UNLIMITED RELEASE

SECOND GENERATION HELIOSTAT DEVELOPMENT

FOR
SOLAR CENTRAL RECEIVER SYSTEMS

PREPARED BY
NORTHRUP, INCORPORATED
A SUBSIDIARY OF
ATLANTIC RICHFIELD CO.

AND

BECHTEL NATIONAL, INC. AND BOOZ-ALLEN AND HAMILTON, INC..
When printing a copy of any digitized SAND
Report, you are required to update the markings to current standards.

SECOND GENERATION HELIOSTAT DEVELOPMENT

FINAL REPORT
VOLUME IV
Appendices F - J

Sandia Contract No. 83-2729E
Sandia Requestor - C. L. Mavis/8451 Contracting Representative - R. C. Christman

Work performed during the period July 16, 1979 through March 31, 1981
by
Northrup, Incorporated 302 Nichols Drive Hutchins, Tx. 75141 and Subcontractors:

Bechtel National, Inc. 50 Beale St.
San Francisco, California 94119
and
Booz-Allen and Hamilton, Inc.
8801 E. Pleasant Valley Rd.
Cleveland, Ohio 44131

This report is presented in 4 Volumes. The content of these volumes is as follows:

```
Volume I - Sections 1.0 - 3.0
    1.0 Introduction
    2.0 Summary of Results
    3.0 Northrup Heliostat Description
Volume II - Sections 4.0 - 8.0
    4.0 Manufacturing
    5.0 Transportation
    6.0 Field Assembly and Installation
    7.0 Maintenance
    8.0 Cost Estimates
Volume III - Appendices A - E
```

 A. Bill of Materials
 B. Part Drawings (Subassemblies)
 C. Assembly Drawings
 D. Trade Studies
 E. System Studies
 This volume | Volume IV - Appendices F - J | |
| ---: | :--- |
| F. | Control Software |
| G. | Test Results |
| H. Manufacturing | |
| I. | Specification S-101 |
| J. | Specification S-102 |

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the DOE, nor any person acting on behalf of the DOE:
a. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, nor that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
b. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

9.6 Control Software (Appendix F)

The control software for the Northrup II heliostats consists of two packages, one handling the external data processing, communication, and control and one handling the internal data processing, communication and direct motor control.

The Heliostat Controller specification, Figure' F-1 defines the word structure used to communicate control information and status information between the two software systems.

An overview flow diagram of the "Mini HAC" software package to be implemented in the Hewlett Packard 9825 desktop computer system is shown in Figure $\mathbf{F - 2}$.

The detailed software flow being implemented in the Northrup Heliostat Control Electronics is described on pages F-8 to F-11. The flow chart for the Heliostat Controller is included in pages $\mathrm{F}-12$ to $\mathrm{F}-29$. The text margins are annotated with the applicable flow chart step numbers.

FIGURE F-1 (Sheet 1 of 4)
HELIOSTAT CONTFOLLER: (HC) SFECIFICATIOH

3.1 Ineta Formet

The data format between the he liostat and the oontrolled shall be per the follouirs table:

WORI	FUNCTIOH
1	Fiddress
'2	Azimuth (ms byte)
3	Fzimuth (le bete)
4	Elevation(ms byte)
5	Eleuation(ls byte)
6	Mode

3.1.1 Eit Confisuration

The dats word shall ousist of one stert bit, two stow bits, ε deta bits, and no parity bits. 3.1.1.1 Time Out

The HC Ehell reoeive 6 words per parasrowh 3.1. The words shall be Eeparated only b's the normal two stow bits. If oommuications is lost durins tronsmission, the $H C$ shell time out after 1.5 bytes (word lensth) and continue its brevious operation until a new instruction is reoeived.

3.1.2 Fddress

Two Fddress shall be used for prototyre desisn.
He liostat 1 shall be address 01
he liostat 2 shall be address 02
3.1.3 Azimuth and Elevation postion

Fosition shall oonsist of two seit words. A nosition commend Ehell be an abolute suzntity with the leset sisnificont bit beins extal to 125 motor steps.

The he liostat prooessor shall subtreot the oommended position from the sooumbated position and command the sterober motor to move the differential stens.

Figure F-1 (Sheet 2 of 4)
3.1.4 The Moode byte

The Mode byte is defined bey the format shown be low.

If Eit $2=0$
Fit $\mathrm{B}=1 \mathrm{H} 2 \mathrm{Stos}$
Eit $0=6$ continue previous operation
Bit $1=1$ El Ston
Eit $1=6$ Continue mrevidus oweration
Eit $z=$ Mode indication for bits and 1

Bit $\mathrm{E}=1 \mathrm{Sln} \mathrm{AZ}$
Eit $3=$ Track AZ
Eit $4=1$ Slew El to Stom
Bit 4 = 6 Traok El
Bit $5=1$ Fecuest Status

Bit E = 1 Set mosition
Eit $7=1$ Clear malfunotion status
3.2 Wilce Up

The wabe us mode defines the losic used to nower us the he liostat in the mornins. The he liostat conroller shell uson power up oheck limit switoh status and if the stow limit switoh is in the normel mode shell exeoute the commended position. It shall cheok the limit swioh status atter 2 stevs and continue if the limit suitoh is open. If the limit swioh is olosed it shall stow all motor oweration and set a status bit.

3.3 Status Words

The he liostat status shall be sent unon recuest from the controller. The status 三hall ooneist of the followins:

HORI
1
2
3
4
5

FUNCTIOH
Faimuthems byte)
Azimuth (ls bute)
Elevation(ms byte)
Eleuationcls bute?
status

Figure F-1 (Sheet 3 of 4)
3.3.1 Fosition

The he liostat controller shall keew track of its acoulumated position. It shell send this position uson reauest from the master controller.

3.s.2 status

The heliostat status word shell be defined be the followins.
Eit Function

0	$A E$ culimit sm
1	A2 ocu limit sum
2	El coll limit sw
3	El com limit sm
4	Motor movement $A 2$
5	Motor Movement EL
6	Welce up malfurotion
7	Fower drow dut.

Eits and 1 shall indioste AR_{Z} limit suitoh aotivation it Eit. $4=6$ and shall indicate motor movement if Eit $4=1$.

Eits 2 and 3 shall indioste EL limit suitoh aotivation if Eit $5=6$ End Ehell indigate motor movement if Eit $5=1$
3.3.2.1 Welse Un Maltunotion

A wase us melfunction ghall be defined as the inability of the heliostat to siriwe off of the limit switohes.
3. З, 2. 2 Fower drow out is defined as power we with the limit switches owen.
3. 4 Heliostat Error Eonditions
3.4.1 Meltunction Eonditions

He liostat motors shall remain off atter a melfumotion conditioncuill not execute commends?
3.4.1.1 Eit seyen of the mode shell reset the heliostat to normel oweration callow the controller to move the heliostat).
3.5 Motor Operetion
3.5. 1 Fooeleration If two motors are reoured to moue to a mosition simultaneously they shall aooelerate in porallel and both shall desocelerate when either motor is resured to stow. foter. both motors stow the motor reduirins adolitionel mosition-movement. shall resume normal operation (see fisure F-1).

\# ACCELERATIONTIEACCELERATIUH HEEIEI

* HEEI TO COHNT CVOLES

移 IELA'' AIITUETMENT REGUIREI FOR IIFFERENT ERFHICHES

Figure F-2 (Sheet 2 of 2)

MINI HRC SDFTWRRE 5CHEMRTIL-

Heliostat Controller Software Performance

After power-on reset the processor will vector to the start of the
program. The first task is to initialize the programmable hardware, internal position, and status control bytes.

After initialization the program will test the home limit switches to see if the mirror was stowed at the home position. If the limits are open then it will be assumed that power has been lost at some time during mirror control. If this case has been detected then the power drop out bit will be set in the status byte.

If the mirror is at the home position, then the program will try to move the mirror two positions off the limit switches. This will test the motor operation and limit switches for malfunction. If the limits don't open then the wake-up malfunction bit will be set in the status register.

If a malfunction has occurred then the program will allow commands to be received but will only recognize a request for status or a reset of the malfunction status or both. A reset of the malfunction status shall transfer the program control to normal command operation.

In normal command processing the program shall wait for a command to be fully received before decoding takes place. After a command is received the first test is for proper device address. If the address is incorrect, then it will clear the command ready and return and wait for the next command to be received. If the address is ok then the status will reflect the current status of the limit switches,

The next operation will clear the command ready and then test for high speed operation. If high speed is requested then a bit will be set in the direction register. Set position is the next command to be decoded. If this is requested then the absolute position will reflect the command position.

If status is requested then the transmitter interupt will be enabled and the current position and machine status will be transmitted. After this operation the program will transfer back to the wait for command routine.

If the stop motors bit is set then the program will transfer back to wait for the next command. This is performed because slew direction could not be calculated properly. Slew motor is the next test, and if set then the motor direction is tested and the Slew motor and direction bits are set in the direction register.

If tracking is requested then the absolute position is subtracted from the command position and the result is stored in the Step registers and the direction register will be set for clockwise. If the result is negative then the step registers are complemented and the direction register is set for counter-clockwise. This operation is performed for both azimuth and elevation.

The status register is set with the limit switch status and then the program will call the motor movement routine, and then will return the wait for command routine.

At the start of the motor routine it will initialize the acceleration step register with the number of acceleration/deceleration steps. Both motors will be turned on and home position zeroing will be turned off for that motor. The next test will check if the motor is moving into a limit switch. If it is then that motor is turned off.

The program will now test to see if there are any steps to be performed. If there are none then the motors are turned off. If only one step is to be performed then the step motor bit is set in the stop register. If the motor is slewing then this step is omitted. If both motors are turned off at this time then the program will return to where it was called from.

The next operation will test the motor to see if it is on and if it is then it will set the status register to indicate operation and the direction it is moving.

The number of steps per position will be set at the start of the motor movement loop. At the start of the loop the program will delay

42-49

50-54

55-66

67-80
81-88
89-91

92-105

106-115

116-117 $30 \mu \mathrm{~s}$ for each acceleration step.

A test will be made to see if a command was received during
motor movement. If there was then it will test for proper address, status request and stop motor command. If stop motor command is received then stop motor bits will be set in the stop register and the command ready bit will be reset.

The next test is for high speed. If this bit is set then the program will skip a 500 人 s delay for 1000 step per second timing to an adjustment for 2000 steps per second maximum speed.

If the motor is on then it will test the direction register and will pulse either the clockwise or counter-clockwise line for $10 \mu \mathrm{~s}$. After the step a test will be made to check if the motor hit a limit switch. If it did then the stop bit for that motor will be set.

The number of steps left will be decremented. If there are more steps left then it will test to see if any motors are stopping. If so then it tests to see if there are enough steps left to decelerate the motor. If there are it sets the decelerate bit. If the decelerate bit is set then the delay steps are incremented.

If no motors are stopping then it tests to see if it is at maximum speed. If not then the number of delay steps are decremented.

After 125 steps have been performed then the absolute position will be incremented or decremented depending upon the motor direction. If the motor is not slewing then the number of position steps are decremented. If the stop bit is set then it tests the deceleration bit. If it is also set then the motor is turned off and status is set to reflect the status of the limit switches. If the step bit is not set and the number of position steps left is one, then the stop bit is set.

If the motor is slewing then a test is made on the stop bit. If set it makes the same test on the deceleration bit. If it is not set the program continues.

A test is made at this point to see if either motor is on. If they are then the deceleration bit and the stop bits are reset if a
motor was stopped. Then the program transfers back to the start of the motor step loop.

If both motors are stopped, a test is made to see if a home limit switch is on. If it is then the zero position bit is on. If it is also on then the motor is stepped back onto the limit switch and the absolute position is set to zero. After this program transfers back to the place from which it was called.

After an interrupt the processor vectors program control to the interrupt service routine. The internal registers are saved and a test is made to see if the serial I/O device caused the interrupt. If not then it assumes that it was the timer. A timer interrupt will reset the byte counter in the receiver. A timer interupt will be caused if thereis a transmission failure. After the interrupt was serviced then the internal registers will be restored and will return to where it was called from.

If the serial I / O device interupted then a test is made to see if it was the transmitter or receiver section. If it was the receiver, data is read from the device and saved in a table. Then the timer is set for a byte and a half time out, the registers are restored, and the program returns. If it was the last byte to be received then the command ready bits are set and the Timer is disabled.

When the transmitter interrupts the data is read from a table and it is transformed to the data register. If it's the last byte, the transmitter is disabled from interrupt and the number of bytes to be sent is reset. Registers are restored and the program returns.

1
START

$2 \quad$| Initalize |
| :--- |
| Stack |
| Disable Timer |

5

6
Set Registers
for 5 byte xmit 6 Byte recive

7

8

9
10

11

12

13

50

FLOW CHART FOR HELIOSTAT CONTROLLER (Page 6)

89

90

91

$$
F-18
$$

9.7 Test Results (Appendix G)

9.7.1 Electronic Tests

9.7.1.1 Computer Control of Northrup I Heliostat

The initial electronic testing activity
was the bench evaluation of the Superior Electric Co. STM 101 translator and the computer controlled operation of Superior M063-FC06 stepper motors with the STM 101 translator. The M063 is rated at 100 in-lb in the $0-500$ step/sec speed range.

Due to the high end to end gear ratio of Northrup I, 180:1 motor gear head x 440:1 Heliostat Drive (79, 200:1 total in azimuth) and ($180 \times 520=93,600: 1$ in elevation) the laboratory size stepper motors could be used for a full scale heliostat computer tracking experiment.

A simplified translator was built and software designed to drive the heliostat in a tracking mode. This translator was tested on the Northrup I heliostat. The Commodore computer was used to drive the translator. A basic program was used to calculate the step commands from time of day, heliostat and target coordinates. The step commands were then passed to a machine language program that drove the translator. The translator interfaced to the computer through a 6522 versatile interface adapter. A small stepper motor was used to drive the Northrup I heliostat through the existing motor and gearhead. This was enough to demonstrate tracking but not to slew. Slewing was accomplished with the AC Bodine motor. Good tracking was demonstrated with the stepper motor for about a six hour period.

A low power mode was demonstrated with the Northrup translator design. This was accomplished by adding a fifth mode to the logic table that turned off all the transistor switches at once. The drawback to this method is that no holding torque is available during the low power mode. Test results on the heliostat showed no loss of steps during the low power mode on elevation and some loss of steps in azimuth. Later analysis of the azimuth problem
showed an abnormal amount of backdrive in the drive mechanism due to a soft rubber coupling between the original motor and the stage 1 worm shaft.

9.7.1.2 Limit Switch Tests

The accuracy of the electronics and stepper motors is dependent on the position reference offered by the home position switch. In order to verify part specifications and obtain confidence in our design we constructed a limit switch tester. This tester consisted of a small stepper motor driving an actuator through several stages of gear reduction. Special software was designed to drive the motor into the switch, back it off, and record the position. The accuracy of each step of the motor was . 000047 inch which amounts to .0047 mr for a $10^{\prime \prime}$ arm. The test was performed over a period of three days and a few hendred data points obtained. The repeatability was within plus or minus 3 steps.

9.7.1.3 Translator Tests

Three different translators were procured and a fourth designed and built.

The first type of translator tested was the Superior Electric STM 101. This unit consisted of power drivers and sequential switching logic. This translator requires either external pulses or allows internal speed control. The design simulates constant current to the motor with high supply voltage and series resistors. This translator has the disadvantage of dissipating more power when the motor is at rest than when moving. The power supply required is 24 volts at 6 amperes. Since the motor windings see a constant voltage source in series with a resistor, the motor quickly runs out of torque at the higher speeds due to the the back emf generated. The internal logic in the translator converts input pulses to a logic configuration which can be easily generated by a microprocessor.

Software for driving the translator was developed for a stand alone heliostat controller. By using the Commodore computer for the development system we were able to change from the basic heliostat
driver to a machine language driver in one computer and a serial data transfer to another computer. Once the machine language program was checked out, the program was burned in a 2716 EROM that was plugged into the Commodore computer and tested. Once checked out a breadboard was built and checked for driving the stepper motors through the Northrup translator. After checking out the motor speed torque characteristics on a dynamometer it indicated a need for improved torque at high speeds. Several software strategies were developed for slewing the motor at high speeds. These techniques involved pulsing the motor during each step. This technique showed the need for analog feedback to control the motor current in the absence of current limiting resistors.

TC 600 Translator Tests
The Superior Electric TC 600 translator was tested for performance with the M112-FJ-326 and the M092-FD-310 motors. The results showed good torque/speed performance and a high amount of heating in the stand-by mode. The translator required four external supplies one of which was 70 volts at 10 amperes peak current. The unit generated high current switching transients at a frequency higher than the stepping rate.

TBM 105 Translator Tests
The TBM 105-9214 and the TBM 105-1230 were tested with the M092-FD-310 and the M112-FJ-326 respectively. The results showed moderate torque/speed performance and small amount of motor heating. The translator was self contained and only required a 110 volt supply. The only transients generated were the stepping signals to the motor.

9.7.2 Mechanical Tests

9.7.2.1 Component Tests

9.7.2.1.1 Mirror Module Hail Test

Extensive mirror module hail tests have been performed throughout the contract period to verify the adequacy of the mirror-silicone greasesteel substrate to resist breakage. Some initial tests were performed with "specification" ice balls of 0.75 inch diameter at speeds of $65 \mathrm{ft} / \mathrm{sec}$. However, breakage was virtually non-existent, so subsequent tests were all performed with "margin" ice balls of 1.0 inch diameter.

A pneumatically-powered hail gun was constructed at the NorthrupHutchins facility. Photoelectric sensors were employed to measure the time interval over a fixed, known distance which enabled the velocity to be computed. Various velocities were achieved by adjusting the chamber pressure which propelled the hail balls. The firing of an ice ball was accomplished by an electrical switch which in turn would trigger a solenoid valve to release the high pressure air into the barrel. Spherical ice balls of 1.0 inch diameter were made in a 2-piece aluminum mold which was fabricated specifically for this purpose. To insure adequate hardness, the ice balls were frozen and chilled to $20^{\circ} \mathrm{F}$ maximum.

