UNLIMITED RELEASE

MARCH 1981

SAND 81-8178 SANDIA CONTRACT 83-2729E

SOLAR CENTRAL RECEIVER SYSTEMS

PREPARED BY NORTHRUP, INCORPORATED A SUBSIDIARY OF ATLANTIC RICHFIELD CO. FINAL REPORT

VOLUME IV APPENDICES F-J

CONTROL SOFTWARE TEST RESULTS MANUFACTURING PILE INSTALLATION PILE COATINGS

BECHTEL NATIONAL, INC. AND BOOZ-ALLEN AND HAMILTON, INC.. When printing a copy of any digitized SAND Report, you are required to update the markings to current standards.

AND

SECOND GENERATION HELIOSTAT DEVELOPMENT

١,

FINAL REPORT

VOLUME IV

Appendices F - J

Sandia Contract No. 83-2729E Sandia Requestor - C. L. Mavis/8451 Contracting Representative - R. C. Christman

Work performed during the period July 16, 1979 through March 31, 1981

by

Northrup, Incorporated 302 Nichols Drive Hutchins, Tx. 75141

and Subcontractors:

Bechtel National, Inc. 50 Beale St. San Francisco, California 94119 and Booz-Allen and Hamilton, Inc. 8801 E. Pleasant Valley Rd. Cleveland, Ohio 44131 This report is presented in 4 Volumes. The content of these volumes is as follows:

Volume I - Sections 1.0 - 3.0

- 1.0 Introduction
- 2.0 Summary of Results
- 3.0 Northrup Heliostat Description

Volume II - Sections 4.0 - 8.0

4.0 Manufacturing

- 5.0 Transportation
- 6.0 Field Assembly and Installation
- 7.0 Maintenance
- 8.0 Cost Estimates

Volume III - Appendices A - E

- A. Bill of Materials
- B. Part Drawings (Subassemblies)
- C. Assembly Drawings
- D. Trade Studies
- E. System Studies

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the DOE, nor any person acting on behalf of the DOE:

a. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, nor that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

b. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

9.6 Control Software (Appendix F)

The control software for the Northrup II heliostats consists of two packages, one handling the external data processing, communication, and control and one handling the internal data processing, communication and direct motor control.

The Heliostat Controller specification, Figure F-1 defines the word structure used to communicate control information and status information between the two software systems. An overview flow diagram of the "Mini HAC"

software package to be implemented in the Hewlett Packard 9825 desktop computer system is shown in Figure F-2.

The detailed software flow being implemented in the Northrup Heliostat Control Electronics is described on pages F-8 to F-11. The flow chart for the Heliostat Controller is included in pages F-12 to F-29. The text margins are annotated with the applicable flow chart step numbers.

FIGURE F-1 (Sheet 1 of 4) HELIOSTAT CONTROLLER (HC) SPECIFICATION

3.1 Data Format

The data format between the heliostat and the controlled shall be per the following table:

WORD	FUNCTION
1	Address
2	Azimuth(ms byte)
3	Azimuth(ls byte)
4	Elevation(ms byte)
5	Elevation(ls byte)
6	Mode

3.1.1 Bit Configuration

The data word shall consist of one start bit, two stop bits, 8 data bits, and no parity bits. 3.1.1.1 Time Out

The HC shall receive 6 words per paragraph 3.1. The words shall be separated only by the normal two stop bits. If communications is lost during transmission, the HC shall time out after 1.5 bytes(word length) and continue its previous operation until a new instruction is received.

3.1.2 Address

Two Address shall be used for prototype design. Heliostat 1 shall be address 01 heliostat 2 shall be address 02 3.1.3 Azimuth and Elevation postion

Position shall consist of two 8 bit words. A position command shall be an absolute quantity with the least significant bit being equal to 125 motor steps.

The heliostat processor shall su**bir**act the commanded position from the accumulated position and command the stepper motor to move the differential steps.

Figure F-1 (Sheet 2 of 4) 3.1.4 The Mode byte The Mode byte is defined by the format shown below. 1 + Bi + 2 = 1AZ = 1 Bit Ø CΨ Bit Ø AZ = 0 ccwBit 1 EL = 1CW $EL = 0 \quad ccw$ Bit 1 If Bit 2 = 0Bit 0 = 1 AZ Stop Bit 0 = 0 Continue previous operation Bit 1 = 1 El Stop Bit 1 = 0 Continue previdus operation Bit 2 = Mode indication for bits 0 and 1 Bit 3 = 1 Slew AZ Bit 3 = 0 Track AZ \sim Bit 4 = 1 Slew El to Stow Bit 4 = 0 Track El Bit 5 = 1 Request Status Bit 6 = 1 Set position Bit 7 = 1 Clear malfunction status

3.2 Wake Up

The wake up mode defines the logic used to power up the heliostat in the morning. The heliostat conroller shall upon power up check limit switch status and if the stow limit switch is in the normal mode shall execute the commanded position. It shall check the limit swich status after 2 steps and continue if the limit switch is open. If the limit swich is closed it shall stop all motor operation and set a status bit.

3.3 Statús Words

The heliostat status shall be sent upon request from the controller. The status shall consist of the following:

WORD	FUNCTION
1	Azimuth(ms byte)
2	Azimuth(ls byte)
3 .	Elevation(ms byte)
4	Elevation(ls byte)
5	Status

Figure F-1 (Sheet 3 of 4) 3.3.1 Position

The heliostat controller shall keep track of its acculumated position. It shall send this position upon request from the master controlle**p**.

3.3.2 Status

The heliostat status word shall be defined by the following.

Bit	Function
0 1 2 3 4 5 6 7	AZ cw limit sw AZ ccw limit sw El cw limit sw El ccw limit sw Motor movement AZ Motor Movement EL Wake up malfunction Power drop out

Bits 0 and 1 shall indicate AZ limit switch activation if Bit 4 = 0 and shall indicate motor movement if Bit 4 = 1. Bits 2 and 3 shall indicate EL limit switch activation if Bit 5 = 0 and shall indicate motor movement if Bit 5 = 1

3.3.2.1 Wake Up Malfunction

A wake up malfunction shall be defined as the inability of the heliostat to drive off of the limit switches.

3.3.2.2 Power drop out is defined as power up with the limit switches open.

3.4 Heliostat Error Conditions

3.4.1 Malfunction Conditions Heliostat motors shall remain off after a malfunction condition(will not execute commands)

-3.4.1.1 Bit seven of the mode shall reset the heliostat to normal operation (allow the controller to move the heliostat).

3.5 Motor Operation

3.5.1 Acceleration If two motors are required to move to a position simultaneously they shall accelerate in parallel and both shall deaccelerate when either motor is required to stop. After both motors stop the motor requiring additional position-movement shall resume normal operation (see figure F-1).

Figure F-1 (Sheet 1 HELIOSTAT SOFTWARE ACCELERATION PROFILE AZ OR EL **RZ&EL** 1500 STEPS//SEC F-5 500 STEPS/SEC BOTH MOTORS STOP BOTH MOTORS START OTHER MOTOR STOPS . . .

4 of £

© ACCELERATION/DEACCELERATION NEEDED

X NEED TO COUNT CYCLES * DELAY ADJUSTMENT REQUIRED FOR DIFFERENT BRANCHES

.

·•

Heliostat Controller Software Performance

After power-on reset the processor will vector to the start of the program. The first task is to initialize the programmable hardware, 1-7 internal position, and status control bytes.

After initialization the program will test the home limit switches to see if the mirror was stowed at the home position. If the limits are open then it will be assumed that power has been lost at some time during mirror control. If this case has been detected then the power **8-10** drop out bit will be set in the status byte.

If the mirror is at the home position, then the program will try to move the mirror two positions off the limit switches. This will test the motor operation and limit switches for malfunction. If the 11-15 limits don't open then the wake-up malfunction bit will be set in the status register.

If a malfunction has occurred then the program will allow commands to be received but will only recognize a request for status or a reset 16-25 of the malfunction status or both. A reset of the malfunction status shall transfer the program control to normal command operation.

In normal command processing the program shall wait for a command to be fully received before decoding takes place. After a command is received the first test is for proper device address. If the address is incorrect, then it will clear the command ready and return and wait for the next command to be received. If the address is ok then the status will reflect the current status of the limit switches.

The next operation will clear the command ready and then test for high speed operation. If high speed is requested then a bit will **32-38** be set in the direction register. Set position is the next command to be decoded. If this is requested then the absolute position will reflect the command position.

If status is requested then the transmitter interupt will be enabled and the current position and machine status will be transmitted. **39-41** After this operation the program will transfer back to the wait for command routine.

If the stop motors bit is set then the program will transfer back to wait for the next command. This is performed because slew direction could not be calculated properly. Slew motor is the next test, and if set then the motor direction is tested and the Slew motor and direction bits are set in the direction register.

If tracking is requested then the absolute position is subtracted from the command position and the result is stored in the Step registers and the direction register will be set for clockwise. If the result is negative then the step registers are complemented and the direction register is set for counter-clockwise. This operation is performed for both azimuth and elevation.

The status register is set with the limit switch status and then the program will call the motor movement routine, and then will return the wait for command routine.

