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Abstract

The part-load behavior of a typical 30-MWe SEGS plant was studied using a detailed
thermodynamic model. As part of this analysis, a new solar field model was derived, based
on measurement results of an LS-2 Collector and accounting for various conditions of
receiver tubes, lost mirrors and measured reflectivih.

A comparison was made of the model results to real plant conditions for a winter and

summer day in order to test the accuracy of the model. The effects of bare tubes. different
wind speeds, mirror reflectivity and other factors were studied showing, e.g.. that heat
losses due to wind are predicted to be very low The comparison also shows that the
model still lacks the capability to filly account for actual solar field conditions. The model
was also compared to the SOLERGY model. shoving differences between the
assumptions used in both models.

Finally different operating conditions of the plant were studied for a summer, fall, and
winter day to provide a better understanding of ho~~ changing solar field outlet
temperatures affect gross and net output of the plant. This clearly indicates that the lowest
possible superheating temperature maximizes the gross electric output. On a net basis this
conclusion is modified due to the high parasitic of the HTF pumps. It was found that the
optimum operating strategy depends on the insolation conditions, e.g., different
superheating temperatures should be chosen in summer, fall and winter. If the pressure
drop in the solar field is reduced due to replacement of flex hoses with ball joints,
increasing the HTF flow is more reasonable, so that at low insolation conditions the
lowest possible superheating temperature also leads to the maximum net output.















- an additional gas-fired boiler is also used to run the plant when no or insufllcient solar
energy is available.
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Fig. 1: Flow Diagram of a typical 30 MWe SEGS Plant (Miller, 1992)

Figure 2 shows how this flow cycle can be divided into components and streams in the
EASY model if pure solar operation is considered. In the model, the two parallel solar
heat exchanger trains shown in Fig. 1 are treated together and, for reasons of simplicity
and because the results aren’t affected much by this change, only the main three low
pressure (LP) preheater are considered in the Rankine cycle. Heat losses in all the piping
in the solar field and in those of the huge expansion vessel are accounted for by an
additional heat exchanger (named pipeLosses) at the outlet of the solar field.

As can be seen in Fig. 2 the model includes two leakage streams, one before the high
pressure (HP) turbine, the other before the inlet of the LP turbine. One intent was to study
the influence of increasing leakages, which was not done in this study but can be done
later if necessary. Since the condensate and the feed water pump are operated at constant
speed, the plant control valves are needed to reduce the pressure at the outlet of these
pumps. In addition to these two valves, another is installed at the inlet of the HP turbine to
control the main steam pressure if desired. Note that leakage and constant main steam
pressure are only included in the calculations to compare the results with design
calculations.
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3.2. Plant Parasitic and Pump Efficiencies

In characterizing the plant’s performance, the plant parasitic play an important role. In s -
the thermodynamic cycle, these are mainly those of the pumps and the cooling tower fans,
and only these are included in the calculation. All other parasitic have to be accounted for
“outside” the results; this study ignores them.

.

For the description of the part-load behavior of the pumps, it is assumed, that they reach
their optimum efficiency at the design flow rate - this is also assumed for all other
components of the plant such as turbine stages, heat exchangers, etc. This is not
necessarily true, but no better information was available for this study. No design
information was available on pump efilciencies, so reasonable values had to be used. The
efficiencies used in this analysis, which are adopted to the design data, are summarized in
Table 1.

Table 1: Pump Efficiencies

condensatePump
feedpump
oilPump
coolWaterPump

Description

Condensate Pump

Feedwater Pump

HTF Pump

CoolingWaterPump *

pump motor
etllcien efflcien

0.75 0.95
0.75 0.95

0.75 0.95

0.75 0,95

variable speed

drive efficiency

0.95

As there is no model for the cooling tower available in EASY yet, the power consumption
of the fans must be treated in the calculations by adding their parasitic to the parasitic of
the cooling water pump. This can be done by increasing the pressure drop of the cooling
water cycle so that the parasitic in design load are equal to the sum of the parasitic of
the cooling water pumps and the fans.

3.3. Simulation Results

Figure 4 shows the EASY result for the heat balance at 100’% pure solar (VP4) operation.
Comparing the results with the design conditions (Fig. 3), it can be seen that most of the
water-steam conditions in the Rankine cycle match the design heat balance quite well. This
is, of course, not possible for those locations where inconsistent data (as mentioned in
Chapter 3.1) were found.

Considerably different from the design conditions and also from real plant operation is the
HTF flow rate predicted by the EASY model. The reason for this is that the specific heat
capacity of the HTF included in EASY’ is slightly higher than actual, resulting in a lower
mass flow rate through the solar field. However the part load predictions shouldn’t be
affected by this if the lower mass flow rate is considered as a “numerical design value”.
Then temperature and pressure drop dependencies are again treated accurately.

