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ABSTRACT 

This report contains an analysis of the stresses that 
occur in elastically deformed, spherically curved glass 
mirrors for solar energy applications. Forming stresses, 
residual stresses, spring back deformation, and thermal 
stresses are analyzed. In addition, fracture mechanics 
and stress corrosion are discussed. Results are presented 
in generalized form for use in new designs. 
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PREFACE 

This is the Final Report of work conducted by SHELLTECH ASSOCIATES 

according to the Sandia Laboratories' Request for Quotation, Document 
Number 62-6661, dated June 12, 1980, responded to by the SHELL TECH 

Proposal, dated July 31, 1980. The Contract was awarded, dated October 
1, 1980, and the work was performed during the period October 1, 1980 

to December 31, 1980. 
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NOTATION 

Initially flat glass plate 
w 
¢ 

E 

v 

h 

b 

a 

P 
T 

R 

= Normal displacement 
= Airy stress function 
= Young's modulus 
= Poisson's ratio 
= Coefficient of thermal expansion 

Thickness 
= h[12(I-v2)]-! 

= Half-width and half-length of rectangular 
plate, in the x,y directions, respectively 

= Radius of circular plate 
= Radius of "hot spot" 
= Pressure 
= Temperature 
= Radius of curvature of spherical surface 
= Bending stress 
= Direct (membrane) stress 
= Nominal bending stress, Eh/2(I-v)R 

Nominal direct stress, Eb2/8R2 

= Nominal displacement, (x2+y2)/2R 

Sandwi ch panel 
H = Thickness of honeycomb 
G = Effective transverse shear modulus 

hs = Thickness of back plate 
Es = Young's modulus of back plate 
o = Effective bending stiffness, 

~ H2/(I-v2)((Eh)-1+(Eshs)-I) 

wI = Springback displacement 
61 = Springback rotation of normal 
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1.0 INTRODUCTION 

Glass surface panels with a spherical curvature are used to form 
hemispherical reflectors for fixed-mirror, distributed focus, solar 
energy collectors. It is especially important for these collectors 
to have high performance and low cost. A 65 foot diameter collector 
is shown in Fig. 1.1, and a proposed facility consisting of ten 200 
foot diameter collectors is shown in Fig. 1.2. As reported by Perry 
(1980), E-Systems has und~rtaken an extensive program of development 
of the panels for the system in Fig. 1.1. The final production panel 
is shown in Fig. 1.3. A thin, flat mirror made from commercial-grade, 
float glass is elastically formed to the spherical contour and bonded 
to an impregnated paper honeycomb mounted on a steel backing plate. 

The objective of the present study is to analyze the significant 
stresses and displacements in such a panel during fabrication and 
service. The results are in parametric form and should be useful 
for any future designs involving the cold forming of glass to a 
spherical surface. Our purpose is not to diagnose and correct any 
problems experienced in the Crosbyton Solar Power Project. However, 
the work at E-Systems related by Perry (1980) is drawn upon heavily, 
since this is our only source of practical experience and testing 
of this type of panel. 
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2.0 STRESS DURING FORMING 

In this section we consider the process of deforming an initially 
flat, stress-free, glass plate to a shallow spherical surface. 

2.1 Basic Equations 
The following equations were obtained by Von K~rm~n (1910) and 

subsequently have been extensively used (Szilard (1974)) for the analysis 
of the coupled bending and stretching effects in-an initially flat, 
homogeneous, isotropic plate: 

-Ehc266W + F(~,w) = -p 
!EhF(w,w) + 66~ = 0 

(2.1.1) 

(2.1.2) 

In these equations, F is the differential operator, which for rectangular 
cartesian coordinates x,y, is in the form 

(2.1.3) 

6 is the laplacian 

w is the normal displacement from which the bending stress resultants 
can be calculated 

M 2 
(w'xx + VW'yy) (2.1.4) = -Ehc x 

My 
2 

(w'yy + \)W'xx) = -Ehc 

Mxy 
2 

(i-v) W'xy = -Ehc 

and ~ is the Airy stress function from which the membrane stress resultants 
can be calculated 

Nx = ~'yy (2.1.5) 

Ny = ~'xx 

NXY 
= -~'xy 
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These equations are valid when the strains and the square of the rotations 

w'x and W'y are small in comparison with unity. Since glass fails 
at a fairly small strain (10-3), these equations will be very accurate 

for the bending of a glass plate to a shallow, curved surface. The 
tangential tractions on the plate surface are assumed to be zero. 

The bending stress at the surface on the side of the positive normal 

is 
(2.1.6) 

while the membrane (direct) stress is 

(2.1.7) 

The shallow spherical mold is at the distance normal to the initial 

plane of the plate given by 

(2.1.8) 

So in a region of the plate which is in contact with the (rigid) mold, 

w = Wo which gives the bending stress (2.1.4, 2.1.8) 

aBO = Eh/2(1-v)R (2.1.9) 

and (2.1.2) simplifies to 

(2.1.10) 

while (2.1.1) gives the pressure acting on the plate in the contact 

region 

Po = 
1 - R 6~ (2.1.11) 

Thus the equations are linear in the contact region (2.1.10), but 

nonlinear elsewhere (2.1.1, 2.1.2). However, a satisfactory procedure 

is to ignore the membrane coupling term in (2.1.1) and solve the 
standard equation for bending 
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(2.1.12) 

and then compute the resulting membrane stresses from (2.1.2) 

66¢ = -!EhF(w,w) (2.1.13) 

This provides an accurate solution if the membrane stress is small, 

i.e. if 
". 

IF(~,w) I « Ehc2166Wl (2.1.14) 

Generally the induced membrane stress will provide a stiffening effect 

which reduces the bending stress for a given pressure loading. Thus 

w should give a conservative estimate of the bending stress. 

In the E-Systems fabrication procedure (Perry, 1980) the finished 

panel consists of a sandwich with a honeycomb core, the glass mirror 

on one side, and a slotted steel plate on the other. The honeycomb 
core is first molded to the spherical shape and cured. Then the glass 

mirror, with adhesive on one surface, is placed between the mold and 

the honeycomb, as shown in Fig. 2.1. A wood frame is placed around 
the sides and then everything is enclosed by a vacuum bag. As the 

vacuum p is increased, a region of contact developes at the plate 

center and regions of contact with the honeycomb develop at the edges. 

2.2 Circular Plate 

Some features of the stresses during partial contact can be obtained 

by considering the circular plate. Axisymmetry reduces this to a 

one dimensional problem, and the uniform circle of contact with the 

honeycomb at the edges avoids any large transverse shear stress as 
the loading is initiated (Fig. 2.1). 

The loading of the plate consists of the axial force nb2p applied 

at the center through the mold and at the edge through the honeycomb. 
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In the contact region of radius a, the plate conforms to the mold 

for 0 < r < a 

while in the free region, the solution of (2.1.12) (with p = 0) is 

in which 

4 
W ~ [(C1+p2)109 p 

8Ehc 

+ C2 + C3 p
21 

p = rIb 

p = alb c 

for p < p < 1 c- -

(2.2.1) 

(2.2.2) 

The condition of zero bending moment at the edge in contact with the 

honeycomb gives the condition 

The conditions on continuity of slope and curvature at the contact 
point r = a combine into the condition 

which immediately gives 

(2.2.3) 

(2.2.4) 

(2.2.5) 

Then the condition of continuity of slope yields the relation between 
pressure and contact zone radius 

2 2 ]-1 3(1-v) [(l-v)(l-pc )+2(1+v)logpc-1 (2.2.6) 
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the curve of which is shown in Fig. 2.1 for v = 0.3. As Pc + 1 for 
full contact, the result (2.2.6) indicates that infinite pressure 
would be required 

pb
2
R ~ [6(I-V)(I-P

C
)]-1 

Eh 3 for 0.5 ::: Pc < 1 

This solution neglects the effects of transverse shear deformation 

(2.2.7) 

and stretching of the normal of the plate as well as the compliance 
of the mold and honeycomb. Nevertheless, the behavior shown in 
Fig.2.1 is correct, that a very high pressure is required for full 

deformation of the plate to a spherical surface. Normally, in practice, 

a small region near the edge will remain which is not of the correct 
curvature. 

