Deterministic Insolation Model Program Description and User's Guide

E. P. French

Prepared for Sandia Laboratories under Contract No. 07-6971

Published February 1979

Rockwell International
Atomics International Division
8900 DeSoto Avenue
Canoga Park, CA 91304

Issued by Sandia Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Printed in the United States of America

Available from
National Technical Information Service
U. S. Department of Commerce

5285 Port Royal Road
Springfield, VA 22161
Price: Printed Copy $\$ 5.25$; Microfiche $\$ 3.00$

DETERMINISTIC INSOLATION MODEL PROGRAM DESCRIPTION
 AND
 USER'S GUIDE

By

E. P. FRENCH

Rockwell International Corporation
Space Division

Rockwell International
Atomics International Division
8900 DeSoto Avenue
Canoga Park, California 91304

FOREWORD

This is the computer program description and User's Guide for the Deterministic Insolation Model Program, developed under the Department of Energy (DOE) Contract EY-76-C-03-1210 [formerly, Energy Research and Development Administration (ERDA) Contract E(04-03)-1210]. The contract effort was performed by Rockwell International Corporation's Atomics International (AI) Division, and was monitored by Dr. R. W. Harrigan of Sandia Laboratories under the direction of Mr. J. E. Rannels, DOE Program Manager.

This documentation for the Deterministic Insolation Model was funded by Sandia Laboratories, Albuquerque, New Mexico, through Federal Agency Order (FAO) 07-6971 to AI. The AI program manager was Mr. S. J. Nalbandian. Dr. E. P. French developed the program at Rockwell's Space Division, in support of the above-mentioned contract effort, and is the author of this document.

CONTENTS

Page
1.0 Introduction 5
2.0 Program Description 6
2.1 Extraterrestrial Solar Radiation 6
2.2 Estimation of Direct (Beam) Radiation During Noncloudy Times 6
2.3 Estimation of Diffuse Radiation 7
2.4 Effect of Cloud Cover 8
2.5 Evaluation of Clearness Numbers and Cloud Factors 8
2.5.1 Application of the Model to Compute Daily 8 Average Insolation
2.5.2 CN Evaluation From Daily Averages of Total Horizontal and Direct Insolation 10
2.5.3 CN Evaluation From Total Horizontal Insolation and Assigned Cloud Factor 11
2.6 Calculation of Radiation Incident on a Tilted Flat collector 11
2.7 Calculation of Radiation Incident on Single-Axis Tracking Collectors 12
3.0 User's Guide 14
3.1 Input Requirements 14
3.1.1 Local Insolation Inputs for Module I 15
3.1.2 Other Inputs for Module I 17
3.1.3 Inputs for Module II 17
3.1.4 Inputs for Module III 17
3.2 Output Options 17
3.2.1 Operation With and Without Printer 17
3.2.2 Output for Module I 18
3.2.3 Output for Module II 18
3.2.4 Output for Module III 19
3.3 Program Limitations 19
3.3.1 Limitation on Input Values 19
Page
3.3.2 Availability and Consistency of Insolation Data 21
3.3.3 Application to Transient Simulation. 23
3.4 Sample Problems 23
3.4.1 Energy Incident on a Two-Axis Tracking Collector 24
3.4.2 Energy Incident on an East-West Horizontal Tracker (Clear Air Estimate) 25
3.4.3 Total Energy Incident on a Flat Collector. 26
4.0 Programmers Information 27
4.1 Hardware Requirements 27
4.2 Execution Time 27
4.3 Program Conversion 27
4.4 Program Listings and Flow Charts. 27
5.0 Installation Environment 37
5.1 Electric Power. 37
5.2 Magnetic Cards. 37
References 38
Glossary 39
Appendix - Climate and Insolation Summaries A-1
TABLES

1. Seasonally Varying Solar Radiation Parameters 7
2. Data Storage Structure 14
3. Daily Incident Energy Predictions Using Constants Derived From Aerospace Tapes 20
4. Daily Incident Energy Predictions Based on the Climatic Atlas 20
5. Daily Incident Energy Predictions Based on SOLMET Tapes 22
FIGURES
6. Sign Conventions for Latitude and Collector Tilt 16

1.0 INTRODUCTION

This report describes a simple mathematical model for estimating the monthly average insolation experienced by a fixed or tracking collector. It was developed under ERDA Contract E(04-3)-1210 "Commercial Applications of Solar Total Energy Systems."(I)* It is designed to fulfill the need for a rapid, economical method of assessing the availability of solar radiation as a basis for site selection and system performance estimation. It attempts to make maximum use of predictable factors, introducing random factors associated with local weather in the simplest way possible.

The method lends itself to a formulation in terms of simple mathematical expressions and is suitable for use by hand calculators and small computers. It has been implemented by a three-module program written for the Texas Instruments SR-52 Programmable Slide-Rule Calculator, as described herein. The same mathematical model has been incorporated into the Fortran Program STESEP. (2)

The model described here is intended for the rapid, approximate analysis of solar systems. It does not take the place of the SOLMET data base ${ }^{(3)}$ which provides, in a single FORTRAN compatible tape, quality controlled hourly insolation and meteorological data for representative sites throughout the United States.

[^0]
2.0 PROGRAM DESCRIPTION

2.1 EXTRATERRESTRIAL SOLAR RADIATION

Solar radiation reaching the top of the earth's atmosphere may be predicted quite accurately. Its intensity is a near constant ($I_{S C}$) modified only by a small correction (R) which takes into account the effect of seasonal variations in the earth-sun distance. According to Reference 4, this distance correction is approximately

$$
\begin{equation*}
R=1.0+0.033 \cos (360 n / 365) \tag{1}
\end{equation*}
$$

where n is the day of the year. (See glossary for definition of symbols.)
The angle of incidence on a horizontal surface (zenith angle, θ_{z}) depends upon the geographic location (latitude, ϕ), the solar declination (δ) and the local solar time as measured by the hour angle (h).

$$
\begin{equation*}
\cos \theta_{z}=\sin \delta \sin \phi+\cos \delta \cos \phi \cos h \tag{2}
\end{equation*}
$$

The solar declination is a function of the day of the year (n) and is given approximately by

$$
\begin{equation*}
\delta=23.45 \sin [284+n(360 / 365)] \tag{3}
\end{equation*}
$$

Monthly values of R and δ are the declination given in Table 1.

2.2 ESTIMATION OF DIRECT (BEAM) RADIATION DURING NONCLOUDY TIMES

On noncloudy days most of the extraterrestrial radiation penetrates the atmosphere with small change in direction. A portion of the initial radiation is absorbed by molecular atmospheric constituents; another fraction is scattered out of the beam direction by molecules, droplets, and suspended solid particles. The attenuation, which depends upon the concentration of absorbers and scatterers in the atmosphere, can be considered to have a local component and a general component which exhibits systematic seasonal variations.

TABLE 1
SEASONALLY VARYING SOLAR RADIATION PARAMETERS

Date	R	δ (degree)	$\left(\mathrm{A} / \mathrm{I}_{\mathrm{SC}}\right)$	B
January 21	1.031	-20.0	0.909	0.142
February 21	1.021	-10.8	0.897	0.144
March 21	1.006	0.0	0.876	0.156
April 21	0.989	+11.6	0.839	0.180
May 21	0.975	+20.0	0.815	0.196
June 21	0.968	+23.45	0.804	0.205
July 21	0.969	+20.6	0.801	0.207
August 21	0.979	+12.3	0.818	0.201
September 21	0.999	0.0	0.850	0.177
October 21	1.011	-10.5	0.881	0.160
November 21	1.026	-19.8	0.902	0.149
December 21	1.033	-23.45	0.911	0.142

The ASHRAE Handbook of Fundamentals ${ }^{(5)}$ presents a semitheoretical expression for direct normal radiation ($I_{D N}$) which follows this approach. It is expressed in terms of an apparent extraterrestrial irradiation (A) and an extinction coefficient (B) based on air mass.

$$
\begin{equation*}
I_{D N}=C N \cdot A \cdot \exp \left(-B / \cos \theta_{Z}\right) \tag{4}
\end{equation*}
$$

where $I_{D N}$ is the irradiation on a surface normal to the beam. The term (A) includes both the effects of upper atmosphere and of variable earth-sun distance. Table 1 gives monthly values of A, nondimensionalized by $I_{S C}$, and B, based upon empirical data from Reference 5. These values have been used in the numerical results reported here. The factor (CN) is a "clearness number" which characterizes the average local transmittance of the atmosphere. It may exhibit seasonal variations, but is considered constant during each individual day.

2.3 ESTIMATION OF DIFFUSE RADIATION

A certain amount of the radiation scattered by atmospheric constituents and cloud surfaces reaches ground level from directions other than that of the direct beam. The amount of this diffuse radiation received in a complicated function of the state of the atmosphere, the sun's position, ground reflectance,
and surface orientation. The diffuse component is estimated by means of two simplifying assumptions: that the diffuse radiation is independent of the orientation of the receiving surface and that the direct normal radiation is linearly related to the "percent possible," the fraction of total (direct plus diffuse) radiation falling on a horizontal surface at ground level compared with the extraterrestrial value. These assumptions result in the following relationship between direct and diffuse radiation intensities:

$$
\begin{equation*}
I_{D N}=\alpha \frac{I_{D N} \cdot \cos \theta_{Z}+I_{D F}}{I_{S C} \cdot R \cdot \cos \theta_{Z}}+\beta \tag{5}
\end{equation*}
$$

The coefficients (α) and (β) are empirically determined by linear regression analysis of simultaneous measurements of both total and direct components. Although they are found to depend to some extent on site location and time of day, they are treated as constants in the present application.

2.4 EFFECT OF CLOUD COVER

Solar radiation exhibits periods of reduced intensity associated with the obscuration of sunlight by clouds. The effects range from long-term overcasts which may last for days, to broken cloud cover which may block the sun for only a fraction of an hour. The net effect of cloud cover is to reduce the average radiation measured at a given site below the unclouded values. Cloul effects are dependent on local atmospheric characteristics and vary seasonally. In the present method the effect of cloud cover is approximated very simply. On the average, for each hour of the day the proportion of unclouded time is assumed to be a constant (CF). During the remaining fraction (1-CF), solar radiation is considered to be nil. Like CN, CF can have seasonal variations.

2.5 EVALUATION OF CLEARNESS NUMBERS AND CLOUD FACTORS

2.5.1 Application of the Model to Compute Daily Average Insolation

The foregoing model describes local insolation in terms of deterministic equations which contain the clearness number (CN) and the cloud factor (CF).

The average daily direct normal radiation (with cloud effects considered) is obtained by integrating Equation 4 over the full day.

$$
\begin{align*}
H_{D N} & =\int C F \cdot I_{D N} d t \\
& =C F \cdot C N \cdot \int A \exp \left(-B / \cos \theta_{z}\right) d t \\
& =C F \cdot C N \cdot I_{1} \tag{6}
\end{align*}
$$

Similarly, the daily total horizontal radiation is found by integrating Equation 5.

$$
\begin{align*}
H_{h}= & C F\left(I_{D N} \cos \theta_{z}+I_{D F}\right) d t \\
= & \frac{C F \cdot C N \cdot R \cdot I_{S C}}{\alpha} \int A \exp \left(-B / \cos \theta_{z}\right) \cos \theta_{z} d t \\
& -\frac{C F \cdot R \cdot I_{S C} B}{\alpha} \int \cos \theta_{z} d t \\
H_{h}= & \frac{C F \cdot C N \cdot R \cdot I_{2}}{\left(\alpha / I_{S C}\right)}-\frac{C F \cdot R \cdot B \cdot I_{3}}{\left(\alpha / I_{S C}\right)} \tag{7}
\end{align*}
$$

Equation 7 is more compactly written

$$
\begin{equation*}
\hat{H}=C F \cdot C N \cdot I_{2}-C F \cdot \hat{B} \tag{8}
\end{equation*}
$$

where $\hat{\beta}=\beta \cdot I_{3}$
and $\hat{H}=\frac{H_{h}\left(\alpha / I_{S C}\right)}{R}$.

