SAND78-7044 Unlimited Release UC-32 Distribution

Deterministic Insolation Model Program Description and User's Guide

E. P. French

Prepared for Sandia Laboratories under Contract No. 07-6971

Published February 1979

Rockwell International Atomics International Division 8900 DeSoto Avenue Canoga Park, CA 91304

Issued by Sandia Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Printed in the United States of America

Available from
National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

Price: Printed Copy \$5.25; Microfiche \$3.00

PROGRAM DESCRIPTION AND USER'S GUIDE

By
E. P. FRENCH
Rockwell International Corporation
Space Division

Atomics International Division 8900 DeSoto Avenue Canoga Park, California 91304

CONTRACT: FAO 07-6971, UNDER AT(29-1)-789

ISSUED: JULY 1978

FOREWORD

This is the computer program description and User's Guide for the Deterministic Insolation Model Program, developed under the Department of Energy (DOE) Contract EY-76-C-03-1210 [formerly, Energy Research and Development Administration (ERDA) Contract E(04-03)-1210]. The contract effort was performed by Rockwell International Corporation's Atomics International (AI) Division, and was monitored by Dr. R. W. Harrigan of Sandia Laboratories under the direction of Mr. J. E. Rannels, DOE Program Manager.

This documentation for the Deterministic Insolation Model was funded by Sandia Laboratories, Albuquerque, New Mexico, through Federal Agency Order (FAO) 07-6971 to AI. The AI program manager was Mr. S. J. Nalbandian. Dr. E. P. French developed the program at Rockwell's Space Division, in support of the above-mentioned contract effort, and is the author of this document.

CONTENTS

			Page
1.0	Intr	roduction	5
2.0	Prog	gram Description	6
	2.1	Extraterrestrial Solar Radiation	6
	2.2	Estimation of Direct (Beam) Radiation During Noncloudy Times	6
	2.3	Estimation of Diffuse Radiation	7
	2.4	Effect of Cloud Cover	8
	2.5	Evaluation of Clearness Numbers and Cloud Factors	8
		2.5.1 Application of the Model to Compute Daily Average Insolation	8
		2.5.2 CN Evaluation From Daily Averages of Total Horizontal and Direct Insolation	10
		2.5.3 CN Evaluation From Total Horizontal Insolation and Assigned Cloud Factor	11
	2.6	Calculation of Radiation Incident on a Tilted Flat Collector	11
	2.7	Calculation of Radiation Incident on Single-Axis Tracking Collectors	12
3.0	User	's Guide	14
	3.1	Input Requirements	14
		3.1.1 Local Insolation Inputs for Module I	15
		3.1.2 Other Inputs for Module I	17
		3.1.3 Inputs for Module II	17
		3.1.4 Inputs for Module III	17
	3.2	Output Options	17
		3.2.1 Operation With and Without Printer	17
		3.2.2 Output for Module I	18
		3.2.3 Output for Module II	18
		3.2.4 Output for Module III	19
	3.3	Program Limitations	19
		3.3.1 Limitation on Input Values	19

CONTENTS

																				Page
		3.3.2	Availab	ility	and	Cons	ist	ency	y 0 [.]	f I	nso	lai	tio	n D	ata	ì.				21
		3.3.3	Applica	tion 1	to Tr	ansi	ent	Si	nu 1 a	ati	on.		•							23
	3.4	Sample	Problem	s																23
		3.4.1	Energy	Incide	ent o	n a	Two	-Ax	is .	Tra	cki	ng	Со	11e	cto	or				24
		3.4.2	Energy Tracker												•				•	25
		3.4.3	Total E	nergy	Inci	dent	on	a	Fla	t C	011	ec:	tor						•	26
4.0	Progr	rammers	Informa	tion											•					27
	4.1	Hardwa	re Requi	remen	ts .															27
	4.2	Execut	ion Time																	27
	4.3	Program	n Conver	sion															•	27
	4.4	Program	n Listin	gs and	d Flo	w Ch	art	s.		•										27
5.0	Inst	allatio	n Enviro	nment						•										37
	5.1	Electr	ic Power																	37
	5.2		ic Cards																	37
Refe		·																		38
	sary																			39
	•		te and I														•	•	•	A-1
				•		TA	ABLE	S												
1.	Seas	onally	Varying	Solar	Radi	atio	n P	ara	met	ers										7
2.	Data	Storage	e Struct	ure .				•												14
3.		•	ent Ener n Aerosp					•			ant	s.	•				•		•	20
4.	Dail	y Incide	ent Ener	gy Pr	edict	ions	Ba	sed	on	th	e (li li	mat	ic	At	las	5			20
5.	Dail	y Incide	ent Ener	gy Pro	edict	ions	Ba	sed	on	S0	LME	T	Tap	es	•	•	•			22
						FIG	GUR	ES												
1.	Sign	Convent	tions fo	r Lat	itude	and	l Co	11e	cto	r T	ilt	: .								16

1.0 INTRODUCTION

This report describes a simple mathematical model for estimating the monthly average insolation experienced by a fixed or tracking collector. It was developed under ERDA Contract E(04-3)-1210 "Commercial Applications of Solar Total Energy Systems." (1)* It is designed to fulfill the need for a rapid, economical method of assessing the availability of solar radiation as a basis for site selection and system performance estimation. It attempts to make maximum use of predictable factors, introducing random factors associated with local weather in the simplest way possible.

The method lends itself to a formulation in terms of simple mathematical expressions and is suitable for use by hand calculators and small computers. It has been implemented by a three-module program written for the Texas Instruments SR-52 Programmable Slide-Rule Calculator, as described herein. The same mathematical model has been incorporated into the Fortran Program STESEP. (2)

The model described here is intended for the rapid, approximate analysis of solar systems. It does not take the place of the SOLMET data base $^{(3)}$ which provides, in a single FORTRAN compatible tape, quality controlled hourly insolation and meteorological data for representative sites throughout the United States.

^{*}Numbers in superscript parenthesis refer to references

2.0 PROGRAM DESCRIPTION

2.1 EXTRATERRESTRIAL SOLAR RADIATION

Solar radiation reaching the top of the earth's atmosphere may be predicted quite accurately. Its intensity is a near constant (I_{SC}) modified only by a small correction (R) which takes into account the effect of seasonal variations in the earth-sun distance. According to Reference 4, this distance correction is approximately

$$R = 1.0 + 0.033 \cos (360 \text{ n}/365)$$
 ...(1)

where n is the day of the year. (See glossary for definition of symbols.)

The angle of incidence on a horizontal surface (zenith angle, θ_Z) depends upon the geographic location (latitude, ϕ), the solar declination (δ) and the local solar time as measured by the hour angle (h).

$$\cos \theta_z = \sin \delta \sin \phi + \cos \delta \cos \phi \cos h$$
 ...(2)

The solar declination is a function of the day of the year (n) and is given approximately by

$$\delta = 23.45 \sin [284 + n (360/365)]$$
 ...(3)

Monthly values of R and δ are the declination given in Table 1.

2.2 ESTIMATION OF DIRECT (BEAM) RADIATION DURING NONCLOUDY TIMES

On noncloudy days most of the extraterrestrial radiation penetrates the atmosphere with small change in direction. A portion of the initial radiation is absorbed by molecular atmospheric constituents; another fraction is scattered out of the beam direction by molecules, droplets, and suspended solid particles. The attenuation, which depends upon the concentration of absorbers and scatterers in the atmosphere, can be considered to have a local component and a general component which exhibits systematic seasonal variations.

TABLE 1
SEASONALLY VARYING SOLAR RADIATION PARAMETERS

Date	R	δ (degree)	(A/I _{SC})	В
January 21	1.031	-20.0 -10.8	0.909 0.897	0.142
February 21 March 21	1.021	0.0	0.876	0.156
April 21 May 21	0.989	+11.6	0.839 0.815	0.180
June 21	0.968	+23.45	0.804	0.205
July 21 August 21	0.969	+20.6 +12.3	0.801 0.818	0.201
September 21 October 21	0.999	0.0 -10.5	0.850 0.881	0.177
November 21 December 21	1.026	-19.8 -23.45	0.902	0.149

The ASHRAE Handbook of Fundamentals $^{(5)}$ presents a semitheoretical expression for direct normal radiation (I_{DN}) which follows this approach. It is expressed in terms of an apparent extraterrestrial irradiation (A) and an extinction coefficient (B) based on air mass.

$$I_{DN} = CN \cdot A \cdot exp(-B/cos \theta_z)$$
 ...(4)

where I_{DN} is the irradiation on a surface normal to the beam. The term (A) includes both the effects of upper atmosphere and of variable earth-sun distance. Table 1 gives monthly values of A, nondimensionalized by I_{SC} , and B, based upon empirical data from Reference 5. These values have been used in the numerical results reported here. The factor (CN) is a "clearness number" which characterizes the average local transmittance of the atmosphere. It may exhibit seasonal variations, but is considered constant during each individual day.

2.3 ESTIMATION OF DIFFUSE RADIATION

A certain amount of the radiation scattered by atmospheric constituents and cloud surfaces reaches ground level from directions other than that of the direct beam. The amount of this diffuse radiation received in a complicated function of the state of the atmosphere, the sun's position, ground reflectance,

and surface orientation. The diffuse component is estimated by means of two simplifying assumptions: that the diffuse radiation is independent of the orientation of the receiving surface and that the direct normal radiation is linearly related to the "percent possible," the fraction of total (direct plus diffuse) radiation falling on a horizontal surface at ground level compared with the extraterrestrial value. These assumptions result in the following relationship between direct and diffuse radiation intensities:

$$I_{DN} = \alpha \frac{I_{DN} \cdot \cos \theta_z + I_{DF}}{I_{SC} \cdot R \cdot \cos \theta_z} + \beta \qquad \dots (5)$$

The coefficients (α) and (β) are empirically determined by linear regression analysis of simultaneous measurements of both total and direct components. Although they are found to depend to some extent on site location and time of day, they are treated as constants in the present application.

2.4 EFFECT OF CLOUD COVER

Solar radiation exhibits periods of reduced intensity associated with the obscuration of sunlight by clouds. The effects range from long-term overcasts which may last for days, to broken cloud cover which may block the sun for only a fraction of an hour. The net effect of cloud cover is to reduce the average radiation measured at a given site below the unclouded values. Cloud effects are dependent on local atmospheric characteristics and vary seasonally. In the present method the effect of cloud cover is approximated very simply. On the average, for each hour of the day the proportion of unclouded time is assumed to be a constant (CF). During the remaining fraction (1 - CF), solar radiation is considered to be nil. Like CN, CF can have seasonal variations.

2.5 EVALUATION OF CLEARNESS NUMBERS AND CLOUD FACTORS

2.5.1 Application of the Model to Compute Daily Average Insolation

The foregoing model describes local insolation in terms of deterministic equations which contain the clearness number (CN) and the cloud factor (CF).

The average daily direct normal radiation (with cloud effects considered) is obtained by integrating Equation 4 over the full day.

$$H_{DN} = \int CF \cdot I_{DN} dt$$

$$= CF \cdot CN \cdot \int A \exp(-B/\cos \theta_z) dt$$

$$= CF \cdot CN \cdot I_1 \qquad ...(6)$$

Similarly, the daily total horizontal radiation is found by integrating Equation 5.

$$H_{h} = CF (I_{DN} \cos \theta_{z} + I_{DF}) dt$$

$$= \frac{CF \cdot CN \cdot R \cdot I_{SC}}{\alpha} \int A \exp (-B/\cos \theta_{z}) \cos \theta_{z} dt$$

$$- \frac{CF \cdot R \cdot I_{SC}}{\alpha} \int \cos \theta_{z} dt$$

$$H_{h} = \frac{CF \cdot CN \cdot R \cdot I_{2}}{(\alpha/I_{SC})} - \frac{CF \cdot R \cdot \beta \cdot I_{3}}{(\alpha/I_{SC})} \qquad ...(7)$$

Equation 7 is more compactly written

$$\hat{H} = CF \cdot CN \cdot I_2 - CF \cdot \hat{\beta}$$
 ...(8)

where $\hat{\beta} = \beta \cdot I_3$

and
$$\hat{H} = \frac{H_h(\alpha/I_{SC})}{R}$$
.

The integrals (I_1 , I_2 , I_3 , see Glossary) are obtained by numerical integration. (I_3 can be integrated in closed form, but is grouped with the others for programming convenience.) Because of the symmetry about solar noon all three can be expressed in the form

$$I = 2 \int_0^t s F(\cos \theta_z) dt \qquad \dots (9)$$

where t is the time measured in hours from solar noon, $t_s = \cos^{-1} (-\tan \delta/\tan \phi)/15$ is the sunset time, and $\cos \theta_z$ is a function of the hour angle, h = 15 t (see Equation 2). Equation 9 is evaluated by the trapezoidal rule, with ordinates evaluated at half-hour intervals. The numerical approximation becomes

$$I \approx 0.5 F_0 + \sum_{i=1}^{N} F_i$$
 ...(10)

where N is the integral part of $2t_s$ - 1.

Equation 10 slightly overestimates the contribution of the "tail" whenever the sunset time is not an even half-hour. The error is insignificant in the present application.

2.5.2 CN Evaluation From Daily Averages of Total Horizontal and Direct Insolation

The first module of the deterministic insolation program evaluates the clearness number (CN) in one of two ways. If no cloud factor (CF) is specified, it solves Equations 6 and 8 simultaneously for both CF and CN. Substitution of Equation 6 into Equation 8 yields

$$\hat{H} = H_{DN}(I_2/I_1) - CF \cdot \hat{\beta}$$

which can then be solved for CF:

$$CF = (H_{DN} \cdot I_2/I_1 - \hat{H})/\hat{B}$$
 ...(11)

Equation 8 is then solved for CN in terms of CF:

$$CN = (\hat{H}/CF + \hat{\beta})/I_2$$
 ...(12)

When CF and CN are calculated in this way, the results are sensitive to the relative values of the inputs, H_h and H_{DN} . It sometimes happens that, due to errors in the inputs or shortcomings in the model itself, the resulting value of CN is found to be unreasonably high. If so, a reasonable upper limit (say CN = 1.1) can be assigned and a revised value of CF can be calculated from Equation 8 as follows:

$$CF = \hat{H}/(CN \cdot I_2 - \hat{\beta})$$
 ...(13)

Equation 13 is not part of the first module but can be implemented by means of a short key stroke sequence described in the User's Guide. This adjustment insures that the model will produce insolation values consistent with the average daily total radiation used as an input.