For ice balls fired into the mirror interior area (away from the edges), velocities as high as $140 \mathrm{ft} / \mathrm{sec}$ could be tolerated without breakage. Edge hits would generally pass velocities up to $100 \mathrm{ft} / \mathrm{sec}$. Infrequent breaks would occur at or near the edges at velocities near $75 \mathrm{ft} / \mathrm{sec}$. It is believed that these were generally caused by an existing edge defect such as a minute crack or chip, and an impact in the near vicinity would cause the defect to propagate from the defect to the impact zone. Generally, breakage was very infrequent even with the "margin" ice balls of 1.0 inch diameter, and velocities well above $75 \mathrm{ft} / \mathrm{sec}$. Hence, the mirror module design is felt to be very adequate from the hail impact standpoint.

9.7.2.1.2 Mirror Module Thermal Cycling-Freeze/Thaw

A single mirror module ($\mathrm{S} / \mathrm{N} 200078$) was subjected to a series of thermal cycles in the Northrup environmental control room. A total of 10 cycles were performed. A thermal cycle consisted of heating to $120^{\circ} \mathrm{F}$ at the rise rate of $60^{\circ} \mathrm{F}$ /hour, stabilizing at this level for 30 minutes, spraying with ambient temperature water for 2-3 minutes, ramping down at $60^{\circ} \mathrm{F} /$ hour to $15^{\circ} \mathrm{F}$, stabilizing at this level for 30 minutes, spraying with ambient temperature water for 2-3 minutes, and then cycling back to $120^{\circ} \mathrm{F}$.

The objective of this test was to demonstrate the functional and structural integrity of the mirror module. The primary aim was to determine if any damage results from thermal cycling, thermal shock, or freezing. Another equally important goal was to visually check the appearance for distortions or curvatures at the temperature extremes.

The test instrumentation consisted of 4 thermocouples for measuring mirror module temperature at the following locations:
a. Backside module sheet-adjacent to $48^{\prime \prime}$ rectangular cross support member-left side.
b. Backside module sheet-adjacent to $48^{\prime \prime}$ rectangular cross support member-right side.
c. Mirror face-1eft end-approximately $3^{\prime \prime}$ inboard and near center of $48^{\prime \prime}$ width.
d. Mirror face-right end-approximately 6 " inboard and near center of $48^{\prime \prime}$ width.

In addition to these temperature measurements, an optical "zebra-board" was constructed to enable a qualitative evaluation of mirror distortion and/or curvature to be made. The "zebra-board" was fabricated from a 4' $\times 12$ ' mirror-less mirror module, painted white, and gridded with $1 / 2$-inch wide black stripes on 4 -inch centers. The "zebra-board" image in the mirror module being tested was visually examined and photographed at each temperature extreme.

The test results indicated a complete success. No damage resulted from the thermal cycling, the thermal shock from the water spray, or from the resulting freeze-thaw cycles. The visual observations of the "zebra-board" revealed no observable curvature or change in distortion.

9.7.2.1.3 Mirror Module Survival Wind Load Test

Test Objective: The objective of the mirror module survival wind load test was to verify the structural integrity of the adhesive bond joints and primary load paths through the attachments and adjacent rib members when subjected to loads comparable to a 90 mph wind.

Test Description: Figure 9.7-1 illustrates the test set-up used for the mirror module survival wind load test. Since the test objective was to evaluate the mirror module adhesive and structure, a module with broken mirrors was used. The broken mirrors were removed prior to testing. The module was suspended from the 3 attachment studs (i.e., face down orientation), and dead-weight loaded with wet sand on the backside. Only

 accomplished on the same module.

Instrumentation: The instrumentation used on this test consisted of a load gage to measure the sand weight, and 7 dial indicators to measure deflections. The dial indicators were attached such that the deflections being measured excluded deflections of the load gage and the test fixture main support member. The 7 dial indicators were located beneath each of the 7 longitudinal mirror module ribs.

FIGURE 9.7-1

MIRROR MODULE SURVIVAL WIND LOAD TEST

Test Conditions: The test loads were based on a 90 mph wind impacting a heliostat in the vertical stow position. This represents an over-test condition because a heliostat would normally be stowed horizontally if a high wind were anticipated. With a 90 mph wind normal to the heliostat, a peak pressure at the geometric center of 2.38 times the dynamic pressure occurs. This corresponds to a loading of $37.4 \mathrm{lb} / \mathrm{ft}^{2}$. Since only one-half of the mirror module area ($24.0 \mathrm{ft}^{2}$) was loaded on each test, an 897.6 lb sand weight simulates the worst case 90 mph wind condition. This load was applied in 100 lb increments with dial indicator readings taken at each increment.

Test Results: Table 9.7-1 and 9.7-2 present the load and deflection readings for the two tests. It will be noted that the test loads were increased to a maximum of 1500 lbs in an attempt to cause a bond failure. The dial indicator deflections indicate normal bending, and no bond failure with one possible exception. Dial indicator 非2 at the 1400 lb load on test $\# 1$ indicated a large, abrupt deflection which may indicate a local bond failure. Since this occurred at a high over-test load, no sections were cut open to confirm this possibility.

Table 9.7-1
Mirror Module Survival Wind Load Test - Run \#1

	Mirror Module Survival Wind Load Test - Run \#1						
$\begin{aligned} & \text { Load } \\ & \text { Cell } \\ & \hline \end{aligned}$	Dial $\# 1$	$\begin{aligned} & \text { Dial } \\ & \# 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Dial } \\ & \text { \#3 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Dial } \\ & \# 4 \end{aligned}$	$\begin{aligned} & \text { Dial } \\ & \text { \#5 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Dial } \\ & \# 6 \end{aligned}$	$\begin{aligned} & \text { Dial } \\ & \# 7 \\ & \hline \end{aligned}$
98 1b	. 030 "	.121"	.096"	.105"	.109"	.059"	.065"
200	. 029	. 120	. 094	. 104	. 110	. 065	. 075
300	. 030	. 120	. 094	. 105	. 113	. 070	. 082
400	. 030	. 120	. 094	. 106	. 116	. 075	. 090
500	. 031	. 121	. 095	. 108	. 120	. 082	. 100
600	. 032	. 121	. 095	. 109	. 124	. 090	. 110
600*	. 034	. 123	. 097	. 111	. 125	. 089	. 109
700	. 033	. 123	. 096	. 111	. 127	. 093	. 116
800	. 027	. 122	. 096	. 111	. 130	. 099	. 124
900	. 031	. 122	. 095	. 112	. 134	. 106	. 134
950	. 029	. 121	. 095	. 112	. 135	. 110	. 140
1000	. 029	. 121	. 095	. 112	. 138	. 114	. 146
1100	. 029	. 121	. 094	. 113	. 140	. 119	. 154
1200	. 030	. 121	. 094	. 114	. 144	. 126	. 164
1300	. 030	. 122	. 094	. 114	. 146	. 132	. 175
1400	. 032	. 143	. 095	. 116	. 150	. 138	. 184
1500	. 025	. 143	. 091	. 113	. 149	. 138	. 186
98	. 018	. 116	. 089	. 100	. 103	. 048	. 052

*After 1.5 hour dwell at this load

Tab1e 9.7-2
Mirror Module Survival Wind Load Test - Run \# 2

$\begin{aligned} & \text { Load } \\ & \text { Ce11 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Dial } \\ & \text { \#1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Dial } \\ & \# 2 \end{aligned}$	$\begin{aligned} & \text { Dial } \\ & \# 3 \end{aligned}$	$\begin{aligned} & \text { Dial } \\ & 1 / 4 \mathrm{a} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Dial } \\ & \text { \#5 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Dial } \\ & \# 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Dial } \\ & \# 7 \\ & \hline \end{aligned}$
95 1b	.026"	.072"	.124"	.080"	.055"	.069"	.023"
200	. 025	. 070	. 123	. 080	. 060	. 077	. 036
300	. 024	. 070	. 122	. 081	. 064	. 085	. 048
400	. 024	. 069	. 122	. 082	. 068	. 091	. 058
500	. 024	. 068	. 122	. 082	. 072	. 100	. 070
600*	. 020	. 073	. 120	. 083	. 075	. 110	. 081
700	. 020	. 067	. 120	. 084	. 079	. 115	. 088
800	. 019	. 066	. 120	. 084	. 082	. 120	. 096
900	. 019	. 066	. 120	. 085	. 086	. 125	. 104
1000	. 020	. 066	. 120	. 086	. 092	. 135	. 118
1100	. 018	. 065	. 120	. 087	. 096	. 142	. 129
1200	. 019	. 066	. 120	. 088	. 101	. 149	. 139
1300	. 018	. 066	. 120	. 089	. 106	. 156	. 149
1400	. 019	. 066	. 120	. 088	. 111	. 160	. 157
1500	. 020	. 067	. 120	. 089	. 115	. 165	. 165
1200	. 021	. 066	. 122	. 091	. 111	. 156	. 155
105	. 016	. 066	. 123	. 081	. 066	. 079	. 036

[^0]
9.7.2.1.4 Mirror Module Imperfection Evaluation

Several tests were performed to evaluate mirror module and/or mirroronly surface imperfections. One of these was a laser ray trace performed by Sandia-Albuquerque on two mirror modules during the period December 1516, 1980. Figures 9.7-2 and 9.7-3 show the reflected beam deviation in inches and the corresponding deviation in milliradians for a typical scan across a mirror module. Note that two deviation values are provided, an x-deviation and a y-deviation for a scan which was made in the 144 -inch (x) direction. Also provided are RMS-average milliradian deviations for the x and y component of the reflected ray. The following summarizes the RMS results for 11 such scans:

| Mirror
 Module | Scan
 $\#$ |
| :--- | :---: | | Scan |
| :---: |
| Direction |

RMS Reflected Beam Deviation
x - component $\quad y$ - component

A	4	$y\left(48^{\prime \prime}\right)$	0.394 mrad	1.386 mrad
A	5	$\mathrm{y}\left(48^{\prime \prime}\right)$	0.756	1.296
A	6	$\mathrm{y}\left(48^{\prime \prime}\right)$	0.558	0.958
A	7	$\mathrm{y}\left(48^{\prime \prime}\right)$	0.544	1.638
B	4	$\mathrm{y}\left(48^{\prime \prime}\right)$	2.230	1.876
B	5	$\mathrm{y}\left(48^{\prime \prime}\right)$	0.922	1.736
B	6	$\mathrm{y}\left(48^{\prime \prime}\right)$	0.510	1.680
B	7	$\mathrm{y}\left(48^{\prime \prime}\right)$	0.608	1.358
B	1	$\mathrm{x}\left(144^{\prime \prime}\right)$	0.794	0.926
B	2	$\mathrm{x}\left(144^{\prime \prime}\right)$	0.750	0.946
B	3	$\mathrm{x}\left(144^{\prime \prime}\right)$	0.600	0.692

Figure 9.7-2

$$
\begin{aligned}
& \text { RAW DATA - LASER RAY TRACE EXAMPLE } \\
& \text { X - Axis Scan (} 144^{\prime \prime} \text { Direction) }
\end{aligned}
$$

FAW DATH FLLIT HORTIE SH 72 1G-LLEC: TEPF $=6.9$

DET-MIP DIST $=110$

Figure 9.7-j

```
REDUCED DATA - LASER RAY TRACE EXAMPLE
    X - Axis Scan (144" Direction)
```

 TEMPEF:GTIFE $=69.9$
PLOTTED IH MILLIRAE X FMS . 397169 Y RMS . 462658 UAFIATION IH Y IOF FLOT INX EOTTOM FLOT LINES L $\%=-.733555+.0145143 X L Y=39.6467+.0114545 X$

The interpretation of these data is not very straightforward. Intuitively, it would be expected that the x-component of the ray variance for a scan in the x-direction would correlate with the x-component of the ray variance for a scan in the y-direction. Likewise, it would be expected that the y-component of the ray variance for a scan in the y-direction would be similar to the y-component of the ray variance for a scan in the x-direction. However, the data do not match these intuitive expectations for the x-components. If it is assumed that the most meaniful values are the RMS average x-component values from the x and y scans, and the RMS average y-component values from the x and y scans, the resultant RMS imperfection angles are 0.719 milliradians for the x direction (144 inch direction), and 1.517 milliradians for the y-direction (48 inch direction).

One pertinent question regarding these data is what is the primary cause of these imperfections; is it the mirror glass or the module design and construction? A set of measurements were made on a $4^{\prime} \times 6^{\prime}$ mirror facet at the Northrup-Hutchins facility to help answer this.question. The measurements were made on a mirror only, not a mirror module. The mirror was placed on a very flat, leveled granite surface plate $5^{\prime} \times 7^{\prime}$ in size. An $8^{\prime \prime}$ long calibrated Starret level was used to measure the surface angles at 45 locations on the mirror. The measurements were converted to milliradian angles and doubled to give reflected beam values. The RMS values of these measured angles were 0.771 mrad for the x-scan ($72^{\prime \prime}$ direction) and 0.706 mrad for the $y-s c a n$ ($48^{\prime \prime}$ direction). Comparing these glass-only values to the laser ray data obtained on complete mirror module assemblies results in the following:

Laser Ray-	Starret Level-
Complete	Mirror
Mirror	Facet
Module	Only

$x-s c a n$	0.719 mrad	0.771 mrad
$y-$ scan	1.517	0.706

The implication is a strong one, and is one which is consistent with visual observations: a large portion of the distortion on a mirror module is inherent in the mirror glass. The main area where this is not true is at the edges; the original edge seal was a commercial edging known as Bailey "C"-Sash. It mechanically gripped the mirror edge so tightly that edge distortions occurred. Since the y-direction scan is only 48 inches long, this edge effect strongly influences the RMS error measured by the laser ray scan. The new edge seal employs a simple "U" cross-sectional shape which is attached with a cure-in-place RTV silicone rubber. It also gives a very tight edge grip, but via adhesion rather than a mechanical grip, and as such is nearly distortion-free.

9.7.2.1.5 Water Spray Test

The objective of the water spray test was to simulate a wash and/or driving rain of potentially sensitive components such as the drive unit, motors, and exposed cable harnesses.

The test method consisted of spraying the area around the drive unit and pedestal from a distance of approximately 10 feet using an ordinary garden-variety hose and nozzle for a period of 20-25 minutes on 5 or more different days. The spray technique was to adjust the nozzle to achieve a droplet pattern and velocity similar to a wind-driven rain; i.e., a solid-stream jet was avoided. The heliostat was allowed to warm to a mid-afternoon ambient temperature, and then sprayed with cool tap water. Following the water spray operation, the heliostat would be operated for approximately 15 minutes.

Due to schedule limitations on the heliostat \#l unit, some deviations to the plan were necessary. The heliostat \#1 unit was selected for test because it had a drive unit which had excessive backlash and was due to be returned to Winsmith for tear-down and re-work. This provided an excellent opportunity to determine if any water penetration had occurred. Due to the test schedule and replacement of this drive unit, only 3 water spray cycles were performed on the complete drive unit/heliostat assembly. However, an additional 4 -day period of actual heavy rain conditions (i.e., 10 inches of rainfall) had been encountered previously, so a considerable exposure was actually encountered. In addition, the drive unit was subjected to an additional 6 cycles of water spray after its removal from the heliostat and prior to its return to Winsmith for tear-down. These 6 cycles were more severe than would normally be encountered for several reasons:
a. The drive unit was painted a dark gray in color, and therefore, would warm more than the current white painted configuration.
b. The drive unit was stored in a sunny area at the test site and was not shaded as it would be when installed on a heliostat. During the 6 cycles of spraying, the drive unit was first warmed to a mid-afternoon ambient temperature, and then sprayed with cool water.
c. The drive unit being tested did not have the expansion chamber which is currently installed on all production units for the purpose of preventing differential pressures between the inside of the drive and the external ambient pressure.

The results of the water spray test and actual rain exposure were as follows:

1. The tear-down of the drive unit at Winsmith revealed no perceptible water in the oil, and no evidence of any rust on any internal parts.
2. Water did enter the pedestal and wet the electronics during the actual heavy rain period. It was found that a small passage existed between the drive unit base and the pedestal tapered shims/flange. The opening was plugged with a small wad of duct-seal, and no direct water penetration was noted thereafter.
3. Some rusting was noted at flange interfaces such as between the motor and drive, between the torque tube flanges and drive unit, and between the drive unit base and pedestal tapered shims/flange. These surfaces are now being coated with a layer of silicone grease (to both coat the surfaces with a protective moisture barrier, and to fill the minute cracks and crevices which were acting as capillary paths for water draw-in).
4. A related observation is that some moisture was noted inside the pedestal walls and on electronic chassis surfaces even without water spray or rain. The phenomenon is undoubtedly caused by high humidity and cool pedestal/electronic temperatures. These temperatures were occasionally falling below the dew point, and the water vapor in the air then condensed on the cool surfaces. No visible damage or failures occurred from this condensation, but since it was undesirable, a technique was developed wherein the electronic cooling fan was always kept running. The small amount of power plus the moving air apparantly maintained the internal temperatures above the dew point so condensation no longer occurred.

9.7.2.1.6 Drive Unit Backlash Test

Test Objective: The objective of the backlash. test was to experimentally determine the free backlash in prototype drive units built to drawing specifications.

Test Description: The test was performed on three heliostats at the Hutchins Test Site on October 30, 1980. They were:

- Heliostat \#l (after changeout from the drive with undercut gears
to the properly built drive)
- Heliostat \#2
- Heliostat \#3

The backlash was measured with dial indicators as the rack and mirror structure was moved back and forth under light reversing forces to move the drives within their backlash range. The test was performed during very quiet wind conditions to avoid wind force disturbance as much as possible.

The mirror surfaces were in the vertical position during the azimuth backlash tests and in the horizontal position during the elevation backlash tests. The dial indicators were mounted on the opposite wing from where the light force was applied, to eliminate bending distortions from the readings.

In the azimuth tests, a force of 20 to 25 lbs at a 9.75 ft moment arm was applied to ensure bottoming out the backlash in both directions. In the elevation tests, a force of 20 to 25 lbs , or that required to ensure backlash bottoming out was applied at a 9.0 ft moment arm. A force of up to 100 lbs was applied to overcome the inherent moment resulting from center-of-gravity offset.