At the start of the motor routine it will initialize the acceleration step register with the number of acceleration/deceleration steps. 67-80 Both motors will be turned on and home position zeroing will be turned off for that motor. The next test will check if the motor is moving 81-88 into a limit switch. If it is then that motor is turned off. 89-91

The program will now test to see if there are any steps to be performed. If there are none then the motors are turned off. If only 92-105 one step is to be performed then the step motor bit is set in the stop register. If the motor is slewing then this step is omitted. If both motors are turned off at this time then the program will return to where it was called from.

The next operation will test the motor to see if it is on and if it 106-115 is then it will set the status register to indicate operation and the direction it is moving.

The number of steps per position will be set at the start of the motor movement loop. At the start of the loop the program will delay 116 - 117 30 μ s for each acceleration step.

A test will be made to see if a command was received during

42-49

50-54

55-66

motor movement. If there was then it will test for proper address, status request and stop motor command. If stop motor command is received then stop motor bits will be set in the stop register and the command ready bit will be reset.

The next test is for high speed. If this bit is set then the program will skip a 500 μ s delay for 1000 step per second timing to 129-132 an adjustment for 2000 steps per second maximum speed.

If the motor is on then it will test the direction register and will pulse either the clockwise or counter-clockwise line for 10μ s. After the step a test will be made to check if the motor hit a limit switch. If it did then the stop bit for that motor will be set. 145-152

The number of steps léft will be decremented. If there are 153-163 more steps left then it will test to see if any motors are stopping. If so then it tests to see if there are enough steps left to decelerate the motor. If there are it sets the decelerate bit. If the decelerate bit is set then the delay steps are incremented.

If no motors are stopping then it tests to see if it is at maximum speed. If not then the number of delay steps are decremented.

After 125 steps have been performed then the absolute position will be incremented or decremented depending upon the motor direction. If the motor is not slewing then the number of position steps are decremented. If the stop bit is set then it tests the deceleration bit. If it is also set then the motor is turned off and status is set to reflect the status of the limit switches. If the step bit is not set and the number of position steps left is one, then the stop bit is set. 164-168 164-168 169-178

If the motor is slewing then a test is made on the stop bit. If set it makes the same test on the deceleration bit. If it is not set the program continues.

A test is made at this point to see if either motor is on. If they are then the deceleration bit and the stop bits are reset if a

motor was stopped. Then the program transfers back to the start of the motor step loop.

If both motors are stopped, a test is made to see if a home limit switch is on. If it is then the zero position bit is on. If it is also on then the motor is stepped back onto the limit switch and the absolute position is set to zero. After this program transfers back to the place from which it was called.

199-213

After an interrupt the processor vectors program control to the interrupt service routine. The internal registers are saved and a test is made to see if the serial I/O device caused the interrupt. If not then it assumes that it was the timer. A timer interrupt will reset the byte counter in the receiver. A timer interrupt will be caused if there is a transmission failure. After the interrupt was serviced then the internal registers will be restored and will return to where it was called from.

If the serial I/O device interupted then a test is made to see if it was the transmitter or receiver section. If it was the 217-226 receiver, data is read from the device and saved in a table. Then the timer is set for a byte and a half time out, the registers are restored, and the program returns. If it was the last byte to be received then the command ready bits are set and the Timer is disabled.

When the transmitter interrupts the data is read from a table and it is transformed to the data register. If it's the last byte, 227-233 the transmitter is disabled from interrupt and the number of bytes to be sent is reset. Registers are restored and the program returns.

device interupted then a test

FLOW CHART FOR HELIOSTAT CONTROLLER

91

.

F-18

Return

.

FLOW CHART FOR HELIOSTAT CONTROLLER (Page 11)

FLOW CHART FOR HELIOSTAT CONTROLLER (Page 14)

FLOW CHART FOR HELIOSTAT CONTROLLER (Page 17)

9.7 Test Results (Appendix G)

9.7.1 Electronic Tests

9.7.1.1 Computer Control of Northrup I Heliostat

The initial electronic testing activity was the bench evaluation of the Superior Electric Co. STM 101 translator and the computer controlled operation of Superior M063-FC06 stepper motors with the STM 101 translator. The M063 is rated at 100 in-1b in the 0-500 step/sec speed range.

Due to the high end to end gear ratio of Northrup I, 180:1 motor gear head x 440:1 Heliostat Drive (79,200:1 total in azimuth) and (180 x 520 = 93,600:1 in elevation) the laboratory size stepper motors could be used for a full scale heliostat computer tracking experiment.

A simplified translator was built and software designed to drive the heliostat in a tracking mode. This translator was tested on the Northrup I heliostat. The Commodore computer was used to drive the translator. A basic program was used to calculate the step commands from time of day, heliostat and target coordinates. The step commands were then passed to a machine language program that drove the translator. The translator interfaced to the computer through a 6522 versatile interface adapter. A small stepper motor was used to drive the Northrup I heliostat through the existing motor and gearhead. This was enough to demonstrate tracking but not to slew. Slewing was accomplished with the AC Bodine motor. Good tracking was demonstrated with the stepper motor for about a six hour period.

A low power mode was demonstrated with the Northrup translator design. This was accomplished by adding a fifth mode to the logic table that turned off all the transistor switches at once. The drawback to this method is that no holding torque is available during the low power mode. Test results on the heliostat showed no loss of steps during the low power mode on elevation and some loss of steps in azimuth. Later analysis of the azimuth problem

showed an abnormal amount of backdrive in the drive mechanism due to a soft rubber coupling between the original motor and the stage 1 worm shaft.

9.7.1.2 Limit Switch Tests

The accuracy of the electronics and stepper motors is dependent on the position reference offered by the home position switch. In order to verify part specifications and obtain confidence in our design we constructed a limit switch tester. This tester consisted of a small stepper motor driving an actuator through several stages of gear reduction. Special software was designed to drive the motor into the switch, back it off, and record the position. The accuracy of each step of the motor was .000047 inch which amounts to .0047 mr for a 10" arm. The test was performed over a period of three days and a few hundred data points obtained. The repeatability was within plus or minus 3 steps.

9.7.1.3 Translator Tests

Three different translators were procured and a fourth designed and built.

The first type of translator tested was the Superior Electric STM 101. This unit consisted of power drivers and sequential switching logic. This translator requires either external pulses or allows internal speed control. The design simulates constant current to the motor with high supply voltage and series resistors. This translator has the disadvantage of dissipating more power when the motor is at rest than when moving. The power supply required is 24 volts at 6 amperes. Since the motor windings see a constant voltage source in series with a resistor, the motor quickly runs out of torque at the higher speeds due to the the back emf generated. The internal logic in the translator converts input pulses to a logic configuration which can be easily generated by a microprocessor.

Software for driving the translator was developed for a stand alone heliostat controller. By using the Commodore computer for the development system we were able to change from the basic heliostat

driver to a machine language driver in one computer and a serial data transfer to another computer. Once the machine language program was checked out, the program was burned in a 2716 EROM that was plugged into the Commodore computer and tested. Once checked out a breadboard was built and checked for driving the stepper motors through the Northrup translator. After checking out the motor speed torque characteristics on a dynamometer it indicated a need for improved torque at high speeds. Several software strategies were developed for slewing the motor at high speeds. These techniques involved pulsing the motor during each step. This technique showed the need for analog feedback to control the motor current in the absence of current limiting resistors.

TC 600 Translator Tests

The Superior Electric TC 600 translator was tested for performance with the M112-FJ-326 and the M092-FD-310 motors. The results showed good torque/speed performance and a high amount of heating in the stand-by mode. The translator required four external supplies one of which was 70 volts at 10 amperes peak current. The unit generated high current switching transients at a frequency higher than the stepping rate.

TBM 105 Translator Tests

The TBM 105-9214 and the TBM 105-1230 were tested with the M092-FD-310 and the M112-FJ-326 respectively. The results showed moderate torque/speed performance and small amount of motor heating. The translator was self contained and only required a 110 volt supply. The only transients generated were the stepping signals to the motor.

9.7.2 Mechanical Tests

9.7.2.1 Component Tests

9.7.2.1.1 Mirror Module Hail Test

Extensive mirror module hail tests have been performed throughout the contract period to verify the adequacy of the mirror-silicone greasesteel substrate to resist breakage. Some initial tests were performed with "specification" ice balls of 0.75 inch diameter at speeds of 65 ft/sec. However, breakage was virtually non-existent, so subsequent tests were all performed with "margin" ice balls of 1.0 inch diameter.

A pneumatically-powered hail gun was constructed at the Northrup-Hutchins facility. Photoelectric sensors were employed to measure the time interval over a fixed, known distance which enabled the velocity to be computed. Various velocities were achieved by adjusting the chamber pressure which propelled the hail balls. The firing of an ice ball was accomplished by an electrical switch which in turn would trigger a solenoid valve to release the high pressure air into the barrel. Spherical ice balls of 1.0 inch diameter were made in a 2-piece aluminum mold which was fabricated specifically for this purpose. To insure adequate hardness, the ice balls were frozen and chilled to 20[°]F maximum.