2.5.3 CN Evaluation From Total Horizontal Insolation and Assigned Cloud Factor

If a nonzero value is specified for the cloud factor, the first module computes a clearness number according to Equation 12. In this mode no value of ${\rm H}_{\rm DN}$ is required and any value entered is ignored.

2.6 CALCULATION OF RADIATION INCIDENT ON A TILTED FLAT COLLECTOR

The second program module calculates the intensity of total (direct and diffuse) radiation falling on a flat collector tilted toward the south or north. It also integrates the intensity and applies a cloud factor to arrive at an average daily value. As a byproduct of these calculations the intensity of direct normal radiation and its average daily value are also computed. These quantities correspond to the energy incident on an ideal two-axis tracking collector.

The data storage locations for Module 2 have been made compatible with those for Module 1. This feature allows one to use Module 1 to compute a set

of CN, CF output values and then proceed to use Module 2 without keying in either the outputs or the inputs common to the two modules.

Module 2 evaluates direct normal intensity (I_{DN}) from Equation 4 and the total intensity on a surface tilted at angle, T.

$$I_{T} = I_{DN} \cos \theta_{i} + I_{DF} \qquad \dots (14)$$

where θ_i is the incidence angle of the direct radiation and I_{DF} is the diffuse intensity (assumed isotropic here). Cos θ_i is evaluated from Equation 2 with the "corrected" latitude (ϕ - T) used in place of ϕ . Diffuse intensity is obtained from Equation 5 in the form

$$I_{DF} = I_{DN} \cdot \cos \theta_{z} \cdot (I_{SC} \cdot R/\alpha - 1)$$

$$-\cos \theta_{z} \cdot R \cdot I_{SC} \cdot \beta/\alpha \qquad ...(15)$$

Daily average values of \boldsymbol{I}_{DN} and \boldsymbol{I}_{T} are computed from the general expression

$$H = CF \cdot 2 \int_{\sigma}^{t_{m}} I dt \qquad \dots (16)$$

where the upper limit is either the sunset hour or the time at which the incidence angle becomes zero, whichever is the smaller. The integral is evaluated numerically by Equation 10.

2.7 CALCULATION OF RADIATION INCIDENT ON SINGLE-AXIS TRACKING COLLECTORS

The third program module calculates the direct radiation incident on a single-axis tracking collector. The module operates in two modes. Mode 1 is for systems with the tracking axis in the east-west horizontal line. Mode 2 is for either a horizontal or a tilted axis, located in the north-south plane. Module III, like Module II, is designed to be used in sequence with Module I with retention of common data.

In either mode, incident intensity is evaluated from the direct normal intensity (Equation 4) and the incidence angle.

$$I = I_{DN} \cdot \cos \theta_{i} \qquad \dots (17)$$

For single-axis trackers with the axis in a north-south plane tilted above the horizontal at angle, T (Mode 2), the incidence angle is given by

$$\sin \theta_i = \cos \delta \sin (\phi - T) \cos h$$

$$- \sin \delta \cos (\phi - T) \qquad \dots (18)$$

An important special case is the polar axis orientation (T = ϕ) in which cos θ_{i} = cos $\delta.$

For Mode 1 where the axis is aligned east-west in the horizontal plane, the incidence angle is given by

$$\sin \theta_i = \cos \delta \sin h$$
 ...(19)

For either mode, the daily average is computed from Equation 16.

3.0 USER'S GUIDE

3.1 INPUT REQUIREMENTS

Data for each month is entered into the SR-52 calculator by keystroke. It is retained in its designated storage location as long as the calculator power is left on unless modified by subsequent storage operations. In particular, data used or generated by one module can be retained for use by another module. This feature has been used to reduce data entry operations substantially. Table 2 shows the data storage structure of the three program modules. Permanent data (locations 98, 99, 19) need not be re-entered when running multiple cases. Recommended values are given in the Glossary. Data pertaining to the season (locations 05, 06, 07, 08) may be obtained from Table 1. It need not be re-entered when comparing locations at the same time of year.

TABLE 2
DATA STORAGE STRUCTURE

Data	Mod	lule I	Modu	le II	Module III		
Location	Item	Category*	Item	Category*	Item	Category*	
98 99 00	α/ISC β/ISC N	I I	α/ISC β/ISC N	I I	α/ISC β/ISC N	I I	
01 02	φ S	I I	ф Т	I	ф Т	I I	
03 04 05 06 07	CN CF A/ISC B δ	0 0 I I	CN CF A/ISC B δ	I I I I	CN CF A/ISC B δ	I I I I	
08 09 10 11 12	R I1 I2 I ₃ Hh	I	R I1 I2 - cos Θ ₁	I	R Mode I2 h cos $\Theta_{\mathbf{i}}$	I I,O	
13 14 15 16 17	HDN \hat{H} $\hat{\beta}$ t cos $\Theta_{\mathbf{Z}}$	I	$ \begin{array}{c} I_{DN} \\ - \\ \phi, \phi - T \\ t \\ \cos \Theta_{Z} \end{array} $	0	$\begin{array}{c} \mathbf{I_{DN}} \\ \mathbf{cos} \ \delta \\ \phi \ - \ \mathbf{T} \\ \mathbf{t} \\ \mathbf{cos} \ \Theta_{\mathbf{Z}} \end{array}$	0	
18 19	Δt Isc	I	Δt ISC	I	Δt I _{SC}	I	

^{*}I = input; 0 = output; Additional outputs: I_T , H_{DN} , and H_T are printed but not stored.

Data pertaining to both the location and season (locations 01, 03, 04, 12, 13) need not be re-entered in order to compare collectors of different type or orientation.

3.1.1 Local Insolation Inputs for Module I

The inputs which characterize local insolation are the average daily total radiation on a horizontal surface (H_h) and one of the following: the average daily direct radiation (H_{DN}) or an assigned value (S) which is equated with the cloud factor. The daily total insolation values must be expressed in the units $I_{SC} \cdot hr \cdot day^{-1}$ (for example, kW $\cdot hr \cdot m^{-2} \cdot day^{-1}$).

The insolation data base which was used to develop and validate the present method was derived from the Aerospace solar tapes. (6)

Daily averages of both total and direct radiation on a monthly basis have been obtained for 33 sites by numerical integration of the Aerospace solar tapes. (7) These results, along with other climatological data have been summarized for 12 representative sites in Reference 1 and are included in the Appendix of this report.

The Climatic Atlas⁽⁸⁾ contains daily average total insolation data for a much larger number of sites. In addition, the same information is presented in maps from which insolation can be estimated throughout the U.S. The Atlas also contains tables and maps giving average values of percent sunshine. This latter quantity may be used to estimate the cloud factor, CF. It has been found that the empirical relation

$$CF = \sqrt{\text{Percent Sunshine} \div 100}$$
 ...(20)

gives cloud factors fairly close to those computed from Equation 11. Equation 20 is therefore recommended whenever only total horizontal insolation is available, that is, for most sites. This definition was used for the CF values presented in the Appendix.

There are other sources of insolation data. Most recently, Sandia Laboratories, Albuquerque, New Mexico has summarized data from the SOLMET tapes $^{(3)}$ for 26 sites and also provided insolation maps. This data base is currently being reviewed but it appears that the results for many sites are substantially different from those obtained using the Aerospace data base. The implication of these differences is discussed under the section entitled "Program Limitations."

3.1.2 Other Inputs for Module I

The choice of the energy unit in which output quantities are expressed is set by the solar constant, (location 19) which can have any units as long as the time is in hours. Two convenient choices are 1.353 kW m⁻² (kWh-m⁻²-hr⁻¹) and 429.2 Btu-ft⁻²-hr⁻¹. At present, recommended values for the two linear regression coefficients (Equation 5) are the average values given in Reference 3. Their non-dimensionalized values are $(\alpha/I_{SC}) = 1.33$ and $(\beta/I_{SC}) = -0.384$. Later refinement of the deterministic model may require a revision of these values.

The general properties which vary seasonally can be obtained by interpolation from Table 1. All quantities except the declination are dimensionless; it must be expressed in degrees. The latitude (ϕ) must also be in degrees, with the northern hemisphere taken positive. The sign convention for latitude and collector tilt is illustrated in Figure 1.

3.1.3 Inputs for Module II

If Module I has been run just previously, only the collector tilt, T (in degrees), must be entered in location 02. Tilt is zero for a horizontal surface and is defined as positive toward the south. Collectors in the southern hemisphere would normally have negative tilt angles. If Module II is being run independently, all the inputs shown in Table 2 must be entered by keystroke.

3.1.4 Inputs for Module III

If Module I has been run just previously only the axis tilt, T (in degrees), and the mode number must be entered. The same sign convention is employed for axis tilt as that for flat collectors. For east-west trackers (Mode 1) axis tilt is not required and its value is ignored. For Mode 2, axis tilt is measured in the north-south plane. Tilt is zero for a horizontal axis and positive southward. If Module III is being run independently, all the inputs shown in Table 2 must be entered by keystroke.

3.2 OUTPUT OPTIONS

3.2.1 Operation With and Without Printer

The program modules have been recorded and listed in a form compatible with the use of the Texas Instruments PC 100A printer. If a printer is not available, the module must be modified by keystroke after being read into the calculator.

Figure 1. Sign Conventions for Latitude and Collector Tilt

This modification consists of changing PRINT commands to HALT commands. During execution without a printer the module displays each result rather than printing it. Execution is continued by pressing the RUN key after each stop.

Each location requiring change for nonprinter operation is identified in the module listings (Section 4) by an asterisk between the location number and the instruction code, thus: 203 * 98. Module change takes place after the magnetic card has been read into the calculator, starting in the "calculate" mode, as follows:

Keystroke Sequence	Display	Comment		
1. GTO 203 LRN	203 98	Locate print instruction		
2. HLT	204 20	Change print to halt; display next step		
3. LRN	0.	Return to "calculate" mode		

The above sequence is repeated for each print instruction requiring change. (Note: The last print instruction in each module is followed by a halt instruction and need not be changed.)

3.2.2 Output for Module I

Output for this module consists of two items, CF and CN. When the printer is used these outputs are printed one after the other. Without printer CF is displayed first; CN appears after the RUN key is pressed.

3.2.3 Output for Module II

Output for this module consists of a sequence of blocks which give the time variation of direct (I_{DN}) and total (I_{T}) intensities at half-hourly intervals. The first item is the time, t, in hours, measured from solar noon. Because of the symmetry about noon, each block corresponds to both a morning and afternoon time. For example, t = 2.500 refers to 9:30 am and 2:30 pm. In each block, the time is followed by I_{DN} , I_{T} and a space. Both intensities have the units of the solar constant.

Following the time-variation sequence, daily values of direct (H_{DN}) and total (H_T) incident radiation, including cloud effect, are printed. Units are (solar constant) - hr · day $^{-1}$.

3.2.4 Output for Module III

Output for this module starts with the printing of the mode number -1. or 2. It is followed by a sequence of blocks giving the solar time in hours and the incident intensity (I) at half-hourly intervals beginning with solar noon (t = 0.000) corresponding to an average day of the month. Intensity units are those of the solar constant.

Following the time-variation sequence, the daily incident radiation (H) is printed in the units (solar constant) \cdot hr \cdot day⁻¹.

3.3 PROGRAM LIMITATIONS

3.3.1 <u>Limitation on Input Values</u>

The program is restricted to sun-earth-collector geometries in which the sun is above the horizon and falls on top of the collector during some part of the day. These considerations introduce the following limits:

$$|\phi| \le 90^{\circ}$$
 (by convention)
 $|\phi - \delta| \le 90^{\circ}$ (finite daylight)
 $|\phi - \delta - T| \le 90^{\circ}$ (top exposure)

Because of its physical significance in the deterministic model, the cloud factor is restricted by logic to values of unity or less. As discussed in Section 2.5.2 CF,CN calculations are sensitive to input errors. It sometimes happens that Module I produces values of CF greater than one when the inputs are H_h and H_{DN} . The CF,CN pair of values can be revised by assigning the value, S=1 and recomputing. The keystroke sequence required is as follows:

Keystroke Sequence	Display	Comment
1 STO 02	1.	(Assign S = 1)
В	1.000 0.823	(Enter module at B and recompute CF,CN)

Except at high altitudes, reasonable values of the clearness number should not be much greater than one. If Module I produces an unrealistic value, say CN > 1.1, the results can be revised by assigning the appropriate values, S, to yield CN = 1.1. The keystroke sequence required is as follows:

TABLE 3

DAILY INCIDENT ENERGY PREDICTIONS USING CONSTANTS DERIVED FROM AEROSPACE TAPES

				Incident Energy (kWh/m²-day)				
Location	Month	CN	CF	45° Tilted Plate	NS Polar	EW Horizontal		
Albuquerque	January July	1.01	0.89	6.16 (6.20)* 5.99 (5.89)	6.35 (6.34) 7.90 (7.61)	5.68 (5.55) 6.20 (6.26)		
Madison	January July	0.75	0.75 0.84	3.41 (3.45) 5.87 (5.97)	3.33 (3.29) 7.62 (7.29)	3.08 (3.10) 5.89 (5.71)		
Miami	January July	0.77 0.95	0.84 0.82	5.45 (5.61) 4.61 (4.52)	5.20 (5.16) 6.74 (6.45)	4.52 (4.45) 5.39 (5.26)		
Nashville	January July	0.70 0.76	0.63 0.85	3.24 (3.34) 4.91 (4.81)	3.06 (3.07) 5.80 (5.68)	2.74 (2.74) 4.54 (4.68)		
Omaha	January July	1.10	0.76 0.91	4.90 (4.95) 5.92 (5.82)	5.18 (5.23) 7.38 (7.10)	4.75 (4.61) 5.72 (5.68)		
Seattle	January July	0.75 0.89	0.64 0.84	2.51 (2.84) 5.73 (5.68)	2.50 (2.52) 6.95 (6.65)	2.35 (2.29) 5.32 (5.32)		

^{*}First values obtained by deterministic method; values in brackets from hour-by-hour integration of Aerospace tapes.

