When printing a copy of any digitized SAND Report, you are required to update the markings to current standards.

Final Report

Second Generation Heliostat Development

 for SOLAR CENTRAL RECEIVERSMarch 31, 1981

Detail Design Report
Volume I-Appendices I

FINAL REPORT
SECOND GENERATION HELIOSTAT DEVELOPMENT FOR SOLAR CENTRAL RECEIVERS

VOLUME I

DETAIL DESIGN REPORT

(APPENDIX I)

MARCH 31, 1981

BOEING ENGINEERING \& CONSTRUCTION
 (A Division of The Boeing Company)
 P.O. Box 3707
 SEATTLE, WASHINGTON 98124

PREPARED FOR
SANDIA NATIONAL LABORATORIES LIVERMORE, CALIFORNIA UNDER CONTRACT 83-2729C

APPENDICES I

TABLE OF CONTENTS

APPENDIX PAGE
A. RequirementsB. Azimuth Drive/Bearing Assembly Test DataB-1
C. Assembled Gimbal/Acutator Drive Assembly Test Data C-1
D. Actuator Screw and Nut Test D-1
E. Reflector Materials/Assembly Tests E-1
F. Drive Motor Specification F-1
G. Mode Operation and Software Organization G-1
H. Control System Data Base H-1

APPENDIX A

REQUIREMENTS

APPENDIX A
 REQUIREMENTS

Design of the collector subsystem was based on functional, performance, design, and construction requirements derived from Sandia's general specification, A10772. These requirements were allocated to each of the major elements which were to be detail-designed: pedestal, gimbal-drive, reflector, and controls. These designs are described in detail in this volume. The remaining subsystem elements (support resources), and necessary production tooling were subjected to a preliminary design effort; they will be described in Volume II of this report.

1.1 FUNCTIONAL REQUIREMENTS AND UTILIZATION

1.1.1 Purpose and Primary Functions

The primary purpose of the collector subsystem is to intercept insolation and concentrate it on an elevated receiver in a safe and efficient manner. To accomplish this purpose, the subsystem must reliably and repetitively perform several functions; these are shown in Figure 1-1.

1.1.2 Operation and Expected Usage Rate

The BEC collector subsystem can be used for either a solar-electric power plant, or an industrial process heat plant. Both uses require a reliable supply of concentrated insolation to fuel their thermal energy conversion/application process. To ensure consistency in the collector subsystem design approach taken by several contractors, Sandia specified that it would be based on a 50 MW electric plant. Thus, the functional requirements for the detail design of the subsystem elements are based on this application. A typical operational sequence for such a use is shown in Figure 1-2. Using previous BEC work (Reference 2-3) on advanced central receiver systems, the typical operation profiles for a 50 MW electric cycling plant were determined, they are shown in Figure 1-3. The predicted yearly usage hours were then determined, and are summarized in Table 1-1.

Figure 1-1 Collector Subsystem Top Functional Flow

Notes: 1. Sequence shown is for electric cycling plant or industrial process heat.
2. "REF" functions shown for clarification purposes: not part of collector subsystem.

D For No-G0's. see detail function diagrams for system functions $11.0,12.0$
2) 13.0 of subsystem top functional flow diagram.
collector condition and heliostat orientation may be reported as a composite.
3 Requires software algorithms; functions 14.0 and 15.0 may require central
(array) controller or plant central control system support.
igure 1-2. Collector Subsystell Typical Operational Sequence

Table 1-1 Expected Yearly Usage Hours for Collector Subsystem, Electric Plant Utilization

Helios element	Average (expected-value) hours per year	
	Operating	Non-operating
Pedestal	8760	-
Gimbal-drive	3985	4775
Reflector	3985	4775
Controls		
\quad Heliostat controller	3985	4775
Field controller	3985	4775
Array controller	8760	-
Data distribution	3985	4775
Power distribution	3985	4775
Wind sensor	8760	-
Time-date receiver	8760	-
Maintenance		
MSE	3875	4885

1.2.1 Performance Requirements

To accomplish the functions described in Figures 1-1 and l-3, primary performance charateristics for the system and certain elements were established; these are listed in Table 1-2. In addition, secondary performance characteristics were also prescribed for the system and certain elements; they are listed in Table 1-3.

1.2.2 Design Point

The design of a solar collector is sensitive to the choice of design point (geographic location, day of the year, elevation, etc.). Sandia prescribed that the collector subsystem could be deployed in California, Nevada, Utah, Colorado, Arizona, New Mexico, Texas and Oklahoma. Further, they determined that the collector field would be designed according to the criteria summarized in Table 1-4.

1.3 DESIGN AND CONSTRUCTION REQUIREMENTS

1.3.1 General Design Requirements

The collector subsystem is intended for use by public and private electric utilities, and by commercial firms which use high-quality heat for industrial processes. Thus, prime considerations in designing the collector are performance, durability, reliability, safety, and acceptable life-cycle costs. General design and construction requirements were established which are compatible with these considerations; they are summarized in Table 1-5.

1.3.2 Environmental Design Criteria

The collector subsystem is intended to be used with electric power and industrial process heat (IPH) plants located in the southwestern United States. Thus, the environmental design criteria are based, in part, on conditions expected in that region of the country; they are summarized in Table 1-6.

Table 1-2 Collector Subsystem Primary Performance Requirements

COMPONENT	REQUI REMENT (1)
SYSTEM	- REFLECT 95\% OF REDIRECTED ENERGY ON RECEIVER AT < 60° - FUNCTION DURING ALL PLANT STEADY-STATE MODES - POWER INCREMENTS IN TRACKING MODE OF $\leq 10 \%$ - EMERGENCY DEFOCUS TO < 3% POWER IN 120 SECONDS
COLLECTOR FIELD	- AVERAGE STRUCTURAL Support STATIC DEFLECTIONS $\leq \pm 1.7$ Mivo FOR MIRROR NORMAL, EACH AXIS (12 WS WIND; $0^{\circ}-50^{\circ} \mathrm{C}$; AYY LOCATION; ALL ORIENTATIONS; NO GRAVITY; NO TEMPERATURE EFFECTS) - HEAT FLUX ON UNIRRADIATED PORTIONS OF RECEIVER $\leq 2500 \mathrm{H} / \mathrm{m}^{2}$
HELIOSTAT	o 90% OF REFLECTED ENERGY WITHIM THEORECTICAL BEAM SHAPE + 1.4 MRAD FRINGE FOR 60 DAYS WITHOUT ALIGNMEITT (0 M/S WIND, 0° - $50^{\circ} \mathrm{C}$; GRAVITY, ALL ORIENTATIONS」 ANY LOCATION, HELIOSTAT TRACKING) - BEAM POINTING ERROR $\leq \pm 15$ MRAD EACH AXIS (SAME CONDITIONS AS BEAM QUALITY) - STRUCTURAL DEFLECTION (EXCLUDING FOUMDATION) $\leq \pm 12$ MRAD ($12 \mathrm{M} / \mathrm{S}$ WIMD; $00-50^{\circ} \mathrm{C}$, ALL ORIENTATIOMS; ANY LOCATION; NO GRAVITY; NO WAVINESS; NO FACET MISALIGNMENT) - 2-POINT AIMING
foundation (2" Above GROUND)	- TILT OR TORSIONAL ROTATION $\leq \pm 0.5$ MRAD (12 MSS HIND; PLASTIC DEFLECTION FROM 22 MS WIND) - PLASTIC DEFLECTION $\leq \pm 0.15$ MRAD (SINGLE 22 M/S WIND)

(1) Tolerances are 1 sigma values.

COMPONENT	REQUIREMENT
SYSTEM	- MEET PERFORMANCE a 12 M/S WIND, $0^{\circ}-50^{\circ} \mathrm{C}$, GRAVITY - TRACK WITH DEGRADED PERFORMANCE WHEN WIND IS 16 M/S - INITIATE STOW FRON EXTERNAI. SIGNAL - INCORPORATE LIGHTNING PROTECTION - OPERATE FROM -90 - 500C (PLUS INSOLATIOH ON UHPROTECTED COMPONENTS) - REQUIRE MINIMUM MAINTEMACE - ANHOUNCE ANY COMPONENT FAILURE TO HAC - PROVIDE FAULT ISOLATION INFORMATION ON CRITICAL COAPONENTS - MINIMIZE HAZARDS TO OPERATIONS/ MAINTENANCE PERSONNEL AND THE PUBLIC
HELIOSTAT	- CAPABLE OF BEING POSITIONED FOR STOW, CLEANING OR MAINTENANCE ≤ 15 MINUTES (FROM ANY OPERATIONAL ORIENTATION)
CONTROLS	- CONTROL HELIOSTATS BY computer - SAFE BEAM CONTROL STRATEGY

Table 1-4 Design Point Parameter Values

Parameter	Design Point or Value/Description
Geographic Location	Latitude: $35^{\circ} \mathrm{N}$ Elevation: 0.65 km
Soil Conditions	Based on soil at the DOE CRTF, Albuquerque, NM
Insolation	$950 \mathrm{~W} / \mathrm{m}^{2}$
Day of Year	81
Aiming Strategy	Vertical flux distribution on receiver

Table 1-5 Collector Subsystern Design and Construction Requirements

COMPONENT	REQUI REMENT
SYSTEM	- 30 YEAR LIFE - COMMERCIAL DESIGN AND COHSTRUCTION STANDARDS (UBC/ 1976; AISCM/8TH EDITION, NATIONAL ELECTRIC CODE; NEMA AND MS-454 0 OFF-THE-SHELF COMPONENTS - TOLERATE POMER TRAMSIENTS o MINIMIZE SUSCEPTIBILITY TO AND GENERATION OF EMR - CORROSION PROTECTION ON ALL PARTS - COMPONENTS OR ASSERBLIES TRANSPORTABLE BY TRUCK - WORKMANSHIP CONSISTENT WITH GOOD COMMERCIAL PRACTICE - ALL MAJOR ELEMENTS AND ASSEMBLIES TO HAVE NAMEPLATES o LIKE PARTS TO BE INTERCHANGEABLE - DESIGN TO FACILITATE OPERATON AND MAINTENACE; USE MS-1472 AS GUIDE
$\begin{aligned} & \text { COLLECTOR } \\ & \text { FIELD } \end{aligned}$	o NOT BE VULNERABLE TO EXTENSIVE FIRE DAHAGE O HELIOSTATS NOT DIRECTLY ADJACENT TO A FIRE SHOULD NOT SPREAD TO OTHER PARTS OF THE FIELD
heliostat	- maintain structural integrity IN ANY POSITION IN A 22 M/S WIND - NO ELEVATION OR AZIMUTH DRIFT IN DRIVES o SURVIVE 19 mm HAIL a $20 \mathrm{~m} / \mathrm{S}$ IN ANY ORIENTATION - WITHSTAND AMD/OR OPERATE WHEN SUBJECTED TO WIND-INDUCED VIBRATIONS - ENVIRONMENTALLY SEALED DRIVES - COST-EFFECTIVE STOHAGE - COST-EFFECTIVE REFLECTIVITY AND AREA

Table 1-6 Environmental Design Criteria for Production Collector Subsystem

Environmental Condition	Functional Capability Required-When Subjected To Environmental Conditions of Values Shown While					
	Operating (1)				Not Operating (1)	
	Startup and Shutdown Per 3.2.6.2	Steering Per 3.2.6.2	Defocusing Per 3.2.3a	$\begin{aligned} & \text { Stowing } \\ & \text { Per 3.2.2b } \\ & \text { and } \\ & 3.2 .6 .3 \end{aligned}$	Structural In- Survival tegrity per Per 3.2.6.3 3.2.6.3 \& 3.2.6.4 (Stow Position) (Any Position) 	
Gravity	Local	Local	Local	Local	Local	Local
Earthquake	-	-	- !	-	UBC Seismic Zone 3	UBC Seismic Zone 3
Wind Speed (Includes Gusts) Rise RAte Dust Devils (Cyclonic Winds) Direction Angle from Horizontal	$\begin{aligned} & \leq 16 \mathrm{~m} / \mathrm{s} \\ & 0.01 \mathrm{~m} / \mathrm{s}^{2} \\ & 0 \text { to } 16 \mathrm{~m} / \mathrm{s} \\ & \text { Any } \\ & +10^{\circ} \end{aligned}$	$\begin{aligned} & 0 \text { to } 12 \mathrm{~m} / \mathrm{s} \\ & 0.01 \mathrm{~m} / \mathrm{s}^{2} \\ & 0 \text { to } 12 \mathrm{~m} / \mathrm{s} \\ & \text { Any } \\ & \pm 10^{\circ} \end{aligned}$	$\begin{aligned} & 0 \text { to } 16 \mathrm{~m} / \mathrm{s} \\ & 0.01 \mathrm{~m} / \mathrm{s}^{2} \\ & 0 \text { to } 17 \mathrm{~m} / \mathrm{s} \\ & \text { Any } \\ & \pm 10^{\circ} \end{aligned}$	$\begin{aligned} & 0 \text { to } 22 \mathrm{~m} / \mathrm{s} \\ & 0.01 \mathrm{~m} / \mathrm{s}^{2} \\ & 0 \text { to } 17 \mathrm{~m} / \mathrm{s} \\ & \text { Any } \\ & \pm 10^{\circ} \end{aligned}$	$\begin{aligned} & 0 \text { thru } 22 \mathrm{~m} / \mathrm{s} \\ & 0.01 \mathrm{~m} / \mathrm{s}^{2} \\ & 0 \text { to } 17 \mathrm{~m} / \mathrm{s} \\ & \text { Any } \\ & \pm 10^{\circ} \end{aligned}$	$\begin{aligned} & 0 \text { thru } 40 \mathrm{~m} / \mathrm{s} \\ & 0.01 \mathrm{~m} / \mathrm{s}^{2} \\ & 0 \text { to } 17 \mathrm{~m} / \mathrm{s} \\ & \text { Any } \\ & \pm 10^{\circ} \end{aligned}$
Temperature (5)	-9 to $50^{\circ} \mathrm{C}$	0 to $50^{\circ} \mathrm{C}$	0 to $50{ }^{\circ} \mathrm{C}$	0 to $50^{\circ} \mathrm{C}$	-30 to $50{ }^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$
Precipitation Rain Annual Average 24-Hour Rate Ice/Freezing Rain Thickness	$\begin{aligned} & 750 \mathrm{man} \\ & \leq 75 \mathrm{mma} \\ & \leq 50 \mathrm{~mm} \end{aligned}$	-		$\begin{aligned} & 750 \mathrm{~mm} \\ & \leq 75 \mathrm{~mm} \\ & \leq 50 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & .750 \mathrm{~mm} \\ & \leq 75 \mathrm{~mm} \\ & \leq 50 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 750 \mathrm{~mm} \\ & \leq 75 \mathrm{~mm} \\ & \leq 50 \mathrm{~mm} \end{aligned}$
Hail Diameter Speed Special Gravity Temperature Snōw				$\begin{aligned} & \leq 20 \mathrm{~mm} \\ & =20 \mathrm{~m} / \mathrm{s} \\ & 0.9 \\ & 0 \text { thru } 6.7^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \leq 20 \mathrm{~mm} \\ & \leq 20 \mathrm{~m} / \mathrm{s} \\ & 0.9 \mathrm{thru} 6.7^{\circ} \mathrm{C} \end{aligned}$	$\left.\begin{array}{l} 525 \mathrm{~mm} \\ \underline{5} 23 \mathrm{~m} / \mathrm{s} \\ 0.9 \\ 0 \text { thru } 6.70 \mathrm{C} \end{array}\right\} \text { (2) }$
24-Hour Rate Max. Loading	$\begin{gathered} 0.3 \mathrm{~m} \\ 250 \mathrm{~Pa} \end{gathered}$		-	$250{ }^{0.3 \mathrm{~Pa}}$	$\begin{array}{r} 0.3 \mathrm{~m} \\ 250 \mathrm{~Pa} \end{array}$	$\begin{aligned} & 0.3 \mathrm{~m} \\ & 250 \mathrm{~Pa} \end{aligned}$
$\begin{aligned} & \text { Insolation } \\ & \text { Max Flux } \\ & \text { Rate of Change } \end{aligned}$	$\begin{gathered} 1100 \mathrm{w} / \mathrm{m}^{2} \\ \text { (1) } \end{gathered}$	$\begin{gathered} 1100 \mathrm{w} / \mathrm{m}^{2} \\ \text { (4) } \end{gathered}$	$\begin{gathered} 1100 \mathrm{w} / \mathrm{m}^{2} \\ 0 \end{gathered}$	$\begin{gathered} 1100 \mathrm{w} / \mathrm{ma}^{2} \\ 0 \end{gathered}$	$\begin{gathered} 11002 / \mathrm{m}^{2} \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 1100 \mathrm{w} / \mathrm{m}^{2} \\ 0 \end{gathered}$
Lightning Maximum Stroke Direct Hit Adjacent Hit	200,000 AMPS Loss of 1 Helio ok Minimize Damage	200,000 AMPS Loss of 1 Helio ok Minimize Damage	200,000 AMPS Loss of 1 Helio ok Minimize Damage	200,000 AHPS Loss of 1 Helio ok Minimize Damage	200,000 AMPS k Loss of 1 Helio ok Minimize Damage	200,000 AMPS Loss of 1 Helio ok Minimize Damage

Notes: (1) Paragraph references are to Sandia specification A10772, Rev. 6, 10-10-79
(3) A "Hall-Survival" stow position mav be specified and may be distinct from "High Nind" stow dosition.
() Damage to be minimized subject to appropriate cost/risk limits (TBD),
(4) Collector shall be capable of performance indicated when subjected to flux changes associated with passage of opaque cloud; flux shall be assumed to drop from $1100 \mathrm{w} / \mathrm{m}^{2}$ to $0 \mathrm{w} / \mathrm{m}^{2}$ and return to $1100 \mathrm{ta} / \mathrm{m}^{2}$
(5) For components installed in an uncontrolled environment.
1.3.3 Detail Design Requirements

1.3.3.1 Facet Requirements

Based on the system performance and design requirements, detail design requirements for the reflector were established. Some requirements were allocated to individual components; for the facet assembly, they are:

Reflective Surface Waviness: The installed facet shall not exhibit a surface waviness greater than 0.60 milliradians (mrad) over 90% of its reflective area when in a horizontal position relative to ground with no wind;

Reflective Surface Deflection: 99% of the facet's reflective area shall not exhibit a deflection greater than 0.6 mrad when oriented in a position which generates the highest loads in a $12 \mathrm{~m} / \mathrm{s}$ wind. This deflection allowable includes thermal effects caused by ambient temperature variance, but does not include reflector surface waviness;

Reflectance: The facet reflective surface shall have a minimum solar specular reflectance of 0.94 based on an air mass 1-1/2 solar spectrum;

Hailstone Survival: The facet assembly shall not sustain significant damage when impacted by 19 mm hailstones striking it at $20 \mathrm{~m} / \mathrm{s}$ when in any orientation; it shall survive and maintain structural integrity when impacted by 25 mm hail striking it at $23 \mathrm{~m} / \mathrm{s}$ when in a special stow position; and,

Maintenance: The facet shall require minimum maintenance during its lifetime other than periodic cleaning of the reflective surface.

