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ABSTRACT

This report summarizes the results of tests nerformed on the
FMC Fresnel-Belt Solar Collector at the Midtemperature Solar
Systems Test Facility. Tests were conducted over a temperature
range from 100 to 250°9C, Test objectives are defined, test
nrocedures are described, and test results and conclusions

are given.
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PERFORMANCE TESTING OF THE FMC
FRESNEL-BELT CONCENTRATING SOLAR COLLECTOR

Introduction

A series of concentrating solar collector designs are being tested at the
Collector Module Test Facility (CMTF), located.at the Sandia Laboratories in
Albuquerque, New Mexico. The CMTF is a part of the Midtemperature Solar Systems
Test Facility (MSSTF) at Sandia Laboratories. These facilities are operating as a
result of a Department of Energy (DOE) program to characterize selected collector
modules for possible future use in commercial energy systems (the program plan is
contained in Reference 1).

The FMC Fresnel-Belt Solar Collector system is one of several unusual designs
funded by the DOE to investigate possible advantages or disadvantages relative to

the more common parabolic trough collectors.

Test Objective
Test objective for this test series was definition of performance characteristics
of the FMC Fresnel-Belt Collector for fluid temperatures from 100 to SOOOC.

Collector Description

The Fresnel-Belt Solar Collector was developed and built by the Engineered
Systems Division of the FMC Corporation, Santa Clara, CA. Figure 1 is a photograph
of the collector at the CMTF. The design uses an endless belt with a Fresnel reflect-
ing surface to reflect light into a fixed receiver. A baseplate supports the belt
so that the basic belt surface becomes a section of a cyclinder. This geometry
provides a 30° rim angle, with a focal length equal to the radius of the cylindrical
surface. The motion of the belt sliding over the baseplate is nearly the optical
equivalent of rotating a parabolic mirror about the cylindrical axis, thus allowing
the focal line from the reflector surface to be maintained on a fixed receiver
located at the axis of the cylinder.

Figure 2 illustrates the placement of the narrow mirror facets that make up the
Fresnel reflector surface of the moving belt. The individual mirror strips on the
test model are 1.27 cm wide and 61 cm long. Three of these long, narrow mirror
strips placed end-to-end make up the total 183 cm width of the mirror surface.

Each glass mirror facet has a front-surface aluminized reflective coating, Type
CR-HOO1, applied by Optical Coating Laboratories, Inc. Reflectivity of these mirror
facets was 95% when new. Each facet is fixed to the belt substrate at a different
facet angle such that all facets reflect incoming sunlight into the receiver.

A polyurethane material, Isoflex 517, was used to support the mirror facets on
the stainless-steel belt. The glass mirror facets were bonded to the polyurethane
with Chem Lok 518.

Figure 3 illustrates the overall optical gecometry of the FMC Fresnel-reflector
system. Incoming light is nearly parallel as it intersects the cylindrical reflector
surface. Individual mirrors are mounted on this surface such that each is
perpendicular to a point in space called the mirror normal. The basic cylindrical
surface is positioned so that the receiver is located at the center of the radius of
curvature. If the reflector surface is rotated about the center such that the plane

containing the receiver and the mirror normal also includes the sun, all the mirror
facets reflect light intc the receiver aperture.
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FMC Fresnel Belt Solar Collector.

Figure 1,
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Figure 4 is a cross section of the receiver used on the FMC collector prototype.
A1l 10 of the 0.95 cm diameter absorber tubes are connected in series, and have a
black-chrome, solar spectrum selective surface plating. A thin stainless-steel
shield on the nonilluminated side reduces radiation loss from the absorber tubes.
Receiver end plates were sealed to the glass envelope so that a vacuum could be
maintained inside the receiver to minimize thermal losses.

Total optical aperture of the cocllector was only 4 m2; average concentration
ratio of sunlight on the absorber surfaces was about 16.2.

Because of the short length of the collector's receiver axis it was not feasible
to test with the longitudinal axis oriented east-west. The flexible belt and
receiver assembly were delivered on a heavy frame which oriented the receiver axis
north-south, and provided an adjustable north-south tilt angle. The tilt angle was
adjusted during the tests to provide a =zero iqcidence angle at solar noon. This
arrangement would not be suitable for a large collector field; it was used for test

_purposes only.

Figure 5 shows a conceptual design for a long row of 450 rim angle, east-west
axis solar collectors using the Fresnel-belt principle. Such a collector could be
insgtalled with either an east-west or north-south axis.

