Comparison Between Results of the HELIOS and MIRVAL Computer Codes Applied to Central Receiver Solar-Energy Collection
C. N. Vittitoe, F. Biggs, P. L. Leary

Prepared by Sandia Laboratories, Albuquerque, New Mexico 87115 and Livermore, California 94550 for the United States Department of Energy under Contract DE-AC04-76DP00789.

Printed January 1980

When printing a copy of any digitized SAND Report, you are required to update the markings to current standards.

Sandia Laboratories energy report
\square

Issued by Sandia Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

SAND79-8266
Unlimited Release
Printed January 1980

COMPARISON BETWEEN RESULTS OF THE HELIOS AND MIRVAL COMPUTER CODES APPLIED TO CENTRAL RECEIVER SOLAR-ENERGY COLLECTION*

Charles N. Vittitoe
Frank Biggs
Theoretical Division
Sandia Laboratories, Albuquerque
Patricia L. Leary
Applied Mathematics Division
Sandia Laboratories, Livermore

ABSTRACT

The Sandia computer codes HELIOS and MIRVAL were developed to predict the optical performance of reflecting solar concentrators and to model power collection by central-receiver solar-energy power plants. HELIOS is an analytic code, whereas MIRVAL uses Monte Carlo ray-tracing techniques. They have been used both internally and externally in many studies including evaluation of heliostat-receiver design, parameter studies and safety analyses. The objective of this study was to verify that HELIOS and MIRVAL give the same performance predictions. The sample problem for comparison consists of a rectangular target and alt-azimuth heliostats deployed in a north field. The results indicate that HELIOS and MIRVAL closely agree on predictions of field performance and of power density on the target plane.

[^0]
CONTENTS

Page
Introduction 7
Code Input 8
Result Comparisons 13
More Detailed Shadowing and Blocking Comparison 16
Conclusions 19
APPENDIX--HELIOSTAT LAYOUT 20
REFERENCES 21
DISTRIBUTION 22

COMPARISON BETWEEN RESULTS OF THE HELIOS AND MIRVAL COMPUTER CODES APPLIED TO CENTRAL RECEIVER SOLAR-ENERGY COLLECTION

Introduction

Harnessing solar power economically is a tremendous undertaking, with many possibilities for expensive waste. Computer codes have been developed to simulate various methods of collecting solar energy in order to avoid mistakes new technology can bring. The low cost of computer use compared with that of hardware development allows for many parametric studies prior to hardware decisions.

Because of the expense associated with high-accuracy hardware, solarenergy development seeks a trade-off between accuracy and cost. One of the largest expenses is in the heliostats (mirror array). In the optimum design, the cost (and therefore accuracy) is minimized subject to the constraint that we receive the desired power and the desired distribution of power on the receiver. Since computer models aid in making decisions involving large hardware expenditures, it is important that the models be verified comparatively and experimentally.

MIRVAL and HELIOS are two computer codes that are used to assess the overall optical performance of systems proposed for central receiver solarenergy collection. Documentation of the theory and use of these codes appears elsewhere. 1-3 Briefly, the inputs are the geometry of the heliostat field, tower, and receiver, along with miscellaneous physical data such as mirror reflectivity, insolation tables, etc., and the outputs are the thermal power through the receiver and the thermal power density on the plane of the receiver opening. Phenomena whose effects are simulated are shadowing, blocking, mirror tracking, random errors in tracking and in the conformation of the reflective surface, optical shape of the reflective surface, insolation, angular distribution of incoming sun rays to account for limb darkening and scattering, attenuation of light between the mirrors and the receiver, reflectivity of the mirror surface, and mirror-aiming strategy.

The methodologies of HELIOS and MIRVAL are quite different. MIRVAL is a Monte Carlo code. Rays of light are selected from the vicinity of the sun and are traced until they either enter the receiver or are lost in a prior absorption process or are deflected enough to miss the receiver. HELIOS, on the other hand, is an analytic code. The angular distribution of sunrays for the radiation incident on a concentrator is modified by convolution, using the fast Fourier transform, to incorporate the effects of other nondeterministic factors such as sun-tracking errors, surface slope errors, and reflectance properties.

MIRVAL has been used to compare sets of heliostat-field, tower-receiver, heliostat, and facet designs that have been proposed for the $10-\mathrm{MW}$ electical power tower now planned for Barstow, California. HELIOS has been used in the evaluation of individual heliostats at the Central Receiver Test Facility (CRTF) now in operation at Sandia Laboratories, Albuquerque, New Mexico. We tested several designs which had been proposed for the Barstow plant. MIRVAL and HELIOS have also been used in many other types of studies: safety analysis, parameter studies, power-tower-performance calculations, and comparison with experimental data.

