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ABSTRACT 

A technique has been developed whereby the number of 
columns and rows of parabolic solar collectors required 
to achieve a given task can be determined for steady 
state operational conditions. 
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SELECTION OF PARABOLIC SOLAR COLLECTOR 
FIELD ARRAYS 

Introduction 

Among the numerous problems which must be addressed in the design, layout, and control 
of a parabolic solar collector field are the number of rows and columns of the parabolic solar 
collectors required to achieve a given task. There are many influencing factors, including the 
required liquid temperature rise, the volume flow rate, the temperature of operation, external 
environmental conditions, collector design, and solar tracking technique. 

This particular problem has been analyzed rather thoroughly by Lee, Schimmel, and 

Abbin, 1 However, the analysis excluded wind losses and collector design variations, In addition, 
the noted work was not reduced to a set of design curves. The purpose of this study is to analyze 
the influence of varying solar insolation, collector design variations, and external environmental 
conditions, and to present the material in such a manner that selection of field arrays can be 
easily made as a function of differing requirements. 

Analyses of Field Arrays 

Limits 

It is obvious that when there is no liquid flow through a solar collector field, the energy 
collected, or collector efficiency, is zero. One can also imagine the situation in which the liquid 
must be pumped through an array at such a high velocity that the pump work required due to 

friction losses could equal the energy absorbed by the collectors. Both situations are obviously 
undesirable, but they illustrate the approach taken in the present analysis, which is to select 
arrays that will operate within acceptable flow limits. The object is to establish flow rate limits 

which permit adequate energy collection and have acceptable pump losses. 

In order to accomplish this, most factors which are normally considered as variable must 
be held as constant for the moment (e.g. wind velocity, sink temperature, receiver tube size, 

etc. ). Furthermore, certain limits of validity must be assumed for the results to allow a more 
compact presentation. For example, the total hemispherical emittance of an absorber coating 
changes slightly with operating temperature. In this study, as will be shown, it is reasonable to 
assume that the results are not significantly affected by the variations in operating temperatures. 

Evaluation Designs 

The basic collector design selected for analysis consists of a 2. 745 x 3, 66 m (9 x 12 feet) 

parabolic reflector with a 90° rim angle. 2 The receiver tube design is shown in Figure 1. The 
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calculated tube diameter is 1.67 inches. 2 The glass envelope annulus is approximately 0.35 in. to 

prevent convection losses across the unevacuated gap. This study was conducted without a vacuum 

in the gap. 

148,000 (REF)-------

INTERNAL PLUG 

GLASS JACKET 

Figure 1 

As a variation in the design, internal tubular plugs to force annular liquid flow within the 

receiver tubes are also included. Although plugs will cause lower Reynolds numbers, the change 

in the hydraulic diameter results in an increase in the film coefficient of heat transfer and there-

fore a higher collector efficiency. 

The reflectance of the mirror surface is important. For this study, two values were used, 

p = O. 68 and p = O. 78. A measured specular reflectance, within a 10 milliradian solid angle, of 

Alzac * specimens is O. 683 ; O. 78 represents the reflectance of a material yet to be defined. 

The fluid used for this study is Therminol 66 t , a liquid used in heat transfer applications. 

* Alcoa 

t Monsanto Industrial Chemicals Co. 



Computer Code 

4 The analysis was conducted with the use of the code developed by M. W. Edenburn. The 

code was modified slightly (Appendix A). This code analyzes heat balances along incremental 

lengths of the receiver tube. In this analysis, the collector axis was always normal to the sun. 

As will be seen, this approach allows nonnormality to be handled through simple manual 

calculations and therefore allows the results to be applicable to either north-south or east-west 

collector orientations since the analysis considers one collector at a time. 

Determination of Minimum Acceptable Flow Rate 

The results of a number of computer runs for a given set of conditions as listed in the 

legend are portrayed on Figure 2. Inspection of Figure 2 reveals that the efficiency curves, in 

general, have a significant slope change in the vicinity of a volume flow rate equal to O. 00008 

m 3 / sec. The effect of internal plugs is to permit slower flow for the same efficiency as non-

plugged receiver tubes. The efficiency relates directly to the energy absorbed in the collector 

fluid [e.g., 1003 : 2 ( ;sJec) (2. 743m) (3. 658m) (50% efficiency) = 5032 s:c energy absorbed} 

therefore, it is very desirable for the volume flow rate to be such that the efficiency remains 

to the right of the knee in Figure 2. 
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Legend: 

O. 042~)m OD receiver tube; O. 0396m I. D. 
2. 743m x 3. 6fHlm collector 90° rim angle 
a :: 0 0 !J3. E = 0 0 3, p = 0. 70 
25°C sink temperature 
2. 2 m/ sec wind velocity 