The 20 to 25 lb force application was made with a spring scale. The larger force applications during the elevation backlash tests were made manually and estimated only.

Instrumentation: The only instrumentation required for this test was a dial indicator on a small mounting stand for the azimuth test, a dial indicator on a tall mounting stand for the elevation test, and a 25 lb spring scale.

A sketch of the locations of the dial indicators and force application points are shown in Figures 9.7-4 and 9.7-5.

Figure 9.7-4 Azimuth Backlash Test

View looking up

Figure 9.7-5 Elevation Backlash Test

Test Results: The backlash data is presented in Table 9.7-3. in terms of both deflection and milliradian rotation.

Table 9.7-3

	Azimuth		Elevation	
Deflection Heliostat \#1 (new drive) .113 in $\frac{\text { Rotation }}{}$	Deflection	Rotation		
Heliostat \#2	.025	.785 mrad	.119 in	1.102 mrad
Heliostat \#3	.095	.174	.127	1.176
Average	.078	.660	.126	1.167

9.7.2.2 HELIOSTAT WIND LOAD TESTS

9.7.2.2.1 Pointing Accuracy With Operational Wind Loads Test

Test Objective: The objective of this pointing accuracy test was to experimentally determine the reflected beam motion about both the azimuth and elevation axes when the heliostat is subjected to 27 mph and 35 mph winds. This test was performed to demonstrate the requirement that the pointing error of the reflective surface (excluding foundation) is less than 3.6 mrad in a 27 mph wind. It was also performed at a 35 mph wind condition to determine the magnitude of the error, as the heliostat is required to track, but has no accuracy requirement during this wind condition.

Loading Condition: The simulated wind loads applied during this series of tests are those which produce the maximum moment about the drive axes, resulting in the maximum pointing error. The maximum wind moment results from an angle of attack of 70° from a normal to the mirror surface, as shown in Figure 9.7-6. This moment was applied about both the aximuth and elevation axes.

Figure 9.7-6
Wind Load Condition for Maximum Moment

Test Description: The test was performed on Heliostat \#3 at the Hutchins Test Site on October 20 and 21,1980 . All major structural components on this heliostat were manufactured according to Second Generation Heliostat prints and specifications.

The beam motion due to wind moment was tested by applying the wind moment loads during actual tracking operations to get the effect of all contributing factors. The effect was recorded by actual photographs of the image on the target with and without the loading.

During the testing, loads were applied and released in a short time span, to eliminate the possibility of tracking errors which could occur over a longer span of time. Rapid loading was accomplished in the azimuth tests by backing the scissor lift test rig until the barrel weights had lifted off the static line and were fully loading the cable. Then it was driven forward, released and moved to the other side for the reversing load. The azimuth test sequences were accomplished in approximately 10 minutes. Rapid loading in the elevation tests was accomplished by using a hand hoist on each barrel weight and simply lifting the weight off the ground to apply load, then lowering it to the ground to release load.

The test setup for the azimuth test is shown in Figure 9.7-7. The setups for the elevation tests are shown in Figure 9.7-8.

Figure 9.7-7
Test Setup for Azimuth Loading

Figure 9.7-8 Test Setup for Elevation Loading

During the azimuth tests, the image was recorded:
(a) at no load (before test)
(b) during moment loading to the left (or right)
(c) at no load
(d) during moment loading to the right (or left)
(e) at no load (after test)

During the elevation tests, the image was recorded:
(a) at no load (before test)
(b) during loading with "down" moment
(c) at no load (after test)

No " up" moment loads were applied, as wind loading always produces "down" moments, which is additive to gravity moment. The elevation tests were run with the weights applied to the inner set of trusses and to the outer set of trusses in separate tests to account for any detectable differences which might exist.

A beam displacing variable which is difficult to isolate from the tests is the effect of motor update cycles. An attempt was made to minimize this effect by recording the image at approximately the same time following a motor update. The effect could cause a maximum error of approximately 20 to 30 seconds of sun time which is about .7 milliradians in azimuth and .1 milliradians in elevation.

The tests performed are tabulated below

Test	Axis	Wind Load	Loading Sequence or Location
(1)	Azimuth	27 mph	Left to Right
(2)	Azimuth	27 mph	Right to Left
(3)	Elevation	27 mph	Inboard Truss
(4)	Elevation	27 mph	Outboard Truss
(5)	Elevation	35 mph	Outboard Truss
(6)	Elevation	35 mph	Inboard Truss
(7)	Azimuth	35 mph	Left to Right

Test Instrumentation: No instrumentation was used other than a camera to photograph the image on the target.

Test Results: The beam positions at the target were determined from photographed images. The centroid of each image was established and its position was scaled from each photo using the 5 ft grid lines on the target. Figure 9.7-9, through Figure 9.7-15 shows the actual photographs.

The starting position of each test sequence was normalized to zero and each position then was established with respect to the starting position. This value in feet of deflection at the target was converted to angular displacement (milliradians). It should be noted that the displacement at the target is the "reflected beam" displacement. Therefore, half of this displacement represents the mirror surface motion, which is compared to the 3.6 mrad requirement after pedestal contribution is subtracted. The data is presented in Table 9.7-4.

Figure 9.7-10 Test (2) Azimuth 27 mph Wind
(c)

Figure 9.7-11 Test (3) Elevation 27 mph Wind
Outboard
Truss Loading
(a)

(b)

(c)

$E l=19.88^{\circ}$
(b)
Inboard
Truss
Loading
(2) $3: 23$ Pm $10 / 20 / 30$
$A z=68.93^{\circ}$
(c)

$E 1=21.74$.
$A Z=102.28$

(b)

(c)

$A Z=101.75$
Figure 9.7-15 (Cont.) Test (7) Azimuth 35 mph Wind

9.7.2.2.2 (a) Elevation Axis Test - 90 mph Wind Horizontal Stow Condition

Test Objectives: The objectives of the Elevation Axis Test are to: (a) verify the structural integrity of the drives and major structural components to withstand loads induced by 90 mph winds while in the horizontal stow position and (b) measure deflections of the drives and major structural components for comparison with pointing accuracy requirements at lower wind conditions.

The 30 mph elevation axis wind condition produces the largest moment ($20,477 \mathrm{ft} \mathrm{lbs}$) about the elevation drive axis of any condition; thus it produces the largest elevation drive main gear tooth force This tooth force is 29,250 lbs tangential load. This condition along with the cross-elevation axis condition produces the highest azimuth bearing moment (245,710 inch lbs).

Test Description: The test was performed on Heliostat \#l at the Hutchins Test Site on October 9, 1980 and October 13, 1980. A11 major structural components on this heliostat were manufactured according to second generation heliostat prints and specifications, except that the main gears in the drive unit were cut undersize which allowed approximately . 020 inch backlash instead of the required .002-. 003 inch backlash.

The test was performed with the heliostat mirror surface in the horizontal position, which simulates horizontal stow. Moment load was applied about the elevation drive axis which simulates the moment induced by a frontal 90 mph wind at 10 degrees from horizontal. Normal force was not simulated due to its non-critical nature, but the loading method resulted in about 73% of wind normal force.

Loads were applied by hanging six 55 gallon barrels from the rack trusses with ropes and filling the barrels to the appropriate level with water. The tare weight of each barrel is 50 lbs . The locations of the barrels are shown in Flgure 9.7-16.

Figure 9.7-16 Loading Setup.

The test was performed by incrementally applying load to 110% of limit load. At the beginning of the test (zero point), two empty barrels (nos. 2 \& 3) were hung to stabilize the pseudo-balanced rack in a null position, thus the zero point is actually not true zero. The 20% and higher increments are true, however. The schedule of weights and water depths is tabulated in Table 9.7-5.

Table 9.7-5

\% Load	Total Wt	Wt per Bbl	Water Wt per Bbl	Water Depth * *	
0	100 lbs	$50 \mathrm{lbs}(2 \mathrm{only})$	0	0	in
20	517.3	86.22	56.22	2.55	
40	1034.6	172.44	122.44	8.62	
60	1552	258.66	208.66	14.7	
80	2069.3	344.88	294.88	20.8	
100*	2586.6	431.1	381.1	26.84	
110	2845.2	474.2	424.2	29.87	

[^1]The loading was sequenced in the following percentages: $0,20,40$, $60,20,60,80,100,110,60,20,0$. The 20% set load after 60% was done to detect premature yielding and to get an early indication of mechanical hysteresis prior to the higher load increments.

Two separate tests were performed on separate days. The second test was to verify repeatability and to clean up some out-of-scale problems of the dial indicators, experienced on the first test.

Photographs of the test set up and instrumentation were taken but are not included in this report due to reproduction limitations.

Instrumentation: the heliostat was instrumented with 11 dial indicators to measure linear deflections at key places on the structure and drive units. The deflection measurements along with their respective moment arms were then used to compute rotational displacements.

The rotational displacements obtained from this test are:
(a) overall rack rotation
(b) elevation gear rotation (with respect to the elevation housing)
(c) azimuth bearing rotation (azimuth upper housing with respect to the lower housing)
(d) pedestal displacements
(e) rack and torque tube displacements from which bending displacements may be derived.

The locations of the dial indicators are shown in Figures 9.7-17
and 9.7-18.

Plan View of Heliostat

Figure 9.7-17 Rack Deflection Instrumentation

Figure 9.7-18 Drive and Pedestal Deflection Instrumentation

Test Results: The raw data sheets giving the actual dial indicator readings from test run \#1 and test run $\# 2$ are presented in Tables 9.7-6 and 9.7-7. The data was normalized to zero at zero percent load and converted to rotational displacements which is presented in Tables 9.7-8 through 9.7-12. The rotational displacements are plotted versus percent load and presented in Figures 9.7-19 through 9.7-23.

No failure or detectable yielding occurred up to the maximum 110% load.

Table ...-6

Test 1 Dial Indicator Readings

Load	\#1	\#2	\#3	\# 4	\#5	\#6	\#7	\#8	\#9	\#10	\#11
0\%	. 146	-. 012	. 135	1.032	. 143	. 921	. 082	. 078	. 1025	. 4090	. 1660
20	. 155	. 193	. 140	. 864	. 140	. 740	. 090	. 081	. 1084	. 4046	. 1541
40	. 138	. 496	. 136	. 608	. 175	. 510	. 098	. 084	. 1162	. 3941	. 1376
60	. 119	. 788	. 131	. 348	. 218	. 290	. 110	. 090	. 1223	. 3851	. 1206
20	. 098	. 310	. 120	. 720	. 172	. 651	. 092	. 083	. 1111	. 3991	. 1438
60	. 100	. 830	. 117	. 310	. 212	. 252	. 111	. 091	. 1208	. 3845	. 1190
80	. 085	1.124	. 113	. 040	. 245	. 000	. 119	. 093	. 1261	. 3762	. 1020
100	. 078	1.442	. 112	-. 184	. 273	-. 264	. 129	. 096	. 1320	. 3682	. 0848
110	. 082	1.605	. 113	-. 330	. 286	-. 473	. 133	. 097	. 1351	. 3634	. 0741
60	. 071	1.090	. 107	. 062	. 232	-. 070	. 113	. 094	. 1251	. 3792	. 0937
20	. 068	. 944	. 102	. 564	. 180	. 420	. 093	. 089	. 1123	. 3955	. 1281
0	. 093	. 138	. 104	. 847	. 130	. 660	. 084	. 087	. 1021	. 4069	. 1483

Table 9.7-7
Test 2 Dial Indicator Readings

* After reverse load

Table 9.7-8

90 mph Elevation Axis Test-Butler Truss (Inboard)

* $\mathbf{1 0 0 \%}$ Moment $=20,476 \mathrm{ft}$ lbs

*After load reversal

Figure 9.7-19 Rotation of Inboard Truss

Table 9.7-9
90 mph Elevation Axis Test-Butler Truss (outboard)

	\% Load	Test 1			Test 2		
		$\triangle(\# 5)$	\triangle (\#6)	θ	$\triangle(\# 5)$	\triangle (\#6)	θ
	0	0 inch	0 inch	0 mrad	0 inch	0 inch	0 mrad
	20	-. 003	. 181	1.695	. 02	. 169	1.8
	40	. 032	. 411	4.219	. 035	. 404	4.181
	60	. 075	. 631	6.724	. 06	. 621	6.486
	20	. 029	. 27	2.848	. 027	. 254	2.676
	60	. 069	. 669	7.029	. 039	. 641	6.476
i	80	. 102	. 921	9.743	. 061	. 851	8.686
$\stackrel{\rightharpoonup}{6}$	100	. 130	1.185	12.524	. 074	1.081	11.0
	110	. 143	1.394	14.638	. 076	1.186	12.019
	60	. 089	. 991	10.286	. 061	. 781	8.019
	20	. 037	. 501	5.124	. 027	. 281	2.933
	0	-. 013	. 261	2.362	. 001	. 041	. 4
		After load reversal			-. 009	-. 014	-. 219
		+Down	+Up		+Down	+Up	

* 100% Moment $=20476$ Ft lbs

* After load reversal

Figure 9.7-20
Rotation of outboard truss

Table 9.7-10

90 mph Elevation Axis Test- Elevation Worm

\%	Test 1		Test 2	
	(\#11)	θ	(\#11)	θ
0	0 inch	0 mrad	0 inch	0 mrad
20	. 0119	. 774	. 0125	. 813
40	. 0284	1.847	. 0278	1.808
60	. 0454	2.953	. 044	2.862
20	. 0222	1.444	. 021	1.366
60	. 047	3.057	. 0448	2.914
80	. 064	4.163	. 0593	3.857
100 *	. 0812	5.281	. 0748	4.865
110	. 0919	5.977	. 0817	5.314
60	. 0723	4.702	. 0599	3.896
20	. 0379	2.465	. 0256	1.665
0	. 0177	1.151	. 0048	. 312
Afte	versal		-. 0025	-. 163

*100\% Moment $=20476$ Ft 1bs

* After load reversal

Tigure 9.7-21 Rotation at Elevation Worm

Table 9.7-11
90 mph Elevation Axis Test-Azimuth Bearing

	\% Load	$\Delta(\# 9)$	$\begin{aligned} & \text { Test } 1 \\ & \Delta(\# 10) \end{aligned}$	θ	$\Delta(\# 9)$	$\begin{gathered} \text { Test } 2 \\ \Delta(\# 10) \\ \hline \end{gathered}$	θ
$\underset{\sim}{\underset{\sim}{\mathrm{I}}}$	0	0 inch	0 inch	0 mrad	0 inch	0 inch	0 mrad
	20	. 0059	. 0044	. 338	. 0056	. 0046	. 334
	40	. 0137	. 0149	. 938	. 0124	. 0141	. 869
	60	. 0198	. 0239	1.433	. 0185	. 022	1.328
	20	. 0086	. 0099	. 607	. 0092	. 0085	. 580
	60	. 0183	. 0245	1.403	. 0185	. 0215	1.311
	80	. 0236	. 0328	1.849	. 0239	. 0285	1.718
	100 *	. 0295	. 0408	2.305	. 0292	. 0361	2.141
	110	. 0326	. 0456	2.564	. 032	. 0399	2.357
	60	. 0226	. 0298	1.718	. 0228	. 0251	1.570
	20	. 0098	. 0135	. 764	. 011	. 0088	. 649
	0	-. 0004	. 0021	. 056	. 0019	-. 002	-. 003
					. 0024	-. 009	-. 216

[^2]

Figure 9.7-22
Rotation at Azimuth Bearing

TABLE 9.7-12

Pedestal Def1ection

\% Load	\# 7		\#8	
	Test 1	Test 2	Test 1	Test 2
0	0 inch	0 inch	0 inch	0 inch
20	. 008	. 007	. 003	. 014
40	. 016	. 016	. 006	. 0115
60	. 028	. 026	. 012	. 007
20	. 010	. 013	. 005	. 004
60	. 029	. 031	. 013	. 009
80	. 037	. 042	. 015	. 010
100	. 047	. 052	. 018	. 013
110	. 051	. 058	. 019	. 016
60	. 031	. 041	. 016	. 010
20	. 011	. 024	. 011	. 006
0	. 002	. 020	. 009	. 003
After Load reversal		. 020		. 004

Figure 9.7-23
Pedestal Deflections

9.7.2.2.2 (b) Cross-Elevation Axis Test - 90 mph Wind Horizontal Stow Condition

Test Objectives: The objectives of the Cross-Elevation Axis Test are identical to those of the Elevation Axis Test. However, this test is to verify structural integrity and measure deflections for wind in the cross-elevation axis.

The 90 mph cross-elevation axis wind is the condition that produces
(a) The highest elevation drive bearing moment (267,645 inch lbs)
(b) The highest azimuth drive bearing moment (245,710 inch lbs). This is the same as the elevation axis condition (actual test load was 6.6% higher than the elevation axis test because the torque tube root moment was simulated).
(c) The highest torque tube root bending moment ($20,874 \mathrm{ft} \mathrm{lbs}$)
(d) The highest Butler truss bending moment and shear load (Moment $=6174 \mathrm{ft}$ 1bs, Shear $=1008 \mathrm{lbs}$)

Test Description: The test was performed on Heliostat \#1 at the Hutchins Test Site on October 15, 1980. All major structural components on this heliostat were manufactured according to second generation heliostat prints and specifications, except that the main gears in the drive unit were cut undersize which allowed approximately . 020 inch backlash instead of the required .002-. 003 inch backlash.

The test was performed with the heliostat mirror surface in the horizontal position, which simulates horizontal stow. Moment load was applied about the cross elevation axis which simulates the moment induced by a 90 mph side wind at 10 degrees from horizontal. Normal force was not simulated due to its non-critical nature, but the loading method resulted in about 65% of wind normal force.

Loads were applied by hanging six 55 gallon barrels from the outboard rack truss with ropes and filling the barrels to the appropriate level with water. The tare weight of each barrel is 50 lbs . The locations of the barrels are shown in Figure 9.7-24.