Design requirements were also levied on the frame assembly and complete reflector assembly; the most significant requirements concern the beam pointing error, beam quality, and structural deflections which are summarized in Table 1-2, and are not repeated here. The capability of alternate design configurations to satisfy the reflector/facet/frame requirements was evaluated by trade study, analyses and tests.

1.3.3.2 Attachment Bracket Requirements

The function of the attachment brackets is to maintain facet orientation and alignment, and provide load paths between the facets and support structure. Winds generate pressure gradients both over the surfaces and across the facets. These pressure loads are reacted normal to the facet faces with in-plane facet loads approximately zero. The only in-plane facet loads are due to gravity and earthquake. Therefore, the attachment brackets are required to prevent movement in the direction normal to the facet planes only. When the reflector is oriented in non-horizontal positions, the facets must be restrained by bottoming on the lower-most brackets. The spacing between opposing brackets must be greater than the width of the panel to allow thermal expansion/contraction of the support frame relative to the facet. The bracket design must also incorporate a joint to prevent moment loads between the bracket and facet. Finally, the bracket must incorporate a feature which would permit each facet to be canted.

1.3.3.3 Frame Assembly Requirements

A frame is required to react wind and gravity loads transmitted from the facets through the bracket assemblies. In addition, the frame is required to hold the facet assemblies in a fixed position while maintaining the canting angles required for the reflected beam.

1.3.3.4 Gimbal/Actuator Drive Assembly Requirements

The gimbal/actuator assembly is required to rotate the reflector assembly in azimuth and elevation so that the sunlight will be redirected onto the receiver. It must perform this function continuously during normal operation when supplied with electric power from the heliostat controller. The gimbal/actuator is also required to orient the reflector assembly in certain pre-determined positions, such as overnight stow, cleaning, high-wind stow, etc. In addition, it must be capable of rapidly slewing the reflector in response to emergency detargeting commands.

To perform these functions, the gimbal/actuator must be capable of:
a. Elevation travel of -3° to $+93^{\circ}$. The azimuth travel will be at least $\pm 165^{\circ}$ governed only by the location of the limit switches;
b. Achieving an azimuth slew velocity to travel 180° in 15 minutes and an elevation slew velocity to travel 93° in 15 minutes in wind velocities $\leq 15 \mathrm{~m} / \mathrm{s}$;
c. Positioning the reflector to the commanded position in wind velocities (including gusts) $\leq 15 \mathrm{~m} / \mathrm{s}$ (35 mph); and to horizontal stow in wind velocities $\leq 22 \mathrm{~m} / \mathrm{s}$ (50 mph);
d. Positioning the reflector to the commanded position within 0.50 mrad standard deviation (1 sigma) for each gimbal axis while tracking in negligible wind and under normal operating conditions;
e. Positioning the reflector to the commanded position within 3.0 mrad/axis due to all effects in $12 \mathrm{~m} / \mathrm{s}(27 \mathrm{mph})$ wind under the worst conditions of wind direction and heliostat orientation;
f. Withstanding loads imposed on it from the reflector assembly due to winds of $\leq 22 \mathrm{~m} / \mathrm{s}$ when the reflector is in any position; and of $\leq 40 \mathrm{~m} / \mathrm{s}$ when the reflector is in the horizontal (stowed) position; and
g. Interfacing with the reflector assembly and the pedestal assembly.

1.3.3.5 Drive Motor Requirements

Motors are required to rotate the input drive shafts of the elevation and azimuth assemblies. The motors are to be electric powered and of sufficient size to satisfy all operational input torque requirements. They must be capable of driving the elevation and azimuth assemblies so as to achieve elevation tracking rates of $6.2^{\circ} / \mathrm{min}$; and azimuth tracking rates of $12^{\circ} / \mathrm{min}$. The motors must be capable of driving the gimbal/actuator through 93° of elevation travel, and azimuth travel of 180°. Motors must be environmentally capable of operation for 30 years with no scheduled maintenance.

1.3.3.6 Sensors Requirements

a. Motor Shaft Revolution Counters

It is necessary to monitor and quantify motor shaft rotation. The quantization must be of sufficiently small increments that the gimbal/actuator can meet its pointing accuracy requirements. The motors must be controlled in a smooth and stable manner. In addition, the sensors must be compatible with the use of a microprocessor for closing the motor control loops; provide positive identification as being forward or reverse motion pulses; and provide correct sensing of motor shaft rotation regardless of shaft velocity.

b. Zero Reference Sensors

Because incremental revolution sensors were selected for the design, zero reference sensors are required on both axes to show when the unit passes a zero reference position. The zero reference sensor will be used to initialize or check the unit position count in the computer memory. Indication of the reference position must be repeatable within 0.01 milliradians when traveling in a specified direction across the point. The reference mark signal must also provide a proximity warning that the reference point is close enough to occur within 3.5 ± 0.5 seconds of time if the unit is moving at maximum slew rate.

1.3.3.7 Pedestal/Foundation Requirements

The pedestal/foundation consists of both the above-ground and below-ground structure required to support the gimbal drive and reflector assembly. The design requirements for the pedestal/foundation are summarized in Table 1-7. The requirement governing pedestal deflection reflects the BEC unified pedestal/foundation design approach, in constrast to composite designs which incorporate a separate foundation and pedestal. In addition, it was decided to tighten the deflection requirement for the pedestal in order to relax the performance requirements for the gimbal drive system.

Characteristic or Function	Design Requirement
Support Heliostat	Support 13,650 lbs. in specified soil conditions
Resist Bending Forces	Deflection at top of pedestal $\leqq 0.9$ mrad in 27 mph wind
Resist Plastic Deformation Forces and Rotation	Plastic deformation of pedestal in soil $\leq 0.45 \mathrm{mrad}$ when subjected to 50 mph wind
Design Life	30 years with minimum maintenance

1.3.3.8 Heliostat Control Hardware Requirements

The prototype control components are required to: provide HAC, HFC and HC functions for two heliostats with an error contribution less than .4 mrad (1 sigma) per axis; provide protection against lightning strikes; and provide protection against 70% overvoltage surges on the power lines.

The principal functions which the prototype controls are required to perform are: startup (apply power, determine heliostat's status, and display status to operator); transition (bring reflected images to standby target position); track (move images to target and continuously direct heliostat image on target); defocus (bring heliostat images from target to standby position); stow (position heliostat reflectors in horizontal or other planned positions, e.g., for maintenance, overnight stow, etc.); shutdown (store all pertinent operating data on disk and exit control program). The prototype controller must also permit the operator to command the heliostat images to any selected position, and to locate the reference marks on each axis.

1.3.3.9 Control Software Requirements

Software design requirements were derived from the Sandia specification (reference 1-1), and the computer hardware selections. The requirements derived from the collector subsystem specification concerned primarily aiming accuracy; 15-minute stow/positioning; south-field gimbal lock resolution in 15 minutes; and a beam control strategy to protect personnel and property.

The requirements necessary to be compatible with the hardware design were primarily to provide a method of locating the reference marks and initializing the motor position counts; provide a method to protect the motors against burn-out due to stalling; and to assist in compensating for jack-screw non-linearity. In addition, methods were needed to compensate for gravity sag; correct non-verticality errors in the gimbal/actuator assembly mounting; compensate for non-orthogonality errors between the elevation axis and azimuth axis; and to provide for operator command to the control system.

APPENDIX B

Azimuth Drive/Bearing Assembly

Test Data
for

Gimbal/Actuator Drive Assembly
for

Boeing Second Generation Heliostat

APPENDIX B

AZIMUTH DRIVE/BEARING ASSEMBLY

TEST DATA

Section		Page
1.0	INTRODUCTION	$\mathrm{B}-3$
2.0	CONCLUSION	$\mathrm{B}-3$
3.0	DISCUSSION	$\mathrm{B}-4$
	3.1	DRIVES
	3.2	TEST PROCEDURES
	3.3	TEST SETUP
	3.4	TEST RESULTS - UNIT 1
	TEST RESULTS - UNIT 2	$\mathrm{~B}-4$
		$\mathrm{~B}-4$
		$\mathrm{~B}-8$

B-1 TEST DATA SUMMARY CHART B-13
B-2 GRaphicai and tabulated test results - Unit $1 \quad \mathrm{~B}-15$
B-3 GRAPHICAL and tabulated test results - unit 2 B-31
B-4 PHOTOGRAPHS OF TEST UNIT B-42
B-5 TEST PROCEDURES B-50
B-6i CALIbration curve - torque transducer B-51

INTRODUCTION
This report describes the findings of tests performed at Winsmith on two identical prototype azimuth drive／bearing assemblies for the Ford Aerospace \＆Comunications Division．

Tests were conducted on the period from July 21 through July 25 ， 1980.

2．0 CONCLUSION
The performance tests were successfully completed on the two prototype assemblies．No major problems developed during any part of the evaluation period．The units were partially inspected at the con－ clusion of the testing and were found to be in excellent condition．

Specifically unit \＃l performed slightly better than Unit 非 by showing a higher operating efficiency，lower power consumption and lower gear mesh loss．Unit 非2 showed larger torsional compliance．．．and this discrepancy is discussed elsewhere after retesting at FACC．The backlash was also very much less on Unit 非2．

The following discussion was submitted by Winsmith．

3.9 DRIVES

The two drives tested are identical and identified as UNIT 1, serial number D651133-2D-1; and UNIT 2, serial number D651133-2D-2. Reference also to Winsmith Outline Drawing D651133-2 and Assembly Cross section Drawing D651133-18. Both primary and secondary stages were filled to proper oil level with our synthetic gear lubricant, Mobil SHC 626, part number 51,001.

3.2 TEST PROCEDURES

Testing procedures were in compliance with those originally submitted by P. B. Nanava ti of Ford Aerospace dated 1/4/80 and an approved version by R. zajac of winsmith dated $6 / 5 / 80$. (See Section B-5)

3.3 TEST SETUP *

3.3.1 GENERAI

The reducer is shown in photographs 1 and 2 prior to being fixtured and instrumented for test purposes. All of the tests performed on both units were in an identical test setup, with the exception of the running torque and efficiency. UNIT 1 (5.N. D651133-2D-1) was mounteci in a horizontal plane and loaded on the output by a disc brake dynomometer and ran continuously. UNIT 2 (S.N. D651133-2D-2) was mounted in a vertical plane 90 degrees to UNIT 1. The load was created by intemittently running the drive and raising a weight on an am attached to the output flange. The lubricant was drained out of the secondary stage during this test.

The drive was powered by a 3/4 EP, 1750 RPM motor through the extension end of the input shaft on the primary stage. Many of the tests were performed two or three times to establish repaatability.
3.3.2 INSTRUMENTATION

Oil temperature in the primary stage was not able to be monitored because of the limited space to instail a themocouple or other sensing device.

Where the input torque was measured staticaliy, a $0-6$ in.-1b. torque wrench was used.

[^0]A strain-gage type torque transcucer was installed between the drive motor and input shaft to measure running torque. Photograph 3 and 4 show the calibration of the torque transducer and related readout instruments. A copy of the calibration curve is in Appendix B6 . Photographs $8,9, \& 10$ show the transducer installed.

Motor speed is determined electronically by detemining the frequency at the shaft. A magnetic pickup is located near the motor shaft.

3.3.3 RUNNING TOROUE AND EFFICIENCY

In tests on UNIT 1 , torque wes applied in both directions of rotation by applying hydraulic pressure to a disc brake attached to the output flange of the drive. See Photographs 5, 7, \& 8.

In tests on UNIT 2, torque was applied in only one direction by funning the motor intermittently and raising a weighted arm attached to the output flange of the drive. Data was also collected on lowering various loads. See Photograph 14. The operating load is 3900 Et.-lbs. (46,800 in.-1b.) and the maximum load is 7800 ft.-1bs. (93,600 in.-1bs.)

3.3.4 BREAR IOOSE FRICTION TORQUE

This was measured in a static condition with no load on the drive. The drive motor was temporarily removed and a jorque wrench, installed on the torque transducer. This was also determined for a load condition in one direction.

UNIT 1 was floor mounced and UNIT 2 was sidewall mounted.

3.3.5 BACK_ASH

Overall system backlash was detemined for both units in a floor mounted position. This allowed the planetary frame element to be resting on the base and not on the ring gears.

A dial indicator was installed between the base and cover. Backlash was measured at the input shaft and expressed in jegrees or number of turns.

Photograph 9 shows the graduated dial plate used to measire the rotation. Fhotographs 6, 11, and 12 show the position of the dial indicator.

3.3.6 TORSIONAL STIFENESS

Static torsional loads were applied to the output flange on the bese in both directions, and deflection was measured between base and cover. See Photographs 13 and 15. Maximum load applied in each eirection was 2,300 ft.-1bs. or 27,600 in.-1bs.

The torque was applied by hanging a weight at the end of an am connected to the output flange on the base of the drive. At the same point, a scale was attached and fastened to an overhead crane.

The torque apolied in a downward direction or CCW caused by the weight is expressed:

$$
-T=[(W T+A R M W T)-(S C A L E R E A D / N G)] \times L
$$

When the scale reading is zero maximum negative torque is realized. When the scale reading equals the total weight of hanging weight plus arm weight, no torque is applied.

The torque applied in an upward direction or $C W$ caused by the pull of the crane is expressed:

$$
T T=[(S C A L E R E A D N G)-(\omega T+F R M \omega T)] \times L
$$

When the scale reading is twice the total weight plus arm weight, maximum positive torgue is raalized.

Distance from the centerline of the output flange and dial indicator is 12.7 inches and the angular deflection is shown in milliradians.

A static elevation moment was applied to the drive in both directions. Dial indicators were located in top and bottom positions. With the drive sidewall mounted, an I-beam was attached to the flange on the cover. A weight was placed at the end of the beam. At that same point, a scale was attached and fastened to an overhead crane. Procedure is similar to the torsional stiffness test in 3.3.6. See Photographs 16 and 17.

The moment applied in a downward direction caused by the weight is expressed:

$$
-M=[(W T)-(S C A L E R E A D \mid N G)] \times L
$$

The weight of the beam is neglected here.
The moment applied in an upward direction caused by the puli of the crane is expressed:

$$
+M=[(S C A L E \text { READ/NG)-(WT)]} \times L
$$

Deflection is expressed in total milliradians, the sum of the top and the bottom dial indicators. Distance between indicators is 25.63 inches.

3.3.8 BACXDRIVING

A 7,800 ft.-1b. or 93,600 in.- 1 b . load was applied to the drive to determine if backdriving would occur. A dial indicator was installed on the input shaft to detemine any movement. The drive was side-wall mounted.
3.4 TEST RESULTS $=$ UNIT 1

Tablulated data and graphical results are located in Appendix B-2 covering Onit 1.
3.4.1 TORQUE, RORSEPONER, AND EFFICIENCY

Refer to Figures 1, 2, and 3. Test was perfomed in both directions of rotation, reference being made to the extension end of the input shaft.

"CCW" ROTATION

"CW" ROTATION

```
No load input torque = 3.9 in.-1bs.
No load input E. P. = 0.1110 H. P.
No load input speed = 1793 RPM
Efficiency e 46,800 = 12.73%
Input torque e 46,800 in.-1bs. = 7.0 in.-Ibs.
Horsepower input @ 46,800 in.-1bs. = 0.1986 H. P.
Gear Mesh Loss 46,800 in.-1bs. = 0.0876 H. P.
where: G.M.L. = . 1986 - . 1110
    G.M.L. = . 0876 H. P.
Overall performance in both directions of rotation was very
similar.
```

3.4.2 SREAK LOOSE FRICTION TORQUE

Break loose or friction drag torque was measured at 2.5 in.-ibs. at the input shaft and wes very consistent in three positions. This was a no load condition. See Figure 4.
$3 \cdot 4 \cdot 3$
3.4.5 MOMENT STIFTNESS

Repeatability of data for two eycles tested was good. Figures 10 and 91 show clearly the linearity between deflection and load. hysteresis was very low.

The moment was applied in both directions.

$$
\begin{aligned}
& \text { MOMENT STIFFNESS }=\frac{2 \times 23,850.1 N-L \Xi}{0.000206 \text { RADIANS }} \\
& \text { MOMENT STIFFNESS }=2.31 \times 10^{8} / N-L S / R A D \\
& \text { MOMENT COMPLIANCE }=\frac{1}{2.31 \times 10^{8}} \\
& \text { MOMENT COMPLIANCE }=0.43 \times 10^{-8} 1 R A D / N-L E
\end{aligned}
$$

3.4.6 BACXDRIVING

```
Applied a 7800 ft.-1b. or 93,600 in.-1b. load in both direc-
tions with no indication of the drive backdriving.
```

3.5 TEST RESULTS $=$ UNIT 2

Tabulated data and graphical results are located in Appendix B-3 for Unit 2.
3.5.1 TOROUE, HORSEPOWER, AND EFFICIENCY

Refer to Figures 12, 13, and 14. These are results taken during tests to raise a load on an attached anm on the output.
"CCW" ROTATION (RAISE LOAD)

No load input torque	3.4 in.-1bs.
No load input H. P.	0.0967 \%. P.
No load input speed	1793 RPM
Efficiency @ 46,800 in.-1bs.	10.49\%
Input torque ? 46,800 in.-Ibs.	$8.5 \mathrm{in} .-1 \mathrm{bs}$.
Input horsepower a 46,800 in.-lbs	0.240 H. P.
Gear Mesh Loss © 46,800 in.-1bs. where: G.M.L. $=.2407$-. . 0967	0.144 H. P.
G.M.L. =. 144 \#. P.	

3.5.2 BREAR LOOSE FRICTION TOROUE

Figure 15 shows the break loose friction torque at the input shaft between 2.0-2.3in.-1bs. in one direction and 2.5-3.0.in.-lbs. in the other direction. Data was consistent in three positions.

3.5.5 MOMENT STIFENESS

Repeatability of data for two test readings was good. See Figures 20 and 21. Linearity between deflection and load was very good. Hysteresis is still small.

$$
\begin{aligned}
& \text { MOMENT STIFFNESS }=\frac{2 \times 23,850 / N-L B}{0.000 .234 \text { RADIANS }} \\
& \text { MOMENT STIFFNESS }=2.04 \times 10^{8} / N-L B / R A D
\end{aligned}
$$

$$
\text { MOMENT COMPLIANCE }=\frac{1}{2.04 \times 10^{8}}
$$

$$
\text { MOMENT COMPLIANCE }=0.49 \times 10^{-8} \mathrm{RAD} / 1 \mathrm{H}-\mathrm{E}
$$

3.5 .6

SACXDRIVING
A torque of $7800 \mathrm{ft} .-1 \mathrm{lbs}$. or $93,600 \mathrm{in} .-1 \mathrm{bs}$. was applied to the output shaft without any movement on the input confiming the non-backdriving condi=ion.