TABLE 4
DAILY INCIDENT ENERGY PREDICTIONS BASED ON THE CLIMATIC ATLAS

			,	Incident Energy (kWh/m²-day)					
Location	Month	CN	CF*	45° Tilted Plate	NS Polar	EW Horizontal			
Albuquerque	January July	1.09	0.84	6.17 6.28	6.47 8.95	5.78 7.03			
Madison	January July	0.89	0.66	3.42 5.46	3.48 6.70	3.21 5.17			
Miami	January July	0.91 0.91	0.81 0.81	5.92 4.47	5.93 6.37	5.15 5.10			
Nashville	January July	0.51 0.86	0.65	2.69 5.09	2.30 6.40	2.06 5.02			
Omaha	January July	0.95 0.91	0.67 0.87	4.36 5.73	4.47 7.21	4.10 5.59			
Seattle	January July	0.61	0.52 0.79	1.75 6.09	1.65 8.07	1.55 6.18			

Keystroke Sequence	Display	Comment
RCL 14 ÷ (1.1 x RCL 10 - RCL 15) =	0.793	(Compute S value)
STO 02	0.793	(Assign S)
В	0.793 1.100	(Enter module at B and recompute CF,CN)

If Module I yields too high values of both CF and CN simultaneously, they should be replaced by the limiting values or by an estimate drawn from a site with a similar climate.

The output of all modules is formatted with three places to the right of the decimal point. This is satisfactory for the intensity units suggested but may result in loss of significant figures for some other set of units. If the solar constant has a value <1 in the desired set, it should be multiplied by a suitable scale factor. The output intensities and daily energies will contain the same scale factor.

3.3.2 Availability and Consistency of Insolation Data

The deterministic method uses average insolation data to compute the empirical factors CN and CF for a given site. These factors, in turn, are used to predict the average energy incident on collectors of various orientations and tracking geometrices. The results depend upon the solar data base employed.

Table 3 shows sample results obtained using the Aerospace tapes. Average incident energy predictions are quite consistent with the values obtained by an analysis of the hourly tape data (rms deviation 3%). However, application to sites other than the locations for which average insolation data are given (Reference 7 or Appendix) involves interpolation or extrapolation and is subject to considerable uncertainty.

The Climatic Atlas⁽⁸⁾ gives average total horizontal insolation and average percent sunshine for over 100 stations and in map form for the US as a whole. The data is drawn from a much longer time base than the 1962-63 period covered by the Aerospace tapes. Table 4 shows the results of applying the deterministic method to this data base. Here CF is estimated by Equation 20. In general, the results agree fairly well with those obtained from the Aerospace data base (rms deviation 15%). Because of their availability and broad coverage, the maps and

tables from the Climatic Atlas are the most satisfactory source of input data at the present time.

More recently average total horizontal and direct insolation values based on the SOLMET tapes have been published $^{(3)}$ for 26 U.S. stations and in the form of maps. Many of the stations correspond to those in the Aerospace data base. However the time period covered by the SOLMET data is much longer and the results are frequently quite different. A substantial revision in the SOLMET data has also been made since Reference 3 was issued. As Table 5 shows, the deterministic predictions based on the SOLMET data base (as revised) differ considerably from those based on the Aerospace data base. Average incident energies are fairly consistent with the results of an hourly analysis of the SOLMET tapes (rms deviation 8%). However they are quite different from the Table 3 results (nms deviation 23%). The "permanent" constants α , β , A and B employed in the present deterministic model were chosen before the SOLMET data became available. While their use gave good results when compared with the earlier solar data (see Tables 3 and 4) it now appears that they require revision. Such a revision would involve

TABLE 5

DAILY INCIDENT ENERGY PREDICTIONS
BASED ON SOLMET TAPES

				Incident Energy (kWh/m²-day)				
Location	Month	CN	CF	45° Tilted Plate	NS Polar	EW Horizontal		
Albuquerque	January July	0.83	1.00	5.95 (5.54)* 6.31 (6.45)	5.86 (5.43) 8.32 (7.65)	5.24 (4.81) 6.53 (6.02)		
Madison	January July	0.41	1.00	2.99 (2.89) 5.26 (5.40)	2.43 (2.34) 5.13 (4.75)	2.24 (2.10) 3.97 (3.70)		
Miami	January July	0.49 0.45	1.00	4.83 (4.54) 4.24 (4.46)	3.94 (3.69) 3.89 (3.25)	3.42 (3.12) 3.11 (2.60)		
Nashville	January July	0.38 0.55	0.85 1.00	2.93 (2.80) 5.03 (5.12)	2.24 (2.25) 4.93 (4.35)	2.01 (2.03) 3.87 (3.48)		
Omaha	January July	0.48	1.00	4.90 (4.95) 5.61 (5.68)	5.18 (5.23) 6.01 (5.64)	4.75 (4.61) 4.66 (4.23)		
Seattle	January July	- -	-					

^{*}First values obtained by deterministic method; values in brackets from hour-by-hour integration of the SOLMET tapes.

substantial numerical processing of the SOLMET data in order to obtain best-fit constants. It is a desirable future effort however, which would improve the accuracy and usefulness of the model.

3.3.3 Application to Transient Simulation

The deterministic method estimates the intensity of incident radiation in the absence of clouds and the long-term daily average of the incident energy with cloud effects included. It cannot simulate the random fluctuations in solar radiation typical of a given locality. Its use in a transient simulation is therefore limited to approximating the diurnal variations during a clear day.

3.4 SAMPLE PROBLEMS

All problems start with the calculator on in the "calculate" mode, with the D/R switch set on D (degrees). The following descriptions apply when the calculator is mounted on the printer. Without printer, the recorded programs must be modified by keystroke (see Section 3.2.1) and the RUN key must be used after each intermediate output is displayed.

3.4.1 Energy Incident on a Two-Axis Tracking Collector

Assume an ideal tracking collector intercepting all direct normal radiation, operating in Albuquerque on July 21st. Inputs are available from Table 1 and the Appendix, Table A-1. The operating steps and their results are tabulated in the following listing.

Note that the daily incident energy $\mathbf{H}_{\mbox{DN}}$ is equal to the input value as it should be.

Operation	Keystroke	Display	Print
Load "A" side of Module I	CLR *read	0	
Load "B" side of Module I	*read	0	
Enter: Ø S A/I _{SC} B δ R H _h H _{DN} I _{SC} α/I _{SC}	35.05 STO 01 0 STO 02 .801 STO 05 .207 STO 06 20.6 STO 07 .969 STO 08 7.39 STO 12 8.43 STO 13 1.353 STO 19 1.33 STO 99 .384+/-STO 98	35.05 0 0.801 0.207 20.6 0.969 7.39 8.43 1.353 1.353 1.33	
Execute Module I	A	0.928	0.951 (CF) 0.928 (CN)
Load "A" side of Module II	CLR *read	0	
Load "B" side of Module II	*read	0	
Enter T=0 (retain I/0 from Module I)	0 STO 02	0.000	
Execute Module II	A		0.000 (t) 0.812 (I _{DN}) 0.939 (I _h) 7.000 (t) 0.000 (I _{DN}) 0.001 (I _h) 8.430 (H _{DN}) 7.390 (H _h)

3.4.2 Energy Incident on an East-West Horizontal Tracker (Clear Air Estimate)

Assume month and location are the same (Albuquerque in July). Thus all general inputs will be the same and may be retained. The clearness number is retained but the cloud factor is set at one. The operating steps and their results are tabulated below.

Operation	Operation Keystroke		Print
Load "A" side of Module III	CLR *read	0	
Load "B" side of Module III	*read	0	
Enter: $T = 0$	0 STO 02	0.000	
CF = 1	1 STO 04	1.000	
MODE = 1	1 STO 09	1.000	
Execute Module III	A		1. (MODE)
			0.000 (t)
			0.812 (I)
			7.000 (t)
			0.000 (I)
			6.513 (H)

3.4.3 Total Energy Incident on a Flat Collector

Assume a flat collector tilted at 45 degrees south, intercepting both direct and diffuse radiation. The location is Omaha and the time is January 21st. Determine performance from average daily total horizontal insolation and the average percent sunshine. Inputs are obtained from Table 1 and the Appendix, Table A-9. The operating steps and their results are tabulated in the following listing.

Operation	Keystroke	Display	Print
Load "A" side of Module I	CLR *read	0	
Load "B" side of Module I	*read	0	
Enter : ∅ S = √.57 A/I _{SC} B δ R H _h	41.37 STO 01 .76 STO 02 .909 STO 05 .142 STO 06 20+/-STO 07 1.031 STO 08 2.45 STO 12	41.370 0.760 0.909 0.142 - 20.000 1.031 2.450	
(ISC α /ISC, β /ISC retained)			
Execute Module I	A	1.090	0.760 (CF) 1.090 (CN)
Load "A" side of Module II	CLR *read	0	
Load "B" side of Module II	*read	0	
Enter T = 45 (Retain I/O from Module I)	45 STO 02	45.000	
Execute Module II	A		0.000 (t) 0.997 (I _{DN}) 1.042 (I _h) 4.500 (t) 0.052 (I _{DN}) 0.037 (I _h) 5.461 (H _{DN}) 4.867 (H _h)

4.0 PROGRAMMERS INFORMATION

4.1 HARDWARE REQUIREMENTS

The SR-52 programmable calculator is battery operated and will execute the program modules without any additional equipment. For extended operating times, it may be necessary to plug the calculator into the AC9130 Adapter/Charger. In this configuration, batteries are recharged while calculations proceed. When the calculator is mounted on the PC100A printer, the battery pack is separately mounted and charged while calculations proceed.

4.2 EXECUTION TIME

Running time for each module is controlled primarily by the length of the solar day, being greatest for the summer months. When operating with the printer, Module I takes 1 to 1-1/2 min per case while Modules II and III take from 1-1/2 to 2-1/2 min.

4.3 PROGRAM CONVERSION

Since the modules were developed, a new programmable calculator, the TI59, has become available. The TI59 uses keystroke instructions very similar to the SR-52. The three modules could be readily adapted so as to become separate program segments in the newer calculator. The keystroke sequences would be essentially the same. Only the transfer instructions would require modification to reflect the altered memory storage pattern.

Because of differences in the way in which algebraic equations are evaluated in the Hewlett-Packard programmable calculators HP67/97, conversion would not be as simple. The same algorithms apply, but keystroke sequences would be altered significantly. The same remarks apply to other systems which may operate with different instruction languages.

4.4 PROGRAM LISTINGS AND FLOW CHARTS

Annotated listings and corresponding functional flow charts are provided for each module. When a module has been loaded on the calculator attached to the printer, a listing may be produced for comparison, using the following keystroke sequence:

CLR *reset (set to beginning of program memory)

*list (list locations and instruction codes in sequence)

SR-52 PROGRAM LISTING DETERMINISTIC INSOLATION ESTIMATES: 1. CLEARNESS NUMBER AND CLOUD FACTOR

LOC. CODE	KEY	COMMENT	100	CODE	KEY	COMMENT
· · · · · · · · · · · · · · · · · · ·		·····			NE 1	
000 46 001 11	*LBL A	START	056		1	
002 43	ACL	COMPUTE SUNSET TIME	057		6	
003 00	0	John G.E Gonge, Time	058 059		,	HOUR ANGLE h
004_07	7	DECLINATION δ	060		COS +	COS h
005 34	TAN		061		RCL	
006 65	Χ		062		0	
007 43	RCL		063		Ĭ	
00 800	0		064	32	SIN	SIN ∳
009_01 010_34	TAN	LATITUDE Ø	065		<u> </u>	
011 95	2		066		RCL	
012 94	+/-		067		0	
013 22	INV		068		7	C111 S
014 33	COS	SUNSET HOUR ANGLE hs	069 070	32 05	SIN	SIN 8
015 55	+		071	42	STO	STORE COSINE OF
016 07	7		072		1	ZENITH ANGLE
017 93	•		073		7	COS OZ
018 05	5	N a . CHNOCT HOUS	074		X	200 02
019 95	eto.	N= 2 x SUNSET HOUR	075		RCL	
020 42 021 00	STO 0	STORE ITERATION NO. N	076		1	
022 00	0	INITIALIZE t, 11, 12, 13	077		8 *	Δt
23 00	0		078 079		SUM	
24 42	STO		080		1	
025 01	1		081		<u> </u>	INCREMENT 13
26 06	6	t = 0	082		RCL	INCREMENT 13
027 42	STO		083		0	
28 00	O	1 - 0	084		6	В
29 09	9	¹ 1 = 0	085	55	+	
30 42	STO		086		RCL	
31 01	1	12 = 0	087		1	
132 00 133 42	O Sto	12 - 0	088		7	cos θ _Z
134 01	1		089		= ,	-
35 01		1 0	090		+/	
36 93		13 = 0	091		INV	
37 05	5		092 093		LNX X	EXP $(-B/COS \theta_{Z})$
38 42	STO	$\Delta t = 0.5$	094		RCL	
39 01	1		095		0	
40 08	8	0740* INT.0045.00	096	05	5	A/Isc
41 43	RCL D	START INTEGRATION LOOP COMPUTE COSINE OF	097		X	
42 00 43 01	1	ZENITH ANGLE	098		RCL	
44 33	cos	COS P	099	01	1	SOLAR CONSTANT ISC
45 65	X		100 101	65	9	SOLAN CONSTANTISC
46 43	RCL		102		X RCL	
47 00	0		103		1	
48 07	7	•	104		8	Δt
49 33	COS	cos δ	105	95	=	·
950 65 951 53	X		106	44	SUM	
51 53 52 01	1		107		0	MARKET
	5		108 109		9	INCREMENT I
53 NS			11.439	D-3	v	
53 05 54 65	X		110	43	X RCL	

SR-52 PROGRAM LISTING DETERMINISTIC INSOLATION ESTIMATES: 1. CLEARNESS NUMBER AND CLOUD FACTOR (CONTINUED)