Figure 9.7-24 Loading Setup

The test was performed by incrementally applying load to 110% of limit load. At the beginnning of the test (zero point), two empty barrels (nos. 3 \& 4) were hung to stabilize the pseudombalanced rack in a null position, thus the zero point is actually not true zero. The 20% and higher increments are true, however. The schedule of weights and water depths are tabulated in Table 9.7-13.

Table 9.7-13

\% Load	Total Wt	Wt. per Bb1 Wa	Water Wt per Bb1	Water Depth **
-0	100 lbs	50 lbs (2 only)	y) 0	0
0	100	50	0	0
20	455.4	35.9	25.9	1.8
40	910.9	151.8	101.8	7.2
60	1366.3	22.7 .7	177.7	12.5
80	1821.7	303.6	253.6	17.9
100 *	2277.2	379.5	329.5	23.2
110	2504.9	417.5	367.5	25.9
* 100% 1oad $=20,870 \mathrm{ft}-1 \mathrm{bs}$ torque about the torque tube root $21,823 \mathrm{ft}-1 \mathrm{bs}$ about the drive center line				

The loading was sequenced in the following percentages:
$-0,0,20,40,60,20,60,80,100,110,60,20,0,-0$. The -0 increment is the designation for applying negative moment of $100 \mathrm{lbs}(2 \mathrm{bbls})$ at the beginning of the test. The 20% set load after 60% was done to detect premature yielding and to get an early indication of mechanical hysteresis prior to the higher load increments.

Instrumentation: The heliostat was instrumented with 12 dial indicators to measure linear deflections at key places on the structure and drive units. The deflection measurements along with their respective moment arms were then used to compute rotational displacements.

The rotational displacements obtained from this test are:
(a) overall rack rotation
(b) elevation bearing rotation (with respect to the outer elevation housing)
(c) azimuth bearing rotation (azimuth upper housing with respect to the lower housing)
(d) pedestal displacements
(e) rack and torque tube displacements from which bending may be derived.

The locations of the dial indicators are shown in Figures 9.7-25, 9.7-26 and 9.7-27.

Plan View of heliostat

Figure 9.7-25
Rack Deflection Instrumentation

View B-B (of figure 9.7-)

Figure 9.7-26 Drive Deflection Instrumentation

View B-B (of figure 9.7-

Figure 9.7-27 Pedestal Deflection Instrumentation

Test Results: The raw data sheet giving the actual dial indicator readings from the test run is presented in Table 9.7-14. The data was normalized to zero at zero percent load, and converted to rotational displacements which is presented in Tables 9.7-15 through 9.7-18. The rotational
displacements are plotted versus percent load and presented in Figures 9.7-28 through 9.7-31.

No failure or detectable yielding occurred up to the maximum 110\% 1oad.

TABLE 9.7-14

Dial Indicator Readings

Table 9.7-15
90 mph Cross - Axis Test
Torque Tube (Rack total motion)

\% Eoad	Δ (\#4)	$\triangle(\# 5)$	θ
-0* *	-. 118 inch	-. 032 inch	$-1.024 \mathrm{mrad}$
0	0	0	0
20	. 215	. 060	1.845
40	. 485	. 144	4.060
60	. 767	. 229	6.405
20	. 310	. 097	2.536
60	. 775	. 235	6.429
80	1.040	. 312	8.667
100 *	1.315	. 38	11.131
110	1.465	. 426	12.369
60	. 945 (.965)	. 272 (.277)	8.012
20	. 420	. 12	3.571
0	. 120	. 031	1.060
-0 * *	-. 035	-. 021	. 167

* 100% Moment $=21,823 \mathrm{ft}$ lbs about drive center line
* * Reverse moment $=958 \mathrm{ft}$ lbs

Reverse Moment $=958 \mathrm{ft} \mathrm{lbs}$
Figure 9.7-28
Rack Rotation

TABLE 9.7-16
90 mph Cross - Axis Test
Elevation Bearing

$\%$ Load	$\Delta(\# 10)$	$\Delta(\not \equiv 13)$	θ
-0	-.0035 inch	-.0056 inch	-.329 mrad
0	0	0	0
20	.0106	.0136	.876
40	.0254	.0311	2.045
60	.040	.0496	3.243
20	.0173	.0206	1.372
60	.0403	.0496	3.254
80	.0525	.0666	4.311
100	.066	.0851	5.469
110	.0727	.0936	6.019
60	$.047(.046)$	$.0586(.0591)$	$3.822(3.804)$
20	.0205	.0261	1.687
0	.0095	.0111	.746
-0	0	-.0009	-.033

* Reverse moment $=958 \mathrm{ft}$ 1bs

Figure 9.7~29 Elevation Bearing Rotations

Table 9.7-17

90 mph Cross - Axis Test

Azimuth Bearing

$\%$ Load
-0
0
20
40
60
20
60
80
100
110
60
20
0
-0

$\Delta(\# 9)$	
-.0053 inch	
0	
.0096	
.0171	
.0252	
.0133	
.0252	
.0326	
.0421	
.0462	
.0333	$(.0311)$
.0171	
.0061	
-.0025	

\qquad
$-.344 \mathrm{mrad}$ 0
.623
1.110
1.636
. 864
1.636
2.117
2.734
3.000
2.162 (2.019)
1.110 . 396
$-.162$

* Reverse Moment $=958 \mathrm{ft}$ 1bs

Figure 9.7-30
Azimuth Bearing Rotation

TABLE 9.7-18

PEDESTAL DEFLECTION

\% Load	\#7	\#8
-0	-.004 inch	.0 inch
0	0	.0
20	.007	.0015
40	.016	.005
60	.026	.0065
20	.009	.003
60	.027	.008
80	.038	.011
100	.051	.016
110	.056	.017
60	.034	.014
20	.016	.012
0	.008	.008
-0	.006	.007

Figure 9.7-31
Pedestal Deflection
G-73

9.7.2.2.3 Azimuth Axis Test - 50 mph Vertical Condition

Test Objectives: The objectives of the Azimuth Axis Test are to: (a) verify the structural integrity of the drives and major structural components to withstand loads induced by 50 mph winds while in the vertical drive or stow position, and (b) measure deflections of the drives and major structural components for comparison with pointing accuracy requirements at lower wind conditions.

The 50 mph azimuth wind condition produces the largest moment (9497 ft lbs) about the azimuth axis of any condition. Therefore, it produces the largest azimuth drive main gear tooth force of 13,560 lbs (tangential load). This condition also produces the largest pedestal twisting moment.

Test Description; The test was performed on Hellostat \#1 at the Hutchins Test Site on October 17, 1980. All major structural components on this heliostat were manufactured according to second generation heliostat prints and specifications, except that the main gears in the drive unit were cut undersize which allowed approximately . 020 inch backlash instead of the required $.002-.003$ inch backlash.

The test was performed with the heliostat mirror surface in the vertical position, which simulates vertical stow or driving to stow. Moment load was applied about the azimuth drive axis which simulates the moment induced by 50 mph wind at 70 degrees from the mirror surface normal. Normal force was not simulated due to its non-critical nature, but the loading method resulted in about 35% of wind normal force.

Moment load about the azimuth axis was applied by hanging two 55 gallon barrels from a cable and pulley system designed to provide a horizontal force to a wood beam inserted into the torque tube. The barrels were then filled to the appropriate level with water. The tare weight of each barrel is 50 lbs. The test set up is shown in Figure 9.7-32.

Figure 9.7-32 Test Loading Setup

The test was performed by incrementally applying load to 110% of limit load. At the beginning of the test (zero point), a 12 lb weight was hung to stabilize the rack in a null position. The schedule of weights and water depths is tabulated in Table 9.7-19.

Table 9.7-19

\% Load	Total Wt.	Wt. per BbI	Water Wt per Bbl	Water Depth *
0	12 lbs	-	-	-
20	172.7	86.3	36.3	2.6
40	345.4	172.7	122.7	8.6
60	518.0	259.0	209.0	14.7
80	690.7	345.4	295.4	20.8
100*	863.4	431.7	381.7	26.9
110	949.7	474.9	424.9	29.9

* 100% load $=9497 \mathrm{ft}-1 \mathrm{lbs}$ azimuth axis torque
** 1 inch of water $=14.2$ lbs

The loading was sequenced in the following percentages: $0,20,40,60$, $20,60,80,100,110,60,20,0,20,40,60,20,60,80,100,110,60,20,0$. The 20% set $10 a d$ after 60% was done to detect premature yielding and to get an early indication of mechanical hysteresis prior to the higher load increments.

Instrumentation: The heliostat was instrumented with 10 dial indicators to measure linear deflections at key places on the structure and drive units. The deflection measurements along with their respective moment arms were then used to compute rotational displacements.

The rotational displacements obtained from this test are:
(a) overall rack rotation
(b) azimuth gear rotation (with respect to the azimuth housing)
(c) elevation bearing rotation (elevation inner housing with respect to the outer housing)
(d) pedestal lateral displacements
(e) pedestal base twist

The locations of the dial indicators are shown in Figure 9.7-33, 9.7-34 and 9.7-35.

View Looking Down

View Looking at Back of Heliostat

Figure 9.7-33
Rack/Mirror and Pedestal Twist
Deflection Instrumentation

Figure 9.7-34

Figure 9.7-35 Pedestal Deflection Instrumentation

Test Results:
The raw data, sheets giving the actual dial indicator readings from test run \#1 and test run \#2 are presented in Table 9.7-20 and 9.7-21. The data was normalized to zero at zero percent load and converted to rotational displacements which is presented in Tables 9.7-22 through 9.7-26. The rotational displacements are plotted and presented in Figures 9.7-36 through 9.7-40.

It may be noted that a distinctive shift of approximately 3 milliradians occurred in both the elevation "bearing" and the azimuth "worm" measurements of the drive unit. This shift occurred between 20% and 40% load and was accompanied by a distinct sound at the time of loading. It is believed that the cause of the shift was some combination of backdriving in the azimuth drive and/or the hard setting of bearings or bearing races in the drives that wouldn't have occurred under light loads. It is also believed that the shock effect of the initial set in one drive (elevation or azimuth) caused the other one to set. The subsequent data taken during the first and second test runs followed a linear pattern and no yielding is believed to have occurred, and certainly no failure occurred.

Table 9.7-20
Dial Indicator Readings
Test Run \#1

\% Load	\#1	\#2	\#3	\#4	\#5	\#6	\#8	\#9	\#10
0	2.775	1.742	. 013	. 310	. 031	. 014	. 650	. 1872	. 5668
20	2.715	1.702	. 014	. 3132	. 0465	. 0183	. 666	. 197	. 5724
40	2.720	1.583	. 0155	. 3155	. 055	. 0223	. 761	. 2735	. 5841
60	2.790	1.527	. 018	. 323	. 070	. 0293	. 770	. 284	. 5917
20	1.920	1.578	. 015	. 314	. 047	. 022	. 7591	. 2785	. 5848
60	2.712	1.533	. 018	. 322	. 070	. 0280	. 770	. 284	. 5918
80	1.642	1.496	. 0205	. 326	. 092	. 034	. 780	. 290	. 5976
100	1.365	1.417	. 0225	. 330	. 097	. 041	. 797	. 302	. 6105
110	1.200	1.400	. 0235	. 333	. 099	. 0445	. 800	. 303	. 6123
60	1.527	1.454	. 021	. 327	. 084	. 0355	. 789	. 299	. 6062
20	1.879	1.531	. 017	. 317	. 056	. 023	. 773	. 288	. 5935
0	2.170	1.612	. 015	. 310	. 039	. 017	. 757	. 275	. 5815

Dial Indicator Readings
Test Run \# 2

\% Load	\#1	\#2	\#3	\#4	\#5	\#6	\#8	\#9	\#10
0	2.170	1.612	. 015	. 310	. 039	. 017	. 757	. 275	. 5815
20	1.925		. 0145	. 311	. 045	. 020	. 760	. 281	. 5859
40	1.820	1.555	. 017	. 314	. 060	. 024	. 765	. 285	. 5915
60	1.750	1.517	. 020	. 321	. 0751	. 029	. 773	. 290	. 5955
20	1.968	1.566	. 017	. 3135	. 052	. 022	. 762	. 284	. 589
60	1.635	1.514	. 020	. 320	. 072	. 029	. 773	. 290	. 596
80	1.592	1.479	. 021	. 3225	. 0855	. 0345	. 781	. 295	. 6013
100	1.322	1.433	. 023	. 330	. 0985	. 040	. 788	. 299	. 6075
110	1.282	1.392	. 0245	. 333	. 1061	. 045	. 794	. 305	. 6141
60	1.432	1.453	. 021	. 3233	. 080	. 035	. 782	. 299	.6069
20	1.897	1.535	. 017	. 314	. 056	. 0225	. 765	. 288	. 5931
0	2.050	1.597	. 0152	. 310	. 0445	. 0175	. 752	. 277	. 5823

Table 9.7-22

50 mph Azimuth Test Mirrors (Rack total motion)

Test 1

\%	$\Delta(\# 1)$		(\#2)	θ
0	0 inch		0 inch	0 mrad
20	. 060	. 04		- . 161
40	. 055	. 159		- . 839
60	. 015	. 215		-1.613
20	. 855	. 164		5.573
60	. 063	. 209		-1.177
80	1.133	. 246		7.153
100	1.41	. 325		8.75
110	1.575	. 342		9.944
60	1.248	. 288		7.742
20	. 896	. 211		5.524
0	. 605	. 13		3.831

Test 2

$\Delta(\# 1)$	$\Delta(\# 2)$	θ
. 605 inch	. 13 inch	3.831 mrad
. 85		
. 955	. 187	6.194
1.025	. 225	6.452
. 807	. 176	5.089
1.14	. 228	7.355
1.183	. 263	7.419
1.453	. 309	9.226
1.493	. 35	9.218
1.343	. 289	8.5
. 878	. 207	5.411
. 725	. 145	4.677

Figure 9.7-36
Rack Rotation
G-85

Table 9.7-23
50 mph Azimuth Test
Elevation Bearing

\%	Test 1		Test 2	
	Δ (\#8)	θ	$\Delta(\# 8)$	θ
0	0 inch	0 mrad	. 107 in	3.452 mrad
20	. 016	. 516	. 11	3.548
40	. 111	3.581	. 115	3.710
60	. 12	3.871	. 123	3.968
20	. 1091	3.519	. 112	3.613
60	. 12	3.871	. 123	3.968
80	. 13	4.194	. 131	4.226
100	. 147	4.742	. 138	4.452
110	. 15	4.839	. 144	4.645
60	. 139	4.484	. 132	4.258
20	. 123	3.968	. 115	3.710
0	. 107	3.452	. 102	3.290

Figure 9.7-37
Elevation Bearing Rotation

Table 9.7-24
50 mph Azimuth Test

Azimuth Worm

Test 1

Test 2
$\Delta(\# 9) \quad \Delta(\# 10) \quad \theta$.0878 inch .0147inch 3.832mrad
$.0938 \quad .0191 \quad 4.221$
$.0978 \quad .0247 \quad 4.579$
$.1028 \quad .0287 \quad 4.916$

.0968	.0222	4.449
.1028	.0292	4.935

$.1078 \quad .0345 \quad 5.320$
$.1118 \quad .0407 \quad 5.701$

.1178	.0473	6.172
.1118	.0401	5.679

$.1008 \quad .0263 \quad 4.751$
$.0898 \quad .0155 \quad 3.936$
100% Moment $=9497$ FT LBS

Figure 9.7-38

Table 9.7-25
50 mph Azimuth Test
Pedestal Base Twist

Test 1

\%	$\Delta(\# 6)$	Δ (\#3)	0
0	0 inch	0 inch	0 mrad
20	. 0043	. 001	. 055
40	. 0093	. 002	. 122
60	. 0153	. 005	. 172
20	. 008	. 002	. 100
60	. 014	. 005	. 150
80	. 020	. 0075	. 208
100	. 027	. 0095	. 292
110	,0305	. 0105	. 333
60	. 0215	. 008	. 225
20	. 009	. 004	. 083
0	. 003	. 002	. 017

Test 2

$\frac{\Delta(\# 6)}{}$	$\Delta(\# 3)$	θ
.003 inch	.002	inch .017 mrad
.006	.0015	.075
.010	.004	.100
.015	.007	.133
.008	.004	.067
.015	.007	.133
.0205	.008	.208
.026	.010	.267
.031	.0115	.325
.021	.008	.217
.0085	.004	.075
.0035	.0022	.022

Figure 9.7-39 Pedestal Base Twist

Table 9.7-26
Pedestal Deflection

\% Load	3		4		5	
	Test 1	Test 2	Test 1	Test 2	Test 1	Test 2
0	0 inch	. 002 inch	0 inch	. 0 inch	0 Ench	. 008 inch
20	. 001	. 0015	. 0032	. 001	. 0155	. 014
40	. 0025	. 004	. 0055	. 004	. 024	. 029
60	. 005	. 007	. 013	. 011	. 039	. 0441
20	. 002	. 004	. 004	. 0035	. 016	. 021
60	. 005	. 007	. 012	. 010	. 039	. 041
80	. 0075	. 008	. 016	. 0125	. 051	. 0545
100	. 0095	. 010	. 020	. 020	. 066	. 0675
110	. 0105	. 0115	. 023	. 023	. 068	. 0751
60	. 008	. 008	. 017	. 0133	. 053	. 049
20	. 004	. 004	. 007	. 004	. 025	. 025
0	. 002	. 0022	. 0	. 0	. 008	. 0135

9.7.2.2.4 Foundation Deflections

Foundation deflections were measured during the three major wind load tests on heliostat \#1, the Elevation Axis Test (90 mph wind), the Cross Elevation Axis Test (90 mph wind), and the Azimuth Axis Test (50 mph wind). The deflections were measured with dial indicators mounted to give lateral deflections. Although this method of measurement is less desirable than directly measuring the pedestal top rotation, it can be used to roughly compare with calculated values. It also gives an indication of pedestal set due to soil plasticity. The comparison of calculated deflections not including pedestal set, with test values including pedestal set, is presented in the above test sections in Figures 9.7-23, 9.7-31, and 9.7-40 respectively. These comparisons show fairly good correlation, assuming the effective pedestal root (fixed point) is $50^{\prime \prime}$ below grade.