‘The functions included in EASY to describe the properties weren’t changed during this study since only an
executable was provided by ZSW.

6



The predicted parasitic of the pumps are given in Table 2. The values are close to the
design parasitic of the HTF pump and a little too low for the balance-of-plant equipment.

Table 2: Calculated Pump Parasitic

CalculatedParasitic Design Values, MWe
MWe (Kearney et al., 1989)

condensatePump + feedpump 0.19+0.88=1.07 1.50
oilPump (HTF Pump) 1,56 1.60
coolWaterPump 0.99 0.91

Due to the necessary adaptation of the LP turbine stage efficiency, the gross electric
efficiency of the predicted Rankine cycle is 38.20/o; this is a little higher than the 37. 5?i0
presented in the technical description. The net energy output at 100’XOsolar operation
becomes 31.4 MWe.

In Table 3 all the component design parameters are summarized, It shows that the
roughness of the solar field piping, including the effect of flex hoses, is calculated to be
1.9mm and that the efficiencies of the turbine stages are within a reasonable range.

Table 3: Design Parameters adopted by EASY (see Section 4)

solarField. 1 = 753. 6000 [m] ; solarFi. eld. di —— 0.0650 [m];
solarField. da —— 0.0700 [m] ; solarField . roughness = 0.0019 [m];
solar Field .numberOf Pipes = 50.0000 [-] ; solarField. tAmb —— 30.0000 [”c];

feedWaterTank. kpCold = 20.6848 [-] ; feedWaterTank. kpHot = 1127 .5664 [-];

( kpcold,
( [-1/

oil Preheater :132.5543,
oilsuperheater :132.5543,
oi.l Reheater :135.0186,
hpPreheaterl :860.8224,
hpPreheater2 :397.6629,
lpPreheaterl :491.0749,
lpPreheater2 :134.4515,
lpPreheater3 :124.1091,
Condenser 0.4824,

kpHot , A+k Or
[-1, [ kW/K] ,

0.8956, 48.8084,
0.5971, 282.2158,
8.7249, 478.9268,

28479, 839.8529,
154930, 663.1151,

720.4526, 456.7598,
5094.1179, 642.3171,

48907, 191.7188,
0.5171, 7418.6914,

mHoto ,
[kg] ,

316.9956,
316.9956,

47.8779,
5.5334,
2.9089,
4.4831,
3.3778,
1.7612,

31.0949,

mColdO) ;
[kg/s]);
38.8435;
38.8435;
33.1081;
38.8435;
38.8435;
31.0949;
31.0949;
31.0949;
1133.6929;

oilBoiler.kpCold = 132.5543[-]; ( etasO, mFeedO);
oilBoiler.kpHot = 1.4927[-]; ( [-1, [kg/s]);
oilBoiler.A —— 2699.1843[mA2] ; condensatePump : 0.7125, 31.09;
oilBoiler.kO = 1.000[kW/mA2/K]; feedPump : 0.7125, 38.84;
oilBoiler.mHotO = 316.9956[kg]; oilPump : 0.6769, 364.87;
oilBoiler.mColdO = 38.8435[kg]; coolWaterPump : 0.7125, 113369;

( mFeedO,
( [kg/s],

hpTurbinel :38.6415,
hpTurbine2:35 .7326,
lpTurbinel:32 .8068,
lpTurbine2 :30.7936,
lpTurbine3 :29.0324,
lpTurbine4:27. 4158,
lpTurbine5:26. 6117,

pFeedO,
[bar] ,

100.0000,
33.6100,
17.1000,

7.9770,
2.7280,
0.9625,
0.2868,

pDrainO,
[bar] ,

33.6100,
18.5800,
7.9770,
2.7280,
0.9625,
0.2868,
0.0800,

etasO,genPower) ;

[-1, [kW]);
0.8376, 7643.538;
0.8463, 3480.355;
0.8623, 5730.183;
0.9170, 6697.607;
0.9352, 5045.830;
0.8800, 4505.279;
0.6445, 2979.683;
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4. Modeling Part Load Characteristics of Components

The second step in modeling the plant is to define the parameters that describe the part
load characteristics of the components. Here it is necessary to know about the models
included in the calculations. These are described briefly in the following section starting
with the solar field, the most important one.

4.I. Solar Field Thermal Performance

4.1.1. LS-2 Performance Equation

The solar field thermal performance model is based on tests conducted by Sandia National
Laboratories for an LS-2 Collector on the rotating platform (Dudley et al., 1994). From
the results of these tests, efllciency equations were derived for HCES with vacuum, air in
the annulus, or for bare tubes as a fbnction of fluid temperature, incident angle, insolation
and, for bare tubes, of wind speed.