Sun tracking of the FMC Fresnel-belt was accomplished with a Delevan shadow-
band sun sensor mounted on the flexible belt. Drive rower was supplied by a variable
speed drive motor through Harmonic Drive speed reducers,

Further details of the development and construction of the FMC Fresnel-belt

collector are contained in Reference 2.

Test Facility Description

The fluid loop used for this test series was Fluid Loop 1, which is designed to
supply Therminol-66 as a heat transfer fluid at temperatures from 100 to 330°C.
Design flow rates available in this loop range from 0.4 to 40 L/min.

Each test day began by heating the fluid loop with electric heaters to the
desired collector input temperature. Usually only one temperature point was attempted
in one day'because of the time required for temperature stabilization. The collecter
system was placed in focus as early as possible each day so that recovered solar
heat could aid in reaching the desired temperature. Because of the small aperture
area of the FMC collector, another larger collector was operated in parallel to
increase the solar heat recovery. For each test, innut temperature and flow-rate
were maintained constant while output temperature varied according to test conditions.

The flow-rate of the heated Therminol-66 through the system was measured with
a turbine flowmeter. A calibrated copper constantan thermocouple was installed at
each end of the collector to determine temperatures into and out of the receiver.
These two thermocouples, one from each end of the absorber tube, were alsoc counnected
as a differential pair to determine the delta temperature for calculations of heat
gain or loss. Direct solar radiation was measured with an Epnley NIP pyrheliometer.
Receiver differential pressure, ambient temperature, wind direction, and windspeed
measurements completed the active data collection.

Data provided by the instruments described above are converted to a digital
format by an analog-to-digital data system. A minicomputer orocessed the data and
critical data for the test being performed are printed. TFigures 6 and 7 are copiles
of the printed data from an efficiency test and from a thermal loss test, respectively.
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192.22 00,5 1005.4 2.25 4,42 &3.1
i9z. 28 200,55 1007.2 a8.27 4,45 29,3
19z, 22 200.61 1007.1 2.31 4.42 29,2
192,23 200,61 10061 .22 4,44 29.5
192,28 ona, 61 1005 2.3 4.42 29,4
192,22 200,614 1004, 4 2,25 4,44 29, &
192,28 c00. 61 100%.1 a,.323 4,42 £9.4
192,28 200,61 1005, 2 2,29 4.42 9.2
i®2.e22 200, 56 1005.1 2,31 4.41 29.3
192,28 200,61 1005.4 8.27 4,41 £29.1
10 POINTY RVERRGES 7
192.2é2 200, 38% 1005, 6 2,304 4.425 £9.33
Figure 6, Data Printout for Efficiency Test.
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AB2.89 181.44 -1.34 4,56 ~127.5
192,89 191.44 -1.34 4,56 -197.8
192,89 191.39 -1l.36 4,56 -£00.5
192.89 191.39 -1.26 4,56 -200,9
10 PRDINT AVERAGES
192.894 191.43 ~1.358 4.362 -200.389

Figure 7.
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Data Printout for Thermal Loss Test.



Unless otherwide labeled, temperatures cited in those figures are in degrees Celsius.
The delta temperature shown in both figures is not the arithmetic difference of the
input and output temperatures but is obtained by a separate, independent computation
from the output signal of the paired differential thermocouples.

The speed of the data system was such that all the data channels could be read,
calculations performed, and a line in the data. table printed in about 20 seconds.
The average values were automatically printed after 10 data points were accumulated.
The complete data printout ag shown in Figures 6 and 7 was reneated at intervals of
about 3-4 minutes throughout a test run. Thirty-two measured and calculated data
values from the data system were recorded on magnetic tape every 20 seconds. Only
those shown in Figure 8 or 7 were printed in real time. The number of decimal places
that are brinted in Figures 6 and 7 should not be taken as indicating the accuracy of
the data system since the choice of the print format was dictated by the peculiarities
of the computer system. Either a loss or an efficiency data print was made continucusly
when the system was cperating; however, only those data blocks cccurring under stable
"conditions are included in this report.

Performance Test Definitions
For each data set during a test run, the specific heat and the density of the
Therminol-66 are calculated. The properties of Therminol-66 used for these calcula-
tions are taken from Reference 3. Heat gain (loss) is then computed from the

following formula:

Q=nmn C AT
in which
Q = heat gain, kJ/h
m = mass flow-rate of fluid, kg/h
C, = specific heat of fluid, kJ/keg°C
AT = inj/out temperature differential, e

A successful loss measurement was one in which the values for inout and output
temperatures remained constant to within 0.1°C or less. Loss tests were conducted
with the mirror belt sufficiently defocused so that no light from the mirror would
strike any part of the receiver tube assembly.