		AND CLOUD	FACION (CONT	INGLO	
LOC. CODE	KEY	COMMENT	LOC. CODE	KEY	COMMENT
112 07	7	cos ₀ z	168 06	6	
113 95	=	- 2	169 42	STO	MODE 1
114 44	SUM		170 00	0	ar . a
115 01	1	INICOERICAIT I.	171 04 172 41	4 GTO	CF = S
116 00	0	INCREMENT I2			
117 01 118 42	1 STO		173 01 174 09	1 9	
119 01	1		175 07	7	
120 08	8	$\Delta t = 1.0$	176 43	RCL	MODE 2
121 93	•		177 01	1	
122 05	5		178 03	3	DAILY DIRECT H _{DN}
123 44	SUM		179 65	X	
124 01	1	INOGEREDIT THE	180 43	RCL	
125 06 126 58	6 *dsz	INCREMENT TIME	181 01 182 00	1 0	12
			183 55		
127 00 128 04	0 4	IF N > 0 GO TO LOC. 041	184 43	÷ RCL	
129 01	1	17 N > 0 do 10 LUC. 541	185 00	0	
130 46	*LBL	INTEGRATION IS COMPLETE:	186 09	9	Ι ₁
131 12	В	COMPUTE CF AND CN	187 75	-	
132 43	RCL		188 43	RCL	
133 01	1		189 01	1	٨
134 02	2	DAILY TOTAL, H _h	190 04	4	н
135 65	X		191 95	=	
136 43	RCL		192 55	+	
137 09	9	4	193 43	RCL	٨
138 09 139 44	9	α /ISC	194 01 195 01	1 5	ŝ
140 43	÷ RCL		196 95	=	ČF
141 00	0		197 57	*FIX	SET OUTPUT FORMAT TO
142 08	8	R	198 03	3	3 DECIMAL PLACES
143 95	=		199 42	STO	
144 42	STO		200 00	0	
145 01	1	ନ	201 04	4	00405
146 04	4		202 99	*PAP	SPACE
147 43	RCL		203*98 204 20	*PRT *1/X	PRINT (DISPLAY) CF
148 09 149 08	9 8	β/I _{SC}	205 65	x'^^	
150 65	X	1. 1.2C	206 43	RCL	
151 43	RCL		207 01	1	
152 01	1		208 04	4	Н
153 09	9	¹ SC	209 85	+	
154 65	X		210 43	RCL	٨
155 43	RCL		211 01	1 5	B
156 01	1		212 05		
157 01	1	i3	213 95 214 55	=	
158 95 159 42	≖ ST0		215 43	÷ RCL	
160 01	1	^	216 01	1	
161 05	5	β	217 00	0	12
162 43	RCL		218 95	=	
163 00	0		219 42	STO	
164 02	2	SUNSHINE FRACTION S	220 00	0	
165 90	*IF ZRO	TEST S FOR MODE	221 03	3	POLICE (DIAM) AND AND
166 01	1		222 98	*PRT	PRINT (DISPLAY) CN
167 07	7		223 81	HLT	STOP

SR-52 PROGRAM FLOW CHART DETERMINISTIC INSOLATION ESTIMATES: 1. CLEARNESS NUMBER AND CLOUD FACTOR

SR-52 PROGRAM LISTING DETERMINISTIC INSOLATION ESTIMATES: 2. FLAT COLLECTORS AND TWO-AXIS TRACKERS

LOC. CODE	KEY	COMMENT	LOC. CODE	KEY	COMMENT
000 46	*LBL	START	056 01	1	
001 11	A	COMPANY CHART TIME	057 06 058 57	6 *FIX	t SET OUTPUT FORMAT
002 43	RCL	COMPUTE SUNSET TIME	058 57 059 03	3	TO 3 DECIMAL PLACES
003 00 004 07	0 7	DECLINATION δ	060*98	*PRT	PRINT (DISPLAY) TIME
005 34	TAN		061 43	RCL	
006 65	X		062 00	O	<u></u>
007 43	RCL		063 01	1	φ
008 00	0		064 14	D	COMPUTE COS $ heta_{Z}$
009 01	1	LATITUDE φ	065 42	STO .	
010 34	TAN		066 01 067 07	1 7	
011 95	≠ +/—		068 65	x	COMPUTE IDN
012 94 013 22	INV		069 53	î	James J. D. Bild
014 33	COS	SUNSET HOUR ANGLE h	070 53	(
015 55	+		071 53	(
016 07	7		072 20	*1/X	
017 93	•		073 94	+/-	
018 05	5		074 65	X	
019 95	=	N=2 X SUNSET HOUR	075 43	RCL	
020 42	STO	STORE ITERATION NO. N	076 00	0 6	8
021 00	0		077 06 078 54))	· ·
022 00 023 93	0	INITIALIZE At, 12	079 22	ÍNV	
023 95	5	l ₂ , t	080 23	LUX	EXP (-8/COS $\theta_{\rm Z}$)
025 42	STO		081 65	X	
026 01	1		082 43	RCL	
027 08	8	$\Delta t = .5$	083 00	0	. 41
028 00	0		084 05	5 X	A/Isc
029 42	STO		C85 65		
030 00	0	1 - 0	086 43 087 00	RCL 0	
031 09	9 Sto	l ₁ = 0	087 00	3	APPLY CLEARNESS NO. CN
032 42 033 01	1		089 65	X	
034 00	Ġ	l ₂ = 0	090 43	RCL	
035 42	STO		091 01	1	
036 01	1		092 09	9	SOLAR CONSTANT ISO
037 06	6	t = 0	093 54)	DN COLOR
038 43	RCL	START INTEGRATION LOOP	094*98 095 42	*PRT STO	PRINT (DISPLAY) IDN
039 43	0	<u></u>		1	
040 01	1		096 01 097 03	3	
041 75 042 43	- RCL		098 65	x	COMPUTE IT
043 00	0		099 53	(•
044 02	2		100 43	RCL	
045 95	3	φ-τ	101 00	D	
046 14	Ð	COMPUTE COS θ_i	102 08	8	R
047 22	INV	10.0 > 0000	103 55	÷	
048 80	*IF POS		104 43 105 09	RCL 9	
049 01		YES, TRANSFER		9	α/I _{SC}
050 07	7		106 09 107 75	3 —	~/\2C
051 01 052 42	1 STO	NO, STORE COS $ heta_i$	108 01	1	
052 42	1	,	109 54)	
054 02	2		110 75	-	
055 43	RCL		112 43	RCL	

SR-52 PROGRAM LISTING DETERMINISTIC INSOLATION ESTIMATES: 2. FLAT COLLECTORS AND TWO-AXIS TRACKERS (CONTINUED)

LOC. CODE	KEY	COMMENT	LOC. CODE	KEY	COMMENT
112 09	9	0.11	168 00	0	
113 08 114 65	8 X	$oldsymbol{eta}$ /isc	169 03	3	IF N > 0 GO TO
115 43	ŘCL		170 08	8	LOC. 038
116 01	1		171 43 172 00	RCL 0	INTEGRATION COMPLETE
117 09	9	Isc	173 09	9	Ι ₁
118 65	X		174 65	X	•
119 43 120 00	RCL D		175 43	RCL	
121 09	8	R	176 00 177 04	0 4	APPLY CLOUD FACTOR CF
122 55			178 95	=	7 51 02005 1 X01011 01
123 43	RCL		179*98	*PRT	PRINT (DISPLAY) HDN
124 09	9	n. #	180 43	RCL	∠ • α
125 09 126 54	9)	α/isc	181 01 182 00	1 0	l-
127 95	=	DIFFUSE RADIATION	183 65	X	12
128 85	+	_	184 43	RCL	
129 43	RCL		185 00	0	
130 01 131 02	1 2	$\cos heta_i$	186 04 187 95	4 =	APPLY CLOUD FACTOR CF
132 65	X		188 *98	*PRT	PRINT (DISPLAY) HT
133 43	RCL		189 81	HLT	END OF MAIN PROGRAM
134 01	1		190 46	*LBL	SUBROUTINE D
135 03 136 95	3 =	^I DN TOTAL RADIATION I _T	191 14 192 53	D	
137*98	*PRT	PRINT (DISPLAY) IT	192 53	CTO	
138 99	*PAP	SPACE	194 01	1	
139 65	X		195 05	5	STORE ϕ , ϕ -T
140 43 141 01	RCŁ 1		196 33	cos	COS φ, φ-T
142 08	8	Δt	197 65 198 43	X RCL	
143 95	=	۵.	199 00	0	
144 44	SUM		200 07	ž	
145 01	1	MODELLENT	201 33	COS	cos δ
146 01	RCL	INCREMENT IZ	202 65	X	
147 43	1		203 53 204 01	(1	
149 03	3	IDN	205 05	5	
150 65	X		206 65	X	
151 43	RCL		207 43	RCL	
152 01 153 08	1 8	Δt	208 01 209 06	1 6	•
154 95	*	4 1	210 54)	t HOUR ANGLE h
155 44	SUM		211 33	cos	COS h
156 00	0	(SIAR PRACTICE A	212 85	+	
157 09 158 01	9 1	INCREMENT I_1 $\Delta t = 1$	213 43 214 01	RCL 1	
159 42	Sto	2 t - 1	215 05	5	
160 01	1		216 32	SIN	$SIN\phi$, ϕ -T
161 08	8		217 65	X	
162 93 163 05	0 5		218 43 219 00	RCL 0	
164 44	SUM		220 07	?	sin 8
165 01	1		221 32	SIN	
166 06	6	INCREMENT t	222 54)	$\cos \theta_{Z}$, $\cos \theta_{i}$
167 58	*dsz		223 56	*VTN	END OF SUB D