Several previous checks of HELIOS were described in Chapter 9 of Reference 2. All of the quantitative comparisons with experiment were either for one heliostat or for one facet. Such comparisons give no validation to code features such as shadowing and blocking. Other work ${ }^{4}$ examined consistency between prediction and experiment for a small field of 23 heliostats. As indicated elsewhere ${ }^{2}$ detailed flux-density measurements are planned for the CRTF using large heliostat arrays and concurrent sunshape data. These data in turn will be used as experimental data for similar comparisons. This report examines the consistency of the two computer codes when applied to larger heliostat fields. We detail the basic input used to compare the codes, including the basic power-tower optical design. The code outputs described indicate that MIRVAL and HELIOS results are consistent.

Because often-used computer codes associated with a rapidly evolving technology are revised frequently to meet new demands, comparison is constrained to the versions of MIRVAL and HELIOS in use during July 1979. It is expected, however, that future versions of the codes will not alter the basic results or conclusions presented here.

Code Input

As a result of interaction with a group from the Empresa Nacional de Ingenieria Y Technologia (INITEC) in Madrid, both MIRVAL and HELIOS were used to aid in the design of the $1-\mathrm{MW}_{\mathrm{e}}$ CESA-1 (Central Energia Solar Almeria) solar-central receiver plant being built in Almeria, Spain. The preliminary design of the CESA-1 system (but with a spherical facet-surface shape) provided the details for the code comparison between HELIOS and MIRVAL.

The mirror array consists of 282 heliostats deployed in a north field, as shown in Figure 1. This figure was produced by HELIOS, as were all other computer graphics in this report. The coordinates of the heliostats are listed in the Appendix.

Figure 1. Preliminary Heliostat Layout in East-North Plane for the CESA-1 Solar Central-Receiver Project

All are aimed at the center of the target. Each heliostat consists of 10 panels arranged in a 2×5 pattern (Figure 2). Individual facets are canted to give optimum energy collection at noon on solar equinox. The facet surfaces are spherical with a reflectivity of 0.85 . The focal length of each facet is determined from the projection P of the heliostat to tower-center distance onto a horizontal plane. The f values are listed in Table I.

Figure 2. Heliostat Design

TABLE I
FACET FOCAL LENGTHS

Projection $P(m)$	$0-69$	$69-122$	$122-170$	$170-205$	$205-232$	$232-\infty$
$f(m)$	85	118	160	202	226	255

The target (Figure 3) is a 3.4 m square centered at 0 m east, 5 m north, and 60 m above the center of the tower base. The target is inclined 21.8° downward. The tower shadow is modeled as that cast by a cylinder 71 m tall with radius of 5.5 m .

Figure 3. CESA-I Solar Receiver

The sun shape is taken as a uniform disk which subtends 9.29 mrad at the plant site. The calculation time is 10 A.M. on winter solstice. Insolation is $700 \mathrm{~W} / \mathrm{m}^{2}$. The latitude of the CESA-1 solar receiver site is $37.099^{\circ} \mathrm{N}$. The atmospheric attenuation is modeled with Eq. (6.3-2) and (6.3-3) in Reference 2.

The dispersion in the error cone in HELIOS was set to 0.0033. In order to make the treatment of heliostat error sources consistent in the two codes, MIRVAL used 0.00165 rad for the standard deviation of the distribution function describing mirror-slope error and used no error in tracking angles. The users' guides ${ }^{1-3}$ contain further description of the treatment of error sources.

Figure 4. The uniform-disk sunshape (...), the error cone with a dispersion of 0.0033 (---), and the effective sunshape (-)

The field performance parameters calculated by HELIOS and MIRVAL for the power-tower system defined in the preceding section are listed below.

Power collected in aperture:	Error estimate
HELIOS 4.762 MW	0.013 MW (rough estimate - see section 7.1 of reference 2) MIRVAL 4.786 MW\quad0.018 MW (the probability is
	0.97 that the estimate differs
from the true value by less than	
$0.018 \mathrm{MW})$	

Shadowing and blocking loss factor (area loss, not power loss at target):
HELIUS 0.92408 (.91888 for power loss at target)
MIRVAL 0.92541
(shadowing loss fraction 0.07149 , blocking loss fraction 0.00334)

Cosine loss factor (caused by angle of incidence at facets):
HELIOS 0.94910
MIRVAL 0.94913