On most days, efficiency measurements were made from 2 hours before noon to
about 2 hours after noon. The mirror system in this prototype could not be focused
on the receiver at times more than about 2 hours from solar noon. Loss measurements
were made for about 2 hours after completion of efficiency tests; the fluid loop was
then placed in a cocling mode prior to shutdown for the day.

For an efficiency test, efficiency was calculated from the following formula:

n = o/a
I
in which
n = solar collector efficiency
0 = heat gain, W

>
n

collector aperture area, m2
I = direct solar radiation, W/m2
A successful efficiency data point measurement consists of a least one of the
10 point averages during which input and output temperatures changed by 0.1°C or
less, flow rates varied by 0.1 L/min or less, delta temperatures remained within 0.1OC,

13
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and solar radiation remained constant to about 1%. Temperatures, flow-rate and
insolation had to have been nearly as stable as described above for at least 5 to 10
minutes prior to the measurement; otherwise that data point was not considered to be
a reliable measurement. Efficiency measurements are normally made with insolation
greater than about 200 W/mz.

The temperature, flow-rate and insoiation‘stability criteria outlined above are
necessary because the heat gain formula given assumes steady-state conditions. If
near steady-state conditions can be achieved during a collector test, the computed
values for heat gain (or loss) and efficiency will be nearly constant also, with
some scatter in the data due to noise. Because of the thermal mass of the collector
system, any change in temperature, flow-rate or insocolation will result in measurements
that do not correctly represent the performance of the collector.

Even on a sunny day that appears ideal for testing a solar collector, there are
still wvariations in solar radiation. However, these variations can be relatively

small, as can be seen in several of the test data plots later in this report.

'Small, rapid variations of this kind produce scatter in the efficiency data, but

nc long-term systematic errors.

As operated at the CMTF, the heat-transfer fluid supply loop tends to produce
fluid flow-rate variations similar to those seen in the solar radiation input--small,
rapid fluctuations with no long-term trend towards a higher or lower rate. These
variations also produce scatter in the measured data.

Small, rapid temperature fluctuations also appear in the measured data, again
producing data scatter. However, the temperature measurements are also subject to
fairly long-term, slow changes which can result in fairly large, systematic errors
in heat gain/loss and efficiency calculations. One typical source of this kind of
temperature drift is the constantly increasing temperature that occurs each test day
as the system is heated towards the intended operating temperature. Another is the
temperature decay that continues fopr very long times after the collector system is
defocused to begin a thermal loss test.

At the CMTF, collector input and output temperatures are usually measured less
than one second apart in time. However, the fluid whose temperature is being
measured at the collector input may ncot arrive at the collector output for a
relatively long time-—-from several seconds up to several minutes. Thus an efficiency,
or heat gain/loss, measurement will not be wvalid unless the input and output tempera-
tures are stable for at least as long as the transit time of the heat-transfer fluid
through the system.

Because of the thermal mass of both the fluid supply system and the collector,
stable temperatures must be held for relatively long periods of time before the
complete system is in thermal equilibrium and valid measurements can be made. A
small constant drift in temperatures can produce test data that looks quite acceptable;
however, it contains a systematic error because of the thermal mass shift of in/out
delta temperature. For example, with one collector tested, a constant temperature
increase of 0.7% per minute produced an efficiency measurement that had a very small
data scatter and a nearly constant efficiency value for more than an hour. This
measured efficiency value turned out to be 5 percentage points lower than the efficiency
measured later with more stable temperatures. In another case, with a collector
system of greater thermal mass, a Similar slow upward drift in input temperature

produced an efficiency measurement 15 percentage points lower than the true value.



If the input temperature drift is towards lower temperatures, errors of similar
magnitude result, but the measured efficiency will be greater than the value obtained
under stable conditions.

The same problem as oulined above for an efficiency measurement also occurs
during thermal loss measurements. The error in thermal loss from unstable tempersz-
tures is larger than the efficiency error because the receiver delta temperature
during a lossg test is usually much less than during an efficiency measurement.

The requirement for O.lOC stability in measured temperatures for a usable data
point is empirically based. It appears to produce valid data, and is also about
as good as the fluid lcop and collector system can attain in the outdoor test
environment.

