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ABSTRACT 

This report deals with the effects of certain systematic errors 
on performance and, therefore, their influence on the design of 
troughs. Systematic rotation error is the angle between the re~ 
fleeter vertex-focus axis and the vertex-sun axis1 systematic 
receiver location error is the vectorial deviation of a receiver 
from focus. 

The existence of systematic rotation errors and systematic 
receiver location errors can have a significant effect on 
the annual performance of parabolic trough collectors. These 
systematic errors can exist in addition to errors which are 
random in nature and which, therefore, can be treated 
statistically. Systematic rotation errors of 0.016 radians 
result in annual performance degradation of greater then 30%. 
Systematic receiver location errors can have a similar effect 
depending upon magnitude. 

This report is an extension of previous efforts in developing 
the analytical tools for optimizing parabolic trough designs for 
consideration by industry. The current work outlines the 
technique for calculating the influence of systematic errors 
on performance and suggests methods for identifying and 
minimizing these errors. 
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SYSTEMATIC ROTATION AND RECEIVER LOr.ATION F.RROR EFF'P.CTS 01\T 

PARABOLIC TROUGH ANNUAL PERFORMANCE 

Introduction 

This report describes the influence that systematic rotation error* and system-
atic receiver location error** have on the annual performance predicted for para-
bolic troughs. 

In 1976, the first effort to establish the influence of receiver location errors 
was documented. 1 It was determined that a receiver with an outside diameter (OD) 
of 25.4 mm (1 in.) mounted on a trough with a 2-m (6.56 ft) aperture, could be 
moved+ 3 mm (l/8 in.) from focus on the vertex-to-focus axis without significantly 
degrading performance. This determination was expanded by A. c. Ratzel and c. E. 
Sisson2 • 3 to include the influence that aiming and receiver-misalignment errors 
had on performance during selected clear days. They reached similar conclusions. 

The previous analytical capabilities were improved by using typical meteoro-
logical year (TMY) weather data as an input4 and by revisions to create a three-
dimensional code that permitted the analysis of the sag of a receiver due to 
gravity.5 This code has been further revised td permit determination of the simul-
taneous influence that systematic rotation error and systematic receiver location 
error have on the annual performance of the trough. 

The following data, obtained_ from the latest analysis, will enable a designer 
to determine cost-to-performance trade-offs. These trade-offs would be based on 
various design requirements and methods of dimensioning, as well as their relation-
ships to costs of various materials and structural methods, u~ing the tools, dies, 
and fixtures necessary to produce a trough that functions. 

This report illustrates the potential degradation of performance due to system-
atic geometric effects in addition to the effect that random optical errorst of the 
system have on performance. 

and 
ing 

* 
** 
t 

A designer who recognizes the influence that both types of errors (systematic 
random) have on performance, can associate the cost of fabrica.ting and install-
the system with a given level of performance. He can then determine whether 

The angle between a vertex-to-sun axis and a vertex-to-focus axis; aiming error 
is one example. 
The vectorial position of a receiver geometric center with respect to focus. 
Those that can be treated statistically, such as reflector slope errors and 
tracking errors. 
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performance enhancement justifies the cost of incorporating more restrictive toler-
ances into the design, or of introducing different materials and methods of con-
struction. He can also reexamine those methods of dimensioning, fabricating, and 
assembling that were acceptable in the past and, by using this new analytical capa-
bility, determine if they are still acceptable. 

Model Description 

The model (Figure ll for this analysis has been used for previous studies. 4 • 5 
It uses appropriate portions of the SOLTES library 6 and was used on the CDC 7600 
computer. 

The collector subroutine, previously used for thermo-optical analysis, is a 
three-dimensional representation of a parabolic trough that considers a number of 
parameters: e.g. reflector length and width, receiver and glass cover diameter, 
receiver angular position and rim angle. The subroutine has been modified from its 
previous versions to include systematic receiver location errors and systematic 
rotation errors with reference axes, as illustrated in Figure 2. 