In defining the thermal efficiency, ~~h, of the collector as the ratio of absorbed power
(in ‘%), Q,~,, to the direct normal insolation, I (in W/m2), the general equation

q,~=~=K[/f +B(AT)]+C;+I$
I

(1)

was found to be adequate for the description of all HCE conditions except for bare tubes.
In this equation, A accounts for the optical efllciency of the trough and the absorptivity of
the selective coating without considering the losses at the end of a collector row (see
Chapter 4.2). B, C and D describe the heat losses of the HCE dependent on its conditions

with AT as the temperature difference between the HTF and the ambient in degrees
Kelvin, The incident modifier, K, is a function of the incident angle Ia:

K = COS(@ - 0.0003512( la) - 0.00003137(@2 (2)

For bare tubes, no dependency on insolation was found but there was a strong influence by
the wind. The following equation is given for Cermet as the selective coating:

q~a,, = 74.7- 0.042( AT) - 0.000731(AT)2 - 0.00927 (AT)vWi,ld (3)

which can be transformed to a form similar to Eq. (1)



1 “
(

)1

q~ar, = K 7~– 0,042+ 0.00927% (AT) +O(AT)=0.0Q073 ~(AT)2

‘L c:. Dbar.

Bbm,

Table 4 summarizes the parameters as they were found in the test results.

Table 4: LS-2 Thermal Performance Coefficients

A B c D

Cermet, vacuum 73.3 -0.007276 -0.496 -0.069 I
Cermet, air 73.4 -0.004683 -14.40 -0.0637
Cermet, bare 74.7 -0.042 -O.00927*W%JK 0.00 -0.000731 *I
Black Chrome, Vacuum I 73.6 I -0.004206
Black Chrome, air 73.8 -0.006460

4.1.2. Solar Collector Assembly End Losses

The efficiency equations derived by Dudley et al.

I 7.44 I -0.0958
-12.16 -0.0641

(4) ‘ -

i

(1994) do not include the end losses of a
parabolic trough row. These are simply a fhnction of the focal length, ~ of the collector
and the incident angle, Ia, as shown in Fig. 5.

sun

\

f

4

Fig. 5: End Losses of a Collector Row

The receiver length, z, which is not illuminated by the sun, then is

z = ~ tan(la) . (5)

Relative to the total length, l~cA,of the solar collector assembly (SCA), the amount of heat

concentrated on the whole receiver tube therefore has to be reduced by the factor M

~=kCA-z = ~_ y tan(la)

1~~/j kCA

(6)
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M has to be included in Eq. (1) so that this becomes2

qt~=KX4[A+B(AT) ]+ C;+r)$ (7)

4.1.3. Performance Equation Considering Different HCE Conditions

In the calculations carried out in this study, not every HCE in the solar field is treated
separately. Only a single element with a performance equation like Eq. (1) is used. The
parameters for this equation therefore have to account for the different HCE types found
in the field as well as for broken mirrors and, what has not been mentioned yet,
“fluorescing” tubes. For the latter HCE type, the coating is defective and partially coats
the inner wall of the glass envelope which then reflects the concentrated light so that no or
only a little sunlight reaches the absorber tube. This means that such HCES, which still
cause heat losses, can be approximated by using zero for factor A in Eq. (1). The same is
true for HCES whose mirrors are broken,

Another important factor to be included in the calculations is the cleanliness of the

mirrors, $M. Measurements show that the reflectivity of the mirrors drops considerably

between two washing cycles without rain. The measured data can be used to get $M by
comparing it to the maximum reflectivity achieved right after a wash - which is about
90.5’%0for the LS-2 Collector (Kolb# , 1994):

m~ =
actual reflectivity

(8)
maximum rej?ectivip

Dirt also reduces the transmittance of the glass envelope, but no information is available
on that. A reasonable assumption, however, is that the cleanliness or the reduction in
transmissivity of the mirrors and the glass envelopes is about the same. Since light has to
pass two times through dirt on the mirrors (reflective side at the back of the glass) and one

time through the glass envelope, the cleanliness factor for the
calculated by

@~ =
l+m~

2“

Finally, when setting up the parameters for the performance

each HCE type must be weighted. Considering the percentage

glass envelope, & can be

(9)

equation, the influence of

vi of HCES of a particular

2 As an example for an LS-2 Collector (f= 1.49m, l~cA= 47.1 m), the factor M becomes 94. !)~o at noon on January 1

(Ia = 580).

# see footnote 5, page 20
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state and the assumption that all types of HCES are distributed homogeneously over the
solar field this can be done by3: z.

[

AFje[d = ABare ~Bare +@E ~Ai~i

)
( )1– ~Lost Mirrors m~my (lo) “ *

i,i+Bare

BFie[d= ~Bi ~i (11)
i

cF1e[~= ~cl ~1 (12)
i

DField = ~Di ~1 (13)
i

with ($Aas an additional factor that can be used to vary the overall optical efficiency or

modi$ the overall absorptivity and ~LOStMi~~~as the percentage of broken mirrors

throughout the solar field. Note, that

~ vi = ~C,Vac + ~BC,Vac + ~C,air+ ~BC,air+ ~bare+ ~J7uor = (14)

1

applies (with C= Cermet, BC=Black Chrome).