For ice balls fired into the mirror interior area (away from the edges), velocities as high as 140 ft/sec could be tolerated without breakage. Edge hits would generally pass velocities up to 100 ft/sec. Infrequent breaks would occur at or near the edges at velocities near 75 ft/sec. It is believed that these were generally caused by an existing edge defect such as a minute crack or chip, and an impact in the near vicinity would cause the defect to propagate from the defect to the impact zone. Generally, breakage was very infrequent even with the "margin" ice balls of 1.0 inch diameter, and velocities well above 75 ft/sec. Hence, the mirror module design is felt to be very adequate from the hail impact standpoint.
9.7.2.1.2 Mirror Module Thermal Cycling-Freeze/Thaw

A single mirror module (S/N 200078) was subjected to a series of thermal cycles in the Northrup environmental control room. A total of 10 cycles were performed. A thermal cycle consisted of heating to $120^{\circ}F$ at the rise rate of $60^{\circ}F$ /hour, stabilizing at this level for 30 minutes, spraying with ambient temperature water for 2-3 minutes, ramping down at $60^{\circ}F$ /hour to $15^{\circ}F$, stabilizing at this level for 30 minutes, spraying with ambient temperature water for 2-3 minutes, and then cycling back to $120^{\circ}F$.

The objective of this test was to demonstrate the functional and structural integrity of the mirror module. The primary aim was to determine if any damage results from thermal cycling, thermal shock, or freezing. Another equally important goal was to visually check the appearance for distortions or curvatures at the temperature extremes.

The test instrumentation consisted of 4 thermocouples for measuring mirror module temperature at the following locations:

a. Backside module sheet-adjacent to 48" rectangular cross support member-left side.

b. Backside module sheet-adjacent to 48" rectangular cross support member-right side.

c. Mirror face-left end-approximately 3" inboard and near center of 48" width.

d. Mirror face-right end-approximately 6" inboard and near center of 48" width.

In addition to these temperature measurements, an optical "zebra-board" was constructed to enable a qualitative evaluation of mirror distortion and/or curvature to be made. The "zebra-board" was fabricated from a 4' x 12' mirror-less mirror module, painted white, and gridded with 1/2-inch wide black stripes on 4-inch centers. The "zebra-board" image in the mirror module being tested was visually examined and photographed at each temperature extreme.

The test results indicated a complete success. No damage resulted from the thermal cycling, the thermal shock from the water spray, or from the resulting freeze-thaw cycles. The visual observations of the "zebra-board" revealed no observable curvature or change in distortion.

9.7.2.1.3 Mirror Module Survival Wind Load Test

Test Objective: The objective of the mirror module survival wind load test was to verify the structural integrity of the adhesive bond joints and primary load paths through the attachments and adjacent rib members when subjected to loads comparable to a 90 mph wind.

Test Description: Figure 9.7-1 illustrates the test set-up used for the mirror module survival wind load test. Since the test objective was to evaluate the mirror module adhesive and structure, a module with broken mirrors was used. The broken mirrors were removed prior to testing. The module was suspended from the 3 attachment studs (i.e., face down orientation), and dead-weight loaded with wet sand on the backside. Only one-half of the module area was loaded on test #1, and the opposite end was loaded on test #2 to enable two potentially destructive tests to be accomplished on the same module.

Instrumentation: The instrumentation used on this test consisted of a load gage to measure the sand weight, and 7 dial indicators to measure deflections. The dial indicators were attached such that the deflections being measured excluded deflections of the load gage and the test fixture main support member. The 7 dial indicators were located beneath each of the 7 longitudinal mirror module ribs.

FIGURE 9.7 - 1

MIRROR MODULE SURVIVAL WIND LOAD TEST

Test Conditions: The test loads were based on a 90 mph wind impacting a heliostat in the vertical stow position. This represents an over-test condition because a heliostat would normally be stowed horizontally if a high wind were anticipated. With a 90 mph wind normal to the heliostat, a peak pressure at the geometric center of 2.38 times the dynamic pressure occurs. This corresponds to a loading of 37.4 lb/ft^2 . Since only one-half of the mirror module area (24.0 ft²) was loaded on each test, an 897.6 lb sand weight simulates the worst case 90 mph wind condition. This load was applied in 100 lb increments with dial indicator readings taken at each increment.

Test Results: Table 9.7-1 and 9.7-2 present the load and deflection readings for the two tests. It will be noted that the test loads were increased to a maximum of 1500 lbs in an attempt to cause a bond failure. The dial indicator deflections indicate normal bending, and no bond failure with one possible exception. Dial indicator #2 at the 1400 lb load on test #1 indicated a large, abrupt deflection which may indicate a local bond failure. Since this occurred at a high over-test load, no sections were cut open to confirm this possibility.

Load Cell	Dial #1	Dial <u>#2</u>	Dial <u>#3</u>	Dial #4	Dial <u>#5</u>	Dial <u>#6</u>	Dial #7
98 1Ъ	.030 "	.121"	.096"	.105" `-	.109"	.059"	.065"
200	.029	.120	.094	.104	.110	.065	.075
300	.030	.120	.094	.105	.113	.070	.082
400	.030	.120	.094	.106	.116	.075	.090
500	.031	.121	.095	.108	.120	.082	.100
600	.032	.121	.095	.109	.124	.090	.110
600*	.034	.123	.097	.111	.125	.089	.109
700	.033	.123	.096	.111	.127	.093	.116
800	.027	.122	.096	.111	.130	.099	.124
900	.031	.122	.095	.112	.134	.106	.134
950	.029	.121	.095	.112	.135	.110	.140
1000	.029	.121	.095	.112	.138	.114	.146
1100	.029	.121	.094	.113	.140	.119	.154
1200	.030	.121	.094	.114	.144	.126	.164
1300	.030	.122	.094	.114	.146	.132	.175
1400	.032	· .143	.095	.116	.150	.138	.184
1500	.025	.143	.091	.113	.149	.138	.186
98	.018	.116	.089	.100	.103	.048	.052

•

Table 9.7-1

Mirror Module Survival Wind Load Test - Run #1

*After 1.5 hour dwell at this load

Table 9.7-2

Mirror Module Survival Wind Load Test - Run # 2

Load <u>Ce11</u>	Dial #1	Dial <u>#2</u>	Dial <u>#3</u>	Dial <u>#4</u>	Dial #5	Dial #6	Dial <u>#7</u>
95 1Ъ	.026"	.072"	.124"	.080"	.055"	.069"	.023"
200	.025	.070	.123	.080	.060	.077	.036
300	.024	.070	.122	.081	.064	.085	.048
400	.024	.069	.122	.082	.068	.091	.058
500	.024	.068	.122	.082	.072	.100	.070
600*	.020	.073	.120	.083	.075	.110	.081
700	.020	.067	.120	.084	.079	.115	.088
800	.019	.066	.120	.084	.082	.120	.096
900	.019	.066	.120	.085	.086	.125	.104
1000	.020	.066	.120	.086	.092	.135	.118
1100	.018	.065	.120	.087	.096	.142	.129
1200	.019	.066	.120	.088	.101	.149	.139
1300	.018	.066	.120	.089	.106	.156	.149
1400	.019	.066	.120	.088	.111	.160	.157
1500	.020	.067	.120	.089	.115	.165	.165
1200	.021	.066	.122	.091	.111	.156	.155
105	.016	.066	.123	.081	.066	.079	.036

* A rear support adjustment was made which shifted the readings slightly.

•

9.7.2.1.4 Mirror Module Imperfection Evaluation

Several tests were performed to evaluate mirror module and/or mirroronly surface imperfections. One of these was a laser ray trace performed by Sandia-Albuquerque on two mirror modules during the period December 15-16, 1980. Figures 9.7-2 and 9.7-3 show the reflected beam deviation in inches and the corresponding deviation in milliradians for a typical scan across a mirror module. Note that two deviation values are provided, an x-deviation and a y-deviation for a scan which was made in the 144-inch (x) direction. Also provided are RMS-average milliradian deviations for the x and y component of the reflected ray. The following summarizes the RMS results for 11 such scans:

Mirı Modu	ror ile	Sca #	in 5 	Scan rection	RMS <u>x - compo</u>	Reflected Beam Deviation nent y - component
A		4	у	(48'')	0.394 m	rad 1.386 mrad
A		5	У	(48")	0.756	1.296
A		6	У	(48'')	0.558	0.958
A		7	У	(48")	0.544	1.638
В		4	У	(48'')	2.230	1.876
В		5	У	(48") ·	0.922	1.736
В		6	У	(48'')	0.510	1.680
В		7	У	(48")	0.608	1.358
В		1	x	(144")	0.794	0.926
В		2	x	(144")	0.750	0.946
В		3	x	(144")	0.600	0.692
RMS	of	y-scans	(48" din	rection)	0.987	1.517
RMS	of	x-scans	(144" di	lrection)	0.719	0.862
RMS	of	both sca	ns		0.863	1.233

Figure 9.7- 3

REDUCED DATA - LASER RAY TRACE EXAMPLE

X - Axis Scan (144" Direction)

The interpretation of these data is not very straightforward. Intuitively, it would be expected that the x-component of the ray variance for a scan in the x-direction would correlate with the x-component of the ray variance for a scan in the y-direction. Likewise, it would be expected that the y-component of the ray variance for a scan in the y-direction would be similar to the y-component of the ray variance for a scan in the x-direction. However, the data do not match these intuitive expectations for the x-components. If it is assumed that the most meaniful values are the RMS average x-component values from the x and y scans, and the RMS average y-component values from the x and y scans, the resultant RMS imperfection angles are 0.719 milliradians for the x direction (144 inch direction), and 1.517 milliradians for the y-direction (48 inch direction).