SR-52 PROGRAM FLOW CHART DETERMINISTIC INSOLATION ESTIMATES: 2. FLAT COLLECTORS AND TWO-AXIS TRACKERS

SR-52 PROGRAM LISTING DETERMINISTIC INSOLATION ESTIMATES: 3. SINGLE-AXIS TRACKERS

ODD 6 *LEL START OS6 65 X	LOC. CODE	KEY	COMMENT	LOC. CODE	KEY	COMMENT
OCC 43			START		X	
003 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			COMPUTE SUNSET TIME		1	
OSS 24	003 00	0		059 05	5	
006 65			DECLINATION δ			
007 43 RCL						
008 00						
Old 34	008 00	0		064 54	7	h = 15 t
011 95			LATITUDE Φ	,		
1012 94						
013 22 INV						COS h
O15 55	013 22			069 85		
016 07 7 073 22 SIN SIN φ 018 05 5 N = 2 x SUNSET HOUR 074 65 X 019 95 = 076 00 0 021 00 0 0 077 07 7 022 00 0 0 STORE INTERATION 078 32 SIN SIN δ 023 93 · NO. N 079 95 = SIN SIN δ 024 05 5 INITIALIZE Δt, I₂, t 080 42 STO 025 42 STO 081 01 1 026 01 1 0 082 07 7 COSINE OF ZENITH ANGLE 027 08 8 Δt = .5 083 94 +/- COMPUTE DIRECT NORMAL 029 42 STO 085 65 X 030 01 1 0084 20 +1/X 030 01 1 0085 65 X 030 01 1 0086 43 RCL 031 00 0 1 1₂ = 0 087 00 0 032 42 STO 088 06 6 B 033 01 1 0089 95 = 0 034 06 6 t = 0 090 22 INV 035 57 *FIX 091 23 LUX EXP (-B/COS θ₂) 036 00 0 0 092 65 X 037 43 RCL 093 43 RCL 038 00 0 0 092 65 X 037 43 RCL 093 43 RCL 038 00 0 0 092 65 X 037 43 RCL 093 43 RCL 038 00 0 0 094 00 0 039 09 5 095 05 5 A/ISC 040 98 *PRT PRINT MODE NO. 096 65 X 040 98 *PRT SPACE 097 43 RCL 042 57 *FIX SET OUTPUT FORMAT TO 098 00 0 043 03 3 3 3 DECIMAL PLACES 099 03 3 APPLY CLEARNESS NO. CN 044 43 RCL STO 10 08 43 RCL 046 01 1 1 01 10 08 9 9 S SOLAR CONSTANT ISC 046 05 X 104 95 = 0 047 07 107 07 07 10			SUNSET HOUR ANGLE hs			
017 93 · · · · · · · · · · · · · · · · · ·					_	
O18 O5 S N = 2 x SUNSET HOUR O74 65 X						SIN Ø
O20 42 STO O76 O0 O77		5	N = 2 x SUNSET HOUR		X	· · · · · · · · · · · · · · · · · · ·
O21	019 95	=		075 43	RCL	
022 00 0 0 STORE INTERATION 078 32 SIN SIN δ 023 93 · NO. N 079 95 = 024 05 5 INITIALIZE Δt, I₂, t 080 42 STO 025 42 STO 026 01 1 082 07 7 COSINE OF ZENITH ANGLE 027 08 8 Δt = .5 083 94 +/- COMPUTE DIRECT NORMAL 028 00 0 0 084 20 *1/X 029 42 STO 085 65 X 020 01 1 0086 43 RCL 031 00 0 1₂ = 0 087 00 0 032 42 STO 088 06 5 B 033 01 1 088 95 = 034 06 6 t = 0 090 22 INV 035 57 *FIX 091 23 LUX EXP (-B/COS θ₂) 036 00 0 0 092 65 X 037 43 RCL 038 00 0 0 092 65 X 037 43 RCL 038 00 0 0 094 00 0 0 039 09 5 095 05 5 A/ISC 040 98 *PRT OHD ANGLE OF SET OUTPUT FORMAT TO 098 00 D 040 98 *PRT OHD ANGLE OF SET OUTPUT FORMAT TO 098 00 D 044 43 RCL START INTEGRATION LOOP 100 65 X 044 43 RCL START INTEGRATION LOOP 100 65 X 046 01 1 1 102 01 1 047 33 COS COS Φ 103 09 9 S 049 43 RCL 050 00 0 INTERACT OF SET OUTPUT FORMAT TO 098 00 D 044 03 RCL START INTEGRATION LOOP 100 65 X 044 07 START INTEGRATION LOOP 100 65 X 046 01 1 1 102 01 1 047 33 COS COS Φ 103 09 9 S 048 65 X 049 43 RCL 106 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
O23 93 O24 05 5 INITIALIZE Δt, I ₂ , t O80 42 STO			STORE INTERATION			SIN 8
O25 42 STO O81 01 1 O82 07 7 COSINE OF ZENITH ANGLE O26 01 1 O82 07 7 COMPUTE DIRECT NORMAL O28 00 O		·				5 5
October Color C	024 05	5	INITIALIZE Δt , I ₂ , t	080 42	STO	
O27		STO				
O28 00			A = = E			
O29 42 STO O85 65 X			Δ1~.5			COMPUTE DIRECT NORMAL
O31 00		-				
O32 42 STO		1				
O33 01		-	12 = 0			D
034 06 6 t=0 090 22 INV 035 57 *FIX 091 23 LUX EXP (−B/COS θ Z) 036 00 0 092 65 X 037 43 RCL 093 43 RCL 039 9 5 095 05 5 A/isc 040 98 *PRT PRINT MODE NO. 096 65 X 041 99 *PAP SPACE 097 43 RCL 042 57 *FIX SET OUTPUT FORMAT TO 098 00 D 043 03 3 3 DECIMAL PLACES 099 03 3 APPLY CLEARNESS NO. CN 044 43 RCL START INTEGRATION LOOP 100 65 X 045 01 1 102 01 1 047 33 COS COS φ 103 09 9 SOLAR CONSTANT ISC <						ь
036 00			t = 0		INV	
037 43		*FIX				EXP $(-B/\cos\theta_z)$
C38 00 0 094 00 0 039 09 \$ 095 05 \$ 040 98 *PRT PRINT MODE NO. 096 65 X 041 99 *PAP SPACE 097 43 RCL 042 57 *FIX SET OUTPUT FORMAT TO 098 00 D 043 03 3 3 DECIMAL PLACES 099 03 3 044 43 RCL START INTEGRATION LOOP 100 65 X 045 00 0 101 43 RCL 046 01 1 102 01 1 047 33 COS COS Φ 103 09 9 SOLAR CONSTANT ISC 048 65 X 104 95 = 049 43 RCL 105 42 STO 050 00 0 106 01 1 051 07 7 107 03 3 DIRECT NORMAL IDN 053 42 STD 109 00 0 0 054 01 1 110 09 9						
O39 09 9 O95 05 5 A/I _{SC}						
040 98 *PRT PRINT MODE NO. 096 65 X 041 99 *PAP SPACE 097 43 RCL 042 57 *FIX SET OUTPUT FORMAT TO 098 00 D 043 03 3 3 DECIMAL PLACES 099 03 3 APPLY CLEARNESS NO. CN 044 43 RCL START INTEGRATION LOOP 100 65 X 045 00 0 101 43 RCL 046 01 1 102 01 1 047 33 COS COS Φ 103 09 9 SOLAR CONSTANT ISC 048 65 X 104 95 = 049 43 RCL 105 42 STO 050 00 0 106 01 1 051 07 7 107 03 3 DIRECT NORMAL IDN 052 33 COS COS δ 108 43 RCL 053 42 STO 109 00 0 054 01 1 110 09 9						A/I _{SC}
042 57 *FIX SET OUTPUT FORMAT TO 098 00 0 0 043 03 3 3 DECIMAL PLACES 099 03 3 3 APPLY CLEARNESS NO. CN 044 43 RCL START INTEGRATION LOOP 100 65 X 045 00 0 10 10 10 10 10 10 10 10 10 10 10 1		*PRT	PRINT MODE NO.			
043 03 3 3 DECIMAL PLACES 099 03 3 APPLY CLEARNESS NO. CN 044 43 RCL START INTEGRATION LOOP 100 65 X 045 00 0 101 43 RCL 046 01 1 102 01 1 047 33 COS COS Φ 103 09 9 SOLAR CONSTANT ISC 048 65 X 104 95 = 049 43 RCL 105 42 STO 050 00 0 106 01 1 051 07 7 107 03 3 DIRECT NORMAL IDN 052 33 COS COS δ 108 43 RCL 053 42 STO 109 00 0 054 01 1 110 09 9						
044 43 RCL START INTEGRATION LOOP 100 65 X 045 00 0 101 43 RCL 046 01 1 102 01 1 047 33 COS COS Φ 103 09 9 SOLAR CONSTANT ISC 048 65 X 104 95 = 049 43 RCL 105 42 STO 050 00 0 106 01 1 1 051 07 7 107 03 3 DIRECT NORMAL IDN 052 33 COS COS δ 108 43 RCL 053 42 STO 109 00 0 054 01 1 110 09 9					_	APPLY CLEARNESS NO. CN
046 01 1 1 102 01 1 1 0047 33 COS COS φ 103 09 9 SOLAR CONSTANT ISC 048 65 X 104 95 = 049 43 RCL 105 42 STO 050 00 0 106 01 1 1 0051 07 7 107 03 3 DIRECT NORMAL IDN 052 33 COS COS δ 108 43 RCL 053 42 STO 109 00 0 0 054 01 1 110 09 9						
047 33	045 00	0		101 43	RCL	
048 65 X 104 95 = 049 43 RCL 105 42 STO 050 00 0 106 01 1 051 07 7 107 03 3 DIRECT NORMAL IDN 052 33 COS COS δ 108 43 RCL 053 42 STO 109 00 0 054 01 1 110 09 9		-	/			OOLAD BOMOTANTI
049 43 RCL 105 42 STO 050 00 106 01 1 051 07 7 107 03 3 DIRECT NORMAL IDN 052 33 COS COS δ 108 43 RCL 053 42 STO 109 00 0 054 01 1 110 09 9			τυς φ			SULAR CUNSTANT ISC
050 00 0 106 01 1 1 051 07 7 107 03 3 DIRECT NORMAL IDN 052 33 COS COS δ 108 43 RCL 053 42 STO 109 00 0 0 0 054 01 1 110 09 9						
051 07 7 107 03 3 DIRECT NORMAL I _{DN} 052 33 COS COS δ 108 43 RCL 053 42 STO 109 00 0 054 01 1 110 09 9			· · · · · · · · · · · · · · · · · · ·		1	
053 42	051 07	7	B	107 03	3	DIRECT NORMAL IDN
054 01 1 110 09 9			cos δ			
		_				
						MODE NO.

SR-52 PROGRAM LISTING
DETERMINISTIC INSOLATION ESTIMATES: 3. SINGLE-AXIS TRACKERS (CONTINUED)

LOC. CODE	KEY	COMMENT	LOC. CODE	KEY	COMMENT
112 01	1		168 33	cos	
113 95	=		169 42	STO	
114 90 115 01	*IF ZRO 1	IF MODE = 1 GO TO LOC. 156	170 01 171 02	1	COCINE OF INCIDENCE AND I
116 05	5	GO 10 LUC. 138	177 02	2 RCL	COSINE OF INCIDENCE ANGLE
117 06	6		173 01	1	
118 53	Ĭ.	IF MODE = 2	174 06	6	
119 43	RCL	(NORTH-SOUTH TRACKER)	175 *98	*PRT	PRINT TIME
120 01	1		176 43	RCL	
121 01	1		177 01	1	
122 33 123 65	cos	COS h	178 02	2	$\cos heta_{ extsf{i}}$
123 65	X (179 65 180 43	X RCL	
125 43	RCL		181 01	1	
126 00	0		182 03	3	IDN
127 01	1	φ	183 65	X	
128 75	_	•	184*98	*PRT	PRINT INCIDENT RADIATION
129 43	RCL		185 99	*PAP	
130 00 131 02	0		186 43	RCL	
			187 01		
132 54 133 42) Sto	T	188 08	8 =	Δt
134 01	1		189 95 190 44	SUM	INCREMENT 12
135 05	5	(φ – T)	191 01	1	INCHEMENT 12
136 32	SIN	SÍN (Φ-T)	192 00	Ö	
137 65	Х		193 93	· · · · · · · · · · · · · · · · · · ·	
138 43	RCL		194 05	5	
139 01	1	8	195 44	SUM	INCREMENT t
140 04 141 75	4	cos 8	196 01 197 06	1 6	
142 43	RCL				
143 00	0		198 01 199 42	1 STO	
144 07	7		200 01	1	
145 32	SIN	sin δ	201 08	8	$\Delta t = 1$
146 65	Х		202 58	*DEG	IF N>0 GO TO
147 43	RCL		203 00	0	LOC. 044
148 01	1		204 04	4	
149 05 150 33	5 COS	COS (φ -T)	205 04 206 43	4 RCL	
151 54)	SINE OF INCIDENCE ANGLE	207 01	1	
152 41	GTO		208 00	0	i ₂
153 01	1	GO TO LOC. 166	209 65	X	'2
154 06	6		210 43	RCL	APPLY CLOUD FACTOR
155 06	6		211 00	0	
156 53		MODE = 1	212 04	44	CF
157 43	RCL	(EAST-WEST TRACKER)	213 95	= ******	
158 01 159 01	1		214 98 215 99	*PRT	PRINT DAILY INCIDENT ENERGY
160 32	SIN	SIN h	216 81	*PAP HLT	SPACE STOP
161_65	X		0.		
162 43	RCL			· · · · · · · · · · · · · · · ·	
163 01	1	_			
164 04	4	cos δ			
165 54 166 22	} IMM	SINE OF INCIDENCE ANGLE			
167 32	INV SIN				
02	0111				

SR-52 PROGRAM FLOW CHART DETERMINISTIC INSOLATION ESTIMATES: 3. SINGLEAXIS TRACKERS

5.0 INSTALLATION ENVIRONMENT

5.1 ELECTRIC POWER

The SR-52 calculator may be operated on batteries, independent of any external power source. If an inverter or printer is used, a standard 115 V ac/60 Hz outlet is required.

5.2 MAGNETIC CARDS

Program instructions are contained in the keystroke sequences given in the Program Listings (Section 4.3), and can be entered into the calculator directly using the following procedure:

Keystroke Sequence	Display	Comment
1. CLR *reset	0	Set calculator to beginning of memory
2. LRN	000 00	Enter "learn" mode
3. *LBL A, etc.	002 00	Begin keystroke sequence

It is more convenient to enter instructions by magnetic card. Each module is contained on both the A and B sides of a single card. The two sides are read in sequence by carrying out the keystroke operations described in the section on sample problems and inserting the appropriate end of the card into the slot on the right side of the calculator.

REFERENCES

- 1. AI-DOE-13230, "Commercial Applications of Solar Total Energy Systems," DOE Contract EY-76-C-03-1210 Final Report Volume 1 (July 1978)
- 2. AI-78-18, Solar Thermal, "Manual for the Solar Total Energy Systems Evaluation Program (STESEP)" (July 1978)
- 3. Eldon C. Boes, et al., "Availability of Direct, Total and Diffused Solar Radiation to Fixed and Tracking Collectors in the USA." Sandia Laboratories Energy Report, SAND 77-0885 (August 1977)
- 4. John A. Duffie and William A. Beckman, Solar Energy Processes, John Wiley, New York, 1974. pp 8-18
- 5. ASHRAE Handbook of Fundamentals, ASHRAE, pp 386-394 (1972)
- 6. "Solar Thermal Conversion Mission Analysis, Volume III. South-Western United States Insolation Climatology," Aerospace Corporation Report ATR 74 (7417-16) 2, Vol III (November 15, 1974)
- 7. "Terrestrial Photovoltaic Power Systems with Sunlight Concentration," Annual Progress Report for Period January 1, 1975, to December 31, 1975, ERDA Contract No. E(11-1)-2590, ERDA Report No. CDO-2590-1(2)
- "Climatic Atlas of the United States," U.S. Department of Commerce, pp 69-70 (June 1968)

GLOSSARY

```
Symbol 
                                     Description
           apparent extraterrestrial irradiation, kW/m<sup>2</sup>
        = atmospheric extinction coefficient per air mass
  В
  CF
        = cloud factor
       = clearness number
  CN
        = hour angle, degrees
  h
       = daily average incident or net energy, kWh/m<sup>2</sup>-day
  Н
       = defined by Equation 8
       = daily average of direct normal energy, kWh/m<sup>2</sup>-day
       = daily average of total horizontal energy, kWh/m<sup>2</sup>-day
  H_{\mathbf{h}}
       = first solar integral, \int A \exp(-B/\cos\theta_7)dt
  Ιı
       = second solar integral, \int A \exp(-B/\cos\theta_z)\cos\theta_z dt
  12
       = third solar integral, \int \cos \theta_{7} dt
  I_{DF} = diffuse radiation intensity, kW/m<sup>2</sup>
       = direct normal intensity, kW/m<sup>2</sup>
  IDN
       = solar constant, 1.353 kW/m<sup>2</sup>
  I_{SC}
        = number of integration time steps
  n
        = day of year
        = earth-sun distance correction
  Τ
       = tilt angle, degrees
       = time, hours
        = time increment, hours
        = first coefficient (Equation 5), kW/m^2; (\alpha/I_{SC} = 1.33)
        = second coefficient (Equation 5), kW/m^2; (\beta/I_S = -0.384)
  β
  ŝ
        = defined by Equation 8
        = solar declination, degrees
        = solar incidence angle, degrees
        = solar zenith angle, degrees
        = latitude, degrees
```

APPENDIX - CLIMATE AND INSOLATION SUMMARIES

One-page summaries of the significant climatic and insolation parameters have been prepared for the twelve sites which are representative of the continental United States. The summaries are contained in Tables A-1 through A-12. In the following, the sources of the data and methods of presentations are discussed.

Geographical information is limited to the site (city) name and the latitude and longitude. The latter are generally associated with the reporting weather station. The ASHRAE design conditions are included (e.g., winter dry bulb and wind severity, summer dry bulb and wet bulb conditions).

Heating and cooling degree days based on long-term averages are included for each month of the year (65°F base). Similar long-term averages of percent possible sunshine and average ambient temperature maxima and minima are also provided by month.

Both total horizontal and direct normal values of incident radiation are presented for each month. These values were obtained from two-year averages of the Aerospace Corporation tapes. In each case, only the horizontal values are directly measured. The direct normal values are inferred by means of correlations.

The clearness number and cloud factor parameters are obtained directly from the values of incident radiation, using the deterministic method. Cloud factors are obtained from average percent sunshine.

Table A-13 lists the sources used to supply the data presented in the climate and insolation summaries. In certain cases, it was necessary to substitute data from nearby sites of similar climatology. In such cases, the substitute is indicated in parenthesis. For dry bulb temperatures, a slight adjustment was sometimes made if the mean temperature at the substitute site differed significantly.

