural steel for Aux. bay (SCE)	$\$$	175,300
Misc. Directs \& Distributed		
Indirects (LLP)	$\$$	265,286
Misc. Directs \& Distributed		
Indirects (SCE)	$\$$	192,464

Total Thermal Transport System Factory Cost
$\$ 2,402,786$

Thermal Storage System--Much of the thermal storage system (Figure 9) was fabricated at a factory and shipped to the Barstow site on skids. The thermal storage system heat exchangers, designed by PFR Engineering for Rocketdyne, were fabricated by Wiegmann and Rose International Corporation, and assembled on skids by Southern Mechanical. The total design and fabrication task was broken into two phases. The first phase was mostly design and prefabrication, while the second phase concentrated on fabrication and assembly. Since the pilot plant thermal storage system was a unique design, considerable expense was required for design and analysis. The design costs are included in the design section of this report.

The skids contained most of the heat exchangers, pumps and drivers, accessory equipment such as the ullage maintenance unit, and steam conditioning equipment. There were ten skids of equipment shipped from factories in the overall equipment list. The balance of the equipment was not skid mounted.

The thermal storage system charging heat exchanger includes equipment such as the condenser and subcooler to heat or charge the storage oil (circulated with the two charging oil pumps) with solargenerated steam, while the extraction heat exchanger includes equipment such as the preheater, boiler and superheaters to generate steam or extract heat from the hot oil (circulated with the two extraction oil pumps). In each case there are two trains (or two of each component) to provide full capacity and a $20: 1$ turn-down ratio using both trains. The seal steam is provided by circulating oil with the auxiliary extraction oil pump.

Figure 9: Thermal Storage System Skid-mounted Equipment
A detailed list of the skid-mounted equipment is shown below. The rest of the thermal storage system was assembled at the site. The factory costs shown are based on data provided by T\&B. Piping and fittings, valves, electrical cable and electrical equipment were provided by $S-R$ as long-lead procurement items.

Skid No.	Equipment	\$	157,486
SA 301	DS301,V304 desuperheater, flash tank		
SA 302	V305,V309,E301,E311 drain tank, surge tank, condenser,		
SA 303	subcooler V306,V310,E302,E312 drain	\$	329,402
SA 303	tank, surge tank, condenser subcooler	\$	329,402
SA 304	P301, P302 charging oil pumps	\$	132,391
SA 305	E303 preheater	\$	105,350
SA 306	E304 preheater	\$	105,350
SA 307	E305,E307 boiler, superheater	\$	299,119
SA 308	E306,E308 boiler, superheater	\$	299,119
SA 309	P303, P304, P305 extraction oil pumps, auxiliary oil pump	\$	107,097
SA 311	P308,FA301/FA302,Tk302 ullage maintenance unit pump,	\$	124,707

Thermal Storage System Factory Cost (continued)
Thermal storage unit items\$ 69,911Controls \& instrumentation\$ 327,399
RS2 instrumentation box
RS2-2-1 T/C reference junction box
RS2 solid state relay box
RLU-201--Modicon 584 programmable
controller \& Lambda power assembly
SCU 201, SCU 202
RS3 instrumentation T-box
RS3-2-1 T/C reference junction box
RS3 solid state relay box
SCU 301
Spares\$ 136,976
Indirect costs
Misc. direct \& indirect costs \$1,562,804
Subtotal for MDAC/Rocketdyne Thermal Storage System Factory Cost $\$ 4,086,513$
Hangers (LLP)
Caloria make-up pump P306
TSS blowdown tank V308
Foam fire protection apparatus
Load center A and transformer \&
LV switchgear (LLP)
Low voltage non-segregated bus duct (LLP)\$ 5,750
Spare parts (LLP)
Motor control centersMCC BMCC 1, MCC 2, MCC 3
Power panels and transformersPP2, PP4, PP5
Lighting pane1 LP4 and transformer
Power cable (LLP)\$ 29,788
Control cable (LLP)$\$ \quad 2,853$
Instrumentation cable (LLP) + 24,357Remote station 2 RS-2 cable (LLP)Power cable$\$ 1,472$
Control cableInstrumentation cable\$ 44,968\$ 5,671\$ 9,328
\$ 99
Remote station 3 RS-3 cable (LLP)\$ 7,710
Power cable \$ 358Instrumentation cable
Control cableMisc. directs \& distributed
\$ 109
10,092\$ 43,004

Thermal Storage System Factory Cost (continued)

SDPC (1/3 Beckman costs)
\$ 433,333
ILS 201, ILS 301--Beckman/Modicon
SDP 201-205--Beckman MV 8000
DARM 201, DARM 202--Cyber
ILS 301--Beckman/Modicon
SDP 301-305--Beckman MV 8000
DARM 301, DARM 302--Cyber
Subtotal Other Thermal Storage System Factory Costs

Total Thermal Storage System Factory Costs
$\$ 626,355$
$\$ 4,712,618$

Turbine-Generator Plant System--The turbine-generator plant system has a number of major purchased or SCE-provided items (Ref. 12). These items were produced in a factory and shipped to the Barstow site for assembly, erection or installation.

Major Equipment--The major items of purchased engineered equipment are as follows:

Steam turbine/generator TG901 GE
$\$ 2,221,517$
Lube oil system (reservoir Tk906, 10 hp AC pumps P926, P927, 7.5 hp DC pump P928, coolers E908, E909, heaters H901 A-F, reservoir vapor extractor P945, centrifuge PR901 with 2 - 1 hp motors), hydraulic oil system (pumps P938A, P938B, tank Tk923, coolers E911A, E911B, heater H903, filter and pump P944, and air dryer DR903), turning gear ($11 / 2 \mathrm{hp}$) ME901, turbine lagging blowers $1 / 4 \mathrm{hp}$ FA904, $1 / 2 \mathrm{hp}$ FA905 A-D, generator air coolers E912 A-D, gland steam exhaust pump P941, safety release blowdown tank Tk924

Condenser E901
Ecolaire \& Allegeny Ludlum 2210 gallon
Condenser tubing
Condenser vacuum pump P910
\$ 123,500

Nash Engineering Co 40 hp
Circulating water subsystem:
Cooling tower CR901
$\$ 153,300$
Baltimore Aircoil Prichard
Circulating water pumps P905,P906 \$ 22,396.
Peerless pump 100 hp
Fiberglass circulating water pipe
\$ 51,499
Cooling tower transformer CTX1
\$ 10,300

```
Turbine-Generator Factory Cost (continued)
    Circulating water treatment:
    Sulphuric acid tank Tk904 $ 11,000
                Joor Manufacturing
    Pump P912, Chemcon
    Sodium hypochlorite tank Tk922 (SCE) $ 6,501
            Pump P930 (SCE)
        Sodium polyacrylate tank Tk905, Pump P923
            Calgon Corporation
    Valves (LLP)
RS4 instrumentation & control cable (LLP)
Misc. directs & distributed indirects (LLP)
SDPC (1/3)
\begin{tabular}{lr} 
& 11,000 \\
\(\$\) & 2,062 \\
\(\$\) & 6,501
\end{tabular}
$ 56,486
        2,340
    17,566
    ILS 401-403
    SDP 400, SDP 401-406
SCE Misc. directs & distributed indirects $ 491,350
    Total Turbine-Generator Factory Cost $ 3,698,550
```

 Electrical System--The electrical system utilizes a number of factory-produced pieces of equipment. Such items include:
 Main transformer MX1
\$ 48,400
(Westinghouse 33 to 4 kV 10MVA)
Circuit breaker (34.5kV 1500MVA 1200A)
Station service transformer SX1
$\begin{array}{lr}\$ & 5,000 \\ \$ & 10,300\end{array}$
(General Electric 75 kVA)
Switchgear, MCC's, LC's
\$ 152,613
480 volt switchgear B01, B02
MCC's BOA \& BOL
4160 V switchgear A01 (350MVA)
15 KV generator switchgear GS
$\begin{array}{rr}\$ 12,000 \\ \$ & 8,000\end{array}$
Auxiliary transformer AX1
\$ 15,000
Federal Pacific-- from Mohave Vertical
Scrubber project (13.8 to 4 KV 18MVA)
Uninterruptible power supply (UPS)
\$ 73,567
Exide Electronics
DC power system
Battery bank \& rack
Battery charger
DC control \& distribution switchboard
Power cable
Control \& instrumentation cable
Watt transducers (LLP)
SCE misc. directs \& distributed indirects
Electrical System Factory Subtotal
$\$ 12,835$
\$ 4,000
\$ 27,000
\$ 75,000
\$ 25,000
$\$ 4,084$

85,468
\$ 558,767

The master control subsystem is considered a part of the electrical system.

Master Control Subsystem--The master control subsystem (MCS) is designed by MDAC.

The master control subsystem includes computers and associated equipment to control and assess the plant operation. Each system is charged with the necessary instrumentation and valves required to respond to the master control subsystem; however, the necessary equipment, buildings, and wiring, even if specific systems are removed, belong to the master control subsystem. Data are also recorded for use during plant evaluation. Most of this data acquisition system (DAS) would not necessarily be required for subsequent plants of equal or larger size. The DAS currently records about 705 channels of information for data evaluation while also recording data that are used by the operational control system (960 channe1s).

The master control subsystem includes many purchased items. These include items provided by MDAC. The cost of the SDPC by Beckman has been distributed to the Receiver (RS-1), Thermal Storage (RS-2 and RS-3), and the Turbine-Generator Plant (RS-4) systems equally in thirds ($\$ 433,333$ each). Costs allocated to the master control subsystem are:

MCS fabrication/procurement--SFDI \$2,079,636
Multiplexers--Cyber

Subtotal Master Control Factory Cost
\$2,079,636
Total Electrical System Factory Cost
$\$ 2,638,403$

[^6]Miscellaneous Plant Equipment--The miscellaneous plant equipment category includes:

Auxiliary steam subsystem:
Electric auxiliary boiler B901 \$ 44,100
Hydro-Steam Industries
Auxiliary boiler/thermal storage pump P904 \$ 1,000
Aurora Pump (Evans Pump Equipment)
Auxiliary boiler transformer AXB 1500KVA \$ 15,602
Equipment cooling water subsystem:
Cooling water heat exchanger E905 \$ 43,331
Southwest Engineering
Cooling water pump P901
\$ 2,440
Peerless Pump
Cooling water surge tank Tk901 \$ 5,800
Joor Manufacturing
Service \& instrument air subsystem:
Air compressors CP901,CP902 \$ 88,991
Gardner Denver
Air cooler/moisture separators CR902, CR903, prefilters F903, F904, air dryers DR901, DR902, and afterfilters F901, F902

Chemical analysis system--Beckman \$ 97,098
Water sample subsystem:
Sample chiller pump P 925
Sample chiller unit CR907
Sample coolers SC907 through SC911
Nitrogen vaporizer supply unit SA701 (rental)
Nitrogen skid power cable (LLP) \$ 234
Miscellaneous direct \& distributed indirect cost (SCE)
$\$ \quad 54,347$
Total miscellaneous equipment factory cost
$\$ 352,943$

The total factory costs
\$60,097,187

Construction Costs

The construction cost includes materials used or fabricated at the site, labor used for site fabrication and installation, labor used for installation of factory-supplied equipment, construction overhead and profit.

Construction costs were incurred from the beginning of construction (September 1979) until roughly April 1982.

A summary of the construction costs is shown in Table 8 and described in detail for each plant system below.

TABLE 8: CONSTRUCTION COST SUMMARY

Structures and Improvements	$\$ 3,756,047$
Collector System	$\$ 6,944,235$
Receiver System	$\$ 5,063,516$
Thermal Transport System	$\$ 2,713,520$
Thermal Storage System	$\$ 6,373,498$
Turbine-Generator Plant	$\$ 2,979,919$
Electrical Plant System	$\$ 1,620,862$
Miscellaneous Equipment	$\$ 253,232$
Plant Level Costs	$\$ 13,306,454$
Total Construction Cost	

Land--The rectangular fenced site area designated for the facility by SCE is 130 acres. The area breakdown is as follows:

Acres
Collector field 78.2
Core 2.8
Access roads (perimeter road, north-south 4.2 and east-west spoke roads and core perimiter road)
Space between outer heliostat rows and perimeter road
16.6

Area between perimeter road and fence $\quad 28.2$ Total area 130.0

The land costs are for a total of 130 acres. The cost is for unimproved land. However, the land is adjacent to the Cool Water Power Generation station and near an improved road. Approximately 60% of the land area is necessary for the heliostats; therefore, 60% could be allocated to the collector system. The remaining 40% could be allocated to the plant land account. (This separation is used in this section to allocate site improvement costs to a given plant system.) In this report, land cost is charged entirely to the land account, but is not part of the construction cost since the land was already owned by SCE.

Heliostat Field	
$\quad(60 \%$ of land area)	
Balance of Plant	
$(40 \%$ of land area)	$\$ 150,385$
Total Land Construction Cost	$\$ 99,615$

Structures and Improvements--The structures and improvements account includes general plant charges that cannot be specifically allocated to other plant systems as well as charges that belong to several plant systems but cannot be easily allocated to those systems. For the SCE fencing account, 75% of the cost was allocated by the author to the collector system, and the remainder is charged to this structures and improvements account.

The Visitor Center incurred costs of $\$ 167,468$ from the operating budget for exhibits, and $\$ 322,666$ for operation from July 18, 1980, to September 30, 1982; the administration building was provided by SCE with only miscellaneous installation charges.

Items are listed below:

Visitor Center (CP4) Furnishings, supplies, audio- visual equipment--T\&B	$\$$	343,403
Refurbish, mount scale model--	$\$$	50,000
SCE	$\$$	15,000
Administration Building BL902 (SCE)	$\$$	20,300
Warehouse BL703 (CP3)	$\$$	254,005
Wind bracing (CP5)	1,036	
Guard Building BL704 (SCE)	$\$$	1,000
Restrooms (SCE)	$\$$	103,220
Control Building BL901 (SCE)	$\$$	740,531
Control Building Elevator (SCE)	$\$$	40,500
Raw/service water supply building		
Foundation (CP7)	$\$$	44,424
BL702; 880 sq. ft (CP5)	$\$$	50,531

Structures and Improvements Construction Cost (continued)

Secondary fire pump building Foundation (CP7)	59,232
BL706; $280 \mathrm{sq} . \mathrm{ft}$ (CP5)	\$ 16,875
Access road and helistop (SCE)	\$ 119,500
Parking and roads (CP1)	
Fine grade	\$ 14,213
Paving	\$ 303,170
Poles	\$ 2,534
Fencing (SCE)	\$ 10,925
Clearing and grubbing (CP1)	\$ 44,312
Stripping alfalfa (CP1)	\$ 8,034
Culverts \& riprap (CP1)	\$ 33,584
Concrete-1ined ditch (CP1)	\$ 60,594
Yard drain piping (CP7)	\$ 34,172
Drainage ditches/culverts at North and East gates CP7A c/0 \#002	\$ 5,047
Waste drainage (SCE)	
Sanitary facilities (SCE)	
Excavate, compact tower area (CP1)	\$ 134,497
Excavate cooling tower area (CP1)	\$ 34,237
Raw water supply	
Well A (CP1)	\$ 17,308
Water well \& line A electrical tie-in (SCE)	
Foundation (CP7)	\$ 52,113
Raw water tank TK701 (CP10A)	\$ 64,867
Misc. installation (CP9)	\$ 6,471
Raw water pump cont. (CP11)	\$ 7,988
General fire protection (CP9)	\$ 826,932
Exterior/Interior lighting (CP11)	
Procure	\$ 65,676
Install	\$ 21,316
General lighting \& communication Installation (SCE)	\$ 43,095
Power, I\&C cable installation	
Plant support instrumentation (50 channels)	
Miscellaneous direct \& distributed indirect costs (SCE)	\$ 105,404
Total Structures \& Improvements Construction Costs	\$3,756,047

Collector System--The collector system construction account includes field design, site improvements, foundations, field wiring, heliostat installation and checkout, BCS installation, and installation of special instrumentation and meteorological measurements.

The total heliostat field and heliostat construction cost is summarized in Table 9 and discussed in more detail below.

TABLE 9: HELIOSTAT FIELD AND HELIOSTAT CONSTRUCTION COST SUMMARY
Heliostat Field:
Site Improvements (CP1 \& SCE)
\$ 476,698
Heliostat Foundations (CP6)
\$1,193,945
Field Wiring (CP11A \& Grounding)
\$2,094,096
Heliostat:
MMC Heliostat Installation
\$2,198,071
Total Heliostat Field and Heliostat Construction Cost
$\$ 5,962,810$

The heliostat layout was designed by MDAC with a subcontract to the University of Houston. The costs (about $\$ 100,000$) appear in the design section of this report.

Some items required because of the large field are extra fencing, clearing, grubbing, and grading. Some of these items are allocated by contract to the collector system, while others will be estimated. For this report, 75% of the fencing cost is charged to the collector system since the heliostats necessitate roughly 75% of the periphery fencing. The cost of clearing and grubbing, stripping alfalfa and desert scrub, and grading the land occupied by the heliostats is charged to the collector system. This amounts to roughly 60% of the total clearing, grubbing and stripping costs based on the fraction of the total site area occupied by the heliostats. The grading cost for the heliostat field was charged to the collector field. However, to comply with more traditional accounting, the land is retained in the land account even though the heliostats occupy about 78 out of the 130 acres of land, or roughly 60% of the area.

The collector system site improvement account includes charges for:

Clearing and grubbing (CP1)
Stipping
Stripping alfalfa \& desert scrub (CP1)
Grading (CP1)
Fencing (SCE)
Fencing (SCE)
Total Heliostat Field Site Improvements Cost

The collector system foundations contract (CP 6) included costs for heliostat foundations ($\$ 1,193,945$), BCS foundations $(\$ 15,097)$, and SHIMMS foundations ($\$ 39,691$) for a total of $\$ 1,248,733$. The heliostat foundations amounted to:

1818 heliostat foundations 3 ft (0.91 m) diameter by $10 \mathrm{ft}(3.05 \mathrm{~m})$ deep $\$ 1,167,524$

14 transformer pads
$\$ \quad 26,421$
Total Heliostat Field Foundation Costs \$1,193,945
The heliostat field wiring (Ref. 14) and electrical costs were from several sources:

Field Wiring Contract (CP11A)
Cable rodent shield grounding
Grounding Update (CP11 c/o \#042 FDCR 274)
\$2,005,452

Total Heliostat Field Electrical Costs
\$ 63,556
$\$ \quad 25,088$

Heliostat parts that arrived at the site were installed in several major assemblies. After the foundations had been installed, the pedestal was bolted to the foundation. The next assembly consisted of the pedestal interface adapter--which connects the pedestal to the drive mechanism, the drive mechanism with motors, encoders and cable harness, and the control arms. This drive unit assembly was mounted on the pedestal, and the control assembly installed in the pedestal. Finally, the reflective assembly, consisting of the 12 mirror modules and the rack assembly, was installed. This reflective assembly fits on the control arms.

Installation of the collector field started in November 1980 and was completed in September 1981. The installation history of the above major assemblies is summarized below:

	Installation		Units per Day		
Assembly	Start	CompTete	Min	Max	
Pedestal					
Drive	Nov 1980	June 1981	27	60	
Control	Nov 1980	Aug 1981	5	50	
Reflective	Feb 1981	Sept 1981	10	40	
	Feb 1981	Sept 1981	4	40	

The installation of complete heliostats was as follows: 1st (February 23, 1981), 400th (May 6, 1981), 800th (June 19, 1981), 1200th (July 27, 1981) and 1818th (September 16, 1981).

The installation took about 7 months for the 1818 heliostats. This would average about 12 heliostats installed for each working day.

Installation at the site includes transporting the assemblies from the Daggett airport factory to the foundations, subcontracted installation labor, subcontracted field work on the electrical interface, and subcontracted labor to remove the front surface glass coating and perform other miscellaneous field work. Supervision was provided by MMC and includes travel and relocation expenses. As previously mentioned in the factory section of this report, one-half of the MMC supervision labor cost was allocated to the Daggett facility and the other half to the site installation activities. G\&A is charged and the fee is included.

The site heliostat installation costs included:

Installation labor		$\$ 1,026,734$
Other field labor		
electrical	$\$$	461,917
glass coating removal, other	$\$ 158,000$	
Installation supervision	$\$ 303,917$	
G\&A		573,543
Total Heliostat Installation		135,877
\quad Construction Cost		

The Beam Characterization System (BCS) is shown in Figure 10.

Figure 10: Beam Characterization System

Installation at the site includes transporting the assemblies from the Daggett airport factory to the foundations, subcontracted installation labor, subcontracted field work on the electrical interface, and subcontracted labor to remove the front surface glass coating and perform other miscellaneous field work. Supervision was provided by MMC and includes travel and relocation expenses. As previously mentioned in the factory section of this report, one-half of the MMC supervision labor cost was allocated to the Daggett facility and the other half to the site installation activities. G\&A is charged and the fee is included.

The site heliostat installation costs included:

Installation labor		$\$ 1,026,734$
Other field labor		
electrical		
glass coating removal, other	$\$ 158,000$	
Installation supervision	$\$ 303,917$	461,917
G\&A		
Total Heliostat Installation	$\$ 73,543$	
\quad Construction Cost		

The Beam Characterization System (BCS) is shown in Figure 10.

Figure 10: Beam Characterization System

For the collector system, the cost of the BCS installation was:

```
Target support (CP5A)
Target installation
    Target assembly/installation (CP9) \$87,625
    Modifications (CP9) \$61,024
        FDCR \(121 \quad \$ 28,457\)
            FDCR \(159 \quad \$ 4,800\)
            FDCR \(162 \quad \$ 27,767\)
    FDCR 207 (CP11)
    Insulation (CP12)
Power cable installation (CP11)
            \#8 4/c LLP
        \$ 3,747
Instrumentation \& control cable installa-
    tion (CP11)
        \#16 1 pair LLP \$ 247
        RG-22M LLP \$5,522
        GFE RG-11 LLP \$27,617
BCS camera and equipment foundations (CP6)
    \(\$ 15,097\)
        4 camera pads
        4 equipment pads
            Total BCS Construction Cost
        \(\$ 182,804\)
```

A total of 191 channels $(126+65)$ are considered part of the Special Heliostat Instrumentation and Meteorological Measurement System (SHIMMS). Instrumentation includes 126 load cells on selected heliostats (3 with 36 load cells each and 3 with 6 load cells each), 46 other channels, and 65 channels of meteorological measurements. Most of the meteorological measurements deal with wind speed (25 channels), wind direction (13 channels) and insolation (12 pyranometers and 2 pyrheliometers).

Part of the cost of the installation of the SHIMMS was charged to the capital equipment budget ($\$ 227,000$). The allocation was $\$ 47,899$ in FY1981 and $\$ 179,101$ in FY1982.

The costs for the special heliostat instrumentation amount to:
Meteorological procurement/installation

CP11 c/o \#009
CP11 c/0 \#051 FDCR 247
Heliostat instr. conduit CP11A FDCR 14
EES \& SWS Fnd. Mods CP11A c/o \#007 FDCR 52
SWS cable revisions CP11A c/o \# 011 FDCR 97
SHIMMS foundations (CP6)
7 pyranometer pads
Other pads \$ 32,082.

STHIMMS Construction Cost (continued)

6 wind tower pads 4 weather station pads 6 hail cube pads 1 electrical environmental shelter foundation		
Meteorological towers (CP5)	\$	73,000
SHIMMS electrical work (CP11)		
Procure cable c/o \#001 FDCR 33	\$	108,927
Revision 2-2 c/o \#014	\$	40,981
RG22 metro cable change for RG22M c/o \#013 FDCR 129	\$	2,492
Power cable installation		
I \& C cable installation		
Heliostat strain gages		
Meteorological equipment		
Total SHIMMS construction cost	\$	798,622
Total Collector System Construction Cost		944,235

Receiver System--Some of the receiver system construction cost is derived from the assembly and installation of factory-made equipment that is delivered to the pilot plant site. Other materials are delivered to the site, fabricated and erected. The receiver panels are an example of the former, while the receiver tower or foundation are examples of the latter.