One pertinent question regarding these data is what is the primary cause of these imperfections; is it the mirror glass or the module design and construction? A set of measurements were made on a 4' x 6' mirror facet at the Northrup-Hutchins facility to help answer this question. The measurements were made on a mirror only, not a mirror module. The mirror was placed on a very flat, leveled granite surface plate 5' x 7' in size. An 8" long calibrated Starret level was used to measure the surface angles at 45 locations on the mirror. The measurements were converted to milliradian angles and doubled to give reflected beam values. The RMS values of these measured angles were 0.771 mrad for the x-scan (72" direction) and 0.706 mrad for the y-scan (48" direction). Comparing these glass-only values to the laser ray data obtained on complete mirror module assemblies results in the following:

	Laser Ray- Complete Mirror Module	Starret Level- Mirror Facet Only
x-scan	0.719 mrad	0.771 mrad
y-scan	1.517	0.706

The implication is a strong one, and is one which is consistent with visual observations: a large portion of the distortion on a mirror module is inherent in the mirror glass. The main area where this is not true is at the edges; the original edge seal was a commercial edging known as Bailey "C"-Sash. It mechanically gripped the mirror edge so tightly that edge distortions occurred. Since the y-direction scan is only 48 inches long, this edge effect strongly influences the RMS error measured by the laser ray scan. The new edge seal employs a simple "U" cross-sectional shape which is attached with a cure-in-place RTV silicone rubber. It also gives a very tight edge grip, but via adhesion rather than a mechanical grip, and as such is nearly distortion-free.

9.7.2.1.5 Water Spray Test

The objective of the water spray test was to simulate a wash and/or driving rain of potentially sensitive components such as the drive unit, motors, and exposed cable harnesses.

The test method consisted of spraying the area around the drive unit and pedestal from a distance of approximately 10 feet using an ordinary garden-variety hose and nozzle for a period of 20-25 minutes on 5 or more different days. The spray technique was to adjust the nozzle to achieve a droplet pattern and velocity similar to a wind-driven rain; i.e., a solid-stream jet was avoided. The heliostat was allowed to warm to a mid-afternoon ambient temperature, and then sprayed with cool tap water. Following the water spray operation, the heliostat would be operated for approximately 15 minutes.

Due to schedule limitations on the heliostat #1 unit, some deviations to the plan were necessary. The heliostat #1 unit was selected for test because it had a drive unit which had excessive backlash and was due to be returned to Winsmith for tear-down and re-work. This provided an excellent opportunity to determine if any water penetration had occurred. Due to the test schedule and replacement of this drive unit, only 3 water spray cycles were performed on the complete drive unit/heliostat assembly. However, an additional 4-day period of actual heavy rain conditions (i.e., 10 inches of rainfall) had been encountered previously, so a considerable exposure was actually encountered. In addition, the drive unit was subjected to an additional 6 cycles of water spray after its removal from the heliostat and prior to its return to Winsmith for tear-down. These 6 cycles were more severe than would normally be encountered for several reasons:

a. The drive unit was painted a dark gray in color, and therefore, would warm more than the current white painted configuration.

b. The drive unit was stored in a sunny area at the test site and was not shaded as it would be when installed on a heliostat. During the 6 cycles of spraying, the drive unit was first warmed to a mid-afternoon ambient temperature, and then sprayed with cool water.

c. The drive unit being tested did not have the expansion chamber which is currently installed on all production units for the purpose of preventing differential pressures between the inside of the drive and the external ambient pressure.

The results of the water spray test and actual rain exposure were as follows:

1. The tear-down of the drive unit at Winsmith revealed no perceptible water in the oil, and no evidence of any rust on any internal parts.

2. Water did enter the pedestal and wet the electronics during the actual heavy rain period. It was found that a small passage existed between the drive unit base and the pedestal tapered shims/flange. The opening was plugged with a small wad of duct-seal, and no direct water penetration was noted thereafter.

3. Some rusting was noted at flange interfaces such as between the motor and drive, between the torque tube flanges and drive unit, and between the drive unit base and pedestal tapered shims/flange. These surfaces are now being coated with a layer of silicone grease (to both coat the surfaces with a protective moisture barrier, and to fill the minute cracks and crevices which were acting as capillary paths for water draw-in).

4. A related observation is that some moisture was noted inside the pedestal walls and on electronic chassis surfaces even without water spray or rain. The phenomenon is undoubtedly caused by high humidity and cool pedestal/electronic temperatures. These temperatures were occasionally falling below the dew point, and the water vapor in the air then condensed on the cool surfaces. No visible damage or failures occurred from this condensation, but since it was undesirable, a technique was developed wherein the electronic cooling fan was always kept running. The small amount of power plus the moving air apparantly maintained the internal temperatures above the dew point so condensation no longer occurred.

9.7.2.1.6 Drive Unit Backlash Test

Test Objective: The objective of the backlash test was to experimentally determine the free backlash in prototype drive units built to drawing specifications.

Test Description: The test was performed on three heliostats at the Hutchins Test Site on October 30, 1980. They were:

- . Heliostat #1 (after changeout from the drive with undercut gears to the properly built drive)
- . Heliostat #2
- . Heliostat #3

The backlash was measured with dial indicators as the rack and mirror structure was moved back and forth under light reversing forces to move the drives within their backlash range. The test was performed during very quiet wind conditions to avoid wind force disturbance as much as possible.

Thé mirror surfaces were in the vertical position during the azimuth backlash tests and in the horizontal position during the elevation backlash tests. The dial indicators were mounted on the opposite wing from where the light force was applied, to eliminate bending distortions from the readings.

In the azimuth tests, a force of 20 to 25 lbs at a 9.75 ft moment arm was applied to ensure bottoming out the backlash in both directions. In the elevation tests, a force of 20 to 25 lbs, or that required to ensure backlash bottoming out was applied at a 9.0 ft moment arm. A force of up to 100 lbs was applied to overcome the inherent moment resulting from center-of-gravity offset.

The 20 to 25 lb force application was made with a spring scale. The larger force applications during the elevation backlash tests were made manually and estimated only.

Instrumentation: The only instrumentation required for this test was a dial indicator on a small mounting stand for the azimuth test, a dial indicator on a tall mounting stand for the elevation test, and a 25 lb spring scale.

A sketch of the locations of the dial indicators and force application points are shown in Figures 9.7-4 and 9.7-5.

Figure 9.7-4

Azimuth Backlash Test

Figure 9.7-5 Elevation Backlash Test

Test Results: The backlash data is presented in Table 9.7-3. in terms of both deflection and milliradian rotation.

, **1**

	Azimu	th	Elevation		
	Deflection	Rotation	Deflection	Rotation	
Heliostat #1 (new drive)	.113 in	.785 mrad	.119 in	1.102 mrad	
Heliostat #2	.025	.174	.127	1.176	
Heliostat #3	.095	.660	.126	1.167	
Average	.078	.539	.124	1.148	

ì

9.7.2.2 HELIOSTAT WIND LOAD TESTS

9.7.2.2.1 Pointing Accuracy With Operational Wind Loads Test

Test Objective: The objective of this pointing accuracy test was to experimentally determine the reflected beam motion about both the azimuth and elevation axes when the heliostat is subjected to 27 mph and 35 mph winds. This test was performed to demonstrate the requirement that the pointing error of the reflective surface (excluding foundation) is less than 3.6 mrad in a 27 mph wind. It was also performed at a 35 mph wind condition to determine the magnitude of the error, as the heliostat is required to track, but has no accuracy requirement during this wind condition.

Loading Condition: The simulated wind loads applied during this series of tests are those which produce the maximum moment about the drive axes, resulting in the maximum pointing error. The maximum wind moment results from an angle of attack of 70° from a normal to the mirror surface, as shown in Figure 9.7-6. This moment was applied about both the aximuth and elevation axes.

Figure 9.7-6

Wind Load Condition for Maximum Moment

Test Description: The test was performed on Heliostat #3 at the Hutchins Test Site on October 20 and 21, 1980. All major structural components on this heliostat were manufactured according to Second Generation Heliostat prints and specifications.

The beam motion due to wind moment was tested by applying the wind moment loads during actual tracking operations to get the effect of all contributing factors. The effect was recorded by actual photographs of the image on the target with and without the loading.

During the testing, loads were applied and released in a short time span, to eliminate the possibility of tracking errors which could occur over a longer span of time. Rapid loading was accomplished in the azimuth tests by backing the scissor lift test rig until the barrel weights had lifted off the static line and were fully loading the cable. Then it was driven forward, released and moved to the other side for the reversing load. The azimuth test sequences were accomplished in approximately 10 minutes. Rapid loading in the elevation tests was accomplished by using a hand hoist on each barrel weight and simply lifting the weight off the ground to apply load, then lowering it to the ground to release load.

The test setup for the azimuth test is shown in Figure 9.7-7. The setups for the elevation tests are shown in Figure 9.7-8.

Figure 9.7-7 Test Setup for Azimuth Loading

Outboard Truss Loading

Inboard Truss Loading

Figure 9.7-8 Test Setup for Elevation Loading

During the azimuth tests, the image was recorded:

(a) at no load (before test)

(b) during moment loading to the left (or right)

(c) at no load

(d) during moment loading to the right (or left)

(e) at no load (after test)

During the elevation tests, the image was recorded:

- (a) at no load (before test)
- (b) during loading with "down" moment
- (c) at no load (after test)

No " up" moment loads were applied, as wind loading always produces "down" moments, which is additive to gravity moment. The elevation tests were run with the weights applied to the inner set of trusses and to the outer set of trusses in separate tests to account for any detectable differences which might exist.