Pedestal set values in terms of tip rotation have been estimated from the test results by taking the difference in the start and finish "zero" readings of the indicators located uppermost on the pedestal, assuming the pedestal pivots about a point $50^{\prime \prime}$ below grade, and computing the theoretical end rotation. The uppermost dial indicator was used, as it should be the most sensitive and accurate reading. Even though all the tests were run on the same heliostat, the direction of loading was different in each of the three tests. The pedestal set results summarized in Table 9.7-27 should be viewed as approximate values only, as the setups for taking the data was actually too crude to obtain accurate data.

Table 9.7-27

PEDESTAL SET DUE TO WIND LOADS

	Test	110\% Load	Base Moment	Load Direction (Pedestal Movement)	Pedestal Set
	Elevation Axis	22,525 ft lbs pure moment	22,525 ft 1bs	South	Test 1.018 mrad Test 2.180 mrad
	Cross-Elevation Test	24,005 ft lbs pure moment	24,005 ft 1bs	West	. 071 mrad
$\begin{aligned} & \text { i } \\ & 0 \\ & 0 \end{aligned}$	Azimuth Axis Test	(a) 949.7 1bs lateral load	$12,346 \mathrm{ft} \mathrm{1bs}$	North	Test 1.043 mrad Test 2.030 mrad
		(b) $10,447 \mathrm{ft}$ lbs twist	10,447 ft 1bs (base torque)	Twist	Test 1.017 mrad Test 2.005 mrad

9．7．2．2．5 Motor Torque Adequacy

The motor torque must be sufficient to drive the heliostat in the elevation direction against the combined effects of gravity loads and a $22 \mathrm{~m} / \mathrm{s}(50 \mathrm{mph})$ wind．In the azimuth direction，only the $22 \mathrm{~m} / \mathrm{s}$（ 50 mph ） wind moments must be overcome．On start－up the motors must also provide a starting torque capable of overcoming the static frictional loads as well as the gravity and wind moments．Table 9．7－28 presents the gravity and $22 \mathrm{~m} / \mathrm{s}$（ 50 mph ）wind moments which the elevation drive motor must overcome．Table $9.7-29$ presents the $22 \mathrm{~m} / \mathrm{s}$（ 50 mph ）wind moment which the azimuth drive motor must overcome．The maximum elevation moment is $1607 \mathrm{~kg}-\mathrm{m}$（ $11624 \mathrm{ft}-\mathrm{lb}$ ），and the maximum azimuth moment is $1313 \mathrm{~kg}-\mathrm{m}$（9497 ft－lb）．

Heliostat \＃1 was erected at the Northrup heliostat test facility on Sept 11，1980．Heliostats $⿰ ⿰ 三 丨 ⿰ 丨 三 八$ 2 and \＃3 were erected on Sept 23， 1980 and Sept 30， 1980 respectively．All three of these heliostats were driven by Superior Electric Co．M112－FJ326 stepper motors and TBM 105－ 1230 motor control translators．The torque characteristic for this motor－translator combination is shown on Figure 9．7－41．Also shown on this figure is the torque characteristic for an M112－FJ327 stepper motor and TBM 105－1218 translator．As will be explained later，a change to this latter configuration was made during the test program to overcome a torque problem．

Torque adequacy tests were performed on heliostat \＃l shortly after its erection．A deficiency in both the starting torque and running torque was noted，and was determined to be caused by higher than anticipated losses in the drive unit．An interim attempt to resolve the problem was to raise the voltage in the translator on heliostat \＃l． Heliostats \＃2 and \＃3 were not modified and were tested with stock M112－FJ326 motors and TBM105－1230 control translators．Table 9．7－30 summarizes the stall torque results for these initial tests．Peak output torques were $1272 \mathrm{~kg}-\mathrm{m}$（ $9200 \mathrm{ft}-1 \mathrm{~b}$ ）for heliostat \＃1， $866 \mathrm{~kg}-\mathrm{m}$ （6263 ft－1b）for heliostat \＃2，and $1115 \mathrm{~kg}-\mathrm{m}$（ $8060 \mathrm{ft}-1 \mathrm{~b}$ ）for heliostat非3．Since the requirement for elevating to a horizontal position in

TABLE 9.7-28
Elevation Drive Moment, $22 \mathrm{~m} / \mathrm{s}$ (50 mph) Wind

Heliostat Elevation Angle				Moments
	Moment $\mathrm{ft}-1 \mathrm{~b}$	Moment $f t-1 b$	Horiz. Wind	$\begin{aligned} & \pm 10^{\circ} \\ & \text { Wind } \end{aligned}$
0^{0} (vert)	4253	0	4253	6660
10	4188	2407	6595	8149
20	3996	3961	7957	9126
30	3683	5130	8813	9423
40	3258	5740	8998	9804
50	2734	6546	9280	10542
60	2127	7808	9935	11624
70	1455	9497	10952	9263
80	738	6320	7058	9575
90 (horiz)	0	0	0	6320

TABLE 9.7-29
Azimuth Drive Moment, $22 \mathrm{~m} / \mathrm{s}$ (50 mph) Wind

Wind Angle of Attack	0	Gravity Moment ft-1b
	Wind Moment ft-1b	
10	0	0
20	0	2407
30	0	3961
40	0	5130
50	0	5740
60	0	6546
70	0	7808
80	0	9497
90 (normal).	0	6320

TABLE 9.7-30

Motor Running Torque Stall Test Results Mode1 M112-FJ326 Motor, Mode1 TBM105-1230 Translator Stepping Rate $=1000$ steps/second

	Heliostat $\# 1$	Heliostat $\# 2$	Heliostat $\# 3$
Run \#1	$7315 \mathrm{ft}-1 \mathrm{~b}$	$6029 \mathrm{ft-1b}$	$6413 \mathrm{ft-1b}$
Run \#2	7477	6050	7241
Run \#3	9200	6263	7501
Run \#4	-	-	8060

Note: The heliostat 非 translator was set at a higher voltage than heliostats \#2 and \#3.
a $22 \mathrm{~m} / \mathrm{s}$ (50 mph) wind is $1607 \mathrm{~kg}-\mathrm{m}$ ($11624 \mathrm{ft}-1 \mathrm{~b}$), all three heliostats exhibited inadequate running torque.

The M112-FJ327 motor and TBM 105-1218 translator combination provides a significantly higher starting torque and running torque than the M112FJ 326 motor and TBM 105-1230 combination, but must be operated at approximately one-half of the speed to realize this gain. For normal tracking operation this slower speed presents no problem. However, the slew rate for stowing is only $2.935 \mathrm{deg} / \mathrm{min}$ at a stepping rate of 500 steps/sec, so a 90 degree stow maneuver would take nearly 31 minutes. This stow time exceeds the specification requirement, but the new motor-translator combination was still selected for the deliverable heliostats since adequate torque was believed to be a more important parameter.

The new motor and translator combination was installed on heliostat \#2 and a series of running torque-stall tests were conducted at stepping rates of 1000,750 , and 500 steps $/ \mathrm{sec}$. Table 9.7-31 presents the stall torque values measured on this test sequence. The peak value achieved was $1556 \mathrm{~kg}-\mathrm{m}$ (11249 ft-lb) which is slightly lower than the $1607 \mathrm{~kg}-\mathrm{m}$ ($11624 \mathrm{ft}-\mathrm{lb}$) required torque. The test was repeated
 was achieved without stalling. These two units were subsequently delivered to Sandia-Albuquerque.

All of the torque test results described thus far were running torque tests in which the motors were run continuously from a low load orientation (heliostat vertical) to a high load orientation (heliostat horizontal). The loading was obtained by water barrels hung from the ends of the trusses. Another type of test which was performed was a start torque test in which the heliostat was driven from vertical to horizontal in small angular increments, so the motor was repeatedly required to start with an ever-increasing torque requirement. The test results showed that the motor starting torque is somewhat higher than the peak running torque. The test results for the starting torque tests were performed on heliostat \#2, and are presented on Table 9.7-32.

TABLE 9.7-31
Motor Running Torque Stall Test Results Model M112-FJ327 Motor, Model TBM 105-1218 Translator

Heliostat	Test Number	Stepping Rate	Stall Torque
2	1	1000 steps/sec 6871	
2	2	1000	7397
2	3	1000	7368
2	4	1000	6765
2	5	750	8261
2	7	750	7990
2	8	750	8027
2	9	500	11072
2	1	500	11249

TABLE 9.7- 32

Motor Start Torque Test-Heliostat \#2

Model M112-FJ327 Motor \& TBM105-1218 Translator
Stepping Rate $=500$ steps/sec

In addition to the basic running torque and start torque tests, an investigative test series was performed to determine the cause of the torque problem. Dynamometer tests were performed to measure the torque output of the motor, translator, microprocessor, and cabling system. These tests showed a motor output torque slightly higher than the values anticipated based on data provided by Superior Electric Co. The conclusion reached was that the problem must lie in the drive unit.

A D-C motor having a constant torque/amp characteristic was installed on each heliostat in place of the elevation stepper motor. The heliostats were elevated from a vertical position where a gravity moment of $588 \mathrm{~kg}-\mathrm{m}$ ($4253 \mathrm{ft}-\mathrm{lb}$) exists, to a horizontal position where the gravity moment is zero. The D-C motor current was monitored during this elevation-up maneuver against the gravity load, and also during the elevation-down maneuver where the gravity load was assisting the motor. Figures 9.7-42 through 9.7-44 show motor current and drive input torque vs heliostat elevation angle for heliostats \#1, 2, and 3 respectively. These motor current traces represent a "signature" of the frictional loss characteristics of the drive unit. The drive input stage contains a planetary gear set which provides a 460:1 speed reduction. The output stage consists of a worm and gear which provides a $40: 1$ speed reduction. The overall drive ratio is, therefore, 18400:1. The current traces show a high frequency input torque oscillation superimposed on a low frequency input torque oscillation. The interpretation of these cylic patterns is relatively straightforward. The low frequency characteristic is the variation in friction in the output stage caused by the engagement of the worm thread and gear teeth at different points on the tooth form. The ten discrete low frequency cycles correspond to the ten teeth of the output gear which would be encountered during the 90° of motion in elevating the heliostat from a vertical to a horizontal position. Superimposed on this low frequency worm and gear tooth characteristic is a high frequency torque variation which correlates with the frequency of the planet gear rotation. In the case of the heliostat \#2 trace, this

planet gear rotational torque variation has an amplitude of $130-150$ oz-in which represents approximately 50% of the total torque requirement. Interestingly, if a lower bound is drawn on each of these cyclic patterns, it will be noted that all 3 of the heliostats exhibit a nearly identical torque vs elevation angle characteristic at the lower bound. Furthermore, the drive efficiency at the lower bound is approximately 20.0% versus a theoretical efficiency of 20.4% (55% theoretical planetary efficiency x 37\% theoretical worm-gear efficiency). The small difference between the actual and theoretical is probably due to the seal drag at the planetary input shaft. Hence, the lower bound of the torque trace represents a close match with the theoretical torque prediction, and the high frequency torque oscillations above this boundary is an abnormal phenomenon caused by the planetary stage. This problem is currently being researched by Winsmith. One theory is that under a drive load, the worm and gear tooth contact zone experiences a separation force which causes worm shaft bending. Since the rotating ring gear is attached to the end of the worm shaft, any worm shaft bending is reflected as a shift in the concentricity of the rotating ring gear relative to the fixed ring gear (some out-of-plane angular misalignment of the two ring gears also occurs). This concentricity shift is further worsened by any worm shaft bearing deflection. With a concentricity off-set, each of the planet gears could experience a binding action which would peak at the point of maximum concentricity off-set and then drop-off as this point is passed. This theory is substantiated by the sinusoidal nature of the input torque variations, by the cylic frequency rate which matches the planetary gear half-cyle frequency, and by the fact that the amplitude varies with the output load and tooth forces. The apparent conflicting piece of data is that when the heliostat is being lowered from a horizontal to a vertical position, the same gravity moments are encountered, but the high torque oscillations are absent. However, in reality this is not a conflicting piece of data because on elevating the heliostat the tooth reactive forces are necessarily higher since the load plus
high frictional loads must be overcome, whereas the load assists the motor when the heliostat is lowered.

In sumary, a higher-than-anticipated drive friction was encountered which required a change to a higher torque motor. This new motor provides sufficient torque to start and operate with the combined loads of the gravity moment and worst case 50 mph wind moments. The sacrifice which was made is a slow slew speed; the required maximum torques can only be achieved at a slew rate near $3 \mathrm{deg} / \mathrm{min}$.

9.7.2.3 Operations and Accuracy Tests

Operations and tracking accuracy tests were performed informally on the three heliostats installed in Hutchins during the Sept. 12 to Oct. 30 period and on the two heliostats installed at the Albuquerque CRTF during the Nov. 11-20 period. Formal testing for the "Second Generation Heliostat" program evaluation began Dec 4 with the "Control System Operational Modes" test.

9.7.2.3.1 "Test 1 - Control System Operational Modes"

The objective of the control system operational mode test is to "Determine whether heliostats can perform such required functions as tracking, stowing, and assuming a commanded orientation." (ref. "Second Generation Heliostat Test Plan, p. 1)

Three sets of tests were performed over the two day period of Dec. 4 and 5th to demonstrate the control capability of the heliostat hardware and software. These were tests 1.3.1 Standard Modes, 1.3.2 Special Modes, and 1.3.4 Control Drive Repeatability.

Test 1.3.1 Standard (Control) Modes
In separate operational tests each heliostat was operated through the mode sequences of a normal operating day.
a. Stow to Standby Line Bottom
b. Standby Line Bottom to Standby Line Top
c. Standby Line Top to Target Tracking
d. Target Tracking to Standby Line Top
e. Standby Line Top to Stow

Both heliostats demonstrated full compliance with the test requirements.
Test 1.3.2 Special Control Modes
In separate operational tests each heliostat was operated at slew speed to the extremes of both elevation and azimuth travel to evaluate individual slew rates, combined slew rates, limit switch functional status, and establish limit switch base positions. Both heliostats properly traversed in commanded slew directions in all tests. No 1 heliostat primary limit switches limited up, down, east, and west travel
properly. No. 2 heliostat primary limit switches limited up, down, and east travel properly, but the west travel was stopped by the back up limit switch before the primary was reached. A bracket bent in shipping was found to be the cause. After restoring the bracket position normal west limit control was demonstrated.

Test 1.3.4 Control/Drive Repeatability
The control/drive repeatability test consists of up to 10 operational cycles between stow positions and an initial commanded position established by a laser image on a target located 250 ft behind the test heliostat. (3 inches on the laser target $=1 \mathrm{mrad}$).

During the initial sequence, between "vertical stow" and the "control command position", repeatability was demonstrated within .25 inches (0.08 mrad) in "no wind"conditions and 1.75 inches (0.58 mrad) when winds sufficient to toggle azimuth backlash were present. Throughout this sequence the pedestal was shaded.

During the second sequence, between "horizontal stow" and the "control command position", repeatability was demonstrated within a 2 inch $x 2$ inch (. $67 \mathrm{mrad} \times .67 \mathrm{mrad}$) envelope. Pedestal bending from periods of solar exposure between "horizontal stow" and the "test" position is believed responsible for the slightly increased inaccuracy. It should be noted that this pedestal solar exposure is not a normally encountered condition during tracking for the basic configuration Northrup II heliostat.

9.7.2.3.2 Beam Centroid Pointing Accuracy

The objective of the "Beam Centroid Pointing Accuracy" test is to "measure beam centroid pointing error with the Beam Characterization System (BCS) while tracking the sun". The compliance with the specification beam pointing requirement is 1.5 mrad for each axis (equivalent to axis pointing of 0.75 mrad) is defined by the performance in this BCS monitored test.

Baseline beam centroid pointing accuracy testing was performed with both heliostats Dec 12 (Day 347) and Dec 18 (Day 353). Sunmarized numerical results are shown in Tables 9.7-33 (Dec 12) and 9.7-34 (Dec 18). Graphic plots for Dec 12 are shown in Figures 9.7-45 and 9.7-46 and for Dec 18 are shown in Figures 9.7-47 and 9.7-48.

The baseline tracking accuracy data indicated $\# 2$ heliostat to be within specification limits, 0.2597 mrad rms elevation error and 0.5532 mrad rms azimuth error. The $\# 1$ heliostat was beyond limit for the elevation error, 1.0270 mrad rms elevation error and 0.5442 mrad rms azimuth error. Correlation of the elevation error patterns for morning and afternoon against elevation angle show repeating patterns for $\# 2$ and a hysteresis effect between am elevation and pm elevation for \#1. This generally correlates with the tilt data difference between the two heliostats (\#1 tilt $=1.81 \mathrm{mad} ; \geqslant 2$ tilt $=0.27 \mathrm{mrad}$).

The Dec. 18, 1980 data confirmed the characteristic tracking performance pattern of higher accuracy for \#2 heliostat than \#1. The final point for each heliostat was with low sun angles and illustrates the increasing atmospheric refraction effect on the sun's apparent position at low sun angles. A correction model for the atmospheric refraction has been incorporated in the software subsequent to these tests.

The negative offset of azimuth data sets on Dec. 18 is believed to be the result of a slow clock. Current practice is to set the computer clock with WWV time each morning.