The integrals (I_{1}, I_{2}, I_{3}, see Glossary) are obtained by numerical integration. (I_{3} can be integrated in closed form, but is grouped with the others for programming convenience.) Because of the symmetry about solar noon all three can be expressed in the form

$$
\begin{equation*}
I=2 \int_{0}^{t} s\left(\cos \theta_{z}\right) d t \tag{9}
\end{equation*}
$$

where t is the time measured in hours from solar noon, $t_{s}=\cos ^{-1}(-\tan \delta / \tan \phi) / 15$ is the sunset time, and $\cos \theta_{z}$ is a function of the hour angle, $h=15 t$ (see Equation 2). Equation 9 is evaluated by the trapezoidal rule, with ordinates evaluated at half-hour intervals. The numerical approximation becomes

$$
\begin{equation*}
I \approx 0.5 F_{0}+\sum_{i=1}^{N} F_{i} \tag{10}
\end{equation*}
$$

where N is the integral part of $2 t_{s}-1$.
Equation 10 slightly overestimates the contribution of the "tail" whenever the sunset time is not an even half-hour. The error is insignificant in the present application.

2.5.2 CN Evaluation From Daily Averages of Total Horizontal and Direct Insolation

The first module of the deterministic insolation program evaluates the clearness number (CN) in one of two ways. If no cloud factor (CF) is specified, it solves Equations 6 and 8 simultaneously for both $C F$ and $C N$. Substitution of Equation 6 into Equation 8 yields

$$
\hat{H}=H_{D N}\left(I_{2} / I_{1}\right)-C F \cdot \hat{B}
$$

which can then be solved for CF:

$$
\begin{equation*}
C F=\left(H_{D N} \cdot I_{2} / I_{1}-\hat{H}\right) / \hat{B} \tag{11}
\end{equation*}
$$

AI-78-23

Equation 8 is then solved for $C N$ in terms of $C F$:

$$
\begin{equation*}
C N=(\hat{H} / C F+\hat{B}) / I_{2} \tag{12}
\end{equation*}
$$

When CF and CN are calculated in this way, the results are sensitive to the relative values of the inputs, H_{h} and $H_{D N}$. It sometimes happens that, due to errors in the inputs or shortcomings in the model itself, the resulting value of CN is found to be unreasonably high. If so, a reasonable upper limit (say $C N=1.1$) can be assigned and a revised value of CF can be calculated from Equation 8 as follows:

$$
\begin{equation*}
C F=\hat{H} /\left(C N \cdot I_{2}-\hat{B}\right) \tag{13}
\end{equation*}
$$

Equation 13 is not part of the first module but can be implemented by means of a short key stroke sequence described in the User's Guide. This adjustment insures that the model will produce insolation values consistent with the average daily total radiation used as an input.

2.5.3 CN Evaluation From Total Horizontal Insolation and
 Assigned Cloud Factor

If a nonzero value is specified for the cloud factor, the first module computes a clearness number according to Equation 12. In this mode no value of $H_{D N}$ is required and any value entered is ignored.

2. 6 CALCULATION OF RADIATION INCIDENT ON A TILTED FLAT COLLECTOR

The second program module calculates the intensity of total (direct and diffuse) radiation falling on a flat collector tilted toward the south or north. It also integrates the intensity and applies a cloud factor to arrive at an average daily value. As a byproduct of these calculations the intensity of direct normal radiation and its average daily value are also computed. These quantities correspond to the energy incident on an ideal two-axis tracking collector.

The data storage locations for Module 2 have been made compatible with those for Module 1. This feature allows one to use Module 1 to compute a set
of CN, CF output values and then proceed to use Module 2 without keying in either the outputs or the inputs common to the two modules.

Module 2 evaluates direct normal intensity ($I_{D N}$) from Equation 4 and the total intensity on a surface tilted at angle, T.

$$
\begin{equation*}
I_{T}=I_{D N} \cos \theta_{i}+I_{D F} \tag{14}
\end{equation*}
$$

where θ_{i} is the incidence angle of the direct radiation and $I_{D F}$ is the diffuse intensity (assumed isotropic here). $\operatorname{Cos} \theta_{i}$ is evaluated from Equation 2 with the "corrected" latitude ($\phi-T$) used in place of ϕ. Diffuse intensity is obtained from Equation 5 in the form

$$
\begin{align*}
I_{D F}= & I_{D N} \cdot \cos \theta_{z} \cdot\left(I_{S C} \cdot R / \alpha-1\right) \\
& -\cos \theta_{z} \cdot R \cdot I_{S C} \cdot B / \alpha \tag{15}
\end{align*}
$$

Daily average values of $I_{D N}$ and I_{T} are computed from the general expression

$$
\begin{equation*}
H=C F \cdot 2 \int_{\sigma}^{t_{m}} I d t \tag{16}
\end{equation*}
$$

where the upper limit is either the sunset hour or the time at which the incidence angle becomes zero, whichever is the smaller. The integral is evaluated numerically by Equation 10.

2.7 CALCULATION OF RADIATION INCIDENT ON SINGLE-AXIS TRACKING COLLECTORS

The third program module calculates the direct radiation incident on a single-axis tracking collector. The module operates in two modes. Mode 1 is for systems with the tracking axis in the east-west horizontal line. Mode 2 is for either a horizontal or a tilted axis, located in the north-south plane. Module III, like Module II, is designed to be used in sequence with Module I with retention of common data.

In either mode, incident intensity is evaluated from the direct normal intensity (Equation 4) and the incidence angle.

$$
\begin{equation*}
I=I_{D N} \cdot \cos \theta_{i} \tag{17}
\end{equation*}
$$

For single-axis trackers with the axis in a north-south plane tilted above the horizontal at angle, T (Mode 2), the incidence angle is given by

$$
\begin{align*}
\sin \theta_{i}= & \cos \delta \sin (\phi-T) \cos h \\
& -\sin \delta \cos (\bar{\phi}-T) \tag{18}
\end{align*}
$$

An important special case is the polar axis orientation ($T=\phi$) in which $\cos \theta_{i}=\cos \delta$.

For Mode 1 where the axis is aligned east-west in the horizontal plane, the incidence angle is given by

$$
\begin{equation*}
\sin \theta_{i}=\cos \delta \sin h \tag{19}
\end{equation*}
$$

For either mode, the daily average is computed from Equation 16.

3.0 USER'S GUIDE

3.1 INPUT REQUIREMENTS

Data for each month is entered into the SR-52 calculator by keystroke. It is retained in its designated storage location as long as the calculator power is left on unless modified by subsequent storage operations. In particular, data used or generated by one module can be retained for use by another module. This feature has been used to reduce data entry operations substantially. Table 2 shows the data storage structure of the three program modules. Permanent data (locations $98,99,19$) need not be re-entered when running multiple cases. Recommended values are given in the Glossary. Data pertaining to the season (locations $05,06,07,08$) may be obtained from Table 1 . It need not be re-entered when comparing locations at the same time of year.

TABLE 2
DATA STORAGE STRUCTURE

Data Location	Module I		Module II		Module III	
	Item	Category*	Item	Category*	Item	Category*
98	$\alpha /$ ISC	I	$\alpha /$ ISC	I	$\alpha /$ ISC	I
99	B/ISC	I	$B / I S C$	I	β / ISC	I
00	N		N			
01	ϕ	I	ϕ	I	ϕ	I
02	S	I	T	I	T	I
03	CN	0	CN	I	CN	I
04	CF	0	CF	I	CF	I
05	A/ISC	I	A/ISC	I	A/ISC	I
06	B	I	B	I	B	I
07	δ	I	δ	I	δ	I
08	R	I	R	I	R	I
09	I_{1}		Il		Mode	I, 0
10	I2		I2		I_{2}	
11	I_{3}				h	
12	Hh	I	$\cos \theta_{i}$		$\cos \theta_{i}$	
13	HDN	I	I_{DN}	0	I_{DN}	
14	$\hat{\mathrm{H}}$		-		$\cos \delta$	
15	$\hat{\beta}$		$\phi, \phi-\mathrm{T}$		ϕ - T	
16	t		t	0		0
17	$\cos \theta_{z}$		$\cos \theta_{z}$		$\cos \theta_{z}$	
18	Δt		Δt		Δt	
19	ISC	I	ISC	I	Isc	I

*I = input; $0=$ output; Additional outputs: $I_{T}, H_{D N}$, and H_{T} are printed but not stored.

AI-78-23

Data pertaining to both the location and season (locations 01, 03, 04, 12, 13) need not be re-entered in order to compare collectors of different type or orientation.

3.1.1 Local Insolation Inputs for Module I

The inputs which characterize local insolation are the average daily total radiation on a horizontal surface $\left(H_{h}\right)$ and one of the following: the average daily direct radiation ($H_{D N}$) or an assigned value (S) which is equated with the cloud factor. The daily total insolation values must be expressed in the units $\mathrm{I}_{\mathrm{SC}} \cdot \mathrm{hr} \cdot$ day $^{-1}$ (for example, $\mathrm{kW} \cdot \mathrm{hr} \cdot \mathrm{m}^{-2} \cdot$ day $^{-1}$).

The insolation data base which was used to develop and validate the present method was derived from the Aerospace solar tapes. ${ }^{(6)}$

Daily averages of both total and direct radiation on a monthly basis have been obtained for 33 sites by numerical integration of the Aerospace solar tapes. ${ }^{(7)}$ These results, along with other climatological data have been summarized for 12 representative sites in Reference 1 and are included in the Appendix of this report.

The Climatic Atlas ${ }^{(8)}$ contains daily average total insolation data for a much larger number of sites. In addition, the same information is presented in maps from which insolation can be estimated throughout the U.S. The Atlas also contains tables and maps giving average values of percent sunshine. This latter quantity may be used to estimate the cloud factor, CF. It has been found that the empirical relation

$$
\begin{equation*}
C F=\sqrt{\text { Percent Sunshine } \div 100} \tag{20}
\end{equation*}
$$

gives cloud factors fairly close to those computed from Equation 11 . Equation 20 is therefore recommended whenever only total horizontal insolation is available, that is, for most sites. This definition was used for the CF values presented in the Appendix.

There are other sources of insolation data. Most recently, Sandia Laboratories, Albuquerque, New Mexico has summarized data from the SOLMET tapes ${ }^{(3)}$ for 26 sites and also provided insolation maps. This data base is currently being reviewed but it appears that the results for many sites are substantially different from those obtained using the Aerospace data base. The implication of these differences is discussed under the section entitled "Program Limitations."
AI-78-23

3.1.2 Other Inputs for Module I

The choice of the energy unit in which output quantities are expressed is set by the solar constant, (location 19) which can have any units as long as the time is in hours. Two convenient choices are $1.353 \mathrm{~kW} \mathrm{~m}^{-2}\left(\mathrm{kWh}^{\left.-\mathrm{m}^{-2}-\mathrm{hr}^{-1}\right) \text { and } 429.2 ~}\right.$ Btu-ft ${ }^{-2}-h r^{-1}$. At present, recommended values for the two linear regression coefficients (Equation 5) are the average values given in Reference 3. Their nondimensionalized values are $\left(\alpha / I_{S C}\right)=1.33$ and $\left(B / I_{S C}\right)=-0.384$. Later refinement of the deterministic model may require a revision of these values.

The general properties which vary seasonally can be obtained by interpolation from Table 1. All quantities except the declination are dimensionless; it must be expressed in degrees. The latitude (ϕ) must also be in degrees, with the northern hemisphere taken positive. The sign convention for latitude and collector tilt is illustrated in Figure 1.

3.1.3 Inputs for Module II

If Module I has been run just previously, only the collector tilt, T (in degrees), must be entered in location 02 . Tilt is zero for a horizontal surface and is defined as positive toward the south. Collectors in the southern hemisphere would normally have negative tilt angles. If Module II is being run independently, all the inputs shown in Table 2 must be entered by keystroke.

3.1.4 Inputs for Module III

If Module I has been run just previously only the axis tilt, T (in degrees), and the mode number must be entered. The same sign convention is employed for axis tilt as that for flat collectors. For east-west trackers (Mode 1) axis tilt is not required and its value is ignored. For Mode 2 , axis tilt is measured in the north-south plane. Tilt is zero for a horizontal axis and positive southward. If Module III is being run independently, all the inputs shown in Table 2 must be entered by keystroke.

3.2 OUTPUT OPTIONS

3.2.1 Operation With and Without Printer

The program modules have been recorded and listed in a form compatible with the use of the Texas Instruments PC 100A printer. If a printer is not available, the module must be modified by keystroke after being read into the calculator.

Figure 1. Sign Conventions for Latitude and Collector Tilt

This modification consists of changing PRINT commands to HALT commands. During execution without a printer the module displays each result rather than printing it. Execution is continued by pressing the RUN key after each stop.