Spillage loss factor:
HELIOS 0.92174
MIRVAL 0.92142

Atmospheric attenuation loss factor:
HELIOS 0.97388
MIRVAL 0.97329

Flux density on target surface

This comparison is less straightforward since HELIOS calculates the flux density at a mesh of points while MIRVAL gives the average flux density in an
array of bins. Integration over portions of the target mesh in HELIOS gives the power distribution on the target within a set of bins. By using the area of the bins the average flux density within each bin is calculated. This can then be compared with the MIRVAL output as shown in Table II. The target coordinates in the table have their origin at the target center with the x axis eastward and the y axis tilted from the vertical direction 21.8° toward the north. Horizontal slices of data near the peak are compared in Figure 5. Comparison of vertical slices of data near the peak gives similar agreement. Consistency in the results remains when all heliostat error sources are set to zero. Figures 6 and 7 are graphs of the flux density calculated by HELIOS.

TABLE II
FLUX DENSITY DISTRIBUTION ON APERTURE ($\mathrm{MW} / \mathrm{m}^{2}$) FROM MIRVAL (HELIOS)

Figure 5. Horizontal Slices of Data Near Peak

Figure 6. Isointensity contours of flux density on aperture at peak and (0.95-0.05I) for $I=0,1, . . ., 18$. Greater density of data points is needed for good contour resolution near the peak

$$
\text { Day }=355 . \quad \text { Time }=-2.0
$$

Figure 7. Flux Density Distribution on Aperture

More Detailed Shadowing and Blocking Comparison

The extent of shadowing and blocking in this calculation is illustrated in Figures 8-9. The blocking diagram is a projection of the outer edges of the heliostats onto a unit sphere centered at the target center. Overlap indicates that the closer heliostat blocks a portion of the light from the overlapped heliostat. The shadowing diagram is a projection of the outer edges of the heliostats and a projection of the receiver-tower model onto a plane orthogonal to the sun's rays. The cross-hatched section represents the tower. Overlap here indicates that the closer heliostat or the tower shadows a portion of a heliostat farther from the tower. Figures 8 and 9 show little blocking or shadowing other than the tower shadowing.

Early calculations indicated that the blocking results of MIRVAL and HELIOS were not consistent. A time shift to 4 P.M. (to emphasize the effect) and concentration upon heliostat number 136 (see Appendix) indicated this heliostat was being blocked by heliostat number 107. MIRVAL predicted the blocked fraction of the heliostat reflective area to be 0.0165 . The corresponding HELIOS prediction was 0.042. Shortly before this discovery workers at INITEC ${ }^{5}$ indicated an inconsistency between a HELIOS prediction for blocking and a hand calculation for this heliostat-field layout. Review of
the code revealed the intent to locate the center of the unit sphere used for blocking at the center of the target. A programming error prevented these coordinates from being set, causing use of default CRTF parameters and thus the inconsistency. Code correction on July 5, 1979, made the MIRVAL, HELIOS and INITEC blocking results consistent. The shadowing and blocking diagrams for heliostats influencing number 136 at 4 P.M. are indicated in Figure 10.

Figure 8. The Blocking Diagram

Figure 9. The Shadowing Diagram

Figure 10. Shadowing and Blocking Diagrams Examining Heliostat Number 136 at 4 P.M. on Winter Solstice - The Top Graph Indicates Shadowing; The Bottom Blocking

With a uniform disk (pillbox) sunshape, and the preliminary power-tower design for the CESA-1 central receiver, the HELIOS-MIRVAL results are in good agreement. Descriptions of heliostat error sources can be selected in a consistent manner. No differences are apparent in predictions of the two computer codes. Since the codes are based upon widely different approaches (cone-optics vs Monte Carlo) this consistency indicates a measure of validity in the two approaches. Comparison with experimental data for a large field remains. Nevertheless, we have greater confidence in the codes because of this exercise.

APPENDIX--HELIOSTAT LAYOUT

COURDINATES OF HELIUSTAT MUUNTING STATIUNS (IN METERS)
System origin is at the center of the tower base

REFERENCES

1. P. L. Leary and J. D. Hankins, A User's Guide for MIRVAL -- A Computer Code for Comparing Designs of Heliostat-Receiver Optics for Central Receiver Solar Power Plants, SAND77-8280, Sandia Laboratories, Livermore, California, February 1979.
2. F. Biggs and C. N. Vittitoe, The Helios Model for the Optical Behavior of Reflecting Solar Concentrators, SAND76-0347, Sandia Laboratories, Albuquerque, New Mexico, March 1979.
3. C. N. Vittitoe, F. Biggs, and R. E. Lighthill, HELIOS: A Computer Program for Modeling the Solar Thermal Test Facility, A Users Guide, SAND76-0346, Sandia Laboratories, Albuquerque, New Mexico, March 1977, Third Edition October 1978.
4. C. N. Vittitoe, F. Biggs, L. K. Matthews, and L. O. Seamons, Helios and Reconcentrators, Proceedings of the ISES Silver Jubilee 1979 International Congress, Atlanta, Georgia, May 28-June 1, 1979.
5. Private communication, F. Delgado of INITEC, June $28,1979$.