TABLE	A-1	l													
SITE NAME	E A	LBU	QUERQU	JE, N.M.			LA	ידודטנ	DE <u>35.0</u>)5º	LONG	SITUD	E	06.62°	
ASHRAE D	ESIG	N C	ONDIT	ION:											
WINTER	- 97	1/2	%				_			_					
			EMP_		3.3	-	.°c,	94		°F;					
			·	L	-OW		•								
SUMMER	-						0 -			۸_ ۱					
WET	GREE DAYS:														
DEGREE D	GREE DAYS: JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC														
	HEATING OC 513 389 331 156 32 0 0 0 4 121 342 496														
115 4 7	1010	٥с	513	389	331	156	32	0	0	0	4	121	342	496	
HEAL	ING ,	°F	924	700	595	282	58	0	0	٥	7	218	615	893	
00011		°с	0	0	0	3	37	162	236	200	89	4	0	0	
COOL	IIVG ,	٥F	0	0	0	6	67	291	425	360	160	7	0	0	
PERCENT I	COOLING 0-														
		ı								1				ــــــــــــــــــــــــــــــــــــــ	1
AVERAGE	АМВІ	ΙEΝ	TTEM	IPERA	TURE	RANC	3E:								
MAX	, n	°c	8.0	11.2	14.9	20.6	25.7	31.4	32.9	31.1	27.9	21.5	13.4	9.1	
WAAL	. ۵. ر	٥F	46.4	52.2	58.8	69.1	78.3	88.6	91.2	88.0	82.3	70.7	56.1	48.3	ı
MIN D	p (РС	-4.7	-2.5	0.4	5.7	11.1	16.2	18.8	17.9	14.2	7.4	~0.5	-3.6	ı
WIIN D		°F į	23.5	27.5	32.7	42.2	51.5	61,1	65.8	64.3	57.6	45.3	31.1	25.6	,
AVERAGE	DAIL	.Y I	NCIDE	NT R	ADIAT	ION:									
HORIZ	kWh/n	_ 1	3.58	4.50	6.00	7.30	8.29	8.63	7.39	7.23	5.87	6.23	3.80	3.48	
1	Btu/ft	- 1	1136	1427	1903	2116	2630	2738	2343	2292	1861	1658	1205	1105	
DIRECT	kWh/n		6.77	7.11	8.48	9.10	10.00	10.40	8.43	8.90	7.37	8.19	6.90	7.23	
	Btu/ft	2 [2149	2254	2591	2887	3172	3299	2691	2824	2337	2599	2189	2292	
EFFECTIV	E ATN	MOS	SPHER	E FAC	TORS	:									
CLEARN	ESS N	Ο.	0.96	0.87	0.99	0.92	1.17	1.17	1.03	1.10	0.93	1.05	0.97	1.14	
CLOUD F	ACTO)R	0.84	0.85	0.85	0.87	0.89	0.92	0.87	0.866	0.90	0.89	0.89	0.84	
													-		

TABLE	<u>A-2</u>				7157	.,,	30 EA	. 10.1						
SITE NAME	BL	UE HILL	, MASS	i.		L	ATITU	DE <u>42.2</u>	220	LON	GITUE	DE	. 02 º	-
	97 1/2 ULB [*] SPEE	2% FEMP_ D		-12.2 HIGH		.°c,		×-	·					
DRY E	ULB	ГЕМР _		31.1		.°c,	88		°F:	DESIG	N RE	ι ΔΤίν	/F	
WET B	ULB 1	TEMP_		23.3		.°C,	74		°F	HUMI	DITY	LATIV	-	_50 %
DEGREE DAY	′ S:					<i>y</i> =			, 					
	0 -	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
HEATING	°C	668	583	513	312	151	30	3	8	62	203	378	608	
		1203	1050	924	561	271	54	6	14	711	366	681	1094	
COOLING	°C	0	0	0	0	6	38	108	83	18	0	0	0	
	۲,	0	0	0	0	10	69	195	150	33	0	0	0	
PERCENT PO	SSIBL	E SUNS	SHINE	:					,					
		47	56	57	56	59	62	64	63	61	58	48	48	
AVERAGE A	MBIEN	IT TEM	PERA	TURE	RANC	SE:								•
MAX D.B	°C	2.8	2.8	7.2	13.3	20.	24.4	27.8	26.7	22.8	17.2	11.1	4.4	
	o _F	37	37	45	56	68	76	82	80	73	63	52	40	
MIN D.B.	o _E	-5 23	-5 23	6 31	4.4 40	10 50	15 59	18.3 65	17.2 63	13.9 57	8.3 47	3.3 38	-2.8 27	
	۰F		23	31	40	50	59	05	03	5/	47	38	27	J
AVERAGE D	AILY I	NCIDE	NT R	ADIAT	ION:									
HORIZ	h/m ²	1.87	2.68	4.03	5.07	6.00	6.33	5.71	5.23	4.17	3.35	1,71	1.90	
	ı/ft ²	593	850	1278	1608	1903	2008	1811	1659	1323	1063	542	603	ļ
DIRECT											5.48	l	4.26	
Btı	ı/ft2	1288	1472	1884	2008	2230	2252	2036	2036	1776	1738	1085	1351	l
EFFECTIVE	OMTA	SPHER	E FAC	TORS	:									
CLEARNES	S NO.	0.74	0.61	0.75	0.82	0.91	0.92	0.79	0.81	0.81	0.92	0.62	1.05	
CLOUD FA	CTOR	0.69	0.75	0.76	0.75	0.77	0.79	0.80	0.79	0.78	0.76	0.70	0.69	

TABLE	Α-	-3 _													
SITE NAM	E f	FT. WC	овтн, т	EXAS			LA	ATITUI	DE3	2.830	LONG	SITUE	DE	.050	
ASHRAE [DESIG	GN C	ONDIT	ION:											
WINTER	R — 9	7 1/2	%												
DR	Y BU	LB T	EMP_		4.4		°C,	24		о _{F;}					
Wil	ND SF	PEED	·		IIGH										
SUMME				3	7.8		_	10	0	٠,١					
			EMP_				°C,			°F:}	DESIG	SN RE	LATIV	Έ	40 %
WE	T BU	LB T	EMP_	2	5.6		.°C,	78		°F }	HUMI	DITY			 /6
DEGREE [DAYS	i:													
			JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	
HEAT	ING	°C	348	253	186	49	0	0	0	0	0	33	159	294	
IILAI	IIVG	°F	626	456	335	88	0	0	0	0	0	60	287	530	J
COOL	ING	°C	0	0	14	52	131	260	341	343	212	78	6	0	
COOL	ind	٥F	0	0	25	94	236	468	614	617	381	141	11	0	
PERCENT	POSS	SIBLE 1				i					r		1		!
		l	56	57	65	66	67	75	78	78	74	70	63	58	l
AVERAGE	: AM	BIEN	TTEM	IPERA	TURE	RANC	SE:								
MAX	D D	°c	13.3	15.6	19.4	24.4	28.3	33.3	35.6	35.6	31.7	26.1	18.9	14.4	
WAX	U.B.	°F	56	60	67	76	83	92	96	96	89	79	66	58	
MIND	. D	°c	1.7	3.9	6.7	12.2	17.2	21.7	23.9	23.9	20	13.3	6.7	2.8	l
WITTE	л.Б.	٥F	35	39	44	54	63	71	75	75	68	56	44	37	
AVERAGE		_ 4	NCIDE	NT RA	ADIAT	ION:									
HORIZ	kWh/	_ 1	3.06	3.86	5.19	5.20	6.81	6.81	7.42	7.10	5.27	4.39	2.94	2.61	
	Btu/f		971	1224	1646	1649	2160	2160	2354	2252	1672	1393	933	828	
DIRECT	kWh/		5.10	5.61	6.71	5.67	7.55	7.58	8.65	8.74	6.47	6.42	4.61	4.55	
	Btu/f	t ²	1618	1779	2128	1799	2395	2404	2744	2772	2052	2052	1462	1443	l
EFFECTIV	/E AT	MOS	PHER	E FAC	TORS	:									
CLEARN	IESS	NO.	0.78	0.75	0.81	0.66	0.97	0.87	1.0	1.02	0.79	0.81	0.66	0.71	
CLOUD	FACT	OR	0.75	0.76	0.81	0.81	0.82	0.87	0.88	0.88	0.86	0.84	0.79	0.76	,

TABLL	A-4													
SHE NAME	LAKE	CHARL	ES, LA			L <i>A</i>	ATITUI	DE	30.1 2 0	LON	GITUE)E93	3.22 ⁰	
ASHRAE DESI	GN C	ONDIT	ION:											
WINTER - 9						_			_					
DRY BU		_		0.6		°C,	33		°F;					
WIND S				MEDII	UM									
SUMMER - :						٥-			o-)					
DRY BU				-		°C,	93		0F;	DESIG	SNRE	LATIV	Έ	60
WET BU	ILB T	EMP_		26.1	.	.oc,	79	<u>'</u>	* J	HUMI	DITY			
DEGREE DAYS	S:													
		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
HEATING	οс	231	17C	111	14	0	0	0	0	0	20	98	188	
HEATING	ОF	415	306	200	26	0	0	0	0	0	36	177	338	ĺ
COOLING	oc	12	16	30	79	176	262	299	296	223	106	18	4	
COOLING	٥F	21	29	54	143	316	471	539	533	402	191	33	7	
PERCENT POS	SIBLI	E SUNS	SHINE	:	r				,	,				
		49	50	57	63	66	64	58	60	64	70	60	46	j
AVERAGE AM	BIEN	T TEN	IPERA	TURE	RANC	ßE:								_
MAX D.B.	οС	17.8	19.4	21.7	25.6	28.9	32.2	32.8	32.8	30.6	26.7	21.1	18.3	
WAX D.B.	°F	64	67	71	78	84	90	91	91	87	80	70	65	
MIN D.B.	οС	7.2	8.9	11.1	14.4	17.8	21.7	22.8	22.8	20.6	16.1	10	7.8	
WIN D.B.	оF	45	48	52	58	64	71	73	73	69	61	50	46	}
AVERAGE DA	ILY I	NCIDE	ENT R.	TAIDA	ION:							_		_
HORIZ KWH	_{1/m} 2	2.42	3.68	4.55	5.20	6.48	5.87	6.23	5.68	5.00	4.48	3.06	2.52	Ĭ
Btu	ft2	768	1167	1443	1649	2055	1862	1976	1802	1586	1421	971	799	
DIRECT	_{1/m} 2	3.35	4.89	4.54	5.53	7.29	6.43	7.10	6.68	5.83	5.94	4.35	3.87	ļ
Btu	/112	1063	1551	1729	1754	2312	2040	2252	2119	1849	1884	1380	1228]
EFFECTIVE A	тмо	SPHER	E FAC	CTORS	i:									
CLEARNESS	NO	0.48	0.70	0.68	0.67	0.90	0.77	0.96	0.85	0,77	0.76	0.64	0.69	1
CLOUD FAC		1	0.71	0.76	ł	0.81	0.80	0.76	0.78	0.80	0.84	1	0.68	

			CLIM/	TE A	ND IN	SOLAT	TON S	UMM/	ARY				
TABLU A-5													
SHE NAME LOS	ANGELES	6, CA.			LA	TITU	DE <u>34.0</u>	50	LONG	GITUD	E	8.230	
ASHRAE DESIGN (WINTER - 97 1/		ION:											
DRY BULB WIND SPEE			6.7 VERY	LOW	°C,	44	h. —————	°F;					
SUMMER - 2 1/2	2%												
DRY BULB	TEMP_		32.2		°C	90).).	°F;	DESIG	SN RE	LATIV	Έ	0/
WET BULB	TEMP_		21.1		°C,	79	9. ———	°F	HUMI	DITY			36 %
DEGREE DAYS:								,					•
		FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
HEATING O	145	115	106	69	33	14	0	0	3	19	63	121	
o _F	1	207	190	124	60	25	0	0	5	35	113	218	
COOLING (8	6 10	14 25	28 51	64 115	143 258	157 282	131 236	78 140	24 44	0	
COOLING OF			10	25	31	115	256	202	230	140		· · -	
PERCENT POSSIBL	E SUN	SHINE	:					1					ı
	70	69	70	67	68	69	80	81	80	76	79	72	
AVERAGE AMBIE		1PERA	TURE	RANC	SE:	,		 			,	,	
MAX D.B.	1	18.9	20.3	21.4	22.9	25.1	28.5	28.5	28,0	25.2	22.9	19.7	
٥F	65.0	66.0	68.6	70.6	73.3	77.1	83.3	83.3	82.4	77.3	73.3	67.5	1
MIN D.B.	8.1	9.0	10.1	11.7	13.3	14.9	17.0	17.2	16.3	14.1	11.2	9.3	1
WIND D.B. OF	46.6	48.2	50.2	53.0	56.0	58.9	62.6	62.9	61.4	57.4	52.1	48.8	}
AVERAGE DAILY	INCIDI	ENT R	ADIAT	ION:							· · · · · · · · · · · · · · · · · · ·	, —·—	_
HORIZ kWh/m²	2.94	3.32	5.23	6.57	6.23	6.27	8.13	7.49	5.87	4.19	3.27	3.03	ļ
Btu/ft ²		1054	1658	20 83	1975	1988	2579	2353	1861	1330	1036	962	
DIRECT kWh/m ²	5.32	4.86	7.32	8.00	7.03	6.73	9.32	8.84	7.50	6.23	5.63	5.16	
Btu/ft2	1688	1541	2323	2538	2231	2136	2957	2804	2379	1975	1787	1637]
EFFECTIVE ATMO	SPHER	RE FAC	TORS	:									
CLEARNESS NO	0.64	0.49	0.79	0.99	0.82	0.81	1.15	1.07	0.92	0.73	0.70	0.83	
CLOUD FACTOR	0.84	0.83	0.84	0.82	0.83	0.83	0.89	0.90	0.89	0.87	0.89	0.85	