APPENDIX B-I
TEST SUMMARY CHART
TEST DATA SUMMARY CHART

FORD AEROSPACEAZIMUTH DFIVE-UNITSE\&Z

${ }^{I_{T_{F_{M}}}}$	PARAMETER	UNIT1	UNIT?
1	NO LOAD INPUT TORQUE_ _ _ _ _ " " " SPEED_ _ _ _ _ _ - RPM	$\begin{gathered} 3.45 \\ 1793 \end{gathered}$	$\begin{aligned} & 3.40 \\ & 1793 \end{aligned}$
3	".-. $\quad \therefore "$ HORSEPOWER- - - - HP	0.0381	0.0967
	AT LOAD TORQUE OF $46,800 \mathrm{~N}-L \mathrm{~B}$:		
4	EFFICIENCY_ - - - - - - - $\%$	12.82	10.49
5	INPUT TORQUE _ _ _ - _ _ _ IN-LB	-6.95	\% 0.50
6	INPUT HORSEPOWER_	0.1971	0.240
7	GEAR MミSH LOSS	0.099	0.144
8.	BREAK LOOSE FRICTION TORQUE - - IN-LB	2.5	2.5
3.	BACK'LASH @ INPUT_ - - - DEGREES	3105	260
10	TORSIONAL STIFFNESS_-IN-L3/RAD.	0.302×10^{3}	0.169×10^{0}
-12	TORSIONAL COMPLIANCE--- - RAD./IN-LB	3.3×10^{-8}	5.92×10^{-3}
-12	MMOMENT STIFFNESS - - - -IN-L3/RAD.	2.31×10^{8}	2.04×10^{2}
13	MOMENT. COMPLIANCE_	0.43×10^{-8}	0.49×10^{-3}
74	BACKDRIUING --- ---	\cdots NO	- NO

DATA"IS AVERAGED FOR EACH UNIT WHERE MULTIPLE DGTA TAKEN

APPENDIX $B \cdot 2$
test results - UNIT 9

 DATA TAKEN UNDER ETNTLATED RDNNING AGAINTGAGISC-ERZREGEOA UNIT EOOORENOTNTED

FIG 4 - INPUT BREAKAWAY TORQUE

FORD AEROSPACE AZIMUTH DRIVE S.N.D651133-2D-1 UNIT 1

IOAD ON	POSITION(1)	INPUT	TORQUE ${ }^{(2)}$
$\frac{O U T P O T}{\text { CIN-LB }}$		$\frac{C W}{(N-L B)}$	$\frac{C C W}{(1 N-L 3)}$
NONE	-----1	$2: 0$	2.5
NOEEE.	2	2.5	--2.5
NONE	3	2.5	2.5
$-46800^{(3)}$	--. 3	-	-7:5\%

(I) ORIENTATION OF OUTPUT APPROX:I20届PART (2) ETATICALLY DETERMINED; O-6IN-LB TQ.WRENCH (3.)TORQUE MEASUREDIOIDRIVE KOAD

FORD AEROSPACE AZIMUTH DRIVE S.N. D651133-2D-I UNIT 1

POSIT10N(1)	(TOTAL TURNS OELNEUT SHAFI)	$\frac{\text { BACKLASH }}{\text { (DEGRESSOUTPUT) }}$
- - - - -		
-1	$\cdots \quad 83 / 4$ TURNS	-0.0600°
2	811/2 - - - - - -	0.0583
3	-51/4	00360°

(1) ORIENTATIONOF OUTPUT APPROX 120° APART
(2) $B A C K L A S H=\left(T U R N S\right.$ ON INPUT) $\times 360^{\circ}$

DATMECR =RST REAE:ME. AT FIRETMEUSITION AB?GWS:MRLCATE -2 TVUNS SESUENCE
-

GT IFIRD POEFIIGN
ASRNYO NOACSTE
LSADING SEGUSACE

FIGS - TORSIONAL STTFNESSS
FORD AEROSPACE AZIMUTH DRIVE SN. D6E1133-2D-1 UNIT 1

(1) SCALE ARM LENGTH $=100$ IN. TORQUE CHANGES DIRECTION:AT.A.SCALE. GODOT 276 I 2] EFFECTIVE TORQUE ON UNIT S. ZERO

$\frac{5 C A C E^{(1)}}{(C 3 S)}$	$\frac{\text { DEFEECION }}{(\operatorname{IN})^{-}}$	$\frac{S C A L E(1)}{(L B S)}$	DEFLECTION
1ST READING + 2NE POSITION		$\begin{aligned} & 290 \\ & 275^{(2)} \end{aligned}$	$\begin{aligned} & .0202 \\ & .0198 \end{aligned}$
$\begin{array}{r} 0 \\ 65 \end{array}$	0 -.0008 .0013		
-110		260	--0055
160	$-.0022$	$\begin{aligned} & 245 \\ & 230 \\ & 210 \end{aligned}$. 0048
215			39
230.......	. 00041	160	.0027
$245 \cdots$	-0048	110	. 0018.
260	-0059	60	. 0008
	016		003
$-\frac{290}{308}$	$\begin{array}{r} 0198 \\ -0202 \end{array}$	2NO READING	2ne rosition
320	-0208		-
335	. 020		-. 00005
90	.0218	112	.0010
40	- 22.5		0010
450	. 0230	160 215	$\square 0033$
554	-. 0238	230	-.0038
-485	. $0231{ }^{-}$	245	$.0045$
490	-0228		$.0055$
384 335	-0220	- 275^{6}	
35	02	290	00198°
320 305	$.0210 .$	305	.0204
305	. 0208	30	.0210

(I) SCALE ARM LENGTH $=100 \mathrm{IN}$.

TORQUE CHANGES DIRECTION AT, A SCAEET EOADOF276" (2) EFFECTIVE TORQUE ON UNIT IS ZERO

FORD AEROSPACE. ALIMUTH DRIVE S.N. D651135-2ロー1 UNIT 1

$\frac{S C A\left[E^{(1)}\right.}{(\Gamma S S)^{-}}$	$\frac{\text { DEFLECION }}{\text { CIN. }}$
$\begin{array}{r} 335 \\ 390 \\ 440 \\ \hline 490 \\ \hline \end{array}$	$\begin{array}{r} .0210 \\ .0219 \\ -.0225 \\ \hline .0230 \\ \hline \end{array}$
$\begin{aligned} & 550 \\ & 490 \end{aligned}$	$\begin{array}{r} .0237 \\ .0232 \end{array}$
$\begin{aligned} & 440-1 \\ & 390 \end{aligned}$	$\begin{aligned} & -0228 \\ & : 0222 \end{aligned}$
$\begin{aligned} & 320 \\ & 305 \end{aligned}$	$\begin{aligned} & 0210 \\ & -0208 \end{aligned}$
290	.0203
275^{t}	. 0197
260	- 0092
245	.0050
3	0045
-252	.0036
-160	- 0022
$\cdots 110$.0015
60°	. 0050
- 0 -	1.0005
1ST READING	3 POPSTTTON
$\begin{aligned} & 0 \\ & 60 \end{aligned}$	$\begin{gathered} 0 \\ .0004 \end{gathered}$

(I) SCALE ARM LENGTH $=100 \mathrm{IN}$.

TORQUE CHANGES DIRECTION AT A SCALE. EOADOF276E (2) EFFECTIVE TORQUE ON UNIT IS ZERO -

FORD AEROSPACEAZTMUTH DRIVE S.N. D651133-22-1 UNITI

(I) SCALE ARM LENGTH $=100 \mathrm{IN}$. TORQUE CHANGES DIRECTION..AT. A SCALE-LOADOFZ76: (2) EFFECTIVE TORQUE ON UNIT IS ZERO

FIG 11 -MOMENT STIFFNESS

FORD AEROSPACE AZIMUTH DRIVE S.N. 265:133-20-1 UNIT 1

(i)SCALE ARM LENGTH=53iN.
2) EFFECTIVE MOMENT ON UNIT IS ZERO AT 45OLB.

FORD AEROSPACE AZIMUTH DRIVE SN. DES1133-2D-I UNIT 1

(i) SCALE ARM LENGTH $=53 \mathrm{iN}$.
2) EFFECTIVE MOMENT ON UNIT IS ZERO AT 450 LB . FORD AEROSPACE AZIMUTH DRIVE S.N. D65!133-20-. UNIT1

$\frac{S C A L E^{(1)}}{(L S S)}$	$\frac{\text { TOP }}{(1 N)}$	BOT. DEFLECTION
220	+.0002	-. 0008
115	$\begin{array}{r} +.0000 \\ -.0001 \end{array}$	-0003 $+.0001$
	---	- . $-\cdots$
\cdots	=--	
\cdots	-T --7	- - - -
- --,	-	--
----	---	
--- - - - -	.	
--		
$\cdots \cdots$	-	
-- - - - - - - - -	-	--\%
\therefore	-	
二1)		
- -		
-	- ---.-.-....	-

(1) SCALE ARMLENGTH $=531 \mathrm{IN}$.

APPENDIX B-3
TEST RESUTTS - UNIT 2
KOE Kixivicio

FIG13-EFFIC:EVEY

\qquad
\qquad

- 1

FIG14－EFFICIENCY DATA

FORD AEROSPACE AZIMUTH DRIVE S．N．DGSIIE3－2D－2 UNIT 2 DATA TAKEN UNDER SIMULATED LOAD RAISING WEIGHTS ON A TORQUE ARM WITH UNIT WALL MOUNTED

$\frac{\angle O A D}{\text { CONDITION }}$	$\frac{\angle O A D^{(1)}}{\frac{W E J G T T}{}}$	$\frac{T O R Q U E}{\frac{A R M}{(I N)}}$	$\frac{\text { OUTPUT }}{\frac{T O R Q U E}{(O R Q)}}$	$\frac{\text { OUTPUT }}{\text { H.P. }}$	$\frac{\frac{I N P U T}{} \frac{V O L T S}{(V D C)}}{}$	$\frac{\frac{\text { INPUT }}{} \frac{\text { TORQUE }}{}}{\text { (IN-LB) }}$	$\frac{\operatorname{INPU} T^{T^{3}}}{R E T .}$	$\frac{\frac{I N P U T}{S P E E D}}{(R P N I)}$	$\frac{\text { INPUT }}{\text { h．P．}}$	$\frac{E F F}{(c / \%)}$
NO LOAD． OPERATING MAXIMUM	$\begin{gathered} 0 \\ 0 \\ 450 . \\ 450 . \\ 930 \end{gathered}$	$\begin{gathered} 0 \\ 9 c \\ 42.33 \\ 85 \\ 94.6 \end{gathered}$	$8 \leq 50$ 27600 46800 96600	0.00463 0.01492 0.02525 0.05187	$\begin{aligned} & .013 \\ & .015 \\ & .027 \\ & .0305 \\ & .0465 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 4.0 \\ & 7.5 \\ & 8.5 \\ & 13.3 \end{aligned}$	$\begin{gathered} c c w^{(3)} \\ -\left.\right\|_{1} \\ c c w \end{gathered}$	$\begin{aligned} & 1792.94 \\ & 1792.59 \\ & 1789.25 \\ & 1785.38 \\ & 1776.67 \end{aligned}$	0.0967 c．1157 0.2129 $0.24 C 7$ 0.3749	$\begin{aligned} & -7 \\ & 4.07 \\ & 7.01 \\ & 10.45 \\ & 13.83 \end{aligned}$
NO LOAD		$\begin{gathered} 0 \\ 90 \end{gathered}$				4.5 -4.0	$c w^{(3)}$	1793.70 1793.90		4.67
	450	＜2．33	27600	0.0149	． 005	2.7		1794.24	0.0768	19.47
OPERATING	450	85	46800	0.0253	． 0009	4.0		1793.48	0．11E8	こて．こと
MAAXIMUM	1930°	94.6	56600	0.05234	． 011	4.5	CW	1792.80	0.1280	4c． 89

（1）$E A E$ WEIOM－ADDED ON END OE TORQUE ERM
（E）TOTAL TOFQUE IS SUM OF LOAD WEIGHT AND WEIGHT OF PKM（ESSOIN－SR） ELCCW＂．ROTATION KAISES LOAD＂WNLE＂＂CW＂LOWERS IOFD

LOAD ON	POSITION		
OUTPUT	INPUT	TORQUE (2)	
(IN-LB)		CW	COW
NONE	$1 N-L E)$	$(/ N-L E)$	
NONE	2	2.0	2.5
NONE (3)	2	2.0	3.0
$3 I O S O$	2.3	3.0	

(2) STATICALLY DETERMINED
TORQUE TO RAISE UP LOAD

FIG16-BACKLASH
FORD AEROSPACE AZIMUTH DRIVE SN. DGS1133-2D-2 UNIT?

1) ORIENTATION OF OUTPUT APPROX. 120° APART
(2) BACKLASH $=\frac{B A C K L A S H}{52495}$ INPUT

$\frac{5 C A C E^{(1)}}{(I S S)^{-}}$	$\frac{\text { DEFLECION }}{-(1 N:)^{-}}$
FIRST	READING
$\begin{gathered} 0 \\ 75 \end{gathered}$	
40	.0021
200	-.0032
305	-.0086
$\begin{aligned} & 340 \\ & 3.50(2) \end{aligned}$	$\begin{aligned} & 21 \\ & 022 \end{aligned}$
$36_{6} 5 \cdots$	226
-400	.0250
50	-029
500	$\cdots .0354$
$550-$	39
630	.0478
-690	.0542
600^{-}	.0542
495	053
390	.0512
330	0428
300	0348
- 250	.0302
160	22
	0.61
	-. 0092

(1) SCALE ARM LENGTH $=90$ IN.
—TORQUE CHANGES DIRECTION AT A SCALE EOADOF 3451 IO
(2)EFFECTIVE TORQUE ON UNIT IS ZERO
(3)CHECKED ALL MOUNTING BOLTS FOR TIGHTNESS FIRST
\qquad

FIG 21 -MOMENT STIFFNESS

FORD AEROSPACE AZIMUTH DRIVE SN. D651133-20-2 UNIT 2

(1)SCALE ARMLENGTH=53 IN.
(2) EFFECTIVE MOMENT ON UNIT IS ZERO AT 450 LB .
FIG21 - MOMENT. STIFFNESS
FORD AEROSPACE AZIMUTH DRIVE S.N. O6Si133-20-こ
UNIT 2

$\frac{S C A L E^{(1)}}{(L B S)}$	TOP DEFLECTTON	BOT. DEFLECTION
	SECOMD READINGS	-
- -	-	0
Tro -	I- ± 00003	-.0003
300 460	--7.0008	-.0011-
--59	$\underline{-1.0012}$	-
760	F0018	-.0028
$9 / 0$		$=.0028$ $=.0038$
$450(-2)$	7,00\%	- $=.0038$
0	0	$\underline{=0.0017}$

---	----	
-		
-		
		-
- -		------- --
	-	
		-

(1) SCALE ARM LENGTH $=53 \mathrm{iN}$.
(2) EFFECTIVE MOMENT ON UNIT IS ZERO AT 450 LB.

appendix B-4
 PHOTOGRAPRS OF TEST UNIT

All photographs Eypical for Units $1 \& 2$ except \#14-Unit 2 only.

INDEX TO PHOTOGRA?HS

IN APPENDIX B-4

PHOTOGRAPH 2:	Unit 1, prior to installation of test fixturing and instrumentation. Unit 1, another view of basic arive.
PHOTOGRAPH 3:	Static dead-weight calibra=ion of torque transducer used on input shaft torque measurements.
PHOTOGRAPH 4:	Instrumentation used during testing.
PHOTCGRAPH 5:	Unit 1, shown fully inscrumented in a test stand. A disc brake assembly provides a means oi dynamically loading the drive.
PHOTOGRAPH 6:	Unit 1 , sloseup of the drive whth motor removed. The dial indicator is used to determine backlash. No-load torsue and breakaway torque are determined here also using a torque wrench.
PHOTOGRAPH 7:	Unit 1, technician monitors backlash test.
PHOTOGRAPH 8:	Uni $=1$, ancther view of the overall test stand and drive unit.
PHOTOGRAPH 9:	Unit 1, closeup view of the torque transducer and graduated dial plate used in backlash measurements.
PHOTOGRAPH 10:	Unit 1, closeup view of drive.
PHOTOGRAPH 11:	Unit 1, similar to above.
PHOTOGRAPH 12:	Unit 1, another overall look at drive with more detail to disc brake loading device.
PHOTOGRAPH 13:	Unit 1, showing the test stand inverted 90°. An output am is attached to the drive to provide a means of torsionally loading for stiffness tests.
PHOTOGRAPH 14:	Unit 2, shown being readied to raise the attached weight lead in an efficiency test.
PHOTOGRAPH 15:	Onit 1, measurement of torsional deflection can be seen. Note the attached weighted am and dial indicator.
PHOTOGRAPH 16:	Unit 1 , technician keeps an eve on tests to detemine moment or elevation stiffness.
PHOTOGRAPH 17:	Unit 1, a closer look at the two dial indieators used to determine moment stiffness.

PHOTOGRAPH 2

PHOTOGRAPH 3

PHOTOGRAPH 5

PHOTOGRAPH 6

PHOTOGRAPH 12

PHOTOGRAPH 14

APPENDIX B-5

TEST PROCEDURES

Refer to Appendix E-11 of Second Generation Heliostat Design Report, Volume 1 - Appendices II: "Azimuth Drive/Bearing Test Procedures".