Each location requiring change for nonprinter operation is identified in the module listings (Section 4) by an asterisk between the location number and the instruction code, thus: 203 * 98. Module change takes place after the magnetic card has been read into the calculator, starting in the "calculate" mode, as follows:

Keystroke Sequence	$\frac{\text { Display }}{}$	Comment 1. GTO 203 LRN
20398	Locate print instruction Change print to halt; display next step	
3. LRN	00420	Return to "calculate" mode

The above sequence is repeated for each print instruction requiring change. (Note: The last print instruction in each module is followed by a halt instruction and need not be changed.)

3.2.2 Output for Module I

Output for this module consists of two items, CF and $C N$. When the printer is used these outputs are printed one after the other. Without printer CF is displayed first; CN appears after the RUN key is pressed.

3.2.3 Output for Module II

Output for this module consists of a sequence of blocks which give the time variation of direct ($I_{D N}$) and total (I_{T}) intensities at half-hourly intervals. The first item is the time, t, in hours, measured from solar noon. Because of the symmetry about noon, each block corresponds to both a morning and afternoon time. For example, $\mathrm{t}=2.500$ refers to $9: 30$ am and $2: 30 \mathrm{pm}$. In each block, the time is followed by $I_{D N}, I_{T}$ and a space. Both intensities have the units of the solar constant.

Following the time-variation sequence, daily values of direct ($H_{D N}$) and total $\left(H_{\mathrm{T}}\right)$ incident radiation, including cloud effect, are printed. Units are (solar constant) $\cdot \mathrm{hr} \cdot \mathrm{day}^{-1}$.

3.2.4 Output for Module III

Output for this module starts with the printing of the mode number -1 . or 2. It is followed by a sequence of blocks giving the solar time in hours and the incident intensity (I) at half-hourly intervals beginning with solar noon ($t=$ 0.000) corresponding to an average day of the month. Intensity units are those of the solar constant.

Following the time-variation sequence, the daily incident radiation (H) is printed in the units (solar constant) $\cdot \mathrm{hr} \cdot \mathrm{day}^{-1}$.

3.3 PROGRAM LIMITATIONS

3.3.1 Limitation on Input Values

The program is restricted to sun-earth-collector geometries in which the sun is above the horizon and falls on top of the collector during some part of the day. These considerations introduce the following limits:

$$
\begin{aligned}
|\phi| & \leq 90^{\circ} \text { (by convention) } \\
|\phi-\delta| & \leq 90^{\circ} \text { (finite daylight) } \\
|\phi-\delta-T| & \leq 90^{\circ} \text { (top exposure) }
\end{aligned}
$$

Because of its physical significance in the deterministic model, the cloud factor is restricted by logic to values of unity or less. As discussed in Section 2.5.2 CF,CN calculations are sensitive to input errors. It sometimes happens that Module I produces values of CF greater than one when the inputs are H_{h} and $H_{D N}$. The CF, CN pair of values can be revised by assigning the value, $S=1$ and recomputing. The keystroke sequence required is as follows:

Keystroke Sequence	Display	Comment
1 STO 02	1.	(Assign $S=1$)
B	$\begin{aligned} & 1.000 \\ & 0.823 \end{aligned}$	(Enter module at B and recompute CF, CN

Except at high altitudes, reasonable values of the clearness number should not be much greater than one. If Module I produces an unrealistic value, say $C N>1.1$, the results can be revised by assigning the appropriate values, S, to yield $C N=1.1$. The keystroke sequence required is as follows:

TABLE 3
DAILY INCIDENT ENERGY PREDICTIONS USING CONSTANTS DERIVED FROM AEROSPACE TAPES

Iocation	Month	CN	CF	Incident Energy ($\mathrm{kWh} / \mathrm{m}^{2}$-day)		
				45° Tilted Plate	NS Polar	$\begin{gathered} \text { EW } \\ \text { Horizontal } \end{gathered}$
Albuquerque	January	1.01	0.89	6.16 (6.20)*	6.35 (6.34)	5.68 (5.55)
	July	0.93	0.95	5.99 (5.89)	7.90 (7.61)	6.20 (6.26)
Madison	January	0.75	0.75	3.41 (3.45)	3.33 (3.29)	3.08 (3.10)
	July	0.99	0.84	5.87 (5.97)	7.62 (7.29)	5.89 (5.71)
Miami	January	0.77	0.84	5.45 (5.61)	5.20 (5.16)	4.52 (4.45)
	July	0.95	0.82	4.61 (4.52)	6.74 (6.45)	5.39 (5.26)
Nashville	January	0.70	0.63	3.24 (3.34)	3.06 (3.07)	2.74 (2.74)
	July	0.76	0.85	4.91 (4.81)	5.80 (5.68)	4.54 (4.68)
Omaha	January	1.10	0.76	4.90 (4.95)	5.18 (5.23)	4.75 (4.61)
	July	0.89	0.91	5.92 (5.82)	7.38 (7.10)	5.72 (5.68)
Seattle	January	0.75	0.64	2.51 (2.84)	2.50 (2.52)	2.35 (2.29)
	July	0.89	0.84	5.73 (5.68)	6.95 (6.65)	5.32 (5.32)
*First values obtained by deterministic method; values in brackets from hour-by-hour integration of Aerospace tapes.						

TABLE 4
DAILY INCIDENT ENERGY PREDICTIONS BASED ON THE CLIMATIC ATLAS

					Incid	dent E	rgy (kWh	${ }^{2}$-day)
Location	Month	CN	CF*	45°	Tilted	Plate	NS Polar	EW Horizontal
Albuquerque	January	1.09	0.84		6.17		6.47	5.78
	July	1.10	0.91		6.28		8.95	7.03
Madison	January	0.89	0.66		3.42		3.48	3.21
	July	0.87	0.84		5.46		6.70	5.17
Miami	January	0.91	0.81		5.92		5.93	5.15
	July	0.91	0.81		4.47		6.37	5.10
Nashville	January	0.51	0.65		2.69		2.30	2.06
	July	0.86	0.83		5.09		6.40	5.02
Omaha	January	0.95	0.67		4.36		4.47	4.10
	July	0.91	0.87		5.73		7.21	5.59
Seattle	January	0.61	0.52		1.75		1.65	1.55
	July	1.10	0.79		6.09		8.07	6.18
$* C F=\sqrt{\% \text { Sunshine } \times 100}$								

Keystroke Sequence	Display	Comment
$\begin{aligned} \operatorname{RCL} 14 \div & (1.1 \times R C L 10 \\ & -\operatorname{RCL} 15)= \end{aligned}$	0.793	(Compute S value)
STO 02	0.793	(Assign S)
B	$\begin{aligned} & 0.793 \\ & 1.100 \end{aligned}$	(Enter module at B and recompute CF,CN)

If Module I yields too high values of both CF and CN simultaneously, they should be replaced by the limiting values or by an estimate drawn from a site with a similar climate.

The output of all modules is formatted with three places to the right of the decimal point. This is satisfactory for the intensity units suggested but may result in loss of significant figures for some other set of units. If the solar constant has a value <1 in the desired set, it should be multiplied by a suitable scale factor. The output intensities and daily energies will contain the same scale factor.

3.3.2 Availability and Consistency of Insolation Data

The deterministic method uses average insolation data to compute the empirical factors $C N$ and CF for a given site. These factors, in turn, are used to predict the average energy incident on collectors of various orientations and tracking geometrices. The results depend upon the solar data base employed.

Table 3 shows sample results obtained using the Aerospace tapes. Average incident energy predictions are quite consistent with the values obtained by an analysis of the hourly tape data (rms deviation 3%). However, application to sites other than the locations for which average insolation data are given (Reference 7 or Appendix) involves interpolation or extrapolation and is subject to considerable uncertainty.

The Climatic Atlas ${ }^{(8)}$ gives average total horizontal insolation and average percent sunshine for over 100 stations and in map form for the US as a whole. The data is drawn from a much longer time base than the $1962-63$ period covered by the Aerospace tapes. Table 4 shows the results of applying the deterministic method to this data base. Here CF is estimated by Equation 20. In general, the results agree fairly well with those obtained from the Aerospace data base (rms deviation 15%). Because of their availability and broad coverage, the maps and
AI-78-23
tables from the Climatic Atlas are the most satisfactory source of input data at the present time.

More recently average total horizontal and direct insolation values based on the SOLMET tapes have been published ${ }^{(3)}$ for 26 U.S. stations and in the form of maps. Many of the stations correspond to those in the Aerospace data base. However the time period covered by the SOLMET data is much longer and the results are frequently quite different. A substantial revision in the SOLMET data has also been made since Reference 3 was issued. As Table 5 shows, the deterministic predictions based on the SOLMET data base (as revised) differ considerably from those based on the Aerospace data base. Average incident energies are fairly consistent with the results of an hourly analysis of the SOLMET tapes (rms deviation 8\%). However they are quite different from the Table 3 results (nms deviation 23\%). The "permanent" constants α, B, A and B employed in the present deterministic model were chosen before the SOLMET data became available. While their use gave good results when compared with the earlier solar data (see Tables 3 and 4) it now appears that they require revision. Such a revision would involve

TABLE 5
daily incident energy predictions BASED ON SOLMET TAPES

Location	Month	CN	CF	Incident Energy ($\mathrm{kWh} / \mathrm{m}^{2}$-day)		
				45° Tilted Plate	NS Polar	$\begin{gathered} \text { EW } \\ \text { Horizontal } \end{gathered}$
Albuquerque	January	0.83	1.00	5.95 (5.54)*	5.86 (5.43)	5.24 (4.81)
	July	0.93	1.00	6.31 (6.45)	8.32 (7.65)	6.53 (6.02)
Madison	January	0.41	1.00	2.99 (2.89)	2.43 (2.34)	2.24 (2.10)
	July	0.56	1.00	5.26 (5.40)	5.13 (4.75)	3.97 (3.70)
Miami	January	0.49	1.00	4.83 (4.54)	3.94 (3.69)	3.42 (3.12)
	July	0.45	1.00	4.24 (4.46)	3.89 (3.25)	3.11 (2.60)
Nashville	January	0.38	0.85	2.93 (2.80)	2.24 (2.25)	2.01 (2.03)
	July	0.55	1.00	5.03 (5.12)	4.93 (4.35)	3.87 (3.48)
Omaha	January	0.48	1.00	4.90 (4.95)	5.18 (5.23)	4.75 (4.61)
	July	0.66	1.00	5.61 (5.68)	6.01 (5.64)	4.66 (4.23)
Seattle	January	-	-	- -	- -	- -
	July	-	-	- -	- -	- -
*First values obtained by deterministic method; values in brackets from hour-by-hour integration of the SOLMET tapes.						

substantial numerical processing of the SOLMET data in order to obtain best-fit constants. It is a desirable future effort however, which would improve the accuracy and usefulness of the model.

3.3.3 Application to Transient Simulation

The deterministic method estimates the intensity of incident radiation in the absence of clouds and the long-term daily average of the incident energy with cloud effects included. It cannot simulate the random fluctuations in solar radiation typical of a given locality. Its use in a transient simulation is therefore limited to approximating the diurnal variations during a clear day.

3.4 SAMPLE PROBLEMS

All problems start with the calculator on in the "calculate" mode, with the D / R switch set on D (degrees). The following descriptions apply when the calculator is mounted on the printer. Without printer, the recorded programs must be modified by keystroke (see Section 3.2.1) and the RUN key must be used after each intermediate output is displayed.

3.4.1 Energy Incident on a Two-Axis Tracking Collector

Assume an ideal tracking collector intercepting all direct normal radiation, operating in Albuquerque on July 21st. Inputs are available from Table 1 and the Appendix, Table A-1. The operating steps and their results are tabulated in the following listing.

Note that the daily incident energy $H_{D N}$ is equal to the input value as it should be.