The receiver, tower, high-pressure piping, and supports are designed for the uniform building code (UBC) seismic zone IV. The pilot plant is located in UBC zone III. This decision was made on the basis of conservatism--the hope being that the plant would survive a probable event and remain operational. This definition implies that anything requiring long-lead procurement would not only survive, but remain operational.

The receiver system account includes cost for:
Receiver tower (CP5A)
\$1,484,859
Personnel hoist (CP5A)
Maintenance crane (CP5A)
Crane removal, hoist work (CP11)
Receiver tower B201 work (CP5)
Tower foundation (CP7A)
Stair pad foundation (CP7)
Subtotal cost for receiver tower
\$ 143,557
\$ 35,870
\$ 195,731
$\$ \quad 1,025$
\$2,091,183

Receiver Construction Cost (continued)

Mechanical, piping and insulation Panel installation (CP9)	\$ 277,195
Panel insulation (CP9)	\$ 262,378
Core installation (CP9)	\$ 123,441
Core piping installation (CP9)	\$ 285,535
Core insulation (CP12)	\$ 184,286
Heat shield installation (CP9)	\$ 161,053
Misc. equipment installation (CP9)	\$ 166,296
Instruments--flow--21; flux--72 (CP9)	\$ 45,280
Electronics rooms (708A \& 708B); 13th \&	
14th levels of tower	
Installation (CP9)	\$ 279,082
HVAC w/(CP9 c/o \#001)	\$ 27,226
Fire protection equip. install. (CP9)	\$ 102,793
Cabinet installation (CP11)	\$ 120,905
Cable trays, conduits (CP11)	\$ 728,082
Wiring (CP11)	\$ 58,404
Heat tracing (CP11)	\$ 74,475
Infrared camera cable conduit (CP11A)	\$ 61,801
IR cable procurement CP11 c/o \#003 FDCR 86	\$ 14,100
Instrumentation (556 channels/16 spare)	
Power and I\&C cable and SDPC (1/3) installation	
Subtotal Cost for Receiver	\$2,972,332
Total Construction Cost of Receiver System	\$5,063,516

Thermal Transport System--The thermal transport system can be discussed separately, as done in this report, or may be combined with the receiver system. All of the equipment and tanks require installation, foundations, interconnecting piping, electrical hookup and controls and instrumentation.

Items included would be the materials and installation costs of piping and valves, insulation, equipment, and cabling:

Install LLP vertical and horizontal piping (CP9)
\$ 661,846
Install LLP primary hangers and snubbers (CP9)
Field fabbed piping (CP9)
Clean, test (CP9)
Covered pipe trench (CP7)
Pipe insulation (CP12)
Installation of pumps, equipment
\$ 186,040

Valves
Heat tracing (CP11)
In-line instrumentation (CP9)
\$ 311,530
\$ 84,630
\$ 60,967
\$ 72,249
\$ 197,536

In-line instrunention (CPg)
\$ 74,475
\$ 131,263

Thermal Transport System Construction Cost (continued)

Controls

Electrical service balance (CP11) \$ 33,652
Feedwater conditioning system Installation w/turbine-generator cost
Demineralizer 1st stage-mobile D701
Polishing demineralizer 1st stage
Mobile DE701 and DE702
Demineralized water storage tank TK702 (CP10A)
\$ 45,578
SCE equipment installation
Polishing demineralizer 2nd stage
In-line demineralizer V901
In-line demineralizer V902
Regeneration vessel V903
Condensate storage tank TK902
Condensate pump
Feedwater heaters
lst point high pressure E902
2nd point high pressure E903
3rd point deaerator E901
4th point low pressure E904
Instrumentation (50 channels, no spares)
Miscellaneous direct \& distributed indirect costs (SCE)
$\$ 69,765$
Total Thermal Transport System Construction Cost
\$2,713,520

Thermal Storage System--The construction cost of the thermal storage system includes the installation of ten skids of equipment that are fabricated in the factory. These skids require foundations, and the equipment requires insulation, piping and electrical hookup. Buildings to house the electronic equipment for remote stations 2 (building 710) and 3 (building 709) are also needed. Remote Station 2 generally accommodates the instrumentation for the steam-side equipment through junction box JB1951, while Remote Station 3 accommodates the instrumentation for the oil-side equipment through junction box JB1952. The thermal storage tank (Figure 11) and its foundation are major items of this account.

Figure 11: Thermal Storage Tank
Thermal Storage System Construction Costs
Field Fabricated Tanks
Thermal storage unit (CP 10)
Foundation for V303 (CP7)
Pipe \& fill w/oil (CP9)
Caloria make-up tank TK301 (CP10)
Foundation for TK301/P306 (CP7)
\$1,853,241
\square

Ullage Maintenance Unit (UMU)
Foundation (CP7)
\$ 651,494
\$ 771,713

Foundation for heptane tank (CP7)
\$ 28,607
,

Equipment installation
Skid-mounted equipment installation
Foundation (CP7)
\$ 123,590
Installation (CP9)
installation. Also included in many of the areas are piping, valves, insulation and foundations. Instrumentation includes 691 channels.

The turbine-generator plant system construction costs include the SCE construction contracts (Ref. 12). The construction contracts include:

Turbine-Generator

Pedestal foundation \& equipment foundations
 \$ 310,285
 Turbine-Generator installation

Condenser

Installation w/T-G cost

Associated equipment
Foundations w/T-G cost
Electrical hookup
Equipment installation w/T-G cost
Circulating water system
Foundation/Underground piping installation \$303,000
CT MCC bldg HVAC, foundation, electrical
CT MCC bldg prefab building \$ 8,000
Instrumentation \& controls
RS 4 installation (CP11) \$ 160,633
691 channels installation
SDPC (1/3) installation
Misc. directs and distributed indirects SCE
Total Turbine-Generator Plant System Construction Cost
$\$ 235,340$
$\$ 2,979,919$

Electrical Plant System--The electrical plant system consists of the electrical components that are general to the overall plant or to many systems of the plant. This construction account includes the costs for installing many factory- produced items and pulling and terminating cable.

The master control subsystem construction costs include the installation of the equipment in the equipment room and the control room on the second floor of the control building. Only miscellaneous charges are known, so the cost is underestimated in this report.

Electrical system installation cost-SCE $\$ 548,841$
Electrical switchyard installation
33 KV grid to switchyard Switchyard

Electrical Plant System Construction Cost (continued)
Plant interties
Main transformer
Auxiliary transformer
Plant power distribution installation
Station service transformer SX1
Cooling tower transformer CTX1
4160 V switchgear
480 V switchgear from CTXI and SXI
MCC A Building 901
MCC L cooling tower area
Emergency power installation
UPS \& DC power system
Communication \& lighting installation Cable installation

Cable protection/pulling
Electrical system installation (CP11) \$ 848,134
Concrete work (CP7)
\$ 132,134
Master control miscellaneous charges (CP11)
$\$ \quad 91,753$
Total Electrical Plant System Construction Cost
$\$ 1,620,862$

Miscellaneous Plant Equipment--This category includes charges for installation of the equipment that services a number of plant systems and cannot be charged to any one specific system. These include the following:

Misc. equipment installation-SCE (est. by author) \$236,404
Service and instrument air Installation Piping \& accessories
Equipment cooling water installation Water sampling equipment installation
Auxiliary steam system installation
Nitrogen blanketing system
Foundation for nitrogen subsystem (CP7) \$ 1,139
Foundation for nitrogen skid (CP9) FDCR 146 \$ 2,770
Electrical hookup (CP11) FDCR 241 \$12,919
Total Misc. Equipment Construction Cost \$253,232

Plant-Level Costs--Some of the costs incurred at the plant level are for the program and construction management services and system integration expenses. Costs were incurred by the SFDI, T\&B, DOE and SCE/LADWP.

The SFDI program management consisted of day-to-day management activities, project support, maintainence of implementation plans, STMPO programmatic support, and configuration and data management.

Plant-level engineering support was provided by S-R for the SFDI. Construction management was provided by T\&B for the DOE.

The SCE construction management expenses of Category 2 (capital funds) costs were assumed to be one-third of the total engineering and construction costs. The other two-thirds of the total engineering and construction costs are allocated to the design account.

SCE had expenses in categories other than Category 2. Some of these were for technology transfer Category 5--\$1,205,000; technical support to the DOE Category 6--\$200,000; and plant operating procedures Category $7--\$ 250,000$. These are plant-level expenses, but were not part of the Category 2 costs.

The costs incurred included the following:

Plant-Level Construction Costs (continued)

SCE/LADWP	$\$ 3,316,667$
Total Plant Level Costs	$\$ 13,306,454$

Total plant construction cost $\$ 43,011,283$

Start-up Costs

Start-up Costs

As defined in this report, the start-up cost are those costs involved in start-up that were incurred before the plant construction was complete. A construction completion date of April 12, 1982, is assumed for this report; owner's costs start after that date. Costs for modifying equipment, and adding material, labor or equipment, have been merged into the construction costs. Little detail is available on the start-up cost associated with individual plant systems.

SCE does have some Category 3 (Plant Integration and Start-up) costs that are not a part of the construction costs. These costs should be mentioned, though, for completeness and overall understanding. The Category 3 costs include corporate support-\$1,561,100; engineering and construction direct costs--\$582,500; construction contracts--\$593,000; construction indirects--\$637,712; contingency--\$700,688; and indirects--\$1,065,100. These expenses were incurred after the construction was complete (as defined in this report).

Other costs that could be considered start-up costs are expense items in the DOE Operations budget. These include the Visitor Center operation for 5 years-- $\$ 322,666$; other plant operations for 5 years--\$5,540,754; collector system spares for FY1981 and FY1982--\$125,152 and \$65,000, respectively; receiver system spares for Phase 1 activities, i.e., materials for two spare receiver panels--\$71,090; SFDI spares for Phase 2 activities-- $\$ 1,101,582$; SFDI training for Phase $2--\$ 794,159$; and SFDI Program Management for Phase 2--\$217,828. None of these expenses are included in the construction cost in this report.

The start-up cost for the various plant systems is summarized in Table 10 and shown in more detail as follows:

Table 10: Start-up Cost Summary

Collector System--BCS \$ 416,776
Plant Level Costs
T\&B Start-up Services \$854,975
SFDI Start-up Activities \$3,112,617
Total Start-up Costs $\$ 4,384,368$

```
Start-up Costs
```

Land
Structures and Improvements
Collector System--BCS
Receiver System
Thermal Storage System
Thermal Transport System
Turbine-Generator Plant
Electrical System
Miscellaneous Equipment System
Plant Level Costs
T\&B Start-up
Auxiliary Boiler Chemical Clean Equipment Rental
Miscellaneous Material Labor
Trave1, Subsistence
Fringe Benefits
\$
\$--*
\$ 416,776
\$--
\$--
\$--
\$--
\$--
\$--
\$ 854,975
\$ 117,466
\$ 102,006
\$ 57,446
31,399
365,740
70,350
110,568

SFDI Site Activities
$\$ 3,112,617$
Checkout, Start-up, Field Liaison\$1,684,264
Start-up (Dec. 1981-April 1982) \$1,428,353
Total Start-up Costs $\$ 4,384,368$

[^7]

Plant System Cost Breakdown Structure

The plant system cost breakdown structure for the pilot plant includes a number of major systems, each of which can include subsystems. The major systems are:

- Land
- Structures and improvements
- Collector
- Receiver
- Thermal transport
- Thermal storage
- Turbine-generator plant
- Electrical plant
- Miscellaneous equipment
- Plant level costs

Subsystems include the beam characterization subsystem and special heliostat instrumentation and meteorological measurements subsystem as part of the collector system, and the master control subsystem as part of the electrical plant system.

The pilot plant system cost breakdown structure accounts (Figure 12) and the summary costs associated with each account, with subtotals for the solar plant portion and conventional plant portions, are shown in Table 11.

Figure 12: Capital Cost--Breakdown by Plant System

TABLE 11: PLANT SYSTEM COST SUMMARY
Solar Plant Portion--
Collector System
Receiver System
Thermal Storage System
Thermal Transport System
Master Control Subsystem
Plant-Level Costs
Solar Plant Portion Subtotal
Conventional Plant Portion--
Conventional Plant Portion--
Land
Land
Turbine-Generator Plant System
Turbine-Generator Plant System
Electrical Plant System
Electrical Plant System
Structures and Improvements
Structures and Improvements
Miscellaneous Equipment
Miscellaneous Equipment
Plant Level Cost
Plant Level Cost
Conventional Plant Portion Subtotal
Conventional Plant Portion Subtotal
Round-up, Miscellaneous Round-off
Round-up, Miscellaneous Round-off
Total Capital Costs
Total Capital Costs
\$ 10,140,783
\$ 10,140,783
\$ 2,829,554
\$ 2,829,554
4,686,315
4,686,315
989,134
989,134
3,316,667
3,316,667
\$ 21,964,793
\$ 21,964,793
\$ 36,612
\$ 36,612
\$141,200,000
\$141,200,000

The plant system cost breakdown structure is compatible with the Polydyne Cost Data Management System (CDMS). The breakdown structure is adaptable to other solar technologies as well as nonsolar technologies by conforming to the basic FERC accounts shown below:

```
XO. Land
X1. Structures and Improvements
X2. Collector Field, Receiver, Media Transport, Storage,
    Supplemental Fuel and Steam Generation
X3. Turbine Plant Equipment and Power Conditioning
X4. Electrical Systems
X5. Miscellaneous Plant Equipment
```

The philosophy used for the pilot plant cost analysis is to charge a system with any and all costs, even if estimated, so that if a system were deleted (e.g., thermal storage) then other categories would not need to be adjusted to determine the reduction in cost. This philosophy is used where possible to identify and separate the costs by system. System costs can include their share of land (e.g., for heliostats), buildings, wiring, HVAC,
foundations, controls, and instrumentation where the costs are separable. The main categories $\times 0, \times 1, \times 3, \times 4$, and $\times 5$ would include costs for nonsolar systems and nonseparable solar system costs.

The costs associated with each plant system are segregated as best possible. Many of the costs are hidden in total contract costs and cannot be determined or easily estimated. However, the costs if known are allocated to specific systems; if the costs are not known, they are first estimated, and then allocated to specific systems.

This section of the report essentially summarizes the costs previously discussed in the areas of design, factory, construction and start-up costs.

Land
The total land costs are based on an SCE-estimated value of the 130 acres used for the plant site. The value of $\$ 250,000$ is not part of the construction budget.

Land

Total Land Account Cost
\$ $\quad 0$

Structures and Improvements
The structures and improvements cost account includes:

Collector System

The collector system includes all items that could be eliminated if heliostats were not the heat source for the receiver system. For example, if heliostats were not present, then the BCS would not be required, nor the heliostat instrumentation nor most of the meteorological equipment. The heliostat costs are for 1818 pilot plant heliostats, 2 spares including foundations but excluding underground wiring at the site, 2 heliostats at the CRTF, and 93 extra mirror modules.

The collector system costs include:

R\&D--Heliostats
Design

Heliostat Field

Heliostats
BCS
SHIMMS
Hel. Instr.
Metro. (\$ 189,329)
Factory
Heliostat Field Heliostats

MMC $(\$ 30,154,538)$
Glass (\$ 823,818)
BCS
MDAC (\$ 195,841)
LLP (\$ 220,794)
SHIMMS
MDAC (\$ 299,644)
Helio \$ 102,831
Metro \$ 196,813
LLP (\$ 17,029)
Construction
Heliostat Field
CP 1 (\$ 440,722)
SCE (\$ 35,976)
CP 6 (\$ 1,193,945)
CP 11 (\$ 25,088)
CP 11A(\$ 2,005,452)
Grndng(\$ 63,556)
Heliostats
BCS
CP 6 (\$ 15,097)
CP 9 (\$ 148,649)
CP 11 (\$ 8,629)
CP 12 (\$ 10,429)
SHIMMS
CP 5 (\$ 73,000)
CP 6 (\$ 39,691)
CP 11 ($\$ 612,086$)
CP 11A(\$ 73,844)
\$ 2,198,071
\$ 4,868,145
\$ 4,581,943
$\$ 32,400,198$
\$ 688,534
$\$ 30,978,356$
\$ 416,635
$\$ 316,673$
$\$ 6,944,235$
$\$ 3,764,739$
\$ 182,804
\$ 798,621

Collector System Cost (continued)

Start-up		$\$ 416,776$
Heliostats	$\$$	
BCS--MDAC	$\$ 416,776$	
Total Collector System Cost	$\$ 49,211,297$	

The collector system can also be listed by the major components of heliostats, BCS, and SHIMMS. These components would be:

```
Heliostat Field $4,707,199
Heliostats
BCS
SHIMMS
$41,539,054
$ 1,566,643
$ 1,398,401
```

The total cost for the collector system, including all of the above accounts, is $\$ 27,069$ per heligstat. Based on a reflective area of $39.3 \mathrm{~m}^{2}$, the cost is $\$ 689 / \mathrm{m}^{2}$. Excluding the BCS and SHIMMS costs would lower the heliostat cost to $\$ 647 / \mathrm{m}^{2}$. The pilot plant collector system cost, without the R\&D, design, or SHIMMS factory and construction costs, would be $\$ 541 / \mathrm{m}^{2}$.

Receiver System

The receiver system (Figure 13) includes the receiver steam generator, the supporting tower and foundation, and the controls and instrumentation directly associated with the receiver operation and performance evaluation.

The receiver system account costs include:

R\&D		\$ 0
Design		\$ 3,727,093
Factory		\$13,779,978
Rocketdyne	\$13,014,840	
LLP	\$ 331,805	
SDPC	\$ 433,333	
Construction		\$ 5,063,516
CP 5	\$ 35,870	
CP 5A	\$ 1,715,000	
CP 7	\$ 1,025	
CP 7A	\$ 195,731	
CP 9	\$ 1,730,280	
CP 11	\$ 1,139,524	
CP 11A	\$ 61,800	
CP 12	\$ 184,286	
Start-up		\$--
Total Receiver System Cost		\$22,570,587

The receiver system account can also be broken down into subaccounts of the tower and foundation, and the receiver. These accounts would be $\$ 2,091,183$ for the tower and the balance of $\$ 20,479,404$ for the receiver steam generator.

The receiver (Figure 13), an external cylindrical design with an area of $302 \mathrm{~m}^{2}$, has an nominal rating of 43.4 MWt . If the receiver areal efficiency is defined as the receiver nominal thermal rating divided by the surface area, then the pilot plant receiver areal efficiency is about $0.14 \mathrm{MWt} / \mathrm{m}^{2}$. Even though the tubes can absorb as much as $0.35 \mathrm{MWt} / \mathrm{m}^{2}$, the nominal absorption is about half that value.

The pilot plant receiver system cost is $\$ 74,737 / \mathrm{m}^{2}$ of surface area.

Figure 13: Receiver

Thermal Transport System

The thermal transport system consists of vertical piping and horizontal piping from the receiver feedwater pump to the receiver, and from the receiver to the turbine and condenser. The pilot plant horizontal piping is not very long, since most of the equipment that is connected together is contained in the rather compact core area.

Some solar thermal central receiver designs, as well as other technology designs, can vary considerably in the length and size of thermal transport piping. In order to differentiate these costs from the receiver costs, the thermal transport account should be stated separately. The feedwater pumps (receiver and thermal storage) are also included.

The thermal transport system account costs include:

R\&D
Design
Factory
LLP
SCE
Construction
SCE
CP 7
CP 9
CP 10A
CP 11
CP 12
Start-up
Total Thermal Transport System Cost
\$ 0
\$ 2,401,128
\$ 2,402,786
\$ 1,153,710
\$1,249,076
\$ 853,754
60,967
$1,572,844$
45,578
108,127
72,249
\$--
\$ 2,713,520
$\$ 7,517,434$

Thermal Storage System

The thermal storage system contains all items that would be unnecessary if storage of thermal energy were not used.

The costs of the thermal storage system are:

The pilot plant thermal storage cost is roughly $\$ 82 / \mathrm{kWhr}$-th.

Turbine-Generator Plant System

The turbine-generator plant system includes equipment such as the turbine-generator and all its associated equipment; condenser with vacuum pumps; circulating water system including a three-cell cooling tower and its water treatment system; electrical system; and instrumentation and controls. Major pieces of equipment come from factories to the site for assembly, erection, and installation. Also included in many of the areas are piping, valves, insulation, and foundations. Instrumentation includes 691 channels.

The turbine-generator plant system includes costs as follows:

Electrical Plant System

The electrical plant system consists of the electrical components that are general to the overall plant or to many systems of the plant. Included are main transformers and switchyard, master control, and instrumentation and controls that are not a part of a specific system.

The master control subsystem includes computers and associated equipment to control and assess the plant operation. Each system can be charged with the necessary instrumentation and valves required to respond to the master control subsystem, but the equipment, buildings, and wiring needed, even if specific systems are removed, belongs to the master control subsystem. The pilot plant also provides for recording data that assist in evaluating this first plant.

The electrical system account costs are:

R\&D		\$ 0
Design		\$7,096,222
Master Control--MDAC	\$ 6,354,544	
Balance--SCE	\$ 741,678	
Factory		\$ 2,638,404
Master Control--MDAC	\$ 2,079,637	
Balance--SCE	\$ 558,767	
Construction		\$ 1,620,862
Master Control		
CP 11	\$ 91,753	
Batance--SCE		
SCE	\$ 548,841	
CP 7	\$ 132,134	
CP 11	\$ 848,134	
Start-up		\$--
Master Control Balance		
Total Electrical System Cost		\$11,355,488

Miscellaneous Plant Equipment
The miscellaneous plant equipment account consists of supply systems and equipment that service several plant systems. These are the nitrogen supply; auxiliary steam supply; equipment cooling water supply; service and instrument air supply systems; and the water sampling and chemical analysis equipment.

The miscellaneous plant equipment account had the following charges:

R\&D			$\$$	0
Design--SCE			$\$$	382,959
Factory	$\$$	352,709		352,943
\quad SCE	$\$$	234		
LLP	$\$$	236,404	$\$$	253,232
Construction	$\$$	1,139		
SCE	$\$$	2,770		
CP 7	$\$$	12,919		
CP 9			$\$-$	
CP 11				
Start-up		$\$ \mathbf{9 8 9 , 1 3 4}$		
\quad Total Miscellaneous Plant				

Plant Level

The plant-level cost consists of charges that pertain to the entire plant or that cannot be specifically designated to particular plant systems.

The plant-level costs were:

R\&D
Design--SFDI System Integration Factory
Construction
Construction Package Support --SFDI
Program Management
--solar only $\$ 4,602,842$
Construction Management--
T\&B- solar (\$5,178,266)
SCE (\$ 3,316,667)
Start-up
SFDI
T\&B
Total Plant-Level Cost
$\$ 3,112,617$
$\$ \quad 854,975$
$\$ 3,967,592$
$\$ 8,494,933$
\$ 0
$\$ 4,241,322$
$\$ 13,306,454$
\$ 208,679
$\underline{ }$
$\$ 21,515,368$

Round-up, Round-off
$\$ \quad 36,612$
Total Cost by Plant System
$\$ 141,200,000$

Elements of Work Breakdown Structure

Another way to present construction data is in categories of the type of work performed. This type of breakdown may represent the actual way the contract was let or better allow comparisons to be made for similar items such as:

- Sitework/earthwork
- Concrete work
- Metal work
- Architectural work
- Process equipment
- Mechanical/piping work
- Electrical work
- Indirect Costs

Examples of the elements of work that apply to solar thermal central receivers are shown below. The construction packages (CP) used in the pilot plant are noted; more details are included in the Appendices.