N

APFENDIX B-6
 TORQUE TRANSDUCER CALIBRATION CURVE

APPENDIX C
 Assembled Gimbal/Actuator Drive Assembly Test Data

for

Gimbal/Actuator Drive Assembly
for

Boeing Second Generation Heliostat

APPENDIX C
 ASSEMBLED GIMBAL／ACTUATOR DRIVE ASSEMBLY
 TEST DATA

Attached test results are data sheets referencing Test Procedures for the Gimbal／Actuator Drive Assembly issued as Appendix E－12 of Appendices II．All tests pertain to Unit 非 unless noted．

Section	Title	Page
5.1	Azimuth and Elevation Axis Orthononality	
	Unit 非	C－3
	Unit 非2	C－4
	Photograph	C－5
5.2	Dimensional Verification	C－6
5.3 ，	Azimuth Survival／Photograph	C－9
5.4	Azimuth Drive Motor	C－8
5.5	Azimuth Stiffness	C－10
5.6	Azimuth Travel Limits	C－16
5.7	Elevation Emergency Operational	C－16
5.8	Elevation Drive Capability	C－17
5.9	Elevation Stiffness	C－18
5.10	Elevation Survival／Photograph	C－25
5.11	Elevation Backdriving	C－25
5.12	Elevation Travel Limits	C－25

52

Ford Aerospace \&
Communications Corporation
Western Development
Laboratories Division
3939 Fabian Way
Fall Alto, California 94303
Come trent. No. :1530

5.0 DATA SHEETS

5.1 Azimuth and Elevation Axis Orthogonality
(a) Initial reading of dial indicator $a=0$ inches
(b) Final reading of dial indicator $b=\quad+0.0002$ inches
(c) Distance between two points, where dial indicator) $\quad 16 \cdot 75$ inches
touches, $\&$
(d) Axes non-orthogonality

$$
\begin{aligned}
& =\frac{a-b}{2} \text { Radians } \\
& =\frac{1.19 \times 10^{-5} \quad \text { Radians }}{=1.19 \times 10^{-5} \quad \text { Radian } * 57.296} \\
& =0.0007 \quad \text { Degrees. }
\end{aligned}
$$

NOTE: READING ON ELEVATION ABSOLUTE ENCODER SIDE IS HIGHER
ELAXIS ELEVATION ABSOLUTE
ENCODER SIDE.
AZ AXIS

BN $8 / 6 / 80$

Se

Ford Aerospace ${ }^{1}$
Communications Corporation
Western Development
Laboratories Division
3939 Fabian Way
Patio Alto. California 94303
Cote indent. No. 11530

5.0 DATA SHEETS

5.1 Azimuth and Elevation Axis Orthogonality
(a) Initial reading of dial indicator $a=+0.0006$ inches
(b) Final reading of dial indicator $b=\quad+0.0 / 62$ inches
(c) Distance between two points, where dial indicator) $\begin{aligned} & \text { touches, } \ell\end{aligned}$
(d) Axes non-arthogonality

$$
=\frac{a-b}{\ell} \quad \text { Radians }
$$

$=93 \times 10^{-5}$ Radians
$=\xrightarrow{93 \times 10^{-5} \quad \text { Radian } \div 57.296}$
$=0.0534$ Degrees
NOTE : READING ON ELEVATION ABSOLUTE ENCODER SIDE IS HILACR.

$$
\text { PAN } 8 / \varepsilon / 80
$$

ORTHOGONALITY TEST

Sen

Fore Aerospace $\&$
Communications Corporation
Western Development
Laooratones Division
3939 Fabian Way
Plato Alto. California 94303
Cock lent. No. 11530

5.2 Dimensional Verification

Items (a.i) and (a.ii) shall be verified at FACC/WDI. Items (a.iii), (a.iv), (c), and (d) shall be verified at the torque tube subcontract facility. Items (a.v) shall be verified at the gimbal subcontract facility. Items of (b) shall be verified at the pedestal subcontract facility. All items verified at subcontract facilities shall be recorded in this section.
a. Overall dimensions
i) Height of elevation axis over base flange
ii) Offset between elevation and azimuth axes (4.50 ± 0.100)
iii) Distance between elevation axis and torque tube center line.
iv) Distance between elevation axis and upper pivot point of actuator.
v) Distance between elevation axis and lower pivot point of actuator.
$=21.479$
$=4.53$
,
$=\{$ Fin irc. in
$=\{$
$=10.292$ INCH
b. Interface dimensions to pedestal

c. Interface dimension to torque tube flanges
i) Mounting hole diameter
ii) Distance between adjacent holes
$=$
iii) Bolt circle diameter.............................
iv) Location of bolt hole with respect to elevation bearing and actuator pivot is located correctly
$=$
$=$
$=$ Per Drawing

5

Ford Aerospace \&
Communications Corporation
Western Development
Laboratories Division
3939 Fabian Way
Pale Alto. California 94303
Code lament. No. 11530
d. Perpendicularity of torque tube flanges and parallelism of flange axis to the elevation axis.
i) Torque tube flanges are parallel within
ii) Flanges are perpendicular to elevation axis within.....................................
$=\left\{\begin{array}{l}\text { Per } \\ =\{r a c u \text { irs }\end{array}\right.$
e. Clearance and accessibility (record findings)
i) Azimuth motor

ACCEPTABLE. MOTOR IS OVER THC OIL FILL pliIE. FIITJRE DRIVES WILL HAVE FILL PLUE ON DIAMETRICALLY OPPOSITE SIDE:
ii) Azimuth motor revolution sensors

ACCEPTABLE
iii) Azimuth zero reference sensor

ACCEPTABLE
iv) Elevation motor

ACCEPTABLE

ster

Ford Aerospace \&
Communications Corporation
Western Development
Laboratories Division
3939 Fabian Way
Pale Alto. California 94303
Coos rident. Na. 11530
v) Elevation motor revolution sensors

ACCEPTABLE
vi) Elevation zero reference sensor

ACCEPTABLE
5.3

Azimuth Survival Loading
List here any abnormalities observed during or after the test. None. No slippage at the tereus the te flanges. Drive operated subsequent iv survival loads. No effect of survival Coning.
5.4 Azimuth Drive Motor Capability Under Maximum Operational Loads

Can the motor drive against maximum operational torque without stalling?
(YES or NO)
Record comments or findings if any. THIS TLST WAS NOT PCRFORMCD AT FINAL ASSEMBLY. INPUT TORQUE REQUIRED FOR ARIUS OUTPUT TORLULI WAS TESTED AT AZIMUTH DRIVE VENDOR DURING RUNNINLE TORQUE AND EFFICIEAKY TESTING INPUT TORQUE REQUIRED TO DRIVE AGAINST OUTPUT TORDCNE FOR 35 MPA WIND WAS 8.5 INLES , (FIRST UNIT. THIS WAS 7.0 NNLBS) AND FOR 50 MPH WIND WAS 13.3 NLOS .
 OF 40% FOR 35 MPH WIND AND 120% FOR 50 mPH WORST DIRECTION WIND VELOCITIES. AS THESE MOTORS CANE OKLLOADOD DY ABOUT 200% FOR SHORT TIME DURATION, THIS 120% OVERLOAD WILL NOT HARM MOTOR PEPTOPMANECS.

AZIMUTH SURVIVAL LOADINE

52m				
Ford Aerospace α Communications Corporation Western Development Laboratories Division				
3939 Fabian Way Palo Alto. California 94303				
coar idome. No. 11530				
5.5 Az	Azimuth Drive Stiffness			
Torque	Dial Indicator Reading (Inches)		$\begin{gathered} \text { Reading Sum } \\ \text { (Inches) } \end{gathered}$	Rotational Angle (Milliradians)
	\#1	${ }^{152}$		
$\begin{array}{ll}148 & 30 \\ 272 & 55\end{array}$	-6.3	-9.0 -14.0	-15.3 -25.0	-0.28 -0.45
2725	- 11.0	- 14.0	-25.0 -33.5	-0.45 -0.61
39580	-15.5	-18.0 -21.0	- 33.5	-0.61 -0.73
543110	-19.0	-21.0	-40.0	-0.73
800162	-25.0	-26.0	-51.0	-0.93
1210245	-32.8	-29.0	-61.8	
1605325	-37.0	-34.0	-71.0	-1.29
2000405	-41.4	-38.0	-79.4	-1.44 -1.56 min
2321 470	-45.0	-41.0	-86.0	-1.56 min
2000405	-42.2	-41.0	-83.2	-1.45
1605325	-39.0	-41.0	-80.0 -72.9	-1.33
1200243	-35.2	-37.7		-1.18
800162	-31.2	-33.5	-64.7	-1.10
4.44100	- 28.0	-30.0	- 58.0	-1.05
34670	-25.8	-27.7	-53.5	-0.97
$183 \quad 37$	-21.8	-23.8	-45.6	-0.83
$0 \quad 0$	-13.0	-15.0	-28.0	-0.51
$-123-25$	-8.8	-11.0	-19.8	-0.36
$-262-53$	$+4.2$	$+2.0$	$+6.2$	$+0.11$
-370-75	+8.8	$+6.0$	+14.8	+0.27
$-4.44-100$	$+11.2$	$+8.7$	$+19.9$	$+0.36$
$\begin{array}{ll}-4.94 & -100 \\ -800 & -162\end{array}$	+17.7 +17.7	$+14.0$	$+31 \cdot 7$	$+0.58$
-1224-248	$+24.0$	$+20.0$	$+44.0$	$+0.80$
-1605-325	+28.6	$+25.0$	+53.6	$+0.97$
-20v0-405	+33.8	+31.0	+64.8	+ 1.30 mAx
$-2321-470$	$+37 \cdot 2$	$+34.2$	+71.	+1-20
-1975-400	+ 34.5	$+31.6$	+66.1	$+1.20$
-1580-320	30.9	$+27.8$	$+58.7$	$+1.07$
1185-240	+ +27.0	+ 23.8	$+50.8$	$+0.92$
-1185 $-790-160$	+27.0 +22.0	$+18.4$	$+40.4$	$+0.73$

с
(
4,

Because of the stiffness discrepancy found at Winsmith for unit 2, the gimbal actuator assembly using unit 2 was selected for all the tests run at FACC. During torsional compliance testing of the whole assembly at FACC, torsional compliance of just the Winsmith drive was also tested. In addition, unit I was also tested at FACC. Test results for unit 1 and unit 2 are plotted on the following page. From this plot and figure 6 of Winsmith test report, it can be observed that total angular rotation of unit 1 at Winsmith was same as total angular rotation of unit 1 at FACC. But when this plot is compared to Figure 18 of Winsmith test report, it is observed that Winsmith test result showed much higher angular rotation for unit 2. The plot on the following page shows that results for testing of both units at FACC were similar and only difference was due to different backlash of 2 units. At FACC, tests were performed by using pure torques in azimuth drives proper orientation (i.e., vertical azimuth axis). While at Winsmith, tests were performed with horizontal azimuth axis and without pure torque. From this, it can be concluded that somehow the instrumentation for unit 2 provided erroneous results.

Ford Aerospace \&
Communications Corporation
Western Development
Laboratories Division
3939 Fabian Way
Palo Alto. California 94303
Code Ident. No. 11530
5.6 Azimuth Drive Travel Limits

Record comments if any.
5.7 Elevation Drive Emergency Operation of Elevation Drive

Is it posible to drive elevation drive with drill motor? Y (Yes or No)
Record comments if any. No Né

Bras
Ford Aerospace \&

Communications Corporation

Western Development
Laboratories Division
3939 Fabian Way
Patio Alto. California 94303
Code dent. No. 11530
5.8 Elevation Drive Capability Under Maximum Operational Loads

Output Torque Induced $(1 b-f t)$	Elevation Angle (degrees)	Does the mo
7080	0°	No
10920	30°	No
11750	60°	No
6330	90°	No

Record comments, if any.
MAXIMUM OPERATIONAL TORQUE APPLIED BY
HANGING WEIGHTS AT A MOMENT ARM.
DRIVE WAS OPERATED FOR ABOUT 2 MINUTES in EACH CASE. NO OVERIICNTING Probleris.

Ford Aerospace \&
Communications Corporation
Western Development
Laboratories Division
3939 Fabian Way
Pablo Alto. California 94303
Code Indent. No. 11530

Pointing Error Angle $=.5 \mathrm{X}$ (maximum angle - minimum angle) $=0.87$ Milliradians.
DISTANCE BETWEEN DIAL INDICATORS $=17.1 \quad$ INCH.
ROTATIONAL ANGLE $=\frac{-\delta_{1}+\delta_{2}+\delta_{3}-\delta_{4}}{2 \times \text { DISTANCE BETWEEN DIALS }}$
DISTANCE BETWEEN FORCES $=30$ INCHES.
FORCES APPLIED AT 2 PLACES ON EACH FLANGE.
NOTE: 1. DIALS $1 \not \& 2$ ON ONE FLANGE \& $3 \& 4$ ON THE OTHER FLANGE.
COMPUTED ROTATIONAL ANGLE IS AVERAGE OF ROTATIONS AT BOTH FLAICCS.
2. POSITIVE ROTATION CAUSES -VE DIAL INDICATOR READINGS FOR DIALS 144 S +NE READINGS FOR DIALS $2 \$ 3$.

Fort Aerospace $\&$
Communications Corporation
Western Development
La00ratories Division
3939 Fabian Way
Patio Alto. California 94303
Cone lèenc. Na. 11330

DIAL INDICATOR

Pointing Error Angle $=.5 x$ (Maximum Angle - Minimum Angle)

$$
=\frac{1 \cdot / 2}{} \quad \text { Milliradians }
$$

DISTNCE BETWEEN FORCES $=30 \mathrm{iNCHES}$.
forces applied at 2 places on each flanGe.
NOTE $=1$. DIALS 142 ON ONE FLANGE $\& 3 \neq 4$ ON THE OTHER FLANGE. COMPUTED ROTATIONAL ANGLE IS AVLRAEC OF ROTATIONS AT BOTH FLANGES.
2. POSITIVE ROTATION CAUSES -VE DIIL INDIENTER RLADINES For DIALSI \& 3 \& tie RUminal fir DIALS 2 \& 4

2
Ford Aerospace \&
Communications Corporation
Western Development
Laporatontes Division
3939 Fabian Way
Pablo Alto. California 94303
Coat icent. No. 11530
5.10 Elevation Drive Survival Loading

List here any abnormalities observed during or after the test. NONE: NO SLIPPAGE AT THE TORQUE TUBE FLANGES. DRIVE OPERATED SUBSEQUENT TO SURVIVAL LOADS. NO EFFECT OF SURVIVAL LOADING
5.11 Elevation Drive Backdriving

Is the input shaft rotation observed when survival output torque is applied at elevation axis: \qquad (yes or no)

Record comments, if any.
5.12 Elevation Drive Travel Limits
+93.0 degrees to ${ }^{\circ}-2.94$ degrees
Record comments, if any.
AT +93.0 DEGREES THERE is ABOUT $0.25^{\prime \prime}$ GAP BETWEEN THE ACTUATOR NUT \& STOP. AT - 2.94 DEGREE THERE IS ALMOST NO GAP BETWEEN THE ACTUATOR NUT '\& STOP.

ELEVATION SURVIVAL LOADING

APPENDIX D

ACTUATOR SCREW AND NUT
TEST REPORT

FOR
GIMBAL/ACTUATOR DRIVE ASSEMBLY
FOR
BOEING SECOND GENERATION HELIOSTAT

OCTOBER 31, 1980

TABLE OF CONTENTS

Para. No.	TITLE	Page No.
1.0	SUMMARY	D-3
1.1	Scope	D-3
1.2	Conclusions	D-3
1.3	Recommendations	D-4
2.0	TEST PROCEDURE	D-6
2.1	Pre-Assembly Measurements	D-9
	2.1.1 Backlash of Each Nut	D-9
	2.1.2 Screw Thread Size	D-11
2.2	Assembly	D-11
	2.2.1 Nut Set Assembly	D-11
	2.2.2 Torque Required/Nut for Motor Sizing	D-11
	2.2.3 Blowers	D-15
2.3	Test Conditions	D-15
2.4	Test Measurements	D-16
	2.4.1 Daily Measurements	D-16
	2.4.2 Post Test Measurements	D-16
	2.4.2.1 Measurements Before Cleaning	D-16
	2.4.2.2 Measurements After Air Cleaning	D-16
	2.4.2.3 Measurements After Disassembly and Cleanup	D-16
3.0	TEST RESULTS	D-17
3.1	Bronze Nut	D-17
3.2	Polymeric Nuts	D-21
APPENDIX	TITLE	Page No.
D-1	THREE-WIRE METHOD FOR CHECKING THICKNESS OF ACME THREADS	D-26
D-2	NUT ASSEMBLY FRICTION TORQUE	D-27
D-3	NUT THREAD WEAR MEASUREMENT	D-29

1.1 Scope

This document identifies the test procedure and results for determining the durability of the stainless steel screw/non-lubricated nut elevation drive system proposed for use on the Boeing Heliostat Program.

1.2
 Conclusions

- A non-lubricated bronze nut on a stainless steel screw has no chance of fulfilling the expected service life.
- Under idencical service condicions, Delrin "AF" polymeric has better wear characteristics than Turcite " A " polymeric.
- Actual service nut wear values would be better than test results for the following reasons:
(a) The pitch line velocity for the thread in actual operation is about $1 / 5$ of the test case. Therefore, the generated heat due to friction will be less and the screw and nut marerials will be operating at a much cooler temperature, allowing polymeric nuts to operate within their specified temperature range.
(b) The actual load on the nut thread will not be constant as simulated in the cest (maximum gravity condition). Therefore, threads will see less average pressure than was subjected during testing.
- The maximum thread wear rate occurred when sand and water were applied simultaneously. The probability of this occurring at frequencies or durations long enough to be harmful is considered to be unlikely. Therefore, the nuts during testing were exposed to a more severe environment than they would nomally experience in actual operation.
- The stainless steel actuator screw did not show any significant measurable wear (<.OOl').
- Crack initialization occurred at the tip of the polymeric nut thread (See Figure 1).

1.3 Recommendations

(a) Delrin "AF" should be used as the material for the Boeing actuator nut.
(b) The thread should be relieved at both ends per Figure 2 to avoid overstressing this area.
(c) Other candidate polymeric materials should be tested along with new Delrin "AF" nuts. Screw speed should be reduced to keep nut temperature lower to avoid having to conjecture about temperature vs. life effects.

FIG. 1 NUT THREAD END CRACK

FIG. 2 PROPOSED METHOD OF THREAD RELIEF

Abstract

2.0 TEST PROCEDURE

The test plan was to test a variety of nut materials on a stainless steel actuator screw on an accelerated basis to simulace actual service conditions. The rest set-up, as shown in Figure 3, has the following features:

The test actuator is a Duff-Norton 2-ton traveling nut type with 65 inches of screw length. The screw material is cype 304 stainless steel with a tooth surface finish of approximately 63 RMS microinches. Nut materials and their properties are listed below in Table 1 and are shown in Figure 4 . The screw is mounted vertically, secured to the test fixture and driven by an AC motor through a 5:1 speed reducer. Electrical limit switches are installed to provide redundant control at each end of the stroke. Further, the motor is current limited so should the mechanism jam, the locked rotor motor current will cause a circuit breaker to trip before mechanical damage occurs. The fixture was tested to verify this feature pior to the operational portion of the test.