Legend: 

1•11/16 on receiver tube 1.5575 11 I.D. 
9 x 121 coilector; uo0 rim angle 
(I = 0. 95, E = 0. 30, P = 0. 78 
77° sin-k temperature 
5 mph wind 
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If the minimum flow rate is limited to 0. 00008 m 3 / sec, it is observed that a 10°c tempera-
W 

ture change of the liquid in the receiver tube cannot be obtained with a solar insolation of 315 - 2- • 

an insolation of approximately 475 would be required (see intersection of dotted lines). 
m 

m 

A collector requiring a temperature rise of 10°c could be operated between insolation limits of 
m3 m3 

475 .Yi_ and 1003 .Yi_• 2 2 
with corresponding flow rates between 0. 00008 -- and 0. 00028 --sec sec 

m m 

If it is assumed that Figure 2 applies to collectors connected in series, a series of 10 non-

plugged collectors, with a flow of 0. 00028 m
3 

and solar insolation of 1003 W2 • can achieve a sec m 3 
100°c temperature rise. At an insolationof 757 W2 and a flow rate of 0. 00040 • 20 collectors sec m 
in series will achieve a 100°c temperature rise. 

Once the required temperature rise through a string of collectors is established, inspection 

of Figure 2 permits determination of the number of collectors in series and the flow rate limits. 

In Figure 3, the mirror reflectance has been lowered when compared to Figure 2 data. 
The minimum flow rate should still be 0.00008 m 3 • A review of Figure 3 shows that for inso-

. 2 sec 
la hons between 5 99 W / m and 915 W / m 2, 2 0 collectors in series could be operated at flow rates 

between 0.00026 m 3 /sec and 0.00045 m 3/sec and 10 collectors in series could be operated at flow 

rates between 0.00012 m 3/sec and 0.00022 m 3 /sec to maintain a total temperature rise of 100°c. 

In essence, the minimum acceptable insolation determines the lowest flow rate and options for the 

number of collections in series. As can be judged from Figure 3, 20 collectors in series can 

operate at lower insolation levels than 10 in series without going below a flow rate of 

0.00008 m 3 /sec. 

In for foregoing examples, the data on Figures 2 and 3 have been assumed to be valid for 

approximately a 100°c range. This is not an unreasonable assumption, as will be illustrated 

through the use of Figure 4. This figure illustrates changes in efficiencies and temperature 

changes due to collector operation at temperatures other than 260°C (500°F). Inspection of 

Figure 4 reveals a linearity of the l::,,.T curves and a slight nonlinearity in the efficiency curves. 
3 For example, at a flow rate of O. 000285 m /sec: 

Eff. 204°C 

Eff. 316°C 
59.9% l 
51.5% 

10.0° vs .,1T 260°C 

Eff. 55. 7% vs Eff. 260°C 
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55.lo/o 



40 

35 

30 

25 

':.::i 20 

15 

JO 

2 
EFFICIENCY BAND 915W/m 
EFFICIENCY BAND - 757 Win/ 
EfflCIENCY BAND 599 Wlm2 

"--..,,.__ __ ..1 T BAND 915 Wim2 z ,,-~..-----,1 T BAND - 757 W/m 
~-,..__,"1:-.---"'-~.M BAND - 599 Wim2 

NO PLUG TO • 03le m DIA PLUG 
NO PLUG TO .0318 m DIA PLUG 

NO PLUG TO .0318 m DIA PLUG 

50 

45 

40 

35 

30 >-u z w 
u 
W-w 

5 -------------

0 

40 

35 

30 

25 

20 

15 

10 

5 

0 

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 
VOLUME Fl.OW RATE (m3/sec x lif) 

Legend: Legend: 

0.0413m OD receiver tube; 0.038m I.D. unpluggt-d 
2. 74'.3m x 3. 658m collector, 90° rim augle 

1 5/8 11 OD receiver tub~ 1. 495 11 I. D. 
!:1 1 x 12' collector 90° rim angle 

C, C o. 95 f C 0, 25 p C o. 68 
2s 0 r:: sink temperature 
4, :J m/ ::;Cc wind velocity 
2GIJqC start temperature 

0 4 8 12 

Legend: 

Figure 3 

C, C 0, 95, f C 0, 25, p C 0, 68 
77°C sink temperature 
10 mph wind 
500°F slart temperature 

Solar Input= 290 Btu ft 2 hr; 240 Btu/ft2 -hr; 190 Btu/ft2 -hr 
1Plug: 1.~5 11 dia. 