UNLIMITED RELEASE
INITIAL DISTRIBUTION

Elliott L. Katz, Director
Solar Thermal Projects
Energy Systems Group
The Aerospace Corporation
P.0. Box 92957

Los Angeles, CA 90009
G. W. Braun, Assistant Director

Solar Thermal Power Systems
Central Solar Energy Division
Department of Energy
Washington, DC 20545
G. M. Kaplan, Acting Chief Large Solar Thermal Power Systems Central Solar Energy Division
Department of Energy
Washington, DC 20545
H. H. Marvin, Deputy Program Director Solar Geothermal and Electric Energy Energy Technology Division
Department of Energy
Washington, DC 20545
C. J. Swet, Program Manager

Chemical and Thermal Storage Branch
Energy Storage Systems Division
Department of Energy
Washington, DC 20545
J. P. Zingeser

Large Power Systems Branch
Central Power Systems Division
Department of Energy
Washington, DC 20545
J. A. Blasy, Director

Solar Energy Division
Department of Energy
San Francisco Operations Office
1333 Broadway, Wells Fargo Building
Oakland, CA 94612
S. D. Elliott

Solar Energy Division
Department of Energy
San Francisco Operations Office
1333 Broadway, Wells Fargo Building
Oakland, CA 94612
R. W. Hughey, Deputy Division Director

Solar Energy Division
Department of Energy
San Francisco Operations Office
1333 Broadway, Wells Fargo Building
0akland, CA 94612
R. N. Schweinberg

DOE STMPO
Suite 210
9650 Flair Park Drive
E1 Monte, CA 91731
John Bigger
Electric Power Research Institute
3412 Hillview Avenue
P.O. Box 10412

Palo Alto, CA 94304
Bill Masica
NASA-Lewis Research Center
21000 Brookpark Road
Cleveland, OH 44135
Jack Maddox
Public Service of New Mexico
P.0. Box 2267

Albuquerque, NM 87103
J. Lynn Rasband

Southern California Edison
P.0. Box 800

Rosemead, CA 91770
Ashok K. Seth
Solar Energy Group
Centre of Energy Studies
Indian Institute of Technology
Hauz Khas, New Delhi-110029, INDIA
McDonnell Douglas Astronautics Co.
Attn: "R. H. McFee, J. B. Blackman,
J. R. Campbell

5310 Bolsa
Huntington Beach, CA 92647
D. Cahalan

Black \& Veatch Consulting Engineers
P.0. Box 017F

11401 Lamar
Overland Park, KN 66211
Sanders Associates
Attn: S. B. Davis, N. McHugh
MER 121214
95 Canal Street
Nashua, NH 03060
Fernando Delgado
INITEC
Padilla 17
Madrid-6
SPAIN
Carlo Micheli
Snamprogetti
20097 S. Donato Milanese
Milano, ITALY
R. N. Singh

Dept. of Physics
Indian Institute of Technology New Delhi-29, INDIA
A. Divecchia
C.T.I.P. International

30 Rockefeller Plaza
New York, NY 10020
Gershon Grossman
Israel Institute of Technology
Faculty of Mechanical Engineering
Technion City, Haifa 32000
ISRAEL
G. D. Gupta

Foster Wheeler Development Corp.
12 Peach Tree Hill Road
Livingston, NJ 07039
Solar Energy Research Institute
Resource Assessment Branch
Attn: R. Hulstrom, J. Williamson, B. Butler, K. Touryan

1536 Cole Boulevard
Golden, C0 80401

General Electric
Attn: R. H. Horton, W. F. Knightly
1 River Road, Building 23, Room 334
Schenectady, NY 12345
Stuart Schwartz
General Electric
1 River Road, Building 6, Room 329
Schenectady, NY 12345
C. Thomas Brown

Solar Energy \& Materials Technology Div.
Engineering Experiment Station
Georgia Institute of Technology
Atlanta, GA 30322
Black \& Veatch
Attn: M. Wolf, S. L. Levy,
J. T. Davis
P.0. Box 8405