					CLIM	AILA	או טא	SOLA	HOMS	SUIVIIVI	ARY				
TABLE	Α.	-6 .													
SITE NAM	1E	MA	DISON,	WIS.		 .	L	ATITUI	DE	43.13°	LON	GITUD)E89	9.330	_
ASHRAE I	DESIG	GN C	ONDI	rion:											
WINTER	R - 9	7 1/2	?%												
DR	Y BU	LB 1	EMP_	<u>-</u>	20.6		.°c,	-5		o _{F:}					
				-	MEDIUM										
SUMME	R - 2	1/2	%												
DR	RY BU	LB 1	ГЕМР_	3	31.1		.°C,	88	3	°F;	DESIG	SN RE	LATIV	/F	
WE	т ви	LB T	EMP_		23.9		.°C,	75	i	°F	HUMI	DITY	LATIV	_	_53
										,					
DEGREE I	DAYS	i:													
			JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
HEAT	ING	οС	830	696	599	328	165	40	8	22	96	263	505	742	
IICAI	IIVG	°F	1494	1252	1079	591	297	72	14	39	173	474	909	1336	
COOL	ING	οС	0	0	0	0	10	53	96	86	8	3	0	0	
COOL	·IIVO	°F	0	0	0	0	18	96	172	154	14	6	0	0	
PERCENT	POSS	BL!	E SUN	SHINE	:										
		1		49											1
			44	49	52	53	58	64	70	66	60	56	41	38]
AVERAGE	E AME	BIEN	IT TEN	IPERA	TURE	RANG	BE:								
		οс	-3.3	-2.2	2.9	11.7	18.9	24.4	28.3	27.2	22.2	16.1	5.6	-1.1	1
MAX	D.B.	٥F	26	28	37	53	66	76	83	81	72	61	42	30	1
		°C	-12.2	-12.2	-6.1	1.7	7.2	13.9	15.6	15	10.6	4.4	-2.2	-8.9	•
MINE	D.B.	o _F	10	10	21	35	45	57	60	59	41	40	28	16	
			l	<u> </u>	-	·	<u></u>		· · ·			·	<u> </u>		J
AVERAGE	E DAI	LYI	NCIDE	ENT R	ADIAT	ION:									
HODIZ	kWh,	/m2	1.77	2.46	3.68	5.47	6.03	7.13	6.71	6.16	4.50	3.26	1.80	1.56	7
HORIZ	Btu/	ft2	563	780	1167	1734	1912	2260	2127	1953	1427	1033	571	495	ľ
DIRECT	kWh,	/m2	3.52	4.18	5.10	6.90	7.29	8.67	8.19	7.97	6.30	5.26	3.43	3.35	
טואנטו	Btu/	ft2	1116	1325	1617	2187	2311	2448	2596	2526	1997	1667	1087	1062	
							•			• •					-
EFFECTIV	VE AT	гмо	SPHEF	E FAC	CTORS	:									
CLEAR	VESS	NO.	0.78	0.62	0.72	1.00	0.94	1.09	0.98	1.04	0.96	0.94	0.86	1.00	1
CLOUD	FACT	ror	0.66	0.70	0.72	0.73	0.76	0.80	0.84	0.81	0.78	0.75	0.64	0.62	
															-

CLIMATE AND INSOLATION SUMMARY TABLE MIAMI, FLA. LATITUDE 25.800 LONGITUDE 80.270 SITE NAME ASHRAE DESIGN CONDITION: WINTER - 97 1/2% OC, 47 DRY BULB TEMP___ WIND SPEED ____ SUMMER - 2 1/2% °C,_ _°F;} DRY BULB TEMP ___ **DESIGN RELATIVE** o_F WET BULB TEMP____ 79 26.1 HUMIDITY DEGREE DAYS: JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ٥с HEATING OF 9 0 0 0 0 0 0 0 31 17 0 0 0 Ω 0 0 0 13 56 118 167 224 267 298 308 278 221 127 88 COOLING OF 300 403 536 480 555 501 397 229 159 PERCENT POSSIBLE SUNSHINE: 62 65 67 62 62 65 65 AVERAGE AMBIENT TEMPERATURE RANGE: OC 24.4 31.1 31.7 32.2 29.4 31.1 26.7 25 MAX D.B. °F| 77 80 88 85 80 77 OC 14.4 15. 16.1 18.9 21.1 23.3 23.9 23.9 23.9 21.7 18.3 15 MIN D.B. 58 66 ٥۶ 59 61 70 74 75 75 AVERAGE DAILY INCIDENT RADIATION: kWh/m2 3.81 4.79 5.90 6.67 5.97 6.42 5.71 4.80 HORIZ 4.90 3.80 3.65 Btu/ft² 1205 1518 1870 2114 2118 1892 2035 1810 1522 1553 1157 kWh/m² 5.52 6.50 7.32 7.47 7.55 6.63 7.19 6.10 5.27 6.48 5.58 DIRECT 1750 2061 2320 Btu/ft2 2368 2393 2102 2279 1934 1671 2054 1648 1769

EFFECTIVE ATMOSPHERE FACTORS:

0.70

0.85

0.80

0.85

0.89

0.85

CLEARNESS NO. 0.69

CLOUD FACTOR 0.81

0.93

0.83

0.83

0.79

0.92

0.81

0.76

0.82

0.68

0.79

0.86

0.79

0.71

0.81

0.76 0.81

ASHRAE DESIGN CONDITION: WINTER - 97 1/2% DRY BULB TEMP -89	TABLE	A-8														
WINTER - 97 1/2% DRY BULB TEMP	SITE NAM	E	NA -	SHVI	LLE, TE	NN.		L	UTITA	DE	36.12	° LON	GITUE	DE86	6.680	-
DRY BULB TEMP	ASHRAE (DESIGI	N CON	NDIT	TION:											
WIND SPEED LOW SUMMER - 2 1/2% DRY BULB TEMP 35	WINTER	R - 97	1/2%													
SUMMER - 2 1/2% DRY BULB TEMP 35	DR	Y BUL	B TE	MP_	-8.9			_°c,	16		°F;					
DRY BULB TEMP 25.6	wir	ND SPE	EED_		LOV	<u> </u>		-								
DEGREE DAYS: HEATING OC OF SERVICE SUNSHINE: PERCENT POSSIBLE SUNSHINE: MAX D.B. OF OC	SUMME	R 2	1/2%								_					
DEGREE DAYS: HEATING OC OF SERVICE SUNSHINE: PERCENT POSSIBLE SUNSHINE: MAX D.B. OF OC	DR	Y BUL	B TE	MP_	35				95		_°F;]	DESIG	SN RE	LATIV	/E	
HEATING OC 460 373 291 98 25 0 0 0 6 100 277 424	WE	T BUL	B TEN	MP_	25.6	<u> </u>		-°C,	78		.ºF }	HUM	DITY		_	_50_%
HEATING OF OF HEATING	DEGREE E	DAYS:														
HEATING OF 828 672 524 176 45 0 0 0 10 180 498 763 COOLING OF 0 0 0 11 16 85 193 252 233 122 29 0 0 0 PERCENT POSSIBLE SUNSHINE: 42 47 54 60 65 69 69 68 69 65 55 42 AVERAGE AMBIENT TEMPERATURE RANGE: MAX D.B. OF 49 51 59 71 80 88 91 90 85 74 59 50 MIN D.B. OF 31 33 39 48 57 66 70 68 61 49 38 32 AVERAGE DAILY INCIDENT RADIATION: HORIZ KWh/m² Btu/ft² 625 917 1177 1608 1944 1830 1871 1779 1386 1228 615 584 DIRECT KWh/m² 3.26 4.04 4.48 5.63 6.68 5.90 6.19 6.23 5.03 5.39 2.90 3.06 Btu/ft² 1034 1281 1421 1786 2119 1871 1963 1976 1596 1710 920 971 EFFECTIVE ATMOSPHERE FACTORS: CLEARNESS NO. 0.56 0.61 0.56 0.71 0.84 0.69 0.76 0.79 0.65 0.80 0.40 0.64			J	AN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
COOLING OF 0 0 11 16 85 193 252 233 122 29 0 0 0 PERCENT POSSIBLE SUNSHINE: 42 47 54 60 65 69 69 68 68 69 65 55 42 AVERAGE AMBIENT TEMPERATURE RANGE: MAX D.B. OF 49 51 59 71 80 88 91 90 85 74 59 50 MIN D.B. OF 31 33 99 48 57 66 70 68 61 49 38 32 AVERAGE DAILY INCIDENT RADIATION: HORIZ KWh/m² 1.97 2.89 3.71 5.07 6.13 5.77 5.90 5.61 4.37 3.87 1.94 1.84 DIRECT KWh/m² 3.26 4.04 4.48 5.63 6.68 5.90 6.19 6.23 5.03 5.39 2.90 3.06 DIRECT KWh/m² 3.26 4.04 4.48 5.63 6.68 5.90 6.19 6.23 5.03 5.39 2.90 3.06 DIRECT KWh/m² 1.97 2.89 3.71 1777 1608 1944 1830 1871 1779 1386 1228 615 584 DIRECT KWh/m² 3.26 4.04 4.48 5.63 6.68 5.90 6.19 6.23 5.03 5.39 2.90 3.06 EFFECTIVE ATMOSPHERE FACTORS: CLEARNESS NO. 0.56 0.61 0.56 0.71 0.84 0.69 0.76 0.79 0.65 0.80 0.40 0.64	UEAT	INC	°C 4	60	373	291	98	25	0	0	0	6	100	277	424	
COOLING OF 0 0 19 29 153 348 453 419 220 53 0 0 PERCENT POSSIBLE SUNSHINE: 42 47 54 60 65 69 69 69 68 69 65 55 42 AVERAGE AMBIENT TEMPERATURE RANGE: MAX D.B. OF 49 51 59 71 80 88 91 90 85 74 59 50	REAL	IIVG (PF 8	28	672	524	176	45	0	0	0	10	180	498	76 3	
PERCENT POSSIBLE SUNSHINE: 42 47 54 60 65 69 69 68 69 65 55 42	0001		- 1	0	0	11	16	85	193	252	233	122	29	0	0	
AVERAGE AMBIENT TEMPERATURE RANGE: MAX D.B. OC 9.4 10.6 15 21.7 26.7 31.1 32.8 32.2 29.4 23.3 15 10 90 85 74 59 50 91 90 85 74 59 50 91 90 85 74 59 50 91 90 85 74 59 50 91 90 85 74 59 50 91 90 85 74 59 50 91 90 85 74 59 50 91 90 85 74 59 50 91 90 85 74 99 38 32 AVERAGE DAILY INCIDENT RADIATION: HORIZ kWh/m² 1.97 2.89 3.71 5.07 6.13 5.77 5.90 5.61 4.37 3.87 1.94 1.84 81 81 81 81 81 81 81 81 81 81 81 81 81	COOL	אווים (°F 📗	0	0	19	29	153	348	453	419	220	53	0	0	
AVERAGE AMBIENT TEMPERATURE RANGE: MAX D.B. OF 49 51 59 71 80 88 91 90 85 74 59 50 OC NIN D.B. OF 31 33 39 48 57 66 70 68 61 49 38 32 AVERAGE DAILY INCIDENT RADIATION: HORIZ kWh/m² 51 59 71 1177 1608 1944 1830 1871 1779 1386 1228 615 584 1034 1281 1421 1786 2119 1871 1963 1976 1596 1710 920 971 EFFECTIVE ATMOSPHERE FACTORS: CLEARNESS NO. 0.56 0.61 0.56 0.71 0.84 0.69 0.76 0.79 0.65 0.80 0.40 0.64	PERCENT	POSSII					<u> </u>	1	1	·		. 	1	· · · · · ·	· · · · · ·	ŀ
MAX D.B. OC 9.4 10.6 15 21.7 26.7 31.1 32.8 32.2 29.4 23.3 15 10 88 91 90 85 74 59 50 90 90 90 90 90 90 90 90 90 90 90 90 90				42	47	54	60	65	69	69	68	69	65	5 5	42	İ
MAX D.B. OF 49 51 59 71 80 88 91 90 85 74 59 50 MIN D.B. OF 31 33 39 48 57 66 70 68 61 49 38 32 AVERAGE DAILY INCIDENT RADIATION: HORIZ KWh/m² 625 917 1177 1608 1944 1830 1871 1779 1386 1228 615 584 DIRECT KWh/m² 3.26 4.04 4.48 5.63 6.68 5.90 6.19 6.23 5.03 5.39 2.90 3.06 Btu/ft² 1034 1281 1421 1786 2119 1871 1963 1976 1596 1710 920 971 EFFECTIVE ATMOSPHERE FACTORS: CLEARNESS NO. 0.56 0.61 0.56 0.71 0.84 0.69 0.76 0.79 0.65 0.80 0.40 0.64	AVERAGE	AMBI	ENT .	TEM	IPERA	TURE	RANC	GE:								
MIN D.B. OF 31 59 71 80 88 91 90 85 74 59 50 OC -0.6 0.6 3.9 8.9 13.9 18.9 21.1 20.0 16.1 9.4 3.3 0 AVERAGE DAILY INCIDENT RADIATION: HORIZ KWh/m ² 1.97 2.89 3.71 5.07 6.13 5.77 5.90 5.61 4.37 3.87 1.94 1.84 1.	1.4.A.M	D D	_	.4	10.6	15 .	21.7	26.7	31.1	32.8	32.2	29.4	23.3	15	10	
MIN D.B. OF 31 33 39 48 57 66 70 68 61 49 38 32 AVERAGE DAILY INCIDENT RADIATION: HORIZ	WAAL	ر .۵. د			51	59	71	80	88	91	90	85	74	59	50	
AVERAGE DAILY INCIDENT RADIATION: HORIZ KWh/m ²	MINI		٦.	, i				Į.	1 :			1			ľ	1
HORIZ KWh/m ² 1.97 2.89 3.71 5.07 6.13 5.77 5.90 5.61 4.37 3.87 1.94 1.84	MIN D	'.B. (² F [3	1	33	39	48	57	66	70	68	61	49	38	32	
HORIZ Btu/ft2 625 917 1177 1608 1944 1830 1871 1779 1386 1228 615 584 1034 1281 1421 1786 2119 1871 1963 1976 1596 1710 920 971 EFFECTIVE ATMOSPHERE FACTORS: CLEARNESS NO. 0.56 0.61 0.56 0.61 0.56 0.71 0.84 0.69 0.76 0.79 0.65 0.80 0.40 0.64	AVERAGE		. —	IDE	NT R	ADIAT	ION:									
DIRECT	HORIZ		_ ''		2.89	3.71	5.07	6.13	5.77	5.90	5.61	4.37	3.87	1.94	1.84]
Btu/ft2 1034 1281 1421 1786 2119 1871 1963 1976 1596 1710 920 971 EFFECTIVE ATMOSPHERE FACTORS: CLEARNESS NO. 0.56 0.61 0.56 0.71 0.84 0.69 0.76 0.79 0.65 0.80 0.40 0.64		,	_ 1	-				1		1871	1	1386	1228	615	584	
EFFECTIVE ATMOSPHERE FACTORS: CLEARNESS NO. 0.56 0.61 0.56 0.71 0.84 0.69 0.76 0.79 0.65 0.80 0.40 0.64	DIRECT		_ .								1	1	l	ł		1
CLEARNESS NO. 0.56 0.61 0.56 0.71 0.84 0.69 0.76 0.79 0.65 0.80 0.40 0.64		Btu/ft	2 []	034	1281	1421	1786	2119	1871	1963	1976	1596	1710	920	971	l
5.50 5.50 5.50 5.50	EFFECTIV	/E ATN	MOSPI	HER	E FAC	TORS	:									
CLOUD FACTOR 0.65 0.69 0.74 0.78 0.81 0.83 0.83 0.83 0.83 0.81 0.74 0.65	CLEARN	IESS N	0. 6	.56	0.61	0.56	0.71	0.84	0.69	0.76	0.79	0.65	0.80	0.40	0.64	
	CLOUD	FACTO	OR 0	.65	0.69	0.74	0.78	0.81	0.83	0.83	0.83	0.83	0.81	0.74	0.65	