It may be verified that the slope dw/dr of the displacement (2.2.2) 

remains less than that of the honeycomb at the outer edge r=b. Thus 
the contact remains on a line. Furthermore it may be verified that 

the maximum bending stress occurs at the contact pOint r=a, where 

it equals that in the central contact region (2.1.9) 

aB = aBO = Eh/2(I-v)R (2.2.8) 

We conclude that for the circular plate there is no overshoot of stress 
during fabrication; the residual stress at full contact is the most 
severe. 

2.3 Square Plate - Corner Effects 

In contrast to the circular plate, more care must be exercised 
in forming the rectangular plate to a spherical surface, since the 
corners are particularly vulnerable. If a male mold is used and the 

plate loaded by uniform pressure, no problem occurs. When a female 

mold is used, as in the E-Systems fabrication procedure (Perry, 1980), 

only the tips of the plate corners are initially in contact. As 
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indicated in Fig. 2.2, at the early increments of loading, whether 
by uniform pressure or by a male mold, the area of contact at the 

corner is small so the transverse shearing stress is high. As the 

loading increases, the contact area increases and the shear stress 

would be expected to decrease. 

For an approximate solution which will give the correct behavior 

at the corners, the plate will be treated as two uncoupled beams with 

fibers in the x and y directions shown in Fig. 2.2. Each will be 

loaded by pressure. Because of the symmetry, the two will have the 

same deflection. The coupling of the x and y behavior which is being 

ignored should be negligible in the corner regions. 

2.3.1 Beam Solution - The basic equations of elementary 

(Euler-Bernoulli) beam theory are 

dQ = - q dx 

dM Q dx = 

dB M 
dx IT 

dw 
dx = - B 

where Q is the transverse shear resultant, M the moment resultant, 

and S the rotation. 

For the beam of Fig. 2.2, the width is 

n = 23/2L{1_p) 

p = x/21/ 2L 

so that the load per unit length is 
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q = -pn (2.3.3) 

and the cross-sectional moment of inertia is 

I = nh3/12 (2.3.4) 

For sufficiently high pressure the beam will contact the honeycomb 

surface in a region near the ends Pc ~ P ~ 1. If the preformed 
honeycomb is assumed to be rigid in comparison with the glass plate, 
then the displacement, rotation and moment in the contact zone are 

w = i/2R + const. (2.3.5) 

B = - x/R 
.i 

M = - EI/R for x < x < c -
22L 

(i.e.p < p < 1) c- -

In the portion of the beam not in contact, the pressure loading is 
prescribed. By symmetry the shear Q and rotation B must be zero at 
the center x=O. The integrations (2.3.1) give 

Q = 

M = 

B = 

2 2 p2L (2p - p ) 

2 2 -pL n (2+2p-p )/3 + m 

.i 3 2 _[4'2 2 pL p(2+p-p /3) 

-6m log (I-pr1J/Eh3 

for 0 < p < p - - c 

The constant m gives the additional moment in the beam due to the 
contact region. For m=O, the solution (2.3.6) is exactly that for 
uniform pressure and concentrated point loads at the ends. 

(2.3.6) 

The rotation B and moment M from (2.3.5) and (2.3.6) must be 
continuous at the point P=Pc' Equating the moments gives the unknown 
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moment in terms of the pressure and contact point 

p=p 
c 

(2.3.7} 

then equating the rotations gives the relation between pressure and 

where 
G(p) - 8 1 - (l-p)(l+log(l-p)-l) 

- 3 p(2+p_p2/3)_(1-p)(2+2p- p2)log(1-p)-1 

This is shown as Solution EB in Fig. 2.3. Including the bending in 
the y-direction, the total pressure is twice that of (2.3.8). The 
limiting values for small and large contact regions are 

for p ->- 1 c 

for p ->- 0 c (complete contact) 

(2.3.8) 

(2.3.9) 

Similar to the solution for a circular plate on a male mold (Fig. 

2.1), this beam solution indicates that infinite pressure is required 

to produce complete contact with the mold. In contrast with Fig. 
2.1, which shows the central contact zone increasing from zero pressure, 

this corner solution (Solution EB in Fig. 2.3) indicates contact only 
at the very tip until a finite pressure is reached. Such a solution 

is not realistic, since a finite force at the tip corresponds to,infinite 
transverse shear stresses. The appropriate correction will be considered 
in the following Section 2.3.2 

The bending stress distribution in the free region is from (2.3.6) 

0B = -6M/h 2 

222 
= (2pL /h )[3-(1-p) - 2y/(1-p)] (2.3.10) 
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y = 3m/25/ 2pL3 

1 2 i = 2 (1-pc)[3-(1-pc) ~ 8/3G(pc)] 

This has a maximum value for a given pressure at the point p given 

by 
I-p = yl/3 

(0 < p < pc) 

Substituting (2.3.11) into (2.3.10) gives the maximum value 

(0B) = (Eh/2R) 9G(Pc)(1-y2/3)/8 
max 

(2.3.11) 

(2.3.12) 

which is shown as Solution EB in Fig. 2.4. The most severe bending 

stress occurs when the pressure has just reached the value to initiate 
spreading of the contact zone, i.e., at 

p = 1 c (2.3.13) 

PTotal L2R/Eh3 = 3/16 

y = 0 

0' B = (Eh/2R) 9/8 

Thus the bending stress near the corner during fabrication exceeds 

that of full contact by only the factor 9/8. Since the preceding 
solution for the circular plate gave no excess of the full contact 

stress, we conclude that bending stress in the plate during fabrication 
is not a problem. 

2.3.2 - Shear Deformation Solution - To include the effects 

of transverse shear deformation only the last equation of the set 

(2.3.1) is modified 

dw _ ' 
dx - - 6 + vQ/Ehn 
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in which E/v is the equivalent transverse shear modulus. 

plate, V = 3.12. The results for the free region (2.3.6) 
In the contact region, the equations are combined to give 

.sL (EI dB) = Q = Ehn (dw + B ) 
dx dx w dx 

F or an i sotrop i c: 
are unchanged. 

(2.3.15) 

Since the normal displacement w is known, this is a second order differential 
equation for the rotation of the normal B, which simplifies when 

is used as the independent variable and when Eh is constant to the 

form 

1 -dd
z 

(z dB ) _ B = dw 
z dz dx 

(2.3.16) 

{2.3.17} 

The complementary solutions are Bessel functions of the second kind. 

If dw/dn is constant, the solution which gives zero stress resultants 
at the tip (z=O) is 

dw 
B = - dx + C 10 (z) (2.3.18) 

in which C is an arbitrary constant. 

The particular solution is exact when the slope dw/dx is constant 
and a very good approximation when the slope does not change substantially 

in a distance equal to the thickness h. 

The shear and moment in the contact region are 

Q = (Eh/v) n C 10 (z) (2.3.19) 

_ Eh 3 r dz I 1 ] 
M - 12 n l <IX C I 0 (z) - R 

The constant C does not appear in the Euler-Bernoulli beam solution 

and can be used to obtain continuity of transverse shear Q between 
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the free and contact areas. Thus at the contact point P=Pc we obtain 

2 
C IO(z) = 2pL ~ (2p_ p2) 

Ehn (2.3.20) 

and for continuity of moment 

m = (n [PL2 {(2+2P-p2)/3-P(2-P)I'O(Z)/ZIO(Z)} 

- Eh
3
/12R ] ) P=P

c 
(2.3.21) 

which is similar to (2.3.7), and for continuity of rotation 

(2.3.22) 

in which the corrected form of (2.3.8) is 

(2.3.23) 

~{ p(2+p-p2/3)+(1-p) [3P(2- P)Z-2 

- (2+2p- p2_ 3p (2-p) 16(z)/zIO(z) ) l09(l_p)-1]} 

For small contact area, the limit is 

2 GSD(p) + 8 Z /9(1-p) for p + 1 (2.3.24) 

The previous equations (2.3.10-12) remain valid, but with the correction 

to y 

y = {i (l-p) [3_(l_p)2 - 8/3 GSD(p) 

- 3,(2-p) 16(2)/2 10(2)]} ,~, 
c 
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This gives the curves for maximum bending stress as a function of 
contact area shown in Fig. 2.4 for various values of L/h. The conclusion 
remains that the bending stress during fabrication does not exceed 
significantly that of full contact. 