Kansas City, MO 64114
University of Houston
Solar Energy Laboratory
Attn: Fred Lipps,
L. Vant-Hull

4800 Calhoun
Houston, TX 77004
Acurex Corporation
Alternate Energy Division
Aerotherm Group
Attn: Peter Overly, Donald Brink
485 Clyde Avenue
Mountain View, CA 94042
Tony Curinga
General Electric ESPD
Building 6, Room 329
Schenectady, NY 12345
Westinghouse Advanced Energy Systems Division
Attn: J. Day, D. Hofer, M. Lipner
W. Parker, W. Pierce, C. Silverstein
P.0. Box 10864

Pittsburgh, PA 15236
A. J. Poche

General Electric Company
Space Division
Room 7246 CC\&F \#7
P.0. Box 8555

Philadelphia, PA 19101

```
Jet Propulsion Laboratory
Attn: P. Poon, MS 506-328
    V. Truscello, MS 502-201
4 8 0 0 ~ 0 a k ~ G r o v e ~ D r i v e
Pasadena, CA 91103
Martin Marietta
Attn: W. Hart, MS S0510
    G. A. Roe, MS S0510
    P. Norris, MS S0403
    J. Montague, MS S0403
    T. Oliver, MS S0403
P.0. Box }17
Denver, CO }8020
D. Wolfe
Dynatherm Corporation
One Industry Lane
Cockeysville,MD 21030
G. Yenatchi
Gruman Energy Systems
4175 Veterans Memorial Highway
Ronkonkona, NY 11779
R. L. Lessley, 301-3
Bechtel Corporation
P.0. Box }396
San Francisco, CA 94119
F. A. Blake
7 1 0 2 \text { South Franklin Street}
Littleton, CO }8012
E. J. Valley
Boeing Engineering and Construction
P.0. Box }370
Seattle, WA 98124
C. G. Howard
Booz, Allen & Hamilton, Inc.
8 8 0 1 ~ E . ~ P l e a s a n t ~ V a l l e y ~ R o a d
Cleveland, OH 44131
G. P. Mulholland
New Mexico State University
Dept. of Mechanical Engineering
P.0. Box }345
Las Cruces, NM 81803
D. R. McCullough
Acurex Corporation
4 8 5 \text { Clyde Avenue}
Mountain View, CA }9404
```

J. L. Mortley, 1521
N. R. Keltner, 1537
F. W. Neilson, 1550
E. A. Igel, 1556
B. J. Tolman, 3151
G. Yonas, 4200
J. B. Gerardo, 4210
J. E. Powell, 4230
J. H. Renken, 4231
F. Biggs, 4231
R. E. Lighthill, 4231
C. N. Vittitoe, 4231 (15)
G. W. Kuswa, 4240
T. H. Martin, 4250
J. H. Scott, 4700
G. E. Brandvold, 4710
B. W. Marshall, 4713
D. B. Davis, 4713
J. T. Holmes, 4713
D. L. King, 4713
L. K. Matthews, 4713
L. O. Seamons, 4713
B. D. Shafer, 4719
V. L. Dugan, 4720
J. V. 'Otts, 4721
J. F. Banas, 4722
R. W. Harrigan, 4722
G. W. Treadwell, 4722
T. A. Dellin, 4723
R. R. Peters, 4723
J. A. Leonard, 4725
E. L. Harley, 4725
J. C. Zimmerman, 4725
R. J. Gross, 5512
J. R. Koteras, 5523
T. B. Cook, 8000, Attn: W. J. Spencer, 8100
A. N. Blackwell, 8200
L. Gutierrez, 8400
B. F. Murphey, 8300; Attn: D. M. Schuster, 8310
R. L. Rinne, 8320
W. Bauer, 8340
D. L. Hartley, 8350
M. J. Fish, 8326
J. D. Hankins, 8326
G. W. Anderson, 8330
R. J. Kee, 8331
P. L. Leary, 8331 (25)
R. E. Huddleston, 8332
A. G. Schuknecht, 8333
R. Y. Lee, 8334
C. S. Selvage, 8420
R. C. Wayne, 8450
A. F. Baker, 8450
P. J. Eicker, 8451
T. D. Brumleve, 8451
C. J. Pignolet, 8451
A. C. Skinrood, 8452
W. G. Wilson, 8453
P. Dean, 8265/Technical Library Processes Division, 3141 Technical Library Processes Division, 3141 (5)
W. L. Garner, 3151 (3)
R. P. Campbell for DOE/TIC (27), 3154

Library and Security Classification Division, 8266-2 (3)

[^0]: *This work supported by the U. S. Department of Energy.