Figure 14: Capital Cost--Breakdown by Elements of Work

The plant costs arranged by elements of work are summarized in Table 12 and shown in more detail below.

TABLE 12: ELEMENTS OF WORK COST SUMMARY

Sitework/Earthwork
Concrete Work
Metal Work
Architectural Work
Process Equipment
Mechanical/Piping Work
Electrical Work
Indirects
Round-up, Round-off
Total Plant Costs
$\$ 1,272,344$
\$ 3,417,007
$\$ 4,641,180$
\$ 1,703,718
\$ 55,454,738
\$ 14,199,637
\$ 9,528,456
\$ 50,946, 303
\$ 36,617
\$141,200,000

The plant costs presented by the elements of work category breakdown are:

Sitework/earthwork--the costs are both for the heliostat field and the overall plant.
CP1
$\$ 1,093,203$
SCE

$$
\begin{array}{r}
\$ \quad 179,141
\end{array}
$$

$\$ 1,272,344$

Concrete Work--the costs are mostly for the heliostat foundations (CP6) and the thermal storage system foundations (CP7).

CP6	$\$$	$1,248,733$
CP7	$\$$	$1,294,305$
CP7A	$\$$	200,778
SCE Civil/Underground	$\$$	332,597
SCE Turbine/Pedestal	$\$$	340,594

$\$ 3,417,007$

Elements-of-work (continued)

Metal Work--the costs are mainly for storage tanks (CP10 \& $C P 10 A)$ and the receiver tower (CP5A).

CP10	$\$ 1,881,848$	
CP10A	$\$$	110,445
CP5	$\$$	552,123
CP5A	$\$$	$1,715,000$
SCE Cooling Tower Motor		
Control Center Building	$\$$	8,781
SCE Auxiliary Bay	$\$$	207,231
BCS Targets (LLP)	$\$$	165,752

$\$ 4,641,180$

Architectural Work--the major on-site cost is for the control building.

CP3 Warehouse	$\$$	254,005
CP4 Visitor Center	$\$$	343,403
Other Visitor Center	$\$$	65,000
SCE Control Building	$\$$	857,322
SCE Rest Rooms	$\$$	113,303
SCE Miscellaneous	$\$$	70,685

$$
\$ 1,703,718
$$

Process Equipment--the largest cost items are for the 1818 heliostats and the receiver.

Heliostats	30,978,356
SFDI BCS	612,617
SFDI SHIMMS	\$ 299,644
Receiver + 1/3 SDPC	\$ 13,448,173
Thermal Storage Heat Exchanger $+1 / 3$ SDPC	\$ 4,519,846
SCE Turbine-Generator	
1/3 SDPC	\$ 3,176,649
SCE Stuctures \& Improvements	\$ 24,707.
SCE Thermal Transport	\$ 1,041,845
SCE Miscellaneous Equipment	\$ 352,709
SCE Electrical	\$ 554,683

$\$ 55,454,738$

Elements-of-work (continued)
Mechanical/Piping/Insulation-the costs include the heliostat installation (MMC) and piping for the receiver, thermal transport, and thermal storage systems (CP9) and (LLP).

CP9	$\$$	$6,637,524$
CP12 Insulation	$\$$	659,741
MMC Installation	$\$$	$2,198,071$
SCE Turbine-Generator	$\$$	$2,137,314$
SCE Thermal Transport	$\$$	853,754
SCE Miscellaneous Equipment	$\$$	236,404
LLP (Appendix H)	$\$ 1,478,862$	

$\$ 14,199,637$

Electrical Work (Appendix I.1)--the costs are mostly for the master control (CP11), receiver electrical (CP11) and collector field wiring (CP11A).

CP11	$\$$	$3,569,272$
CP11A	$\$$	$2,141,096$
Grounding	63,556	
SCE Electrical \& Controls	$\$$	548,841
Master Control	$\$$	$2,079,637$
LLP (Appendices I. 2 \& I.3)	$\$ 1,126,054$	

$\$ 9,528,456$

Indirects--much of the cost was for the pilot plant design.

```
R&D $ 4,868,145
Design $ 28,804,112
Construction Management $ 9,349,908
Construction Package Support $ 208,679
SFDI
Program Management $ 4,602,842
Start-up $ 3,112,617
```

$\$ 50,946,303$

Round-up, Round-off
$\$ \quad 36,617$
Total Plant Cost by Elements of Work.
$\$ 141,200,000$

$$
\begin{aligned}
& \text { nen } \\
& \hline
\end{aligned}
$$

Recurring and Non-Recurring Breakdown Structure
The non-recurring costs at the pilot plant include charges for basic research and development, special pilot plant solar system instrumentation, data-recording systems, meteorological measurement systems, excessive factory and tooling amortization, unique engineering design, and extra program and construction management. The non-recurting costs would not be expected to be incurred in future plants*. The recurring costs include charges for off-the-shelf equipment that could be purchased from several sources and installed using standard practices.

A number of assumptions were made in order to assign the various cost values to recurring and non-recurring accounts. If another identical 10 MWe plant were built, using the pilot plant technology and experience, then the recurring accounts in this report would be required. The non-recurring account contains charges that may not be required or desired for another 10 MWe plant, essentially identical to the pilot plant.

The assumptions on which this breakdown is based are:

1. All design costs would be 85% non-recurring, and only 15\% of these costs would be repeated;
2. None of the SHIMMS costs, including design, would be repeated;
3. The master control factory and construction costs would be half OCS and half DAS; the DAS would be non-recurring;
4. Construction management costs would be reduced by 40%;
5. Start-up costs and program management costs would be 85% non-recurring due to the developmental nature of the pilot plant; and
6. Manufacturing planning activities and tooling design and fabrication would be 85% non-recurring.

Separation of the total capital costs into non-recurring and recurring costs follows:

	Non-Recurring	Recurring
Research and Development	\$ 4,668,145	\$ 200,000
Design--repeat 15% of design (except Visitors Center)	\$24,465,336	\$ 4,163,776

[^8]Non-Recurring and Recurring Cost (continued)

	Non-Recurring	Recurring
Pilot Plant Features		
Visitors Center w/ design	\$ 583,403	\$ 0
SHIMMS Factory \& Construction	\$ 1,115,295	\$ 0
Data Acquisition System	\$ 1,085,695	\$ 0
Factory Planning, Tooling	\$ 4,221,379	\$ 744,949
Other Factory, Construction	\$	\$82,224,589
Start-up	\$ 3,726,713	\$ 657,655
Program Management	\$ 3,912,416	\$ 690,426
Construction Management	\$ 3,397,973	\$ 5,305,639
	\$47,176,355	\$93,987,034
Round-up, Miscellaneous Round-off		\$ 36,611
Total Capital Costs		\$141,200,000

The division of the pilot plant costs into recurring and non-recurring costs based on the plant systems is summarized on Table 13 and shown in more detail as follows:

TABLE 13: NON-RECURRING/RECURRING COST SUMMARY

	Non-Recurring	Recurring
Land	\$ 0	\$ 0
Structures and Improvements	\$ 1,131,878	\$ 3,554,437
Collector System	\$11,756,630	\$ 37,454,668
Receiver System	\$ 5,707,596	\$ 16,862,991
Thermal Transport System	\$ 2,040,959	\$ 5,476,475
Thermal Storage System	\$ 1,777,236	\$ 11,399,746
Turbine-Generator Plant	\$ 2,942,967	\$ 7,197,816
Electrical System	\$ 7,205,608	\$ 4,149,880
Miscellaneous Equipment	\$ 325,515	\$ 663,619
Plant Level	\$14,287,966	\$ 7,227,402
	\$47,176,355	\$ 93,987,034
Round-up, Miscellaneous Round-off		\$ 36,611
Total Plant Cost		\$141,200,000

	Non-Recurring	Recurring	Total	
Land	\$ 0	\$ 0	\$	0
Structures and Improvements				
Design	\$ 548,475	\$ 96,790	\$	645,265
Visitor Center w/design	\$ 583,403		\$	583,403
Factory \& Construction		\$ 3,457,647	\$	3,457,647
Collector System				
Design	\$ 215,837	\$ 38,089	+	253,926
Factory		\$ 688,534	\$	688,534
Construction		\$ 3,764,739	\$	3,764,739
Heliostats				
R\&D	\$ 4,668,145	\$ 200,000	\$	4,868,145
Design	\$ 2,970,310	\$ 524,172	\$	3,494,482
Factory				
Tooling	\$ 1,681,812	\$ 296,790	\$	1,978,602
Other		\$29,687,755	\$	29,687,755
Construction		\$ 2,198,810	\$	2,198,810
BCS				
Design	\$ 467,864	\$ 82,564	\$	550,428
Factory \& Construction		\$ 599,439	\$	599,439
Start-up	\$ 354,260	\$ 62,516	\$	416,776
SHIMMS				
Design	\$ 283,107		\$	283,107
Factory \& Construction	\$ 1,115,295		\$	1,115,295
Receiver System				
Design	\$ 3,168,029	\$ 559,064	\$	3,727,093
Factory and construction Mfg. Planning, Tooling	\$ 2,539,567	$\$ \quad 448,159$	\$	$2,987,726$
Other Factory, Constr.		\$15,855,768	\$	15,855,768
Thermal Transport System				
Design Factory and construction	\$ 2,040,959	\$ 360,169	\$	2,401,128
Factory and construction		\$ 5,116,306	\$	5,116,306
Thermal Storage System				
Design	\$ 1,777,236	\$ 313,630	\$	2,090,866
Factory and construction		\$11,086,116	\$	11,086,116
Turbine Generator Plant System				
Design	\$ 2,942,967	\$ 519,347	\$	3,462,314
Factory and construction		\$ 6,678,469	\$	6,678,469
Electrical Plant System Master Control				
Design				
Hardware \& Software	\$ 4,901,993	\$ 865,057	\$	5,767,050
System Integration Lab	\$ 587,494		\$	587,494
Factory and Construction			\$	2,171,389
OCS		\$ 1,085,695		
DAS	\$ 1,085,695			

Non-Recurring and Recurring Costs (continued)

	Non-Recurring	Recurring	Total	
Balance of Electrical				
Design	\$ 630,426	\$ 111,252	\$	741,678
Factory and Construction		\$ 2,087,876	\$	2,087,876
Miscellaneous Equipment				
Design	\$ 325,515	\$ 57,444	\$	382,959
Factory and Construction		\$ 606,175	\$	606,175
Plant Level				
Design (solar)	\$ 3,605,124	\$ 636,198	\$	4,241,322
Program Management (solar)	\$ 3,912,416	\$ 690,426	\$	4,602,842
Construction Management	\$ 3,397,973	\$ 5,096,960	\$	8,494,933
Construction Pkg. Support		\$ 208,679	\$	208,679
Start-up	\$ 3,372,453	\$ 595,139	\$	3,967,592
Round-up			\$	36,611
Total	\$47,176,355	\$93,987,034		1,200,000

NOISSnJSIO

Discussion of Pilot Plant Costs

Correlation of Cost Breakdown Structure Data

The pilot plant total capital requirements itemized by several cost breakdown structures can be correlated to each other. This correlation is useful to show the interaction and the assignment of costs for specific areas. The cost breakdown detail is not known well enough in some areas (e.g., start-up costs for each plant system) to have entries, even though costs were incurred. The lack of this detail is not obvious in the previous sections or pie-charts, but surfaces when the cost data are correlated.

One correlation is displayed in Tables 14 and 15. These tables present the costs that are available with the project category and the elements of work shown as a fuction of plant system, respectively. In some cases, the zero represents a zero cost for that activity, while in others it indicates a lack of detail available to break down a larger cost to individual areas.

Conclusions

Most costs--and certainly the major ones--are included, even though a number of costs are omitted from this cost data set. The breakdown structures and the presentation of typical items employed in a solar thermal central receiver power plant should be of value to future builders, investors, and users of solar thermal central receiver plants.

The pilot plant costs include some extra charges because of the "pilot" and experimental nature of the plant. R\&D and engineering design costs have been expended for the new aspect of the plant. Instrumentation costs were incurred for monitoring and recording the operation and performance of the plant. Low volumes of potentially mass-producible items, such as heliostats, and unique first-time designs of other major items, such as the receiver and thermal storage tank, also led to high costs.

Extra program and construction management payments were required as a result of the many construction packages--rather than one or a few contracts. The many small procurements also added to costs, due to the escalation of the cost of materials and labor with time. Government procurement regulations, such as the Davis Bacon Act which determined the construction craft labor rates, resulted in added construction labor wages that amounted to an estimated $\$ 1$ million cost.

TABLE 14
CAPITAL COST-PPOEECT CATEGRY vS PLANT SVSTEM

PLAN SISTEMS	R8D	DESIEN	FACTRRY	CONSTRET	START-UP	SUBTOTA	TOTAL
Structures/Inproverents	0	820,265	110,003	3,756,047	-		4,686,315
Collector System							49,211,297
Field	0	253,926	688,534	3,764,738	-	4,707,198	
Heliostats	4,868,145	3,494,482	30,978,356	2,198,071	-	41,539,054	
BCS	0	550,428	416,635	182,004	416,776	1,566,643	
SHIMS	0	283,107	316,673	798,622	-	1,398,402	
Receiver System							22,570,587
Preciver	0	3,777,003	13,779,978	3,115,890	-	20,62,961	
Tower	0	0	-	1,947,626	-	1,977,626	
Themal Storage System	0	2,00,866	4,712,618	6,373,499	-		13,176,983
Thermal Transport System	0	2,401,128	2,40,786	2,73,520	-		7,517,434
Turbine-Generator Plart	0	3,462,314	3,698,550	2,979,919	-		10,140,783
Electrical System							11,355,487
Master Control	0	6,354,544	2,079,636	91,753	-	8,525,933	
Balance	0	741,678	558,767	1,529,109	-	2,829,554	
Miscellaneous Equiprent	0	382,59	352,943	253,232	-		989,134
Plant Level	0	4,241,322	0	13,306,454	3,967,592		21,515,368
Total Cost	4,868,145	28,004,112	60,05,479	43,011,284	4,384,368		141,163,388

- Specific cost unkown, but included in total cost

TABLE 15
CAPITAL OST-ELEMENIS of WORK vS PLANT SYSTEM

PLANT SYSTEM	EARTHMORK	ONCRETE	METAL	APCHITECT	EMIRMENT	MECANICA	EECTRICAL	INDIRECTS	SUBTOTAL	TOTAL
Structures/Impruit.	795,646	194,989	133,309	1,703,718	24,700	889,469	124,210	820,265		4,686,313
Collector Systam										49,211,295
Field	476,698	1,193,945	0	0	-	0	2,782,629	253,926	4,707,198	
Heliostats	0	0	0	0	30,978,356	2,198,071	0	8,362,627	41,539,064	
BCS	0	15,097	165,752	0	612,617	159,078	63,670	550,428	1,566,642	
SHIMS	0	39,691	73,000	-	299,644	0	70,959	283,107	1,398,401.	
Receiver System										22,570,587
Receiver	0	0	0	-	13,448,173	2,122,953	1,324,742	3,727,093	20,622,961	
Tower	-	196,756	1,750,870	0	-	-	-	-	1,947,626	
Themal Storage	-	909,098	2,256,659	-	4,519,846	2,740,341	660,172	2,000,866		13,176,982
Themal Transport	-	60,907	252,809	-	1,041,845	3,699,884	120,800	2,401,128		7,517,433
T-G Plant	-	673,191	8,781	-	3,62,158	2,210,667	163,672	3,462,314		10,140,783
Electrical System										11,35,488
Master Control	0	0	0	-	0	0	2,171,390	6,354,544	8,52,934	
Balance	-	132,134	0	-	554,683	0	1,401,059	741,678	2,829,554	
Misc. Equipment	-	1,139	0	-	352,709	239,174	13,153	382,959		989,134
Plant Level	0	0	0	0	0	0	0	21,515,368		21,515,368
Total Costs	1,272,344	3,417,007	4,641,180	1,703,718	55,454,738	14,199,637	9,528,456	50,946,303		141,163,383

- Specific cost uninown, but included in total cost

There are also costs that are not included in this cost data set that must be considered in a future plant. Some items were not required for the pilot plant since the facility was adjacent to an existing power plant--SCE's Cool Water Power Plant. The cost of land was not included (the pilot plant land was already owned by SCE). The cost of the administration building, the evaporation pond, and make-up water wells and pumps were not part of the construction funds, but would be required for future plants.

Other costs were not incurred as capital costs, since the anticipated plant life (5 years) was not as long as for normal power plants. Some of the equipment was rented and other equipment was not procured. The rental items include the nitrogen supply system, and the make-up demineralizer. Power production plants would employ redundant equipment for certain items that are not included in the pilot plant. The possibly shorter-than-normal plant life and the development and test nature of the plant, as well as budget limitations, led to few redundant items being included in the pilot plant.

A full complement of spare parts was not charged to the pilot plant, but should be for future plants. Maintenance equipment such as the heliostat mirror washing truck(s) should also be charged to capital equipment, but were not available when the construction was complete. Replacement of plant items before the end of the plant life should be charged to 08M.

Costs after start-up are not included, even though money had to be spent to complete systems work (control system automation and thermal storage start-up, for instance).

The data in this report can be used to understand a total cost data set. Some of the data, such as the conventional portion of plant, may be representative of any future plant; the solar portion, which contains extraordinary costs, may be useful, but is not directly applicable nor scaleable to future plants. The costs for this pilot plant cannot be scaled directly to arrive at the cost of a 100 MWe privately constructed plant for several reasons: 1) the pilot plant is a scale model of a 100 MWe plant and was not optimized at the 10 MWe size; 2) the indirect costs are representative of a developmental plant; 3) the high collector and receiver costs are a function of the small production quantity and early design; and 4) the interest during construction is not typical due to the government financing. A future report will examine the usefullness of the pilot plant cost data set to different-sized plants and to other solar thermal technologies.

```
APPENDICES
```

A
A. 1
A. 2
A. 3
A. 4
A. 5
A. 6
A. 7
A. 8
A. 9
A. 10
A. 11
A. 12
A. 13
A. 14

B

C

D
E
E1
E2
E3

F
G
G1
G2
G3

H

I
I1
12
I3

CONSTRUCTION PACKAGE DETAILS CONSTRUCTION PACKAGE 1 PRELIMINARY EARTHWORK CONSTRUCTION PACKAGE 3 WAREHOUSE CONSTRUCTION PACKAGE 4 VISITORS CENTER CONSTRUCTION PACKAGE 5 STRUCTURAL STEEL AND BUILDINGS CONSTRUCTION PACKAGE 5A RECEIVER TOWER STRUCTURAL STEEL CONSTRUCTION PACKAGE 6 COLLECTOR FIELD FOUNDATION CONSTRUCTION PACKAGE 7 PLANT SUPPORT SYSTEM AND THERMAL STORAGE SYSTEM FOUNDATIONS
CONSTRUCTION PACKAGE 7A RECEIVER TOWER FOUNDATION CONSTRUCTION PACKAGE 9 PIPING AND MECHANICAL EQUIPMENT CONSTRUCTION PACKAGE 10 FIELD ERECTED TANKS CONSTRUCTION PACKAGE 10A PLANT SUPPORT SYSTEM TANKS CONSTRUCTION PACKAGE 11 \& 11B BALANCE OF ELECTRICAL CONSTRUCTION PACKAGE 11A COLLECTOR FIELD ELECTRICAL CONSTRUCTION PACKAGE 12 INSULATION AND LAGGING

LONG-LEAD PROCUREMENTS DETAILS
SOUTHERN CALIFORNIA EDISON PROCUREMENTS
SOUTHERN CALIFORNIA EDISON CONSTRUCTION PACKAGES
HELIOSTAT FABRICATION DETAILS FORD MOTOR COMPANY GLASS PURCHASE INTERNATIONAL ENERGY AGENCY HELIOSTAT COSTS MARTIN MARIETTA CORPORATION PILOT PLANT \& INTERNATIONAL ENERGY AGENCY HELIOSTAT COSTS

BEAM CHARACTERIZATION SYSTEM DETAILS
CONTROL AND DATA ACQUISITION SYSTEM DETAILS OPERATIONAL CONTROL SYSTEM DATA ACQUISITION SYSTEM HELIOSTAT CONTROL SYSTEM

PIPING AND VALVE DETAILS
ELECTRICAL DETAILS OVERALL LONG-LEAD PROCUREMENT CABLES--POWER AND CONTROL LONG-LEAD PROCUREMENT CABLES--INSTRUMENTATION

APPENDIX A.1--CONSTRUCTION PACKAGE 1: PRELIMINARY EARTHWORK

CP 1 Preliminary Earthwork

(\$1,093,203)
J. R. Pope, Inc.