A beam displacing variable which is difficult to isolate from the tests is the effect of motor update cycles. An attempt was made to minimize this effect by recording the image at approximately the same time following a motor update. The effect could cause a maximum error of approximately 20 to 30 seconds of sun time which is about .7 milliradians in azimuth and .1 milliradians in elevation.

The tests performed are tabulated below

Test	<u>Axis</u>	Wind Load	Loading Sequence or Location
(1)	Azimuth	27 mph	Left to Right
(2)	Azimuth	27 mph	Right to Left
(3)	Elevation	27 mph	Inboard Truss
(4)	Elevation	27 mph	Outboard Truss
(5)	Elevation	35 mph	Outboard Truss
(6)	Elevation	35 mph	Inboard Truss
(7)	Azimuth	35 mph	Left to Right

Test Instrumentation: No instrumentation was used other than a camera to photograph the image on the target.

Test Results: The beam positions at the target were determined from photographed images. The centroid of each image was established and its position was scaled from each photo using the 5 ft grid lines on the target. Figure 9.7-9 through Figure 9.7-15 shows the actual photographs.

The starting position of each test sequence was normalized to zero and each position then was established with respect to the starting position. This value in feet of deflection at the target was converted to angular displacement (milliradians). It should be noted that the displacement at the target is the "reflected beam" displacement. Therefore, half of this displacement represents the mirror surface motion, which is compared to the 3.6 mrad requirement after pedestal contribution is subtracted. The data is presented in Table 9.7-4.

Figure 9.7-9 Test (1) Azimuth 27 mph Wind

Figure 9.7-9 (Cont.) Test (1) Azimuth 27 mph Wind

Figure 9.7-10 Test (2) Azimuth 27 mph Wind

Figure 9.7-14 Test (6) Elevation 35 mph Wind

El = 21.74 ? AZ = 102,28

G-35

Test (7) Azimuth 35 mph Wind

Figure 9.7-15

Figure 9.7-15 (Cont.) Test (7) Azimuth 35 mph Wind

				Beam Deflection	
Test	Wind Loading	Ft. (Actual)	Ft. <u>(Norm. to Zero</u>)	mrad*	Graphic Description mrad
	No load	+.25	0.0	0	
	Pull left	-3.75	-4.0	-5.0	•
(1)	No load	25	5	63	0
27 mph	Pull right	+2.25	+2.0	+2.5	•
	No load	-1.0	-1.25	-1.56	
	No load	+1.75	0.0	0	
	Pull right	+4.5	+2.75	+3.44	0
(2)	No load	+2.25	+ .5	+ .63	0
27 mph	Pull left	-1.0	-2.75	-3.44	0
	No load	+1.5	25	31	o
	No load	+2.75	0.0	0	
(3)	Pull down	+ .5	-2.25	-2.81	o
27 mph	No load	+3.5	+ .75	+ .94	
	No load	+2.5	0.0	0	
(4)	Pull down	+1.25	-1.25	-1.56	0
27 mph	No load	+3.0	+.5	+ .63	
	No load	+3.25	0.0	0	
(5)	Pull down	0.0	-3.25	-4.06	
(5) 35 mph	No load	+3.25	0.0	0	

Table 9.7-4	Reflected	Beam	Deflections
-------------	------------------	------	-------------

.

mrad

+

5 4 3 2 1 0 1 2 3 4 5

			Bean	n Deflection	1
Test	Wind Loading	Ft. (Actual)	Ft. (Norm. to Zero)	mrad*	Graphic Description mrad
(6) 35 mph	No load Pull down No load	+4.25 + .5 +4.25	0.0 -3.75 0.0	0 -4.69 0	o
(7) 35 mph	No load Pull left No load No load Pull Right No load	-2.0 -4.75 -2.5 -2.5 +2.5 -1.5	0.0 -2.75 5 5 +4.5 + .5	0 -3.44 63 63 +5.63 + .63	
					- +

Table 9.7-4 Reflected Beam Deflections (Cont.)

* Based on 800 ft target

mrad

9.7.2.2.2 (a) Elevation Axis Test - 90 mph Wind Horizontal Stow Condition

Test Objectives: The objectives of the Elevation Axis Test are to: (a) verify the structural integrity of the drives and major structural components to withstand loads induced by 90 mph winds while in the horizontal stow position and (b) measure deflections of the drives and major structural components for comparison with pointing accuracy requirements at lower wind conditions.

The 30 mph elevation axis wind condition produces the largest moment (20,477 ft lbs) about the elevation drive axis of any condition; thus it produces the largest elevation drive main gear tooth force This tooth force is 29,250 lbs tangential load. This condition along with the cross-elevation axis condition produces the highest azimuth bearing moment (245,710 inch lbs).

Test Description: The test was performed on Heliostat #1 at the Hutchins Test Site on October 9, 1980 and October 13, 1980. All major structural components on this heliostat were manufactured according to second generation heliostat prints and specifications, except that the main gears in the drive unit were cut undersize which allowed approximately .020 inch backlash instead of the required .002-.003 inch backlash.

The test was performed with the heliostat mirror surface in the horizontal position, which simulates horizontal stow. Moment load was applied about the elevation drive axis which simulates the moment induced by a frontal 90 mph wind at 10 degrees from horizontal. Normal force was not simulated due to its non-critical nature, but the loading method resulted in about 73% of wind normal force.

Loads were applied by hanging six 55 gallon barrels from the rack trusses with ropes and filling the barrels to the appropriate level with water. The tare weight of each barrel is 50 lbs. The locations of the barrels are shown in Figure 9.7-16.

Figure 9.7-16 Loading Setup

The test was performed by incrementally applying load to 110% of limit load. At the beginning of the test (zero point), two empty barrels (nos. 2 & 3) were hung to stabilize the pseudo-balanced rack in a null position, thus the zero point is actually not true zero. The 20% and higher increments are true, however. The schedule of weights and water depths is tabulated in Table 9.7-5.

Table 9.7-5

% Load	Total Wt	Wt per Bbl	Water Wt per Bbl	Water De	pth * *
0	100 lbs	50 lbs(2 only)	0	0	in
20	517.3	86.22	56.22	2.55	
40	1034.6	172.44	122.44	8.62	
60	1552	258.66	208.66	14.7	
80	2069.3	344.88	294.88	20.8	
100*	2586.6	431.1	381.1	26.84	
110	2845.2	474.2	424.2	29.87	

* 100% load = 20,477 ft-lbs elevation axis torque

****** 1 inch of water = 14.2 lbs
The loading was sequenced in the following percentages: 0, 20, 40, 60, 20, 60, 80, 100, 110, 60, 20, 0. The 20% set load after 60% was done to detect premature yielding and to get an early indication of mechanical hysteresis prior to the higher load increments.

Two separate tests were performed on separate days. The second test was to verify repeatability and to clean up some out-of-scale problems of the dial indicators, experienced on the first test.

Photographs of the test set up and instrumentation were taken but are not included in this report due to reproduction limitations.

Instrumentation: the heliostat was instrumented with 11 dial indicators to measure linear deflections at key places on the structure and drive units. The deflection measurements along with their respective moment arms were then used to compute rotational displacements.

The rotational displacements obtained from this test are:

- (a) overall rack rotation
- (b) elevation gear rotation (with respect to the elevation housing)
- (c) azimuth bearing rotation (azimuth upper housing with respect to the lower housing)
- (d) pedestal displacements
- (e) rack and torque tube displacements from which bending displacements may be derived.

The locations of the dial indicators are shown in Figures 9.7-17 and 9.7-18.

Figure 9.7-17 Rack Deflection Instrumentation

Test Results: The raw data sheets giving the actual dial indicator readings from test run #1 and test run #2 are presented in Tables 9.7-6 and 9.7-7. The data was normalized to zero at zero percent load and converted to rotational displacements which is presented in Tables 9.7-8 through 9.7-12. The rotational displacements are plotted versus percent load and presented in Figures 9.7-19 through 9.7-23.

No failure or detectable yielding occurred up to the maximum 110% load.

Table ...-6

Test 1 Dial Indicator Readings

Load	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	
0%	.146	012	.135	1.032	.143	.921	.082	.078	.1025	.4090	.1660
20	.155	.193	.140	.864	.140	.740	.090	.081	.1084	.4046	.1541
40	.138	.496	.136	.608	.175	.510	.098	.084	.1162	.3941	.1376
60	.119	.788	.131	.348	.218	.290	.110	.090	.1223	.3851	.1206
20	.098	.310	.120	.720	.172	.651	.092	.083	.1111	.3991	.1438
60	.100	.830	.117	.310	.212	.252	.111	.091	.1208	.3845	.1190
80	.085	1.124	.113	.040	.245	.000	.119	.093	.1261	.3762	.1020
100	.078	1.442	.112	184	.273	264	.129	.096	.1320	.3682	.0848
110	.082	1.605	.113	330	.286	473	.133	.097	.1351	.3634	.0741
60	.071	1.090	.107	.062	.232	070	.113	.094	.1251	.3792	.0937
20	.068	.944	.102	.564	.180	.420	.093	.089	.1123	.3955	.1281
0	.093	.138	.104	.847	.130	.660	.084	.087	.1021	.4069	.1483

.