In contrast, the transverse shear stress is very large at the 
first incidence of loading. From (2.3.19, 20, 22) the shear stress 
at the edge of the contact zone, where it has its maximum value, is 

ash a '" Q/hll '" (Eh/2R) [3h G(P)(2p-p2)/3211] (2.3.26) 
e r P"'P 

c 

The limit,for very small pressure and contact area,of the ratio of 

shear stress to full contact bending stress is 

for Pc + 1 (2.3.27) 

For a thin plate L/h is very large. The conclusion is that the use 
of a rigid female mold for a rectangular plate is hazardeous. 

Including the flexibility of the female mold (honeycomb) reduces 

(2.3.27) by the factor 

1 + (Eh/~)Plate / (Eh/~)HoneycOmb (2.3.28) 

Even with this reduction, the shear stress remains excessively large. 
However, E-Systems has encountered only slight difficulty in that 
a few percent of the panel corners have been broken during fabrication. 
There are several reasons for this not being a serious problem: 

1) The honeycomb cell size (1/2 in) is sufficient to distribute 
a "point" corner contact. From Fig. 2.5 when the contact 
length is one plate thickness, the shear stress is reduced to 

about the full contact bending stress magnitude. 

2) The high stress occurs only at very low pressure; during 
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actual fabrication the rate of pressurization could induce transients 

and avoid any corner failure. 

3) Small internal cracks at the corner caused by transverse shear stress, 
within one thickness, may not be significant for the function of the 

reflector. 

We conclude that if the panel survives the initial loading during 

fabrication, then the most severe stresses occur at full contact when 

the membrane stresses will be maximum and added to the full contact 
bending stresses. 
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3.0 RESIDUAL STRESS 

In this Section the stress is computed which exists when the originally 
flat glass plate is fully deformed to the spherical surface. The 

equations are simpler for this problem, since the normal displacement 

is known everywhere (2.1.8), which gives the bending stress (2.1.9) 

at every pOint in the plate except for a narrow zone near the free 

edges. The induced membrane stress requires the solution of the familiar 

partial differential equation (2.1.10). Only normal pressure is assumed 

to act on the plate, since tangential friction forces of the mold surface 

should be negligible. The condition of zero tractions on the plate 

edge is satisfied if ~ and its normal derivative are zero along the 

edge, which provides a standard, well-posed problem. After the calculation 

of ~ the pressure distribution is obtained from (2.1.11), which is 

the pressure necessary to hold the plate in the deformed configuration. 

After curing and removal of the complete panel from the mold, if the 
springback deformation is small, then the pressure (2.1.11) becomes 

the normal stress in the layer of adhesive between glass panel and 

honeycomb. The simple, closed-form solutions for the circular plate 
and for the long rectangular strip plate will be discussed first, followed 

by the numerical (finite difference) solutions for square and rectangular 

plates. 

3.1 Circular Plate 
The axisymmetric problem is straightforward. The solution of 

(2.1.10) which satisfies the condition of zero tractions on the edge 

at p = rib = 1 is 

(3.1.1) 

Transforming (2.1.6,8) into polar coordinates provides the stress components 

in the radial and circumferential directions. 
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(3.1.2) 

while the pressure from (2.1.11) is 

(3.1.3) 

The maximum magnitude of membrane stress for this circular plate, which 

will be used for the reference membrane stress, is 

2 2 
GOO = Eb /8R (3.1.4) 

The distributions (3.1.2,3) are shown in Fig. 3.1. Note that the radial 
stress is always tensile, while the circumferential stress is tensile 

in the center 0 ~ p < 0.58, but compressive in the annulus 0.58 < p ~ 1. 

Any tensile stress is, of course, undesirable in glass. The tensile 

membrane stress in the center undoubtedly contributes to the cracking 
of some of the panels fabricated by E-Systems. However, the compressive 

circumferential stress at the edge is beneficial, particularly since 

the main crack-initiating flaws may be at the edge. 

3.2 Rectangular Plate 

The square and rectangular plates are of the greatest practical 

interest, since they can be fit together more readily to form the large 

spherical surface necessary for significant power generation. 

3.2.1 - High Aspect Ratio - For a long plate strip with a high 

value of the ratio of length to width Ly/L » 1, the solution of (2.1.10) 

is independent of the length coordinate y, except near the ends, and 

is easily found to be 

(3.2.1) 

in which L is the half width and 
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p = x/L 

The stress components (2.1.6, 8) are 

2 
0 0y = °00 4(1-3p )/3 

° = ° = 0 Ox Oxy 

(3.2.2) 

where the radius b is replaced by the half-width L in the reference 

stress (3.1.4) 

= EL2/8R2 (3.2.3) 

The pressure (2.1.11) is 

p = - 0 0y h/R (3.2.4) 

The stress (3.2.2) is larger than that in an inscribed (b=L) circular 

plate (3.1.2) but has the same feature of tensile stress in the central 
portion and compressive stress near the edge in the direction parallel 
to the edge. 

3.2.2 - Moderate Aspect Ratio - For the square plate and plates 
with moderate aspect ratios, simple closed form solutions of (2.1.10), 
with the boundary condition of zero ~ and its normal derivative, are 
not possible. Therefore, a finite difference solution based on the 
standard thirteen point, central difference stencil discussed by Szilard 
(1974) was obtained. Mesh convergence studies and comparison with 
published solutions for the analogous problem of the bending of a flat 
plate clamped on all edges and loaded by pressure showed the error 
to be less than one percent. 

The results for the stresses on the axes of symmetry, which are 
the largest stresses, are shown in Figs. 3.2 - 3.5 for length to width 
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ratios Ly/L = 2.0, 1.5, 1.3, 1.0. For LY/L = 2, the distribution 

of stress 0Dy at the center across the width (at y = 0) is very close 
to that for the infinite strip (3.2.2) shown by the dashed line in 

Fig. 3.2 The maximum tensile stress occurs at the plate center, while 
the maximum compressive stress occurs at the center of the longer edge. 
The variation in these peak stresses with aspect ratio is shown in 

Fig. 3.6. The validity of the plate strip solution (3.2.2) for 
Ly/L ~ 2 is clear. Also of interest is that the stress in the center 

of the square plate is close to that of the inscribed circular plate, 

and that the circumscribed circular plate gives an upper bound on the 

stress in the rectangular plate. 

3.3 Stress in Adhesive 

The pressure computed from (2.1.11) which is given by (3.1.3) 

for the circular plate and by (3.2.4) for the plate strip, is necessary 

to hold the initially flat plate in the curved configuration. As indicated 

in Fig. 3.1 for the circular plate, this normal pressure is of one 

sign in the center region, which corresponds to a positive pressure 
between the male mold and the plate, and of opposite sign in the outer 

region 0.58 ~ rib ~ 1, which corresponds to positive pressure between 
the female mold (the honeycomb) and the plate. The total resultant 

of pressure acting on the plate must, of course, be zero, since the 

plate is in static equilibrium. 

The curved, composite panel, consisting of the glass plate, honeycomb 

core and steel back plate, has a much higher bending stiffness than 

the glass plate alone. Thus, when the panel is removed from the mold 

relatively little change in the curvature of the glass occurs, which 

means that the positive pressure of the male mold is replaced by tensile 

stress in the adhesive between glass and honeycomb. From Fig. 3.1 

the adhesive in the central region of the circular plate 0 ~ rib ~ 0.57 

is in tension with the maximum at the center 

(0) . = hODO/R Adhesive 
max = Ehb2/8R3 (3.2.5) 
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The numerical results for rectangular plates of aspect ratios 

Ly/L = 2.0, 1.5, 1.0 are shown in Figs. 3.7 - 3.9, respectively. Similar 
to the circular plate, the rectangular plate has the central region 

of tension in the adhesive, leaving a strip of compression of about 

equal width at the ends and sides. The corners are regions of low 
compressive stress. The variation of the maximum tension at the center 

with aspect ratio is shown in Fig. 3.10. The square plate exceeds 

that of the inscribed circular plate by only 13%. 