(tructures \& Improvements:		Charges	Charges w/ Indirects	
Structures \& Improvements:Offsite				
Fine grade roads \& parking area	\$	12,902	\$	14,213
Place aggregate base material	\$	275,203	\$	303,170
Excavate, cap \& mark well \#1	\$	14,775	\$	16,276
Excavate, cap \& mark well \#2	\$	937	\$	1,032
Move 36 poles for parking lot stop logs	\$	2,300	\$	2,534
Culverts \& riprap	\$	30,486	\$	33,584
Concrete lined ditch	\$	55,004	\$	60,594
Onsite				
Excavate, compact office \& cooling tower area	\$	31,079	\$	34,237
Clear and grub (40% of total)	\$	40,224	\$	44,312
Strip alfalfa \& corral area (40% of total)	\$	7,293	\$	8,034
Structures \& Improvements Subtotal			\$	517,986
Collector System:				
Grade collector field	\$	328,790	\$	362,202
Clear and grub (60% of total)	\$	60,337	\$	66,469
Strip alfalfa \& corral area (60% of total)	\$	10,939	\$	12,051
Collector System Subtotal			\$	440,722
Receiver System: Excavate, compact receiver tower area	\$	122,090	\$	134,497
Misc. Direct and Distributed Indirects General Plant Area				
Mobilization \$ 50,000				
Engineering \$ 50,845				
	\$	100,845		
Preliminary Earthwork Construction Package Total Cost		,093,203		,093,203

APPENDIX A.2--CONSTRUCTION PACKAGE 3: WAREHOUSE
CP 3 Warehouse
($\$ 254,005$)
Tee Pee Engineering, Inc.
Structures \& Improvements:
Bond \& mobilization

$\$$	15,704
$\$$	11,716
$\$$	7,229
$\$$	39,385
$\$$	15,205
$\$$	11,466
$\$$	17,698
$\$$	7,727
$\$$	2,991
$\$$	87,494
$\$$	25,924
$\$$	1,994
$\$$	4,736
$-\$$	264
$\$$	5,000

Warehouse Construction Package Total Cost $\$ 254,005$

CP 4 Visitor Center
$(\$ 343,403)$
Tee Pee Engineering, Inc.
Structures \& Improvements:

Mobilization	$\$$	14,971
Earthwork	$\$$	18,890
Site electrical	$\$$	22,284
Site water	$\$$	3,834
Septic system	$\$$	20,777
Paving	$\$$	48,422
Sidewalk, picnic, flagpole, signs	$\$$	18,227
Ramps \& landings	4,943	
Modular buildings	$\$$	
Deposit	$\$$	33,955
\quad Shop drawings	$\$$	113,612
Field installation	$\$$	10,924
C/o \#001 dirt \& building modifications	21,873	
C/o \#002 building electrical panels \& drinking		
fountain modifications	$\$$	1,691
Sales tax	$\$$	9,000
Visitor Center Construction Package		
Total Cost	$\$$	343,403

APPENDIX A.4--CONSTRUCTION PACKAGE 5: STRUCTURAL STEEL AND BUILDINGS
Cp 5 Structural Steel and Buildings
$(\$ 552,123)$
Ashby Metal Products
Structures \& Improvements:
Raw/service water pump bldg $702\left(880, \mathrm{ft}^{2}\right)$
\$ 51,684
Secondary fire pump bidg 706 ($280 \mathrm{ft}^{2}$)
Wind bracing for warehouse c/o \#004 FDCR 70 Structures \& Improvements Subtotal
\$ 16,875
$\$ 1,036$
$\$ 69,595$
Collector System:

Towers; 6 wind \& 7 pyronometer c/o \#008 for 4 added metro towers Collector System Subtotal
\$46,000
$\$ 27,000$
$\$ 73,000$
Receiver System:
Receiver tower bldg 201 work
Lv1 1 safety chain c/o \#003 FDCR 72
Lv1 14 safety chain c/o \#003 FDCR 68
Tower drain holes c/o \#004 FDCR 87
Elevator/crane strct. comp c/o \#001 Receiver System Subtotal

Thermal Storage System:
Pipe rack structure bldg 705
Pipe rack stairs/ladder
Railings ($\$ 14,430$); grating $(\$ 69,077)$
\$173,446
\$ 9,347
\$ 83,507
Pipe rack revisions
c/0 \#002
c/0 \#005 including FDCR 231 (\$1205)
c/o \#006 (\$7,466); c/o \#007 (\$1,452)
TSS electrical equipment bldg $712\left(480 \mathrm{ft}^{2}\right)$
TSS remote control bldgs 709 \& 710 ($768 \mathrm{ft}^{2}$)
Cable tray access B709/B712 c/o \#003 FDCR 62
TSU exit ladder c/o \#003 FDCR 60
Thermal Storage System Subtotal
Other Costs:
Credit-eliminate finish painting FDCR 49
Other change orders
Other Costs Subtotal
Structural Steel and Buildings Construction Package Total Cost
\$ 19,497
\$ 4,216
\$ 8,198
\$ 27,454
\$45,987
\$ 620
$\$ 1,819$
$\$ 374,811$

Notes:
Detailing: $\$ 26,000$ ($\$ 9,000$ buildings, $\$ 1,000$ towers, $\$ 16,000$ pipe rack)
Materials: $\$ 374,900$ ($\$ 108,200$ buildings, $\$ 43,400$ towers, $\$ 223,300$ pipe rack) Erection: $\$ 53,400$ ($\$ 24,800$ buildings, $\$ 1,600$ towers, $\$ 27,000$ pipe rack)

APPENDIX A.5--CONSTRUCTION PACKAGE 5A: RECEIVER TOWER STRUCTURAL STEEL

CP 5A Receiver Tower Structural Steel
 ($\$ 1,715,000$)
 Christoff Construction Company

Collector System:
BCS target support structure (level 12 to level 15)
Misc. metro equipment support booms (level 7)
Receiver System:
Receiver tower primary structure bldg 201
(base level to level 15)
Mobilization
Structural steel
Erection \& installation
\$ 108,850
883,395
Revise lower beam supports c/o \#004 FDCR 27
332,614
onnel hoist HS701 (base to level 13)
Material
80,083
Erection \$ 39,964
Recv. unit core support str. bldg 707 (level 15 to top)
Receiver unit maintenance crane
Material
\$ 73,085
Erection
\$ 37,009
Added aircraft/warning lights c/0 \#005
\$ 13,500
Lightning/grounding system (tower \& ground grid)
Receiver tower personnel stair system (base to top leve1)
Other c/o \#001-003; 006-008
$\$ 111,000$
Receiver Tower Structural Steel Construction Package Total Cost \$1,715,000

APPENDIX A.6--CONSTRUCTION PACKAGE 6: COLLECTOR FIELD FOUNDATION
CP 6 Collector Field Foundation
(\$1,248,733)
Modern Alloys, Inc.
Collector System:

Heliostat power center foundations (14 each)
Drilled pier foundations for metro towers
6 wind towers
7 pyronometer towers \$ 7,609
Foundations for 4 metro stations (S, W, N, E)
Foundations for BCS field camera/equipment
(4 stations w/camera \& cooling equipment pad each)
Hail cube foundations 6 each
Electronics Environmental Station (EES)
Misc. concrete (subcontract)
Subtotal miscellaneous foundations

Collector Field Foundation Construction
Package Total Cost
$\$ 1,248,733$
Note:
Includes 47 miscellaneous equipment pads (about 100 yards); 5990 yards of concrete--about 5% was considered waste.

APPENDIX A.7--CONSTRUCTION PACKAGE 7: PLANT SUPPORT SYSTEM AND THERMAL STORAGE SYSTEM FOUNDATIONS

CP 7 PSS and TSS Foundations
(\$1,294,305)
Joseph D. Gee Enterprises

	Charges		Charges w/ Indirects	
Structures and Improvements:				
Raw/Service water \& demineralized water tank foundations			\$	52,113
Grading for tanks	\$	45,000		
Fine grading \$15,000-c/0 \#013 \$14,250	\$	750		
Building foundations				
Raw/Service water pump building 702			\$	44,424
Rebar \$2,700 M; \$1,300 L	\$	4,000		
Concrete \& forming	\$	33,000		
Drain piping \$1,000 M; \$1,000 L	\$	2,000		
Secondary fire pump building 706			\$	59,232
Rebar \$4,000 M; \$1,000 L	\$	5,000		
Concrete \& forming	\$	45,000		
Drain piping \$1,000 M; \$1,000 L	\$	2,000		
Yard drain piping $\$ 20,000 \mathrm{M}$; \$10,000 L	\$	30,000	\$	34,172
Structures \& Improvements Subtotal	\$	136,750	\$	189,942
Receiver System:				
Miscellaneous slabs				
Hoist, stair pad	\$	900		
Receiver System Subtotal	\$	900	\$	1,025
Thermal Transport System:				
Pipe trench				
Covered pipe trench				
Rebar \$8,000 M; \$4,000 L	\$	12,000		
Concrete \& forming	\$	36,000		
Grating	\$	5,523		
Thermal Transport System Subtotal	\$	53,523	\$	60,967

CP 7 PSS and TSS Foundations (continued)

Thermal Storage System:

Pipe rack foundations
Pipe rack foundation - 31 supports

Engineering

Excavation
Rebar \$5,000 M; \$2,000 L
Concrete \& forming
Lower footing c/o \#002 FDCR 20
TSS skid foundations
Heat exchangers
Rebar \$4,000 M; \$2,000 L
Concrete \& forming
Drain piping $\$ 37,000 \mathrm{M} ; \$ 10,000 \mathrm{~L}$
Protexulate insulation $\$ 12,000 \mathrm{M}$; $\$ 3,000 \mathrm{~L}$
Blowdown tank

6,000
40,000
47,000
15,000
500
TSU special foundation/containment basin
(includes embedded TC's)
Octagonal slab 4000 psi structural concrete
Engineering
Excavation
Rebar $\$ 60,000 \mathrm{M}$; $\$ 20,000 \mathrm{~L}$
Concrete \& forming
Circular Slab 400 psi insulating concrete
Foundation instrumentation - thermocouples
Accelerate TC delivery c/o \#004
Ring
Rebar \$3,000 M; \$1,000 L
Concrete \& forming
Slab on grade \& drainage trench
Rebar \$5,000 M; \$1,000 L
Concrete \& forming
c/0 \#008
Copper water stop $\$ 10,000 \mathrm{M}$; $\$ 5,000 \mathrm{~L}$ Retaining walls

Excavation
Rebar $\$ 10,000 \mathrm{M} ; \$ 3,000 \mathrm{~L}$
Concrete \& forming
Handrail \$6,000 M; \$2,000 L
Containment grating
c/o \#007 FDCR 24 \& 28
Reduction of access ramp c/o \#001
Caloria make-up tank \& pump foundation
Rebar \$700 M; \$300 L
Concrete \& forming
\$ 98,294
$\$ 123,590$
\$ 651,494
$\$ 16,000$

$\$$	5,000
$\$$	70,000
$\$$	80,000
$\$$	150,000
$\$$	40,000
$\$$	10,000
$\$$	875

[^9]4,000

6,000
67,000
3,913
15,000
20,000
13,000
50,000
8,000
13,477
1,181
-\$ 1,500
\$ 6,834

CP 7 PSS and TSS Foundations (continued)
Building foundations
TSS control buildings 709 \& 710
Rebar \$2,600 M; \$1,400 L
Concrete \& forming
TSS electrical equipment building 712
Rebar \$1,300 M; \$700 L
Concrete \& forming
Transformer pad
Miscellaneous slabs
Ullage Maintenance Unit slab
Heptane tank slab c/o \#011
Thermal Storage System Subtotal
Electrical System:
Embedded and/or under slab piping/conduit
Electrical duct bank/foundations
Underground conduit $\$ 85,000 \mathrm{M} ; \$ 25,000 \mathrm{~L} \quad \$ 110,000$
Instrumentation and control manholes
Manhole \#4 $(2,500)$; manhole \#5 ($\$ 3,500$)
Electrical System Subtotal
Miscellaneous Equipment:
Nitrogen Slab
Miscellaneous Equipment Subtotal
Other Direct \& Indirect Costs:
General Direct Costs
Anchor Bolts
Embedded Items Material
Other Modifications
Indirect Costs:
Mobilization
Bond \& Insurance
Other Direct \& Indirect Costs Subtotal

Plant Support System and Thermal Storage System Construction Package Total Cost
\$ 7,000
\$ 48,000
\$ 59,137
\$ 5,898
$\$ \quad 38,000$
\$ 158,035
$\$ 1,294,305$ \$1,294,305

CP 7A Receiver Tower Foundation
(\$200,778)
Joseph D. Gee Enterprises
Structures and Improvements:
Added drainage ditches/culverts at North and East gates c/o \#002

Structures and Improvements Subtotal
$\$ \quad 5,047$
\$ 5,047
Receiver System:
Bond \& insurance
\$ 3,031
Engineering
\$ 2,500
Excavation/compaction
Excavation
$\$ 35,000$
Backfill-compaction-finish grading
Modifications c/o \#001
\$ 17,600
8,600
Rebar
Material
Labor
Slab
Walls \& piers
\$ 34,000
$\$ 3,000$
$\$ 3,000$
Concrete \& forming
Slab
Walls
Piers
\$ 56,000
\$ 24,000
Anchor bolts
\$ 2,000
$\$ 7,000$
Receiver System Subtotal
\$195,731
Receiver Tower Foundation Construction Package Total Cost
$\$ 200,778$

APPENDIX A.9--CONSTRUCTION PACKAGE 9 PIPING AND MECHANICAL EQUIPMENT
CP 9 Piping and Mechanical Equipment
$(\$ 6,637,524)$
The Waldinger Corporation

Structures \& Improvements:
Raw/service water pumps
Replace press. control on pump c/o \#026 FDCR 99
Fire protection system installation
Misc. revisions c/o \#051
Primary, secondary and jockey fire pumps-GFE
F. P. hydrants, valves, UG piping

Deliver U/G piping
Install fire and raw water piping
Foam Fire Protection System for TSS area Demineralized make-up water equipment

Subtotal Structures \& Improvements
Collector System:
BCS target installation-GFE
Erect targets
c/o's \#015,016,017
Subtotal Collector System
Receiver System:
Receiver tower electronic equipment rooms
Original contract
c/o \#013
Halon system install--tower electronic rooms
HVAC install electronic rooms - tower c/o \#001
Receiver tower traps \& accessories
\$ 75,100
\$ 714,277
Charges
\qquad
\$ 5,546
\$ 12,331
\$ 81,100
\$ 615,300
Charges w/ Indirects
\$ 52,301
\$ 127,401 \$ 148,649

Receiver unit installation complete-GFE/CFE
(includes loose GFE items such as tanks, valves, and 24 panel modules)

Receive and store 24 panels
Set 24 panels
Lift boiler modules c/o \#041 FDCR 103
Modify module shields c/o \#037 FDCR 255
Hardware for 21 flow meters c/o \#032 FDCR 124
Core piping for 24 panels
Piping changes c/o \#012
Hydrostatic clean/test--core piping
Insulation c/o \#005
$\$ 174,600$
\$ 64,590
\$ 88,100
\$ 12,500
\$ 10,834
\$ 41,600

	57,600
$\$$	172,800
$\$$	7,173
$\$$	6,831
$\$$	22,888
$\$$	140,100
$\$$	127,435
$\$$	18,000
$\$$	224,874

CP 9 Piping and Mechanical Equipment (continued)

72 heat flux transducers c/0 \#020
Perimeter heat shield 15 th level
Receiver core modifications
c/o \#041 FDCR 199
c/o \#041 FDCR 200
c/o \#042 FDCR 201
Receiver core bracing c/o \#027 FDCR 123
Receiver core diagonal conn. c/o \#040 FDCR 190
Receiver core heat shield c/o \#014
Modify heat shield on 16th, 17th c/o \#045 FDCR 283
Receiver flash tank bypass c/o \#045 FDCR 282
Rec. fl. tank drain pump cooling c/o \#045 FDCR 286
Core area overtime c/o \#010
Revisions $1-4$ c/o \#044
Subtotal Receiver System
Thermal Transport System:
Piping installation
Shop fab'd piping (P22, heavy wall, \& Incoloy-fab pipe- $21 / 2 \mathrm{in}$. and larger) GFE

Receive, store GFE pipe, valves, etc.
Modify 4 inch pipe spool c/o \#028 FDCR 186
Install primary tower piping
Install secondary tower piping
Field fab'd piping (2 in. and smaller)
Fab misc. bldg \& trench piping
Install misc. bldg piping
Install trench piping
Deliver carbon steel pipe and valves

Receiver feed pump instin in EPGS area-GFE
Miscellaneous loose equipment installation
Receive, store GFE pumps, equipment
Blowdown tank and condensate pump
Steam to condenser dump equipment-GFE/CFE
0il/water separator equipment installation
Subtotal Thermal Transport System

Hangers and snubbers, inc. misc. steel GFE/CFE
Sort and set primary hangers
Hanger accessories c/o \#028 FDCR 126
\$ 142,800
Adjust arrestors c/o \#028 FDCR 208
\$ 16,222
Control and standard valves-GFE/CFE
In- line instrumentation equipment-GFE/CFE
Hydrostatic cleaning and testing
Tower piping
Overtime c/o \#024
$\begin{array}{lr} & \\ \$ & 20,200 \\ \$ & 7,333 \\ \$ & 45,000\end{array}$
System restoration after steam blows c/o \#025\$45,000
Sort and set primary hangers
\$ 426
\$ 112,500
\$ 169,300
\$ 15,920
\$ 20,000
\$ 4,038
\$ 6,924
22,573
24,525
6,923
99,212
11,989
3,501
4,395
69,799
23,231
\$1,482,955
$\$ 1,730,280$

CP 9 Piping and Mechanical Equipment (continued)
Thermal Storage System:
TSS skid assembly installations-GFE
Heat exchanger skids (charging/extraction)
SA305, SA306, SA307, SA308
SA302,SA303 c/o \#037 FDCR 81
Flash tank drain pump foundation c/o \#026 FDCR 161

$\$$	107,800
$\$$	2,828
$\$$	2,080
$\$$	17,241
$\$$	52,000
$\$$	12,188
$\$$	5,863

UMU skid
Desuperheater skid
TSU tank
TSU pipe and fill with oil
90 day storage of $265,000 \mathrm{gal}$. 0 il $\mathrm{c} / \mathrm{o} \# 004$
$\$ 605,000$
Rail storage of $40,000 \mathrm{gal}$. of excess oil for
7 months c/o \#052
TSU piping mods. c/o \#034 FDCR 89
TSU manifold mods. c/o \#038 FDCR 167
TSU relief valve seat repair c/o \#037 FDCR 210
HVAC Install B709/B710/B712 -TSS area
\$ 26,345
side of SA307,SA308 c/0 \#049 FDCR 279
\$ 17,241
Pump skids (charging/extraction)
Set and pipe
Pump motor mount mods. c/o \#036 FDCR 267
Add grout under pumps c/o \#037 FDCR 115
$\$ 12,188$
\$ 13,275

Halon System Install - B709/B710/B712
9,673
5,800
1,312
66,000
107,000
Field Fab'd Piping (2 in. and smaller)
Fab rack piping
Install rack piping
\$ 250,000
Hydrostatic cleaning and testing
Rack piping
Subtotal Thermal Storage System
$\$ 2,012,005$ \$2,347,564
Miscellaneous Equipment:
Nitrogen supply system equipment
Nitrogen skid foundation c/o \#033 FDCR 146
Subtotal Miscellaneous Equipment
Other Direct Charges \& Indirects:
Overtime $c / 0$ \#002,006,021,025
Contract extension (overhead), c/o \#046,047,048
Mobilize
Other c/o's \& FDCR's
Subtotal Other Direct Charges/Indirects

Total Piping and Mechanical Equipment Construction Package Cost

$$
\begin{array}{lr}
\$ & 2,374 \\
\hline \$ & 2,374 \\
& \\
& \\
\$ & 381,344 \\
\$ & 61,027 \\
\$ & 110,000 \\
\$ & 398,118 \\
\hline & 950,489
\end{array}
$$

$$
\$
$$

$$
2,770
$$

CP 10 Field Erected Tanks
(\$1,881, 848)
Pittsburgh-Des Moines (PDM)
Thermal Storage System:
Thermal Storage Unit (TSU) - Designed by Rocketdyne
Tank structure final design, fabrication and
on-site erection upon foundation (by CP 7)
Engineering ($\$ 16,800$) \& drafting $(\$ 10,200)$
Procure plate material
Fab-bottom, shells
\$ 27,000
c/o \#001 5 vs 7 course shell
Erect-bottom, shells
c/o \#008 FDCR 95 add water drain
c/o \#010 core drilling + credit
Fab-roof
Erect-roof
c/o \#008 FDCR 143 manhole mod.
c/0 \#008 FDCR 153 roof supports mod.
Paint-roof
c/o \#002 foundation access ramp
c/o \#004 insulating concrete curb
85,500
3,623
340,200
1,447
5,256
53,600
112,500
2,288
3,900
7,300
1,500
1,830
Tank insulation \& lagging
Install
c/0 \#008 FDCR 182
c/0 \#009 insulation \& substitution
$\$ 133,400$
1,458
24,108
Provision and installation of sensors, thermocouples, flux gages and strain gages in and on TSU

Install thermocouples
Install strain gages
\$ 35,800
c/0 \#006 FDCR 54 strain gage mod.
66,100
Provide and install j-box for termination of thermocouple wiring
Provide conduit and install (GFE) wire between sensors and j-box
\$ 98,600
Interior tank manifold fab/erect
Fab
\$ 116,000
Install
\$ 46,400
Placement of rock/sand in TSU Rock/sand
c/o \#003 Barstow Sales in lieu of Owl Rock c/o \#007 material segration

399,800
\$ 66,423
Tank testing and interior surface preparation
Miscellaneous mods. c/o \#008
728

Thermal Storage Unit Subtotal
\$1,853,241

CP 10 Field Erected Tanks (continued)
Caloria make-up tank - Designed by Stearns-Roger
Tank structure final design, fab and on-site erection upon foundation (by CP 7) Fab
Erection
c/0 \#004 FDCR 76 vent mod.
$\$ 10,440$
$\$ 16,610$
Tank hydrostatic testing
Caloria Make-up Tank Subtotal

Field Erected Tanks Construction Package Total Cost
$\$ 1,881,848$

CP 10A PSS Tanks
(\$110,445)
Brown Tank \& Steel
Structures \& Improvements:
Raw water tank
Crew mobilization \& material delivery Field erection \& welding Testing \& x-ray Complete job (painting, etc.) Misc. tank access. c/o \#002 FDCR 90

Structures \& Improvements Subtotal \$64,867
Thermal Transport System:
Demineralized water tank (original material cost reduced by $\$ 11,800 \mathrm{c} / 0$ \#001 FDCR 8) Cut \& roll material Fit-up Welding Clean \& x-ray Ship to jobsite Install fittings Complete job (painting, etc.) Misc. tank access. c/0 \#002 FDCR 53
\$ 8,540
\$ 8,540
\$ 8,540
\$ 4,270
\$ 4,270
\$ 4,270
\$ 4,270
\$ 2,878
Thermal Transport System Subtotal \$45,578

Plant Support System Tanks Construction Package Total Cost \$110,445

APPENDIX A.12--CONSTRUCTION PACKAGE 11 \& 11B: BALANCE OF ELECTRICAL

CP $11 \& 118$ Balance of Electrical
(\$3,569,272)
Lord Electric Company, Inc.