Test Results

The FMC Fresnel-belt collector was delivered to the test site in April 19798; a
backlog of collectors awaiting tests prevented installation on the fluid loop test
‘pad until August 1978, Figure 8 shows a plot of direet sclar radiation input and
measured efficiency data that is quite scattered because of variations in the input
temperature; input fluid line insulation was not yet in place during this test,

The tests plotted in Figures 8, 9 and 10 were originally intended only to check out
the collector and data system prior to beginning formal testing. They are shown
here because they subsequently became important in determining the nature of a
decrease in collector performance.

Figure 9 resulted from a similar test the following day. Ovperating temperature
was nearly 25OOC; the efficiency data was much more stable because inlet tubing
insulation had been installed to assist in stabilizing input temperature.

Figure 10 was obtained from an efficiency test near 100°¢. This low temperature
test was intended to minimize thermal loss so as to obtain the maximum possible
efficiency. Oscillations and dips in the efficieney curve were caused by collector
tilt adjustments and experimentation with the sun tracking device.

Note the characteristic curved shape of the efficiency plots in Figures 8, @
and 10. This shape results from changes in the incidence angle of incoming solar
radiation. The collector was tilted to achieve a 0° incidence angle at solar noon;
as the sun's elevation changed with time, end losses and cosine effects caused the
recovered energy to decrease for times before and after solar noon. For the tilt
angle used, this drop in efficiency and energy recovery should bhe symmetrical with
time about solar noon, as can be seen in the 3 preceding plots. Because of the
relatively narrow 300 rim angle, combined with the north-south mount, data on this
prototype collector could be taken only one hour 50 minutes either side of solar noon.

Testing of the FMC collector was not continued to completion in Sevtetmber 1978
because of higher priority testing being conducted at the same time; testing could
not be resumed until June 1978.

Figure 11 was obtained on June 6, 1979 at the same 112°C operating temperature
used for the test plotted in Figure 10. A comparison of these two figures make it
apparent that something drastic had happened to the collector in the time between
the two tests: the basic shape of the efficiency curve is different, and the
efficiency has decreased about 20 points, from 51i% to 31%.

Testing continued while a search was made for the cause of such a large decrease

in performance. Figures 12 and 13 were obtained at temperatures near 200°C and 250°C
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respectively. Both confirmed the loss of efficiency and repeated the odd shaped
efficiency curve. June 14 (Figure 13) was not an ideal test day; intermittent clouds
drifted across the test site during the early morning and became heavier after noon.

Tests were also conducted with a vacuum inside the glass receiver envelope.

The desired vacuum could not be attained because of air leaks into the receiver; the
receiver was removed and disassembled for resealing without completely correcting the
leaks. About 0.2 torr was the best vacuum that could be achieved.

Table 1 contains the data obtained during the efficiency tests; Figure 14 is a
plot of the efficiency data. Three curves are shown in Figure 14; one resulting
from the original tests of September 1978, another from data obtained 10 months
later, in June 1979, and an abbreviated range of temperatures showing an improvement
of about 3 percentage points resulting from a receiver vacuum of about 0.2 torr.

Table 1. Efficiency Data for FMC Fresnel-Belt Collector

Temperature Receiver Flow -

Test Insolation Out ATemp Rate Efficiency
Date (W/m?) o) (°c) (L/min) (%)
8/29/78 940 203.1 7.8 6.29 42.1
8/30/78 963 159.3 9.4 5,97 45.2
8/31/78 958 248.5 7:8 6.02 38,3
9/01/78 939 115.9 10.5 6.10 50.5
9/05/78 966 164.0 9.0 6.04 43.9
9/06/78 9240 115.4 1¢..3 6.05 49.4
6/06/79 951 112.86 9.4 4.38 31.8
6/07/79 924 245.0 6.4 3.72 21.8
6/11/79 1036 205.5 10.6 3.39 27.8
6/12/79 1006 200.9 8.4 4,54 30.. 7%
6/14/79 980 255.8 8:9" 3.36 25.2%
6/15/79 955 191.0 10.5 3.41 29.7T*

*¥Receiver Vacuum - Approximately 0.2 torr

Figure 15 is the same efficiency data plotted as a function of AT/I (average
receiver temperature minus ambient temperature, divided by direct solar radiation).

Table 2 contains data obtained during thermal loss testing of the FMC receiver.
Figure 16 is a plot of the same data. The right ordinate in Figure 16 is total
thermal loss, as measured. The left ordinate shows the thermal loss per unit area
of collector aperture. Measurements confirmed that a receiver vacuum reduces the
thermal loss, but too few points were obtained to plot a curve showing this change
across the temperature range.