3.4 Bending Stress - Edge Effect 

In addition to the membrane stresses, the deformation of the initially 

flat plate to the shallow, spherical surface (2.1.8) causes the bending 

stress (2.1.9). This stress is uniform everywhere in the plate. However, 

in the mold the edges are free from any significant stress. This is 
a contradiction which cannot be resolved with elementary theory, nor 

with shear deformation theory. Both shear deformation and stretching 

of the normal must be considered. 

We wish to subtract the bending stress (2.1.9) from the free edges, 

while holding the plate in contact with the mold (2.1.8) only with 

pressure normal to the surface. The effect is localized to the edge, 
so that the curvature of the plate is negligible as is the variation 

along the edge. The equations are similar to those for the beam (2.3.1) 

with shear deformation (2.3.14) 

dQ 
- = - P dx 

dM _ 
dx - Q 

dB = M/Ehc2 
dx 

dw _ 
dx - - B+]JQ/Eh 
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in which the resultants are per unit width, x is the distance from 

the edge, and w is the normal displacement of the midsurface. What 

is new is the condition that the face is constrained to have zero 

normal displacement, which gives the relation 

p = (8/3h(1-v2)) [-Ew+v(1+v)3M/2h] (3.4.2) 

The system (3.4.1, 3.4.2) is of the fourth order and can be reduced 

to these coupled, second order equations for the displacement wand 

rotation B 

d2~ _ 8\12 2 w + [1 + 411v 2] dB = 0 
dx 3(1-v)h (1-v)12(1-v) dx 

(3.4.3) 

The solutions are of the form 

w = hA e- 7Ix/ h (3.4.4) 

B = B e-7Ix/ h 

in which A and B are constants. Substitution into (3.4.3) gives 

-71 (1 + 411v ) 
12(I-v2) (I-v) 

A 

= 0 

- 1 B (3.4.5) 

For a nonzero solution the determinant must be zero, which gives the 
polynominal for 71 

(3.4.6) 
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in which 

The first quadrant root of (3.4.6) is 

(3.4.7) 

in which 

For the isotropic material V = 3.12 and for v = 0.3, we obtain 

(3.4.8) 

The real and imaginary parts of (3.4.4) are the linearly independent 

solutions of (3.4.3) which decrease for x + 00. 

The solution which satisfies the conditions of a prescribed moment 
and zero shear at the edge 

at x = 0 

Q = 0 

is the following 

aB/aBO = - e-scos¢sin(ssin¢+¢)/sin¢ 

axz/haBO = Q/haBO = - (25/4/6)e-Scos¢sin(ssin¢)/sin¢ 

in which 

s = 
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Adding the uniform bending stress (2.1.9) to (3.4.9) gives the curves 

for the stresses shown in Fig. 3.11. The interpretation is that the 

bending stress equals (2.1.9) everywhere in the panel except in a zone 

of width equal to about two plate thicknesses. The elementary theory 

requires that a moment resultant be supplied at the edge; the present 

more detailed analysis shows how the moment at the edge is replaced 

by a normal pressure distribution near the edge with the proper resultant 

moment. As seen from the curve in Fig. 3.11, there occurs a high 

compressive stress in the honeycomb surface and, beginning at about 

one-half a thickness from the edge, a compressive stress on the mold 

surface. 

Of significance is that no overshoot in the bending stress in 

the glass plate occurs, and that the transverse shear stress i5 small. 

Note that this very localized normal pressure can be much larger than 

the pressure due to the membrane stresses (i.e. in Fig. 3.10). A severe 

demand is placed on the honeycomb, to support the large localized edge 

compression 

p = - 0.94 0 BO (3.4.11) 

and on the adhesive, after removal of the panel from the mold, to support 

the large tensile stress 

p = 0.14 0 BO (3.4.12) 

Otherwise the glass surface will not retain the spherical curvature 

in this edge region. 
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4.0 SPRINGBACK DEFORMATION 

The membrane and bending stresses in the initially flat plate 

deformed to a spherical surface were discussed in the preceding Section 3. 
These stresses remain as the residual stresses if the deviation from 
the spherical shape, which occurs when the cured panel is removed from 
the mold, is not large. In this Section this springback deflection 

is quantified. Naturally, the final deviation of the panel from the 
spherical surface is an important parameter for the system. 

The total normal displacement of the glass plate from the initial 

flat surface is 

(4.0.1) 

where wo is the nominal shallow spherical surface (2.1.8) and w1 is 

the springback deviation. During the forming, the stiffness of the 

glass plate is of primary concern (2.1.1, 2). For the springback of 
the cured composite panel, the much larger effective bending stiffness D 

of the sandwich is the governing factor. If the honeycomb thickness 
H is large in comparison to the glass plate thickness h and the backplate 
thickness hs' then the effective bending stiffness is 

(4.0.2) 

If the backplate has the same effective stiffness as the glass 

(4.0.3) 

then 

D (4.0.4) 

The panel does have curvature, but the curvature will be negligible 

in the springback if the parameter A, defined by 
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(4.0.5) 

1 

- b/ (HR/2)2 

where b is a characteristic radius, is not large. If A is large, then 
significant bending effects occur only in zones near the edges 

(Reissner, 1956) and the main springback deformation will be governed 

by the membrane stiffness of the panel, which is negligibly affected by 

the honeycomb core. Therefore, for an effective utilization of the 

sandwich panel concept, the honeycomb core thickness H must be large 

enough so that 

(4.0.6) 

In this case, the springback deformation is just plate bending 

(4.0.7) 

in which the pressure distribution is the negative of that required 

to hold the glass plate in the spherical curvature, as computed in 
Section 3. 

If the honeycomb core and the backplate are not preformed, then 

the load p is increased accordingly. In the E-Systems fabrication 

procedure (Perry, 1980), the honeycomb is preformed and the steel backplate 

cut to reduce the pressure required for the forming. The cuts are 

filled with epoxy, however, so that in the cured condition, the steel 
backplate should have nearly full strength. For the present analysis, 
the backplate is assumed to offer no resistance to forming and to be at 

full strength to resist springback. Then the pressure p in (4.0.7) 
is only that required to deform the glass and the panel bending stiffness 

is (4.0.2). The edges are free of shear, but are subject to the negative 

of the moment resultant of the nominal bending stress (2.1.9) 

(M)edge 
2 

= h °80/6 (4.0.8) 

= Eh3/12(1-v)R 
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The springback of the cured panel due to this edge bending is easily 

obtained for the rectangular panel 

2 2 2 wBl = (x + y ) Ehc /2 DR (4.0.9) 

The corner displacement is 

(4.0.10) 

which for (4.0.3) is 

(4.0.11) 

4.1 Circular Panel 

For the circular panel of radius b, the pressure is given by (3.1.3) 
and the solution to (4.0.7), which satisfies the free edge condition 
of zero moment and zero transverse shear, is 

b
4 

[4 2 6 4 2+v 2] WI = 640 (°00 h/R) P - gP -"3 l+v P (4.1.1) 

Since an arbitrary rigid body displacement can be added, the displacement 

at the center is chosen to be zero. The edge displacement is then 

b
4 

(WI) = - 640 (°00 h/R) (l7+5v)/9(l+v) 
edge 

(4.1.2) 

which for v = 0.3 and equal stiffness backplate (4.0.3) reduces to 

(I'll) - 0.00562 b6/H2R3 
edge 

(4.1.3) 

The springback deflection curve (4.1.1) is shown in Fig. 3.1. 