Lord Electric Comany,	Charges		Charges w/ Indirects	
Structures \& Improvements: -				
Lighting installation (exterior/interior)				
Procure	\$	45,600		
Install	\$	14,800		
Miscellaneous control equipment installation Buildings \& improvements equipment				
Subtotal Structures \& Improvements	\$	65,946	\$	94,980
Collector System:				
Collector field grounding update c/o \#042 FDCR 274 (separate contract FDCR 284 for hel. grounding)	\$	17,419		
BCS (separate				
BCS equipment installation (sensors, field camera inst'lns) FDCR 226				
BCS cooling move FDCR 207	\$	5,991		
SHIMMS				
Meteorological system procure/install c/o \#009	\$	312,170		
Meteorological system upgrade c/o \#051 FDCR 247	\$	7,000		
Procure cable--heliostat interconnecting cable c/0 \#001 FDCR 33	\$	75,630		
Revision 2-2 c/o \#014	\$	28,454		
RG22 cable c/o \#013 FDCR 129	\$	1,730		
Subtotal Collector System	\$	448,394	\$	645,802
Receiver System:				
Miscellaneous control equipment installation Tower crane, elevator				
Installation c/o \#002	\$	39,995		
Crane hookup overtime c/o \#004	\$	4,469		
Elevator repairs c/o \#006	\$	9,754		
Maintenance crane removal c/o \#035 FDCR 214	\$	45,457		
Raceway, conduit and cable tray inst'in Procure	\$			
Install	\$	430,800		
Cable tray change level $14 \mathrm{c} / 0$ \#021 FDCR 135	\$	1,809		
Cable tray change MCS cab. c/o \#024 FDCR 204	\$	1,153		
Tower conduit mods. c/o \#010 FDCR 92	\$	- 5,061		

CP 11 \& 11B Balance of Electrical (continued)
I \& C wiring distribution/connection/termination Rocketdyne cable change core area FDCR 197 Core area elect restore c/o \#027 \$62,735/4 RB 214 cables replaced c/o \#013 FDCR 144
RB 218 potentiometer c/o \#013 FDCR 166
OT for receiver valve wiring c/o \#029 (9/12 \& 9/13/81)
IR cable purchase c/o \#003 FDCR 86
Cabinet installation remote sta. 1 (GFE)
Overtime in remote stations c/o \#019 \$107,697/4
Revision 3 c/o \#015 Remote Sta Term. $\$ 139,692 / 4$
Heat Tracing
\$ 155,129/3
Procure
96,000
Install
8,000
c/0 \#034 added heat tracing\$ 31,590
c/o \#045 inc. FDCR 290 \$ 19,539
Subtotal Receiver System
Thermal Transport System:
Core area elect restore c/o \#027 \$62,735/4
Miscellaneous control equipment installation
Receiver feed water pump controller c/o \#039
FDCR 278
Heat tracing
Procure
\$ 155,129/3
Install
c/0 \#034 added heat tracing
c/o \#045 inc. FDCR 290
\$ $\quad 31,590$
19,539
Subtotal Thermal Transport System
Thermal Storage System:
MCC B \& C, power panels and TSS 4160V load center A (GFE) inst'In

LCA , mod. FDCR 193
MCC B breaker change FDCR 191
B 712 xsformer relocation c/o \#025 FDCR 100

$\$$	31,200
$\$$	224
$\$$	2,038
$\$$	8,166
$\$$	2,063
$\$$	2,428
$\$$	6,100
$\$$	26,924
$\$$	5,030
$\$$	34,923

CP 11 \& $11 B$ Balance of Electrical (continued)

$$
\begin{array}{clrr}
\text { Cabinet installation remote sta. } 3 \text { (GFE) } & \$ & 4,600 \\
\text { Overtime in remote stations c/o \#019 } \$ 107,697 / 4 & \$ & 26,924 \\
\text { Revision } 3 \mathrm{c} / 0 \text { \#015 Remote Sta Term. } \$ 139,692 / 4 & \$ & 34,923
\end{array}
$$

Miscellaneous control equipment installation TSS equipment

Oxygen analyzer FDCR 151, c/o \#028
c/0 \#047
UMU skid grating FDCR 145
\$ 25,045

Rewire skids FDCR 138
TSS skid mods. c/o \#013 FDCR 93
\$ 182
Revision 5 c/o \#026
Core area elect restore c/o \#027 \$62,735/4
\$ 31,339
\$ 15,684
Heat tracing
Procure
Install
$\$ 155,129 / 3 \$ 51,710$
c/o \#034 added heat tracing\$ 31,590
c/o \#045 inc. FDCR 290 \$ 19,539
Subtotal Thermal Storage System
Turbine-Generator Plant:
Core area elect restore c/o \#027 \$62,735/4
Cabinet installation remote sta. 4 (GFE)
Overtime in remote stations c/o \#019 \$107,697/4 Revision $3 \mathrm{c} / 0$ \#015 remote sta term. $\$ 139,692 / 4$

Subtotal Turbine-Generator Plant
\$ 324,526
\$ 467,400

$\$$	15,684
$\$$	34,000
$\$$	26,924
$\$$	34,923

\$ 111,531
$\$ 160,633$
Electrical System:
Plant Electrical
Switchgear \& inverter
Procure
Install
$\begin{array}{ll}\$ & 40,300 \\ \$ & 14,600\end{array}$
Electrical power distribution (SFDI areas)
Raceway UG ductbank and conduit inst'in
Power cable and wiring distribution/connections
Install (GFE) cable
$\$ 231,000$
Procure wire and cable
Initially
c/0 \# 007
Install procured cable and wire Rev. 4
\$ 68,700
88,783
Power cable, breaker change c/o \#025 FDCR 176
149,700
1,259
Reçeptac les and power disconnects inst'lns
I \& C wiring distribution (SFDI core areas)

CP 11 \& 11B Balance of Electrical (continued)

Equipment to J-box wiring connections (within rooms)
Testing and verification of wiring/power/grounding installations

Master Control
Installation of various subsystem and/or plant control and instrumentation electronic equipment in plant control building or other remote buildings:

Update computer controls c/0 \#013 FDCR 106 MCS update FDCR 133
c/o.\#031 FDCR 150
Master control console (plant control room)
Control room A/C FDCR 148
FDCR 181
\$ 1,051
$\$ 35,900$
$\$ \quad 2,931$
\$ 1,224
$\$ 12,839$
SDPC (remote control rooms)
RLU (RS/TSS equipment)
Equipment power \& grounding connections (within rooms) Control room grounding c/o \#030 FDCR 268

Subtotal Electrical System
Miscellaneous Equipment:
Miscellaneous control equipment installation Miscellaneous equipment

Power to nitrogen skid c/o \#029 FDCR 241
Subtotal Miscellaneous Equipment
Other Charges and Indirects:
Mobilization (\$100,500) \& de-mobilization (\$3,386)
Contract extensions
c/o \#037 10/24/81 to 12/31/81
c/o \#038 1/ $1 / 82$ to $1 / 31 / 82$
c/o \#043 2/ $1 / 82$ to $2 / 28 / 82$
c/o \#044 3/1/82 to $3 / 15 / 82$
SFDI checkout support $5 / 5$ to $6 / 26 / 81 \mathrm{c} / 0$ \#011
SFDI pre-op testing assistance 6/20 - 9/4/81 c/0 \#022
SFDI pre-op assistance 9/9/81
$\begin{array}{llll}\$ \quad 8,970 \\ \$ & 8,970 & \$ 12,919\end{array}$
\$ 9,761
\$ 658,048
\$ 947,757
$\$ 103,886$
$\begin{array}{rr}\$ & 63,550 \\ \$ & 24,998 \\ \$ & 23,250 \\ \$ & 12,588 \\ \$ & 12,382 \\ \$ & 14,563 \\ \$ & 492 \\ \$ & 8,438\end{array}$

```
CP 11 & 11B Balance of Electrical (continued)
Other overtime
    c/o #008 4/27/81 to 5/29/81 $ 94,674
    c/0 #012
    c/o #017 Wage adjustment to c/o #012
$ 193,921
J-box & terminal installation
    Procure
    Install
UG & Grounding system install (safety/instrumentation)
        Procure
        Instal1 
    58,600
Other change orders
        Revision 4-1 c/o #016
        Revision 4-2 c/o #023
            Subtotal Other Charges/Indirects $1,085,586
            Total Balance of Electrical Construction
        Package Cost
        $3,569,272 $3,569,272
```


APPENDIX A.13--CONSTRUCTION PACKAGE 11A: COLLECTOR FIELD ELECTRICAL.

CP 11A Collector Field Electrical (\$2,141,096)
John Taft Electric Company

Charges | Charges w/ |
| :---: |
| Indirects |

Collector System:

Heliostats-
Cable protection
Duct banks \& manholes
Added duct bank c/0 \#008
Duct between xformers 3 \& $4 \mathrm{c} / 0$ \#001
Duct bank revisions c/o \#002 FDCR 13
PVC ducts c/o \#006 FDCR 15
Roadway crossings
Direct buried conduit \& hand holes Added conduit installation c/o \#012

Cable Installation
Underground high voltage cable distribution-GFE
Underground I \& C cable distribution-GFE cable Low voltage cable installation Coaxial installation
Power, grounding and I \& C terminations
Heliostat power distribution equipment installation
Power centers (14 each)-GFE
(4160-208Y/120 V distribution transformer 120/208 V, 3 phase distribution panel)
Power centers 30A breakers FDCR 73 c/0 \#011
Install 84 each 5 KV cable termination connectors at power centers FDCR $58 \mathrm{c} / 0$ \#008

Watt transducers (9 total -GFE) Install \& terminate Grounds
Heliostat I/F cabinet Foundations
Heliostat power load interrupter switchgear cabinet -GFE
Heliostat interface power cabinets - 2 each GFE
Heliostat interface J-Box installation-1818 each
J-boxes delivered
Installation \& terminations
\$ 1,896
\$ 70,000
\$ 21,000
\$ 10,000
\$ 4,000
\$ 105,000
\$ 12,165
$\$ 300,000$
\$ 350,000
\$ 30,000
\$ 742,165
\$ 50,000
\$ 297,767
\$ 120,000
\$ 11,308
6,439
57,300
5,642
35,000
40,000
22,078
, 105,000
\$ 755,970
\$ 515,000
\$ 200,000

CP 11A Collector Field Electrical (continued)
Roadway lighting installation (43 each)
Foundations
Lights installed
c/o \#015
Subtotal Heliostats
SHIMMS-
Special instrumentation cable provisions (empty
conduit)
SHIMMS FDCR $14 \mathrm{c} / 0$ \#005
Electronics environmental shelter \& south weather
station foundation modifications c/o \#007 FDCR 52
SWS breakers/wire change FDCR 97 c/o \#011
Subtotal SHIMMS
Receiver System:
IR camera conduit c/0 \#003
General \& Indirects-
GFE extra work
c/0 \#004 FDCR 22
c/o \#009 cable procurement to cover shortage
c/o \#013 unloading GFE
Replace broken breakers, install added cable c/o \#014
Temporary power to MMC test trailer c/o \#010
Mobilize $(\$ 50,000) \&$ demobilize ($\$ 6450$)
Subtotal General \& Indirects

Total Collector Field Electrical Construction Package Cost

APPENDIX A.14--CONSTRUCTION PACKAGE 12: insuLation And Lagging
CP 12 Insulation and Lagging
(\$659,741)
Metalclad Insulation Corporation
Charges

Special insulation for BCS targets Material $(\$ 3,000)$, labor $(\$ 6,500)$

Subtotal Collector System
$\$ 9,500$
\$ 9,500
Receiver System:
Receiver unit piping (including GFE Panel
modules) Part of CP $9 \mathrm{c} / 0$ \#005
Boiler panels c/o \#004 FDCR 275
\$ 19,475
Special insulation for receiver unit
Receiver core c/o \#003
$\$ 148,400$
Subtotal Receiver System
\$167,875 \$184,286
\$167,875 \$184,286
Thermal Transport System:
All piping insulation/lagging for:
Steam piping (main, admission \& other) \& Condensate \& drain piping (hot lines)

Tower mat $(\$ 16,100)$, labor $(\$ 36,000)$
\$ 52,100
Tower pipe guide mods. c/0 \#009 \$13,715
Subtotal Thermal Transport System $\quad \$ 65,815$

Charges w/
Indirects
\$ 10,429

Subtotal Thermal Transport System
\$ 72,249
Thermal Storage System:
Hot oil lines
Materials ($\$ 10,500$), labor ($\$ 6,000$) $\$ 16,500$
All TSS skids' piping
Material ($\$ 37,000$), labor ($\$ 78,000$) $\$ 115,000$
c/0 \#005 FDCR 273,286
\$ 10,929
Misc. tanks, vessels and process equipment (exc. TSU) Mat ($\$ 15,000$), labor ($\$ 47,000$) \$ 62,000
TSU oxygen analyzer c/o \#008 FDCR 151 \$ 10,370 Rack mat $(\$ 45,000)$, labor $(\$ 98,000)$
$\$ 143,000$
Subtotal Thermal Storage System \$357,799 \$392,777

CP 12 Insulation and Lagging (continued)

Other Direct \& Indirect:
$\begin{array}{lrl}\text { Heat tracing c/o \#002,007 FDCR 290 } & \text { \$ } & 5,492 \\ \text { Schedule extension c/o \#006 12/26/81-4/26/82 } & \$ & 7,760 \\ \text { Material substitution c/o \#001 } & -\$ 8,200\end{array}$
Mobilization, indirects
Mobilization matl $(\$ 6,500)$, labor $(\$ 2,500)$
Demobil. matl ($\$ 2,000$), labor ($\$ 1,000$)
Scaffolding matl $(\$ 5,500)$, labor $(\$ 8,000)$
Leak Detect matl $(\$ 2,000)$, labor $(\$ 6,000)$ Overhead matl $(\$ 14,500)$, labor $(\$ 6,700)$

Subtotal General \& Indirects
\$ 58,752

Total Insulation and Lagging		
Construction Package Cost	$\overline{\$ 659,741}$	$\$ 659,741$

Structures \& Improvements:
Diesel \& motor driven fire pumps PO \#2001 \$ 43,174
Electric fire pump $\$ 12,200$
Electric fire pump \$12,200 Spares \$299
Diesel driven fire pump \$29,481 Spares \$120
Electric jockey fire pump \$1,036 Spares \$38
PSS 480 V MCC C PO \#4004p
Power cable PO \#4005p
Control cable PO \#4005p
Charges

Instrumentation cable P0 \#4006
$\$ \quad 6,651$
12,061

Misc. directs and distributed indirects
\$ 3,761 36

Subtota1 Structures \& Improvements \$ 65,683 \$ 85,296
Collector System:
Heliostats-
Equipment--
Heliostat load interrupter switchgear \&
I/F control cabinets (2) PO \#4001 Load interrupter switchgear I/F control cabinets (2)

11,064
744
Spare Parts-- heliostat I/F PO \#4010
Heliostat power centers (14) PO \#4003 124

Spare parts for power centers PO \#4009
82,614
Watt transducers
Power centers 2 \& 6
Heliostat power (5 each)
Primary meter equipment (2 each)
Power cable--
Power cable from SCE SG to heliostat I/F switchgear $5 \mathrm{kV} \# 2 / 0,1 / \mathrm{C}$ w/g 300' PO \#4008p \$ 679
Power cable from heliostat I/F Switchgear to power centers $5 \mathrm{kV} \# 2 / 0,3 / \mathrm{C} 10,000$ ' P0 \#4000p \$ 72,611
Power cable from power centers to $\$ 146,912$ heliostats PO \#4000p
600 V \#4, 4/C 16,000' \$32,472
600 V \#6, 4/C 11,000' \$17,889
600 V \#8, 4/C 3,140' \$5,478
600 V \#10, 4/C 105,000' \$91,073

PSS Long-Lead Procurement (continued)
Power cable for heliostat field roadway lighting $600 \mathrm{~V} \# 10,2 / \mathrm{C}$ $\begin{array}{cccc}\text { 12,000' PO \#4000p } & \$ & 9,903 \\ \text { Watt Xducers } 3,660^{\prime} \text { RG22M PO \#4002p } & \$ 4,058\end{array}$ Control cable--

J-Box B to heliostat I/F Cab B 4160' RG22 P0 \#4006p (4,500') \$ 3,378
I/F Cab B to heliostats 172,160' RG22M PO \#4002p \$ 190,885
RG22M coaxial cable balance of 190,000' PO \#4002p
\$ 710
600 V cable \#10 1/C 7,000' P0 4000p \$ 759
BCS-
BCS targets PO \#2002
BCS target painting PO \#6001
Power cable \#8 4/C. 2400' PO \#4000p
Control cable RG22M 4980^{\prime} PO \#4002p
RG11 coaxial cable 5000' PO \#4002p
\$ 96,589

RG11 coaxial cable 10,146' P0 \#4006p
31, 050
\$ 3,747

Instrumentation cable \#16 1 pr PO \#4006p \$ 247 SHIMMS-

Metro Sta power cable EES to power
centers 600 V \#8 4/C $1850^{\prime} \mathrm{PO} \# 4000 \quad \$ 2,888$
Metro Sta control cable EES to I/F Cab B RG22M 9110' PO \#4002p
\$ 10,101 Heliostat strain gages - EES to I/F Cab B RG22 2320^{\prime} CP11
Instrumentation cable \#16 1 pr PO \#4006p\$ 124
Misc. directs and distributed indirects
Subtotal Collector System
Receiver System:
Pre-fab'd Rocketdyne piping
Power cable PO \#4005p
$\$ 160,470$
Control cable PO \#4005p
7,740
Remote station RS1 instrumentation cable \#16 1pr (430'); \#16 4pr (560');
$8 \mathrm{pr}\left(1620^{\prime}\right)$; 12pr (560'); 20pr (1000'); triad (10,080') PO \#4006p

Belden \#9283 (1120') P0 \#4002p
\$ 13,831
Shielded pair/triad not allocated
PO \#4006 all balance of purchase
TC ext cable PO \#4007p
\$ 713,224
$\$ \quad 212,971$
\$ 926,195
\#16 1pr (3000'), \#20 4pr (530'),
$20 \operatorname{pr}\left(480{ }^{1}\right)--a l 1$ balance of purchase
Misc. directs and distributed indirects
Subtotal Receiver System
\$ 255,509
$\$ \quad 76,296$
\$ 331,805

PSS Long-Lead Procurement (continued)
Thermal Transport System:
Receiver feedwater pump PO \#2000 \$ 314,216
FW pump power cable
$5 \mathrm{kV} \# 2 / 01 / \mathrm{C}$ w/g 900^{\prime} PO \#4008p \$ 2,037 Other power cable
FW pump control cable 125 86
Pressure seal valves PO \#3000p \$ 28,603
MOV1030, MOV1031, M0V1132
Drag valve PV1001 P0 \#5000
\$ 42,067
Special control valves PO \#5001 \$ 10,132 (PV1003 \& PV1005)
PSS control valves PO \#5002 (AOV1008,1009; FV1006,1007; PV1000; TV1002,1004) \& SCE (LV74A,B,C,D-1,D-2; PV640,647B,647C) Spare parts PO \#5006 \$ 12,163
Spare parts PO \#5005 51
Pre-fab'd Stearns-Roger primary piping \$ 259,265
Primary hangers and snubbers
Hangers PO \#3001
Snubbers P0 \#3002
\$ 78,706
ower cable PO \#4005p
29,623
103,839
Control cable PO \#4005p \$ 962
Instrumentation cable
\#16 1pr PO \#4006 \$ 3,754
Misc. directs and distributed indirects
Subtotal Thermal Transport System \$888,424
$\$ \quad 265,286$
\$1,153,710

Thermal Storage System:
TSS 480 V MCC B PO \#4004p
LCA-4160 V xformer \& LV SG PO \#4004p
LV non-segregated bus duct PO \#4004p
Spare parts PO \#4011
\$ 9,328
44,968
\$ 5,671
5 kV power cable
$5 \mathrm{kV} \# 2 / 0,1 / \mathrm{C}$ w/g 1560^{\prime} P0 \#4008p \$ 3,530
Bldg 712 power cable \$ 791
Bldg 712 control cable
166
600 V power \& control cable PO \#4005
Power cable for skids
Power cable for TSS misc.
Power cable undefined
Control cable for skids
Control cable for TSS misc.
Control cable undefined

11,903
2,961 10,603

940
96
1,651

PSS Long-Lead Procurement (continued)
Instrumentation P0 \#4006
Skids \#16 1pr (1570'), 4 pr (2165'),
$4 \operatorname{tr}\left(3610^{\prime}\right), 8 \operatorname{pr}\left(680^{\prime}\right)$,
12 pr (160') \$ 12,253
TC extension cable PO \#4007p \$ 12,104
\#20 4pr (1470'), 20pr (1520')
Remote station RS2 power cable P0 \#4005p \$ 1,472
Remote station RS2 control cable PO \#4005p \$ 99
Remote station RS2 instrumentation cable
JB 1951 to J-Box A PO \#4006p
\#16 1pr (655'), 8pr (365'), 12pr
(1070'), 20pr (305'), triad (5720') \$ 7,500
Belden \#9283 (800') PO \#4002p \$ 210
Remote station RS3 power cable PO \#4005p \$ 358
Remote station RS3 control cable PO \#4005p \$ 109
Remote station RS3 instrumentation cable
JB 1952 to J-Box A PO \#4002p
\#16 8pr (435'); 12pr (975'); 20pr (720'); triad (7800') PO \#4006p \$ 9,966 Belden \#9283 (480') \$ 126
Misc. directs and distributed indirects
Subtotal Thermal Storage System $\$ 144,018$ \$ 187,022
Turbine-Generator Plant:
Pressure seal valves PO \#3000p (T-G area) \$ 37,006
General service valves (T-G area)
PO \#3003
\$ 15,273
PO \#3004
\$ 4,207
Remote station RS4 instrumentation cable
JB 1953 to J-Box A PO \#4006p
\#16 1pr (960'), triad (1240'), 12pr (60'), 20pr (180') $\$ 1,730$ Belden \#9283 (2200' to CT substation)

```
                    P0 #4002p $
```

Misc. directs and distributed indirects
Subtotal Turbine-Generator Plant
\$ 610
\$ 58,826
\$ 2,259
Watt Transducers 7 each PO \#5003
(Gen. gross, MX1,AX1,SX1,CTX1,LCA \& P917) Spare parts for watt xducers PO \#5007 \$ \$ 886
Misc. directs and distributed indirects
Subtotal Electrical System
\$ 3,145

Electrical System:
$\$ 17,566$
\$ 76,392

$\$$	939
$\$$	4,084

PSS Long-Lead Procurement (continued)
Miscellaneous Equipment:
Nitrogen skid power cable PO \#4005 \$ 180
Misc. directs and distributed indirects
Subtotal Miscellaneous Equipment \$ 180 \$ 234
Other Direct Costs and Distributed Indirects:
$\$ 635,729$
Total Plant Support System Long-Lead Procurements Costs
$\$ 2,764,738 \quad \$ 2,764,738$

SCE Equipment and Material Purchases
(\$5,370,000)

| | Charges | Charges w/ |
| :---: | :--- | ---: | ---: | ---: |
| Indirects | | |

SCE Equipment and Material Purchases (continued)
Turbine-Generator System:
Turbine-Generator \& accessories (0520) \$2,221,517
Condenser
Main steam condenser (4101) \$ 123,500
$\begin{array}{lll}\text { Main steam condenser tubing (0456) } & \$ 57,900 \\ \text { Vacuum pump P910 (4032) W/HXC } & \$ & 37,500\end{array}$
Circulating water system
Cooling tower w/fans
Design \& erection (0445) \$ 153,300
Fiberglass circulating water Pipe (2635)
\$ 51,499
Circulating water pumps P905 P906 (0434)
\$ 22,396
CT transformer CTX1 4160-480V .75MVA (0368Ap)
\$ 10,300
CT sulphuric acid tank TK904 (00011) \$ 11,000
CT sulphuric acid pump P912 (00010) \$ 2,062
CT sodium polyacrylate feed
Day TK905 (00013)
Pump P923 (00013)
CT sodium hypochlorite
Storage TK922 (Tankinetics) \$ 6,501
Pump P930
Misc. directs and distributed indirects
Subtotal Turbine-Generator System \$2,697,475
$\$ 491,350$
$\$ 3,188,825$

Electrical System:
Switchyard
Main transformer (MX1) 33 to 4KV 10MVA (6020p) \$ 48,400
Circuit breaker - 34.5KV 1500MVA 1200 A (SCE)
ry transformer (AX1) 13.8 to 4 KV
Auxiliary transformer (AX1) 13.8 to 4KV 18 MVA (SCE)
\$ 5,000

Station service transformer SX1 750KVA (0368Ap)
$\$ 15,000$

Uninterruptible power system (UPS) \& DC
Battery bank \& rack (0350)
\$ 10,300

Battery charger
UPS
DC control \& dist. switchboard (0360)
$\$ 12,835$
\$ 73,567
Switchgear, MCC's, LCA's
Switchgear \& MCC's (0345) \$ 152,613
480V Switchgear B01,B02 MMC's BOA \& BOL
4160 V Switchgear A01 350 MVA (SCE) \$ 12,000
15 KV generator switchgear GS (SCE) \$ 8,000

SCE Equipment and Material Purchases (continued)
Protective relay switchboard Distribution panels
Other miscellaneous electrical
Instrumentation
Cable - power, control, instrumentation Control, instrumentation Power cable (6020p)
$\$ 25,500$
SG to MX1--UG, SG to AX1--UG, SG to Gen Bus $5 \mathrm{KV}, 480 \mathrm{~V}$
Misc. directs and distributed indirects
Subtotal Electrical System
Miscellaneous Equipment:
Air compressors CP901, CP902 W/DR901, \$ 88,991 DR902,F901, F902, V904, CR902,CR903 (4216)
Feed water chemical analysis system (5047) \$ 97,098
Equipment cooling water system
Cooling water HXC E905 (0411)
Cooling water pump P901 (0420)
CW surge tank Tk901 (00008)
Auxiliary boiler
Auxiliary boiler transformer AXB 1500 KVA (0368)
Aux. boiler/TSS FW pump $P 904$ (4315 or 00006)
Nitrogen supply system leasing (4245)
Misc. directs and distributed indirects
Subtotal Miscellaneous Equipment
Other Direct Costs:
Spares
Other unidentified costs or
SCE provided equipment/materials
Total SCE Materials \& Equipment Purchases
\$ 827,436
$\$ 5,370,000 \quad \$ 5,370,000$

SCE Construction Contracts

($\$ 5,415,000$)