TMY 
weather 
Data 

Toutput 

collector 

Integ:i;-ation of 
Energy 

m•"' ' ···input Load 
component 

Figure 1. Schematic of analytical 
model 

+y 

Figure 2. Systematic receiver location 
and rotation errors 

As was done in a previous study, 5 the mechanical deformation of the receiver 
due to operating temperature and to gravity, as a function of the tracking angle, 
has been included. The weather input is the typical meterological year (TMY) for 
Albuquerque, results were integrated over the course of the TMY to predict annual 
performance. 

The definition (Table 1) of the geometric and optical model that was used is 
compatible with those characteristics that are expected to emerge fro~ the collec-
tor development program currently in progress at Sandia National Laboratories. 7 
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The code has been arranged to analyze one-axis tracking troughs, oriented on either 
a north-south or east-west axis at all latitudes below 49° North. To reduce 
running time, advantage was taken of the earth-to-sun angular relationships and 
their symmetry during the year. The maximum running time, regardless of symmetry, 
is less than 1200 seconds. 

Table 1. 
Parabolic Trough Collector Specifications 

Mechanical 
Length 
Width 
No. of Support Posts for Receiver 
Annulus Gap 
Rim Angle 
Orientation 

Thermo-optical 
Reflectance 
Selective Coating 
Glass Emittance 
Reynolds No. Input 
Liquid Input 
Flux Integration Angle 
Number of Interpost Segments Analyzed 

31.25 m (102.5 ft.) 
2 m (6.56 ft.) 
11 

= 7.3 mm(0.287 in.) 
= 1. 57 radians (90°) 

N/S horizontal or E/W 

0.9 
= Black Chrome 

0.9 
= 120,000 
= 260°C (500°F) 
= 0.143 radians (8.2°) 
= 2 

The model does not include blocking or shadowing of the receiver due to 
mechanical supports or adjacent rows of collectors; it assumes a continuous glass-
jacketed receiver with uniform gains and losses. The collector length selected for 
analysis is that capable of being driven by one motor without significant torsion 
wind-up. Although end effects are precisely calculated, the optical energy that is 
intercepted is integrated, then averaged over the length and circumference of the 
receiver. It has been assumed that errors examined in this analysis are constant 
throughout the TMY; the rationale will be discussed later. 

Analysis Results 

Most of the analysis was conducted with a receiver having an OD of 31.8mm 
(1-1/4 in.), although the optimum previously calculated was 25.4 mm (1 in.) for a 
high quality design. 5 The high quality design is reflected in the figures, which 
illustrate results of the analysis and could represent a design in which systematic 
errors would be negligible. However, since it is likely that systematic errors can 
and do exist in current designs, a 31.8-mm receiver seems to be a more reasonable 
diameter for a trough with a 2-m aperture. 
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The analysis was conducted with standard deviations of ~ystem optical 
errors, a system,* of 0.007 and 0,010 rad. It must be emphasized that the system 
error is random and is usually treated statistically as a normal distribution, 
using the theoretical focus of the trough as a reference line. Experimental trough 
assemblies with a system error of 0,007 rad or less have been installed at Sandia 
National Laboratories. The choice of an error of 0.010 rad shows trends that are 
relative to the arbitrary minimum of 0,007 rad. 

Systematic Rotation Errors 
Results from analyzing the influence that systematic rotation errors have 

on performance (Figure 3) indicate that the degradation in annual performance is 
greater than 20% for all cases when the rotation error is O. 016 rad ( ~ 1°). At 
that level, the so-called "optimum design" is the most sensitive to degradation 
because of rotation error: a degradation of such magnitude that it would be unac-
ceptable to many designers. That is why all remaining analyses were conducted with 
a rotational error limit of± 0.008 rad (Figure 4) by changing the scale of 
Figure 3. 