Table 9.7-33
Baseline Beam Centroid Pointing Accuracy
For Second Generation Northrup Heliostats
a) N-1 CRTF Heliostat (171.38, 1016.37, 102.88 target coordinates)

Dec 12 (Day 347)

Time	Azimuth Axis		Elevation Axis	
	Angle degrees from West	Mean Axis Pointing Error for 30 Data Points, mrad	Angle, degrees from Vertical	Mean Axis Pointing Error for 30 Data Points, mrad
$\begin{array}{r} 9: 45- \\ 9: 48 \end{array}$	100.96	-1.40	15.88	0.13
$\begin{array}{r} 10: 22- \\ 10: 25 \end{array}$	96.69	-0.22	17.39	0.39
$\begin{array}{r} 10: 59- \\ 11: 03 \end{array}$	92.41	-0.31	18.41	0.49
$\begin{array}{r} 11: 38- \\ 11: 41 \end{array}$	87'. 31	-0.59	18.86	0.42
$\begin{array}{r} 12: 12- \\ 12: 15 \end{array}$	83.10	0.28	18.78	1.02
$\begin{array}{r} 12: 48- \\ 12: 50 \end{array}$	78.72	0.47	18.23	1.41
$\begin{array}{r} 13: 51- \\ 13: 54 \end{array}$	71.27	-0.26	16.10	1.30
14:48-	65.11	1.05	13.01	1.37
RMS For		0.5442		1.0270

Figure 9.7-45 No 1 Northrup Heliostat - Dec 12, 1980

Table 9.7-33
b) N-2 CRTF Heliostat ($-65.26,769.55,107.36$ target coordinates)

Dec 12 (Day 347)

Time	Azimuth Axis		Elevation Axis	
	Ang1e, degrees from West	Mean Axis Point Error For 30 Data Points, mrad	Angle, degrees from Vertical	Mean Axis Pointing Error for 30 Data Points, mrad
$\begin{array}{\|c} 9: 53- \\ 9: 56 \end{array}$	107.72	-1.06	16.78	-0.44
$\begin{gathered} 10: 30- \\ 10: 34 \end{gathered}$	103.36	-0.71	18.33	+0.02
$\begin{array}{\|c} \mid 11: 08- \\ 11: 11 \end{array}$	98.86	-0.72	19.36	+0.19
$\begin{array}{\|c} \mid 11: 46- \\ 11: 49 \end{array}$	94.13	-0.52	19.88	+0.26
$\begin{array}{\|r\|} \hline 12: 20- \\ 12: 23 \end{array}$	89.86	-0.38	19.88	+0.05
$\begin{array}{\|r\|} 12: 55- \\ 12: 57 \end{array}$	85.57	-0.15	19.42	+0.43
$\begin{array}{\|c} 14: 00- \\ 14: 03 \end{array}$	77.79	-0.36	17.33	-0.08
$\begin{array}{\|c} 15: 02- \\ 15: 05 \end{array}$	71.17	-0.22	13.96	-0.56
RMS For Full Day		. 5532		. 2597

Figure 9.7-46 No. 2 Northrup Heliostat December 12, 1980

Table 9.7-34
Baseline Beam Centroid Pointing Accuracy For Second Generation Northrup Heliostats
(a) N-1 CRTF Heliostat (171.38, 1016.37, 102.88 target coordinates)

Dec 18, 1980 (Day 353)

		Azimut		Elev	axis
	Time	Angle, degrees from West	Mean Axis Pointing Error for 30 Data Points, mrad	Angle, degrees from Vertical	Mean Axis Pointing Error for 30 Data Points, mrad
	$\begin{aligned} & 10: 13- \\ & 10: 16 \end{aligned}$	98.038	-0.76	16.821	-0.47
	$\begin{aligned} & 11: 13- \\ & 11: 17 \end{aligned}$	90.773	-0.53	18.446	-0.78
$\stackrel{\rightharpoonup}{\rightleftharpoons}$	$\begin{aligned} & 12: 17- \\ & 12: 23 \end{aligned}$	82.863	-0.63	18.623	-0.42
	$\begin{aligned} & 13: 10- \\ & 13: 13 \end{aligned}$	76.368	-1.37	17.579	-. 02
	$\begin{aligned} & 15: 19- \\ & 15: 23 \end{aligned}$	62.447	$-.53$	11.021	-. 36
	$\begin{aligned} & 16: 36- \\ & 16: 39 \end{aligned}$	55.685	. 69	4.511	-1.11
	RMS First 5 sets		. 9292		. 5663
	RMS All 6 sets		. 9005		. 7531

Figure 9.7-47 No. 1 Northrup Heliostat Dec 18, 1980

Table 9.7-34
Baseline Beam Centroid Pointing Accuracy For Second Generation Northrup Heliostats
(b) N-2 CRTF Heliostat ($-65.26,769.55,107.36$ target coordinates)

Dec 18, 1980 (Day 353)

9.7.2.3.3 Beam Quality

Initial "Beam Quality" tests were run on both heliostats Dec. 10,1980. The focal beam pattern for both heliostats was more diffuse than the "helios model" beam generated for the individual heliostats and the test time. Near-noon charts for the 90% power contour with the "helios model" points overlaid are shown in Figures 9.7-49 (No. 1 Northrup heliostat) and 9.7-50 (No. 2 Northrup heliostat).

Inspection of the mirror modules revealed a "built-in convex cant" of up to 1.4 mrad between the two facets of a single module. Inspection of the assembly tables indicated a position shift from the original alignment which caused the out of flat cant.

A design change decision to build in a concave cant matched to the slant range was made and implemented. Replacement modules were built and installed on both heliostats at CRTF. Beam quality data with a canted facet heliostat was taken Feb 5, 1981 on No. 2 heliostat. The 90% contour and 90% "helios" model plots are shown in Figure 9.7-51. Numerical data from the beam quality tests are summarized in Table 9.7-35. The gain in image size achieved by the canted facet mirror modules is quantified by the reduction in size of the 90 percent contour footprint from 19.88$19.97 \mathrm{~m}^{2}$ in the Dec 10 test to $14.3-15.5 \mathrm{~m}^{2}$ in the Feb. 5th test. The contour still exceeds the specified helios model by $1.5 \mathrm{~m}^{2}$. Refinement of the "Y Direction" canting procedure is expected to improve this value.

Fig. 9.7-49 "Beam Quality" Comparison Northrup \#1

PWR CDNTOUR

TEST TIME
FEB 5. 1981 15:11:53. 23
FILE NAME - CFD36B: : 62
MAXIMUM FLUX =
. $5428509 E+\square \square$ W/S0 CM
TOTAL POWER =
$.3454443 E+05$ WATTS
SOLAR INSOLATION=
-94EVDV1E-D1 W/SQ CM CENTROID REL. TO A. P.
$X=-34290$ METERS
$Y=.-59821$ METERS

Figure 9.7-51 "Beam Quality "Northrup \#2 Canted Modules

Table 9.7-35 "Beam Quality" Data Summary

Hellostat \& Test time	Total Power kwt	Insolation w/m	Max Flux, w/m	90% Power Contour Area	Helios Model 90\% Contour Area
No 1- Dec 10 $11: 03: 49$	42.658	969	2565.7	31.488	18.096
No 1-Dec 10 $15: 16: 14$	34.101	794	1980.2	30.345	17.887
No 2- Dec 10 $11: 22: 56$	41.066	963	3338.4	19.967	12.737
No 2-Dec 10 $14: 53: 14$	34.487	863	3060.2	19.877	12.968
No 2- Feb 5 $11: 28: 41$	40.544	1022	5192.0	15.528	not availab1e
No 2- Feb 5 $15: 11: 53$	34.544	946	5428.5	14.299	12.797

9.7.2.3.4 Life Cycle Tests

Life cycle testing software was developed on the bench test electronics unit in Littleton and incorporated in the CRTF Software Jan. 12. Either 1 or 2 heliostats are operated in a simulated half day cycle which spans $a \pm 67$ degree range in elevation and a ± 50 degree range in azimuth every hour.

The cycle count is recorded on the same type plot used during tracking operation where the lines are composed of plotted points for each tracking update. Figure 9.7-52 shows a typical plot for dual heliostat cycling showing the twenty four operating cycles and the simulation cycle.

As of Feb. 4, 1981 heliostat \#2 had operated 380 cycles without any problems being encountered.

APPENDIX H

MANUFACTURING

This appendix includes the following:
Direct Material, Direct Labor, and Equipment Cost Summaries
Overall Summary
CBS 4410 Reflective Unit
CBS 4420 Drive Unit
CBS 4430 Controls
CBS 4440 Foundation H-16
CBS 4450 Heliostat Support H-18
Direct Labor Summaries H-23
Production Equipment Cost Summaries
Mirror Processing $\quad \mathrm{H}-28$
Mirror Module $\quad \mathbf{H}-29$
Drive Unit (Includes Direct Labor Details) H-40
Controls $\mathrm{H}-75$
Structural $\quad \mathrm{H}-78$

IART NO. \qquad

Mirror Module Assy \qquad Cl 3 S \qquad 4410

l'AETT NO. \qquad DESCRIF"I Substrate Assy \qquad CHS 4410

Mirror Facet Assy \qquad C13S \qquad

TART NO. \qquad DR:SCRIIrtiv .. Drive and Motor Assy \qquad CHS 4420

A: SHAU BMILS

FART NO. \qquad DE:GCRIFII \because. Drive Unit Assy. \qquad CBS \qquad 4420 \qquad 1 of 5

'AKI NO. \qquad 12-300 WBECRIIUS Drive Unit Assy. \qquad CBS \qquad 2 of 5

FARMENO. \qquad 12-300 \qquad
 Drive Unit Assy \qquad CBS \qquad 4420

J'AR'T NO. \qquad 12-300 \qquad DESCRIFMTM Drive Unit Assy \qquad CHS \qquad

PART NO. \qquad DESCRIITIM Drive Unit Assy \qquad CBS \qquad

EART NO. \qquad No Drawing \qquad DESCRIIMUN Control Assy \qquad Cl 3 S \qquad

SIMMARY
-
Ch! \qquad H.

Foundation
OESCRIPTION

I'AR'T NO. \qquad DI.SCRIJ'IL iv Pile Assy \qquad CBS \qquad

I'ART NO. \qquad DESCRIPTIM

Torque Tube Assy. \qquad CI3S 4450

FART NO: \qquad Dis.SCRIPTI $1 /$ Truss Assy. \qquad CBS 4450

$$
=\text { A:31Mil: 11:1dIS }
$$

'AR'T NO. \qquad DESCKlPI \because Truss-Cross Brace \qquad ClBS 4450

PART NO. \qquad DH:SCRIFll M, . Truss - Lower Brace

CBS \qquad

	Direct	bor Summary			
		r Module			
		Quantity	Hours	Ope	ors
Part	Operation	Per Day	$\begin{gathered} \text { Per } \\ 100 \mathrm{pc} \end{gathered}$	$\begin{gathered} \text { Shift } \\ 1 \end{gathered}$	$\begin{gathered} \text { Shift } \\ 2 \end{gathered}$
Mirror Backing Sheet	Shear	2400	. 14	$\frac{1}{2}$	0
End Pieces	Form	4800	. 07	$\frac{1}{2}$	0
Backing Sheet	Shear	2400	. 14	$\frac{1}{2}$	0
Mounting Bracket	Form	4800	. 07	$\frac{1}{2}$	0
Mounting Bracket w/nuts	Staking	4800	. 14	1	0
Stiffeners	Form	33600	----	0	0
Webs	roll-form	16800	. 04	$\frac{1}{2}$	$\frac{1}{2}$
Edge Molding	roll-form	9600	. 06	1	0
Edge Molding	roll-form	4800	. 04	1/3	0
Center Trim	Form	2400	. 08	1/3	0
Corner	Form	9600	. 02	1/3	0
Web Assy	Bond	16800	. 04	$\frac{1}{2}$	$\frac{1}{2}$
Grease Sheet	Grease	2400	. 56	1	1
Substrate Assy		2400	3.36	6	6
Module Assy		2400	4.48	8	8
Final Assy		2400	2.24	4	4
Unload		2400	1.12	2	2
				27	22

	Direct Labor Summary						
	$\begin{gathered} \text { Quantity } \\ \text { Per } \\ \text { Day } \\ \hline \end{gathered}$	Drive Unit			Operators		
		Hours	Hours	No.			
		$\begin{gathered} \text { Per } \\ 100 \mathrm{pc} \\ \hline \end{gathered}$	Per Day	Of Operators	$\begin{gathered} \hline \text { Shift } \\ 1 \\ \hline \end{gathered}$	Shift 2	$\begin{gathered} \text { Shift } \\ 3 \\ \hline \end{gathered}$
Gear Cover	200	25.30	51	8	3	3	2
Bearing Ring	200	37.37	75	11	4	4	3
Gear-Elev.	200	86.67	173	26	9	9	8
Gear-Azi	200	81.72	163	24	8	8	8
Worm	400	115.42	462	69	23	23	23
Housing-Elev	200	45.13	90	14	5	5	4
Housing-Azi	200	44.80	90	14	5	5	4
Frame	400	32.57	130	20	7	7	6
Cover	400	52.37	209	31	11	11	9
Housing	400	23.73	95	14	5	5	4
Web	400	32.40	130	20	7	7	6
Ring Gear-Pri	400	37.18	149	22	8	8	6
Ring Gear-Sec	400	37.18	149	22	8	8	6
Planet Gear	800	36.30	290	44	15	15	14
Pinion	400	50.25	201	30	10	10	10
Stud	1200	. 05	1	1	1	0	0
Worm Support	400	17.43	70	11	4	4	3
Journal Pin	800	1.37	11	2	1	1	0
Clamping Disc	400	7.93	32	5	2	2	1
Paint	200	26.50	53	8	4	4	0
Assemble Drive	200	400.00	800	100	50	50	0
Drive Unit A	y 200			496	190	$\underline{189}$	117

Direct Labor Summary

Controls

Part	$\begin{aligned} & \text { Quantity } \\ & \text { Per } \\ & \text { Day } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Hours } \\ & \text { Per } \\ & 100 \mathrm{pc} \end{aligned}$	$\begin{gathered} \text { Operators } \\ \text { Shift } \\ 1 \\ \hline \end{gathered}$
Control Assy	200	166.7	50
Cable Assy	200	16.7	5
Limit Switch Assy	200	16.7	5
Cable Assy	200	50.0	15
			75

Direct Labor Summary

Structural Parts

Part	Operation	$\begin{gathered} \text { Quantity } \\ \text { Per } \\ \text { Day } \\ \hline \end{gathered}$	$\begin{gathered} \text { Hours } \\ \text { Per } \\ 100 \mathrm{pc} \\ \hline \end{gathered}$	Shift	Shift
Flange, Opening	Fab	200	3.3	1	--
Flange, Top	Fab	200	3.3	1	--
Pile	Form	200	26.7	4	4
	Weld	200	13.3	2	2
Assemble	Weld	200	26.7	4	4
Paint	Load	200	13.3	2	2
	Unload	200	13.3	2	2
Flange, End	Fab	400	1.7	1	--
Bracket	Fab	800	0.8	1	--
Torque Tube	Form	400	13.3	4	4
	Weld	400	13.3	4	4
Assemble	Weld	400	13.3	4	4
Paint	Load	400	6.7	2	2
	Unload	400	6.7	2	2
Chord, Top	Form	800	1.7	1	1
Chord, Bottom	Form	800	1.7	1	1
Web	Weld	800	5.0	3	3
	Form	800	3.3	2	2
Assemble	Asm	800	3.3	2	2
	Weld	800	3.3	2	2
Paint	Load	800	3.3	2	2
	Unload	800	3.3	2	2
Cross Brace	Form	1600	0.8	1	1
Paint	Load	1600	0.8	1	1
	Unload	1600	0.8	1	1
Lower Brace Paint	Form	800	0.8	1	--
	Load	800	0.8	1	--
	Unload	800	0.8	1	--
Control Box	Undefin	200	66.7	20	--
				75	48

MIRROR PROCESSING LINE (DESIGN NO 2.)

SHEET \qquad of

PRODUCTION EQUIPMENT COST

WEBS
SHEET \qquad of \qquad

MACHINE NAME	number REQUIRED	invoice price	transportation COST	UNLOADING and installation REMODELING AND COST	$\begin{aligned} & \text { ESTIMATED MACHINE } \\ & \text { LIFE } \\ & \text { YEARS/UNITS } \end{aligned}$	AVERAGE YEARLY MAINTENANCE COST	total cost
Pay-off reel	2	$\begin{gathered} 12 \\ (24) \end{gathered}$	$\begin{gathered} 1 \\ (2) \end{gathered}$	$\begin{gathered} 1.2 \\ (2.4) \end{gathered}$			
Roll-former	2	$\begin{gathered} 45 \\ (90) \end{gathered}$	$\begin{gathered} 2.2 \\ (4.4) \end{gathered}$	$\begin{gathered} 4 \\ (8) \end{gathered}$			
Cut-off Machine	2	$\stackrel{21}{(42)}$	$\begin{gathered} 1 \\ (2) \end{gathered}$	$\begin{gathered} 2 \\ (4) \end{gathered}$			
Run-out table	2	${ }_{(3)}^{1.5}$	--	--			

PRODUCTION EQUIPMENT COST
STIFFENERS
SHEET \qquad of

END PIECE
SHEET \qquad of \qquad

BACKING SHEET
SHEET \qquad of \qquad

machine mame	NUMBER REQUIRED	invoice price	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERAGE YEARLY MAINTENANCE COST	TOTAL COST
Coil Holder	1	49	2.5	2			
Coil Car	1	18	. 7	2			
Leveler	1	200	5	20			
Special Cut-off	1	375	7	37			
Special Stacker	1	75	3.5	7	,		
Run-out Table	1	4	1	--			

PRODUCTION EQUIPMENT COST
MOUNTING BRACKET

SHEET \qquad Of \qquad

PRODUCTION EQUIPMENT COST
SUBSTRATE ASSY
SHEET \qquad of \qquad

PRODUCTION EQUIPMENT COST

MIRRO 1 . $-A C K I N G$ SHEET
SHEET \qquad OF \qquad

MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	$\begin{aligned} & \text { AVERACE YEARLY } \\ & \text { MAINTENANCE } \\ & \text { COST } \end{aligned}$	TOTAL COST
Coil Holder	1	49	2.5	2			
Coil Car	1	18	. 7	2			
Leveler	1	200	5	20			
Special Cut-off	1	375	7	37			
Special Stacker	1	75	3.5	7			
Run-out Table	1	4	1	--			

PRODUCTION EQUIPMENT COST
MODULE ASSY
SHEET \qquad of \qquad

EDGE MOLDING

SHEET \qquad OF \qquad


```
CORNER - MOLDING
```


CENTER TRIM
SHEET \qquad of

25.30

LABOR AND EQUIPMENT ESTIMATING SHEET
Page No. \qquad
CBS Number: \qquad Part: Buskins llemonere RNa