Table 9.7-7

Load	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11
0%	.205	.292	.090	2.967	.188	1.711	.073	.092	.0940	.3870	.1738
20	.210	.515	.092	2.792	.208	1.542	.080	.106	.0996	. 3824	.1613
40	.214	.826	.096	2.549	.223	1.307	.089	.1035	.1064	.3729	.1460
60	.216	1.118	.099	2.314	.248	1.090	.099	.099	.1125	.3650	.1298
20	.200	.623	.091	2.695	.215	1.457	.086	.096	.1032	.3785	.1528
60	.225	1.110	.103	2.310	.227	1.070	.104	.101	.1125	.3655	.1290
80	.240	1.414	.105	2.100	.249	.860	.115	.102	.1179	.3585	.1145
100	.255	1.685	.111	1.875	.262	.630	.125	.105	.1232	. 3509	.0990
110	.258	1.832	.112	1.775	.264	.525	.131	.108	.1260	.3471	.0921
60	.218	1.310	.101	2.165	.249	.930	.102	.102	.1168	.3619	.1139
20	.198	.665	.088	2.655	.215	1.430	.098	.098	.1050	.3782	.1482
0	.208	.342	.087	2.915	.189	1.670	.095	.095	.0959	.3890	.1690
0*	.208	.267	.086	2.985	.179	1.725	.096	.096	.0964	.3960	.1763

Test 2 Dial Indicator Readings

* After reverse load

Table 9.7-8

90 mph Elevation Axis Test-Butler Truss (Inboard)

		Test 1	· · ·	Test 2			
% Load	Δ(#3)		θ	Δ(#3)	(#4)	θ	
0	0 inch	0 inch	0 mrad	0 inch	0 inch	0 mrad	
20	.005	.168	1.648	.002	.175	1.686	
40	.001	. 424	4.048	.006	.418	4.038	
60	004	.684	6.476	.009	.653	6.305	
20	015	.312	2.829	.001	.272	2.6	
60	018	.722	6.705	.013	.657	6.381	
80	022	.992	9.238	.015	.867	8.4	
100*	023	1.216	11.362	.021	1.092	10.6	
110	022	1.362	12.762	.022	1.192	11.562	
60	028	.970	8.971	.011	.802	7.743	
20	033	.468	4.143	002	.312	2.952	
0	031	.185	1.467	003	.052	.467	
After load	reversal			004	018	210	
	+Down	+Up		+Down	+Up		

* 100% Moment = 20,476 ft lbs

*After load reversal

Figure 9.7-19

Rotation of Inboard Truss

Table	9.7-9

		Test 1		Test 2			
% Load	△(#5)	(#6)	<u>+</u>	△(#5)	△(#6)	<u> </u>	
0	0 inch	0 inch	0 mrad	0 inch	0 inch	0 mrad	
20	003	.181	1.695	.02	.169	1.8	
40	.032	.411	4.219	.035	.404	4.181	
60	.075	.631	6.724	.06	.621	6.486	
20	.029	.27	2.848	.027	.254	2.676	
60	.069	.669	7.029	.039	.641	6.476	
80	.102	.921	9.743	.061	.851	8.686	
100	.130	1.185	12.524	.074	1.081	11.0	
110	.143	1.394	14.638	.076	1.186	12.019	
60	.089	.991	10.286	.061	.781	8.019	
20	.037	.501	5.124	.027	.281	2.933	
0	013	.261	2.362	.001	.041	.4	
	After load re	eversal		009	014	219	
`	+Down	+Up		+Down	+Up		

90 mph Elevation Axis Test-Butler Truss (outboard)

* 100% Moment = 20476 Ft 1bs

* After load reversal

Figure 9.7-20

Rotation of outboard truss

Table 9	• 7	-1	.0
---------	-----	----	----

	Te	st 1	Test 2		
%	(#11)	θ	(#11)	θ	
. 0	0 inch	0 mrad	0 inch	0 mrad	
20	.0119	.774	.0125	.813	
40	.0284	1.847	.0278	1.808	
60	.0454	2.953	.044	2.862	
20	.0222	1.444	.021	1.366	
60	.047	3.057	.0448	2.914	
80	.064	4.163	.0593	3.857	
100 *	.0812	5.281	.0748	4.865	
110	.0919	5.977	.0817	5.314	
60	.0723	4.702	.0599	3.896	
20	.0379	2.465	.0256	1.665	
0	.0177	1.151	.0048	.312	
After 1	oad reversal		0025	163	

90 mph Elevation Axis Test- Elevation Worm

*100% Moment = 20476 Ft 1bs

* After load reversal

Figure 9.7-21

Rotation at Elevation Worm

Table 9.7-11

90 mph Elevation Axis Test-Azimuth Bearing

		Test 1			Test 2	
<u> </u>	(#9)	<u>Δ(#10)</u>	θ	<u>∆(#9)</u>	Δ (#10)	θ
0	0 inch	0 inch	0 mrad	0 inch	0 inch	0 mrad
20	.0059	.0044	.338	.0056	.0046	.334
40	.0137	.0149	.938	.0124	.0141	.869
60	.0198	.0239	1.433	.0185	.022	1.328
20	.0086	.0099	.607	.0092	.0085	.580
60	.0183	.0245	1.403	.0185	.0215	1.311
80	.0236	.0328	1.849	.0239	.0285	1.718
100 *	.0295	.0408	2.305	.0292	.0361	2.141
110	.0326	.0456	2.564	.032	.0399	2.357
60	.0226	.0298	1.718	.0228	.0251	1.570
20	.0098	.0135	.764	.011	.0088	.649
0	0004	.0021	.056	.0019	002	003
				.0024	009	216

*100% Moment = 20,476 Ft 1bs

-

% Load

Figure 9.7-22

Rotation at Azimuth Bearing

TABLE 9.7-12

Pedestal Deflection

	#	7	#8			
% Load	Test 1	Test 2	Test 1	Test 2		
0	0 inch	0 inch	0 inch	0 inch		
20	.008	.007	.003	.014		
40	.016	.016	.006	.0115		
60	.028	.026	.012	.007		
20	.010	.013	.005	.004		
60	.029	.031	.013	.009		
80	.037	.042	.015	.010		
100	.047	.052	.018	.013		
110	.051	.058	.019	.016		
60	.031	.041	.016	.010		
20	.011	.024	.011	.006		
0	.002	.020	.009	.003		
After Load reversal		.020		.004		

-

Figure 9.7-23

Pedestal Deflections

9.7.2.2.2 (b) <u>Cross-Elevation Axis Test - 90 mph Wind Horizontal Stow Condition</u>

Test Objectives: The objectives of the Cross-Elevation Axis Test are identical to those of the Elevation Axis Test. However, this test is to verify structural integrity and measure deflections for wind in the cross-elevation axis.

The 90 mph cross-elevation axis wind is the condition that produces

- (a) The highest elevation drive bearing moment (267,645 inch lbs)
- (b) The highest azimuth drive bearing moment (245,710 inch lbs). This is the same as the elevation axis condition (actual test load was 6.6% higher than the elevation axis test because the torque tube root moment was simulated).
- (c) The highest torque tube root bending moment (20,874 ft 1bs)
- (d) The highest Butler truss bending moment and shear load (Moment = 6174 ft lbs, Shear = 1008 lbs)

Test Description: The test was performed on Heliostat #1 at the Hutchins Test Site on October 15, 1980. All major structural components on this heliostat were manufactured according to second generation heliostat prints and specifications, except that the main gears in the drive unit were cut undersize which allowed approximately .020 inch backlash instead of the required .002-.003 inch backlash.

The test was performed with the heliostat mirror surface in the horizontal position, which simulates horizontal stow. Moment load was applied about the cross elevation axis which simulates the moment induced by a 90 mph side wind at 10 degrees from horizontal. Normal force was not simulated due to its non-critical nature, but the loading method resulted in about 65% of wind normal force.

Loads were applied by hanging six 55 gallon barrels from the outboard rack truss with ropes and filling the barrels to the appropriate level with water. The tare weight of each barrel is 50 lbs. The locations of the barrels are shown in Figure 9.7-24.

Figure 9.7-24 Loading Setup

The test was performed by incrementally applying load to 110% of limit load. At the beginnning of the test (zero point), two empty barrels (nos. 3 & 4) were hung to stabilize the pseudo-balanced rack in a null position, thus the zero point is actually not true zero. The 20% and higher increments are true, however. The schedule of weights and water depths are tabulated in Table 9.7 -13.

% Load	<u>Total Wt</u>	Wt per Bbl Wat	ter Wt per Bbl	<u>Water Depth *</u> *
-0	100 lbs	50 lbs(2 only)	0	0
0	100	50	0	0
20	455.4	ر 75.9	25.9	1.8
40	910.9	151.8	101.8	7.2
60	1366.3	227.7	177.7	12.5
80	1821.7	303.6	253.6	17.9
100 *	2277.2	379.5	329.5	23.2
110	2504.9	417.5	367.5	25.9

Table 9.7-13

* 100% load = 20,870 ft-1bs torque about the torque tube root 21,823 ft-1bs about the drive center line

****** 1 inch of water = 14.2 lbs

The loading was sequenced in the following percentages: -0, 0, 20, 40, 60, 20, 60, 80, 100, 110, 60, 20, 0, -0. The -0 increment is the designation for applying negative moment of 100 lbs (2 bbls) at the beginning of the test. The 20% set load after 60% was done to detect premature yielding and to get an early indication of mechanical hysteresis prior to the higher load increments.

Instrumentation: The heliostat was instrumented with 12 dial indicators to measure linear deflections at key places on the structure and drive units. The deflection measurements along with their respective moment arms were then used to compute rotational displacements.