Intuition would lead one to expect that the optimum di.ameter of 25.4 mm 
would be more sensitive to rotation errors than that of a larger receiver because 
of the optical view angle, This expectation is reconfirmed when one reviews Figure 
4 portraying the relationships between receiver size, systematic rotation errors, 
system error, and predicted annual performance. The performance of a 2~.4-mm 
receiver degrades more rapidly than that of a 31.8-mm receiver as the magnitude of 
rotation errors increases. The 1% higher level of performance 0£ the so-called 
"optimum design" is erased when a rotation error of± 0.004 rad is reached. The 
slight asymmetry of the results is due to the effect of gravity on the receiver as 
a function of the tracking angle, A rotation error of± 0.004 rad results in only 
a nominal reduction (~1%) in annual performance by a 31.8-mm receiver for system 
errors of 0.007 and 0.010 rad. A 31.8-mm receiver has about the optimum diameter 
for a system error of 0.010 raa5and is only minimally affected by modest rotation 
errors of less than± 0.004 rad. 

Systematic Receiver Location Errors 
The other error investigated was the systematic receiver location error. 

The analysis was based on the assumption that it is possible to mislocate the 
receiver's geometric center at its support points up to 5 mm(~ 0.2 in.) in the x 
and y directions (Figure 2). Because of sensitivity to rotation errors displayed 
by the 25.4-mm receiver, this analysis was limited to a 31.8-mm receiver. 

The influence that both system errors have on annual performance is shown 
in Figure 5 (error of 0.007 rad) and Figure 6 (error of 0.010 rad). The six sets 
of x and y data portray the performance envelope for any x and y ~eviation of up to 

* 
O'system = 

8 

cr sys 
4cr• a a • slope +cr tracking+cr sun +cr reflector 
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Figure 3. Influence of receiver size, system error, and systematic rotation 
error on parabolic trough collector performance (Albuquerque TMY). 
(See elsewhere for collector configuration.) 
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5 mm:* other x and y combinations fall within the envelope shown. Both figures 
show that systematic receiver location errors, together with systematic rotation 
errors, have a significantly deleterious effect on performance. In fact, as would 
be expected, degradation occurs even with some combinations of location errors 
without rotation errors. Also, the position for optimum performance of any given 
receiver location error is at any systematic rotation error value other than zero. 
For example, a collector with a rotation error of -0.004 rad and receiver location 
errors of (-5, -5) could be re-oriented to a +0,002 rad rotation error and achieve 
significantly better performance. 

In analyzing systematic receiver location errors, it was assumed that each 
receiver support point ~as uniformly mislocated. It could also have been assumed 
that the receiver support points formed a straight line that was not parallel to 
the theoretical focal line, and the degradation could be calculated hy interpola-
tion using either Figures 5 or 6, 

Regardless of the technique (dimensioning or assembly), the contiguous 
assemblies on the receiver will form a straight line so that thermal expansion can 
be accommodated without buckling the receiver or bending the support posts. 

The results obtained in this analysis hold for the Albuqueraue TMY 
location: however, the insights developed on previous studies4 • 5 lead us to 
estimate that similar degradations due to these errors.are factors that must be 
considered when designing parabolic troughs for any site. 

Comparisons 

By knowing the results of this analysis and comparing them with what might 
result from design alternatives, a designer can choose the best way to dimension, 
fabricate, and assemble collector troughs and choose which are the best components 
for a particular cost and perfor-mance. 

The systematic rotation error is perhaps easier to confront because it 
deals only with direction. One example of such an error is a mis-orientation 
between an orientation indicator and the vertex-to-focus axis. Another is the 
reflector being rotated about the vertex-to-focus axis during assembly. Yet 
another is some combination of these two, in which the optical axis is not parallel 
to the geometric axis. 