EFFICIENCY@ 204''c OPERATING TEMPERATURE NO PLUG 
I - - - - - - - - - - - - - - - - - - --- 60 

EFFICIENCY AT 260°C O~ERATING TEMPERATURE NO PLUG 
-- ----------------- 55 

EFFICIENCY@ 316°COP~RATING TEMPERATUR_E _ !JQ__PJ.U_§ __ 

I 

VOLUME FLOW RATE )m3/sec x 105, 
I 

16 20 24 28 32 36 
Legend: 

40 

u 
w... w... w 

48 

50 

45 

40 

35 

30 

25 

20 

52 56 

Oo 0413m OD receiver tube; O. 038m I, D, unplugged 
2. 743m x 3. 658m reflect; 90° rim angle 

1-5/8 11 OD receiver tube 1. 495 11 I, D. 
9' x 12 1 collector, 90° rim angle 
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Figure 4 
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10 

As has been illustrated, the 260°C plots from Figures 2 and 3 can be used within minimal 

.1T error for a collector string inlet temperature range from 204°C to 316°C. A small error 

may accrue if the efficiency data are used. 

Determination of Maximum Allowable Flow Rate 

If some fraction of the energy collected, say 1 percent of the maximum, is allowed for 

pump work to drive the liquid through the collectors, the maximum velocity and volume flow rate 

can be established as shown in Appendix B. The pump work limit, for liquid flow through a 

collector using the results from Appendix B, is shown in Figure 5. Using the presented data, the 

maximum allowable flow is 0.00258 m 3 /sec. Should a 0.0318 m plug be used, the maximum allow-

able flow would be 0.000661 m 3/sec. 

These data hold for contiguous collectors. Should collectors be separated as in a north-

south field layout, in which each collector individually tracks the sun, the interconnecting fluid 

lines between them would lose energy due to thermal losses and pumping losses. An approxima-

tion of these losses, which results in decreasing the maximum allowable flow rate, is also shown 

in Figure 5.* East-west contiguous collectors will also have some line thermal and pump losses 

but not of the magnitude of the north-south arrangement. 

The result of these considerations is that more collectors, for a horizontal surface con-

struction, can be used in an east-west string than in a north-south string due to these inter-

connecting line losses. Each situation must be individually calculated to determine its flow limits; 

however, 20 collectors in an east-west series appear feasible before the 1 percent limit is exceeded. 

For the collector design given in Figure 3, the resulting pump work calculations are as 

shown in Table I. In the situation of Condition 7, 20 collectors in series would exceed the 1 percent 

energy limitation. 

* By comparison of the pump limits and the pump and line loss limits 
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TABLE I 

Pump Work Calculations for Data From Figure 3 

1% Energy Desired 
Plug Solar Available Liquid Allowable Max Desired Max Liquid 

Diameter Insolation To Pump Velocity Flow Rate Flow Rate Velocity 
Field Array (m) (W/m") (w/collector) (rn/sec) (m3/sec) (m3/sec) (m/sec) 

10 Collectors 0 915 7.07 1. 77 0.002021 0.000216 0.19 
In Series 

0 599 4.07 1.47 0.001680 0.000125 0.11 
0.0318 915 7.30 1. 22 0.000418 0.000224 0.66 
0.318 599 4.27 1.01 0.000346 0.000130 0.38 

20 Collectors 0 915 7.21 1. 78 0.002033 0.000440 0.39 
In Series 

0 599 4.21 1. 49 0.001700 0.000255 0.23 
0.0318 915 7.33* 1. 22 0.000419 0.000445 1.30 
0.0318 599 4.33 1.01 0.000347 0.000265 0.78 

* Need exceeds 1 % energy limit. 

Energy to 
Pump to 

Achieve Needs 
(w/collector) 

0.008 

0,002 

1. 15 

0.224 

0.075 

0.015 

8.99* 

1.90 
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For the conditions considered, 20 collectors in series are probably the maximum number 

which should be used. The determination of the number of parallel rows then is then calculated by 

dividing the total energy needs by the energy gain from one string of collectors in series. 

The data shown in Figures 2 through 5 are based upon normal insolation. These data are 

applicable to conditions other than normal insolation by applying the cosine angle effect, There-

fore, north-south collectors that are not fully sun-tracking and east-west collectors can still 

be analyzed using these Figures [e.g. with the sun at a 41 ° angle from normal, the insolation 

would be (1003 W/m2) (0. 75471) or 757 W/m2]. 

Summary 

A technique has been developed whereby the number of columns and rows of collectors, 

north-south or east-west, required to achieve a given task can be determined. This technique 

is based upon the establishment of a minimum volume flow rate, for the conditions considered, 

of 0. 00008 m 3 / sec because of a collector efficiency decrease. It also permits the establishment 

of a maximum volume flow rate, for the conditions considered, of approximately 0. 00045 m
3 

/ sec. 