4.2. Piping and Expansion Vessel Heat Losses

In the operation of a distributed solar power plant, the heat losses in all the piping are
important and have to be included in the model. Additionally, the heat losses in the
expansion vessel, which has a large surface area, should be included in the calculations.
Both heat losses are treated in the EASY model through the heat exchanger named
“pipeLosses” at the outlet of the solar field, as shown in Fig. 2.

Both heat losses are considered to be temperature dependent, which is different from the
SOLERGY model, where a constant solar field outlet temperature is assumed. The
following dependency was implemented in the model

QHeatLosses = QPiping + QExpamicmVessel

= 20———
Ai?sF A$SF

5
AsF ‘+2.57 kfwfh —

343°c 275° C

(15)

3 Example: If 88% of the HCES are intact, 3.0% contain air, 7.4% are bare tubes, 1.6% have defective coatings and
O.18%’0 of mirrors are broken the performance parameters for HCES with Cermet become: A=72. 1,

B =-0.00977 -0.000686 vWmd / K, C =-0.8786, D =-0.0638 - 5.4094e-6 * I

12



Here, heat losses of all the piping of 20W per square meter aperture area, AsF, are
assumed at fhll solar power at a mean solar field temperature above ambient of about

A$SF = 343° C (649”F) (Kolb, 1994). The radiation and mixed convection heat losses of

the expansion vessel were estimated to be 2. 57~th at 300”C (572°F) field outlet

temperature (275°C mean field temperature) assuming poor insulation conditions
experienced in the plant under consideration in 1994.

4.3. Turbine Stages

EASY accounts for changes in the efficiencies of turbine stages during part load by

modi&hg the design efficiency q,o dependent on the pressures p 1 and pz at the inlet and
outlet of the stage:

[)
2

ZL=l+a Plf Plo _~
vs. P2 I P20

(16)

with plo and p20 as the design values. In the calculations only a slight dependency for all

stages, u = 0.1, is assumed. The pressure difference over a turbine stage is calculated by

m’ P? -Pi—= (17)
rno2 P?o – P:o

4.4. Heat Exchangers

In all heat exchangers, the pressure drop, Ap, of every stream is proportional to the square
of the mass flow rate:

Ap=kprn2 (18)

As a first-order estimate kP is assumed to be constant and is calculated based on the
pressure drop known at design conditions. The heat transfer coeticient k between the hot
and the cold fluid is described as linearly dependent to the two mass flow rates by

k“
- km

[

ml /rnlo +rnz /rnZo

~- 2 )
+( I–km) (19)

with the dependency factor k. and ~ as the design value. In this study km= 1 was used so

that the heat transfer coefficient is proportional to the mass flow rates.

13



4.5. Pumps

In a system like the SEGS plant, many pumps are used for different purposes and in a J .
variety of configurations. Some of them are operated in parallel, others, such as the HTF
pumps, are connected in series. Additionally, different operating modes of the pumps such - ,
as constant speed or variable speed operation are used.

An example of a complete characterization of a centrifugal pump, including iso-ei%ciency
curves, is shown in the upper diagram of Fig. 6 (Lazarkiewicz et al., 1965). Since no
better information was available for the pumps in the system, this was taken as the basis
for the calculations.

In Fig. 6 the head H of the pumps is plotted as a fimction of flow rate Q for speeds
varying from O.5n and 1.3n and the iso-efficiency curves are eliptical curves with the
optimum efflciency4 of 80’%0at design conditions (H/EL=l 00’XO,Q/Qn=l OOO/O).The
parabolas through the origin represent curves of similar flow conditions. Figure 6 shows
how the efficiency of a pump operated at constant design speed can be derived. This is
done by plotting the efficiencies found along the constant-speed path for different flow
rates, as shown in the lower diagram in Fig. 6.

It is also possible to derive a complete characterization of two variable-speed pumps that
are operated in series, where one of those is bypassed until a particular flowrate is
achieved (Fig. 7). If two pumps are operated in series, the flow rate through both of them
is the same and each pump has to provide ~f the head necessary to pump the flow
through the system. If the system pressure drop is a finction to the square of the flow
rate, curve A-B-C-D in Fig. 7 then represents the head of one of the two pumps operated
in series. If only one pump is used in the system at low flow rates, this pump has to
provide the u head, which is represented by curve A-E-F.

The corresponding efficiency curves for the two operating strategies are plotted in the
lower diagram in Fig. 7. These show that an optimum efficiency is reached if two pumps
are operated in series down to mass flow rates of about 70°/0. Below that, only one pump
should be operated.