Structures \& Improvements:
Control Building - Construct (0130)
Elevator, Enclosure (0105)
Rest Rooms (0176)
Security Building (0160p)
Administration Bldg. Install, w/ xfmr.,(0160p)
Buildings General
Painting
Insulation
Plant Fencing (0202)
Paving Roads, and Misc. Concrete
Access Road \& Helistop (0237)
Water Well \& Line A Tie in - elect. (4269)
Water Well \& Domestic Water Supply System (2110)
Sanitary System (2636p)
Waste Drainage Piping to Evap. Pond Septic Tank \& Seepage Pit

Communications \& Lighting
Communications Installation \$ 43,095
Lighting Installation
Misc. Directs and Distributed Indirects
Subtotal Structures \& Improvements
Thermal Transport System: (estimate by author)

Charges | Charges w/ |
| ---: |
| Indirects |

Auxiliary equipment structure erection, install
mechanical equipment, piping, instrumentation,
insulation
Structure Erection (6017p)
Concrete
Structural Steel
Painting
Miscellaneous
Equipment Installation, Piping (6017p)
Water Treatment
Chemical Feed Equipment Installation
Other Miscellaneous Equipment Installation
Piping \& Accessories Installation
Feedwater Heaters, Heat Exchanger installation
FW Heaters, HXC installation
FW Pumps Installation
Other Miscellaneous Installation
Piping \& Accessories Installation

SCE Construction Contracts (continued)
Condensate System
Condensate Storage Tank Installation
Condensate Pump Installation
Piping \& Accessories Installation
Instrumentation Installation (6017p)
Misc. Directs and Distributed Indirects
Turbine-Generator Plant: (estimate by author)
Turbine-Generator Installation (6017p)
Turbine-Generator Installation
Special Installation Equipment
Turbine-Generator Misc. Equipment Install
Piping \& Accessories Installation
Condenser
Condenser Installation
Other Miscellaneous Installation
Circ. Water Equip., Piping Install (6017p)
Circulating Water Pumps, Installation
Piping and Accessories Installation
Miscellaneous Tanks Installation
Misc. Directs and Distributed Indirects
Miscellaneous Equipment: (estimate by author)
Instrument/Service Air System Installation
Air Compressors Installation (6017p)
Miscellaneous Equipment Installation
Piping \& Accessories (2636p)
Water Sampling System (6017p) Installation
Misc. Directs and Distributed Indirects
Subtotal Turbine-Generator (part) and Miscellaneous Equipment

Turbine-Generator Plant (cont.)
Turbine Pedestal \& Equip. Foundations (0284)
Cooling Tower Basin, Structural Foundations, and Underground Piping Installation (2636p)

Circulating Water Conduits Install (2636p)
CT MCC B7dg., HVAC, found., elect. (6020-A)
CT MCC Bldg. Prefab'd Building (SCE)
Misc. Directs and Distributed Indirects
Subtotal Turbine-Generator (part)
$\$ 310,285$
$\$ 303,000$
\$ 174,653
\$ 217,086
\$
$\$$
$\$$
\$
_ \$ 19,318
$\$ 2,700,000 \quad \$ 2,963,736$
\$ 8,000
——_
$\$ \quad 60,687$
\$ 621,285 \$ 681,972

```
SCE Construction Contracts (continued)
```

```
Electrical System:
    Construction Power Concrete & Grounding (6030)
    Electrical Switchyard Installation ( }6020-\textrm{Bp}\mathrm{ )
            Switchyard installation for 33 KV grid
                intertie, pull & terminate power, control
                & instrumentation wiring
```

 Plant Power Distribution
 Station Service Transformer SX1 4160 to 480V
 CTX1 4160 - 480 V
 Distribution Panels
 MCCA B1 901
 MCCL Cooling Tower Area (cost w/MCCA)
 Relays \& Boards
 4160 V Switchgear
 480V Switchgear, from CTX1 \& SX1 (cost w/MCCA)
 Plant Interties (6020p)
 Main Transformer 33KV to 4160V
 Auxiliary Transformer 13.8 KV to 4160 V
 Conductors
 Wiring, Cable Pulling, Term. (3013)
 Main Bus - Generator
 Cable Protection
 Busway/Cable Trays/Raceways
 Conduit/Duct Banks
 Emergency Power Installation (\(6020-\mathrm{Bp}\))
 Uninterruptible Power System
 DC Power System 125V - TG
 Miscellaneous Electrical Installation
 Misc. Directs and Distributed Indirects
 Subtotal Electrical System \$ 500,000
 \(\$ 500,000 \$ 548,841\)
 Miscellaneous Directs and Distributed Indirects
Total SCE Construction Contracts Cost
\$ 481,869
$\$ 5,415,000 \quad \$ 5,415,000$

APPENDIX E.1--FORD MOTOR COMPANY GLASS PURCHASE Glass Costs for the Pilot Plant and IEA Heliostats (Ford Motor Company)

Glass Cost for $1,248,080 \mathrm{ft}^{2}$ (Tulsa, Plant) $\$ 561,633$ cut to $48^{\prime \prime} \times 134 "$ size ${ }^{0} \$ 0.45 / \mathrm{ft}^{2}$ cutting)

Subtotal Glass Cost \$ 552,449
Storage Cost at Tulsa Plant \$ 47,459
Freight Cost from Tulsa Plant (43 truck loads) \$ 43,094
Cutting Charges (48"x134" to 43 " $\times 120$ ") \$ 221,518
Paper Interleaving
\$ 5,048
\$ 869,568
$\begin{array}{cc}\text { Less IEA share of Cost (all low Fe) } & \$ 45,750 \\ \text { Pilot Plant share of Cost } & \$ 823,818\end{array}$
Notes:
Total of 27,942 lites ($1,001,255 \mathrm{ft}^{2}$) picked up by Gardner Mirror.
Cutting @ $\$ 0.1775 / \mathrm{ft}^{2}$
Most Storage @ $\$ 0.03 / \mathrm{ft}^{2}$
Required Glass ($821,730 \mathrm{ft}^{2}$)-
Pilot Plant $1818 \times 12=21,816$ lites
IEA $\quad 93 \times 12=1,116$ lites
22,932
Extra Glass--about 22\% (Breakage,etc.) $=5,010$ lites
Cost of Glass ready for pickup by Gardner IEA cost $=\$ 1.14 / \mathrm{ft}^{2}$ (all low Fe float)
Pilot Plant cost $=\$ 1.05$ (93% low Fe float; 7% med Fe float)
Silvering, freight by Gardner was $\$ 1.00 / \mathrm{ft}^{2}$ of required glass area.

APPENDIX E.2--INTERNATIONAL ENERGY AGENCY HELIOSTAT COST
IEA Heliostat Cost Based on IEA Spare Parts Data
(Costs in \$/heliostat)

	Mat 1.	Labor	Frt.In	G\&A	Fee	Total
Controls						
HC	\$ 607	\$ 156	\$ 15	\$ 100	\$ 106	\$ 984
HFC	\$ 31	\$ 11	\$ 1	\$ 6	\$ 6	\$ 55

Miscellaneous
Miscellaneous
Denver Total
Reflective Assembly
Mirror Assembly
Mirror Assembly Mirror Modules Glass-Ford

$\$ 2367$	$\$ 597$	$\$$	59	$\$ 245$	$\$ 393$	$\$ 3661$
$\$ 492$						

Rack Assembly Elevation Beam Bar Joists-short -long
$\begin{array}{lr}\$ 765 \\ \$ & 71 \\ \$ & 86\end{array}$
$\begin{array}{rrrrrr}\$ & 15 & \$ & 63 & \$ & 101 \\ \$ & 1 & \$ & 6 & \$ & 9 \\ \$ & 2 & \$ & 7 & \$ & 11\end{array}$
$\begin{array}{rr} & 944 \\ \$ & 87 \\ \$ & 106\end{array}$
Subtotal
\$ 1137

Pedestal Assembly Pedestal	$\$ 640$
Drive Mechanism Assembly	
Drive	$\$ 2573$
Motors	$\$ 312$
Encoders	$\$ 372$
Cable Harness	$\$ 176$
Control Arms	$\$ 259$
Pedestal Interface Adpt.	$\$ 203$

Daggett Total

Total Price
$\$ 9003 \quad \$ 764 \quad \$ 184 \quad \$ 807 \quad \$ 1232 \quad \$ 11990$

International Energy Agency Heliostat Cost (continued)
Notes: 93 IEA Sets of Heliostat Parts

```
$11,497 x 93= $1,069,227 (MMC heliostat parts)
$ 492 x 93= $ 45,750 (Ford G1ass)
$11,990 < 93= $1,115,027 (Total as shown above)
    $ 79,402 (MMC heliostat spare parts)
    $1,194,429 (total MMC- DOE Operational Budget)
```

Prices are based on 1979 estimates.
Assumptions used in 1979:
Freight cost into fabrication facility @ 2% of materials and labor. G\&A @ 8.1% except HC/HFC @ 12.8% Fee @ 12.02\%

APPENDIX E. $3-$ MARIIN MARIETTA CORPCRATION PILOT PLANT AD INIERATIONA. ENEGGY AGECY HELOSTAT OSTS
PRICES FRR PILOT PLANT INSTALID HHIOSTATS AND IEA HELOSTAT PARTS

	Engineering Design	Program Managenent	Fabrication Labor	Fabrication Management	Indirects	Materials + Freight	Totals
Heliostat							
Systam Engineering	= \$ 43,725						
Heliostat Design	= \$ 68,358						
OM Maruals	= \$ 29,141						
Heliostat Dws/Spec.	= \$ 3,303						
Reviens	= \$ 7,894						
Reports	= \$ 11,925						
Material Prorate-buying	= \$ 51,221						
Logistics	$=\$ 12,428$						
Miscellaneous	= \$ 3,695						
Computer Charges	= \$ 106,173						
Reproduction Services	= \$ 42,011						
Managerment/Supervision	$=$	\$ 65,587					
Tooling Design	= \$ 265,822						
Tool ing Design Managenent		\$ 88,607					
Quality Engineering							
Safety	$=\$ 33,033$						
Inspection	= \$ 109,756						
Quality Engineering Manage	$=$	\$ 90,453					
Management Travel	=	\$ 136,341					
Other Tectrical Services	$=$	\$ 626,408					
E8A on Heliostats-Ceneral	$=$				\$ 220,861		
Subtotal on Heliostats Ceneral	$=\$ 788,582$	\$1,007,396			\$ 220,851		\$2,016,829

Martin Marietta Corporation Pilot Plant and Interrational Energy Agency Heliostat Costs (oontinued)

	Engineering Design	Progran Managenent	Fabrication Labor	Fabrication Menagement	Indirects	Materials + Freight	Totals
Controls							
Harchare Design	= \$ 183,997						
Software Design	= \$ 458,186						
Software Color Graphics	= \$ 30,176						
HC failure investigation	= \$ 19,623						
HC board noise problen	= \$ 79,976						
HC/FL Fabrication	=		\$ 674,138				
Tool ing Labor	=		\$ 283,729				
Testing Labor	=		\$ 32,008				
HC/RFC Qality Control	=		\$ 62,634				
HC/FF © Management	$=$	\$ 12,944					
EM Menagement	$=$	\$ 26,705					
Control HdW. fab managener				\$ 37,342			
Materials into Derver							
Controls Materials	=					\$1,760,178	
Tooling Materials	=					\$ 409,732	
Manufacturing Materials	=					\$ 50,320	
Freight into Denver	=					\$ 126,272	
G8A on Controls Manufacturing =					\$ 553,288		
Subtotal on Controls	\$ 771,956	\$ 39,649	\$1,052,508	\$ 37,342	\$ 553,228	\$2,346,502	\$4,801,185

Martin Marietta Corporation Pilot Plant and Interrational Energy Agency Heliostat Costs (continued)

	Engineering Design	Program Managament	Fabrication Labor	Fabrication Menagenent	Indirects	Materials + Freight	Totals
Mirror Module							
Versilok Test	= \$ 8,790						
Lip Seal Change	= \$ 129,467						
Mirror Delamination	= \$ 165,353						
Tool Engr. Procure	= \$ 10,716						
Fabrication Managenent	$=$			\$ 720,671			
Management Travel/Relocation	$=$			\$ 191,893			
Job Shop Fabrication Labor	=		\$2,183,119				
Facility Lease	=				\$1,097,063		
Materials into Pueblo							
Mirror Module Material	$=$					\$5,441,480	
Tooling Material	$=$					$\$ 1,330,763$	
Freight into Pueblo	=					\$ 200,554	
G8A an Mirror Module Mfg.	$=$				\$ 780,483		
GsA on Mirror Module Design	=				\$ 53,568		
Subtotal on Mirror Module	$=\$ 411,326$		\$2,183,119	\$ 912,564	\$1,931,115	\$6,972,798	\$12,410,921

Martin Marietta Corporation Pilot Plant and Intermational Energy Agency Heliostat Costs (ontinued)

	Engineering Design		Program Menagament	Fabrication Labor	Fabrication Managenent	Indirects	Materials + Freight	Totals
Daggett Assembly								
Facility Design		5,599						
Tool Engr. Procure		24,969						
Final Assy Menagament	$=$		\$ 19,539					
Management Travel	=		\$ 10,389					
Job Shop Assembly Labor	=			\$1,039,455				
Assembly Maragment Labor	=				\$ 303,789			
Menagenent Travel/Relocaton	=				\$ 190,536			
Facility Lease	$=$					\$ 427,869		
Material into Daggett								
Heliostat Material	=						\$11,262,563	
Tool ing Material	$=$						\$ 240,806	
Start-up Material	=						\$ 19,561	
Freight into Daggett	=						\$ 764,053	
G8A on Assembly	$=$					\$1,042,306		
G8A on Desig/Pgn Managanent	$=$					\$ 35,161		

Martin Marietta Corporation Pilot Plant and Intermational Energy Agency Heliostat Costs (contirued)

	Engineering Design	Program Nanagement	Fabrication Labor	Fabrication Management	Indirects	Materials + Freight	Totals
Site Installation							
Installation Management	$=$	\$ 40,253					
Testing Management	$=$	\$ 104,189					
Managenent Travel	=	\$ 80,497					
Job Shop Installation Labor	$=$		\$1,08,132				
Job Stop Misc. Field Labor	$=$		\$ 462,543				
Installation Managment Labor				\$ 303,789			
Management Travel/Relocaton	$=$			\$ 190,536			
G8A on Installation	$=$				\$ 114,030		
Subtotal on Assy/Installation	\$ 30,568	\$ 255,368	\$2,530,130	\$1,148,649	\$1,619,367	\$12,886,983	\$17,871,065
Total Prioe	\$2,002,431	\$1,302,413	\$5,765,757	\$2,08,555	\$4,324,561	\$21,606,283	\$37,100,000

BCS Targets \& Shutter Control
Screen (4)
Targets LLP
Erection CP9
Painting LLP
Mount ing Structure
Target Insulation CP12
\$ 9,500
Target Radiometers/Shutters
Pyrheliometers (16)
Water Cooling System (E201, E202, P201)
Electrical Mod. CP11 FDCR207
MCC 6
Shutter Assemblies (4)
BCS101 MODACS III A/D Cabinet Modcomp 1804-1
Cabling to MODACS III from pyrheliometers
Cabling to MODACS III from shutter control
Cabling from MODACS III to Modem
BCS Video Assembly
Video Camera System (4) N, E,S,W
BCS901-904A Video Cameras Cohu Model 2850C-207
BCS902-904B Camera Receiver Units Cohu Model DTMF-200 Sun Shields Cohu, Pan/Tilt Systems Mounting Structures Foundations CP6 est. \$ 15,100 Cable Assembly Cohu Model AC27

BCS Camera Control (Control Bidg Equipment Room)
BCS601 BCS Camera Control Rack
BCS601-1 Transmitter Cohu Mode 1 DTMF-100
BCS601-2 Pelco Switcher Mode7 VA-504R
BCS601-3 Video Digitizer Quantex Model DS-12
BCS601-4 Modem Codex 8200 (to MODACS III)
BCS Control Equipment (Control Room)
BCS700-1 Time Code Generator WWV Receiver
BCS700-3 DTMF-100 Transmitter
BCS700-4 Switching Matrix
BCS700-5 Video Processor
BCS700-8 Modem
BCS701-2 Video Monitor CRT Cohu Model DM9-C
BCS Data Evaluation (DAS Room)
BCS801 CRT Graphics and hard copy Terminal HP 9845B

Beam Characterization System Costs (continued)
Field Wiring:
J-Box A (Control Bidg.) to I/F Cab. B (1040') RG11 \$ 1,315
EES-1925, A, B\&C to I/F Cab.B (5340') RG11
Cable from receiver to transmitter-RG11
Cable from receiver to switches -RG11
(note- cost of coaxial matl. only-LLP)
Estimated cost of installation CP11A J-Box A to I/F Cab. B (1040') $1 \mathrm{pr} \# 16$

Hardware Design (MDAC)
\$ 236,658
Software (MDAC)
Integration/Test (MDAC)
\$ 224,327
\$ 416,776
FY1983 Modifications

Total Beam Characterization System Cost \$1,417,102

OCS EQUIPMENT LIST


```
Operational Control System Equipment Cost (continued)
OCS 801/802 B/W CRT
    Modcomp 4612 (2)
    75' cable 0214-A
    $ 5,680
    $ 380
    Software - Operating System
    MAXNET IV, Object
    MAXNET IV, Object, }9\textrm{Tr},800\textrm{BPI
    MAXNET IV, Source, 9 tr,800BPI
    MAXNET IV, System Install
Modcomp 0214-B HAC A & HAC B
$ 230
    cables 50'
Factory Acceptance
$ 8,250
OCS
OCS
OCS Logger TI Model }81
OCS Color Consoles AYDIN Mode1 5217 (2 each)
Total OCS Equipment Cost
$ 191,115
```

Equipment \#
DAS 601

DAS 602

DAS 603/604

DAS 605

DAS 606/607 Moving Head Disc

Interface
Modcomp 1930-1 A Communication Chassis
Modcomp 1931 (9) Asynchronous RS232 I/F Modules
Modcomp 023030 ' cables $\$ 960$
Modcomp 0230 30' cables
Modcomp 1937-1 Bit Synchronous
I/F Modules (3) to Modems
Modcomp 1907-A-2
Modcomp 4807-1 Controller for \$ 4,020
16 spare Asynchronous Channels

Modcomp 4174-2 (2) 67 MB
Modcomp 4143-A-E3 (2) Controller sets
Cost
\$ 40,750
Extended Arithmetic Unit
Modcomp 3109 Universal Communications Processor
Modcomp 3693 (2) 128 KB
Modcomp 3771 Dual Bus IOP
Modcomp 0203-A 10' I/O cables
Modcomp 3320 Back-up Batteries
Modcomp 3321 Back-up Batteries for Memory Expansion

Peripheral Control Interface (PCI) Modcomp 4905 PCI \& Console Controller I/F
Modcomp 4903 PCI (4)
Modcomp 5215 4-way Bus Switch
Modcomp 4911 Peripheral Controller Enclosure (PCE)

Magnetic Tape Unit
Modcomp 4164-1 (2) w/ Controllers \& \$ 27,400
Cabinet
Modcomp 0203-A cable \$ 285

Modcomp 4143-A-E3 (2) Controller sets
$\$ 15,000$
\$ 7,025
$\$ 1,140$
\$ 980
\$ 980
\$ 2,580
\$ 8,240
\$ 5,400
\$ 2,675

$\begin{array}{ll}\$ \quad 37,000 \\ \$ & 18,550\end{array}$

Data Acquisition System Equipment Cost (continued)			
DAS 608	Keyboard/Printer Operators' Console Modcomp 422230 cps Modcomp 3732-2 Controller	\$	2,580
DAS 609	Line Printer Modcomp 4211600 LPM w/ Controller Modcomp 4211-2	\$	17,000
DAS 610	D/A Converters MODACS III Modcomp 1804-1 Modcomp 4828-2 Standard Link Modcomp 0235-A 50' cable	\$	$\begin{array}{r} 4,725 \\ 1,950 \\ 375 \end{array}$
DAS 801/802	Color CRT ISC \#8901 H		
DAS 803/804	B/W CRT		
DAS 805-807	Strip Chart Recorders		
DAS 808/809	Hard Copy Units		
DAS 810	Modcomp 4226 Matrix Printer w/ Controller 60-440 LPM Matrix Printer Stand Inmac Mode1 4865-NI	\$	4,950 145
DAS 811/812	B/W CRT		
	OCS Computer CPU Modcomp 4824 Serial Link Serial Link	\$	2,500
	Other Modcomp Equipment/cables	\$	39,264
Total DAS Equipment Cost		\$	246,474

	APPENDIX G.3--COLLECTOR SYSTEM CONTROLS Collector System Controls Equipmen	JIPMENT List	
CS601	Collector System Central Processing Unit Modcomp Classic 7861 Modcomp Memory Module 3691 Modcomp Battery Back-up 3320 Modcomp Internal I/O Cable 3780 Modcomp Classic I/O Cable 0203A	$\begin{array}{rr} \$ 28,490 \\ \$ & 7,700 \\ \$ & 836 \\ \$ & 231 \\ \$ & 212 \end{array}$	\$ 37,469
CS602	Collector System Disk Drive Unit Disk Drive 4137 0001 Cabinet CS Peripheral Controller Interface 4903 Asynchronous Multiplexer 1907 MMC Asynchronous Parallel Communications Processor	$\begin{array}{ll} \$ & 9,000 \\ \$ & 1,150 \\ \$ & 2,500 \\ \$ & 2,857 \end{array}$	\$ 15,507
CS603	```Collector System Magnetic Tape Unit Magnetic Tape Unit 9-track 4148-1 0 0 0 1 ~ C a b i n e t Peripheral Control Switch 4906 Direct Memory Processor Card Reader 4 8 1 1 Asynchronous Communication Interface 4 8 1 1```	$\begin{array}{ll} \$ & 9,180 \\ \$ & 1,150 \\ \$ & 3,090 \end{array}$	\$ 14,537
CS604	Collector System Tape Drive Controller 0001 Cabinet Tape Drive Controller 4148 Peripheral Control Interface 4903 Asynchronous Communication Interface 4811 Central Processing Unit Link 4824	$\begin{array}{ll} \$ & 1,150 \\ \$ & 2,000 \\ \$ & 1,117 \\ \$ & 1,540 \end{array}$	\$ 5,807
CS605	Collector System Tape Drive Controller 0001 Cabinet Tape Drive Controller 4148 Peripheral Control Interface 4903 Asynchronous Communication Interface 4811 Central Processing Unit Link 4824 Peripheral Control Switch 4906 Asynchronous Communication Interface 4811 Printer 4227	$\begin{array}{ll} \$ & 1,150 \\ \$ & 2,000 \\ \$ & 1,117 \\ \$ & 1,540 \\ \$ & 3,090 \\ \$ & 1,117 \\ \$ & 6,952 \end{array}$	\$ 16,966

Collector System Controls Equipment Cost (continued)
CS606 Collector System Disk Drive Unit
\$ 15,007
\$ 37,469
\$ 10,434
\$ 1,150
\$ 9,284
\$ 9,000
\$ 1,150
\$ 2,000
\$ 2,857
$\$ 28,490$ 836
\$ 231
\$ 212

CS Collector System Tape Drive Unit Tape Drive Unit

Tape Drive Controller 4148

CS608 Keyboard Printer TI-820
CS609 Keyboard Printer TI-820
CS610 Card Reader 300 cpm Modcomp 4411
CS611 Line Printer Modcomp 4227
CS701 CS Operator 19" CRT/Terminal \& Keyboard ISC-8001G
CS702 CS Graphics Display Color Graphics CRT w/ Keyboard \& Floppy Disc Chromatics 1999
CS703 CS Logger 440 lpm Matrix Printer Modcomp 4228
CS801 CS Color Graphics CRT Color Graphics CRT w/ Keyboard Chromatics 1999