				CLIMA	ATE AT	VD IIV	OLAI	1014 3	CIVITA				
TABLE A	-9_		·										
SITE NAME	(OMAHA,	NEB.			LA	TITUE	DE4	1.370	LONG	SITUD	F96.	.02º
ASHRAE DESIG			ION:										
WINTER - 91						_			0-				
DRY BU	LB T	EMP_		18.3		°C,	-1		^o F;				
WIND SE	PEED			MEDIUM									
SUMMER - 2	2 1/29	%				•	04		o-)				
DRY BU	LBT	EMP_		4.4		°C,	94		0F;}	DESIG	SNRE	LATIV	Έ į
WET BU	LB T	EMP_	2	5.6		.°C,			of]	HUM!	DITY		
DEGREE DAYS	3 :												
]	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
	°c	730	576	481	217	82	11	0	3	39	167	417	637
HEATING	٥F	1314	1036	865	391	148	20	0	6	71	301	750	1147
	οС	0	0	0	6	48	131	210	186	61	11	0	0
COOLING	٥F	0	0	0	10	86	236	378	334	110	19	0	0
PERCENT POSS	SIBLI	E SUNS	SHINE	:		,			,	,			
		57	59	60	60	63	69	76	71	67	66	59	55
AVERAGE AM		TTEN	IPERA	TURE	RANC	SE:	,						
MAX D.B.	оС	1.7	3.9	9.4	17.8	23.9	29.4	33.9	32.2	27.8	21.1	11.1	5
WIAA D.B.	٥F	35	39	49	64	75	85	93	90	82	70	52	41
MINIDE	оС	-8.3	-6.7	-1.7	5	11.1	17.2	20.6	19.4	13.9	7.2	-0.6	-5.
MIN D.B.	٥F	17	20	29	41	52	63	69	67	57	45	31	23
AVERAGE DA	ILY I	NCIDE	NT R	ADIAT	TION:								
HORIZ kWh	/m2	2.45	2.89	4.19	5.33	5.84	€.90	6.84	5.94	4.67	3.84	2.40	2.10
HORIZ Btu/	ft2	777	916	1328	1690	1851	2187	2168	1883	1480	1217	761	666
DIDECT kWh	/m2	5.58	4.68	5.90	6.60	6.55	7.83	7.90	7.32	6.10	6.29	4.77	4.81
DIRECT Btu/	ft2	1769	1484	1870	2092	2076	2482	2504	2320	1934	1994	1512	1525
EFFECTIVE A	TMO	SPHER	E FAC	CTORS	S:								
CLEARNESS	NO	0.94	0.64	0.75	0.84	0.81	0.97	0.93	0.90	0.88	0.99	0.89	1.02
CLOUD FAC		0.76	0.77	0.78	0.78	0.79	0.83	0.87	0.84	0.82	0.81	0.77	0.74
CLOUD FAC	IOR		1		l			L					

TABLE	А	-10		·		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1007 1103	JOEAT	1014 0		****				
SHE NAM	II.		PHOENI	K, ARIZ		 	LA	TITU	DE3	3.430	LONG	GITUD	E	2.020	
	R 9 Y BU	7 1/2 ILB T			1.1 VERY		°C,	34		°F;					
SUMME DR	R – 2 Y BU	2 1/2 ⁴ ILB 1			41.1		°C,	10 76	6	°F;} °F}	DESIG HUMI	SN RE DITY	LATIV	E	27
DEGREE (DAYS	i:		_											
			JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	
HEAT	ING	°C	238	162	103	33	0	0	0	0	0	9	101	216	
		°F °C	428 0	29 2 8	185 12	60 78	197	0 327	0 451	415	313	17 133	182 14	388 0	
COOL	ING		0	14	21	141	355	588	812	747	564	240	26	0	
PERCENT	POSS	SIBL	E SUNS	SHINE	:		,)"·				ı
			76	79	8 3	88	93	94	84	84	89	88	84	77	
AVERAGE	E AMI		TTEN	IPERA	TURE	RANC	3E:					,	·		1
MAX	D.B.	oE OE	17.8 64	20 68	23.9 75	28.9 84	33.9 93	38.9 102	40.6 105	38.9 102	36.7 98	30.6 87	23.3 74	18.9 66	
		oC oF	1.7	3.9	6.1	10	13.9	18.9	23.9	22.8	19.4	12.8	5.6	2.8	
MINE	D.B.	٥F	35	39	43	50	57	66	75	73	67	55	42	37	
AVERAGI	E DA	ILY I	NCIDE	NT R	ADIAT	ION:									•
HORIZ	kWh Btu/	_	3.61	4.50	5.97	7.23 2293	8.00	8.10	7.74	6.87 2179	5.93 1881	5.13 1627	3.74 1186	3.42 1085	
	kWh	_	1145 6.42	1427 6.86	1894 8.16	8.97	2538 9.65	2569 9.67	2455 9.19	8.26	7.43	7.81	6.39	6.65	
DIRECT	Btu/	ft2	2036	2176	2588	2845	3061	3067	2915	2620	2357	2477	2027	2109	
EFFECTI	VE A	TMO	SPHEF	E FAC	CTORS	S:	- .			-					-
CLEAR	NESS	NO.	0.83	0.76	0.85	0.92	0.96	0.96	1.02	0.91	0.84	0.89	0.82	0.92	
CLOUD	FAC:	TOR	0.87	0.89	0.91	0.94	0.96	0.97	0.92	0.92	0.94	0.94	0.92	0.88	1

TABLE	A-	11				AIL A	IND IIV.	SOLA	IONS	CIVIIVIA	3111			
SITE NAM	1Ľ		SEATTL	E, WASH	ł.		LA	TITU	DE	7. 45 0	LONG	SITUD	E12	2.300
ASHRAE : WINTEI DF	R - 9	7 1/2			С		°C	32		o _{F:}				
)		LOW		<i>,</i>			• •				
SUMME														
DF	RY BU	LB 1	EMP_		26.1		°C,	79		°F;]	DESIG	IN RE	ΙΔΤΙΛ	F
			EMP_				°C,	65	<u></u>	oF∤	DESIG HUMI	DITY	←	
					· · · · · · · · · · · · · · · · · · ·					,				
			JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
HEAT	ring	_	410	319	329	238	143	69	31	32	68	184	297	372
		•	i	i				!	l	l '				
COOL	HEATING OF COOLING OF		i	l)	i		_	l	-	!	· ·		
		٥F												ـــــــــا
PERCENT	OCOLUNG.													
			27	34	42	48	53	48	62	56	53	36	28	24
AVERAGI	E AM		TTEN	IPERA	TURE	RANC	SE:							
MAX	D.B.	°C	6.7	8.3	10.6	14.4	18.9	21.1	24.4	23.9	22.8	15.6	10.0	7.8
		°F		47.	51.	58.	66.	70.	76.	75.	73.	60.	50.	46.
MINE	D.B.	°C	0.6 33.	1.7 35.	2.2 36.	5.0 41	7.2 45.	10.0 50.	12.2	12.2	8.3	6.7	3.3	2.2
		оF	33.	35.	36.	41.	45.	50.	54.	54.	47.	44.	38.	36.
AVERAGI	E DAI	LY I	NCIDE	NT R	ADIAT	ION:								
HORIZ	kWh		1.19	1.96	3.10	4.20	5.94	6.00	6.19	5.13	4.03	2.19	1.10	0.84
	Btu/1		379	623	982	1332	1883	1903	1965	1627	1279	696	349	266
DIRECT	kWh/	- 1	2.68	3.46	4.52	5.10	7.00	6.97	7.45	6.45	5.70	3.48	2.20	1.90
	Btu/1	ft ²	849	1099	1433	1618	2220	2210	2364	2046	1808	1105	698	604
EFFECTIV	VE AT	гмо	SPHER	E FAC	TORS	:								
CLEAR	NESS	NO.	0.93	0.76	0.75	0.74	1.02	1.08	0.98	0.95	1.03	0.91	0.78	0.87
CLOUD	FACT	OR	0.52	0.58	0.65	0.69	0.73	0.69	0.79	0.75	0.73	0.60	0.53	0.49
														_

TABLL	A-1	2													
SITE NAME		١	WASHIN	IGTON,	D.C.		LA	TITUE	E3	8.890	LONG	SITUD	E <u>-77</u>	.030	
ASHRAE DI				ION:											
WINTER			7.0			0.0	19	,	o _{F;}						
		TEMP -7.2 MEDIUM				°C,			-r;						
WIND SPEED MEDIUM SUMMER - 2 1/2%															
	TEMP33.3				OC,92			_°F; DESIGN RELATIVE				F			
		TEMP				°C, 77			- ' DESIGN RELATIVE _°F HUMIDITY -				_55_%		
,															
DEGREE D	AYS:														
		[JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
HEATI	NG	°C	506	431	343	147	40	0	0	0	8	106	283	476	
		°F	911	776	617	265	72	0	0	0	14 101	190 21	510 0	856 0	
COOLI	NG	°C	0	0	4 8	5 9	62 111	148 267	216 388	191 344	181	37	0	0	
		٥F								<u> </u>		<u> </u>	<u>ا</u> ـــــا		l
PERCENT POSSIBL			SUNS	SHINE	:						,				
			46	53	56	57	61	64	64	62	62	61	54	47_	}
							-	-							
AVERAGE	AME	BIEN	TTEN	IPERA	TURE	RANG	E:								
D.		°c '	6.7	7.8	12.2	18.9	24.4	28.3	30.6	29.4	26.1	20.	13.9	7.8	1
MAX).В.	°F	44	46	54	66	76	83	87	85	79	68	57	46	1
		°C	-1.1	-1.7	2.2	7.8	13.3	18.3	20.6	20	16.1	10.	3.9	-0.6	1
MIN D	.В.	٥F	30	29	36	46	56	65	69	68	61	50	39	31	<u> </u>
		-				`			-						_
AVERAGE	DAI	LY	NCIDI	ENT R	ADIAT	rion:									
	kWh,	/m2	2.20	1000	4.20	5.20	5.70	6.40	5.90	5.40	4.60	3.50	2.30	2.00	7
HORIZ	Btu/	_	699	2.90 919	1331	1648	1	2029	1870	1712	1458	1110	729	634	1
	kWh.	_		4.10	5.00	5.70	1	6.40	5.50	5.50	5.20	4.79	3.60	3.60	i
DIRECT	Btu/		1205	1300	1585	1807	1775	2029	1744	1744	1648	1490	1141	1141	
			— —	L	ــــــــــــــــــــــــــــــــــــــ	J	1		<u> </u>	<u></u>					_
EFFECTIVE ATMOSPHERE FACTORS:													_		
CLEARNESS NO			0.78	0.62	0.74	0.81	0.79	0.90	0.82	0.83	0.85	0.80	0.73	0.85	
CLOUD FACTOR				0.73	0.75	0.76	0.78	0.80	0.80	0.79	0.79	0.78	0.73	0.69	_
							-								

TABLE A-13
DATA SOURCES FOR CLIMATE AND INSOLATION SUMMARY DATA

Site	ASHRAE Design Conditions	Degree Days	Percent Sunshine	Dry Bulb Temperatures	Average Daily Incident Radiation
Lake Charles, La.	4*	2	1(New Orleans)	1(New Orleans)	5
Miami, Fla.	4	2	1	1	5
Nashville, Tenn.	4	2	1	1	5
Washington, D.C.	4	2	1	1	6
Albuquerque, N.M.	4	2	1	3	5
Ft. Worth, Texas	4	2	1		5
Los Angeles, Ca.	4	2	1	3	5
Phoenix, Ariz.	4	2	1	3	5
Blue Hill, Mass.	4(Boston)	2	1(Boston)	1(Boston)	5
Madison, Wis.	4	2	1	1(Green Bay + 1.2°F)	5
Omaha, Neb.	4	2	1(Lincoln)	l(Lincoln + 0.5°F)	5
Seattle, Wash.	4	2	1	1	5

*Data Source Legend References:

- 1. "Climatic Atlas of the United States," U.S. Department of Commerce (June 1968)
- 2. Climatography of the U.S., No.81 (By State), U.S. Department of Commerce (August 1973)
- 3. Local Climatological Data, U.S. Department of Commerce (1972)
- 4. ASHRAE Handbook of Fundamentals, ASHRAE (1972)
- 5. ERDA Report No. ERC-R-76005, "Terrestrial Photovoltaic Power Systems with Sunlight Concentration," Contract E(11-1)-2590 Arizona State U., Spectrolab, Inc.
- 6. Eldon C. Boes, et al, "Distribution of Direct and Total Solar Radiation Availabilities for the U.S.A," Sandia Laboratories Energy Report, SAND 76-0411 (1976)