In EASY, the thermal efficiency, qs, of a pump at part load conditions is described as a

fimction of mass flow rate by

7s –e
~. +2(1–em0

[)
)l-(l-emO) E 2

Tlso rno rno
(20)

with q,O as the efficiency of the pump at design conditions, rnOas the design mass flow rate

and e~0 as a parameter defining the shape of the efllciency curve. For constant speed

pumps %0= O is a good choice because the calculated eficiency corresponds to the

4This optimum efficiencyis valid for the special case shownin the diagram.It has to be modified dependent on the
pump under consideration(i’s~. as shownin Table 1).
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characteristic shown in the lower diagram in Fig. 6 for lower than design mass flow rates.
A mean eiliciency curve for the two HTF pumps in series can be described by %0 = -0.4.
With the parasitic power calculated for the HTF pump at design flow (1. 56MWe, Table
2), this leads to Table 5 if constant HTF properties are assumed.

Table 5:Parasitic power consumed by the HTF pump

(%. = -0.4, P~,,o.1.56MWe)

Flow [%] I1OO 175 150 125

Parasitic we] 1.56 I 0,72 1 0.30 1 0.12

Fig. 6: Complete characterization of a centrifugal pump, including iso-efficiency
curves, in a two-dimensional system (Lazarkiewicz et al., 1965).
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5. Validation of the Model

In order to validate the model, its results are compared in the following first to the part-
load conditions predicted in the technical description (Kearney et al., 1988) and then to
the real plant behavior. After that, the energy balances are compared to what SOLERGY
predicts in order to evaluate how differences in the model’s assumptions influence them.
This gives hints for fiture improvements to the models.

5.1. VP2 and VP3 Solar Operation Mode

The technical description includes ABB predictions for the part load conditions of the
Rankine cycle for rated and derated solar and hybrid operation assuming a constant main
steam pressure and equality in temperature of main steam and reheat steam. As described
in Chapter 2 the pure solar, VP4, mode was used as the design case for this study. Now,
as the parameters for the description of the part load conditions of the plant have been
defined, it is also possible to compare the EASY results to the predictions of the technical
description for the other solar cases.

As the solar field is not included in these calculations, the solar field conditions (mass flow
rate and insolation) are predicted by the model to meet the output power. Figures 8 and 9
show the results for the VP3 and VP2 solar-mode as predicted by EASY.

Comparison of EASY results with predictions of the technical description show that the
flow conditions and the heat balances are generally close to each other. Nevertheless,
there are small differences in the flow rates which are, again, due to the difhculties in
defining the LP turbine efllciency for the fourth stage mentioned in Chapter 3. Besides
this, the agreement between the two models is good, which means that both models for
the Rankine cycle are similar.

5.2. Comparison to Real Plant Operation

Since in a real plant not only transient effects but also changes in the operating strategy
play an important role, a comparison of the steady-state EASY model to real plant data is
much more complicated. In addition, the solar field conditions are also subject to change
and the actual reflectivity of the mirrors throughout the field are only approximately
known as are the field locations of HCEs with broken glass envelopes or lost vacuum.

In comparing results to real plant data, it is possible to show how different field conditions
affect the results. This study shows how the results compare to the real plant conditions
for a summer and a winter day. This allows first the optical performance model and then
the heat loss assumptions to be validated, since the latter influence the results much more
in the wintertime than on a summer day.
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5.2.1. Clear Summer Day . .
Figure 10 shows the insolation conditions and the wind speed measured during a clear
summer day. For this day, the plant behavior was predicted with EASY assuming different
field conditions as shown in Table 5 and a constant superheating of the main steam in - -
every case. Case S 1 finctions as the base case for all the calculations. For this prediction,
as much information as possible about the solar field conditions for that day were
included. The mean reflectivity of the solar field is set to 87. 10/0and a wind speed of 1m/s
(2.2mph) was chosen, which was valid until about 11 a.m. The second case S2 considers a
somewhat reduced absorptivity of all bare tubes due to degradation of the selective
coating (Mahoney, 1994). Cases 3-5 are based on this, from which case S3 shows how an
additional reduction in the absorptivity of all receiver tubes influences the result
(Mahoney, 1994), S4 shows the effect of increased wind speed, and S5 shows the effect of
increasing piping heat losses.

In Fig. 11 the actual, measured gross electric output of the plant is compared with the
EASY results. In the EASY calculations, start-up of the plant is not modeled, and no
thermal energy is stored in the solar field; this causes the simulation results to be different
from the measured data at the beginning and end of the day. No comparison is therefore
possible for these times. It can be seen that the model predicts too high an output for all
cases but case S3 and that S5 gets close to the actual output.

In comparing the predictions for different wind speeds (cases 1 and 4) with the real plant
behavior, it can be seen that the convection losses of bare tubes do not have much
influence on the output. On the other hand, this means that generally the optical
parameters or the thermal losses of all HCES or the piping heat losses must be worse than
estimated. But here a small change greatly influences the results, as indicated by the
differences between cases S2 and S3.