Part No.: \qquad Date: $10 / 20 /$ to Qty./Heliostat: \qquad 1

Sheet No.: \qquad 2 of \qquad 2

HELIOSTAT MIrROR MÖÕ PRODUCTION EQUIPMENT COST
Worm (teat Treat)
SHEET \qquad 아 \qquad

LABOR AND EQUIPMENT ESTIMATING SHEET Page No.										
CBS Number: 4420		Part: ELEVATION Housing						Part No.: $6 \sqrt{1 / 3} 7-10$		
	Date: \qquad 11/1/so	Qty./Hellostat:						Sheet No.: _ of		
OPER. NO.	OPERATION DESCRIPTION	PRODUCTION ESTIMATE					MACHINERY E EQUIPMENT	¢ EQUIPMENT	EQUIPMENT	
		MACHINE		LABOR						
		min/Pc	$\begin{aligned} & \mathrm{Hrs} / 100 \\ & \mathrm{Pce} \end{aligned}$	号	$\begin{gathered} \text { Hrs/ } \\ 100 \mathrm{PC} \end{gathered}$	\$/Hour			at.	Em. Cost
1810	Mrec Bumm Fras	5					Inveran	noervema Sysmere	1	5,40, 200
	Price 4 Riser (2).812 Hrues	2	1		-		OR 7	- lorr		
	- Usor for Lecerron		1		1					
	Drice (4). 112 died theas	1	131333		1					
	- Iraes Firnocei.		1							
020	Mice To 26.r Dim	2	1		1					
	-boer lisod Dia	5	1		1					
		2	,							
	Drice $<\pi A P(4) 5 / P-16$ Afoes	2	1							
	Deve \& ThP (1) NP- 1/2-13	1	20la00				learneicoma			
	- Rotare firmuex		1		1					
030	Nice twee To 4.595 Dim	10	I							
	Bore 19.005 D19 \&	10	1							
	Bune 17. 752 Pra	(10)	1							
	Catrue $109 \times 45^{\circ}$	2	1							
	Drice + Tho (12) 1/2-13 theos	2	201000				(2 Joman			
	- Indork Taple		1		1					
840	Mice free to p,250 Dim	5	1		1					
	Bape 5.125 Di4	12	1		1					
	Drece a Tap (a) S/p-1/Hoces	2	1		1					
	Muc Face To 10.812 dim	(r)	1		1					

LABOR AND EQUIPMENT ESTIMATING SHEET
Page No. \qquad

heLIostat controls production equipment cost

HELIOSTAT CONTROLS PRODUCTION EQUIPMENT COST

	machive mame	MUMBER REQUIRED	InYOICE PRICE	TRANSPORTATION COST	UNLOADTNG AND INSTALLATION remodeling and cost	ESTIMATED MACHINE LOFE YEARS/UNITS	AVERUCE YEARLY MAINTENANCE COST	TOTAL COST
	PRET escoare C	2	$\begin{aligned} & 22,500 \\ & (45000) \end{aligned}$	$\begin{gathered} 500 \\ (1000) \end{gathered}$	$\begin{gathered} 1,000 \\ (2000) \end{gathered}$	10	500	48,200
	PRCLET RACAS	88 Paccer posertions	4,480	500	InCLVOES IN COOT	10	180	4,100
	$4,800<8$ Poek LIAY	1	32,200	$\sqrt{10}$	-	7	960	12,700

PILE ASSY

TORQUE TUBE ASSY
SHEET \qquad of \qquad

MELKOSTAT STHUCTUMAL SUPPORT PRODUCTION EQUMPMENT COST

440,600

Shitting dine \qquad of \qquad

HELIOSTAT STRUCTURAL SUPPORT PRODUCTION EQUIPMENT COST
TRUSS
Flange line \qquad op \qquad

HELLOSTAT STRUCTURAL SUPPORT PRODUCTION EQUIPMENT COST

NOSTAT STRUCTURAL SUPPORT UCTION EQUIPMENT COST

HELIOSTAT STRUCTURAL SUPPORT PRODUCTION EQUIPMENT COST
TM US:

Truss Assembcüy
sweet \qquad 6

CONTROL BOX
SHEET \qquad OF \qquad

PRODUCTION EQUIPMENT COST

BRACES
SHEET \qquad of \qquad

MACHINE NAME	Number REQUIRED	INVOICE PRICE	TRANSICRRTATION COST	UALLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	$\begin{aligned} & \text { AVERACE YEARLY } \\ & \text { MAINTENANCE } \\ & \text { COST } \end{aligned}$	TOTAL COST
Cross Brace							
40-ton press	1	20	1	2			
Lower Brace							
40-ton press	1	20	1	2			

PRODU EQUIPMENT COST
PAINT
SHEET \qquad of \qquad

APPENDIX I

SPECIFICATION S-101

INSTALLATION OF OPEN END PIPE PILES

BECHTEL NATIONAL, INC.

March 1980

TECHNICAL SPECIFICATION
FOR
INSTALIAATION OF OPEN END PIPE PILES

1. SCOPE
A. ITEMS INCLUDED
1) Installation of two open end steel pipe piles at the Central Receiver Test Facility in Albuqerque, New Mexico
2) Installation of tapered leveling shims
B. RELATED ITEMS NOT INCLUDED
3) Survey for pile location
4) Excavation, backfill and grading
5) Testing of piles
2. QUALITY STANDARDS
A. GENERAL

The contractor shall control the quality of items and services to meet the requirements of this specification, applicable codes and standards, and other contract documents
B. REFERENCED CODES AND STANDARDS

Code Title
ASTM 252 Welded and Seamless Steel Pipe Piles
3. DESIGN REQUIRMENTS
A. PILE DESCRIPTION

1) The pile shall be fabricated of welded steel pipe in conformance with ASTM 252.
2) Pile dimensions, flange, electronic package mounting and coating shall conform to Bechtel Drawing M-101.
B. DRIVING EQUIPMENT
3) Vibratory hammers, either hydraulically or electrically driven, shall be used to drive the piles.
4) If for any reason (e.g., large rock or thick cemented layers of soil) the vibratory hammer driven pile is refused, the piles will be placed in augered holes and set in concrete grout.

4. FIELD OPERATIONS

A. PILE DRIVING

1) The piles shall be driven to satisfy the requirements of Bechtel Drawing M-102.
2) Piles shall be located as shown and driven to the plumb condition as indicated. The maximum deviation from indicated plan location shall be 152 millimeters (6 inches). The maximum deviation for piles out of plumb shall be 2 percent.
3) Piles will be driven to the depth indicated in Bechtel Drawing M-102. Maximum deviation from the indicated depth (i.e., elovation of flange above grade) shall be 51 millimeters (2 inches).
B. FLANGE LEVELING SHIM INSTALLATION

The flange leveling shims (Bechtel Drawing M-103) shall be installed in conformance with Bechtel Drawing M-102 and the following instructions.

1) Place the L.S. Starrett Co. (Athol, Mass.) Level No. 1992, or equivalent, across a diameter of the flange-face. Rotate the level about the flange center until a level reading is obtained. Centering the bubble
within the finest gradations on this instrument will locate a line, intersecting the flange, that is level within 10 arc seconds ($1 / 20$ milliradian). Mark the two intersections of this line on the flange O.D.
2) Place two tapered leveling shims (Bechtel Drawing $\mathrm{M}-103$) on the flange with one flange location hole aligned with each of the two diametrically opposed marks on the flange O.D.
3) Place three $15.9 \times 51 \mathrm{~mm}(5 / 8 \times 2$ inch $)$ bolts through the shim slots and flange holes at equally spaced locations along the shim/flange circumference to serve as concentricity guides.
4) Place $6.35 \times 76 \mathrm{~mm}(1 / 4 \times 3$ inch) bolts in the two shim location holes to serve as handles for subsequent rotation of the shims.
5) Place the level across the diameter of the leveling shims perpendicular to a line connecting the two marks on the flange O.D. Note which side of the shim surface is low.
6) Rotate the two shim handles toward the low edge of the shim surface, keeping equal distances between each handle and the adjacent flange level mark as illustrated in Figure l. If desired rotation is blocked by a concentricity guide bolt, relocate the guide bolt in the adjacent slot so as to permit continued rotation.
7) When the level, still perpendicular to a line connecting the two level marks on the flange O.D., gives a level reading; the shims are properly adjusted.
8) Replace the three concentricity guide bolts with three 102 mm (4 inch) long No. 10 American Standard Taper Pins (ANSI B5.20). Tack weld the shims in place per Bechtel Drawing M-102.
9) Remove the taper pins.
C. PILE DRIVING ATTACHMENTS

Installation of the pile driving attachment of Bechtel Drawing M-104 is illustrated in Figure 2.

The M104-1 Driving Stub is intended for attachment to the pile flange. Its purpose is to permit driving of the pile with a conventional vibratory hammer pipe driving head, which does not have sufficient bite to bridge the flange.

The M104-3 Flange Cover protects the flange mating surface from damage while the pile is driven by a vibratory hammer with a custom head, which has sufficient bite to bridge the flange. If the custom head is not available for driving the CRTF piles, the M104-1 Driving Stub will be used (with the M104-3 Flange Cover removed).

The M104=5 Cover Plate is bolted to the control electronics package opening during driving of the pile.

Figure 2 PILE DRIVING ATTACHMENTS

SURFACE PREPARATION, APPLICATION, AND INSPECTION

OF
PROTECTIVE COATINGS

FOR
CARBON STEEL HELIOSTAT PILES
JOR NO. 13353

SPECIFICATION S-102

Reviewed:

Coatings ada Plastics Group Manager

Approved:

Manager, Materials and gality Services

CARBON STEEL HELIOSTAT PILES
1.0 SCOPE
1.1 Items Included
1.1.1 This specification covers the surface preparation and application of inorganic zinc coating to the interior surfaces, and the surface preparation and application of inorganic zinc coating and epoxy polyamide cured primer and white polyurethane topcoats to the exterior surfaces.
1.1.2 Documentation of the materials and procedures
1.1.3 Inspection and tests
1.1.4 Protection of coated surfaces
1.1.5 Environmental control equipment to provide the application and curing conditions required
1.1.6 Touch-up and repair of defective or damaged coated surfaces
1.1.7 Shop priming and finishing
1.2 Related Items Not Included
1.2.1 The following surfaces shall not be coated:
1.2.1.1 Surfaces within two inches ff field welds, unless otherwise specified 1.2.1.2 Name and instruction plates, etc.
1.2.1.3 Rubber or similar nonnetallic parts
1.2.1.4 Surfaces to be completely embedded in concrete, unless otherwise specified
1.2.1.5 Prefinished metal
$2.0 \quad$ QUALITY STANDARDS
2.1 General
2.1.1 The Seller shall control the quality of items and services to meet the requirements of this specification, applicable codes and standards, and other procurement documents.
2.2 Referenced Codes and Standards:

Sponsor	Number	Subject
ASTM	E337-1972	Test for Relative Humidity by Wet-and- Dry-Rulb Psychrometer
SSPC	SP-1-1971	Solvent Cleaning
SSPC	SP-10-1971	Near-White Blast Cleaning
SSPC	Vis-1-1967	Pictorial Surface Preparation Standards for Painting Steel Surfaces
SSPC	PA-2-1973	Measurement of Dry Paint Thickness with Magnetic Gages

2.2.1 The Seller shall meet the specific requirements of this specification. If the requirements of this specification differ from or otherwise conflict with the normal procedures of the Seller, the requirements of this specification shall govern.
3.0 ENGINEERING DOCUMENTS
3.1 A listing of all coating materials to be used in this work which shall identify the specific products by manufacturer and catalog number in each coating system as scheduled.
3.1.1 The Seller's written procedures for storage, handing, surface, preparation, environmental control, application, touch-up and repair, curing, and inspection of the coating system shall be submitted for the Buyer's review and assignment of a status recommendation prior to use. Conflicts, if any, between the coating manufacturer's recommendations and this specification shall be brought to the attention of the Project Engineer for resolution.

4.0 MATERIALS

4.1 Material Manufacturers
4.1.1 Unless otherwise specified, all coating materials used on any one surface or piece of equipment shall be products accepted by the Buyer. Materials fron different manufacturers shall not be used over each other without prior written acceptance.
4.1.2 The coating materials shall be in pre-measured units.
4.2 Inorganic Zinc Coatings
4.2.1 The following materials are acceptable:

Material Manufacturer
Dimetcote 6
Interzinc QHA 027/QHA 028
Mobilzinc 7

Ameron Protective Coatings Div. International Paint Co.
Mobil Chemical Co.
4.3 Epoxy Polyamide Cured Primers
4.3.1 The following materials are acceptable:

Material	Manufacturer
Amercoat 71	Ameron Protective Coatings Div.
Intergard 4400/4414	International Paint Co.
Valchem 13-R-56	Mobil Chemical Co.

4.4 Polyurethane Coatings
4.4.1 The following materials are acceptable:

Material Manufacturer
Amercoat 450
Interthane PA Series
Urethane Enamel 40 Series

Ameron Protective Coatings Div. International Paint Co. Mobil Chemical Co.

4.5 Ahrasive Materials

4.5.1 Abrasives for blast cleaning shall be clean and dry, furnished either in bulk or packaged, and shall be free of oil or contaminants. The particle size shall be capable of producing the specified surface profile. Cast iron or malleable iron shot shall not be used. Chilled iron shot may be used. Recirculated grit may be used. Recycled sand shall not be used.
4.6 Touch-Up Materials
4.6.1 Materials for touch-up of damaged areas of surfaces shall be the same as those originally applied, thinned according to recommendations of the manufacturer.
4.6.2 Alternate materials for touch-up may be used, subject to acceptance by the Buyer and the coating manufacturer.
4.7 Thinners, Solvents, and Cleaners
4.7.1 Thinners, solvents, and cleaners shall be as recommended by the coating material manufacturer and shall be identified by the product number or generic formulation.
5.0 SHIPPING, HANDLING AND STORAGE
5.1 Delivery and Storage
5.1.1 Coating materials shall be delivered to the place of application in the manufacturer's unopened, original containers bearing a legible product designation, batch number, and date of manufacture. Containers which are damaged to the point of jeopardizing the contents shall not be used.
5.1.2 The material shall be handled and stored in accordance with the manufacturer's latest published instructions, and shall be protected from damage, moisture, direct sunlight, and temperatures below 40 F or above 100F.
5.2 Date of Materials
5.2.1 The materials shall be used within twelve months of their manufacture. The date of use shall in no case exceed the manufacturer's recommended shelf life, if such shelf life is less than twelve months.
5.2.2 Containers of coatings or components shall not be opened except for immediate use.
5.3 Handling of Coated Items
5.3.1 Coated surfaces shall be protected from damage during lifting or handling. Coated items shall be protected on non-abrasive supports during shipment and storage.

6.0 EQUIPMENT

6.1 General Requirements
6.1.1 The Seller shall provide equipment capable of regulating and controlling the conditions within the work area to the extent that the temperature of the substrate is always a minimum of 5 F above the dew point. The substrate temperature during coating application and curing shall be maintained between a minimum of 55F and a maximum of 100 F .
6.1.2 The spray equipment shall be as recommended by the coatings manufacturer and shall be suitably sized to the configuration of the work.
6.1.3 Spray equipment air supply lines shall be equipped with traps to remove moisture and oil.
6.1.4 For field applications, coatings listed shall comply with all air pollution control requirements applicable at jobsite.
7.0 SURFACE PRFPARATION
7.1 General Requirements
7.1.1 Prior to blast cleaning or application of the topcoat, contamination shall be removed from the steel surfaces. $0 i l$ and grease shall be removed by solvent cleaning in accordance with SSPC-SP-1.
7.1.2 Surfaces to be coated shall be abrasive blast cleaned in accordance with $\overline{S S P C-S P-10}$.
7.1.3 The surface profile of the steel cleaned by blasting shall be between 1.0 and 3.0 mils. A comparison shall be made with a Keane-Tator Profile Comparator, or Clemtex anchor profile chips, or Testex Press-0-Film, or other Buyer accepted equivalent which is appropriate to the type of abrasive material being used.
7.1.4 The abrasive mixture and the compressed air shall be clean, dry, and oilfree. Separators, in addition to ofl and water extractors mounted on the compressor, shall be used in compressed air lines to remove oil and moisture from the air close to the point of use.

Rev. 1 3/80
7.1.5 Abrasive blast cleaning shall not be ferformed in the immediate area where the coating or curing of coated surfaces is in progress. All surfaces and equipment which are not to be coated shall be suitably protected from abrasive blast cleaning.
7.1.6 Burrs, slivers, scabs, and weld spatier which becoc: visible after blasting shall te removed ky the Seller. Kepaired areas shall have the surface profile suitably restored.
7.1.7 If rusting occurs or if the cleaned surfaces become wet or otherwise contaminated prior to coating, they shall be recieanec to the degree specified above.
7.1.8 After blast cleaning and immediately before coating, dust shall be removed with compressed air, free of oil and moisture. Vacuuming shall be used if the surface is not dust free.
8.0 MIXING AND APPLYING COATINGS
8.1 General Requirements
8.1.1 The mixing, applying, and curing of the coating material shall be in accordance with the manufacturer's latest published instructions and the requirements specified hereir. When multiple component units are mixed, each component shall be mixed separately prior to the mixing of the combined materials. Only complete, pre-measured units shall be mixed. After mixing, the coating material shall be applied within the manufacturer's latest published pot life time.
8.1.2 Coating materials shall be thoroughly mixed until they are smooth and free from lumps, then strained through a 30 mesh or finer screen. Mixed material shall be agitated to keep the solids in suspension.
8.1.3 Inorganic zinc coating shall be a single coat applied over all specified ferrous surfaces, except as noted, to a dry film thickness of between 2.0 mils minimum and 4.0 mils maximum.
8.1.4 Epoxy polyamide cured primer shall be a single coat applied over all specified surfaces, except as noted, to a dry filn thickness of between 1.0 mils minimum and 2.0 mils maximum.
8.1.5 White polyurethane finish shall be applied in two or more coats over all specified surfaces, except as noted, to a dry film thickness for the polyurethane of between 2.0 mils minimum and 4.0 mils maximum.
8.1.6 The total dry film thickness of the entire exterior system shall be a minimum of 5.0 mils and a maximum of 10.0 mils .
8.1.7 The curing time between coats and the final cure shall be in accordance with the manufacturer's latest published instructions.
8.1.8 The application of the coating shall be performed only when the environmental conditions meet the parameters specified in paragraphs 6.1.1 and 6.1.2 of this specification.
8.1.9 The coating materials shall not be applied when there is moisture on the surface, dust is present which can contaminate the freshly-coated surface, dirt or other detrimental materials have recontaminated the surface, or when the surface temperature of the steel is below $55 F$ or above 100 F or less than 5 F above the dew point.
8.1.10 The spray equipnent shall be conventional or airless and in acceptable operating condition as determined by the Seller through inspection and testing. The air supply lines shall be equipped witin traps to remove moisture and oil.
8.1.11 Runs, sags, voids, drips, overspray, loss of adhesion, blistering, peeling, mudcracking, inadequate cure, or rusting of the substrate shall not be permitted.