- 29 -



The change in slope is of greatest interest 

dW I [3 5 ] Bl = - ~ = B10 -(3p -p )(I+v)/2 + (2+v)p (4.1.4) 

which has the edge value, which will be used as the reference, 

b3 GOOh 
= 240(l+v) -R- (4.1.5) 

For (4.0.3) and v = 0.3 this gives 

(4.1.6) 

and in terms of the edge rotation, the edge displacement (4.1.3) is 

(4.1.7) 

4.2 Rectangular Panel 

The springback deflection for the center portion of the high aspect 

ratio panel Ly/L < 2 can be obtained in closed form. The pressure 

distribution (3.2.4) used in (4.0.7) has the solution 

in which p = x/L. The edge values for (4.0.3) and v = 0.3 are 

substantially larger than for the circular panel 

(wI) = - 3.81 B10 L 
edge 
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(4.2.3) 

in which S10 is the edge springback rotation for the inscribed circular 

panel (4.1.5, 6) with b = L. 

The numerical results for the square panel with the self­

equilibrating pressure distribution shown in Fig. 3.9 and with free 

edges have been obtained. In Fig. 4.1 is shown the springback dis­
placement along the x-axis from the panel center to the middle of the 

edge, which is only slightly larger than that for the inscribed circular 

plate. Also shown in Fig. 4.1 is the displacement along a line from 
the panel center to the corner which is somewhat larger. The contours 

of constant displacement are shown in Fig. 4.2. Except near the corner, 

the pattern is close to the axisymmetric circular plate in Fig. 3.1. 

The contours of constant springback of the angle of the normal are 
shown in Fig. 4.3. The corner value is 

{B1)c = 2.44 610 = 1.010 (L5/R3H2) (4.2.4) 

4.3 Viscoelastic Core 

The springback deflection from (4.0.7), obtained for the circular 

panel (4.1.1), the strip panel (4.2.1) and for the square panel (Figs. 

4.1, 4.2), is the instantaneous elastic response of the glass and steel 

plates neglecting the transverse shear deformation of the honeycomb 

core. The experience of E-Systems (Perry, 1980) is that the springback 

deflection continues to increase for about four days after removal 

of the panel from the mold. It seems likely that this is due to a 
viscoelastic behavior of the adhesive and the epoxy used to stiffen 

the honeycomb. Since this affects primarily the transverse shear stiffness, 

the effect can be analyzed by considering shear deformation only. 

For the pure shear deformation of a rectangular panel, the transverse 

shear components are related to the slopes 

Qx GH w 'x 

Qy = GH w 'y 

in which G is the effective shear modulus of the 
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panel and H is the thickness. The equation for equilibrium is 

(4.3.2) 

or using (4.3.1) 
GH 6 W1SD = - P (4.3.3) 

However, the pressure distribution for the springback is the negative 

of (2.1.11). Thus the solution of (4.3.3) is simple 

W1SD = - $/GHR + const. (4.3.4) 

where $, the solution of (2.1.10), is the stress function whose 

derivatives (2.1.5) give the residual membrane stress in the glass 

face plate. The normal derivative of $ is zero on the edge; thus 

(4.3.4) satisfies the condition of zero transverse shear (4.3.1) on 
the edge. A peculiar consequence is that $ is zero on the edge, so 

that the springback displacement (4.3.4) due to the shear deformation 

is constant on the edge. The larger displacement of the corner Figs. 

4.1, 4.2 seems to be an instantaneous elastic effect only. 

Using (3.1.1) in (4.3.4) gives the springback deflection of the 
circular panel due to transverse shear deformation 

in which 

which for (4.0.3) is 

2 2 
= B10y(b/4) [(l-p) - IJ 

2 BID y p(l-p ) 

y = 12D{I+v) 
GHb 2 

y = 6(I+v) (E/G) (hH/b2) 
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For a thin panel, both the face thickness and the honeycomb thickness 

H are small in comparison with the radius b, so that y will tend to 

be small and (4.3.5) will be negligible in comparison with the 

instantaneous elastic response (4.1.5, 4.1.7). For honeycomb, however, 

the effective shear modulus G is small in comparison with E for the 
faces, so that y (4.3.7) can be of the order of unity or larger. 

For a material which, when loaded at time t = 0, reaches a stable 
displacement at time t = T, a simple Kelvin (or Voight) viscoelastic 

model can be used. This model consists of a spring and dashpot in 

parallel, and has the longtime elastic constant (G) and the time T 

for parameters. The correction to (4.3.5) is just 

w
1SD 

= B
10

y(b/4) [(1_p2)2_1](1_e-t/T) 

( 2) ( -tiT) SlSD = S10Y P 1-p 1-e (4.3.8) 

To summarize, the complete springback consists of the instantaneous 

reponse of the purely elastic face plates (4.1.1 - 4.1.7) followed 
by a viscous flow of the honeycomb core and adhesive (4.3.8) which 

stabilizes in time T. This behavior is shown in Fig. 4.4. 
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5.0 HOT SPOT STRESS 

The thermal stresses due to heating of the glass face plate in 

a circular spot can be calculated from a plane stress analysis, i.e. 
from (2.1.2) with the change in guassian curvature F set equal to zero 

/'"M = 0 (5.1) 

when the condition (4.0.6) is satisfied. The essential features can 

be obtained from an axisymmetric analysis. We consider a region 

o < r < a uniformly heated to the temperature Toin a plate of outer 

radius b. The solutions for the heated and unheated regions are 

o < r < a 

EE = ° - vo = e e r 

Or = B(l_b2/r2) 

°e = B(l+b2/r2) a < r < b 

EEe = B(1-v+(1+v)b2/r2) (5.2) 

At r=a the displacement and stress must be continuous which gives the 

constants 

A = B(_l+b2/a 2) 

B 2 2 EaTo a /2b 

(5.3) 

The circumferential tensile stress in the outer (cold) region has its 

maximum value at r = a 

EaTO 2 
°e = -2- (1 + :2 

The stress distribution for the infinite plate b~ 00 is shown in 

Fig. 5.1. 
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Since the stress in the cold region decays rapidly, this thermal 

stress is localized and can be used for other than the circular panel. 
If the spot is far from the boundaries of the rectangular panel, then 

(5.5) 

However, if the spot is near the edge of the rectangular panel, then 

the most severe situation occurs 

(5.6) 

An analysis of the complete panel with the hot spot on one face 

leads to the same result (5.4). Only when the back plate has a sub­
stantially higher bending stiffness than the glass sheet will the 

thermal stress be decreased from (5.4). 

For a general temperature distribution in a plate, the equation is 

66¢ = Eha6T (5.7) 

For the more realistic (Agarwal, 1980) axisymmetric distribution 

T = Toexp (_r2/a2) (5.8) 

the solution for the infinite plate (b + 00) is 

or = (EaTo/2) {_1+exp(_r2/a2))a2/r2 (5.9) 

08 ( EaTo/2) l (1_exp(_r2/a2))a 2/r2 - 2 ex p{_a 2/r2)] (5.10) 

This distribution is shown in Fig. 5.2. For a finite disc with a free 

edge at r=b, a constant tension stress field must be added to Eqs. 

(5.9) and (5.10). The maximum circumferential tension for this case 

is shown by the dashed line in Fig. 5.2. Thus, the worst case is 

°8 = 0.30 EaTo (5.11) 

which occurs when b = 1.3a. For the large plate b/a + 00, the 

maximum tension is 
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Thus the smooth gradient in the temperature field does reduce 

substantially the maximum tensile stress. But still the worst 
situation occurs when the hot region is near a free edge. 
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6.0 SURVEY OF GLASS FRACTURE STRENGTH 

(by D. Nelson) 

6.1 - Short-Time Fracture Strength 

Typically, mechanical engineering design handbooks only provide 

values of glass fracture strength determined from tests of very short 

duration (seconds or less). For example, Kent's Mechanical Engineer's 

Handbook (1967) specifies a range of 4 to 10 ksi for typical annealed 

soda-lime glass. It specifies the same range for a variety of other 
glasses, including lead, borosilicate and 96% silica glasses and fused 
quartz. It also notes that "for safe design practice, tensile stresses 

should be limited to 1000 psi for annealed glass," but does not elaborate 

on the rationale for this statement. 