HAC Auxiliary Relay Box
HAC Auxiliary Relay Box
Disc Packs--16 each
\$ 2,880
WWV
Total Collector System Controls Cost
\$ 4,255
\$ 4,255
\$ 3,966
\$ 6,952
$\$ 1,800$
$\$ 3,300$
$\$ 180,604$

MMC Asynchronous Parallel Communications Processor

CS607 Collector System Central Processing Unit
Modcomp Classic 7861
Modcomp Memory Module 3691
Modcomp Battery Back-up 3320
Modcomp Internal I/0 Cable 3780
Modcomp Classic I/O Cable 0203A

APPEDIX H-PIPING AD VALVE DETAILS AD OST

	Pipe (Spools) Type		Length Hengers Srub's		$9045 \text { Tee }$			Pipe Weigt	Use \& Valves
	Primary Piping: MS-2-6" (18)	($B_{\text {B }}$	$461{ }^{1}$	$\begin{gathered} 31 \quad 13 \\ (\$ 13,664)(\$ 27,281) \end{gathered}$	34	6	4	18,906+ \#	From Recy to T-G via MOV1031(\$12,572)
	MS-3-6 (7)	$(\mathbb{B}$	169'	$\begin{array}{cc} 7 & 2 \\ (\$ 661) & (\$ 2069) \end{array}$				6,437+ \#	To DS301 via MOV1030 $\$ 12,572$) \& U3100 (R)
	$\begin{aligned} & \text { MS-5-10 (1) } \\ & \text { MG-6-2 } 1 / 2 \end{aligned}$	EA	5'	1					P1001 $(\$ 42,067)$ to DS901
	MS-6-6 (2)	$G B$	12^{1}	$\begin{gathered} 2 \\ (\$ 658) \end{gathered}$					MS-2-6 to PV1001 via V-MS-6-1 (\$6946)
	MS-7-10 (6)	氏A	130^{\prime}	$\begin{gathered} 9 \\ (\$ 988) \end{gathered}$				4,365+ \#	DS901 to Conderser
	MS-8-2 (1)	${ }_{(G B}$	2^{\prime}	$\begin{array}{cc} 3 & 6 \\ (\$ 1320) & (\$ 6276) \end{array}$					To DS962 via PV1003(\$6491)
	MS-8-4 (1)								EPGS
	MS-9-4	EA							AS-9-4 to DS962 via AOV1008
	MS-9-6 (1)	FEA	5^{\prime}	1					PV1003 to DS902 via V-MS-8-2 (\$6946)
	MS-10-2 (1)	Q $\mathrm{B}^{\text {c }}$	5'	$\begin{gathered} 4 \\ (\$ 342) \end{gathered}$					MS-2 to ST-13-3 via FV1006(\$6350) \& V-MS-10-3 (\$6145)
	MS-10-4 (1)								EPGS
	FW-2-4 (16)	MBA	4081	$\begin{gathered} 31 \\ (\$ 3367) \end{gathered} \stackrel{8}{(\$ 10,666)}$	20		2	8,214+ \#	E902 to Receiver via AOVzOOA
	PW-9-2 1/2 (2)	MBA	80^{\prime}	(\$184)	4				FW-2-4 to TV3105 (R)
	PW-9-4 (1)							138 \#	EPGS
	ST-6-2 1/2 (1)	AA							To DS9OR via PV1006(\$3641) \& AOV1008(\$4180)
	$\begin{aligned} & \text { ST-9-4 (2) } \\ & 5 T-13-3(1) \end{aligned}$	FA	19^{\prime}	$1(\$ 189)$ $2(\$ 75)$					AOV100B to DSSO2 via NS-9-6 F 11006 to DS90
	ST-14-2 (1)	FA		1 (\$27)					FV1007 to DS90] via ST-13-3
	ST-17-4 (1)								EPGS
¢)	ST-18-8 (1)								EPGS
	ST-19-8 (1)								EPGS

Piping and Valve Details and cost (continued)

Pipe (Spools) T	Type	Length	Hangers Srub's		ttings 45 Tee	Pipe Weigtt	Use \& Valves
AS-7-6 (1)	ஈA	2^{\prime}					From DS902 via AOV1000(\$1890)
VT-1-2	K ${ }^{\text {E }}$						Fram VT-1-4 to FV1007(\$4277)
VT-1-4 (15)	NEB	$266{ }^{\prime}$	$\begin{array}{cc} 25 & 19 \\ (\$ 6927) & (\$ 30,912) \end{array}$			3,192+ \#	From V201 to PV1001 via PV2906 \& A0V2914
VT-11-10 (2)	モA	χ^{1}	$(\$ 331)(\$ 2274)$	9	1		To DS901 via PV1000 $\$ 16,767$)
VT-12-2 1/2 (7)		155'	$\begin{gathered} 12 \\ (\$ 995) \\ (\$ 10,068) \end{gathered}$			761+ \#	To DA901 via V-VT-1 (\$3442), PV647B (\$6300) , v-VT-2 (\$870) \& V-VT-3 (\$985)
VT-12-6 (1)			2				

Prinary Pipe, including fittings, cost=
UP's (86 spools-PPS \& 7 spools-EPGS) $\quad \$ 259,265$ CP9 Install Prinary Tower Piping
Primary Pipe Hanger Cost=
UP's Hangers
UP's Snubbers
CP9 Sort \& Set
Primary Valve cost=
UP's SFDI Area
UP's SCE Area
Stored Pipe, Valves cost=
CP9 (All GE)
\$ 142,100
\$ 29,623
\$ 103,839
\$ 105,873
\$ 32,974
$\overline{\$ 531,574}+\frac{\$ 245,600}{\$ 530,500}=\$ 1,062,074$

Piping and Valve Details and Cost (continued)

Hot Water-Stem Lines: $21 / 2^{4}$ and larger

MS-4 6	KBA	
MS-48	KBA	7
ST-5-6	FAA	7
ST-5-8	PA	
ST-6-2 1/2		6
AS-10-6	BBA	8
VT-4-6	FBA	12

Pipe Weight Use \& Valves

TK301 to P306
P306 to V303
TSU Lur Outlet to P3O1/P3CQ via AOV3004 (R)
P3O1 to E311 via T3411 (R)
P3CR to E312 via TV3A10 (R)
E3OL/E3CR to TO-9
TO-8 to $70-10$ via $\mathrm{AON3OOL}(\mathrm{R})$
To P303/P304 from $10-10-10$
TSU Upr Outlet to P303/P304 via $A 0 V 300 \mathrm{P}(\mathrm{R})$
TO-3 to To-9 via A 03003 (R)
P303 to E300/E307 via PV37Ce/V3710 (R)
P304 to E306/E308 via PV3802/V3810 (R)
E304 to TO-21-10
E303 to 10-21-10
TSU Alx Stm artlet to P305 via AOV3907 (R)
TSU Aux Sterm bypass via A0V3005 (R)
P303 to E305 via TO-12-8 \& PN370 (R)

From MS-4-8 to E301 via AON3206 (R)
DS301 to MS-4-6 \& E3C via A0V3306 (R)
E307 to ST-5-8 via A0V3717
E308 to T-G via AOV3817

To DASOI
From V304 to DA901 via PV647C (\$7123), V-VT-4 (\$1035), V-VT-5 (\$3557)

Piping and Valve Details and Cost (continued)

Pipe (Spools) Ty		Length	Hangers Snub's	$\begin{aligned} & \text { Fittings } \\ & 9045 \text { Tee } \end{aligned}$	Pipe Weight	Use \& Valves \& V-VT-6 (\$2244) or to Conderser via PV640 ($\$ 13,581$), $\mathrm{V}-\mathrm{VT}-7$ ($\$ 1035$) \& V-VT-8 (\$3557)
00-3-4		${ }^{90}$	5			V306 to V304 via PV3110 (R)
00-4-4 KA	KBA	$110{ }^{\prime}$	6			V306 to V304 via PV3111 (R)
O-5-4 BEA	BBA					P307 to E903 via LV74B (\$3078), v-00-3 (\$460), \& v-0 -4 (\$460)
						or to E900 via LV7401 (\$2651),
						V-0-1 (\$460),
						\& V-00-2 (\$460); or to E991 via
						LV7402 (\$216),
						\& 2 erch 101-2's (\$360)
00-6-3 (1)		$364{ }^{\prime}$	1		46 \#	Recv drain to Condenser (E901)
00-7-2 1/2	BBA					
0-12-2	FA					TV1002 to DS901
0-12-2 1/2 (1)		5^{\prime}			8\#	
00-15-6	BBA					V304 to P307
UG-1 thru 14			14			
21 and	smal					
ST-1			3			
ST-7-2	FBA		2			To TS Flash Tank V304 via A0V3116
ST-16-2 PA	FBA		2			To TS Flash Tank V304 via A0V3117
AS-1-1 1/2 PA	FBA		11			E3C1/E3C2 via AON3218/AOV3318 (R)
00-1-2	FBA		31			From V201 to E901 via LV74C (\$2398), 2 each 101-2's (\$360) or to E903 via LV74A (\$2398) \& 2 each 101-2's (\$350)
© $6-11 / 2$ B	BBA					Rexeiver Drain Line
${ }_{\infty}^{\infty} 0-6-3$			31			
00-8-1 $1 / 2$						To DS902 via TV1004(\$2423)

Piping and Valve Details and Cost (contimued)

Pipe (Spools) Type	Length Hangers Srub's	$\begin{aligned} & \text { Fittings } \\ & 90 \quad 45 \text { Tee } \end{aligned}$	Pipe Weight	Use \& Valves
Cold Lines:				
$21 / 2^{\prime \prime}$ and				
00-7-2 1/2 BBA	6			To DS90l via TMOCP(\$3385)
FW-10-2 1/2 PBA	10			P903 to E303/E304 via MOV1132(\$3459)
FW-10-4 FBA				\& F W -10-2 $1 / 2$, LV3506 (R), LV3606 (R)
$2^{\prime \prime}$ and smal				
FW-4-1 1/2 MBA				TV3105 to DC301
				PV647B (\$6300)
Secondary Piping Cost				
Piping CP9 Carbo	Steel Pipe \& Fittings		\$ 88,600	
Rack Pipe Fabri	tion CP9		\$ 250,000	
Rack Piping Ins	lation CP9		\$ 705,600	
Rack Piping Flus	\& Test CP9		\$ 22,200	
Hangers Fab'd C1				
Hangers (UP's)			\$ 5,750	
Valves ($\amalg P{ }^{\prime} \mathrm{S}$)	SFDI Area	$\$ 37,739$		
($1 \mathrm{P}^{\prime} \mathrm{s}$)	SCE Area	$\$ 14,348$		
(P9 Install			\$ 178,100	
Tower Traps \& Ac	ssories CP9		\$ 41,600	
Piping Flush \&	$t \mathrm{CP} 9$		\$ 20,200	
		\$ 52,087	+ \$1,312,060	,364,137

Fire Protection System:

FP-1-8	CBC	14
P-2-8	COA	
PP-3-8		1
PP-4-8	$C O A$	

P705/P707 to EPGS area

Piping and Valve Details and Cost (continued)

Pipe (Spools)		Length	Hangers Srub's	Fittings $90 \quad 45$ Тœ	Pipe Weight	Use \& Valves
FP-5-6	$C C A$					To AHI
FP-6-6	COA					
FP-7-4	COA					
FP-8-6	COA					To AH\#3
FP-10-6	COA					To. PH ${ }^{\text {P }}$
FP-12-6	COA					To H H\%
FP-13-6	COA					To PH77
FP-14-6	COA					To HH\#\#
FP-15-6	COA					TO FH\%
FP-16-6	COA					
FP-17-6	COA					To AH\#12
FP-19-6	COA					To $\mathrm{H} \# 110$
FP-20-6	OPA					
FP-21-6	OPA					To AH11
FP-22-8	CBC		2			To P705
FP-23-2	CBD					To P707
FP-24-1 1/2	CBD					From P707
FP-26-6	CBC		3			
FP-27-			3			Fram TK701.
FP-28-			1			
FP-34-6	CBC		3			
FP-38-6	AD					To Cooling Tower From Water Wells
FP-39-21						From Cooling Tower Basin
RW-46	ABA		5			From Tk701 to P704
RW-4-8	ABA					From Tk701. to P704
RW-6-8	DCA					From Water Wells

Underground Piping - Raw and Fire Protection costs:

Deliver Pipe Naterials CP9 $\quad \$ 81,100$
Install CP9

Piping and Valve Details and cost (continued)

MS-201-6 (2)		70^{\prime}	4
MS-2XX-4 (6)			
ST-208-4 (3)	©X	50^{\prime}	15

Piping and Valve Details and Cost (contimued)

APPENDIX I.1--PILOT PLANT ELECTRICAL SYSTEM OVERVIEW

The operation of the pilot plant is from a 4160 -volt line. The power to this line can come from three sources. If the solar plant is in operation, the generator provides electrical power through the 13.8 kV switchgear (SG) to the auxiliary transformer (AX1) which converts 13.8 kV to 4160 volts. The excess power generated is supplied to the 33 kV line through the main transformer, again by way of the 13.8 kV switchgear.

When the solar plant is not in operation, the electrical power can come from the 33 kV line by way of the main transformer (MX1), which converts the 33 kV power to 13.8 kV , and then through the auxiliary transformer (AX1) to 4160 volts. The pilot plant is one of four sources that can tap the 33 kV Gale substation Bug line.

The last source of 4160 -volt electrical power is from the 4 kV wellwater line. The well-water line is connected through the heliostat interface load interrupter switchgear since it primarily supplies power to the heliostats if all other power sources are unavailable.

The 33 kV line is separated from the main transformer by a wood-pole-mounted 34.5 kV circuit breaker. This is the 33 kV switchyard. The 33 kV line runs underground through the plant and surfaces south of the main entrance gate where it continues overhead to the Bug line.

The plant has one 4160 -volt bus, A01, and two 480 volt buses, B01 and B02. The 4160 -volt bus services the following in the pilot plant through the 4160 volt switchgear:

Station service transformer, SX1, to 480 volt bus $B 01$
(to following through 480-volt switchgear)
Control building BL901 MCC (A or BOA)
Air compressors CP901,CP902; condenser hotwell pump P907; UPS; polishing demineralizer sump pumps P936, P937; receiver feed water lube oil pump P942; turbine lube oil pumps P926, P927; turbine lube oil heaters H901 A-F; condenser vacuum pump P910; turbine lube oil tank vapor extractor $\mathrm{P945}$; turbine lube oil centrifuge PR901; turning gear motor ME901; turbine lagging blower FA904; turbine hydraulic oil pumps P938A, P938B; caustic storage tank heater H904; gland steam exhaust pump P941; auxiliary boiler/TSS feed water pump P904; P901 cooling water pump; P919 caustic feed pump; P920 caustic feed pump; P935 acid transfer pump; P936 \& P937 polishing demineralizer sump pumps; P939 \& P940 sluice water pumps; P943 caustic transfer pump; H905 caustic day tank; and many motor operated valves.

Thermal storage feedwater pump P903
Raw/Service Water B1dg. BL702 MCC C 480 volts
Demineralized water transfer pump P710
Fire maintenance jockey pump P707
Raw/service water pump P703
Raw/service water pump P704
Primary electric fire pump P705
Raw/service water sump pump P715
BL702 Exhaust Fans EF2, EF3
45 kVA transformer to $480 / 277$ volts \& LP3 Lighting Panel
Perimeter \& Roadway Lighting
30 kVA xformer to $208 / 120$ volts \& PP3 Heat Trace Pane 1
EUH-5 through EUH-9
Transformer to $480 / 277$ volts \& PPA Tower L13 Power Pane 1
ACU-1
H-3
EUH-13
Receiver tower elevator HS701
Aircraft warning lights
Tower level 15 MCC 6 for BCS heat flux xducer
BCS fluid receiver pump P201
BCS target heat exchanger E201
BCS target heat exchanger E202
xformer to 208/120 volts \& PP1 Tower L13 Power Panel
ACU-2
H-4
ACU-3
Remote station panel RSP3
xformer to 208/120 V \& RSP1 Remote Sta. Pane 1
LP1 Lighting Pane 1
LP EMLI with Exide Centraus III HID Inverter (BL712)
Load Center A transformer to 480 volts
Charging \& extraction oil pumps P301-P304 w/starters, C.B. BL712 MCC B

Auxiliary extraction oil pump P305
TSS flash tank drain pump P307
Maintenance oil sump pump P718
Nitrogen supply unit SA701
Caloria make-up pump P306
$0 i l$ water separator unit SE701 with separator wastewater pumps P711, P712, separator sludge pump P716 and oil sump pump P714
TSU area sump pump P717
Motor operated valve MOV1030
Motor operated valve MOV1031
UMU blowers FA301, FA302; ullage pump P308
BL709 MCC 1 Motor Control Center
AHU-1
ACCU-1
EUH-10
$\mathrm{H}-1$
30 kVA xformer to 120/208 V \& PP4 Power Panel

BL710 MCC 2 Motor Control Center
AHU-2
ACCU-2
EUH-11
H-2
30 kVA xformer to 120/208 V \& PP5 Power Panel
BL712 MCC 3 Motor Control Center
AHU-3
ACCU-3
EUH-12
30 kVA xformer to 120/208V \& LP4 Lighting Pane 1
xformer to $120 / 208$ V \& PP2 Heat Trace Panel
Receiver tower welding receptacles
TSS skid, area welding receptacles
Receiver feed pump P917
Cooling tower transformer, CTX1 to 480 volt bus B02
(to following through 480 volt switchgear)
Circulating water pumps P905, P906
Administration building BL701
MCC (L or BOL) Motor Control Center
Cooling tower loads FA901, FA902, FA903, P930
Warehouse BL703
Transformer to $480 / 277 \mathrm{~V}$
Lighting pane 1 LP6
xformer to $240 / 120$ V \& PP6 Power Pane 1
Lighting panel LP7
xformer to 240/120 V \& PP7 Power Panel
Secondary fire pump building BL706 MCC-4
EUH-1
EUH-2
EF-1
5 KVA xformer to 120/240 V \& LP8 Lighting Panel
Heliostat feeder \#1 to 14 each xformer to 208/120 V
Heliostat Interface Load Interrupter Switchgear
112.5 kVA xformers to $208 \mathrm{Y} / 120 \mathrm{~V}$ \& Distribution Panel

Boards (14 each)
Heliostat feeder \#2 redundant as above
Auxiliary boiler B901
4160 to 120 volt transformer
WNW \& EES power panel PP8
Fan SF-1
South weather station power panel PP9
AHU-4
ACCU-4
EDH-1
DC Bus
P928 Turbine Lube 0 il Emergency Pump

APPENDIX I.2--LONG-LEAD PROCUREMENT. POWER AND CONTROL CABLES

The long-lead procurement of power and control cables was performed by S-R under contract to the SFDI. Most of the cables used in the plant were supplied in this manner. Other cable was provided by the electrical subcontractors for the heliostat field and the balance of plant as required. The table below shows the total feet of cable purchased by $S-R$, the total feet of cable used in the plant as identified, the difference in these two amounts, and the cost associated with this difference. The negative numbers indicate that these cables were supplied by other than the long-lead procurement. The positive delta feet indicate that either the cable was not identified by the author, or that excess cable was purchased and is available for use at the plant.

Long-Lard Procirement Power and Control Cables (onntinued)
The following listing shows the type of cable, size of cable, number of conductors, cost per foot of cable, the length of cable, and the cost of the cable used in various locations in the plant.

	Cable \#	condictors	Cost/Foot To	Feet T	Twer Cost	B710 Feet	B710 cost	B709 Feet	709 cost	TSS Feet	TSS cost
	600 Power 12	1/C	. 12	750	90.00						
	12	$2 C$. 415	300	124.50	85	35.21	86	35.27	10.00	4.15
	12	3/6	. 515	59	306.42	115	59.22	95	48.92	370.00	190.55
	10	$1 / \mathrm{C}$. 10842								
	10	20	. 55								
	10	210	. 82526								
	10	$3 / \mathrm{C}$. 685	80	54.80			40	27.40		
	10	4/C	. 26736								
	8	$3 / 6$	1.165	280	326.20	20	23.30	10	11.6		
	8	4/C	1.56106								
	8	4/C	1.7447								
	6	$3 / \mathrm{C}$	1.92	80	153.60						0.00
	6	4/C	1.62631								
	4	4/C	2.02947								
	2	$3 / \mathrm{C}$	3.29	460	1513.40	20	65.80			460.00	1513.40
	1/0	3/	4.685	80	374.80	25	1288.37	50	234.25		
	350	3 C	11.99	400	4796.0						
	500	$3 / 1$	16.175								
	5KV Power 20	$1 / C$	2.263							1560	3530.28
	5 N Power $2 / 0$	3/6	7.26106								
	Subtotal				7739.72		1471.97		357.50		5043.68
	Control 14	3/6	. 405	250	10.25	135	54.67	110	44.55	1040.00	42.20
	14	5/C	. 615	210	129.15	60	36.90	80	49.20	55.00	33.82
	14	7/	. 74	10	7.40	10	7.40	20	14.80		
	14	$9 / \mathrm{C}$. 96	60	57.00					65.00	61.75
$\stackrel{\rightharpoonup}{\sim}$	Subtotal				294.80		98.97		108.55		516.71
	Total				8034.52		1570.96		466.05		5560.45

Long-Lead Procurenent Power and Control Cables (continued)

cable	\#	condictors	$\operatorname{cost/Foot}$	SA311 Feet RS-	111 cost	SA304 Feet PS-	1304 cost	SA3C9 Feet RS	$A 3 c 9 \cos t P$	306 Feet Caloria	$06 \cos t$
6003 Power		$1 / 0$. 12								
	12	20	. 415	250	103.75	840	348.60	840	348.60		
	12	$3 / 1$. 515							250	128.75
	10	1/C	. 10842								
	10	20	. 56	380	209.00						
	10	210	. 82526								
	10	310	. 66			200	137.00	206	200.76		
	10	$4 / \mathrm{C}$	86736								
	8	36	1.165								
	8	$4 / \mathrm{C}$	1.56106								
	8	$4 / C$	1.747								
	6	$3 / 1$	1.98								
	6	$4 / \mathrm{C}$	1.62631								
	4	4/C	2.02947								
	2	3 C	3.29								
	1/0	3 C	4.606								
	350	3 C	11.99								
	500	3 C	16.175			320	5176.00	320	5176.00		
56 Power	20	1/C	2.263								
SN Power	$2 / 0$	3 C	7.26106								
Sutbotal					312.75		5661.60		5722.36		128.75
Control	14	$3 / \mathrm{C}$. 405	400	162.00	120	48.60	120	48.60		
	14	5/C	. 615			55	33.82			240	147.60
	14	7/	. 74			175	129.50	96	70.30		
	14	9 C	. 96					215	204.25		
Subtotal					162.00		21.92		323.15		147.60
Total					474.75		5873.52		6050.51		26.36