Operation	Keystroke		Display	Print
Load "A" side of Module I	CLR *read		0	
Load "B" side of Module I	*read		0	
	35.05	STO 01	35.05	
	0	STO 02	0	
	. 801	STO 05	0.801	
	. 207	STO 06	0.207	
	20.6	STO 07	20.6	
	. 969	STO 08	0.969	
	7.39	STO 12	7.39	
	8.43	STO 13	8.43	
	1.353	STO 19	1.353	
	1.33	STO 99	1.33	
	. $384+$	STO 98	-0.384	
Execute Module I	A			0.951 (CF)
			0.928	0.928 (CN)
Load "A" side of Module II	CLR *read		0	
Load "B" side of Module II	*read		0	
```Enter T=0 (retain I/O from Module I)```	0 STO 02		0.000	
Execute Module II	A			0.000 (t)
				0.812 ( $\mathrm{I}_{\mathrm{DN}}$ )
				$0.939\left(I_{h}\right)$
				7.000 ( t )
				0.000 ( $\mathrm{IDN}^{\text {) }}$
				0.001 ( $I_{\text {h }}$ )
				8.430 ( $\mathrm{H}_{\mathrm{DN}}$ )
				7.390 ( $\mathrm{H}_{\mathrm{h}}$ )

### 3.4.2 Energy Incident on an East-West Horizontal Tracker (Clear Air Estimate)

Assume month and location are the same (Albuquerque in July). Thus all general inputs will be the same and may be retained. The clearness number is retained but the cloud factor is set at one. The operating steps and their results are tabulated below.


### 3.4.3 Total Energy Incident on a Flat Collector

Assume a flat collector tilted at 45 degrees south, intercepting both direct and diffuse radiation. The iocation is Omaha and the time is January 21st. Determine performance from average daily total horizontal insolation and the average percent sunshine. Inputs are obtained from Table 1 and the Appendix, Table A-9. The operating steps and their results are tabulated in the following listing.

Operation	Keystroke	Display	Print
Load "A" side of Module I	CLR *read	0	
Load "B" side of Module I	*read	0	
Enter : $\emptyset \sqrt{57}$	41.37 STO 01	41.370	
$\mathrm{S}=\sqrt{.57}$	. 76 STO 02	0.760	
A/I ${ }_{\text {SC }}$	. 909 STO 05	0.909	
B	. 142 STO 06	0.142	
$\delta$	20+/-STO 07	- 20.000	
R	1.031 STO 08	1.031	
$\mathrm{H}_{\mathrm{h}}$	2.45 STO 12	2.450	
$\begin{aligned} & \text { (ISC } \alpha / I_{S C}, B / I_{S C} \\ & \text { retained) } \end{aligned}$			
Execute Module I	A		0.760 (CF)
		1.090	1.090 (CN)
Load "A" side of Module II	CLR *read	0	
Load "B" side of Module II	*read	0	
Enter $T=45$   (Retain I/O   from Module I)	45 STO 02	45.000	
Execute Module II	A		0.000 (t)
			0.997 (IDN)
			1.042 ( $\mathrm{I}_{\mathrm{h}}$ )
			1
			4.500 ( $t$ )
			0.052 ( $\mathrm{IDN}_{\text {) }}$
			0.037 ( $\mathrm{I}_{\mathrm{h}}$ )
			$\begin{aligned} & 5.461\left(\mathrm{H}_{\mathrm{DN}}\right) \\ & 4.867\left(\mathrm{H}_{\mathrm{h}}\right) \end{aligned}$

### 4.0 PROGRAMMERS INFORMATION

### 4.1 HARDWARE REQUIREMENTS

The SR-52 programable calculator is battery operated and will execute the program modules without any additional equipment. For extended operating times, it may be necessary to plug the calculator into the AC9130 Adapter/Charger. In this configuration, batteries are recharged while calculations proceed. When the calculator is mounted on the PCIOOA printer, the battery pack is separately mounted and charged while calculations proceed.

### 4.2 EXECUTION TIME

Running time for each module is controlled primarily by the length of the solar day, being greatest for the summer months. When operating with the printer, Module I takes 1 to $1-1 / 2$ min per case while Modules II and III take from $1-1 / 2$ to $2-1 / 2 \mathrm{~min}$.

### 4.3 PROGRAM CONVERSION

Since the modules were developed, a new programmable calculator, the TI59, has become available. The TI59 uses keystroke instructions very similar to the SR-52. The three modules could be readily adapted so as to become separate program segments in the newer calculator. The keystroke sequences would be essentially the same. Only the transfer instructions would require modification to reflect the altered memory storage pattern.

Because of differences in the way in which algebraic equations are evaluated in the Hewlett-Packard programable calculators HP67/97, conversion would not be as simple. The same algorithms apply, but keystroke sequences would be altered significantly. The same remarks apply to other systems which may operate with different instruction languages.

### 4.4 PROGRAM LISTINGS AND FLOW CHARTS

Annotated listings and corresponding functional flow charts are provided for each module. When a module has been loaded on the calculator attached to the printer, a listing may be produced for comparison, using the following keystroke sequence:

> AI-78-23

$$
\begin{aligned}
& \text { CLR *reset (set to beginning of program memory) } \\
& \text { *list (list locations and instruction codes in sequence) }
\end{aligned}
$$

SR-52 PROGRAM LISTING
DETERMINISTIC INSOLATION ESTIMATES: 1. CLEARNESS NUMBER AND CLDUD FACTOR

LOC. CODE	KEY	COMment	LOC. CODE	KEY	COMMENT
00046	${ }^{*}$ LBL	START	05601	1	
00111	A		05706	6	
00243	RCL	COMPUTE SUNSET TIME	05854	$)$	HOUR ANGLE h
00300	0		05933	cos	COSh
-004 07	7	DECLINATION $\delta$	06085	+	
00534	TAN		06143	RCL	
00665 00743	X		06200	0	
008 00	RCL		06301	1	
. 009.01	1	LATITUDE $\phi$	06432	SIN	SIN $\boldsymbol{\phi}$
01034	TAN		06643	RCL	
01195	$=$		06700	${ }_{0}$	
01294	+/-		06807		
01322	INV		06932	SIN	SIN $\delta$
01433	cos	SUNSET HOUR ANGLE $\mathrm{h}_{\text {S }}$	070.95	S	
01555	$\ddagger$		07142	STO	STORE COSINE OF
01607	7		07201	1	ZENITH ANGLE
$01793$			07307	7	$\cos \theta_{\mathbf{Z}}$
$\begin{array}{r} 01805 \\ 019 \quad 95 \\ \hline \end{array}$	5	$\mathrm{N}=2 \times$ SUNSET HOUR	07465	X	
02042	STD	Store iteration no. N	07601	${ }_{1}$	
02100	0	INITIALIZE $\mathrm{t}, 11,12,13$	077 08	8	$\Delta t$
02200	0		07895	$=$	
02300			07944	Sum	
024.42	STO		08001	1	
02501	1		08101	1	INCREMENT ${ }^{3}$
02606	6	$t=0$	08243	RCL	
02742	STO		08300	0	
02800	0		08406	6	B
-029 09	9	$11=0$	08555	$+$	
03042	ST0		08643	RCL	
03101	1		08701	1	
03200		$12=0$	08807	7	$\cos \theta_{z}$
03342	STO		08995	$=$	
03401	1		09094	+/-	
03501 03693	!	$13=0$	09122	INV	
03705	5		09223	LNX	$\operatorname{EXP}\left(-8 / \cos \theta_{\mathbf{z}}\right)$
03842	STO	$\Delta t=0.5$	09365 094	X	
03901	1		09443 09500	RCL	
04008	8		09605	-	A/ISC
04143	RCL	START INTEGRATION LOAP	09765	X	A/SC
04200	0	COMPUTE COSINE OF	09843	RCL	
04301	1	2ENITH ANGLE	09901	1	
04433	cos	$\cos \varphi$	10009	,	SOLAR CONSTANT ISC
04565 04643	${ }^{\text {X }}$		10165	X	
04643   047   00	${ }_{0}^{\text {RCL }}$		10243	RCL	
04700 04807	7		10301	1	
04933	cos	$\operatorname{COS} \delta$	10408 10595	$\stackrel{8}{=}$	$\Delta t$
05065	X			SUM	
05153	1		10700	SUM	
05201	1		10809	9	INCREMENT $1_{1}$
05305	5		10965	X	
05465	X		11043	RCL	
05543	RCL		11101	1	

SR-52 PROGRAM LISTING
DETERMINISTIC INSOLATION ESTIMATES: 1. CLEARNESS NUMBER AND CLOUD FACTOR (CONTINUED)

LOC. CODE	KEY	comment	LOC. CODE	KEY	COMMENT
11207	7	$\boldsymbol{\operatorname { C o s }} \theta_{\mathbf{Z}}$	16806	6	
11395	=		16942	STO	MODE 1
11444	SUM		17000	0	
11501	1		17104	4	$\mathrm{CF}=\mathrm{S}$
11600	0	INCREMENT ${ }_{2}$	17241	GT0	
11701	1		17301		
11842	STO		17409	9	
11901	1		17507	7	
12008	8	$\Delta t=1.0$	17643	RCL	MODE 2
12193			17701	1	
12205	5		17803	3	DAILY DIRECT HDN
12344	SUM		17965	X	
12401	1		18043	RCL	
12506	6	INCREMENT TIME	18101	1	
12658	${ }^{*}$ dsz		18200	0	12
12700	0		18355	$\stackrel{\square}{+}$	
12804	4	IF N > O GO TO LOC. 049	18443	RCL	
12901	1		18500	0	
13046	*LBL	INTEGRATION IS COMPLETE;	18609	9	19
13112	B	COMPUTE CF AND CN	18775	-	
13243	RCL		18843	RCL	
13301	1		18901	1	$\wedge$
13402	2	DAILY TOTAL, Hh	19004	4	H
13565	$\mathbf{X}$		19195	=	
13643	RCL		19255	$\div$	
13709	9		19343	RCL	
13809	9	$\alpha^{\prime \prime}{ }^{\text {SC }}$	19401	1	$\hat{\beta}$
13944	$\div$		19501	5	$\beta$
14043	RCL		19695	$=$	CF
14100	0		19757	*FIX	SET DUTPUT FORMAT TO
14208	8	R	19803	3	3 DECIMAL PLACES
14395	$=$		19942	STD	
14442	STO		20000	0	
14501	1		20104	4	
14604	4	令	20299	*PAP	SPACE
14743	RCL		203*98	*PRT	PRINT (DISPLAY) CF
14809	$g$		20420	*1/X	
14908	8	$\beta$ /ISC	20565	X	
15065	X		20643	RCL	
15143	RCL		20701	1	$\wedge$
15201	1		20804	4	H
15309	9	isc	20985	+	
15465	X		21043	RCL	
15543	RCL		21101	1	$\hat{\beta}$
15601	1		21205	5	$\beta$
15701	1	13		$=$	
15895	$=$		21455	$\div$	
15942	STO		21543	RCL	
16001	1	$\hat{\beta}$	21601	1	
16105	5	$\beta$	21700	0	12
16243	RCL		21895	=	
16300	0		21942	STO	
16402	2	SLUSSINE FRACTION S	22000	0	
16590	*IF ZRO	TEST S FOR MODE	22103	3	
16601	1		22298	*PRT	PRINT (DISPLAY) CN
16707	7		22381	HLT	STOP

AI-78-23

SR-52 PROGRAM FLOW CHART
DETERMINISTIC INSOLATION ESTIMATES: 1. CLEARNESS NUMBER
AND CLOUD FACTOR


SR-52 PROGRAM LISTING
DETERMINISTIC INSOLATION ESTIMATES: 2. FLAT COLLECTORS AND TWO-AXIS TRACKERS

LOC. CODE	KEY	COMMENT	LOC. code	KEY	COMMENT
00046	*LBL	START	05601	1	
00111	A		05706	6	$t$
00243	RCL	COMPUTE SUNSET TIME	05857	*FIX	SET OUTPUT FORMAT
00300	0		05903	3	TO 3 DECIMAL PLACES
00407	7	declination $\delta$	060*98	*PRT	PRINT (DISPLAY) TIME
00534	TAN		06143	RGL	
00665	X		06200	0	
00743	RCL		06301	1	$\stackrel{\phi}{\boldsymbol{c}}$
00800	0		06414	D	compute cos $\theta z$
00901	1	LATITUDE $\phi$	06542	STO	
01034	TAN		06601	1	
01195	$=$		06707	7	
01294	+/-		06865	X	COMPUTE IDN
01322	INV		06953	1	
01433	COS	SUNSET HOUR ANGLE h	07053	1	