Table 1
Tested Nut Materials

	Delrin "AF"	Turcite "A"	Bronze "Dynalloy"
```Approximate tensile yield strength (psi)```	6,900	5,500	40,000
Static Coefficient of Friction on Steel (non-lubricated)	. 08	. 075	. 3
Approximate operaring temperature range (F)	-50 to 250	-50 50 170	-



Figure 3 Test Setup


ELEVATION
VIEW
PLON
VIEW

FIGURE - 4

The screw and all parts that contact the screw/nut threads were wiped clean with a pure solvent to remove oil and cutting fluids. The nuts were all inspected for pits, burrs, etc., and these defects corrected or noted prior to the start of testing. Each nut and load spring was numbered and identified for fucure reference.

The first half of the test was conducted indoors for a period equivalent to 15 years of linear travel, and the second half was conducted outdoors, where screw and nuts were exposed to the natural sun and dust environment in addition to the purposely induced sand and water spray. The test was run round the clock, seven days/week, except for brief downtime periods for measurements or repair.

The test set-up represents a scaled down version of the actual elevation drive system designed for use on the Boeing Heliostat Program. Basically, the test was conducted using a two ton drive unit wich corresponding screws and nuts in lieu of the full sized five con assembly being proposed for use. The differences between the test set-up and the actual unit have been sumarized in Table 2.

### 2.1 Pre-Assambly Measurements

Prior to assembly of the nut sets on the screw, the following measurements were made:
2.1.1 Backlash of Each Nut

The backlash of each nut was measured using a dial indicator to determine axial play between the nut and screw.

2.1.2 Screw Thread Size (Refer to Appendix D-1)

The screw thread thickness was measured, using the three wire method, both before and after the test, to detemine the amount of screw thread wear.

### 2.2. Assembly

2.2.1 Nut Set Assembly

The nut sets were installed back-to-back on the screw, and spring loaded as shown in Figures 5 and 6 to simulate the maximum elevation gravity undalance load which the actual nut will see during operation.

The three nut set assamblies were positioned on the actuator screw in such a way that each set would travel over one section of the screw without going over the travel zone of the adjacent nut assembly.

The unloaded assembly height was measured (from nut-end to nut-iend) and using two C-clamps over the end-plates, the springs were compressed to the required displacement. (Refer co Figure 7 for spring load-displacement curve.) The nuts were then rotated until they snugly contacted the plates and the $C-c l a m p s$ removed.
2.2.2 Torque Required/Nut for Motor Sizing (Refer to Appendix D-2)
The torque required to move each nut was calculated using
published values of friction coefficients. Subsequently, the actual
required torque was measured using a wrench and a spring scale. The
test results indicated that the coefficient of friction of the two
plastic materials is .09, very close to the published value of .08.


FIGURE 5



LOAD-DISPLACEMENT CURVE
FOR EACH COIL SPRING

EIGURE 7

### 2.2.3 Blowers

Compact blowers were installed on each end-plate of the nut assembly to dissipate the heat from the screw. This was found to be necessary because the screw speed during the accelerated life test was 8 times the heliostat screw RPM at slew and operating step speed, causing the nut temperature to approach the upper limit of allowable material temperature.

### 2.3 Test Conditions

The first half of the test was run free of dust or water in an indoor enviroment. The second half of the test was conducted outdoors to simulate sandstorms, dust and rain.

On the actual heliostat, the elevation drive screw is located at a height of approximately 10 feet off the ground. At this elevation, particles in the air are mainly light dust with very little sand. According to the Typical Mereorological Year (TMY) weather data for Albuquerque, the wind is greater than or equal to 10 mph only about $1.2 \%$ of the time. This wind velocity can cause dust and sand particles to lift. Thus the test set-up had sand and dust introduced by a blower once per workday during the second half of the test for a duration equal to ( 24 hrs ) ( 60 min ) ( $1.2 \%$ ) $\frac{(7 \text { days })}{5 \text { days }}=24.2$ min/workday. Weather data shows that rain occurs in Albuquerque approximately once pér week, therafore a heavy rain was simulated by applying water to the fixture on the 16 th , 22nd and 28 th day of testing. All simulated contaminants were applied while the test was running.

The dust used in this test was a fine sand (97-99 percent by weight $\mathrm{SiO}_{2}$ ) of angular structure, with the following size distribution by weight, using the U.S. standard sieve series:
a. $100 \%$ shall pass through a 100 -mesh screen
b. $98 \%$ shall pass through a 140 -mesh screen

### 2.4 Test Measurements

### 2.4.1 Daily Measurements

The test was run continuously except for a brief period each workday in order to perform the following measurements:

- Overall height of each set to the nearest .001".
- Temperature of nut and screw thread surface while the nut was traveling over the screw.
2.4.2 Post Test Measurements
2.4.2.1 Measurements Before Cleaning

The torque required to turn each set of nuts was measurad. This measurement was made without modification to che fixture after shutting down the test.
2.4.2.2 Measurements After Air Cleaning

The fixture was thoroughly cleaned by blowing compressed air on it to remove any clinging particles. The heigit of each aut set and the endplate-to-endplate height were measured and recorded.
2.4.2.3 Measurements After Disassembly and Cleanup -

The nut sets were removed from the screw and all parts were thoroughly cleaned using air or water. All parts were visually inspected and nut thread wear measurements were made using ball measurement technique described in Appendix D-3.


#### Abstract

3.1 Bronze Nut

The first test was done using only the bronze "Dynalloy" nut assembly on the bottom part of the actuator screw. After the first hour of this test, the nuts and their traveled portion on the screw became severely worn and damaged (see Figures 8 and 9 ). The temperature on the screw surface and the nut was estimated (although not measured) to be in excess of $300^{\circ} \mathrm{F}$. Therefore, it was decided to conclude testing of the bronze nut.


The key results Erom the testing of the bronze "Dynalloy" nut are as follows:

0 The non-lubricated bronze nut severely damaged the stainless steel screw threads. Sharp corners of the threads were rounded and bronze particles were bonded to screw threads due to excessive heat generated by friction.

- Average nut thread wear as measured by three different methods was .080 after 2500 inches of linear travel (equivalent to 45 days of actual service life). This is illustrated in Figure 10.




Nut Wear vs Total Travel

Figure 10.

### 3.2 Polymeric Nuts

Due to the acceleraced traveling rate in the test set-up, the temperature on the screw surface was measurad to be approximately $180^{\circ} \mathrm{F}$. This was much higher than expected and not typical of the actual operation. To dissipate the heat, blowers were installed on each end-plate. The cemperature of the nut thread was then measured to be approximately 1200 F with these blowers directed on each nut.

Nut wear data taken during this test is shown in Figure 11 , tabulated in Table 3 and sumarized in Table 4 . For the first 15 years of simulated running, the specimens were not exposed to sand and water. The wear rates were essentially linear and the Turcite rate was about twice the Delrin rate.

After the equivalent of 16 years, water and sand were applied for three years and the wear rate sharply increased. From 19 to 26 years, water or sand was not applied, and the Delrin rate returned to its original rate, whereas Turcite rate continued to be high, until finally the threads sheared at about 21 years of equivalent life.

The test was continued on the Delrin sample adding water only for the number of days equivalent to 26 to 29 years and sand only from 29 to 32 years. No significant change in wear rate occurred during the period from the 21 st to the 32 nd year.

Key results from the polymeric nut testing is sumarized below:

- Nut thread wear was measured by three different methods with the average result shown below:
(a) .090 in . for Turcice "A" after 400,000 in. of linear travel (20 years).
(b) . 040 in . of Delfin "AF" after $600,00 \mathrm{in}$. of linear travel (30 years).

FICIRR 11 NITP UIEAR VS. LITEE

TABLE 3

table 4

## (1)

 डUNABAKY OF NUT WEAR MEASOREMENT
(1) ME゙TIOD RTERMINOLGGY FRON TOOL ENGINEENS HANDBOOK (MCGRAW-HILL, 1949, Ist EDITION)

- The botcom Turcite nut failed in shear after 20 years of actual accelerated service life.
- Under clean test conditions, the actuator screw threads on the polymeric nut travel zone did not show any wear.
- A crack developed at the sharp end of each plastic nut thread and propagated.


## APPENDIX D-1

(REF. TOOL ENGINEERS HANDBOOK - MCGRAW HILL 1949, inti EDITION)
ACME thread thickness isqiven by the following formula:

$$
\begin{equation*}
T=1.12931 * P+.25862(M-D)-w\left(1.29152+.48407 S^{2}\right) \tag{Ref}
\end{equation*}
$$

where:

$$
\begin{aligned}
& T=\text { Thread thickness at dept }=.25 \text { P, (at pitch DIA.) } \\
& P=\text { pitch } \\
& M=\text { measurement over wires } \\
& D=\text { basic major diameter of screw } \\
& W=\text { diameter of wires } \\
& S=\text { tangent of helix angle at pitch line }\left(=\frac{\text { Lead }}{\pi(O-P / 2)}\right)
\end{aligned}
$$

This Zirmsia transposed to give correct measurement $M$ sivialent to a given required thread thickness is as follows:

$$
M=D+\frac{w\left(1.29152+.48407 S^{2}\right)+T-1.12931 P}{.25862}
$$

TEST SCREW THREAD THICKNESS:
$D=1.000$
$P=.250$
$w=.135$
$S=.09095$
$M=1.056$ measured
$T=.122 \quad \begin{gathered}\text { cielculeated } \\ \text { measured }\end{gathered} \mu$

SCREW HALENESS HS MEASURED
BEFUR AND AFTER THE TEST,
MEASUREMENTS SWOWIO MRETIEALY
ZR THREAD WEAL


FIG. 8

NUT ASSEMBLY FRICTION TORQUE

1- PLASTIC
(Ref.4)
Regieged screw torque
Far $\mathrm{TP}^{2} t$

Required screw Argue

$$
T_{\text {Botim }}=F_{S} \cdot r_{p}\left(\frac{2 \pi \mu^{u} r_{\mu}+p}{2 \pi r_{p}-\mu p}\right)
$$

For Bottom Nut
neqticting the weigh tit of the nut assembly

$$
T_{\text {tot. }}=T_{\text {top }}+T_{\text {notum }}
$$

$F_{S}=1500$ Lo spring lad
$\dot{C}^{H}=-1$ ( coefficient of auction for

plastic nut on steed screw
$F_{S}=1500$ Lo spring lad
$i^{H=1}$ ( cocflicient of function for
plastic nut on steed screw
$F_{S}=1500$ Lb spring lad
$\mathcal{C}^{H=}=1$ (coefficient of Ruction for
plastic nut on steel vera)


$$
T_{t o p}=1500 * \frac{.875}{2}\left(\frac{27 * .1 * .875 / 2-.250}{27 * .875 / 2+.1 * .250}\right)=3.3 \quad \text { in- } 1 \mathrm{~b}
$$

$$
T_{t b}=132.4 \text { in_ Lb For } M=.1
$$



$$
\begin{aligned}
& \text { TORQUE ARM }=13^{\prime \prime} \\
& \text { APPLIED FORCE }=9 \angle 6
\end{aligned}
$$




3- MOTOR HORSE POWER

$$
H P=0 / 1 * 2+.37=.29 \quad \text { Fr } 3 \text { assmokies } 2 \text { pions } 1 \text { pron ge }
$$

$$
\text { IE TOTAL DRIVE =FIFIENCY I ASSUMED TO BE } 50 \%
$$

$$
H P=1.2 \text { MOTOR HOLE POWER NEQURED TO ORTS } 3 \text { ASEEMS:IES }
$$



$$
\begin{aligned}
& \text { SCREeN SPEED }=58 \text { RPM } \\
& H P=\frac{R P M * T O R O U G}{63025} \\
& H P=\frac{58 \div 117}{63025}=0.11 \text { for sate curtis nit tassirity } \\
& H P=\frac{28 * 398}{63025}=2.37 \text { for o-3onze nita:indilu }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2- BRONZE NUT ( } M=\cdot 3 \text { ). } \\
& \text { SPRING LOAD }=1500 \mathrm{C} \\
& T_{\text {Top }}=1500 * .438\left(\frac{6.28 * .3 \times .438-.250}{3.28+.438+.3 * .250}\right)=134 \\
& T_{\text {nation }}=1500 \pi .438\left(\frac{6.28+.3 * .438+.250}{6.28+.438-.3 \pi .250}\right)=264 \\
& T_{t b}^{T}=398 \text { in-4b BRONZE NUT ASSEMBLY } \\
& T_{\text {natal }}=117 * 2-398=632 \text { in- } 16 \text { For } 3 \text { nut seTs } \\
& \text { (plastic, } 1 \text { bronze) }
\end{aligned}
$$

## APPENDIX D-3

## NUT THREAD WEAR MEASUREMENT

(Using Ball \& Caliper)

TESTNUT THREAD WEAR \& THICKNESS CAN BE MEASURED AS FOLLOWS: PLACE THE BALL IN THE THREAD GROOVE AND MEASURE REQUIRED DIMENSIONS in at least 4 location (preferably $90^{\circ}$ apart).

$$
\begin{aligned}
& Q=D_{3}-\left(D_{2}+D_{1}\right) \\
& Q^{\prime}=D_{3}^{\prime}-\left(D_{2}^{\prime}-D_{1}^{\prime}\right) \\
& K=3_{d} \cos \alpha-2 \operatorname{sig} \alpha \\
& w=\left(K-\frac{p}{2}\right) \cos \alpha=T \operatorname{Cos} \alpha \\
& S=\frac{P_{d}}{2}-\left(\frac{Q}{2}+\frac{B_{d}}{2}+\frac{B_{d}}{2} \sin \alpha\right) \\
& K=B_{d} C_{2} \alpha-2\left[\frac{P_{d}}{2}-\frac{Q}{2}-\frac{B_{d}}{2}(1+\sin \alpha)\right] \operatorname{tg} \alpha \\
& W=B_{d} \cos ^{2} \alpha-\frac{p}{2} \cos \alpha-\left[P_{d}-Q-B_{d}(1+\sin \alpha)\right] \sin \alpha
\end{aligned}
$$


(Fig. 9)

$$
\begin{aligned}
& T \equiv S T \text { NUT DATA } \\
& P_{d}=.875 \\
& p=.250
\end{aligned}
$$



APPENDIX E

REFLECTOR MATERIALS/ASSEMBLY TESTS

## APPENDIX E <br> REFLECTOR MATERIALS/ASSEMBLY TESTS

Engineering load tests where conducted on full size facets to verify structural and functional integrity. Coupons representing the facet construction were subjected to temperature, humidity and hailstone testing. Thirty-four facet specimens were tested to establish their modulus of rupture; and several cellular glass core samples were shear tested to establish the core shear allowable. Tests were also conducted to aid in the selection of materials, provide design data, verify design margins or substantiate analytical models. Table 1 lists the candidate facet assembly materials tested.

### 1.0 Optical Tests

### 1.1 Specular Transmittance and Reflectance

Optical properties measurements were made on coupons of 3 types of mirror glass to assist in selecting the most cost effective reflector material. Glass coupons were measured for transmittance and reflectance by Sandia Laboratories, Albuquerque, New Mexico. Unsilvered coupons were measured for specular transmittance and hemispherical transmittance. Silvered coupons were tested for specular reflectance and hemispherical reflectance. Measurements were taken on a Beckman Dk-2 spectroreflectometer ( 350 to 2500 nm ) and a bi-directional reflectometer ( 500 nm ; 1 mrad to 15 mrad ).

Measurements of the specular transmittance agreed with the hemispherical transmittance at 500 nm , and showed good precision for apertures from 1 mrad thru 15 mrad. The same effects were observed when measuring reflectance on the 2 instruments. Thus, the solar averaged specular transmittance was the same as the solar averaged hemispherical transmittance. Similarly, the solar averaged specular reflectance was the same as the hemispherical reflectance. Results from the optical tests are shown in Table 2.

### 1.2 Surface Flatness

Waviness of reflector surfaces causes diffusion of the incident light, thus

Function	Generic Name	Trade Name
Mirrar and backskin glasses	Fusion glass	0317 Corning
	Fusion glass	7809 Corning
	Float glass	Ford low iron float
Mirror adhesive	Epoxy	BMS 529
	Epoxy	DER 332/Epocast 9427
	Polyurethane	Vulkem 102L
	Polysulfide	3M EC1239-8-1/2
	Asphalt/urethane	PC. 88
Surface densifier	Batch/silica sol	Batch/Ludox
	Gypsum cement	Hydrocal B-II
Core	12 PGF cellular glass	Pittsburg Corning Foamsil
	8.5 PCF callular glass	Pittsburg Corning Foamglas
Core bond	Gypsum cament	Hydrocal B-II
	Asphalt/urethane	PC-88
	Polyurethane	Vulkem 102L
	Polysulfide	3M EC1239-B-1/2
	Batch/epoxy	Batch/BMS 529
Edge sealant	Butyl	Pittseal 444
	Cyanoacrylate	Loctite mixture
	Silicone	G.E. 1200

Table 2 Transmittance and Reflectance of Various Glasses

Glass thickness (inches)/type	$\begin{gathered} \text { Clear (C) } \\ \text { or }(\mathrm{S}) \\ \text { silvered } \end{gathered}$	Transmittance solar averaged hemispherical (AM 1.5)	Reflectance solar averaged hemispherical   (AM 1.5)
		Sandia [2]	Sandia (3)
. 060 / 0317 Corning	c	. 908	. 935
.070/0317 Corning	C	. 909	. 938
.060/7809 Corning	$\begin{aligned} & \mathbf{C} \\ & \mathbf{S} \end{aligned}$	. 919	. 945
.118/low iron float - Ford	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~S} \end{aligned}$	. 894	. 903

1) All matalizing was done by Falconer Glass
(1) Measurements by J.M. Freese - Sandia .

- Beckman spectroreflectometer, DK-2, 350-2500 nm
- Bi-directional reflectometer, 1-15 mrad aperture, 500 nm
reducing the energy reflected to the receiver. In the facet assembly, non-flatness may be caused by inadequate preparation of the core surface, variation in the thickness of the mirror glass, or a non-flat assembly table. A system was needed to measure the flatness of facet coupons and complete facets to determine whether they satisfied error budget requirements, and to aid in isolating causes of non-flatness. Two techniques were evaluated: a stationary laser ray-tracer; and a portable surface-table tester (electronic level system); they are illustrated in Figures 1 and 2.

In the laser ray trace method, a laser beam impinges on the sample mirror surface at some specified angle. The deviation of the reflected beam from the specular direction is a measurement of non-flatness. The reflected beam is incident on a linear position sensing device which produces an analog output proportional to the laser beam displacement. An angular displacement versus linear position plot may then be generated.

The second system consists of an electronic level, a desk top computer and an $X-Y$ plotter. The level traverses the surface in a prescribed pattern, and is returned to its starting point. The data acquired is input to the computer which produces an isometric plot and a printout of statistical data.

Several-facet coupons and 2 development facet assemblies were prepared to evaluate the effects of core machining, adhesive type, and fabrication process upon flatness. The coupons were first measured at Battelle Pacific Northwest Labs on their laser scanner; they were then measured at BEC with the electronic level. Direct correlation between the two measurement techniques was not possible because of fundamental differences in procedures. However, overall average flatness for each coupon did compare well for the two techniques. Flatness measurements of the 2 development panels were made using the electronic level system only. Table 3 shows the results of the measurements of coupons with 3 types of adhesive, and of the development panels fabricated on a construction table with 2 types of adhesives. Primarily because of its portability, the electronic level system was chosen for further use.

The coupon and development panel tests revealed that the core machining variations had negligible effects on flatness. The tests indicated that the



Table 3 Results of Flatness Measurements

Configuration	Adhesive	Slope error
		Average $\pm 1 \sigma \mathrm{mr}$
2ft $\times 2 \mathrm{ft}$ coupon	- Epoxy   - Polyurathane   - Polysulfide	$\underset{\sim 3.0}{.50} \stackrel{.42}{-} 1.83$
4ft x 10ft panels   - Fabrication table   - Panel A.   - Panel B	- Epoxy   - Polyurathane	$\begin{array}{r} .73 \\ .81 \\ 1.28 \end{array}$

adhesive type and application method, and the surface quality of the fabrication table do contribute to non-flatness. Epoxy and polyurethane adhesives produced coupon flatness approaching the desired 0.4 mrad (1-sigma value). Use of the polysulfide adhesive was discontinued because of the difficulties in obtaining flat coupons.

The flatness of the first 2 development facets was not satisfactory; however, analysis of the measurement data suggested that requirements could be met if an improved fabrication table was used. A new table was therefore built.

A development facet made on the new table, using epoxy adhesive, was measured to be flat within 0.35 mrad . No further full size facets were built with polyurethane adhesive because they failed to meet structural requirements. Results with the epoxy-bonded facets showed that adequate flatness could be obtained using the developed materials, procedures, and fabrication table.

### 1.3 Image Evaluation

Having evaluated the mirror glass specularity and the flatness of the fabricated facet, the next step was to verify that a well-shaped solar image could be produced. This will ultimately be verified by the Beam Characterization System (BCS) at the CRTF. However, a test was necessary to get a preliminary evaluation of the image prior to building the prototype facets. This was accomplished by analyzing image photographs from a single full-size facet assembly.