Figures 12 through 15 compare temperatures and pressures predicted by the model for
case S3 (for which the predicted gross output is closest to the measured one) with actual
plant data. In Fig. 16 the parasitic predicted for the different cases with the actual plant
data are shown. Generally a very good agreement between the model and the real plant
behavior is found. Major differences only occur for the steam pressures at the inlet of the
HP turbine. Here the model predicts about 10 bar more than actually found in the system,
which is is not surprising since the model was not fine-tuned to the plant and it seems that
the turbine has a higher capacity than assumed in the feasibility study.

5 The optical efficiency has to be scaled by the reflectivity experienced in the solar field compared to the reflectivity
assumed for the test collector during the tests. The latter was first assumed to be spray-washed, resulting in a
typical cleanliness of 96.3% or a reflectivity of 90. SYO achieved afier a wash. However, after finishing the

calculations, it was found, that the test collector was hand-washed, resulting in a better cleanliness of the mirrors.

Assuming that the test collector had a reflectivity of about 93.0% the calculated gross output therefore has to be
multiplied by a factor of 97.3°/0, resulting in a better comparison to the real, measured output.
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Table 6: Case definitions for the summer day

s] 88.8% with vacuum
2.8?+owith air
6.2% bare (wind speed 1 m/s=2.2mph.)
1.6V0with defectivecoating
0.6’%0affectedby coolingtowerproblem(5 SCAo/s)
().2.7’%0 of mirrorsbroken, 100.0 ‘Yo of SCAS tracking
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Mirror Reflectivity 87. 1%

S2 case S 1 with an additional reduced absorptivity of bare tubes
to 75°h due to degradation

S3 case S2 with additional “field degradation factor” 95°/0

S4 case S2 with stronger wind (41n/s=8. 8mph)

S5 case S2 with increased piping heat losses (40 W/m2)
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Fig. 10: Insolation and wind speed during a clear summer day.
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5.2.2. Clear Winter Day

Figure 17 shows the insolation conditions and the wind speed for a winter day. Again
calculations were made for this day assuming different solar field conditions, as
summarized in Table 6, and a constant superheating of the main steam.

Figure 18 then shows how the gross output predicted by the model for the different cases
match the actual measurements. Out of this all predictions can be seen to be too high even
at a generally reduced absorptivity of all HCES6 (case W4). A time-shifl of about half an
hour can be seen between the predictions and the real output due to the time delay of the
solar cycle and the heat exchangers.

There are three possible explanations for the high predicted output:

●

●

●

First, the HCE absorptivity or the optical efficiency might be lower than for case W4.
But this would reduce the output too much for the summer day as shown by case S3 in
Fig. 11.

The second explanation is that the solar field conditions, such as the reflectivity, the
number of broken mirrors or the number of bare tubes, are worse than known. But for
the winter day, the solar field conditions could be defined more accurately than for the
summer day, since better information was available for that period.

Third, the piping losses, which are assumed to be temperature dependent, are
underpredicted by the model (see Chapter 5.3 for the influence of constant piping heat
losses on the result for a winter day). Here a more detailed study is necessary to find
out the real losses. In the calculations, it was also difficult to define the heat losses of
the expansion vessel since its actual condition was not exactly known.

Considering the summer day, a combination of reduced optical eficiency and higher
thermal losses might be adequate to represent the real conditions. Comparing the
predicted temperatures and pressures for case W3 with the measured data (Figs. 19
through 22), again, temperatures are seen to be close to the actual and HP-Inlet pressure
is higher than observed. Finally, the predicted parasitic (Fig. 23) show the same tendency
as the gross output and are a little too high.

Table 7: Case Definitions for a Winter Day

Case I HCE/Field Conditions
W1 87.3%withvacuum,3.0%with air, 7.5% bare (wind 1 m/s=2.2mph),

1.6’%0with defective coating, 0.6’% affected by cooling tower problem (5 SCA o/s)
0.34% of mirrors broken, 100.0 % of SCAS tracking, Reflectivity 90.5%

W2 additional assumption that absorptivity of bare tubes
is reduced to 75°/0 (degradation)

W3 stiongerwind (2rn/s=4.4mph)
W4 sameas case W3 with additionalfield degradationfactorof 9fO/O

Wlo same as case W3 with increased piping heat losses of (40 W/m2)

d As noted in footnote5 on page 20, the results shouldbe scaledby 97.3%.Consideringthat, case W4 represents the
actual conditions best. Consideringhigher piping losses, the results then will be close to the actual, measured
output
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5.3. Comparison with SOLERGY-Results

By comparing the EASY results with the SOLERGY model,

15 16 17

clear summer day.

the influences of the

18

different
assump~ons used in the two models can be seen. It is also possible to show clearly how
the results are affected by changes in the operating conditions. In SOLERGY, in ‘which
only energy balances are used for the calculations, it is assumed that the heat losses of the
solar field and all the piping are constant for all loads. For the solar field, 20MWth was
used in the calculations based on an estimate of the actual number of broken and low
vacuum HCES for Cermet and black chrome. For the piping 3. 7MWth was used.