01555	$\div$		07153	(	
01607	7		07220	*1/X	
01793			07394	+/-	
01805	5		07465	X	
01995	$=$	$\mathrm{N}=2 \mathrm{X}$ SUNSET HOUR	07543	RCL	
02042	STO	STORE ITERATION NO. N	07600	0	
02100	0		07706	6	B
02200	0		07854	$)$	
02393		initialize $\mathrm{\Delta t}^{\text {, }} \mathrm{l}_{2}$	07922	INV	
02405	5	$12, t^{+}$	08023	LUX	$\operatorname{Exp}\left(-3 / \cos \theta_{2}\right)$
02542	STO		08165	X	
02601	1		08243	RCL	
02708	8	$\Delta t=.5$	08300	0	
02800	0		08405	x	A/ISC
02942	STO		08565	X	
03000	0		08643	RCL	
03109	9	$l_{1}=0$	08700	0	
03242	STO		08803	3	APPLY CLEARNESS NO. CN
03301	1		08965	X	
03400	0	$\mathrm{I}_{2}=0$	09043	RCL	
03542	STO				
03601	1		09209		SOLAR CONSTANT ISC
03706	6	$t=0$	09354		IDN
03843	RCL	StART INTEGRATION LOOP	094*98	*PRT	PRINT (DISPLAY) ${ }_{\text {DN }}$
03943	0		09542	STO	
04001	1		09601	1	
04175	-		09703	3	
04243	RCL		09865	X	COMPUTE IT
04300	0		09953	1	
04402	2		10043	RCL	
04595	$=$	$\phi-T$	10100	0	
04614	D	COMPUTE $\cos \theta_{\mathbf{i}}$	10208	8	$R$
04722	INV		10355	$\div$	
04880	*IF POS	IS $\theta_{i}>900 ?$	10443	RCL	
04901	1	YES, TRANSFER	10509	9	
05007	7		10609	9	$\alpha / \mathrm{SC}$
05101	1		10775	1	
05242	STO	NO, STORE $\cos \boldsymbol{\theta}_{\mathrm{i}}$	10801	1	
05301	1		10954	1	
05402	2		11075	$\stackrel{-}{\square}$	
05543	RCL		11243	RCL	

SR-52 PROGRAM LISTING
DETERMINISTIC INSOLATION ESTIMATES: 2. FLAT COLLECTORS AND TWO-AXIS TRACKERS (CONTINUED)

LOC. CODE	KEY	COMMENT	10C. CODE	KEY	CDMmENT
11209	9		16800	0	
11308	8	$\beta / \mathrm{sc}$	16903	3	IFN>OGOTO
11465	X		17008	8	LOC. 038
11543	RCL		17143	RCL	INTEGRATION COMPLETE
11601	1		17200	0	WTERATION COMPLET
11709	$x$	Isc	17309	9	1
11865	X		17465	X	
11943	RCL		17543	RCL	
12000	0		17600	0	
12109	8	R	17704	4	APPLY CLIOUD FACTOR CF
12255			17895	=	
12343	RCL		$179 * 98$	*PRT	PRINT (DISPLAY) HDM
12469	9		18043	RCL	Prnt (oisplay How
12509	9	$\alpha / \mathrm{l}$ S	18101	1	
12654	$)$		18200	0	12
12795	=	DIFFUSE RADIATION	18365	X	
12885	+		18443	RCL	
12943	RCL		18500	0	
13001	1		18604	4	APPLY CLOUD FACTOR CF
13102	2	$\cos \theta_{i}$	18795	=	
	X		188 *98	*PRT	
13343	RCL		18981	HLT	END OF MAIN PROGRAM
13401	1		19046	*LBL	SUBROUTINE D
13503	3	ION	19114	D	
13695	=	TOTAL RADIATION It	19253	1	
137*98	*PRT	${ }_{\text {PRINT }}$ (DISPLAY) $I_{T}$	19342	STO	
13899	*PAP	SPACE	19401	1	
13965	X		19505	5	Store $\phi, \phi_{-T}$
14043	RCL		19633	cos	$\cos \phi, \phi-T$
14101	1		19765	X	
14208	8	$\Delta t$	19843	RCL	
14395	$=$		19900	0	
14444	SUM		20007	7	
14501	1		20133	cos	$\cos \delta$
14601	0	INCREMENT $]_{2}$	20265	X	
14743	RCL		20353	(	
14801	1		20401	1	
14903	3	Ion	20505	5	
15065	$\mathbf{X}$		20665	X	
15143	RCL		20743	RCL	
15201	1		20801	1	
15308	8	$\Delta t$	20906	6	
15495	*		21054	)	hour angle h
15544	SUM		21133	cos	COS h
15600	0		21285	+	
15709		INCREMENT ${ }_{1}$	21343	RCL	
15801	1	$\Delta \mathrm{t}=1$	21401	1	
15942	ST0		21505	5	
16001	1		21632	SIN	$\operatorname{SIN} \phi, \phi_{-T}$
16108	8		21765	X	
16293	0		21843	RCL	
16305	5		21900	0	
16444	SUM		22007	,	$\operatorname{SIN} \delta$
16501	1		22132	SIN	
16606	6	INCREMENT	22254	1	$\cos \theta_{z}, \cos \theta_{i}$
16758	*dsz		22356	*VTN	ENDDFSUBD

AI-78-23


AI-78-23

SR-52 PROGRAM LISTING
DETERMINISTIC INSOLATION ESTIMATES: 3. SINGLE-AXIS TRACKERS


SR-52 PROGRAM LISTING
DETERMINISTIC INSOLATION ESTIMATES: 3. SINGLE-AXIS TRACKERS (CONTINUED)


AI-78-23

SR-52 PROGRAM FLOW CHART
DETERMINISTIC INSOLATION ESTIMATES: 3. SINGLE.
AXIS TRACKERS


### 5.0 INSTALLATION ENVIRONMENT

### 5.1 ELECTRIC POWER

The SR-52 calculator may be operated on batteries, independent of any external power source. If an inverter or printer is used, a standard 115 V ac/ 60 Hz outlet is required.

### 5.2 MAGNETIC CARDS

Program instructions are contained in the keystroke sequences given in the Program Listings (Section 4.3), and can be entered into the calculator directly using the following procedure:

Keystroke Sequence	Display	Comment
1. CLR *reset	0	Set calculator to beginning of memory
2. LRN	00000	Enter "learn" mode
3. *LBL A, etc.	00200	Begin keystroke sequence

It is more convenient to enter instructions by magnetic card. Each module is contained on both the $A$ and $B$ sides of a single card. The two sides are read in sequence by carrying out the keystroke operations described in the section on sample problems and inserting the appropriate end of the card into the slot on the right side of the calculator.

## REFERENCES

1. AI-DOE-13230, "Commercial Applications of Solar Total Energy Systems," DOE Contract EY-76-C-03-1210 Final Report Volume 1 (JuTy 1978)
2. AI-78-18, Solar Thermal, "Manual for the Solar Total Energy Systems Evaluation Program (STESEP)" (July 1978)
3. Eldon C. Boes, et al., "Availability of Direct, Total and Diffused Solar Radiation to Fixed and Tracking Collectors in the USA." Sandia Laboratories Energy Report, SAND 77-0885 (August 1977)
4. John A. Duffie and William A. Beckman, Solar Energy Processes, John Wiley, New York, 1974. pp 8-18
5. ASHRAE Handbook of Fundamentals, ASHRAE, pp 386-394 (1972)
6. "Solar Thermal Conversion Mission Analysis, Volume III. South-Western United States Insolation Climatology," Aerospace Corporation Report ATR - 74 (741716) - 2, Vol III (November 15, 1974)
7. "Terrestrial Photovoltaic Power Systems with Sunlight Concentration," Annual Progress Report for Period January 1, 1975, to December 31, 1975, ERDA Contract No. E(11-1)-2590, ERDA Report No. CDO-2590-1(2)
8. "Climatic Atlas of the United States," U.S. Department of Commerce, pp 69-70 (June 1968)

## GLOSSARY

Symbo 1
Description
$\mathrm{A}=$ apparent extraterrestrial irradiation, $\mathrm{kW} / \mathrm{m}^{2}$
$\mathrm{B}=$ atmospheric extinction coefficient per air mass
CF $=$ cloud factor
$\mathrm{CN}=$ clearness number
$h \quad=$ hour angle, degrees
$H=$ daily average incident or net energy, $\mathrm{kWh} / \mathrm{m}^{2}$-day
$\hat{H}=$ defined by Equation 8
$H_{D N}=$ daily average of direct normal energy, $\mathrm{kWh} / \mathrm{m}^{2}$-day
$H_{h}=$ daily average of total horizontal energy, $\mathrm{kWh} / \mathrm{m}^{2}$-day
$I_{1}=$ first solar integral, $\int A \exp \left(-B / \cos _{2}\right) d t$
$I_{2}=$ second solar integral, $\int A \exp \left(-B / \cos \theta_{z}\right) \cos \theta_{z} d t$
$I_{3}=$ third solar integral, $\int \cos \theta_{z} d t$
$I_{D F}=$ diffuse radiation intensity, $\mathrm{kW} / \mathrm{m}^{2}$
$I_{D N}=$ direct normal intensity, $\mathrm{kW} / \mathrm{m}^{2}$
$I_{S C}=$ solar constant, $1.353 \mathrm{~kW} / \mathrm{m}^{2}$
$\mathrm{N}=$ number of integration time steps
$n=$ day of year
$\mathrm{R}=$ earth-sun distance correction
$T=$ tilt angle, degrees
$t=$ time, hours
$\Delta t=$ time increment, hours
$\alpha=$ first coefficient (Equation 5$), \mathrm{kW} / \mathrm{m}^{2} ;\left(\alpha / \mathrm{I}_{\mathrm{SC}}=1.33\right)$
$\beta=$ second coefficient (Equation 5$), \mathrm{kW} / \mathrm{m}^{2} ;\left(\beta / \mathrm{I}_{S}=-0.384\right)$
$\hat{\beta}=$ defined by Equation 8
$\delta=$ solar declination, degrees
$\theta_{\boldsymbol{i}}=$ solar incidence angle, degrees
$\theta_{z}=$ solar zenith angle, degrees
$\phi \quad=$ latitude, degrees

## APPENDIX - CLIMATE AND INSOLATION SUMMARIES

One-page summaries of the significant climatic and insolation parameters have been prepared for the twelve sites which are representative of the continental United States. The summaries are contained in Tables A-1 through A-12. In the following, the sources of the data and methods of presentations are discussed.

Geographical information is limited to the site (city) name and the latitude and longitude. The latter are generally associated with the reporting weather station. The ASHRAE design conditions are included (e.g., winter dry bulb and wind severity, summer dry bulb and wet bulb conditions).

Heating and cooling degree days based on long-term averages are included for each month of the year ( $65^{\circ} \mathrm{F}$ base). Similar long-term averages of percent possible sunshine and average ambient temperature maxima and minima are also provided by month.

Both total horizontal and direct normal values of incident radiation are presented for each month. These values were obtained from two-year averages of the Aerospace Corporation tapes. In each case, only the horizontal values are directly measured. The direct normal values are inferred by means of correlations.

The clearness number and cloud factor parameters are obtained directly from the values of incident radiation, using the deterministic method. Cloud factors are obtained from average percent sunshine.

Table A-13 lists the sources used to supply the data presented in the climate and insolation summaries. In certain cases, it was necessary to substitute data from nearby sites of similar climatology. In such cases, the substitute is indicated in parenthesis. For dry bulb temperatures, a slight adjustment was sometimes made if the mean temperature at the substitute site differed significantly.

TABLE A-1 _.

SITE NAME ALBUQUERQUE,N.M. $\quad$ LATITUDE $35.05^{\circ}$ LONGITUDE: $\underbrace{106.62^{\circ}}_{-}$