	Long-Lead Procarament Power and Control Cables (ontinued)										
Cable	\#	Conductors	Cost/foot	B72 Feet MC	$12 \cos t$		Hel. Cost		cost		tro Cost
600 P Power	12	1/C	. 12								
	12	20	. 415	190	78.85						
	12	$3 / 6$. 515	40	20.60						
	10	$1 / 0$. 10842								
	10	2 C	. 55								
	10	$2 /$. 82526								
	10	$3 / C$. 686	40	27.40						
	10	4/C	86736			112395	97486.92				
	8	3/C	1.165								
	8	4/C	1.56105					2400	3746.52	1850	2887.94
	8	4/C	1.744			3125	5452.18				
	6	$3 / \mathrm{C}$	1.98	50	96.00						
	6	4/0	1.62631			10605	17084. 38				
	4	4 C	2.02947			14645	27721.58				
	2	3 C	3.29	130	427.70						
	$1 / 0$	$3 /$	4.688	30	140.55						
	350	310	11.99								
	500	$3 / 6$	16.175								
5NS Power	$2 / 0$	$1 / C$	2.263			300	678.90				
SNV Power	$2 / 0$	$3 / C$	7.26106			9765	70904.15				
Subtotal					791.10		21388.14		3746.52		2887.94
Control	14	$3 / 1$. 405	180	72.90						
	14	5/C	. 615	140	86.10						
	14	7\%	. 74	10	7.40						
	14	9	. 5								
Subtotal					166.40						
Total					987.50		221388.14		3746.52		2387.94

Long-Lead Procarement Power and Control Cables (continued)

Cable	\#	condictors	cost/foot	Ft.	rep cost	Amp	FW Cost	PWW Feet PWSW Cost SA Inst Ft			Inst cost
6001 Power		1 C	. 12								
	12	20	. 415	949	393.83	300	124.50	620	257.30		
	12	3 C	. 515	150	77.25			480	247.20		
	10	10	.10842								
	10	2 C	. 55							1000	56.00
	10	$2 / C$. 82526								
	10	$3 / \mathrm{C}$. 685								
	10	$4 / C$. 86736								
	8	$3 / \mathrm{C}$	1.165	8	99.10						
	8	$4 /$	1.5106								
	8	$4 / C$	1.7447								
	6	3 C	1.92	250	480.00			30	57.60		
	6	$4 / \mathrm{C}$	1.62631								
	4	4/C	2.02947								
	2	$3 / \mathrm{C}$	3.29					30	98.70		
	1/0	3 C	4.68								
	350	$3 / 1$	11.99					800	9592.00		
	500	$3 / 0$	16.175								
5N Power	210	$1 \sim$	2.263			900	2036.70				
	20	3 C	7.26106								
Subtotal					1050.11		2161.20		10252.80		56.00
Contral			. 406						68.86		
	14	5/C	. 615	840	516.60	140	86.10	420	258.30	425	
	14	7¢	. 74	800	592.00			140	103.60	300	222.00
	14	9	. 95							180	171.00
Subtotal					3330.10		86.10		430.75		64.37
Total					4380.13		2247 -30		10683.55		1215.37

Lang-Lead Procurement Power and Control Cables (continued)

Cable	\#	Conductors	Cost/Foot	TTS Feet	TIS cost	CS Road Lt	Lite Cost		N2 Cost S \& Feet S \& I cost		
600 P Power		10	. 12								
	12	2¢	. 415	295	1213.87					10	4.15
	12	310	. 515	1090	561.35			350	180.25	506	260.07
	10	1/C	. 10842								
	10	2 C	. 55			575	316.25				
	10	$2 /$. 82526			12000	9903.12				
	10	$3 / C$. 686								
	10	4/C	206736								
	8	3 C	1.165								
	8	4/C	1.56105								
	8	$4 / C$	1.7447								
	6	3 C	1.92								
	6	$4 / \mathrm{C}$	1.62631								
	4	$4 / C$	2.02947								
	2	3 C	3.29	310	1019.90					150	493.50
	$1 / 0$	3 C	4.686								
	350	3 C	11.99								
	500	3 C	16.175								
SWY Power	20	$1 \sim$	2.263								
SW Power	20	$3 / \mathrm{C}$	7.26106								
Subtotal					279.12		10819.37		180.25		757.72
Control		$3 / 2$. 405	720	291.60						
	14	5/C	. 615	1090	670.35						
	14	7/C	. 74								
	14	90	. 96								
Subtotal					90.5						
Total					3757.0		10819.37		180.25		757.72

APPENDIX I.3--LONG-LEAD PROCUREMENT OF INSTRUMENTATION CABLES

The long-lead procurement of instrumentation cables was performed by S-R under contract to the SFDI. Most of the cables used in the plant were supplied in this manner. Other cable was provided by the electrical subcontractors for the heliostat field and the balance of plant as required. The table below shows the total feet of cable purchased by $S-R$, the total feet of cable used in the plant as identified, the difference in these two amounts, and the cost associated with this difference. The negative numbers indicate that these cables were supplied by other than the long-lead procurement. The positive delta feet indicate that either the cable was not identified by the author, or that excess cable was purchased and is available for use at the plant.

Cable	\#	Conductors	Ft Purch	Total Ft	Defta Ft	Del Cost
Instr 600V	16	1 pair	31000	23640	7360	1749.25
	16	1 triad	24000	25140	-1140	-526.65
	16	4 pair	3500	3655	-155	-148.68
	16	4 triad	4000	3715	285	570.00
	16	8 pair	7000	4005	2995	5153.73
	16	12 pair	4000	3190	810	2090.75
	16	20 pair	13500	2205	11295	48589.05
Belden	9283	Coaxial	5000	4720	280	73.64
Brand Rex	RG11	Coaxial	10146	8880	1266	3937.26
Brand Rex	RG22	Coaxial	4500	4160	340	255.23
Okonite	RG22M	Coaxial	190000	192230	-2230	-2472.53
TC Cable	16	1 pair	3000	0	3000	8109.00
	20	4 pair	2000	1470	530	1041.98
	20	20 pair	2000	1520	480	2909.76

Long-Lead Procurement of Instrumentation Cables (continued)
The following listing shows the type of cable, size of cable, number of conductors, cost per foot of cable, the length of cable, and the cost of the cable used in various locations in the plant.

Cable	\#	Conductors	Cost/Foot	$\begin{aligned} & \text { RS-1 Feet cost RS-1 } \\ & \text { B } 1950 \end{aligned}$		RS-2 Feet Cost RS-2 B1981		RS-3 Feet Cost PS-3 B 1952		RS-4 Feet Cost RS-4 B 1953	
Instr 6001	16	1 pair	. 2376	430	102.19	655	155.01			960	228.16
	16	1 triad	. 46198	10080	4656.75	5720	2642.52	7800	3603.44	1240	572.86
	16	4 pair	. 95925	560	537.18						
	16	4 triad	2.00								
	16	8 pair	1.72073	1620	2787.66	365	62.08	436	748.53		
	16	12 pair	2.58118	560	1445.46	1070	261.86	975	2516.65	60	154.87
	16	20 pair	4.30182	1000	4301.82	306	1312.05	720	3097.31	180	77.32
Beiden	9283	Coaxial	. 263	1120	294.56	800	210.40	480	126.24	2320	610.16
Brand Rex	RGIl	Coaxial	3.11								
Brand Rex	R622	Coaxial	. 7507								
Okonite	RGE2M	Coaxial	1.10876								
π Cable	16	1 pair	2.703								
	20	4 pair	1.966								
	20	20 pair	6.062								
Total					14125.64		770.60		10082.18		2340.37

Long-Lead Procurement of Instrumentation Cables (continued)

cable	\#	Conductors	$\operatorname{cost/Foot}$	TSS Feet	TSS cost	$\text { TSU } \mathbf{B F F}$	TSU Cost SA	Feet	311 Cost	Feet	$304 \cos t$
Instr 600	16	1 pair	. 2376	2770	688.34	400	9.06	300	71.30	415	98.63
	16	1 triad	. 46198					300	138.59		
	16	4 pair	. 95925	55	52.75	570	546.71	610	585.14	200.	28.18
	16	4 triad	2.00			3610	722000				
	16	8 pair	1.72078							250	430.19
	16	12 pair	2.58118								
	16	20 pair	4.30182								
Belden	9283	Coaxial	. 263								
Brand Rex	Rgal	Coaxial	3.11								
Brand Rex	RG22	Coaxial	. 750								
Okonite	R62am	Coaxial	1.10876								
IC Cable	16	1 pair	2.703								
	20	4 pair	1.966							50	98.30
	20	20 pair	6.062			1520	9214.24				
Total					71.10		17006.08		796.03		807.01

Long-Lead Procirement of Instrumentation Cables (omntinued)

Long-Lead Procursiert of Instrmentation Cables (continued)

Cable	\#	Conductors	Cost/Foot	SA30B Feet RS	$303 \cos t$	Hel Ctr	HCtr cost	BCS Feet	BCS Cost	St G Hel	St G Cost
Instr 6001	16	1 pair	. 2378					1040	247.17	520	123.58
	16	1 triad	. 46198								
	16	4 pair	. 95925								
	16	4 triad	2.00	40	80.00						
	16	8 pair	1.72073	80	137.66						
	16	12 pair	2.58118	40	103.24						
	16	20 pair	4.30182								
Belden	9883	Coaxial	. 263								
Brand Pex	RGIl	Coaxial	3.11					8880	27616.80		
Brand Pex	P62	Coaxial	. 7507			4160	3122.91				
Oknite	rezay	Coaxial	1.10876			172160	190884.12	4980	5521.62	2320	2572.32
TC Cable	16	1 pair	2.703								
	20	4 pair	1.966	120	235.92						
	20	20 pair	6.062								

Long-Lead Procimenent of Instrumentation cables (continued)

Cable	\#	Conductors	$\operatorname{cost/Foot~}$	Metro Ft	Metro Cost	Watt feet	Watt cost	Tower Ft	Tower cost	R PW Ft	R FW Cost
Instr 6001	16	1 pair	. 2376	1560	370.76	600	142.60	430	108.19	160	38.02
	16	1 triad	. 46198								
	16	4 pair	. 96985							800	777.40
	16	4 triad	2.00								
	16	8 pair	1.72073							240	412.98
	16	12 pair	2.58118								
	16	20 pair	4.30182								
Belden	9883	Coaxial	. 233								
Brand Rex	PGill	Coaxial	3.11								
Brand Rex	Rez2	Coaxial	. 7507								
Obonite	RGZ ${ }^{\text {a }}$	Coaxial	1.10876	9110	10100.80	3660	4058.06				
TC Cable	16	1 pair	2.703								
	20	4 pair	1.966								
	20	20 pair	6.062								
Total					10471.56		4200.66		102.19		1218.41

Long-Lead Procurenent of Instrumentation Cables (oontinued)							
Cable	\#	Conductor	Cost/Foot	Inst Ft	Inst cost	Feet	I Cost
Instr 6000	16	1 pair	2376			150	35.65
	16	1 triad	. 46198				
	16	4 pair	. 95925	80	76.74		
	16	4 triad	2.00				
	16	8 pair	1.72078	405	696.91		
	16	12 pair	2.58118	260	67.10		
	16	20 pair	4.30182				
Belden	983	Coaxial	. 263				
Brand Rex	RGll	Coaxial	3.11				
Brand Rex	P622	Coaxial	. 7507				
Okonite	p6zam	Coaxial	1.10876				
TC Cable	16	1 pair	2.703				
	20	4 pair	1.966	666	1307.39		
	20	20 pair	6.082				
Total					2752.15		33.65

REFERENCES

1. "Solar 10MWe Pilot Plant," brochure prepared by Solar One Visitor Center, Revision No. 1, May 1982, and Revision No. 2, May 1983.
2. "Overview of the Construction and Start-up of the 10 MWe Solar Thermal Central Receiver Pilot Plant April 1983," J. J. Bartel and P. E. Skvarna, SAND83-8021, June 1983.
3. "10 MWe Solar Thermal Central Receiver Pilot Plant: 1982 Operational Test Report," J. J. Barte1, SAND83-8027, November 1983.
4. "10 MWe Solar Thermal Central Receiver Pilot Plant, Solar Facilities Design Integration, Pilot Plant Station Manual (RADL Item 2-1)," SAN/0499-57, MDC G8544, December 1980, Revised September 1982.
5. "10 MWe Solar Thermal Central Receiver Pilot Plant, Solar Facilities Design Integration, Master Equipment List (RADL Item 2-19)," SAN/O499-84, MDC G9717, July 1982.
6. "Solar Thermal Central Receiver Cost Data Management System(CDMS), Software User's Guide," Polydyne, Inc., SAND 83-8175, in preparation.
7. "Solar Thermal Central Receiver Cost Data Management System(CDMS), Final Report," Polydyne,Inc., SAND 83-8176, in preparation.
8. "SCE Monthly Cost \& Schedule Report," March 1982.
9. Personal Conversations with Pilot Plant located personnel, D. Elliott (DOE), T. Olson (S-R), R. Gervais (MDAC), and C. Lopez (SCE), March 1984.
10. "10 MWe Solar Thermal Central Receiver Pilot Plant, Solar Facilities Design Integration, Fourth Project Design Review (RADL Item 1-5)," MDC G8508, SAN/0499-29, March 25-27, 1980.
11. Personal Conversations with MMC personnel, R. Facchinello and M. Frohardt on February 25, 1983, March 3, 1983, January 19, 1984, January 20, 1984, February 22, 1984, and February 24, 1984.
12. Personal Communication and Conversations with D. Fellows and C. Winarski (SCE) on March 3, 1983, December 19, 1983, and February 2, 1984.
13. "Lee Saylor, Inc. Current Construction Costs 1981," Lee S. Saylor, 18th Annual Edition, 1981.
14. "10 MWe Solar Thermal Central Receiver Pilot Plant Collector Field Electrical," Townsend and Bottum, Inc., TB-FB-96-80-JC50003, 1980.
15. "Manufacturing and Cost Analyses of Heliostats Based on the Second Generation Heliostat Development Study," H.F. Norris, Jr., and S.S. White, SAND 82-8007, December 1982.
16. "Sierra Pacific Power Company Repowering Advanced Conceptual Design," McDonnell Douglas Astronautics Company, SAN/11568-1, June 1982.
17. "Newman Unit 1 Solar Repowering Advanced Conceptual Design," El Paso Electric Company, SF11566-2, April 1982.
18. "Advanced Conceptual Design for Solar Repowering at Pioneer Mill Co., LTD.," Bechtel Group, Inc., DOE/SF/11567-1, May 1982.
19. "Advanced Conceptual Design for Solar Repowering of the Saguaro Power Plant," Arizona Public Service Company, DOE/SF 11570-3, April 1982.

UNLIMITED RELEASE

INITIAL DISTRIBUTION
U.S. Department of Energy (5)

Forrestal Building, Room 5H021
Code CE-314
1000 Independence Avenue, S.W.
Washington, D.C. 20585
Attn: C. Carwile
H. Coleman
S. Gronich
F. Morse
M. Scheve
U. S. Department of Energy (2)
P.O. Box 5400

Albuquerque, NM 87115
Attn: D. Graves
J. Weisiger
U. S. Department of Energy

Solar One Field Office
P.O. Box 366

Daggett, CA 92327
U.S. Department of Energy (2)

1333 Broadway
Oakland, CA 94612
Attn: R. Hughey
M. Lopez

University of California
Environmental Science and Engineering
Los Angeles, CA 90024
Attn: R. G. Lindberg
University of California
College of Engineering
Department of Electrical Engineering \& Computer Sciences
Berkely, CA 94720
Attn: 0. J. M. Smith
University of Houston
Solar Energy Laboratory
4800 Calhoun
Houston, TX 77704
Attn: A. F. Hildebrandt
AMFAC
P.O. Box 3230

Honolulu, HI 96801
Attn: G. E. St. John

```
ARCO Power Systems
7 0 6 1 ~ S . ~ U n i v e r s i t y , ~ S u i t e ~ 3 0 0 ~
Littleton, CO }8012
Attn: F. A. Blake
ARCO Power Systems
302 Nichols Drive
Hutchins, TX 75141
Attn: R. L. Henry
Arizona Public Service Company
P.O. Box 21666
Phoenix, AZ }8503
Attn: E. Weber
Babcock and Wilcox (3)
91 Stirling Avenue
Barberton, OH }4420
Attn: G. Grant
    M. Seale
    D. C. Smith
Battelle Pacific Northwest Laboratories (3)
P.O. Box }99
Richland, WA 99352
Attn: K. Drumheller
    J. Easterling
    D. Fitzsimmons
Bechtel Group, Inc.
P. O. Box }396
San Francisco, CA 94119
Attn: S. Fleming
Black & Veatch Consulting Engineers (3)
P.O. Box }840
Kansas City, MO }6411
Attn: J. C. Grosskreutz
    S. L. Levy
    J. E. Harder
Boeing Aerospace Co., Energy Systems
P.O. Box 3999, MS87-63
Seattle, WA 98124
Attn: W. D. Beverly
California Energy Commission (2)
1516 Ninth St., M/S 40
Sacramento, CA 95814
Attn: A. Jenkins
    M. Ringer
```

California Public Utilities Com.
Resource Branch, Room 5198
455 Golden Gate Ave.
San Francisco, CA 94102
Attn: T. Thompson
Combustion Engineering, Inc.
1000 Prospect Hill Road
Winsor, CT 06095
Attn: C. R. Buzzuto
Ecole Centrale des Arts et Manufactures
CNRS-GESER
Grande Voie des Vignes
92290 Chatenay
Malabry, France
Attn: C. Etievant
El Paso Electric Company
P.0. Box 982
El Paso, TX 79946
Attn: J. E. Brown
Electric Power Research Institute (2)
P.O. Box 10412
Palo Alto, CA 94303
Attn: J. Bigger
E. DeMeo
Elliott, S. D.
1801 Highway 128
Star Route 7550
Philo, CA 95466
Exxon Enterprises, Inc.
P.O. Box 592
Florham Park, NJ 07932
Attn: T. L. Guckes
Foster Wheeler Development Co.
12 Peach Tree Hill Road
Livingston, NJ 07039
Attn: R. J. Zoschak
Georgia Institute of Technology
Atlanta, GA 30332
Attn: C. T. Brown
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91103
Attn: M. Alper

```
Los Angeles Department of Water and Power
Alternate Energy Systems
P.O. Box }11
111 North Hope St.
Los Angeles, CA }9005
Attn: D. Chu
Martin Marietta Aerospace (3)
P.0. Box 179, MS L0450
Denver, C0 80201
Attn: R. Fachinnello
    M. Frohardt
    H. Wroton
McDonnell Douglas Astronautics Company
501 Bolsa Avenue
Huntington Beach, CA 92647
Attn: R. L. Gervais
    R. Riedesel
Meridian Corporation
5113 Leesburg Pike
Falls Church, VA 22041
Attn: R. King
01in Chemicals Group
(2)
120 Long Ridge Road
Stamford, CT }0690
Attn: F. N. Christopher
    L. C. Fiorucci
Pacific Gas and Electric Company
7 7 \text { Beale Street}
San Francisco, CA }9410
Attn: R. E. Price
Pacific Gas and Electric Company (2)
3400 Crow Canyon Road
San Ramon, CA }9452
Attn: G. Braun
    C. We inberg
Pioneer Mill Company (AMFAC)
P.O. Box }72
Lahaina, HI }9676
Attn: R. K. MacMillan
Polydyne, Inc.
1230 Sharon Park Drive, Suite 61
Menlo Park, CA 94025
Attn: P. B. BOS
```

```
Public Service Company of New Mexico P.O. Box 2267
Albuquerque, NM 87103
Attn: A. Akhil
Raymond Kaiser Engineers
P.O. Box 23210
Oak land, CA 94623
Attn: F. L. Harris
Rockwell International
Energy Systems Group
8900 De Soto Avenue
Canoga Park, CA 91304
Attn: T. Springer
Rockwell International
Rocketdyne Division
6633 Canoga Avenue
Canoga Park, CA 91304
Attn: J. Friefeld
Science Applications, Inc.
P.O. Box 2351
1200 Prospect Street
La Jolla, CA 92038
Attn: B. L. Butler
Solar Energy Industries Association
1140 19th St. N.W.
Suite 600
Washington, D.C. 20036
Attn: C. LaPorta
Solar Energy Research Institute (3)
1617 Cole Boulevard
Golden, CO 80401
Attn: B. Gupta
D. Hawkins
R. Hulstram
Solar Kinetics, Inc.
3300 Century Circle
Irving, TX 75060
Attn: J. A. Hutchison
Southern California Edison (5)
P.O. Box 325
Daggett, CA 92327
Attn: C. Lopez (5)
```

Southern California Edison (33)
P.O. Box 800

Rosemead, CA 92807
Attn: D. Fellows
J. N. Reeves
P. Skvarna (30)
C. Winarski

Stearns Catalytic (2)
P.O. Box 5888

Denver, CO 80217
Attn: W. R. Lang
T. Olson

Stone and Webster Engineering Corporation
P.O. Box 1214

Boston, MA 02107
Attn: R. W. Kuhr
Swiss Federal Institute for Reactor Research
$\mathrm{CH}-5303$ Wuren lingen, Switzerland
Attn: Dr. Paul Kesselring
Head Prospective Studies Division
Westinghouse Electric Corporation
Advanced Energy Systems Division
P.0. Box 10864

Pittsbugh, PA 15236
Attn: J. R. Maxwell
E. H. Beckner, 6000; Attn: V. Dugan, 6200
D. G. Schueler, 6220
J. V. Otts, 6222
R. S. Claassen, 8000; Attn: D. M. 01son, 8100
A. N. Blackwell, 8200
D. L. Hartley, 8300
C. S. Selvage, 8000 A
C. Hartwig, 8244
C. W. Robinson, 8245 (Actg.)
R. C. Wayne, 8400; Attn: L. D. Bertholf, 8430
H. Hanser, 8440
R. L. Rinne, 8470
J. J. Bartel, 8471
H. F. Norris, Jr., 8471 (10)
A. C. Skinrood, 8471 (25)
D. N. Tanner, 8471

Sandia Solar One Office, 8471
J. C. Swearengen, 8473
R. L. Rinne, 8475 (Actg.)

Publications Division 8265, for TIC (30)
Publications Division 8265/Technical Library Processes Division, 3141
Technical Library Processes Division, 3141 (3)
M. A. Pound, 8024, for Central Technical Files (3)

[^0]: *The selection of these non-recurring costs reflects the opinion of the author.

[^1]: *One example is the use of capital equipment and operating budget funds ($\$ 431,992$) for the special heliostat instrumentation and meteorological measurement system (SHIMMS).

[^2]: *To separate the total SCE engineering and construction cost into accounts comparable with other pilot plant costs, the engineering design cost is assumed in this report to be two-thirds of their total engineering and construction cost. The remaining cost is assumed to be for construction management. It is also assumed that the allocation of the engineering design and construction management costs are proportional to the amount of the purchases or the construction contracts costs. Since the total engineering and construction cost is approximately the same as the total purchases and construction contracts costs, the indirect cost is nearly the same as the direct cost.

[^3]: *Warehouse space at the Daggett airport, located about 2 miles east of the pilot plant, served as an assembly facility for the heliostat production.

[^4]: ${ }^{\star}$ See next page

[^5]: *Most of the various indirect costs are charged to the pilot plant heliostats for the one-time build. Actually, 1912 heliostats were produced, with 93 being sent to Spain for the IEA/SSPS plant and one being used for testing at the CRTF. The charges for the 93 heliostats sent to Spain were based on early predictions of the total heliostat prices, and thus did not account for the actual heliostat prices. The direct materials costs for these heliostats were close to the actual costs, but the labor and indirects were underestimated.

 The DOE provided a total of $\$ 1,115,027$ for the Spanish heliostat parts (or $\$ 11,989.54$ per heliostat) excluding computers, final assembly, shipping and installation; this total included $\$ 45,750$ for the glass. These charges were paid out of operating funds and are not part of the DOE capital costs for the pilot plant.

[^6]: *The equipment for the master control system is numbered with the 600 series being located in the control building equipment room, the 700 series being located in the control building control room, and the 800 series being located in the control building data aquisition room.

[^7]: *These specific costs (--) are unknown, but are included in the total cost shown.

[^8]: *The selection of these non-recurring costs reflects the opinion of the author.

[^9]: 875