For comparative purposes, the EASY model was adapted to the SOLERGY parameters
so that the solar field losses were the same at design load. To achieve 20MWth in EASY,
Cermet for the selective surface and lost vacuum was assumed for all HCES. For the
piping heat losses, a constant value of 3.7MWth was implemented in EASY.

In Fig. 24, the power absorbed by the solar field during a winter day is shown as it is
predicted by SOLERGY and with the EASY model for three different operating
conditions. The first operating mode considered by the EASY calculations is that the HTF
flow rate is held constant at the design value. Second, a constant field outlet temperature
is assumed and the third, most realistic assumtion is that the superheating of the main
steam is held constant for all loads. The corresponding HTF temperatures at the inlet and
outlet of the solar field predicted by EASY for these three cases are shown in Fig. 25.
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Fig. 24: Absorbed power calculated by SOLERGY and EASY for a winter day.

As can be seen, the power absorbed by the solar field is highly influenced by the operating
mode. It decreases with increasing HTF temperatures, which is reasonable since the heat
losses of the solar field increase under that condition. For the case with constant design

outlet temperature, which is assumed in the SOLERGY model, the EASY results compare
well with the SOLERGY results.

The gross output predicted by the two models is shown in Fig. 26. Again, the three
different operating modes mentioned above are presented. Now small differences occur
between the two models for a constant field outlet temperature, indicating that the
Rankine cycle efhciencies are different between the two models. Since the solar field
losses calculated with EASY decrease if the outlet temperature decreases, these
differences increase at the other two operating modes and the gross output is higher for
those cases.

The net output is plotted in Fig. 27. Again the two models are close to each other at
constant field outlet temperature. It is also obvious that the differences between the net
output predicted for the three operating modes are smaller than for the gross output. This
is due to higher parasitic of the HTF pump needed at higher HTF flow rates with lower
field outlet temperature. Therefore, the case using a constant HTF flow rate, which shows
the highest gross output power (Fig. 24), is, on a net basis, less than on a gross basis. But
this changes with the load as can be seen in Fig. 27, where a constant field outlet
temperature produces the lowest net output at the lowest load at noon, but at the higher
load at morning and evening this is as high as at a constant superheating of the steam.

. .

.
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6. Efficiency Optimization by Changing the Solar Field
Outlet Temperature

The following section shows how different operating conditions influence the resulting
output of the SEGS plant and how the efllciency can be optimized by changing the solar
field outlet temperature. The comparisons are made for three characteristic days - a
summer, a winter and a fall day. The same solar field conditions as in Chapter 5 are used
for calculations of the summer and winter day; those for the fall day are adopted to the
plant conditions found on that.

6. I. Summer Day

Figure 28 shows the gross output of the plant for a summer day. In this, S2 refers to the
plant conditions summarized in Table 6. These are also used for cases S6 and S7, where
only the operating conditions are changed. In case S6, the superheating of the steam is
reduced to 50”C (90’’F), in case S7 the solar field outlet temperature is held at its
maximum of391 “C (736°F) with superheating temperatures between 65°C (117°F) at noon
and 93°C ( 168”F) at 6 p.m. This compares to 59 ‘C ( 106”F) superheating at the design
conditions, which is used for case S2.

Obviously, for a summer day, the gross output of the plant is the highest at the lowest
superheating temperature of 50”C (90”F), for which the steam quality at the exit of the
turbine reaches 90%, and the lowest at the maximum HTF temperature of 391 ‘C (736”F).
Integrating the results over the day - neglecting start-up and shut down times - and

comparing the results to each other, the gross output of case S6 is 1.6°/0 higher than
predicted for case S2 and 2.6% higher than at the maximum HTF temperature.

The net output of the plant for the three operating conditions is compared in Fig. 29.
There, the lower superheating of case S6 is no longer the best, in fact, the net output then
is 3.7% lower than at the maximum HTF temperature. The reason for that lies in the high

parasitic consumed by the HTF pump in case S6 as shown in Fig. 30, which are probably
already beyond its limits. But this is not indicated by the results; the HTF flow rate is
predicted to be close to the maximum flow rate of the pumps.

Summarizing the results, it seems that a high solar field outlet temperature always
produces the highest net output due to high Rankine cycle efficiencies or, what is more
important, low HTF pump parasitic. But the differences, relative to a constant
superheating of the main steam of 59 “C ( 106~), are smaller at a lower load in the
morning and the evening (Fig. 29). But over the day the net output is still 10/0higher than
in case 2.