```
ASHRAE DESIGN CONDITION:
 WINTER - 97 1/2%
 DRY BULB TEMP ___ 8.3 O_ ' }\mp@subsup{}{}{\circ
 WIND SPEED LOW
 SUMMER - 21/2%
 MRY BULB TEMP__ 34.4_
```

DEGREE DAYS:

HEATING	JAN	FEB	MIAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
	513	389	331	156	${ }^{32}$	0	0	0	4	121	342	496
	924	700	595	282	58	0	0	0	7	218	615	893
cos	0	0	0	3	37	162	236	200	89	4	0	0
	0	0	0	6	67	291	425	360	160	7	0	0

PERCENT POSSIBLE SUNSHINE:

70	72	72	76	79	84	76	75	81	80	79	70

AVERAGE AMBIENT TEMPERATURE RANGE:

MAX D.B.

${ }^{\circ} \mathrm{C}$	8.0	11.2	14.9	20.6	25.7	31.4	32.9	31.1	27.9	21.5	13.4	9.1
${ }^{{ }^{\circ} \mathrm{F}} \mathrm{F}$	46.4	52.2	58.8	69.1	78.3	88.6	91.2	88.0	82.3	70.7	56.1	48.3
${ }^{{ }^{\circ}} \mathrm{C}$	-4.7	-2.5	0.4	5.7	11.1	16.2	18.8	17.9	14.2	7.4	-0.5	-3.6
${ }^{{ }^{\circ} \mathrm{F}} \mathrm{F}$	23.5	27.5	32.7	42.2	51.5	61.1	65.8	64.3	57.6	45.3	31.1	25.6

AVERAGE DAILY INCIDENT RADIATION:

	$\mathrm{kWh} / \mathrm{m}^{2}$	3.58	4.50	6.00	7.30	8.29	8.63	7.39	7.23	5.87	6.23	3.80	3.48
HORIZ	$\mathrm{Btu} / \mathrm{ft}^{2}$	1136	1427	1903	2116	2630	2738	2343	2292	1861	1658	1205	1105
DIRECT	$\mathrm{kWh} / \mathrm{m}^{2}$	6.77	7.11	8.48	9.10	10.00	10.40	8.43	8.90	7.37	8.19	6.90	7.23
	$\mathrm{Btu} / \mathrm{ft}^{2}$	2149	2254	2591	2887	3172	3299	2691	2824	2337	2599	2189	2292

EFFECTIVE ATMOSPHERE FACTORS:

0.96	0.87	0.99	0.92	1.17	1.17	1.03	1.10	0.93	1.05	0.97	1.14
CLEARNESS NO.	0.84	0.85	0.85	0.87	0.89	0.92	0.87	0.866	0.90	0.89	0.89
CLOUD FACTOR	0.84										

## CLIMATE AND INSOLATION SUMMARY

TABLE $\qquad$ A-2 .

SITE NAME
LATITUDE $42.22^{\circ}$ LONGITUDE $\xrightarrow{71.02^{\circ}}$

ASHRAE DESIGN CONDITION:

$$
\text { WINTER - } 971 / 2 \%
$$

$$
\begin{aligned}
& \text { DRY BULB TEMP_ -12.2 } \\
& \text { WIND SPEED }
\end{aligned}{ }^{\circ}{ }^{\circ} \mathrm{C}, 10{ }^{\circ}{ }^{\circ} \mathrm{F} \text { : }
$$

SUMMER - $21 / 2 \%$


DEGREE DAYS:

HEATING	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{F} \end{aligned}$	JAN	FEB	MIAR	APR	NiAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
		668	583	513	312	151	30	3	8	62	203	378	608
		1203	1050	924	561	271	54	6	14	111	366	681	1094
	${ }^{\circ} \mathrm{C}$	0	0	0	0	6	38	108	83	18	0	0	0
	${ }^{\circ} \mathrm{F}$	0	0	0	-	10	69	195	150	33	0	0	0

PERCENT POSSIBLE SUNSHINE:

47	56	57	56	59	62	64	63	61	58	48	48

AVERAGE AMBIENT TEMPERATURE RANGE:

MAX D.B.

${ }^{\circ} \mathrm{C}$	2.8	2.8	7.2	13.3	20.	24.4	27.8	26.7	22.8	17.2	11.1	4.4
${ }^{0} \mathrm{~F}$	37	37	45	56	68	76	82	80	73	63	52	40
${ }^{\circ} \mathrm{C}$	-5	-5	-. 6	4.4	10	15	18.3	17.2	13.9	8.3	3.3	-2.8
${ }^{\circ} \mathrm{F}$	23	23	31	40	50	59	65	63	57	47	38	27

AVERAGE DAILY INCIDENT RADIATION:

	$\mathrm{HWh} / \mathrm{m}^{2}$	1.87	2.68	4.03	5.07	6.00	6.33	5.71	5.23	4.17	3.35	1.71	1.90
DIRECT	$\mathrm{kWH} / \mathrm{m}^{2}$	$\mathrm{kg3}$	850	1278	1608	1903	2008	1811	1659	1323	1063	542	603
	$\mathrm{Btu} / \mathrm{ft}^{2}$	4.64	5.94	6.33	7.03	7.10	6.42	6.42	5.60	5.48	3.42	4.26	
	$\mathrm{Btu} / \mathrm{ft}^{2}$	1288	1472	1884	2008	2230	2252	2036	2036	1776	1738	1085	7351

EFFECTIVE ATMOSPHERE FACTORS:

CLEARNESS NO.
CLOUD FACTOR
:---
0.69