The rotational displacements obtained from this test are:

- (a) overall rack rotation
- (b) elevation bearing rotation (with respect to the outer elevation housing)
- (c) azimuth bearing rotation (azimuth upper housing with respect to the lower housing)

- (d) pedestal displacements
- (e) rack and torque tube displacements from which bending may be derived.

The locations of the dial indicators are shown in Figures 9.7-25, 9.7-26 and 9.7-27.

1,3,4,5,6 are vertical deflection measurements

Plan View of heliostat

Figure 9.7-25 Rack Deflection Instrumentation

View C-C (of figure 9.7-)

Figure 9.7-26

Drive Deflection Instrumentation

View B-B (of figure 9.7-

Figure 9.7-27 Pedestal Deflection Instrumentation

Test Results: The raw data sheet giving the actual dial indicator readings from the test run is presented in Table 9.7-14. The data was normalized to zero at zero percent load, and converted to rotational displacements which is presented in Tables 9.7-15 through 9.7-18. The rotational displacements are plotted versus percent load and presented in Figures 9.7-28 through 9.7-31.

No failure or detectable yielding occurred up to the maximum 110% load.

	TABLE	9.	7-14

Dial Indicator Readings

LOAD, 2	<u> </u>	#3	<u>#9</u>	#10	#11	#12	#13	<u>#5</u>	#4	<u>#6</u>	<u>#7</u>	<u>#8</u>
-0	.174	.100	.2476	.1790	.1775	.1737	.2527	.894	2.703	1.530	.315	.273
+0	.270	.125	.2529	.0825	.1790	.1739	.2471	.862	2.585	1.460	.319	.273
20	.515	.182	.2625	.0931	.1825	.1741	.2335	.802	2.370	1.252	.326	.2745
40	.835	.262	.2700	.1079	.1862	.1748	.2160	.718	2.100	1.098	.335	.278
60	1.155	.341	.2781	.1225	.1920	.1748	.1975	.633	1.818	0.775	.345	.2795
20	.625	.210	.2662	.0998	.1855	.1748	.2265	.765	2.275	1.180	.328	.276
60	1.175	.338	.2781	.1228	.1930	.1751	.1975	.627	1.810	0.760	.346	.281
80	1.473	.416	.2855	.1350	.1955	.1750	.1805	.550	1.545	.530	.357	.284
100	1.790	.480	.2950	.1485	.1985	.1752	.1620	.482	1.270	.297	.370	.289
110	1.945	.518	.2991	.1552	.2000	.1752	.1535	.436	1.120	.175	.375	.290
60	1.345 (1.325)	.375 (.360)	.2862 (.2840)	.1295 (.1285)	.1950 (.1980)	.1753 (.1752)	.1885 (.1880)	.590 (.585)	1.640 (1.620)	.645 (.625)	.353 (.354)	.285 (.289)
20	.715	.212	.270	.103	.189	.1750	.2210	.742	2.165	1.090	.335	.285
+ 0	.385	.140	.259	.092	.180	.1740	.236	.831	2.465	1.390	.327	.281
- 0	.203	.084	.2504	.0825	.1760	.1733	.248	.883	2.620	1.520	.325	.280

Table 9.7-15

<u>90 mph Cross</u> - <u>Axis Test</u>

Torque Tube (Rack total motion)

% Load	△ (#4)	<u>Δ (#5)</u>	θ
-0* *	118 inch	032 inch	-1.024 mrad
0	0	0	0
20	.215	.060	1.845
40	.485	.144	4.060
60	.767	.229	6.405
20	.310	.097	2.536
60	.775	.235	6.429
80	1.040	.312	8.667
100 *	1.315	.38	11.131
110	1.465	.426	12.369
60	.945 (.965)	.272 (.277)	8.012
20	.420	.12	3.571
0	.120	.031	1.060
-0 * *	035	021	.167

* 100% Moment = 21,823 ft 1bs about drive center line

* * Reverse moment = 958 ft lbs

Reverse Moment = 958 ft 1bs

Figure 9.7-28

Rack Rotation

TABLE 9.7-1690 mph Cross - Axis Test

٢

Elevation Bearing

% Load	<u>Δ(#10)</u>	△(#13)	θ
-0	0035 inch	0056 inch	329 mrad
0	0	0	0
20	.0106	.0136	.876
40	.0254	.0311	2.045
60	.040	.0496	3.243
20	.0173	.0206	1.372
60	.0403	.0496	3.254
80	.0525	.0666	4.311
100	.066	.0851	5.469
110	.0727	.0936	6.019
60	.047 (.046)	.0586 (.0591)	3.822 (3.804)
20	.0205	.0261	1.687
0	.0095	.0111	.746
-0	0 ·	0009	033

* Reverse moment = 958 ft 1bs

Figure 9.7-29

Elevation Bearing Rotations

Table 9.7-17

90 mph Cross - Axis Test

Azimuth Bearing

% Load	<u> </u>	θ
-0	0053 inch	344 mrad
0	0	0
20	.0096	.623
40	.0171	1.110
60	.0252	1.636
20	.0133	.864
60	.0252	1.636
80	.0326	2.117
100	.0421	2.734
110	.0462	3.000
60	.0333 (.0311)	2.162 (2.019)
20	.0171	1.110
0	.0061	. 396
-0	0025	162

•

* Reverse Moment = 958 ft 1bs

Figure 9.7-30

Azimuth Bearing Rotation

TABLE 9.7-18

PEDESTAL DEFLECTION

<u>% Load</u>	<u>#7</u>	<u>#8</u>
-0	004 inch	.0 inch
0	0	.0
20	.007	.0015
40	.016	.005
60	.026	.0065
20	.009	.003
60	.027	.008
80	.038	.011
100	.051	.016
110	.056	.017
60	.034	.014
20	.016	.012
0	.008	.008
-0	.006	.007

G-73

9.7.2.2.3 Azimuth Axis Test - 50 mph Vertical Condition

Test Objectives: The objectives of the Azimuth Axis Test are to: (a) verify the structural integrity of the drives and major structural components to withstand loads induced by 50 mph winds while in the vertical drive or stow position, and (b) measure deflections of the drives and major structural components for comparison with pointing accuracy requirements at lower wind conditions.

The 50 mph azimuth wind condition produces the largest moment (9497 ft lbs) about the azimuth axis of any condition. Therefore, it produces the largest azimuth drive main gear tooth force of 13,560 lbs (tangential load). This condition also produces the largest pedestal twisting moment.

Test Description: The test was performed on Heliostat #1 at the Hutchins Test Site on October 17, 1980. All major structural components on this heliostat were manufactured according to second generation heliostat prints and specifications, except that the main gears in the drive unit were cut undersize which allowed approximately .020 inch backlash instead of the required .002-.003 inch backlash.

The test was performed with the heliostat mirror surface in the vertical position, which simulates vertical stow or driving to stow. Moment load was applied about the azimuth drive axis which simulates the moment induced by 50 mph wind at 70 degrees from the mirror surface normal. Normal force was not simulated due to its non-critical nature, but the loading method resulted in about 35% of wind normal force.

Moment load about the azimuth axis was applied by hanging two 55 gallon barrels from a cable and pulley system designed to provide a horizontal force to a wood beam inserted into the torque tube. The barrels were then filled to the appropriate level with water. The tare weight of each barrel is 50 lbs. The test set up is shown in Figure 9.7-32.

G-74

Figure 9.7-32 Test Loading Setup

۰.

.

The test was performed by incrementally applying load to 110% of limit load. At the beginning of the test (zero point), a 12 lb weight was hung to stabilize the rack in a null position. The schedule of weights and water depths is tabulated in Table 9,7-19.

% Load	Total Wt.	Wt. per Bbl	Water Wt per Bbl	<u>Water Depth *</u>
0	12 lbs	-	-	-
20	172.7	86.3	36.3	2.6
40	345.4	172.7	122.7	8.6
60	518.0	259.0	209.0	14.7
80	690.7	345.4	295.4	20.8
100*	863.4	431.7	381.7	26.9
110	949.7	474.9	424.9	29.9

Tab1	.e 9	.7	-19
------	------	----	-----

* 100% load = 9497 ft-1bs azimuth axis torque

****** 1 inch of water = 14.2 lbs

The loading was sequenced in the following percentages: 0, 20, 40, 60, 20, 60, 80, 100, 110, 60, 20, 0, 20, 40, 60, 20, 60, 80, 100, 110, 60, 20, 0. The 20% set load after 60% was done to detect premature yielding and to get an early indication of mechanical hysteresis prior to the higher load increments.

Instrumentation: The heliostat was instrumented with 10 dial indicators to measure linear deflections at key places on the structure and drive units. The deflection measurements along with their respective moment arms were then used to compute rotational displacements.

The rotational displacements obtained from this test are:

- (a) overall rack rotation
- (b) azimuth gear rotation (with respect to the azimuth housing)
- (c) elevation bearing rotation (elevation inner housing with respect to the outer housing)

G-76
- (d) pedestal lateral displacements
- (e) pedestal base twist

The locations of the dial indicators are shown in Figure 9.7-33, 9.7-34 and 9.7-35.