This limit is based upon an arbitrary pump work and line thermal loss amount. Extrapolations 

and interpolations of these results can be performed depending upon the establishment and use 

of other designs and conditions. 
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APPENDIX 13 

Velocity and Pump Work Calculations 

A. NO PLUG 

Energy into Liquid 

Collector Surface Area: (9 ft x 12 ft)= 108 ft 2 (10. 029 m 2 ) 

Maximum Solar Insolation: 318 Btu/ft2-hr (1003 W/m2 ) 

Intercepted Energy: 318 (108) = 34344 Btu/hr 

(9853. 2 W) 

(Figure 2) 10 Collectors in Series; No Plug; Flow of 

0.00028 m 3 /sec; Efficiency= 54.1% 

Energy Gain in Liquid: (0. 541) (34344) = 18580.1 Btu/hr 

(5443. 41 W) 

Pump Work 

@ 1 % Energy for Pump Work: (0. 01) (18580. 1) = 185. 80 Btu/hr 

(54.4 W) 

@ 17% Turbo-Generator Efficiency: (0. 17) (185. 80) (778 ft-lb/ Btu) 
3600 sec/hr 

= 6. 83 ft - lb/ sec (9. 26W) 

Energy Available for Pump Work @ 78% pump Efficiency: 

(6. 83) (0. 7 8) = 5. 325 ft-lb/ sec (7.22W) 

Velocity Determination 

Mass Flow Rate x Head Loss = Available Pump Work 

lb X ft = ft-lb 
sec sec 

(pAV) x 4_ DL V
2 )l = 5. 325 ft-lb (7. 22W) 

\ 2g sec 

where: 

lb 3 
p = 50. 46 - 3 (810 kg/m ) 

ft 

2 
A= 11 (O. l 2979 ft) = 0. 01323 ft 2 (0. 00123m2 ) 

4 

f = o. 017 2 

1. Dercy-Weisbach form of head loss equation. 
2. Per L. F. Moody, ASME Transactions Vol. 66, No. 8, Nov. 1944, page 671. 
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ft 2 2g = 64. 34 --2 (1. 96 m/ sec ) 
sec 

L = 12 ft (3. 658m) 

D = 0.12979 ft (0. 0396m) 

(50. 46) (0. 01323) (0. 017) (12) 
(O. 12979) (64. 34) 

v3 = 5. 325 ft-lb (7. 22W) 
sec 

3 3 3 
V = 326. 49 ft / sec 

V = 6. 886 ft/ sec (2. 099 m/ sec) 

Allowable Flow Rate for 1 Percent Limit 

3 3 Q = AV= (0. 01323) (6. 886) = 0. 091 ft / sec (0. 00258 m / sec). 

B. 1. 25 IN. DIAMETER PLUG 

Energy into Liquid 

Collector Surface Area = 108 n2 (10. 029 m
2

) 

Maximum Solar Insolation = 318 Btu/ft2-hr (1003 W/m
2

) 

Intercepted Energy= 34344 Btu/hr (10062. 84W) 

(Figure 2) 10 Collectors in Series, 1. 25 In. Dia. Plug, Flow of 

O. 00028 m 3 I sec; Efficiency= 55. 6o/o 

Energy Gain in Liquid: 0. 556 (34344) = 19095. 3 Btu/hr 

(5594. 91 W) 

Pump Work 

@ 1 o/o energy for Pump Work: (0. 01) (19095. 3) = 190. 95 

Btu/hr (55. 95W) 

(0.17) (190. 95) (778) 
@ 17% Turbo-Generator Efficiency: 3600 

7.015ft-lb (9.51W) 
sec 

Energy Available for Pump Work @ 78o/o Pump Efficiency: 

(7.015) (0.78) = 5.472 ft-lb (7.41W) 
sec 



Velocity Determination 

( AV) x ff .l::_ V
2

) = 5. 472 ft-lb (7. 41 W) 
P De 2g sec 

where: 

p = 50. 46 lb/ft3 (810 kg/m2 ) 

2 
A = 0. 01323 ft 2 = 11 (O. ~042 ) = 0. 00471 ft 2 (0. 00044 m 2 ) 

f = 0. 026 

2g = 64. 34 ft/ sec2 (1. 96 m/ sec2 ) 

L = 12 ft (3. 658m) 

De = Do-Di = 0, 02563 ft (0, 0078m) 

(50. 46) (0. 00470 (0. 026) <12) v3 = 5• 472 
(0. 02563) (64. 34) 

v3 
= 121. 69 

V = 4. 955 ft/ sec (1. 51 m/ sec) 

Allowable Flow Rate for 1 Percent Limit 

3 3 Q =AV= (0.00471) (4,955) = 0.0232 ft /sec (0,000661 m /sec) 
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