Values of facture strength for specimens with a semi-circular 

flaw of .002 in. depth are given by Shand (1961) and are shown in Table 

1. In this case, the test duration was one second. 

Table 1 - Short-Time Fracture Strength of Glass 

TJlQe of Glass Strength ( ks i ) 
lead alkali 6.8 
soda-lime 9.0 
96% silica 11-12 
borosilicate (low expansion) 12 

aluminosilicate 13.8 

Such short-time strength values are deceptively high for components 

which must sustain tensile stress over any significant period of time. 

6.2 - Stress Corrosion Cracking ("Static Fatigue") 

It has been well-established that the bulk strength of glass 

is governed by the presence and fracture behavior of small flaws, 

particularly at the surface. When glass experiences sustained tensile 

stress, it suffers a time-dependent loss of strength, as illustrated 
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in Fig. 6.1. This phenomenon, originally termed "static fatigue,"is 

now known to be due to the growth of small initial flaws to a critical 

size by a stress corrosion cracking mechanism. This mechanism is 
activated by adsorption on flaw surfaces of water vapor or other 
corrosive media. The rate of crack growth and thus the fracture 
strength - time behavior is strongly dependent on glass composition, 

relative humidity and temperature, as will be discussed later. 

The fracture strength-time behavior of specimens of soda-lime 

window glass, with artificially-induced .002 in. deep semi-circular 

flaws is discussed by Shand (1961) and is shown in Fig. 6.2. Tests were 

conducted at room temperature and in uncontrolled humidity. For tests 

lasting 106 secs. (about one month), the fracture strength was 
approximately 4 ksi in reannealed specimens. It is not clear from 

the data whether or not a "static fatigue 1 imit" exists. The as­

received specimens displayed a greater resistance to stress corrosion 
cracking, perhaps due to surface compressive residual stresses, which 
were relieved in the re-annealed specimens. Fig.6.3 provides a comparison 

of soda-lime fracture strength-time behavior with that of low expansion 
borosilicate, for the same test'conditions. 

The stress corrosion behavior of soda-lime specimens, as discussed 

by Mould and Southwick (1959), tested in distilled water and containing 
various surface abrasions is shown in Fig.6.4. These data clearly 

demonstrate the important influence of both initial defect depth and 

defect orientation with respect to applied tensile stress. Again, 

it is not clear from these data whether or not a "safe" stress exists 
for long-time service. At 103 secs., the strength is already reduced 

to about 4 ksi for scratches (line defects) of .0009 in. depth. At 

this point, it should be noted and emphasized that all of the data 

considered represent only median (50% failure probability) behavior. 

Stress corrosion data have also been published in terms of 

fracture strength vs. stress or loading rate. For example, Ritter 

(1973) shows that a relation of the following form provides a good 
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correlation between strength and stress rate: 

O'f = 1 
KB m+l (6.1) 

where: O'f fracture strength 

B = stress-rate (~si/min) 
3 x 105 

K,m = empirical constants for a given 

environment and glass type. 

For abraded soda-lime glass, K : 11.7 ksi and m = 13-16. If, for 

example, the applied stress is 5 ksi, acting over a 10 year period, 

then B = 3 x 10-9 psi/min. In this case, predicted O'f would range 

between 2.5 and 3.5 ksi (depending on m), l! extrapolation to such 

long lives is valid. 

6.3 - Fracture Mechanics Evaluation of Stress Corrosion Cracking 

The previous data were generated before the widespread use of 

linear elastic fracture mechanics to interpret crack propagation 
behavior. During the past decade, stress corrosion cracking has been 

correlated in terms of the mode I stress intensity factor, K1. The 

rate of growth, da/dt, is often found, as shown by Evans and Johnson 

(1975), to follow the form given in Fig. 6.5, for constant stress tests. 
The behavior in region I, where most of the life is spent, is described 

by: 

da/dt = AK n (6.2) I 1 

KI = f(G)O'(na)2 (6.3) 

where: 

f(G) = function of crack/geometry 
type and loading type 

a = applied nominal stress 

a = crack depth 

A,n = empirical constants depending 

on environment and glass type 
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Growth rate is very sensitive to relative humidity, as shown by 

Wiederhorn (1974). For instance, the region I rate of soda-lime-

silica glass at 0.2% R.H. is about ten times greater than at a 

reference rate of 0.017% R.H., for the same KI . At 10% R.H., the rate 

is approximately a hundred times larger than the reference rate. Growth 
rate can also be quite sensitive to temperature. Tests of soda-lime 

glass in vacuum showed the rate at 2140 C to be roughly a thousand times 

higher than at room temperature, as given by Wiederhorn, et al. (1974a) . 

. In tests conducted in water, the growth rate of soda-lime-silica glass 

at 900 C was approximately a hundred times greater than at room temperature, 

as discussed by Wiederhorn and Bolz (1970). 

The fracture toughness of most glasses falls between 0.75 and 
1 

1.0 ksi (in)', as shown by Wiederhorn (1969). Threshold stress intensity 

appears to be about 0.25 ksi (in)! for soda-lime glass at 25 0C and 
about 0.2 ksi (in)! at 900 C, as discussed in Cekirge, et al. (1976). 

(There is some uncertainty, though, as to whether a threshold really 

exists.) 

The significance of threshold stress intensity is that if initial 
defect size(s) is known, then stress levels can be computed which will 

presumably prevent growth over the service life of a glass component. 

For example, suppose that initial surface defects are semi-circular, 
of depth a. The applied K1, as shown in Tada, et at. (1973), will 

be: 

(6.4) 

(This expression is for uniform tensile stressing, but is also an excellent 
approximation for bending stress in the case of small surface flaws.) 

1 

Using a value of Kth of 0.2 ksi (in)', and solving Eq. 6.4 for a in terms 

of various a values gives the results shown in Table 2. 
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Table 2 - Estimated Threshold Stress for 
Semi-Circular Surface Flaws 

Crack Depth ( in. ) Threshold Stress (ksi) 

.0002 8 

.0005 5.5 

.001 3.9 

.002 2.7 

Similar calculations were done for line defects (scratches), using 

1. 
Kr - 1.12 a (na)2 

Results are given in Table 3. 

Table 3 - Estimated Threshold Stress for 

Uniform Depth Edge Flaws 

Crack Depth (i n . ) Threshold Stress (ks i) 

.0002 7 

.0005 4.5 

.001 3.2 

.002 2.2 

(6.5) 

The values in Table 3 appear to be in reasonable agreement with projections 
of the curves in Fig. 6.4 for corresponding flaw depths. 
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It is worth noting that even if Kthdoes not exist, crack growth 

rate data of the type mentioned previously could be used to estimate 

or bound service life by combining Eqs.6.2 and 6.3 and integrating, i.e., 

1 ~ a critical 

ainitial 

(Such analysis was beyond the scope of this effort.) 

(6.6) 

The data considered thus far have been for steady stress. According 
to Tetelman and McEvily (1967), stress corrosion long-life strength 

under cyclic or steady stress is essentially the same, based on the 

very limited cyclic data available. Crack growth under cyclic stress 

in glass appears to be due to the same type of mechanism which causes 

growth under static loading. Wachtman (1974) gives a fracture mechanics­

based method for evaluating growth rate under a steady stress and super­

posed cyclic stress, utilizing only test data from static tests. In 

any case, it should be conservative for design purposes to use maximum 

stress or stress intensity (sum of static and amplitude of alternating 

component) to assess fracture strength-time behavior or rate of growth, 

respectively. 

Little if any data on the stress corrosion behavior of glass 

experiencing cyclic thermal stress appear to exist. Virtually all 

studies on the fracture resistance of glass to thermal stress have 

been concerned with behavior under quenching. 

6.4 - Summary of Fracture Strength Data 

For long lives (years) in the presence of any humidity (even 

a few %), it appears that median fracture strength is on the order 

of 2-3 ksi, at least for representative soda-lime glass. This is based 

on conventional of - t and on Kth data. The strength will depend largely 
on actual initial defect sizes. There are not sufficient data to 

establish with confidence allowable stresses for very low probabilities 
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of failure. However, limited data from Evans and Johnson (1975) suggest 

that fracture strength for 10% probability of failure is about 60% 

of that fora median probability. 