A computer-driven tracking system relies on an orientation indicator that 
is supposed to identify the direction of the vertex-to-focus axis. To the extent 
that orientation is incorrect, a constant error exists. An active sun-seeker for 

*Note the sign convention for (x, y) deviation from focus in Figure 2, 
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tracking relies on the orientation of its mounting. This orientation causes the 
seeker-optical and the vertex-focus to be axes in parallel. As before, misorien-
tation causes a constant error. The seeker also relies on the sensors and circuitry 
to determine and maintain this parallelism. Electronic "drift" due to selective 
aging of balancing circuits can also cause a constant error. Thus, systematic 
rotation errors can and do occur and result in constant misalignment over the 
course of the collector's life. The questions the designer must answer are: How 
much error is too much?~ and, How much will it cost to reduce the error to a 
tolerable level? 

In the collector that has been analyzed, a designer may be willing to 
accept the~l.0% performance penalty and then design and fabricate a collector that 
allows a rotation error of 0.004 rad. This implies that acceptance equipment demon-
strating such a tolerance level actually exists. Unfortunately, the designer has 
to know which particular factor or feature in a collector is causing the error. 
The way of dimensioning or the assembly technique, itself, may be causing a 
pseudoerror that the acceptance equipment does not detect. This could occur if the 
receiver positioning assembly is mounted without reference to the axis of the 
reflector. 

Suppose a collector has a rotation error range of± 0.004 rad and that this 
error is acceptable. The designer must still consider the additional influence 
that systematic receiver location errors have on performance because they will 
compound the degradation. It is extremely difficult to identify and locate the 
theoretical focal line of the trough and then emplace a receiver exactly at this 
line, at least at the receiver support points. Usually, in fact, the receiver is 
placed on an "eye-pleasing" line. If the receiver cannot be located correctly at 
the support points, even more degradation can be expected. 

Because of the potential degradation due to the combination of both errors 
(Figures 5 and 6), a designer may be forced to attempt tightening tolerances, if it 
can be done at reasonable cost, because total installed field cost is the basis for 
cost-to-performance trade-offs. For example, a 5% improvement in annual perfor-
mance means a potential reduction of about 5% in numbers of collectors, plumbing 
and insulation, land area, and controls, yet provides nominally the same output as 
before the improvement. Because of the importance of the added efficiency, a 
designer may be willing to install additional tooling and fixtures to obtain more 
accurate assemblies and still have a better performance-to-cost relationship. 

In many instances, errors are not known. In such a situation, a flux inte-
grator mounted along a receiver line could be used to aim a collector string to the 
intercept position of maximum flux. This position would not only compensate for 
systematic rotational and location errors but also for receiver sag caused by 
gravity and tracking angle. Figures 5 and 6 indicate that such a device and 
strategy can never completely compensate for the errors unless they are negligible 
to begin with. If planes are not previously defined, we cannot know simply by 
using a flux-line sensor when the collector departs from optimum performance 
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because "hunting" time and driving gear backlash are involved. In other words, the 
flux sensor could be used only to compensate partially for inaccuracies in mechani-
cal design, making the best out of a bad situation in which errors were intolerable 
to begin with. 

An alternative to a flux sensor is to introduce datum features into the 
designs in such a manner that they minimize mechanical errors, and by using 
predictive (computer) tracking based on inclinometers or shaft encoders. With such 
an alternative, the designer can obtain the maximum level of performance by reduc-
ing the errors in the system. For maximum effect, such datum features must be 
integrated with fixtures, tooling,-and acceptance equipment. 

The designer must weigh the performance-to-cost benefits of developing: a 
fluxline sensor and associated electronics (for recognizing clouds, sunrises, and 
sunsets) 1 datum features for predictive tracking such as. microprocessors and atti-
tude indicators; or, perhaps, a hybrid design that includes both predictive track-
ing and flux-line sensing. 

It is the opinion of the authors that systematic rotation and receiver 
location errors must be identified and controlled in order for collectors to be 
acceptable to a wide variety of users. 

Future Use 

The data generated in this analysis can form the basis for part of a 
performance data handbook. Completing a similar analysis for all TMY sites could 
be instructive, but extending this work will be left to the reader. The code can 
be obtained through Argonne National Laboratory. 
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