```
TABLE A-3
```

SITE NAME FT. WORTH, TEXAS__LATITUDE $\quad 32.83^{\circ}$ LONGITUOE ${ }^{97.050}$

```
ASHRAE DESIGN CONDITION:
```

    WINTER - \(971 / 2 \%\)
        DRY BULB TEMP \(\frac{-4.4}{\text { HIGH }}{ }^{\circ} \mathrm{C}, \quad 24 \quad{ }^{\circ} \mathrm{F}\);
        WIND SPEED
    SUMMER-21/2\%
        \(\begin{array}{llllllll}\text { DRY BULB TEMP } & 37.8 & { }^{\circ} \mathrm{C}, & 100 & { }^{\circ} \mathrm{F}: \\ \text { WET BULB TEMP } & 25.6 & { }^{\circ} \mathrm{C} & 78 & { }^{\circ} \mathrm{F} & \begin{array}{l}\text { DESIGN RELATIVE }\end{array} & \begin{array}{l}40 \\ \text { HUNIDITY }\end{array} & \end{array}\)
    DEGREE DAYS:

HEATING	${ }^{\circ} \mathrm{C}$	JAN	FEB	MIAR	APR	MIAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
		348	253	186	49	0	0	0	0	0	33	159	294
		626	456	335	88	0	0	0	0	0	60	287	530
COOLING	${ }^{\circ} \mathrm{C}$	0	0	14	52	131	260	341	343	212	78	6	0
	${ }^{\circ} \mathrm{F}$	0	0	25	94	236	468	614	617	381	141	11	0

PERCENT POSSIBLE SUNSHINE:

56	57	65	66	67	75	78	78	74	70	63	58

AVERAGE AMBIENT TEMPERATURE RANGE:

MAX D.B

${ }^{\circ} \mathrm{C}$	13.3	15.6	19.4	24.4	28.3	33.3	35.6	35.6	31.7	26.1	18.9	14.4
${ }^{\circ} \mathrm{F}$	56	60	67	76	83	92	96	96	89	79	66	58
${ }^{\circ} \mathrm{C}$	1.7	3.9	6.7	12.2	17.2	21.7	23.9	23.9	20	13.3	6.7	2.8
${ }^{\circ} \mathrm{F}$	35	39	44	54	63	71	75	75	68	56	44	37

AVERAGE DAILY INCIDENT RADIATION:

	$\mathrm{kWh} / \mathrm{m}^{2}$	3.06	3.86	5.19	5.20	6.81	6.81	7.42	7.10	5.27	4.39	2.94	2.61
HORIZ	$\mathrm{Bru} / \mathrm{ft}^{2}$	971	1224	1646	1649	2160	2160	2354	2252	1672	1393	933	828
	$\mathrm{kWh} / \mathrm{m}^{2}$	5.10	5.61	6.71	5.67	7.55	7.58	8.65	8.74	6.47	6.42	4.61	4.55
DIRECT	$\mathrm{Btu} / \mathrm{ft}^{2}$	1618	1779	2128	1799	2395	2404	2744	2772	2052	2052	1462	1443

EFFECTIVE ATMOSPHERE FACTORS:

CLEARNESS NO.	0.78	0.75	0.81	0.66	0.97	0.87	1.0	1.02	0.79	0.81	0.66	0.71
CLOUD FACTOR	0.75	0.76	0.81	0.81	0.82	0.87	0.88	0.88	0.86	0.84	0.79	0.76

tABLI A-4 $\qquad$

SITI NAME LAKE CHARLES, LA $\qquad$ latitude $\qquad$ Longitude $\qquad$

ASHRAE DESIGN CONDITION:
WINTER - $971 / 2 \%$
$\qquad$
WIND SPEED $\qquad$ MEDIUM ${ }^{\circ}$. ${ }^{\circ} \mathrm{F}$ :

SUMMER - $21 / 2 \%$
\(\left.\begin{array}{llll}DRY BULB TEMP \& 30.9 \& { }^{\circ} \mathrm{C}, \& 93 <br>
WET BULB TEMP \& { }^{\circ}{ }^{\circ} \mathrm{F} ; <br>

26.1 \& { }^{\circ} \mathrm{C}, \& 79 \& { }^{\circ} \mathrm{F}\end{array}\right\}\)| DESIGN RELATIVE |
| :--- |
| HUMIDITY |

60 \%

DEGREE DAYS:

HEATING	${ }^{\circ} \mathrm{C}$	JAN	FEB	MAR	APR	MIAY	JUN	JUL	AUG	SEP	OCT	NOVİDEC	
		231	170	111	14	0	0	0	0	0	20	98	188
		415	306	200	25	0	0	0	0	0	36	177	338
	${ }^{\circ} \mathrm{C}$	12	16	30	79	176	262	299	296	223	106	18	4
	${ }^{\circ} \mathrm{F}$	21	29	54	143	316	471	539	533	402	191	33	7

PERCENT POSSIBLE SUNSHINE:

49	50	57	63	66	64	58	60	64	70	60	46

AVERAGE AMBIENT TEMPERATURE RANGE:

	${ }^{\circ} \mathrm{C}$	17.8	19.4	21.7	25.6	28.9	32.2	32.3	32.8	30.6	26.7	21.1	18.3
MAX D.B.	${ }^{\circ} \mathrm{F}$	64	67	71	78	84	90	91	91	87	80	70	65
	${ }^{\circ} \mathrm{C}$	7.2	8.9	11.1	14.4	17.8	21.7	22.8	22.8	20.6	16.1	10	7.8
MIN D.B.	${ }^{\circ} \mathrm{F}$	45	48	52	58	64	71	73	73	69	$6:$	50	46

AVERAGE DAILY INCIDENT RADIATION:

HORIZ	$\mathrm{kWh} / \mathrm{m}^{2}$	2.42	3.68	4.55	5.25	6.48	5.87	6.23	5.68	5.00	4.48	3.06	2.52
	Btu/ft ${ }^{2}$	768	1167	1443	1649	2055	1862	1976	1802	1586	1421	971	799
DIRECT	$\mathrm{kWh} / \mathrm{m}^{2}$	3.35	4.85	4.54	5.53	7.29	6.43	7.10	6.68	5.83	5.94	4.35	3.87
	Btu/tt ${ }^{2}$	1063	1551	1729	1754	2312	2040	27.52	2119	1849	1884	1380	1228

EFFECTIVE ATMOSPHERE FACTORS:

CLEARNESS NO.	0.48	0.70	0.68	0.67	0.90	0.77	0.96	0.85	0.77	0.76	0.64	0.69
CLOIID FACTOR	0.70	0.71	0.76	0.79	0.81	0.80	0.76	0.78	0.80	0.84	0.78	0.68

TABLI A-5 .............

SIIT NAME LOSANGELES, CA. LI__ LATITUDE $34.05^{\circ}$ LONGITUDE $\quad 118.23^{\circ}$

ASHRAE DESIGN CONDITION:
WINTER - $971 / 2 \%$
DRY BULB TEMP _ $6.7 \quad{ }^{\circ} \mathrm{C}, \quad 44 . \quad{ }^{\circ} \mathrm{F}$ :
WIND SPEED ___ VERY LOW
SUMMER - $21 / 2 \%$


DEGREE DAYS:

HEATING	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{F} \end{aligned}$	JAN	FEB	MIAR	$A P R$	NIAY	JUN	JUL	AUG I	SEP	OCT	NOV	DEC
		149	115	106	69	33	14	0	0	3	19	63	121
		268	207	190	124	60	25	0	0	5	35	113	218
COOLING	${ }^{\circ} \mathrm{C}$	6	8	6	14	28	64	143	157	131	78	24	0
	${ }^{\circ} \mathrm{F}$	10	14	10	25	51	115	258	282	236	140	44	0

PERCENT POSSIBLE SUNSHINE:

70	69	70	67	68	69	80	81	80	76	79	72

AVERAGE AMBIENT TEMPERATURE RANGE:

MAX D.B

MIN D.B.

${ }^{\circ} \mathrm{C}$	18.3	18.9	20.3	21.4	22.9	25.1	28.5	28.5	28.0	25.2	22.9	19.7
$\mathrm{O}_{\mathrm{F}}$	65.0	66.0	68.6	70.6	73.3	77.1	83.3	83.3	82.4	77.3	73.3	67.5
${ }^{\circ} \mathrm{C}$	8.1	9.0	10.1	11.7	13.3	14.9	17.0	17.2	16.3	14.1	11.2	9.3
$\mathrm{O}_{\mathrm{F}}$	46.6	48.2	50.2	53.0	56.0	58.9	62.6	52.9	61.4	57.4	52.1	48.8

AVERAGE DAILY INCIDENT RADIATION:

	$\mathrm{kWh} / \mathrm{m}^{2}$	2.94	3.32	5.23	6.57	6.23	6.27	8.13	7.49	5.87	4.19	3.27	3.03
HORIZ	$\mathrm{Btu} / \mathrm{ft}^{2}$	931	1054	1658	2083	1975	1988	2579	2353	1861	1330	1036	962
	$\mathrm{kWh} / \mathrm{m}^{2}$	5.32	4.86	7.32	8.00	7.03	6.73	9.32	8.84	7.50	6.23	5.63	5.16
1688	1541	2323	2538	2231	2136	2957	2804	2379	1975	1787	1637		

EFFECTIVE ATMOSPHERE FACTORS:

CLEARNESS NO.	0.64	0.49	0.79	0.99	0.82	0.81	1.15	1.07	0.92	0.73	0.70	0.83
CLOUD FACTOR	0.84	0.83	0.84	0.82	0.83	0.83	0.89	0.90	0.89	0.87	0.89	0.85

TABLE

$$
A-6
$$

$\qquad$ _.

SITE NAME MADISON,WIS. $\qquad$ LATITUDE $\qquad$ LONGITUDE $\qquad$

ASHRAE DESIGN CONDITION:
WINTER - $971 / 2 \%$
DRY BULB TEMP_ -20.6 MEDIUM ${ }^{\circ} \mathrm{C}, \mathrm{C}^{\circ}{ }^{\circ}{ }^{\circ} \mathrm{F}$ :
WIND SPEED $\qquad$ SUMMER - $21 / 2 \%$


DEGREE DAYS:

HEATING	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{F} \end{aligned}$	JAN	FEB	MIAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
		830	696	599	328	165	40	8	22	96	263	505	742
		1494	1252	1079	591	297	72	14	39	173	474	909	1336
	${ }^{\circ} \mathrm{C}$	0	0	0	0	10	53	96	86	8	3	0	0
COOLING	${ }^{\circ} \mathrm{F}$	0	0	0	0	18	96	172	154	14	6	0	0

PERCENT POSSIBLE SUNSHINE:

44	49	52	53	58	64	70	66	60	56	41	38

AVERAGE AMBIENT TEMPERATURE RANGE:
MAX D.B.

MIN D.B.

${ }^{\circ} \mathrm{C}$	-2.3	-2.2	2.8	11.7	18.9	24.4	28.3	27.2	22.2	16.1	5.6	-1.1
${ }^{\circ} \mathrm{F}$	26	28	37	53	66	76	83	81	72	61	42	30
${ }^{\circ} \mathrm{C}$	-12.2	-12.2	-6.1	1.7	7.2	13.9	15.6	15	10.6	4.4	-2.2	-8.9
${ }^{\circ} \mathrm{F}$	10	10	21	35	45	57	60	59	41	40	28	16

AVERAGE DAILY INCIDENT RADIATION:

```
HORIZ
```

$\mathrm{kWh} / \mathrm{m}^{2}$	1.77	2.46	3.68	5.47	6.03	7.13	6.71	6.16	4.50	3.26	1.80	1.56
$\mathrm{Btu} / \mathrm{ft}^{2}$	553	780	1167	1734	1912	2260	2127	1953	1427	1032	571	495
$\mathrm{kWh} / \mathrm{m}^{2}$	3.52	4.18	5.10	6.90	7.29	8.67	8.19	7.97	6.30	5.26	3.43	3.35
$\mathrm{Btu} / \mathrm{ft}^{2}$	1116	1325	1617	2187	2311	2448	2596	2526	1997	1667	1087	1062

EFFECTIVE ATMOSPHERE FACTORS:

CLEARNESS NO.	0.78	0.62	0.72	1.00	0.94	1.09	0.98	1.04	0.96	0.94	0.86	1.00
CLOUD FACTOR	0.66	0.70	0.72	0.73	0.76	0.80	0.84	0.81	0.78	0.75	0.64	0.62

TABLE A-7 $\qquad$


ASHRAE DESIGN CONDITION:
WINTER - 97 1/2\%
$\qquad$
WIND SPEED ${ }^{\circ} \mathrm{C}$. $\qquad$ ${ }^{\circ} \mathrm{F}$ :

UMMER - $21 / 2 \%$


DEGREE DAYS:

HEATING	$\begin{aligned} & { }^{{ }^{\circ} \mathrm{C}} \\ & { }_{\mathrm{o}} \end{aligned}$	JAN	FEB	MIAR	APR	MIAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
		29	37	c	0	0	0	0	0	0	0	7	31
		53	67	17	0	0	0	0	0	0	0	13	56
COOLING	${ }^{\circ} \mathrm{C}$	67	81	118	167	224	267	298	308	278	221	127	88
	${ }^{\circ} \mathrm{F}$	121	145	212	300	403	480	536	555	501	397	229	159

PERCENT POSSIBLE SUNSHINE:

66	72	73	73	68	62	65	67	62	62	65	65

AVERAGE AMBIENT TEMPERATURE RANGE:

MAX D.B.

$\mathrm{O}_{\mathrm{C}} \mathrm{C}$	24.4	25.	26.7	28.3	29.4	31.1	31.7	32.2	31.1	29.4	26.7	25
$\mathrm{O}_{\mathrm{F}}$	76	77	80	83	85	88	89	90	88	85	80	77
$\mathrm{O}_{\mathrm{C}}$	14.4	15.	16.1	18.9	21.9	23.3	23.9	23.9	23.9	21.7	18.3	15
$\mathrm{O}_{\mathrm{F}}$	58	59	61	56	70	74	75	75	75	71	65	59

AVERAGE DAILY INCIDENT RADIATION:
HORIZ

DIRECT

| $\mathrm{kWh} / \mathrm{m}^{2}$ | 3.81 | 4.79 | 5.90 | 6.67 | 6.68 | 5.97 | 6.42 | 5.71 | 4.8 C | 4.90 | 3.80 | 3.65 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{Btu} / \mathrm{ft}^{2}$ | 1205 | 1518 | 1870 | 2114 | 2118 | 1892 | 2035 | 1810 | 1522 | 1553 | 1205 | 1157 |
| $\mathrm{kWh} / \mathrm{m}^{2}$ | 5.52 | 6.50 | 7.32 | 7.47 | 7.55 | 6.63 | 7.19 | 6.10 | 5.27 | 6.48 | 5.20 | 5.58 |
| $\mathrm{Btu} / \mathrm{ft}^{2}$ | 1750 | 2061 | 2320 | 2368 | 2393 | 2102 | 2279 | 1934 | 1671 | 2054 | 1648 | 1769 |

EFFECTIVE ATMOSPHERE FACTORS:

CLEARNESS NO.	0.69	0.70	0.80	0.89	0.93	0.83	0.92	0.76	0.68	0.86	0.71	0.76
0.81	0.85	0.85	0.85	0.83	0.79	0.81	0.82	0.79	0.79	0.81	0.81	

table A-8 $\qquad$ .

SITE NAME
LATITUDE $\qquad$ LONGITUDE $\qquad$ $86.68^{\circ}$

ASHRAE DESIGN CONDITION:
WINTER - $971 / 2 \%$
DRY BULB TEMP $\frac{-8.9}{\text { LOW }}{ }^{\circ}{ }^{\circ} \mathrm{C}{ }^{\text {WIND SPEED }}{ }^{16} \quad{ }^{\circ}{ }^{\circ}$ F:
SUMMER-21/2\%
DRY BULB TEMP _35_ ${ }^{35}{ }^{\circ} \mathrm{C}, \quad 95 \quad{ }^{\circ}{ }^{\circ}{ }^{\circ} ;$
WET BULB TEMP_25.6_ ${ }^{\circ} \mathrm{C}, \quad 78 \quad{ }^{\circ}{ }^{\circ} \mathrm{F}$ _ HUMIDITY
DEGREE DAYS:

heating	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
	460	373	291	${ }^{98}$	25	0	0	0	6	100	277	424
	828	572	524	176	45	0	0	0	10	180	498	763
	0	0	11	16	85	193	252	233	122	29	0	0
COOLING	0	0	19	29	153	348	453	419	220	53	0	0

PERCENT POSSIBLE SUNSHINE:

42	47	54	60	65	69	69	68	69	65	55	42

AVERAGE AMBIENT TEMPERATURE RANGE:
MAX D.B.

MIN D.B.

${ }^{\circ} \mathrm{C}$	9.4	10.6	15	21.7	26.7	31.1	32.8	32.2	29.4	23.3	15	10
${ }^{0} \mathrm{~F}$	49	51	59	71	80	88	91	90	85	74	59	50
${ }^{O^{\prime}} \mathrm{C}$	-0.6	0.6	3.9	8.9	13.9	18.9	21.1	20.0	16.1	9.4	3.3	0
${ }^{\circ} \mathrm{F}$	31	33	39	48	57	66	70	68	61	49	38	32

AVERAGE DAILY INCIDENT RADIATION:

	$\mathrm{kWh} / \mathrm{m}^{2}$	1.97	2.89	3.71	5.07	6.13	5.77	5.90	5.61	4.37	3.87	1.94	1.84
HORIZ	$\mathrm{Btu} / \mathrm{ft}^{2}$	625	917	1177	1608	1944	1830	1871	1779	1386	1228	615	584
	$\mathrm{kWh} / \mathrm{m}^{2}$	3.26	4.04	4.48	5.63	6.68	5.90	6.19	6.23	5.03	5.39	2.90	3.06
BIRECT													
	$\mathrm{Btu} / \mathrm{ft}^{2}$	1034	1281	1421	1786	2119	1871	1963	1976	1596	1710	920	971

EFFECTIVE ATMOSPHERE FACTORS:

CLEARNESS NO.	0.56	0.61	0.56	0.71	0.84	0.69	0.76	0.79	0.65	0.80	0.40	0.64
CLOUD FACTOR	0.65	0.69	0.74	0.78	0.81	0.83	0.83	0.83	0.83	0.81	0.74	0.65

CLIMATE AND INSOLAYION SUMMARY
TABLE:
A-9 $\qquad$ _.


ASHRAE DESIGN CONDITION:
WINTER - 97 1/2\%
DRY BULB TEMP_-18.3 ${ }^{\circ}{ }^{\circ} \mathrm{C}, \quad-1 \quad{ }^{\circ}{ }^{\circ} \mathrm{F}$ :
WIND SPEED MEDIUM
SUMMER - $21 / 2 \%$
$\left.\begin{array}{llllll}\text { DRY BULB TEMP } & 34.4 & { }^{\circ} \mathrm{C} & 94 & { }^{\circ}{ }^{\circ} \mathrm{F}: \\ \text { WET BULB TEMP } & 25.6 & { }^{\circ} \mathrm{C} & 78 & { }^{\circ} \mathrm{F}\end{array}\right\} \begin{aligned} & \text { DESIGN RELATIVE }\end{aligned} \quad \begin{aligned} & 53 \\ & \text { HUNIDITY }\end{aligned}$

DEGREE DAYS:

HEATING	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \mathrm{o}^{\mathrm{F}} \end{aligned}$	JAN	FEB	NIAR	APR	MIAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
		730	576	481	217	82	11	0	3	39	167	417	637
		1314	1036	865	391	148	20	0	6	71	301	750	1147
	${ }^{\circ} \mathrm{C}$	0	0	0	6	48	131	210	186	61	11	0	0
COOLING	${ }^{\circ} \mathrm{F}$	0	0	0	10	86	236	378	334	110	19	0	0

PERCENT POSSIBLE SUNSHINE:

57	59	60	60	63	69	76	71	67	66	59	55

AVERAGE AMBIENT TEMPERATURE RANCE:

MAX D.B.

${ }^{\circ} \mathrm{C}$	1.7	3.9	9.4	17.8	23.9	29.4	33.9	32.2	27.8	21.1	11.1	5
$\mathrm{O}_{\mathrm{F}}$	35	39	49	64	75	85	93	90	82	70	52	41
${ }^{O_{\mathrm{C}}} \mathrm{C}$	-8.3	-6.7	-1.7	5	11.1	17.2	20.6	19.4	13.9	7.2	-0.6	-5.
${ }^{O_{\mathrm{F}}} \mathrm{F}$	17	20	29	41	52	63	69	67	57	45	31	23

AVERAGE DAILY INCIDENT RADIATION:
HORIZ

DIRECT

$\mathrm{kWh} / \mathrm{m}^{2}$	2.45	2.89	4.19	5.33	5.84	$\epsilon .90$	6.84	5.94	4.67	3.84	2.46	2.10
$\mathrm{Btu} / \mathrm{ft}^{2}$	777	916	1328	1690	1851	2187	2168	1883	1480	1217	761	666
$\mathrm{kWh} / \mathrm{m}^{2}$	5.58	4.68	5.90	6.60	6.55	7.83	7.90	7.32	6.10	6.29	4.77	4.81
$\mathrm{Btu} / \mathrm{ft}^{2}$	1769	1484	1870	2092	2076	2482	2504	2320	1934	1994	1512	1525

EFFECTIVE ATMOSPIIERE FACTORS:
CLEARNESS NO.
CLOUD FACTOR

0.94	0.64	0.75	0.84
0.76	0.77	0.78	0.78

0.81

0.97	0.93
0.83	0.87


0.90	0.88
0.84	0.82

0.99
0.89
1.02

## CLIMATE AND INSOLATION SUMMARY

TABI

$$
A-10
$$

SHI N/MA PHOENIX, ARIZ. $\qquad$ LATITUDE $\qquad$ 33.430 LONGITUDE $\qquad$

ASIIRAE DESIGN CONDITION:
WINTER - $971 / 2 \%$


SUMMER - $21 / 2 \%$
$\left.\begin{array}{lllll}\text { DRY BULB TENIP } & 41.1 & { }^{\circ} \mathrm{C} & 106 & { }^{\circ}{ }^{\circ} \mathrm{F} ; \\ \text { WET BULB TEMP } & 24.4 & { }^{\circ} \mathrm{C} & 76 & { }^{\circ} \mathrm{F}\end{array}\right\} \begin{aligned} & \text { DESIGN RELATIVE } \\ & \text { HUNIDITY }\end{aligned} \quad \begin{aligned} & 27\end{aligned}$

DEGREE DAYS:

HEATING	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }_{\mathrm{O}}^{\mathrm{F}} \end{aligned}$	JAN	FEB	MAR	A.PR	NIAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
		238	162	103	33	0	0	0	0	0	9	101	216
		428	292	185	60	0	0	0	0	0	17	182	388
COOLING	${ }^{\circ} \mathrm{C}$	0	8	12	78	197	327	451	415	313	133	14	0
	${ }^{\circ} \mathrm{F}$	0	14	21	141	355	588	812	747	564	240	26	0

PERCENT POSSIBLE SUNSHINE:

76	79	83	88	93	94	84	84	89	88	84	77

AVERAGE AMBIENT TEMPERATURE RANGE:

	${ }^{\circ} \mathrm{C}$	17.8	20	23.9	28.9	33.9	38.9	40.6	38.9	36.7	30.6	23.3	18.9
MAX D.B.	${ }^{\circ} \mathrm{F}$	64	68	75	84	93	102	105	102	98	87	74	66
	${ }^{\circ} \mathrm{C}$	1.7	3.9	6.1	10	13.9	18.9	23.9	22.8	19.4	12.8	5.6	2.8
MIN D.B.	${ }^{\circ} \mathrm{F}$	35	39	43	50	57	66	75	73	67	55	42	37

## AVERAGE DAILY INCIDENT RADIATION:

HORIZ	$\mathrm{kWh} / \mathrm{m}^{2}$	361	4.50	5.97	7.23	8.00	8.10	7.74	6.87	5.93	5.13	3.74	3.42
	$\mathrm{Blu} / \mathrm{ft}^{2}$	3.61 1145	4.50	5.97 1894	7.23 2293	8.00 2538	8.10 2569	7.74 2455	6.87 2179	1881	5.13 1627	3.74 1186	3.42 1085
DIRECT	$\mathrm{kWh} / \mathrm{m}^{2}$	6.42	6.86	8.16	8.97	9.65	9.67	9.19	8.26	7.43	7.81	6.39	6.65
	Btu/ft ${ }^{2}$	2036	2176	2588	2845	3061	3067	2915	2620	2357	2477	2027	2109

EFFECTIVE ATMOSPIIERE FACTORS:

CLICAMNTSS NO.	0.83	0.76	0.85	0.92	0.96	0.96	1.02	0.91	0.84	0.89	0.82	0.92
CIOUI) FACTOR	0.87	0.89	0.91	0.94	0.96	0.97	0.92	0.92	0.94	0.94	0.92	0.88

TABLE A-11 $\qquad$ _.

SITE NAML SEATTLE, WASH. LATITUDE ${ }^{47.45^{\circ}}$ LONGITUDE $\quad 122.30^{\circ}$

ASHRAE DESIGN CONDITION:
WINTER - $971 / 2 \%$
DRY BULB TEMP___ $\quad 0 \quad{ }^{\circ} \mathrm{C}$ _ ${ }^{0}$
WIND SPEED $\qquad$
SUMMER - $21 / 2 \%$
$\left.\begin{array}{lllll}\text { DRY BULB TEMP } & 26.1 & { }^{\circ} \mathrm{C}, ~ & 79 & { }^{\circ} \mathrm{F} ; \\ \text { WET BULB TEMP } & 18.3 & { }^{\circ} \mathrm{C}, & 65 & { }^{\circ} \mathrm{F}\end{array}\right\} \begin{aligned} & \text { DESIGN RELATIVE } \\ & \text { HUNIDITY }\end{aligned} \quad \begin{aligned} & 47 \quad \%\end{aligned}$

DEGREE DAYS:

HEATING	${ }^{\circ} \mathrm{C}$	JAN	FEB	MAR	APR	NIAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
		410	319	329	238	143	69	31	32	68	184	297	372
		738	574	592	429	258	124	56	57	123	332	534	670
	${ }^{\circ} \mathrm{C}$	0	0	0	0	0	12	50	38	10	0	0	0
COOLING	${ }^{\circ} \mathrm{F}$	0	0	0	0	0	22	90	69	18	0	0	0

PERCENT POSSIBLE SUNSHINE:

27	34	42	48	53	48	62	56	53	36	28	24

AVERAGE AMBIENT TEMPERATURE RANGE:

MAX D.B.

MIN D.B.

${ }^{0} \mathrm{C}$	6.7	8.3	10.6
$\mathrm{O}_{\mathrm{F}}$	44.	47.	51.
${ }^{\circ} \mathrm{C}$	0.6	1.7	2.2
${ }^{0} \mathrm{~F}$	33.	35.	36.


14.4	18.9
58.	66.
5.0	7.2
	41.


21.1	24.4	23.9
70.	76.	75.
90.0	12.2	12.2
50.	54.	54.


22.8	95.6	10.0	7.8
73.	60.	50.	46.
8.3	6.7	3.3	2.2
47.	44.	38.	36.

AVERAGE DAILY INCIDENT RADIATION:

	$\mathrm{kWh} / \mathrm{m}^{2}$	1.19	1.96	3.10	4.20	5.94	6.00	6.19	5.13	4.03	2.19	1.10	0.84
HORIZ	$\mathrm{Btu} / \mathrm{ft}^{2}$	379	623	982	1332	1883	1903	1965	1627	1279	696	349	266
	$\mathrm{kWh} / \mathrm{m}^{2}$	2.68	3.46	4.52	5.10	7.00	6.97	7.45	6.45	5.70	3.48	2.20	1.90
	$\mathrm{Btu} / \mathrm{ft}^{2}$	849	1099	1433	1618	2220	2210	2364	2046	1808	1105	698	604

EFFECTIVE ATMOSPHERE FACTORS:

CLEARNESS NO.	0.93	0.76	0.75	0.74	1.02	1.08	0.98	0.95	1.03	0.91	0.78	0.87
CLOUD FACTOR	0.52	0.58	0.65	0.69	0.73	0.69	0.79	0.75	0.73	0.60	0.53	0.49

$$
\begin{gathered}
\text { AI- } 78-23 \\
\text { A-12 }
\end{gathered}
$$

table
A-12

SITE NAME
WASHINGTON, D.C. LATITUDE $\qquad$ $38.89^{\circ}$ LONGITUDE $\qquad$

ASHRAE DESIGN CONDITION:
WINTER - $971 / 2 \%$

$$
\begin{aligned}
& \text { DRY BULB TEMP } \frac{-7.2}{\text { MEDIUM }}{ }^{\circ} \mathrm{C},{ }^{\circ}{ }^{19}{ }^{\circ} \mathrm{F} \text {; }
\end{aligned}
$$

SUMMER - $21 / 2 \%$


DEGREE DAYS:

HEATING	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\mathrm{o}} \mathrm{~F} \end{aligned}$	JAN	FEB	NIAR \| APR		NIAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
		506	431	343	147	40	0	0	0	8	106	283	476
		911	776	617	265	72	0	0	0	14	190	510	856
	${ }^{\circ} \mathrm{C}$	0		4	5	62	148	216	191	101	21	0	0
COOLING	${ }^{0} \mathrm{~F}$	0	0	8	9	111	267	388	344	181	37	0	0

PERCENT POSSIBLE SUNSHINE:

46	53	56	57	61	64	64	52	62	61	54	47

AVERAGE AMBIENT TEMPERATURE RANGE:
MAX D.B.
MIN D.B.
${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{F}$
${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{F}$

6.7	7.8	12.2
44	46	54
-1.1	-1.7	2.2
30	29	36


18.9	24.4
66	76
7.8	13.
46	56


28.3	30.6	29.4
83	87	85
18.3	20.6	20
65	69	68


26.1	20.	13.9	7.8
79	68	57	46
16.1	10.	3.9	-0.6
61	50	39	39

AVERAGE DAILY INCIDENT RADIATION:

	$\mathrm{kWh} / \mathrm{m}^{2}$	2.20	2.90	4.20	5.20	5.70	6.40	5.90	5.40	4.60	3.50	2.30	2.00
HORIZ	$\mathrm{Btu} / \mathrm{ft}^{2}$	699	919	1331	1648	1807	2029	1870	1712	1458	1110	729	634
	$\mathrm{kWh} / \mathrm{m}^{2}$	3.80	4.10	5.00	5.70	5.60	6.40	5.50	5.50	5.20	4.70	3.60	3.60
DIRECT	$\mathrm{Btu} / \mathrm{ft}^{2}$	1205	1300	1585	1807	1775	2029	1744	1744	1648	1490	1141	1141

EFFECTIVE ATMOSPHERE FACTORS:

CLEARNESS NO.	0.78	0.62	0.74	0.81	0.79	0.90	0.82	0.83	0.85	0.80	0.73	0.85
CLOUD FACTOIR	0.68	0.73	0.75	0.76	0.78	0.80	0.80	0.79	0.79	0.78	0.73	0.69

TABLE A-13
DATA SOURCES FOR CLIMATE AND INSOLATION SUMMARY DATA

Site	ASHRAE   Design Conditions	Degree Days	Percent   Sunshine	Dry Bulb Temperatures	Average Daily Incident Radiation
Lake Charles, La.	4*	2	1 (New Orleans)	1 (New Orleans)	5
Miami, F1a.	4	2	1	1	5
Nashville, Tenn.	4	2	1	1	5
Washington, D.C.	4	2	1	1	6
Albuquerque, N.M.	4	2	1	3	5
Ft. Worth, Texas	4	2	1		5
Los Angeles, Ca.	4	2	1	3	5
Phoenix, Ariz.	4	2	1	3	5
Blue Hill, Mass.	4 (Boston)	2	1 (Boston)	1 (Boston)	5
Madison, Wis.	4	2	1	$\begin{aligned} & 1 \text { (Green Bay }+ \\ & 1.2^{\circ} \mathrm{F} \text { ) } \end{aligned}$	5
Omaha, Neb.	4	2	1 (Lincoln)	$\begin{aligned} & 1(\text { Lincoln }+ \\ & \left.0.5^{\circ} \mathrm{F}\right) \end{aligned}$	5
Scattle, Wash.	4	2	1	1	5

*Data Source Legend References:

1. "Climatic Atlas of the United States," U.S. Department of Commerce (June 1968)
2. Climatography of the U.S., No. 81 (By State), U.S. Department of Commerce (August 1973)
3. Local Climatological Data, U.S. Department of Commerce (1972)
4. ASHRAE Handbook of Fundamentals, ASHRAE (1972)
5. ERDA Report No. ERC-R-76005, "Terrestrial Photovoltaic Power Systems with Sunlight Concentration," Contract E(11-1)-2590 Arizona State U., Spectrolab, Inc.
6. Eldon C. Boes, et al, "Distribution of Direct and Total Solar Radiation Availabjlities for the U.S.A," Sandia Laboratories Energy Report, SAND 76-0411 (1976)

[^0]:    *Numbers in superscript parenthesis refer to references