6.5 - Methods to Improve Fracture Strength 

Long-life fracture strength can be significantly increased by 

protective coatings or by producing surface compressive residual stresses. 

Polymeric coatings such as epoxy or acrylic resins can increase strength 

by at least 50%, as discussed by Ritter (1973), by inhibiting moisture 
adsorption. Surface compressive residual stresses of 10-15 ksi can 

be produced, as shown in Tete1man and McEvi1y (1967), by chill tempering 
and will help reduce corrosion crack growth. 

6.6 - Proof Testing 
The lifetime of glass components will be governed primarily by 

the behavior of the few largest initial flaws. In order to avoid premature 

failure, proof-testing has been suggested by Wiederhorn, et a1. (1974b) 

in order to detect those components with unacceptably large defects. 

If a proof stress 0P' is applied, producing a corresponding KIP' then 
1 

surving components must have KIP = f(G)op(TTaO)' < KIC thus "assuring" 

no defects larger than aO' Initial crack size, aO' can then be used 
with a fracture mechanics-based analysis of stress corrosion crack 

growth rate to estimate a minimum expected life. 
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7.0 CROSBYTON PANELS 

The panels developed for the CROSBYTON SOLAR POWER PROJECT 
have the following properties (Perry, 1980) 

h = 3/32 in 
L = Ly = 19.5 in 

R = 37.5 x 12 in 
H = 2 in 

hs = 0.024 in 

Es = 30 x 106 psi 

For the glass plate we take the values 

E = 10.4 x 106 psi 
v = 0.3 
a = 9 x 1O-6/°C 

and the temperature above ambient of the hot spot measured by 
Agarwal (1980) is 

7.1 - Calculations of Stress and Springback 
The important stress factors are 

(1) Residual stress in bending (2.1.9) 

Eh 
aBO = 2(1-v)R = 

(2) Residual membrane stress 
Nominal value (3.2.3) 

= 1,550 psi 

a = EL2 = (10.4xl0
6

)(19.5)2 = 2,440 psi 
DO 8R2 8(37.5 x 12)2 

- 44 -

(7.1 ) 

(7.2) 

(7.3) 

(7.4 ) 

(7.5) . 



Tension at center of square plate (Fig. 3.5) 

(00) = 0.56 000 = 1,370 psi 
Max 

Compression at center of edge 

(3) Thermal tensile stress due to hot spot. 
For spot away from edges (5.11) 

aT = 0.109 EaT 0= 0.109(lO.4x106) (9xlO-6)(122) 

= 1,250 psi 

For spot near edge (5.12) 

The residual tension is maximum at the panel center in the surface 

of the glass bonded to the honeycomb, which is the sum of the membrane 

(7.6) and bending (7.4) stresses 

(O)Residual = °SO+0.56 000 = 2,920 psi 
at center 

The short-time thermal stress (7.8) is added to this to give the peak 

stress 

(o)Peak at= 2,920 + 1,250 = 4,170 psi 
center 

Near the center of the edge, the maximum residual stress is slightly 

compessive, the sum of (7.4) and (7.7) 

(O)Residual= 1,550 - 3,900 = -2,350 psi 
at edge 
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(7.6) 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

(7.11) 

(7.12 ) 



which alleviates somewhat the high thermal stress (7.9) 

(a)Peak at - 2,350 + 3,430 = 1,080 psi 
edge center 

However, near the corner the membrane compression is small while (7.4) 

and (7.9) remain active 

(a)Peak near~ 1,550 + 3,430 = 4,980 psi 
corner 

The reference springback rotation is (4.1.6) 

= 56 x 10-6 rad 

= 0.0032 degrees 

so the displacement at the corner of the square panel (Fig. 4.1) is 

= 1.02 (56 x 10-6)(19.5) 

= 0.0011 in 

(7.13 ) 

(7.14) 

(7.15) 

(7.16) 

The additional springback at the corner due to the bending stress (4.0.11) 

is 
(W B1 ) = L2h2/RH2G(1_v2) 

c 
= (19.5)2(3/32)2/(37.5X12)(2)2 6(.91) 

= 0.00034 in 
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(7.17) 



which gives the total corner springback displacement 

(WI) = 0.0011 + 0.00034 
c 

= 0.0014 in 

Note that this is the instantaneous elastic springback and does not 
include any viscous softening of the core. The springback rotation at 

the corner is (4.2.4) 

(7.18 ) 

= 2.44 (0.00320
) = 0.00780 (7.19) 

and the additional rotation due to the bending stress (4.0.11) is 

(6B1 ) (wB1 ) 
.1 

= 22/L 
c c 

1 

= (0.00034in) 22 /(19. 5in) 

0.00l40 (7.20 ) 

so the total is 

(61 ) = 0.0078 + .0014 = 0.00910 

c 
(7.21 ) 

The maximum tension in the adhesive due to the membrane stress 

in the glass plate occurs at the center of the panel. For the circular 

panel (3.2.5) this is 

( ) = Ehb2/8R3 
a Adhesive 

panel center 

and for the square panel (Fig. 3.9) 
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( ) 1.13 EhL 2/8R3 
° Adhesive 

panel center 

= 1.13 (10.4x106)(3/32)(19.5)2/8(37.5x12)2 

= 0.58 psi 

However, in the edge region, perfect conformity of the glass to the 
spherical curvature requires the stress in the adhesive (3.4.12) 

(a)Adhesive = 0.14 aBO 
near edge 

= 0.14 (1550) = 217 psi 

This is a high demand for an adhesive. Unlike the stress (7.22) which 
is over a substantial area in the panel center, (7.23) occurs on a 
highly localized strip about one plate thickness from the edge and 

with a width of about one plate thickness, as shown in Fig. 3.11. The 
compressive stress in the honeycomb at the edge is 

(a)Compression= 0.94 °BO 
at edge 

= 1460 psi 

7.2 - Comparison with Tests and Field Experience 

(7.22) 

(7.23) 

(7.24) 

The levels of residual and peak stresses (7.4) - (7.14) when 
compared to the behavior of glass indicated by Figs. 6.1 - 6.4 do not 

give much encouragement to the prospects for long-term life of the 
Crosbyton panels. Since these curves give median (50% failure) the 
experience to date discussed by Perry (1980) seems to fit. The residual 
tension at the panel center (7.10) is high enough to cause cracking 
in a few panels, presumably those with large flaws, during fabrication. 

The subsequent experience with the prototype system reported by 
W.H. McCulloch (pers. comm.) is that some 20% of the panels have cracked 
due to the hot spot. The peak stresses at the corner (7.14), edge 
(7.13) and at the center (7.11) sustained for a few minutes would 
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certainly cause cracking, if the curve in Fig. 6.4 for 600 grit cloth 

is similar to the glass used by E-Systems. 

The springback was a major concern in developing the fabrication 

procedure, however, little quantitative information is given by Perry 

(1980). One panel was permitted to cure extra time and apparently 

had little viscous flow for 50 hours and had a maximum springback dis­

placement of 0.002 in. (Perry, 1980), p.21) O.B. Longcope (pers. comm.) 
reports that generally a deflection of the corner of about 0.004 in. 

occurs in about four days. This is larger than the calculated value 

for the instantaneous elastic response (7.18) and indicates the 

viscoelastic behavior of the core shown in Fig. 4.4. 

The deviation of the angle of the normal to the surface which 

is calculated (7.21) is substantially less than shown by the laser 

scan of Panel No. 20 (Fig. 4.5) which has maximum values of 0.20 degrees. 

Most of this deviation must be attributable to imperfection of the 

mold rather than springback. 