During the June 79 test series, several mirror strips were observed to have
lost their bond to the flexible polyurethane substrate. None actually fell off the
belt; they remained bonded along one edge, swinging as though on hinges. These
loose mirrors were relatively few, and were fastened back in place so that their
reflected 1light would not be lost. However, it soon became apparent that a larger
number of mirrors were not firmly bonded in place over their whole undersurface.
When the degraded collector performance became apparent, a closer look was taken
at the mirrors and the flexible belt.
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Table 2. FMC Collector Thermal Loss Data

Average Temp Flow Wind

Test Insolation Above Ambient Rate Speed Loss
Date (W/m2) (°C) (L/min) (m/s) )
8/30/78 936 121.9 5.9 2.8 111.0
9/01/78 829 212.7 6.0 2 323.7
9/06/78 846 77.4 6.0 2.3 32.4
6/04/79 109 112.6 3.3 0.7 154.0
6/056/79 4.5 159.2 3.8 0.2 263.0
6/06/79 914 70.3 3.2 0.6 18
6/07/79 1 1986.7 3.8 0.6 461.3
6/12/79 975 160.5 4.6 0.6 146.4%
6/12/79 964 160.1 4.6 0.2 213.3
6/14/79 973 212.7 3.4 0.3 355%

¥ 0.2 torr vacuum in receiver

Figure 17 is a photograph of a narrow board held across the colléctor aperture
just above the receiver. Prior to taking the photograph, opaque black masks were
placed across the ends of the mirror belt assembly so that only the active mirror
surfaces could reflect light toward the receiver. Assuming perfect focus, all the
mirror strips would place their reflected light within the 5.65 cm receiver aperture;
none should miss the receiver to be seen on a surface placed across the receiver as
in Figure 17.

A number of photographs were made at intervals across the width of the mirror;
all were similar to Figure 17. The marks on the board in Figure 17 are spaced at
v15-cm (6-inch) intervals. Light was found to be missing the receiver at distances
up to 230-cm on each side. This scattered light is believed to be the reason for
the collectors' degraded performance.

Debonded mirrors were not the only cause of scattered light. A number of the
scattered spots were traced back to the mirrors responsible; they appeared to be
still firmly bonded to the flexible polyurethane substrate. The polyurethane is
flexible enough that slight finger pressure on the mirror surface can be seen to
move the reflected light pattern.

Figure 18 shows the shape of some of the reflected light patterns that were
falling outside the intended receiver aperture. The curved patterns show that the
facet angle varied along the length of some of the mirror strips.

Measurements were made on several mirror segments to determine any loss of
reflectivity from the first surface aluminized reflective coating. Reflectivities
were about 90%; this slight degradation in reflectivity is not enough to contribute
materially to the loss in measured efficiency.

Because of the degraded performance of the FMC collector, testing was terminated

without completing tests over the design operating temperature range.

Summary of Results and Conclusions
Initial tests established the efficiency of the FMC Fresnel~belt collector at
about 51% near IOOOC, decreasing to about 35% near 300°¢C output temperatures. After
about 16 months of outdoor exposure, and 10 months after the initial efficiency tests,
the efficiency had degraded nearly 20 points, to near 32% at 100°c.



&

Figure 17.

Light Missing FMC Receiver.

Figure 18. Deformed Light Pattern.
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Unfortunately, the initial efficiency measurements were not made until.after
about 6 months of outdoor exposure, so it is not known if some degradation had
occurred earlier.

Most of the performance reduction was apparently caused by changes in the
facet angles of the individual mirror strips. Some mirror movement resulted from
debonding, but most was apparently due to dimensional changes in the flexible
polyurethane substrate.

Thermal losses, considered on the basis of loss per unit collector aperture,
were relatively high because of the relatively low concentration ratio., ' The
relatively wide receiver aperture also contributed to the thermal loss by providing
more area for radiation loss. Providing a hard vacuum in the receiver could reduce
the magnitude of thermal losses.

Every solar collector tested at the CMTF has suffered losses in efficiency
because of sgsome amount of scattered light from the mirror structure. Those using
small mirror facets have had the largest losses because of the difficulty of
positioning a large number of facets at precise angles on an economically feasible
structure. The FMC Fresnel belt has the additional problem of obtaining a flexible
substrate that will remain dimensionally stable during long periods of exposure to
the outdoor environment. The design of the unit tested did not achieve the required

long term stability.
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