The development facet was mounted on a forklift truck and transported to a point 213.4 meters from the north side of a tall building, as illustrated in Figure 3. The facet orientation was adjusted until the sun's image was projected on the side of the building. The image was photographed at different exposures to obtain the best contrast between the image and building surface. Eight-by-ten-inch transparencies were produced for analysis; Figure 4 is an example of one of the photographs taken. Figure 5 shows the results of scans along the horizontal and vertical axes taken with MacBeth TR524 transmission densitometer. The data is plotted to show relative intensity


Figure 3 .
Facet Image Evaluation


Figure 4
Facet Image on Side of Building


Figure 5 Intensity Plots of Facet Image
(background $=1.0$ ) versus position in the image. These scans show that the image is symmetrical about the axes, and only slightly larger than the theoretical width for the range tested, which is given by:

$$
\begin{aligned}
& W=L+2(213.36 \operatorname{Tan} \theta / 2), \text { where } \\
& W=\text { Horizontal width of image, meters, } \\
& L=\text { Horizontal width of facet, meters, } \\
& \theta=\text { Solar disc subtense angle, degrees, } \\
& \quad \text { For range }=213.36 \mathrm{~m}, \text { we have, } \\
& W=3.05+2\left(213.36 \operatorname{Tan} 0.25^{\circ}\right)=4.91 \mathrm{~m} .
\end{aligned}
$$

The observed width was 5.03 m . Subtracting the theoretical from the measured yields 0.12 m , which would be distributed on both sides of the beam. Therefore, in angular terms, we obtain 0.29 mrad . While the results are preliminary and approximate, they are of the desired order of magnitude and imply that a satisfactory reflected image can be obtained from facets which meet the design specifications.

### 2.0. Structural Tests

### 2.1 Shear Strength of Core Material

Design analyses predict the stress in the core material (Foamsil 75) will be quite small and will be primarily in shear. Under normal operating conditions of 27 mph winds the shear stress is predicted to reach a maximum of 10 psi . Previous experience with Foamsil-75 and tests run on Foamglas indicate that the material would certainly have excess margin for this load. For design purposes, it is assumed that there would be one short-term loading of 60 psi shear ( 90 mph wind).

To verify that an adequate margin exists between this predicted core shear stress and measured shear strength of Foamsil 75, an abbreviated shear test was performed.

Twenty samples, $15.2 \mathrm{~cm} \times 5.1 \mathrm{~cm} \times 1.3 \mathrm{~cm}$, were cut from a single block of Foamsil 75. The samples were epoxy-bonded to knife edged mounting plates for shear loading per ASTM C273. Figure 6 shows a shear-test sample mounted in the test machine. Bending moments are minimized through the use of spherical seats and knife edges in the loading fixtures.

When shear loads are applied in this manner, the sample material failed approximately diagonally across the sample block. Figure 7 is a photograph of a sample after test. As can be seen, failure occurred diagonally down the length of the sample and was contained within the cellular glass. There was no failure at the adhesive/glass interface. All samples tested failed in a similar manner.

The 20 samples were tested to failure. The shearing stress was computed from the applied load and the dimensions of each sample. The average stress at failure was 84 psi with a standard deviation of 6 psi. Therefore, the $99 \%$ confidence interval would be 99 psi (upper confidence limit) to 69 psi (lower confidence limit). However, this result must be tempered by recognizing that all samples were taken from a single $18^{\prime \prime} \times 24^{\prime \prime}$ block of cellular glass; block-to-block variations were not evaluated.*

### 2.2 Modulus of Rupture

An analytical model was prepared to size the facet to meet stiffness and strength requirements. The facet design is stiffness-limited under operating load conditions. The analytical model did not include the effects of adhesive; it assumed direct coupling of the cellular glass to the fusion glass skins. Thus it was necessary to determine the effects of various adhesives on stiffness and strength, as well as substantiate the analytical model. To accomplish this, modulus of rupture (MOR) testing was undertaken.
*The variation of shearing strength among different samples (blocks) from the same production run of cellular glass is not expected to be very great based on fracture testing performed by JPL. In that testing, the coefficient of variation in fracture stress of 79 samples from 16 blocks of 12 pcf Foamsil 75 was 0.147: see reference 2-2-4.


Figure 6
Shear Testing of Facet Core Material

*
MOR testing was performed per ASTM C203 (modified) at the Pittsburgh Corning Laboratory in Pittsburgh, Pennsylvania. Large samples were prepared to simplify deflection measurement. Figure 8 depicts the sample geometry.

Several variables were included in the MOR testing: adhesive type, glass type, geometry of core bonding, and temperature. Table 4 provides a listing of these variables and the 50 samples prepared to evaluate their effects on stiffness and strength.

In addition to the measurement of load and deflection, six samples were instrumented with strain gages on both glass skins to allow comparison of measured and predicted stresses. Prior to installing the gages, a laboratory test was performed on a small glass beam to verify the ability to use strain gages on glass.

Gages were bonded to front and back surfaces of a 5 inch cantilever beam which was incrementally loaded from 0 to 1600 psi and back to 0 . Thirty-two individual measurements were taken. Repeatability, front to back gage agreement, and measured-versus-calculated stress correlation were well within normal standards for strain gage measurements.

Figure 9 shows a sample mounted in the Instron load machine equipped with quarter-point loading fixtures. Two-degree-of-freedom fixturing was used for both loading and reaction. Dial gages were provided at one end and at the sample center. Cross head speeds of $0.02 \mathrm{in} / \mathrm{min}$ were used during the application of load. The sample shown was equipped with strain gages which were monitored by the instruments on the cart in the right-hand portion of the photograph.

Figure 10 shows the test setup used for testing at elevated and reduced temperatures. The samples were enclosed in an insulating particle board box, provided with necessary penetrations for fixturing and gages. The sample and box was soaked in an oven or refrigerated until the desired temperature was reached as determined by an attached thermocouple. Next the sample and box were transported to the loading fixture and tested. The temperature during test, which was observed to remain nearly constant, was recorded.

${ }^{*}$ MOR per ASTM C203 (modified)


Figure 8
Schematic of Facet MOR Test

Table 4
Configuration and Quantity of Facets Subjected to MOR Tests

FACET   CONFIGURATION	Minter	Bucksin	Achasive	Con Bond Configuration	Densifier	Temperoure	Oumatity
Prototyp	. 05	0217	Epory   (BMS 529)	Contared   Non-contrim	$-$	Anbient Antimet	$10$
				$\cdots \cdots$	-	$\begin{aligned} & 309 \mathrm{c} \\ & +50^{\circ} \mathrm{C} \end{aligned}$	3
Prodertion	. 050	$78091$	$\begin{aligned} & \text { Epaxy } \\ & \text { (BMSE291 } \end{aligned}$	Mon-cinterad	-	Ambient	8
Prototype with Arocrentin Adhesive syrume	. 069	917	Polyurathene (Vuticem 102t)	Nor-centared	$\begin{aligned} & \text { Silica Sal } \\ & \text { (Ludox) } \end{aligned}$	$\begin{aligned} & \text { Ambinvt } \\ & +59^{9} c \end{aligned}$	10 3 3



Figure 9
MOR Test Setup


Figure 10
Facet MOR Testing at Non-Ambient Temperatures

Results of the MOR tests are presented in Table 5, which compares test results with analytical values. The analytical model predicted that a 1000 lb load would cause a deflection of approximately . 044 inches; the skin stress would be approximately 2280 psi; and the failure load would exceed 420 lb to meet operating and survival requirements.

Samples of the prototypical facet configuration at $22^{\circ} \mathrm{C}$ compared well with analytical predictions. The panels were stiffer, the skin stress slightly lower and the failure load well above minimum requirements. Data for the 6 samples tested at elevated and reduced temperatures varied negligibly from the ambient temperature results indicating small or no temperature dependence throughout the range of interest $\left(-30^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$. Samples of the production facet configuration behaved the same* as the prototype facets under ambient temperature test conditions.

Test results for the prototype facet with polyurethane adhesive revealed the effect of the adhesive on the facet's stiffness and strength. The deflection at ambient temperature was about 3 times that of the epoxy-bonded prototype, and the load at failure marginal. The temperature dependence was observed to be quite dramatic, especially at low temperatures. At $-30^{\circ} \mathrm{C}$, the deflection under a 1000 lb load was about half of what it was at ambient temperature, and the load at failure twice the ambient temperature value. The high temperature condition produced results more comparable with the ambient temperature tests.

Based on the results of MOR testing it was concluded that the strength and stiffness of the prototype and production facets showed good agreement with analytically-derived values, and both configurations satisfy design requirements for these characteristics.

[^1]| FACET CONFIGURATION | temperature | $\begin{gathered} \text { Stiffness } \\ \delta \mathrm{Max} @ \mathrm{P}=1,000 \end{gathered}$ |  | Skin Stress $\sigma$ Max $® P=1,000 \mathrm{lb}$ |  | Failure Load $P_{\text {Max }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Test (in.) | Analysis (in.) | Test (psi) | $\begin{gathered} \hline \text { Analysis } \\ \text { (psi) } \\ \hline \end{gathered}$ | Test (lb) | $\begin{gathered} \text { Analysis } \\ \text { (Ib) } \end{gathered}$ |
| Prototype 0317/BMS 529 | $-30^{\circ} \mathrm{C}$ | . 036 | . 044 | - | - | 1,930 | $\begin{gathered} >420 \\ (1,000 \mathrm{psi}) \\ \text { allow. } \end{gathered}$ |
|  | $\square+22^{\circ} \mathrm{C}$ | .037 $\pm .003$ | . 044 | $2040 \pm 86$ | 2,280 | 1,870 ${ }^{1,387}$ |  |
|  | $+50^{\circ} \mathrm{C}$ | . 039 | . 044 | - | - | 1,430 |  |
| Production 7809/BMS 529 | $+24^{\circ} \mathrm{C}$ | .033 $\pm 002$ | . 044 | - | - | 1,907+260 |  |
| Prototype Alt. 0317/polyurethan | ne $-30{ }^{\circ} \mathrm{C}$ | . 061 | . 044 | - | - | 1,240 |  |
|  | D $+24^{\circ} \mathrm{C}$ | .111 $\pm 015$ | . 044 | - | - | $655 \pm 127$ |  |
|  | $+50^{\circ} \mathrm{C}$ |  | . 044 |  |  | 632 |  |

D Average $\pm 1$ std. deviation

### 2.3 Residual Stress Evaluation In Facet Front Skin

Samples of sheet glass, various composite coupons, and a prototype facet were evaluated for residual stress in the facet front skin. The purpose of the evaluation was to determine the front-skin stresses introduced during glass manufacture, and the stresses introduced during facet fabrication.

A portable, large-field reflecting polariscope was used to scan the samples. Due to the low stresses observed ( $\ll 1000 \mathrm{psi}$ ), the instrument was difficult to use in its normal mode. A small glass cantilever beam was set up and used to calibrate the polariscope in the range of interest (a few hundred psi). With this calibration, subsequent readings were believed to be accurate to approximately $\pm 100$ psi; Table 6 lists the results.

The stresses measured in composite coupons and the facet assembly were not significantly different than the glass sheet stock. This suggests that the facet fabrication process does not substantially increase the front-skin residual stress. In addition, the residual stress appears to be in the range of 200 to 300 psi.

### 2.4 Facet Static Load

A full-size facet, fabricated according to prototype baseline design specifications, was statically loaded to simulate various anticipated environmental conditions. The facet was instrumented to measure skin stress and facet displacement under these loads. The purpose of the test was to verify the structural analysis model.

The facet was supported horizontally by its 4 mounting clips in the same fashion that it is supported on the heliostat frame. A large rigid fixture was used in place of the frame eliminating deflections from other than the facet. Ten electronic deflection indicators (EDI) were placed at points along one end, and along the transverse centerline; these were the expected points of maximum deflection. Thirteen strain gages were installed at points of anticipated maximum stress on the glass skins. Figure 11 shows the overall test setup. Figure 12 gives the locations of EDI's and strain gages on the test facet. Loading of the facet was accomplished by placing

Table 6 : Results of Residual Stress Measurements

| SAMPLE |
| :--- | :--- |$\quad$| MEASURED STRESS |
| :---: |
| (PSI) |

(1. MEASUREMENTS WITH A PORTABLE, LARGE FIELD REFLECTIMg POLARISCOPE

CALIBRATED WITH A LOADED, 0317 FUSION GLASS CANTILEVER BEAM


Figure 11
Facet Static Load Test Setup

commercially packaged salt and sugar bags at predetermined intervals on the surface, as illustrated in Figure 13.

The first test simulated the load due to gravity or a 27 mph wind without gravity. The two loads are within $4 \%$ of each other. All tests made neglected gravity loads. . If the effects of gravity are to be included, one need only add the results from the gravity test to those of the environmental condition measured. Table 7 lists data from the tests, comparing them with structural-analysis predicted values. In each case, the position of the analysis nodes and the test nodes on the facet coincided.

Agreement between predicted and measured values was generally good, considering the accuracies of approximately $15-20 \%$ associated with both the analytical modelling and the experimental setup measurements. The maximum principal stresses predicted and measured (near node 2) agreed within $15 \%$.

The second test simulated the distributed load due to a 90 mph wind. Table 8 shows the test load distribution which was derived from wind load analyses. Results from the test were compared with NASTRAN model predictions. Most of the deflection data agree with the predicted values within the expected errors associated with experimentation and mathematical modelling. Greater discrepancy exists, however, with the stress data, where only about half the values are in agreement. However, the maximum predicted and measured stresses are less than the allowable stress for design, and agree within $5 \%$.

Flatness measurements, were made with the electronic level before and after the structural load tests. The slope error for $90 \%$ of the facet area was 0.58 mrad before load test, and 0.57 mrad after.

### 2.5 Attachment Bracket Pad Test

The facet must react wind loads through the 4 attachment brackets. The reaction has been computed to be approximately 400 lbs for a 90 mph wind. Tests were performed to aid in the selecting of adequate pad area, and establish their preferred location relative to the facet edge.


Figure 13
Facet Assembly Under Load

Results of Facet Deflection Stress Measurements Compared to Predicted Values Under Gravity (0.025 pSI) or simulated 27 MPH (0.026) Loads


Deflections (mils)			Stresses (psi)				
$\begin{aligned} & \text { EDI } \\ & \text { No. } \end{aligned}$	Test	NASTRAN	Strain Gauga No.	Test		NASTRAN	
				$\sigma_{x}$	${ }^{0} \mathrm{y}$	$\sigma_{x}$	${ }^{\text {g y }}$
1	-2	-1	(1)	-110	40	.110	30
5	-1	0	(2)	-140	60		
6	. 5	-6	(3)	-110	40	-110	30
10	. 6	-7	5	. 80	80	. 50	60
			(10)	60	80	50	-60
			6	0	40	-10	50
			(19)	20	. 30	10	. 50

Maximum predicted principal $\sigma=120 \mathrm{psi}$
Maximum test principal $\boldsymbol{\sigma}=\mathbf{1 4 0} \mathrm{psi}$

Table 8
Results of Facet Deflection and Stress Measurements Under Simulated 90 mph Wind Loads


Maximum predicted principal $\sigma=1080$ psi
Maximum tost principal $\sigma=1140 \mathrm{psi}$

Four compression load tests were conducted with a variety of pad configurations on small facet sections in a compression test machine. Figure 14 shows the test setup. Loading was gradually applied until discontinuity was observed in the load-deflection curve. This point on the curve was annotated as the failure load for each of the 4 configurations tested. The results are summarized in Table 9.

The first 3 tests were run with similar geometries, with the only variable being the pad edge-distance. There was considerable scatter among these 3 values, the lowest being only $20 \%$ greater than the predicted load; the highest, $69 \%$ greater. A larger area pad was therefore prepared and tested (12 $i^{2}$; 0.5 in from edge) to obtain a greater safety margin. The resulting failure load was 850 lbs, a $113 \%$ margin. The latter pad area was thus chosen for the design.

### 3.0 Environmental Tests

### 3.1 Hailstone Survivability

Because the BEC heliostat is non-inverting, the facet surfaces and edges may be exposed to 25 mm hailstones impacting at $23 \mathrm{~m} / \mathrm{s}$. Therefore, testing was performed to evaluate the facet's resistance to such conditions.

Several materials were selected for hailstone testing. Any combination of materials unable to pass hailstone tests were eliminated from further design consideration. Figure 15a lists the various material candidates considered for the mirror, adhesive, densifying layer, and core.

Test samples were constructed to simulate actual facets in every respect except width and length, which was 12 inches by 12 inches; they are illustrated in Figure 15b.

Hail testing was performed at the Boeing Impact Laboratory Test Range. The facility includes a pneumatic launcher, velocity measurement system, target support and impact photography system. A schematic of the test range is shown in Figure 16.


Figure 14

Table 9 Results of Facet Mounting Clip Compressive Load Tests

PAD AREA $\left(1 N^{2}\right)$	$\begin{gathered} \text { POSITION } \\ \text { (INCHES FROM EDGE) } \end{gathered}$	MEASURED LOAD AT FAILURE (LBS)	PREDICTED 90 MPH   WIND LOAD (LBS)
	1.75"	575	400
$\text { (0) } 6.3 \mathrm{in}^{2}$	1.75"	480	400
$0.3 \mathrm{in}^{2}$	$0.5^{\prime \prime}$	675	400
	$0.5{ }^{\prime \prime}$	850	400


a. Specimen Core Configuration Detail



Figure 16
Hail Stone Test-Setup Schematic

The simulated hailstones were formed in molds called "sabots" which also serve as launching capsules that separate during flight; the sabot is illustrated in Figure 17. Water is injected into the sabots and frozen in a refrigerator which is kept at approximately $10^{\circ} \mathrm{F}$. The sabot is then carefully opened, the ice ball removed and weighed. The ice ball is reinserted in the sabot which is then placed in the launcher.

The sabot and ice ball are launched by releasing air pressure into the breach with a solenoid valve. As the sabot travels down range it separates, releasing the ice ball and is caught in the sabot trap. The velocity of the ice ball is measured by 2 photo-multipliers and a computer. The computer also sends a signal to the camera strobe light which allows a photograph to be taken of the ice ball as it impacts the target.

Both 0.059 inch fusion and 0.118 inch float glasses successfully survived hail damage when used on adequate substrate combinations. The 0.040 inch fusion glass was not acceptable on any of the configurations tested.

All 3 adhesive systems were satisfactory when applied properly. The epoxy and polysulfide worked well when applied to proper thicknesses. The polyurethane worked only when a densifier (gypsum cement or batch silica-sol) was applied to the cellular glass core prior to applications of the adhesive layer. No difference in effectiveness could be detected between the 2 densifiers.

Core densities greater than 12 pcf appeared to be unnecessary for the epoxy and polysulfide adhesives and did not eliminate the need for surface densification for the polyurethane adhesive. Therefore, higher densities were eliminated from future consideration. A density of 8.5 pcf was successfully used behind . 118 float glass with polyurethane and densifier.

Table 10 summarizes test parameters and results for all configurations that survived the tests.

### 3.2 Temperature/Moisture Cycling - Coupon Level

Specified environmental requirements for the facet include temperature extremes of $-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$, and precipitation in the form of rain up to 75 mm


Injection molded Polycarbonate

Figure 17 Ice-Ball Mold

Table 10 : Summary of Test Parameters for Test Specimens Surviving Hailstone Testing

DescriptionFromt sheet/sdhesive/core	No. of imprets	Avg. velocity 210 FPS	Avg weight 410 grams	Target Zone	