9.0 INSPECTION AND TESTING

9.1 Surface Preparation Inspection
9.1.1 The temperature, dew point, and relative humidity shall be determined with a sling psychrometer or an accepted equal following procedures in ASTM E337. Readings are required at the start of work and every four hours or at time intervals designated by the Buyer. Alternatively, continuous monitoring shall be performed using systems established and/or reviewed by the Buyer.
9.1.2 Blast cleaned surfaces shall be compared with SSPC-Vis-l, Swedish Pictorial Standards, or accepted NACE Standards. The anchor pattern profile depth shall be verified with a Keane-Tator Profile Comparator, or Clemtex anchor pattern profile chips, or Testex Press-0-Film, or other Buyer accepted equivalent which is appropriate to the type of abrasive material being used.
9.1.3 Recirculated shot and grit used for abrasive cleaning shall be tested for the presence of oil by immersing them in water and checking for oil flotation. Tests shall be made at the start of blasting, every four hours thereafter, and at the end of blasting. If oil is evident, the contaminated abrasive shall be replaced with clean abrasive and retested before proceeding. All steel blasted after the previous satisfactory test shall be completely recleaned.

9.2 Coating Inspection

9.2.1 Surface temperature and humidity readings shall be taken every four hours.
9.2.2 The dry film thickness shall be measured with a Mikro-test FIM gage or an accepted equivalent, at five random points for each 50 square feet of surface area or at three random points on each piece less than 50 square feet in area. The testing method shall be in accordance with SSPC PA-2.
9.2.3 The film shall be visually inspected for defects such as overspray, runs, sags, mudcracking, inadequate cure or lack of adhesion. The Seller shall repair all defects according to the touch-up and repair procedures accepted by the Buyer.
9.2.4 The total dry film thickness of sags and runs shall not exceed 120 percent of the maximum specified dry film thickness nor shall it be less than 90 percent of the minimum specified dry film thickness.
1.0.0 REMEDIAL VORF
10.1 Touch-Up
10.1.1 Coated surfaces within the scope of this specification that have been damaged during assembly or handling shall ie repaired in accordance with procedures as reviewed by the Euyer.
iC.I. 2 The surface profile shall be restored to meet the specified surface Freparation renuirements for cleanliness and profile. The periphery of a damaged area shall be featnered in with an acceptable material.
10.1.3 Precautions shall be taken to protect adjacent coated areas from damage caused by abrasive blast cleaning. The use of vacuum blast type equipment and needle guns will be permitted for abrasive blast cleaning.

UNLIMITED RELEASE
INITIAL DISTRIBUTION
UC-62d (350)
U.S. Department of Energy 600 E Street NW
Washington, D. C. 20585
Attn: W. W. Auer
G. W. Braun
K. Cherian
M. U. Gutstein
L. Melamed
J. E. Rannels
U.S. Department of Energy

San Francisco Operations Office 1333 Broadway
Oakland, CA 94612
Attn: S. D. Elliott
S. Fisk
R. W. Hughey
W. Nettleton
U.S. Department of Energy

Solar Ten Megawatt Project Office
P. O. Box 1449

Canoga Park, CA 91304
Attn: M. Slaminski
U.S. Department of Energy

Solar Ten Megawatt Project Office
5301 Bolsa Ave. MS14-1
Huntington Beach, CA 92649
Attn: R. N. Schweinberg
USAF Logistics Command
P. 0. Box 33140

Wright-Patterson AFB
Ohio 45433
Attn: G. Kastanos
UCLA
900 Veteran Avenue
Los Angeles, CA 90024
Attn: F. Turner
Georgia Institute of Technology
Engineering Experiment St.
Atlanta, GA 30332
Attn: S. H. Bomar, Jr.

```
University of Houston
Houston
Solar Energy Laboratory
4800 Calhoun
Houston, TX }7700
Attn: A. F. Hildebrandt
    L. L. Vant-Hull
U.S. Department of Interior
Water & Power Res. Service
P.0. Box 427
Boulder City, NV }8900
Attn: J. Sundberg
Acurex
485 Clyde Avenue
Mountain View, CA }9404
Attn: J. Hull
Aerospace Corporation
Solar Thermal Projects
Ener gy Systems Group, D-5
Room 1110
P.O. Box }9295
El Segundo, CA 90009
Attn: P. deRienzo
P. Mathur
Airesearch Manufacturing Co.
2525 West 190th Street
Torrance, CA 90509
Attn: M. G. Coombs
    For: P. F. Connelly
AMFAC
700 Bishop Street
Honolulu, HI 96801
Attn: G. St. John
ARCO
911 Wilshire Blvd
Los Angeles, CA }9001
Attn: J. H. Caldwell, Jr.
Arizona Public Service
P. 0. Box }2166
Phoenix, AZ }8503
Attn: D. L. Barnes
    For: E. Weber
Arizona Solar Energy Commission
1700 W. Washington - 502
Phoenix, AZ }8500
Attn: R. Sears
```

```
Babcock & Wilcox
91 Stirling Avenue
Barberton, OH 44203
Attn:, G. Grant
    For: J. Pletcher
    M. Seale
Babcock & Wilcox
P. O. Box }126
Lynchburg, VA 24505
Attn: W. Smith
Babcock & Wilcox
20 S. VanBuren Avenue
Barberton,OH 44203
Attn: M. Wiener
Badger Energy, Inc.
One Broadway
Cambridge, MA 02142
Attn: F. D. Gardner
Battelle Pacific Northwest Labs
P. O. Box }99
Richland, WA,99352
Attn: M. A. Lind
Bechtel National, Inc.
P. 0. Box }396
San Francisco, CA 94119
Attn: E. Lam
    For: J. B. Darnell
    R. L. Lessley
Black & Veatch
P. 0. Box }840
Kansas City, MO }6411
Attn: C. Grosskreutz
    For: J. E. Harder
    S. Levy
Boeing Engineering & Construction
P. 0. Box }370
Seattle, WA }9812
Attn: R. L. Campbell
    R. Gillette
    J. R. Gintz
Booz, Allen & Hamilton, Inc.
8 8 0 1 ~ E . ~ P l e a s a n t ~ V a l l e y ~ R o a d
Cleveland, OH 44131
Attn: W. Hahn
Brookhaven National Laboratory
Upton, NY 11973
Attn: G. Cottingham
```

```
Burns and Roe, Inc.
550 Kinderkamack Rd.
Oradell, NJ 07649
Attn: J. Willson
Burns and Roe, Inc.
185 Crossways Park Drive
Woodbury, NY 11797
Attn: R. Vondrasek
Busche Ener gy Systems
7288 Murdy Circle
Huntington Beach, CA 92647
Attn: K. Busche
California Public Utilities Commission
350 McAllister St., Room 5024
San Francisco, CA 94102
Attn: B. Barkovich
For: C. Waddell
Chevr on Research
P. O. Box 1627
Richmond, CA 94804
Attn: L. Fraas
Chevr on Oil Research
P. 0. Box 446
La Habra, CA 90631
Attn: W. Peake
    For: J. Ploeg
    W. Stiles
Colt Industries
Trent Tube Division
East Troy, WI 53170
Attn: J. Thackray
Corning Glass Works
Advanced Products Dept.
M/S 25
Corning, NY 14830
Attn: W. M. Baldwin
    A. Shoemaker
Custom Metals Enterprises, Inc.
3288 Main Street
Chula Vista, CA 92011
Attn: T. J. Bauer
Data Science Corp.
1189 Oddstad Drive
Redwood City, CA 94063
Attn: M. Liang
```

```
Electric Power Research Institute
P. O. Box }1041
Palo Alto, CA }9340
Attn: J. Bigger
El Paso Electric Company
P. O. Box }98
El Paso, TX }7994
Attn: J. E. Brown
Energy, Inc.
P. 0. Box }73
Idaho Falls, ID }8340
Attn: G. Meredith
Exxon Enterprises-Solar Thermal Systems
P. 0. Box 592
Florham Park, NJ 07932
Attn: P. Joy
    For: D. Nelson
        G. Yenetchi
Ford Aerospace
3939 Fabian Way, T33
Palo Alto, CA 94303
Attn: I. E. Lewis
    For: H. Sund
Foster-Miller Associates
135 Second Avenue
Waltham, MA 02154
Attn: E. Poulin
Foster Wheeler Dev. Corp.
12 Peach Tree Hill Road
Livingston, NJ 07039
Attn: A. C. Gangadharan
    For: R. Zoschak
GAI Consultants, Inc.
570 Beatty Rd.
Monroeville, PA 15146
Attn: H. Davidson
General Atomic Company
P. O. Box }8160
San Diego, CA 92138
Attn: H. A. Chiger
General Electric Company
Advanced Energy Programs
P. 0. Box }866
Philadelphia, PA }1910
Attn: A. A. Koenig
```

```
General Electric Company
l River Road
Schenectady, NY }1234
tric Company
l River Road
Schenectady, NY 12345
Attn: J. A. Elsner
    For: R. N. Griffin
    R. Horton
GM Transportation System Center
GM Technical Center
Warren, MI 48090
Attn: J. Britt
GM Corp. Harrison Rad. Division
A and E Building
Lockport, NY }1409
Attn: A. Stocker
Houston Lighting and Power
P. 0. Box 1700
Houston, TX }7700
Attn: J. Ridgway
Institute of Gas Technology
Suite 218
1825 K Street, NW
Washington, D. C. 25006
Attn: D. R. Glenn
Jet Propulsion Laboratory
Building 520-201
4800 Oak Grove Drive
Pasadena, CA 91103
Attn: M. Adams
    H. Bank
    W. Carley
    E. Cuddihy
    J. Sheldon
    J. Swan
    V. Truscello
Kaiser Engineers, Inc.
300 Lakeside Drive
Oakland, CA }9461
Attn: I. Kornyey
Lawrence Berkeley National Laboratory
University of California
Berkeley, CA }9472
Attn: A. J. Hunt
```

```
Los Alamos National Laboratory
P. O. Box }166
Los Alamos, NM 87545
Attn: S. W. Moore
Los Angeles Water and Power
1 1 1 ~ N o r t h ~ H o p e ~ S t r e e t
Los Angeles, CA 90051
Attn: B. M. Tuller
    R. Radmacher
Martin Marietta Corporation
P. O. Box }17
Denver, C0 }8020
Attn: P. R. Brown
    A. E. Hawkins
    T. Heaton
    L. Oldham
    H. C. Wroton
McDonnell Douglas Astronautics Co.
5 3 0 1 ~ B o l s a ~ A v e n u e
Huntington Beach, CA }9264
Attn: P. Drummond
    R. L., Gervais
    D. A. Steinmeyer
    L. Weinstein
Meridian Corporation
5515 Cherokee Avenue
Alexandria, VA 22312
Attn: B. S. Macazeer
Nielsen Engineering. & Research
510 Clyde Avenue
Mt. View, CA }9404
Attn: R. Schwind
Northrup, Inc.
302 Nichols Drive
Hutchins, TX 75141
Attn: J. A. Pietsch
ARCO Power Systems
Suite 301
7061 S. University Boulevard
Littleton, CO }8012
Attn: J. Anderson
    F. Blake
01in Corporation
275 Winchester Avenue
New Haven, CT 06511
Attn: S. L. Goldstein
```

```
OSC Department of Commerce
341 West 2d Street
San Bernardino, CA 92401
Attn: M. G. Heaviside
Pacific Gas and Electric Co.
77 Beale Street
San Francisco, CA 94105
Attn: P. D. Hindley
For: J. F. Doyle
A. Lam
Pacific Gas and Electric Co.
3400 Crow Canyon Road
San Ramon, CA }942
Attn: H. Seielstad
    For: J. Raggio
Phillips Chemical Co.
13-D2 Phillips Building
Bartlesville, OK }7400
Attn: M. Bowman
Pittsburgh Corning
800 Presque Isle Drive
Pittsburgh, PA 15239
Attn: W. F. Lynsavage
Pittsburgh Corning
723 N. Main Street
Port Allegany, PA 16743
Attn: W. J. Binder
    For: R. Greene
PPG Industries, Inc.
One Gateway Center
Pittsburgh, PA }1522
Attn: C. R. Frownfelter
Public Service Co. of New Mexico
P. 0. Box 2267
Albuquerque, NM }8710
Attn: A. Akhil
Research and Development
Public Service Co. of OkTahoma
P. 0. Box 201
Tulsa, OK 74102
Attn: F. Meyer
Rockwell International
Energy Systems Group
8900 De Soto Avenue
Canoga Park, CA 91304
Attn: T. Springer
```

```
S. C. Plotkin & Associates
6451 West 83rd Street
Los Angeles, CA }9004
Attn: W. Raser
Safeguard Power Transmission Co.
Hub City Division
P. 0. Box }108
Aberdeen, SD 57401
Attn: R. E. Feldges
Sargent and Lundy
55 East Monroe
Chicago, IL 60603
Attn: N. Weber
Schumacher & Associates
2550 Fair Oaks Blvd., Suite 120
Sacramento, CA 95825
Attn: J. C. Schumacher
Sierra Pacific Power Co.
P. 0. Box }1010
Reno, NV 89510
Attn: W. K. Branch
Solar Energy Research Institute
1617 Cole Boulevard
Golden, C0 80401
Attn: L. Duhham, TID
    G. Gross
    B. Gupta
    D. W. Kearney
    L. M. Murphy
    R. Ortiz, SEIDB
    J. Thornton
Solar Thermal Test Facility
User Association
Suite 1205
First National Bank East
Albuquerque, NM }8711
Attn: F. Smith
Solar Turbines International
P. O. Box }8096
San Diego, CA 92138
Attn: P. Roberts
Southern California Edison
2244 Walnut Grove Road
Rosemead, CA 91770
Attn: J. Reeves
    For: C. Winarski
```

```
Southwestern Public Service Co.
P. 0. Box 1261
Amarillo, TX }7817
Attn: A. Higgins
Standard Oil of California
555 Market Street
San Francisco, CA }9410
Attn: S. Kleespies
Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, CA 94025
Attn: A. Slemmons
Stearns-Roger
P. O. Box }588
Denver, CO }8021
Attn: W. Lang
    For: J. Hopson
Stone & Webster Engineering Corp.
245 Summer Street
P. O. Box }232
Boston,MA 02107
Attn: R. Kuhr
Townsend and Bottum
9550 Flair Drive
El Monte, CA 91731
Attn: R. Schwing
US Gypsum
101 S. Wacker Drive
Chicago, IL 60606
Attn: Ray McCleary
US Water & Power Resources Service
Bureau of Reclamation
Code 1500 E
Denver Federal Center
P. 0. Box 25007
Denver, C0 }8022
Attn: S. J. Hightower
Van Leer Plastics
15581 Computer Lane
Huntington Beach, CA }9264
Attn: Larry Nelson
Veda, Inc.
400 N. Mobile, Building D
Camarillo, CA 90310
Attn: L. E. Ehrhardt
    For: W. Moore
```


Westinghouse Corporation

Box 10864
Pittsburgh, PA 15236
Attn: J. J. Buggy
For: R. W. Devlin
W. Parker

Winsmith
Division of UMC Industries
Springville, NY 14141
Attn: W. H. Heller
K. R. Miller, 3153
G. E. Brandvold, 4710; Attn: J. F. Banas, 4716
J. A. Leonard, 4717
B. W. Marshall, 4713; Attn: D. L. King
A. B. Maish, 4724
R. G. Kepler, 5810; Attn: L. A. Harrah, 5811
J. G. Curro, 5813
F. P. Gerstle, 5814
J. N. Sweet, 5824; Attn: R. B. Pettit and E. P. Roth
T. B. Cook, 8000; Attn: A. N. Blackwell, 8200
B. F. Murphey, 8300
C. S. Hoyle, 8122; Attn: V. D. Dunder
R. J. Gallagher, 8124; Attn: B. A. Meyer
D. M. Schuster, 8310; Attn: R. E. Stoltz, 8312, for M. D. Skibo
A. J. West, 8314
W. R. Even, 8315
R. L. Rinne, 8320
C. T. Yokomizo, 8326; Attn: L. D. Brandt
P. L. Mattern, 8342
L. Gutierrez, 8400; Attn: R. A. Baroody, 8410
D. E. Gregson, 8440
C. M. Tapp, 8460
C. S. Selvage, 8420
V. Burolla, 8424; Attn: C. B. Frost
R. C. Wayne, 8450
T. D. Brumleve, 8451
W. R. Delameter, 8451
P. J. Eicker, 8451 (5)
R. M. Houser, 8451
C. L. Mavis, 8451
W. L. Morehouse, 8451
H. F. Norris, Jr., 8451
W. S. Rorke, Jr., 8451
D. N. Tanner, 8451
S. S. White, 8451
A. C. Skinrood, 8452
W.'G. Wilson, 8453

Publications Division, 8265/Technical Library Processes Division, 3141
Technical Library Processes Division, 3141 (2)
M. A. Pound, 8214, for Central Technical Files (3)

[^0]: * A rear support adjustment was made which shifted the readings slightly.

[^1]: * 100% load $=20,477 \mathrm{ft}-1 \mathrm{bs}$ elevation axis torque ** 1 inch of water $=14.2$ lbs

[^2]: *100\% Moment $=20,476 \mathrm{Ft} 1 \mathrm{bs}$