7A trapezoidal integration method was applied herefore.

33



. .

— Case S2 (dTsup=59C=106F): 296.5 hI?vW(gross)

---I -- Case S6 (dTsup=50C=SOF): 301.4 tvWvh(gross)

Case S7 (Toil=391 C=736F): 293.7 M (gross)

8 9 10 11 12 13 14 15 16 17 18

Time [h]
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f

,/
,,-

//’:
/’

/’ :
/’

~~~~ .~

‘Case S2 (dTsup=59C=l 06 F): 267.8 MWh (net)

D-- Case S6 (dTsup=50C=90F): 260.5 MWh (net)

Case S7 (Toil=391 C=736F): 270.4 MWh (net)
—

A.. f-u-----+

1

8 9 10 11

Fig. 29: Net output for different

-
-i

-.
‘i

I

\
‘,

‘.

‘7

\

\\\\\
.. ’\\-

\
t

12 13 14 15 16 17 18

Time [h]

superheating temperatures on a summer day.

34



3.0

2.5

2.0

1.5

1.0

0.5

-1I I------ ---- -i
S.

s., .

‘i
7-

/

/’/
,/’

-

‘\
\
\
I

/
.. .....:....-

‘Case S2 (dTsup=59C=l 06F)

------ Case S6 (dTsup=50C=90F)

O ~~~Case S7 (Toil=391 C=736F)

8 9 10 11 12 13 14 15 16 17 18

Time [h]

Fig. 30: HTF pump parasitic for different superheating temperatures on a summer day

35

/

/

25

\

L
20

15

‘Case S2 (dTsup=59C=l 06 F): 274.9 MWh (net)

---D-- Case S6 (dTsup=50C=90F): 273.6 MWh (net)

O ~~~Case S7 (Toil=391 C=736F): 274.8 MWh (net)

1

8 9 10 11 12 13 14 15 16 17 18

Time [h]
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One change made in the existing plants is that flexible hoses are replaced with ball joints
every time a flex hose has to be replaced. The pressure drop in the solar field is predicted
to be reduced by approximately 44% afier all flex hoses are replaced (KJC Operating - “
Company, 1994). The question then is how this changes the net output at the different
operation conditions. As shown in Fig. 31, the differences between the cases are very .
small under such conditions. Cases S2 and S7 produce nearly the same net output, and
case S7 is only O.5°/0 lower over the day.

6.2. Winter Day

For a sunny winter day, Figs. 32 to 34 show the results for case W2 (dTsup=59 OC=l06°F,
Table 6), compared with higher and lower superheating temperatures, cases W6-9 and
case W5 respectively.. Again, on a gross basis, the plant produces the highest output at
the lowest superheating temperature and a decreasing one with increasing superheating of
the main steam. On a net basis (Fig. 33) it can be seen that case W2 is the optimum
operating mode. It produces a slightly, O.10/0higher net output than case W6, about 0.7°/0
more than case W5, and about 3 .4°/0more than case W9. If the pressure drop in the solar
field is reduced this changes so that the operating conditions of case W5
(dTsup=50°C=900F) produce 0.5% more electricity than case W2 (dTsup=590C=1060F)
and 1.15% more than case W6 (dTsup=67°C=121T).
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Fig. 32: Gross output for different superheating temperatures on a winter day.
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Fig. 37: Net output for different superheating temperatures on a fall day
(50% reduced solar field pressure drop).

6.3. Fall Day

For a day in fall, the results show the same tendency as seen before on a gross basis (Fig.
35) but now an optimum superheating temperature (67°C=l210F) with a maximum net

output can be found (Fig. 37). This means that for operating conditions in the middle load,
the superheating should be increased compared to the design value but should not be
chosen as high as possible. At reduced HTF pump parasitic, a small increase in HTF flow
rate relative to the design conditions leads to a higher net output.

6.4. Summary

Table 8 summarizes the relative changes of the gross and net output of the plant for the
different operating conditions. In all cases, the gross output reaches its’ maximum at the
lowest solar field outlet temperature, and a strong dependency on the HTF temperature is
found. On a net basis it is found that, depending on the time of the year, different
superheating temperatures should be chosen. In summer, the highest possible HTF

temperature is the best operating mode, but this changes in fall, when it should be
decreased somewhat. By doing this, about 1.5% more net electricity could be produced
compared to an operation with maximum HTF temperature. But the superheating should
still be slightlt increased over the design value. At low load such as on a winter day, it can
be seen that the superheating should be chosen at the design value or slightly higher.
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temperature should also be reduced; a constant superheating at the design value is found
to be the best here.

Summarizing the results, it can be said that the EASY model agrees well with the real
plant conditions but needs to be refined. Some work is also necessary to improve the

,

performance model for the solar field and the thermal loss model for the piping.
.

.
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9. Appendix A: Diagrams using English Units
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