				Contral	Edge
.069in fusion/apoxy type 1/12 pof	13	74.2 : 2.3	$7.33 \pm .15$	$x$	x
.059in/opoxy type $2 / 12$ pef	12	74.8 : 1.5	$7.26 \pm .15$	$x$	$x$
	17	$74.1 \times 2.2$	$7.19 \pm .19$	$x$	x
build-up/12 prt	15	78.8 * 1.7	$7.32 \pm .15$	$x$	
.059in/polyurethane Ludox built-up/12 pef	12	$75.3 \pm 2.8$	$7.30 \pm .18$	x	$x$
.059in/polyuulfide/12pef	14	$73.0 \pm 1.5$	$7.30 \pm .24$	$x$	x
.118in LI flort/polyurotheno/ 8.5 pef	12	75.3 : 2.4	$7.36 \pm .18$	$x$	
. 118 in LI flome/polyurathane/12 pet	4	74.8 $\ddagger 1.8$	$7.40 \pm .17$	x	

in a 24 -hour period, and 750 mm annually. In addition, it may also be subjected to freezing rain, ice deposits, and snow. Humidity was also an important design consideration. Major concerns for these conditions are the effects upon structural integrity and silver quality.

Test coupons were prepared for the variety of combinations of glasses, sealants and adhesives that were design candidates. The coupons were $6^{\prime \prime} \times 6^{\prime \prime}$ x 1-1/2" facet miniatures, including cap strips. Each coupon was constructed with a cylindrical cavity in the core that could be viewed through one of the glass skins. The samples were carefully weighed and placed in a cycling temperature/humidity chamber. Figure 18 shows 2 coupons and the test chamber. Figure 19 is the temperature/humidity profile followed to obtain both the temperatures and moisture extremes desired.

The coupons were periodically inspected for cracks in glass sheets or cores, discoloration of silver, evidence of water inside the coupon and weight change. The inspections were visual; weight change was measured to an accuracy of $\pm 0.05$ gms. A list of coupon variables and test results appears in Table 11.

Of the few samples that showed a weight gain, the gains were negligibly small. Weight losses were more common, indicating curing of adhesives and sealants. No cracks or silver discolorations were observed. Several samples were dismantled and examined. The condition of the sealants and adhesives appeared to be unchanged from the fresh materials. Pieces of silvered glass for each candidate were measured for reflectivity on the spectrophotometer and the bi-directional reflectometer. The reflectivity was unchanged from pre-test values (approximately $93 \%$ for 0317 fusion; $94.5 \%$ for 7809 fusion). All candidates were considered to have successfully passed these tests.

a. Test Cell

A) Continue @ 3 cycles per day for 4 days w/ relative humidity $\geq 90 \%$
B) Follow with same temperature profile for 3 days w/relative humidity $\leq 30 \%$
C) Repeat A) above ; then B) above alternately for 28 days for a total of 84 thermal cycles

Figure 19
Temperature-Humidity rest Profile

$\begin{aligned} & \frac{5}{2} \\ & \frac{5}{4} \\ & \frac{E}{4} \end{aligned}$	Miroof Becturnept	Smampie I.D.	Cims   Adhecive	Reff. Smatert	Capptrip Adhecive	RESULTS	
						$\begin{aligned} & \text { Waight Chereen } \\ & \text { Ortwo } \end{aligned}$	Obmerratione
		14 18 14 40 24 28 $2 C$ 34 38 36 44 48 6				$\begin{aligned} & D-.16 \\ &-.31 \\ &+.06 \\ &+.10 \\ &+.08 \\ &-.19 \\ & .00 \\ &-.39 \\ &+.03 \\ &+.01 \\ &-.08 \\ &-.07 \\ &-.52 \end{aligned}$	No moieture in cewity; no   sibuer degradetion; adhation   strona; sememt miliant   Wright decrimess probebly due to curing of adhecive and seatente. Whigte gione nodigibie. I
	$7500 / 7009$ 0317/7809 7800/7800 $"$ " 0317/7800 7800/7800 7800 .	$\begin{aligned} & 9 \mathrm{~A} \\ & 98 \\ & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$	Epoxy	Buty   Mone ring/peint sampion crylie paint	Auphelt (PC 88)	$\begin{array}{r} 3> \\ \hline-.14 \\ -.18 \\ -1.58 \\ -1.21 \\ -1.11 \\ -1.55 \\ +1.02 \\ .00 \end{array}$	Semple had no ceapertip No vivible change to peint or coating
185 cycles   85 cycles							

A full-scale structural development facet was subjected to an abbreviated temperature/moisture test similar to the one described above. The principal purpose of this test was to verify the structural integrity when exposed to temperature extremes of $-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. A secondary purpose was to verify that the encapsulation system prevented moisture intrusion during high humidity conditions.

Figure 20 shows the facet in the chamber before test. The chamber was operated on a 12 hour cycle basis $\left(+50^{\circ} \mathrm{C}\right.$ soak for $1 \mathrm{hr} ; 5 \mathrm{hr}$. ramp down; $-30^{\circ} \mathrm{C}$ soak for 1 hr ; 5 hr ramp up to $+50^{\circ} \mathrm{C}$; etc.) for 7 days, accumulating 14 cycles. The relative humidity was changed from $90 \%$ to $30 \%$ on alternate days. Posttest examination revealed no evidence of cracking, warping or delamination of the glass on core materials. The cap strip was securely fastened to the facet with no signs of moisture penetration.


Figure 20

APPENDIX $F$
DRIVE MOTOR SPECIFICATION

Azimuth Drive Motor

1. Motor Description
1.1 Type:
3-phase induction, winding D
1.2 Ratings:

1/6 horsepower at 1750 rpm nominal, 208V, 60 Hz
1.3 Frame:

NEMA 48, TENV, C-FACE, FOOTLESS
1.4 Protection:

Automatic reset thermal overload protection
Exterior installation
2. Envi ronment:
2.1 Ambient temperature: $-9{ }^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ operating; -300 C to $+50^{\circ} \mathrm{C}$ storage
2.2 Contaminants: Rain

Ice
Snow
Blowing sand and dust
Insects
2.3 Altitude: 7000 ft MSL
3. Duty Cycle
3.1 Daily Duty: Each start is full line voltage start; each stop is half-wave plug of 66 msec duration.
Daily duty cycles of:
Continuous for 30 minutes.
Intermittent 330 msec on and 15.7 seconds off for 4-1/2 hours.
Intermittent 1.4 seconds on and 2.6 seconds off for 30 minutes.
Intermittent 330 msec on and 15.7 seconds off for 4-1/2 hours.
3.2 Continuous for 15 minutes.
4. Service Life
4.1 Windings and case - 30 years (no maintenance).
4.2 Bearings - 30 years with maintenance.
5. Load: $\quad 4.14$ in-1b peak starting torque.
4.14 in-1b peak running torque.
$0.12 \mathrm{lb}-\mathrm{n}^{2}$ inertia.

1. Motor Description
1.1 Type:
1.2 Ratings:
1.3 Frame:
1.4 Protection:
2. Environment:
2.1 Ambient temperature: $-9{ }^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ operating; $-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ storage.
2.2 Contaminants: Rain

Ice
Snow
Blowing sand and dust
Insects
2.3 Altitude: $\quad 7000 \mathrm{ft}$ MSL
3. Duty Cycle
3.1 Daily Duty: Each start is full line voltage start; each stop is half-wave plug of 66 msec duration. Intermittent daily duty cycles of:

500 msec on and 3.5 seconds off for 30 minutes.
330 msec on and 15.7 seconds off for 9 hours.
500 msec on and 3.5 seconds off for 30 minutes
3.2 Continuous duty for 30 minutes can be imposed once a day at any time.
4. Service Life
4.1 Windings and case - 30 years (no maintenance).
4.2 Bearings - 30 years with maintenance.
5. Load: $\quad 6.74 \mathrm{in}-1 \mathrm{~b}$ peak starting torque.
12.32 in-1b peak running torque.
$0.12 \mathrm{lb}_{\mathrm{ib}}{ }^{2}$ inertia.

APPENDIX G

MODE OPERATIONS AND SOFTWARE ORGANIZATION

## APPENDIX G

MODE OPERATIONS AND SOFTWARE ORGANIZATION
1.0 MODE OPERATIONS
1.1 Mode 0-Halt (HLT)

The halt mode indicates the motors are not being commanded to achieve any defined track or position. The halt mode will be a default mode the system will automatically select when no other mode is commanded, e.g., at power up the system will come up in the halt mode or when any mode which transitions to a fixed mirror position is complete, the transition will end with the system is in the halt mode.

### 1.2 Mode 1 - Track (TRK)

This mode tracks to keep the beam on the receiver. The normal entry is from standby. Entry from HLT is allowed so one can manually steer the image onto the target and then go to track mode via HLT. Exit from the track mode is to either STB or HLT.

A track entry from HLT will move mirror over a shortest time path to the TRK position. The real time service for the track and standby modes are similar except for the difference in aim point coordinates.
1.3 Mode 2 - Standby (STB)

The standby mode tracks to keep the beam in a position offset to the side of the receiver. It is implemented by replacing the target coordinates by the standby coordinates and then calling the same pointing routine called by the track mode.

## 1.4

Mode 3 - Vertical Stow (VSW) Mode

The VSW mode will cause the heliostat to move to the designated vertical stow position. When it reaches there, the mode will change to HLT. The path followed to the stow position depends upon the starting position. If the initial azimuth of the beam is within $10^{\circ}$ of standby, the beam will go to the standby azimuth, move vertically down until below horizontal, and then move directly to stow. If the initial beam azimuth is more than $10^{\circ}$ away from standby, the mirror moves directly to standby. The vertical stow position can be changed by changing the data base values stored in the F34 and F35 for heliostat \#1 or F84 and F85 for heliostat \#2.

### 1.5 Mode 4 - Stow-to-Standby (STS)

Mode entry is from halt mode only; there is no entry test. If the initial beam elevation exceeds $10^{\circ}$, the beam is commanded to move directly to the standby position. When it reaches there, the mode changes to STB. If the initial beam elevation is less than $10^{\circ}$, the beam is commanded to move to the bottom of the wire-walk, and then up the wire-walk to standby position, after which the mode changes to STB. From the HSW position, this mode will move the beam directly to standby.

### 1.6 Mode 5-Horizontal Stow (HSW)

The HSW mode moves the mirror from the Standby position to the horizontal stow position. When stow position is reached, transition to the HLT mode is automatic. Entry is via the HSW command when in the standby mode. Also while transitioning, the HLT mode can be requested followed by a request for any other mode. The beam path for HSW is to move the elevation axis up to about $87^{\circ}$ from the standby position. Then the azimuth axis is moved to the desired stow position. The stow position can be changed by changing the data base values F36 and F37 for heliostat \#1 or F86 and F87 for heliostat \#2.

### 1.7 Mode 6 - Manual Mirror Control (MMC)

The MMC mode is used to move directly to the azimuth and elevation specified by the operator (F1 and F2 or F51 and F52 in data base). If it should pass a reference mark, the mode will change to HLT - to continue, the operator must again command MMC. Tilt corrections are done in the MMC mode so the azimuth may not behave correctly for elevation angles above $87^{\circ}$. The MMC request will cause the MMC command positions to be displayed. Then to activate the MMC mode, type $P$ and carriage return.
1.8 Mode 7 - Locate Azimuth Reference (LAR)

The LAR mode moves the mirror in azimuth from its present position toward a "target". azimuth. When it passes the reference mark, moving to the left, the current count is saved, then replaced by the values stored in K28 and K29 or K58 and K59, and the mode is changed to HLT. To assure success, the initial azimuth must be to the right of the reference mark. It can be so positioned, using the MMC mode. If the motor count has erroneously become a negative number, it may be necessary to load an approximate MTR count into K12 and K13 or K42 and K44 for the LAR to operate properly.
1.9 Mode 8 - Locate Elevations Reference (LER)

The LER mode behaves similar to the LAR. The initial elevation angle must be above the reference mark. The reference mark is near the lower limit. If the mirror is not above $5^{\circ}$ elevation, it should be prepositioned using the MMC mode. The update values for elevation position are stored in K30 or K60. If the motor count (K14 or K44) has become a large negative number, then K14 or K44 should be loaded with a positive value (e.g., 27,000 ) to assure LER will operate properly.
1.10 Mode 9 - Manual Beam Control (MBC)

The MBC mode moves the mirror so the reflected beam points in the commanded direction as specified by the azimuth and elevations target positions, loaded in the data base locations F3 and F4 for heliostat \#1, or F53 and F54 for heliostat \#2. This mode was added for possible assistance in sorting out tracking errors.

In addition to the above mode commands, the system recognizes the following task commands. Each task request must contain 3 characters and be followed by a carriage return.

SHD - Shtudown This command halts the motors, waits until they come to rest, and stores the current values of the data base, including the motor counts, on the disk, and ceases execution of the helio control program. SHD can be commanded from any program state or mode.

LON -Log On This causes the automatic logging to turn on as it is set up by K74 through K94. The LA-120 DEC writer must be turned on and set online (as opposed to local) for the logging to print out. A buffer fills in computer memory before the print out begins so there may be a delay of several minutes before printing begins. LON should not be requested twice without an LOF as the second request will cause an abort of the program.

LOF - Log Off This closes out the data logging file sending the last of the data to the printer, and stops the logging operation. The log print gives the following information in addition to the requested $K$ and $A$ array values.

1) A floating point number giving time in seconds past midnight.
2) Two fixed point numbers composing a double precision integer number constituting time in seconds past midnight. The least significant part of this double precision number will print out as a negative number anytime it's most significant bit is set. To interpret a negative value, substrate it from 65,535.
3) A print of the heliostat modes each time a mode change occurs and the time at which it occurred.

RDP - Renew Display Before executing this task code, the screen should be cleared by using the shift and clear keys on the CRT. The RDP command will then put the main display titles back on the screen.

### 2.0 Software Organization

The software was organized into the following files and routines.
2.1 File HCP5 - This file contains all the background program which constitutes the FORTRAN MAIN program.
2.2 File LIBR5 This is a library file containing the following subroutines most of which are called to support the background processing (HCP5)

MMCD (C, A1, A2)

MMCD $=$ Manual Mirror Command Display

This routine is called to display the command values when the MMC mode is requested.
$C=$ Column to begin typing the values. A1 = Azimuth position command (F1 or F51) A2 = Elevation position command (F2 or F52)

LOCCUR (Row, Col)
LOCCUR $=$ Locate Cursor

This routine locates the cursor to begin a message in a specific space on the CRT screen.

CLRDSP (Row, Col, Num)
CLRDSP = Clear Display

This routine is called to clear a NUM spaces on the CRT screen, starting at location (Row, Col)

DSPLYM () = Display Modes

This routine is called to display the modes for both heliostat \#1 and heliostat \#2 on the CRT screen.

DSPLYP $=$ Display Positions

This routine is called to display the gimbal axis positions for both heliostat \#1 and heliostat \#2.
GPIO (N)
GPIO = General Purpose Input/Output

This routine is called to display and change values in the data base.

RNDSP - Renew Display

This routine is called by the task RDP. It rewrites all the headings on the CRT display.

TYPMD (MDNUM)
TYPMD = Type Mode
MDNUM $=$ Mode Number

This routine is used to type a mode name for the mode number when a mode change occurs during the automatic data logging.
2.3 File - CLOK This file contains the clock interrupt service routine written in assembly language. It calls the MODE routine and the MCR routine to do the heliostat control computations. It also contains the handler for the serial data from the instrumentation encoders.

This file contains two routines, MCR and MODE. They are
2.4 File - MODE written in FORTRAN.
a. The $\operatorname{MODE}(A, K)$ subroutine is called in frames 1 and 3 by the CLOK routine to do the mode setup and mode jump. The arguments $A$, $K$ specify the data base values for servicing heliostat \#1 or heliostat \#2. The mode subroutine calls the track subroutine (TRK) for pointing calculations.
b. The MCR $(A, K)$ subroutine is the motor control routine called by CLOK in frames 2 and 4. It compares the ideal point values to the gimbal axis positions and turns the motors on if the error exceeds $1 / 2$ step size.
2.5 File - TRK Contains subroutines TRK, MVP and NMR.

The TRK ( $A, K, K L$ ) subroutine does the pointing calculations. The arguments designate the data base locations for heliostat \#1 or heliostat \#2.

The MVP (A,B,C.) subroutine does the multiplications to produce

Vector $C=($ Matrix $A)$ times (Vector B)

The NMR (A) subroutine normalizes the Vector A.
2.6 File - MIR Contains all the interrupt service routines for interrupts being generated at the heliostats. These routines are written in assembly language and structured to share as much common code as possible.

APPENDIX H CONTROL SYSTEM DATA BASE

Table 1. K Array (Integers)

Helio No. 1		Helio No. 2		Descriptions
K	Value	K	Value	
1		31		Active mode, $1=$ HLT, $2=$ TRK,   $3=$ STB, $4=$ VSW, $5=$ STS, $6=H S W$,   $7=$ MMC, $8=$ MBC, $9=$ LAR, $10=$ LER
2		32	.	MSB is FLG used in TRK LSB prevents setting MTR run CMDS $\mathrm{IF}=0$.
3		33		MTR CMDS at previous running MS byte for elev, LS byte for azim.
4		34		Mode CMD ( K 1 , or K31) at prev. setting
5	-6076	35	-6074	Address of output reg. $164104_{8}=-6076_{10}, 164106_{8}=-6074_{10}$
6		36		Target designator, $0=B C S$ target, $1=$ STB PT, $2=$ MBC, 3 = Wirewalk, $4=$ Beam angle, $5=$ MMC
$\begin{aligned} & 26 \\ & 8 \end{aligned}$		$\begin{aligned} & 37 \\ & 38 \end{aligned}$		Az MTR CMD, (cw, stop, ccw) $=(1,0,-1)$   EI MTR CMD. (up, stop, dn) $=(1,0,-1)$
$\begin{aligned} & \hline 9 \\ & 10 \\ & 11 \end{aligned}$		$\begin{aligned} & 39 \\ & 40 \\ & 41 \end{aligned}$		$\left.\begin{array}{l}\text { LSP } \\ \text { MSP }\end{array}\right\}$Az. MTR rev. count at last   CCW passing of ref. mark   EI MTR rev. count at last downward passing of ref. mark
$\begin{aligned} & 12 \\ & 13 \\ & 14 \end{aligned}$		$\begin{aligned} & 42 \\ & 43 \\ & 44 \end{aligned}$	.	$\left.\begin{array}{l}\text { LSP } \\ \text { MSP }\end{array}\right\}$ Current AZ MTR count   Current EI MTR count
$\begin{aligned} & 15 \\ & 16 \\ & 17 \end{aligned}$		$\begin{aligned} & 45 \\ & 46 \\ & 47 \end{aligned}$		$\left.\begin{array}{l}\text { LSP } \\ \text { MSP }\end{array}\right\}$ Current desired Az MTR counts Current desired EI MTR count
$\begin{aligned} & 18 \\ & 19 \\ & 20 \end{aligned}$		$\begin{aligned} & 48 \\ & 49 \\ & 50 \end{aligned}$		$\left.\begin{array}{l}\text { LSP } \\ \text { MSP }\end{array}\right\}$AZ MTR count CMD, corrected for   coast and step size   EI MTR, CNT, CMD, corrected for coast and step size
$\begin{aligned} & 21 \\ & 22 \end{aligned}$		51 $52$		Az MTR coast count - last running   EI MTR coast count - last running
$\begin{aligned} & 23 \\ & 24 \end{aligned}$	16	$\begin{aligned} & 53 \\ & 54 \end{aligned}$		$\left.\begin{array}{l}\text { Az } \\ \text { EI }\end{array}\right\} \begin{aligned} & \text { Allowed CNTS err before } \\ & \text { motor is run }\end{aligned}$

Table 1. K Array (Integers)-(Continued)


Table 1. K Array (Integers)-(Continued)

K	Value	Description
77   78   79   80   81   82   83   84   85   86		K number for ist integer to be logged   2nd   3rd   4th   5th   $\vdots$ $\vdots$ $\vdots$ $\vdots$   10th
87   88   89   90   91   92   93   94		F num for 1st floating PT to be logged
$\begin{aligned} & 95 \\ & 96 \end{aligned}$	$\begin{aligned} & 8 \\ & 4 \end{aligned}$	Azimuth step size at 0 elev. (MTR counts)   Azimuth allowed overshoot error without reversing motor to correct (MTR counts)
$\begin{aligned} & 97 \\ & 98 \end{aligned}$	-	$\left.\begin{array}{l} \text { EI } \\ \text { AZ } \end{array}\right\} \begin{aligned} & \text { Values read from position encoders } \\ & \text { for instrumentation } \end{aligned}$
- 99		Date for which ephemeris constants have been computed
100	4	Elev. allowed overshoot (MTR counts) without reversing motor to correct
$\begin{aligned} & 101 \\ & 102 \\ & 103 \end{aligned}$	-29535	Flag to enable life cycle test, set to 0 (zero) to disable.   Cycle counts for life cycle test.   Time loaded into KG1 at beginning of each cycle of life cycle test.

Table 2. F Array for HCP5


Table 2. F Array for HCP5 (Continued)


Table 2. F Array for HCP5 (Continued)

$F$	Value	Descriptions - Parameters Common to Both Heliostats
162		2
$\vdots$		
200		$\vdots$
201		40
$\vdots$		Azimuth values for mode 21-sequencial points CMD program*
216		
217		Elev. values for mode 21-sequencial points CMD program
$\vdots$		
232		
233		
$\vdots$		

*There is no planned use for mode 21