The level of tensile stress in the adhesive in the center of the 

panel (7.17) should be no problem. That required in the strip near 

the edge (7.18) is cause for concern and may be the source of edge 

debonding. The compressive stress in the honeycomb at the edge (7.19) 

is very high. From information from O.B. Longcope (pers. comm.) a 

sample of the honeycomb was subjected to a compression test on 

May 1, 1979, and failed at a stress of 545 psi. We conclude that local 

crushing of the honeycomb probably occurs which decreases the magnitude 

of stress from that shown in Fig. 3.11, and which has the negative 

effect of leaving the edge region with a substantial deviation from 

the spherical curvature. The width of this deviation should be no 

more than three plate thicknesses which would not cause a substantial 

loss in panel efficiency. 
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8.0 RECOMMENDATIONS 

8.1 - Tests to Validate Analysis 

We have a reasonable confidence in the analysis presented in 
the preceding Sections of this Report. The basic equations are well­
established, and the simple closed-form results for the circular plate 
and the plate strip give limits on the numerical results for the square 
and low aspect ratio plates, which indicates that no serious errors 
in the solutions are present. The more serious question concerns the 
validity of the mathematical models. The residual stress in the 
initially flat, thin glass plate deformed to a shallow spherical surface 
should be very accurately described by the equations used, so that 
comparison with experiment would serve more as a calibration of the 
experimental technique. 

The springback analysis less precisely reflects the reality of 
the panels fabricated by E-Systems. Particularly the steel backplate 
has been assumed to be completely flexible during the forming process, 
but to have full strength in resisting the springback. The E-Systems 
technique of slotting the steel plate (Fig. 1.3) does decrease substantially 
its resistance to forming, and filling the slots with epoxy does restore 
substantially the resistance to springback, but certainly not uniformly. 
The final angular deviation measured in one panel (Fig. 4.4) is an 
order of magnitude larger than calculated and is unexpectedly irregular. 
On the other hand, the magnitude of springback deflection reported 
is consistent with the calculation. The tentative conclusion is that 
the deviation shown in Fig. 4.4 is largely due to mold imperfection. 
The importance of the final angular deviation to the efficiency of 
the panel requires a careful study to isolate the contributing factors, 
namely the mold imperfection, the instantaneous elastic springback 
as affected by the slotted backplate, and the viscous flow of the epoxy 
stiffening the honeycomb core. For this, more detailed measurements 
such as in Fig. 4.4 and detailed surface displacement measurements 
should be made at various times after release of the panel from the 
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mold. If these factors are known and under tight control, then the 
modification of the mold surface such that springback would be to the 
desired exact spherical shape could be easily calculated. 

The most severe difficulty to the present system is the hot spot 
thermal stress. The temperature difference measured by Agarwal (1980) 

gives high stresses which would cause cracking of the glass. This 

stress (7.8, 7.9) is independent of glass thickness, panel thickness, 

size of the spot, etc., so very little can be done in the way of design 
modifications to alleviate this stress. We note that the realistic 
smooth temperature profile does cause a lower stress than a uniformly 
hot "spot". 

8.2 - Limitations and Requirements for Future Designs 

The severe limitation seems to be the hot spot thermal stress 
which, as previously mentioned, is little affected by most of the design 
parameters of the panel. Stresses of the magnitude given by (7.11) 

and (7.14) sustained for 10 seconds will cause cracking of glass (Fig. 
6.4). To avoid cracking, the quality of the glass must be improved 

and/or the defect size reduced, both of which increase cost. 

Secondary to the short time, hot spot stress is the residual stress 
(7.10) which exceeds the generally recommended long-time stress level 

of 1000 psi, but is less than what seem to be long-time limiting values 
in Figs. 6.1, 6.2, 6.4. However, the extrapolation of these curves 
to 30 years (109 seconds) is probably not warranted, and the curves 

do represent only 50% of specimen. In short, the prospect of 30 year 

life for these panels is not good. These residual stresses do depend 

on the system dimensions. Doubling the radius of curvature, while 
keeping the panel size the same reduces the residual tension from 2,920 

psi to 1,120 psi which would be satisfactory for 30 year life. 

The instantaneous elastic springback (7.15), (7.16) does not seem 

to be a problem, and doubling R reduces this by a factor of 8. 

- 51 -



The springback displacement varies with L6, so doubling the panel size 
while holding the thickness of glass and honeycomb, and the radius 
R all fixed increases the springback by a factor of 64. This explains 
the difficulty experienced with the 6 ft x 4 ft panel (Perry, 1980) 
and the subsequent reduction to a 39in square panel. 

The conclusion is that consideration of the design parameters 
on residual stress and springback, which have been obtained in this 
report, will permit reliable design of larger systems with larger panels 
using soda-lime float glass. The short time thermal stress due to 
the hot spot remains as a severe obstacle which requires further study. 
No economical means of avoiding cracking of the glass is evident at 

this time. There is the question of whether or not the efficiency 
of the panel is degraded by the cracking. A mechanical weakening of 
the panel against environmental loading and a leaking of moisture into 
the core certainly will result which will decrease the panel life. 
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Fig. 1.3 - Mirror panel used in CROSBYTON SOLAR 
POWER PROJECT fabricated by E-Systems 
(from Perry, 1980) 
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v=O.3, radius b, thickness h) to rigid spherical 
surface (Radius of curvature R), neglecting 
membrane stresses. 
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springback at the edge is (w1)edge= 0.00562 b6

/H2 R3 where H 

is the thickness of the honeycomb. (Assumes steel backing 

has the same effective stiffness as the glass). 
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Fig. 3.9 - Pressure as in Fig. 3.7. For square plate L =L. 
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Fig. 3.11 -

Stresses near edge of initially flat 
plate deformed to spherical surface, 
normalized to interior bending stress 
°B= Eh/2(1-v)R. The bending stress in 
the panel is zero at the edge and 
attains the interior value at a 
distance of two thicknesses from the 
edge. The compressive stress on the 
honeycomb surface is large at the 
edge 0.94 oBO, while the maximum 
compressive stress on the mold surface 
is small 0.14 oBO. This becomes 
tension in the bond between honeycomb 
and plate after removal from mold. 
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Fig. 4.1 - Elastic springback displacement for square 
panel. Maximum displacement is at the 
corner (wI)c = l.Q2. BIG L 
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Contours of constant elastic springback 
displacement for square panel, normalized 
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I 

to the corner displacement (wl)c= 1.02 B10 L. 
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Fig. 4.3 - Contour plot of elastic springback 
angular deviation of the normal to 
the square panel surface upon removal 
from mold. The maximum occurs at the 
corner and is of the magnitude 
ROTo = 1.01 L5/R3H2 . 
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Fig. 4.4 - Deviation of angle of normal.from.spherica~ 
due to springback of panel wlth vlscoelastlc 
core (-y = 2.0). 
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Fig. 4.5 - Contour plot of mirror panel angular 
deviations (in degrees) for Panel No. 20 
(from Perry, 1980) 
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Fig. 5.1 - Stress in an elastic plate due to spot 
of radius a heated to temperature To. 
Peak tension 08 occurs in circum­
ferential direction at edge of hot spot. 
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Fig. 5.2 - Stress in an elastic plate due to a heated region 
with temperature distribution T = To exp (-(r/a)2). 
For the same maximum temperature To' the maximum 
circumferential tension is 21.8% ot that for a 
spot of uniform temperature shown in Fig. 5.1. 
A free edge at r=b increases the maximum 
circumferential tension, which has the highest 
value 0'J = 0.30 EcxTo. 
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Fig. 6.1 - Strength-time behavior of 
annealed soda-lime glass 
rods tested in bending. 
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Fig. 6.2 _ Strength-time behavior of soda-lime glass specimens tested 
in bending and containing .002 in. deep surface flaws 
(semi-circular). 



-
In 

w=-a::: J: 
::::> I-

eo I- l!) 
\J] u Z 

~ w 
u. Ct 

I-
<f) 

:t~ 
ROOM TEMP. 
AND HUMIDITY 
UNCONTROLLED 

: l 
4 

t 
1 

SODA-LIME / 

I I I 

10 102 103 104 105 

LOAD DURATION (sees.) 
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growth rate in glass as correlated 
by the mode I stress intensity factor. 
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