```
UNLIMITED RELEASE
INITIAL DISTRIBUTION
UC-62d (350)
U.S. Department of Energy
600 E Street NW
Washington, D. C. }2058
Attn: W. W. Auer
 G. W. Braun
 K. Cherian
 M. U. Gutstein
 L. Mel amed
 J. E. Rannels
U.S. Department of Energy
San Francisco Operations Office
1333 Broadway
Oakland, CA }9461
Attn: S. D. Elliott
 S. Fisk
 R. W. Hughey
 W. Nettleton
U.S. Department of Energy
Solar Ten Megawatt Project Office
P. O. Box }144
Canoga Park, CA 91304
Attn: M. Slaminski
U.S. Department of Energy
Solar Ten Megawatt Project Office
5301 Bolsa Ave. MS14-1
Huntington Beach, CA }9264
Attn: R. N. Schweinberg
USAF Logistics Command
P. O. Box }3314
Wright-Patterson AFB
Ohio 45433
Attn: G. Kastanos
UCLA
900 Veteran Avenue
Los Angeles, CA }9002
Attn: F. Turner
Georgia Institute of Technology
Engineering Experiment St.
Atlanta, GA }3033
Attn: S. H. Bomar, Jr.
```

```
University of Houston
Houston
Solar Energy Laboratory
4800 Calhoun
Houston, TX }7700
Attn: A. F. Hildebrandt
 L. L. Vant-Hull
U.S. Department of Interior
Water & Power Res. Service
P.O. Box 427
Boulder City, NV }8900
Attn: J. Sundberg
Acurex
485 Clyde Avenue
Mountain View, CA }9404
Attn: J. Hull
Aerospace Corporation
Solar Thermal Projects
Energy Systems Group, D-5
Room 1110
P.O. Box 92957
El Segundo, CA 90009
Attn: P. deRienzo
 P. Mathur
Airesearch Manufacturing Co.
2525 West 190th Street
Torrance, CA }9050
Attn: M. G. Coombs
 For: P. F. Connelly
AMFAC
700 Bishop Street
Honolulu, HI 96801
Attn: G. St. John
ARCO
911 Wilshire Blvd
Los Angeles, CA }9001
Attn: J. H. Caldwell, Jr.
Arizona Public Service
P. 0. Box 21666
Phoenix, AZ }8503
Attn: D. L. Barnes
 For: E. Weber
Arizona Solar Energy Commission
1700 W. Washington - 502
Phoenix, AZ 85007
Attn: R. Sears
```

```
Babcock & Wilcox
91 Stirling Avenue
Barberton, OH 44203
Attn:, G. Grant
 For: J. Pletcher
 M. Seale
Babcock & Wilcox
P. O. Box }126
Lynchburg, VA 24505
Attn: W. Smith
Babcock & Wilcox
20 S. VanBuren Avenue
Barberton, OH 44203
Attn: M. Wiener
Badger Energy, Inc.
One Broadway
Cambridge,MA 02142
Attn: F. D. Gardner
Battelle Pacific Northwest Labs
P. 0: Box }99
Richland, WA 99352
Attn: M. A. Lind
Bechtel National, Inc.
P. O. Box }396
San Francisco, CA }9411
Attn: E. Lam
 For: J. B. Darnell
 R. L. Lessley
Black & Veatch
P. O. Box }840
Kansas City, MO }6411
Attn: C. Grosskreutz
 For: J. E. Harder
 S. Levy
Boeing Engineering & Construction
P. O. Box }370
Seattle, WA 98124
Attn: R. L. Campbell
 R. Gillette
 J. R. Gintz
Booz, Allen \& Hamilton, Inc. 8801 E. Pleasant Valley Road Cleveland, OH 44131
Attn: W. Hahn
Brookhaven National Laboratory
Upton, NY 11973
Attn: G. Cottingham
```

```
Burns and Roe, Inc.
550 Kinderkamack Rd.
Oradell, NJ 07649
Attn: J. Willson
Burns and Roe, Inc.
185 Crossways Park Drive
Woodbury, NY 11797
Attn: R. Vondrasek
Busche Energy Systems
7288 Murdy Circle
Huntington Beach, CA }9264
Attn: K. Busche
California Public Utilities Commission
350 McAllister St., Room 5024
San Francisco, CA }9410
Attn: B. Barkovich
 For: C. Waddell
Chevron Research
P. O. Box }162
Richmond, CA 94804
Attn: L. Fraas
Chevron Oil Research
P. O. Box 446
La Habra, CA 90631
Attn: W. Peake
 For: J. Ploeg
 W. Stiles
Colt Industries
Trent Tube Division
East Troy,WI 53170
Attn: J. Thackray
Corning Glass Works
Advanced Products Dept.
M/S 25
Corning, NY }1483
Attn: W. M. Baldwin
 A. Shoemaker
Custom Metals Enterprises, Inc.
3288 Main Street
Chula Vista, CA 92011
Attn: T. J. Bauer
Data Science Corp.
1189 Oddstad Drive
Redwood City, CA }9406
Attn: M. Liang
```

Electric Power Research Institute
P. O. Box 10412
Palo Alto, CA ..... 93403
Attn: ..... J. Bigger
El Paso Electric Company
P. O. Box 982
E1 Paso, TX 79946
Attn: J. E. Brown
Energy, Inc.
P. 0. Box 736
Idaho Falls, ID ..... 83401
Attn: G. Meredith
Exxon Enterprises-Solar Thermal Systems
P. O. Box 592
Florham Park, NJ ..... 07932
Attn: P. Joy
For: D. Nelson
G. Yenetchi
Ford Aerospace
3939 Fabian Way, T33
Palo Alto, CA 94303
Attn: I. É Lewis
For: H. Sund
Foster-Miller Associates
135 Second Avenue
Waltham, MA 02154
Attn: E. Poulin
Foster Wheeler Dev. Corp.
12 Peach Tree Hill Road
Livingston, NJ 07039
Attn: A. C. Gangadharan
For: R. Zoschak
GAI Consultants, Inc.570 Beatty Rd.
Monroeville, PA 15146
Attn: H. Davidson
General Atomic Company
P. 0. Box 81608
San Diego, CA 92138
Attn: H. A. Chiger
General Electric Company
Advanced Energy Programs
P. O. Box 8661
Philadelphia, PA 19101
Attn: A. A. Koenig

```
General Electric Company
l River Road
Schenectady, NY 12345
tric Company
1 River Road
Schenectady, NY }1234
Attn: J. A. Elsner
 For: R. N. Griffin
 R. Horton
GM Transportation System Center
GM Technical Center
Warren, MI 48090
Attn: J. Britt
GM Corp. Harrison Rad. Division
A and E Building
Lockport, NY 14094
Attn: A. Stocker
Houston Lighting and Power
P. 0. Box }170
Houston, TX 77001
Attn: J. Ridgway
Institute of Gas Technology
Suite 218
1825 K Street, NW
Washington, D. C. }2500
Attn: D. R. Glenn
Jet Propulsion Laboratory
Building 520-201
4800 0ak Grove Drive
Pasadena, CA 91103
Attn: M. Adams
 H. Bank
 W. Carley
 E. Cuddihy
 J. Sheldon
 J. Swan
 V. Truscello
Kaiser Engineers, Inc.
300 Lakeside Drive
0akland, CA }9461
Attn: I. Kornyey
Lawrence Berkeley National Laboratory
University of California
Berkeley, CA }9472
Attn: A. J. Hunt
```

```
Los Alamos National Laboratory
P. O. Box }166
Los Alamos, NM 87545
Attn: S. W. Moore
Los Angeles Water and Power
111 North Hope Street
Los Angeles, CA 90051
Attn: B. M. Tuller
 R. Radmacher
Martin Marietta Corporation
P. O. Box }17
Denver, CO }8020
Attn: P. R. Brown
 A. E. Hawkins
 T. Heaton
 L. Oldham
 H. C. Wroton
McDonnell Douglas Astronautics Co.
5301 Bolsa Avenue
Huntington Beach, CA 92647
Attn! P. Drummond
 R. L. Gervais
 D. A. Steinmeyer
 L. Weinstein
Meridian Corporation
5515 Cherokee Avenue
Alexandria, VA }2231
Attn: B. S. Macazeer
Nielsen Engineering. & Research
510 Clyde Avenue
Mt. View, CA 94043
Attn: R. Schwind
Northrup, Inc.
302 Nichols Drive
Hutchins, TX }7514
Attn: J. A. Pietsch
ARCO Power Systems
Suite 301
7061 S. University Boulevard
Littleton, CO }8012
Attn: J. Anderson
 F. Blake
0lin Corporation
275 Winchester Avenue
New Haven, CT 06511
Attn: S.L. Goldstein
```

OSC Department of Commerce
341 West 2d Street
San Bernardino, CA 92401
Attn: M. G. Heaviside
Pacific Gas and Electric Co.
77 Beale Street
San Francisco, CA 94105
Attn: P. D. Hindley
For: J. F. DoyleA. Lam
Pacific Gas and Electric Co.
3400 Crow Canyon Road
San Ramon, CA 9426
Attn: H. Seielstad
For: J. Raggio
Phillips Chemical Co.
13-D2 Phillips Building
Bartlesville, OK 74004
Attn: M. Bowman
Pittsburgh Corning
800 Presque Isle Drive
Pittsburgh, PA 15239
Attn: W. F. Lynsavage
Pittsburgh Corning
723 N. Main Street
Port Allegany, PA ..... 16743
Attn: W. J. Binder
For: R. Greene
PPG Industries, Inc.
One Gateway Center
Pittsburgh, PA 15222
Attn: C. R. Frownfelter
Public Service Co. of New Mexico
P. 0. Box 2267
Albuquerque, NM 87103
Attn: A. Akhil
Research and Development
Public Service Co. of Oklahoma
P. O. Box 201
Tulsa, OK 74102
Attn: F. Meyer
Rockwell International
Energy Systems Group
8900 De Soto Avenue
Canoga Park, CA 91304
Attn: T. Springer

```
S. C. Plotkin & Associates
6451 West 83rd Street
Los Angeles, CA }9004
Attn: W. Raser
Safeguard Power Transmission Co.
Hub City Division
P. 0. Box }108
Aber deen, SD 57401
Attn: R. E. Feldges
Sargent and Luridy
55 East Monroe
Chicago, IL 60603
Attn: N. Weber
Schumacher & Associates
2550 Fair Oaks Blvd., Suite 120
Sacramento, CA 95825
Attn: J. C. Schumacher
Sierra Pacific Power Co.
P. O. Box }1010
Reno, NV }8951
Attn: W. K. Branch
Solar Energy Research Institute
1617 Cole Boulevard
Golden, C0 80401
Attn: L. Duhham, TID
 G. Gross
 B. Gupta
 D. W. Kearney
 L. M. Murphy
 R. Ortiz, SEIDB
 J. Thornton
Solar Thermal Test Facility
User Association
Suite 1205
First National Bank East
Albuquerque, NM }8711
Attn: F. Smith
Solar Turbines International
P. 0. Box }8096
San Diego, CA 92138
Attn: P. Roberts
Southern California Edison
2244 Walnut Grove Road
Rosemead, CA }9177
Attn: J. Reeves
 For: C. Winarski
```

```
Southwestern Public Service Co.
P. 0. Box 1261
Amarillo, TX }7817
Attn: A. Higgins
Standard Oil of California
555 Market Street
San Francisco, CA }9410
Attn: S. Kleespies
Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, CA 94025
Attn: A. Slemmons
Stearns-Roger
P. O. Box }588
Denver, CO }8021
Attn: W. Lang
 For: J. Hopson
Stone & Webster Engineering Corp.
245 Summer Street
P. O. Box 2325
Boston, MA 02107
Attn: R. Kuhr
Townsend and Bottum
9550 Flair Drive
El Monte, CA 91731
Attn: R. Schwing
US Gypsum
101 S. Wacker Drive
Chicago, IL 60606
Attn: Ray McCleary
US Water & Power Resources Service
Bureau of Reclamation
Code 1500 E
Denver Federal Center
P. 0. Box 25007
Denver, C0 80225
Attn: S. J. Hightower
Van Leer Plastics
15581 Computer Lane
Huntington Beach, CA }9264
Attn: Larry Nelson
Veda, Inc.
400 N. Mobile, Building D
Camarillo, CA 90310
Attn: L. E. Ehrhardt
 For: W. Moore
```


## Westinghouse Corporation

Box 10864
Pittsburgh, PA 15236
Attn: J. J. Buggy
For: R. W. Devlin
W. Parker

Winsmith
Division of UMC Industries
Springville, NY 14141
Attn: W. H. Heller
K. R. Miller, 3153
G. E. Brandvold, 4710; Attn: J. F. Banas, 4716
J. A. Leonard, 4717
B. W. Marshall, 4713; Attn: D. L. King
A. B. Maish, 4724
R. G. Kepler, 5810; Attn: L. A. Harrah, 5811
J. G. Curro, 5813
F. P. Gerstle, 5814
J. N. Sweet, 5824; Attn: R. B. Pettit and E. P. Roth
T. B. Cook, 8000; Attn: A. N. Blackwell, 8200
B. F. Murphey, 8300
C. S. Hoyle, 8122; Attn: V. D. Dunder
R. J. Gallagher, 8124; Attn: B. A. Meyer
D. M. Schuster, 8310; Attn: R. E. Stoltz, 8312, for M. D. Skibo
A. J. West, 8314
W. R. Even, 8315
R. L. Rinne, 8320
C. T. Yokomizo, 8326; Attn: L. D. Brandt
P. L. Mattern, 8342
L. Gutierrez, 8400; Attn: R. A. Baroody, 8410
D. E. Gregson, 8440
C. M. Tapp, 8460
C. S. Selvage, 8420
V. Burolla, 8424; Attn: C. B. Frost
R. C. Wayne, 8450
T. D. Brumleve, 8451
W. R. Delameter, 8451
P. J. Eicker, 8451 (5)
R. M. Houser, 8451
C. L. Mavis, 8451
W. L. Morehouse, 8451
H. F. Norris, Jr., 8451
W. S. Rorke, Jr., 8451
D. N. Tanner, 8451
S. S. White, 8451
A. C. Skinrood, 8452
W. 'G. Wilson, 8453

Publications Division, 8265/Technical Library Processes Division, 3141
Technical Library Processes Division, 3141 (2)
M. A. Pound, 8214, for Central Technical Files (3)


[^0]:    *Photographs referred to in this section are found in Appendix B-4, starting on page B-42.

[^1]:    *The only difference between the prototype and production samples was the glass skin ( 0317 versus 7809), which was not expected to introduce significant variations.