View Looking at Back of Heliostat

Figure 9.7-33

Rack/Mirror and Pedestal Twist Deflection Instrumentation

View A-A

Figure 9.7-34 Drive Deflection Instrumentation

Figure 9.7-35 Pedestal Deflection Instrumentation

Test Results:

The raw data sheets giving the actual dial indicator readings from test run #1 and test run #2 are presented in Table 9.7-20 and 9.7-21. The data was normalized to zero at zero percent load and converted to rotational displacements which is presented in Tables 9.7-22 through 9.7-26. The rotational displacements are plotted and presented in Figures 9.7-36 through 9.7-40.

It may be noted that a distinctive shift of approximately 3 milliradians occurred in both the elevation "bearing" and the azimuth "worm" measurements of the drive unit. This shift occurred between 20% and 40% load and was accompanied by a distinct sound at the time of loading. It is believed that the cause of the shift was some combination of backdriving in the azimuth drive and/or the hard setting of bearings or bearing races in the drives that wouldn't have occurred under light loads. It is also believed that the shock effect of the initial set in one drive (elevation or azimuth) caused the other one to set. The subsequent data taken during the first and second test runs followed a linear pattern and no yielding is believed to have occurred, and certainly no failure occurred.

Tal	ble	9.	.7	-20

Dial Indicator Readings

Test Run #1

% Load	#1	#2	#3	#4	#5	· #6	#8	<i>#</i> 9	#10
0	2.775	1.742	.013	.310	.031	.014	.650	.1872	.5668
20	2.715	1.702	.014	.3132	.0465	.0183	.666	.197	.5724
40	2.720	1.583	.0155	.3155	.055	.0223	.761	.2735	.5841
60	2.790	1.527	.018	.323	.070	.0293	.770	.284	.5917
20	1.920	1.578	.015	.314	.047	.022	.7591	.2785	.5848
60	2.712	1.533	.018	.322	.070	.0280	.770	.284	.5918
80	1.642	1.496	.0205	.326	.092	.034	.780	.290	.5976
100	1.365	1.417	.0225	.330	.097	.041	.797	.302	.6105
110	1.200	1.400	.0235	.333	.099	.0445	.800	.303	.6123
60	1.527	1.454	.021	.327	.084	.0355	.789	.299	.6062
20	1.879	1.531	.017	.317	.056	.023	.773	.288	.5935
0	2.170	1.612	.015	.310	.039	.017	.757	.275	.5815

Dial Indicator Readings

Test Run # 2

% Load	#1	#2	#3	#4	#5	#6	#8	#9	#10	
0	2.170	1.612	.015	.310	.039	.017	.757	.275	.5815	
20	1.925		.0145	.311	.045	.020	.760	.281	.5859	
40	1.820	1.555	.017	.314	.060	.024	.765	.285	.5915	
60	1.750	1.517	.020	.321	.0751	.029	.773	.290	.5955	
20	1.968	1.566	.017	.3135	.052	.022	.762	.284	.589	
60	1.635	1.514	.020	.320	.072	.029	.773	.290	.596	
80	1.592	1.479	.021	.3225	.0855	.0345	.781	.295	.6013	
100	1.322	1.433	.023	.330	.0985	.040	.788	.299	.6075	
110	1.282	1.392	.0245	.333	.1061	.045	.794	.305	.6141	
60	1.432	1.453	.021	.3233	.080	.035	.782	.299 -	.6069	
20	1.897	1.535	.017	.314	.056	.0225	.765	.288	.5931	
0	2.050	1.597	.0152	.310	.0445	.0175	.752	.277	.5823	

`**.**

Table 9.7-22

50 mph Azimuth Test

Mirrors (Rack total motion)

Test 1

Test 2

%	▲(#1)	▲(#2)	θ	Δ(#1)	▲(#2)	θ
0	0 in	ch 0 in	ch O mrad	.605 inch	.13 inch	3.831 mrad
20	.060	.04	161	.85		
40	.055	.159	839	.955	.187	6.194
60	.015	.215	-1.613	1.025	.225	6.452
20	.855	.164	5.573	.807	.176	5.089
60	.063	.209	-1.177	1.14	.228	7.355
80	1.133	.246	7.153	1.183	.263	7.419
100	1.41	.325	8.75	1.453	.309	9.226
110	1.575	.342	9.944	1.493	.35	9.218
60	1.248	.288	7.742	1.343	.289	8.5
20	.896	.211	5.524	.878	.207	5.411
0	.605	.13	3.831	.725	.145	4.677

Figure 9.7-36

Rack Rotation

Table 9.7-23

50 mph Azimuth Test

Elevation Bearing

Test 1

Test 2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	▲ (#8)	θ	▲ (#8)	θ
0	0 inch	0 mrad	.107 inch	3.452 mrad
20	.016	.516	.11	3.548
40	.111	3,581	.115	3.710
<del>6</del> 0	.12	3.871	.123	3.968
20	.1091	3.519	.112	3.613
60	.12	3.871	.123	3.968
80	.13	4.194	.131	4.226
100	.147	4.742	.138	4.452
110	.15	4.839	.144	4.645
60	.139	4.484	.132	4.258
20	.123	3.968	.115	3.710
0	.107	3.452	.102	3.290

100% Moment = 9497 FT LBS



% Load

Figure 9.7-37

Elevation Bearing Rotation

G-87

# Table 9.7-24

### 50 mph Azimuth Test

Azimuth Worm

Test 1

Test 2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_∆ (#	<u>9) Δ(</u>	( <u>10</u> ) <u> </u>	<b>∆</b> (#9)	<u>Δ (#10</u> )	θ
0	0	inch 0	inch Om	rad .0878	inch .0147inch	3.832mrad
20	.0098	.0056	.576	.0938	.0191	4.221
40	.0863	.0173	3.873	.0978	.0247	4.579
60	.0968	.0249	4.550	.1028	.0287	4.916
20	.0913	.018	4.086	.0968	.0222	4.449
60	.0968	.025	4.553	.1028	.0292	4.935
80	.1028	.0308	4.994	.1078	.0345	5.320
100	.1148	.0437	5.925	.1118	.0407	5.701
110	.1158	.0455	6.030	.1178	.0473	6.172
60	.1118	.0394	5.652	.1118	.0401	5.679
20	.1008	.0267	4.766	.1008	.0263	4.751
0	.0878	.0147	3.832	.0898	.0155	3.936

100% Moment = 9497 FT LBS

.

Figure 9.7-38

Rotation at Azimuth Worm

2

Table 9.7-25

50 mph Azimuth Test

Pedestal Base Twist

Test 1

Test 2

_	%	Δ (#6)	▲ (#3)	e		Δ(#6)	∆ (#3)	
	0	0 inch	0 inch	0	mrad	.003 inch	.002 inc	h.017 mrad
	20	.0043	.001	.055		.006	.0015	.075
	40	,0093	.002	.122		.010	.004	.100
	60	.0153	,005	.172		.015	.007	.133
	20	.008	.002	.100		.008	.004	.067
	6 0	.014	.005	.150		.015	.007	.133
	80	.020	.0075	.208		.0205	.008	.208
	100	.027	.0095	.292		.026	.010	.267
	110	,0305	.0105	.333		.031	.0115	.325
	60	.0215	.008	.225		.021	.008	.217
	20	.009	.004	.083		.0085	.004	.075
	0	.003	.002	.017		.0035	.0022	.022

Figure 9.7- 39

Pedestal Base Twist

Table 9.7-26

Pedestal	Deflection

3		4			55		
% Load	Test 1	Test 2	Test 1	Test 2	Test 1	Test 2	
0	0 inch	.002 inch	0 inch	.0 inch	0 inch	.008 inch	
20	.001	.0015	.0032	.001	.0155	.014	
40	.0025	.004	.0055	.004	.024	.029	
60	.005	.007	.013	.011	.039	.0441	
20	.002	.004	.004	.0035	.016	.021	
60	.005	.007	.012	.010	.039	.041	
80	.0075	.008	.016	.0125	.051	.0545	
100	.0095	.010	.020	.020	.066	.0675	
110	.0105	.0115	.023	.023	.068	.0751	
60	.008	.008	.017	.0133	.053	.049	
20	.004	.004	.007	.004	.025	.025	
0	.002	.0022	.0	.0	.008	.0135	

Figure 9.7-40 Pedestal Deflections

9.7.2.2.4 Foundation Deflections

Foundation deflections were measured during the three major wind load tests on heliostat #1, the Elevation Axis Test (90 mph wind), the Cross Elevation Axis Test (90 mph wind), and the Azimuth Axis Test (50 mph wind). The deflections were measured with dial indicators mounted to give lateral deflections. Although this method of measurement is less desirable than directly measuring the pedestal top rotation, it can be used to roughly compare with calculated values. It also gives an indication of pedestal set due to soil plasticity. The comparison of calculated deflections not including pedestal set, with test values including pedestal set, is presented in the above test sections in Figures 9.7-23, 9.7-31, and 9.7-40 respectively. These comparisons show fairly good correlation, assuming the effective pedestal root (fixed point) is 50" below grade.

Pedestal set values in terms of tip rotation have been estimated from the test results by taking the difference in the start and finish "zero" readings of the indicators located uppermost on the pedestal, assuming the pedestal pivots about a point 50" below grade, and computing the theoretical end rotation. The uppermost dial indicator was used, as it should be the most sensitive and accurate reading. Even though all the tests were run on the same heliostat, the direction of loading was different in each of the three tests. The pedestal set results summarized in Table 9.7-27 should be viewed as approximate values only, as the setups for taking the data was actually too crude to obtain accurate data.

Table 9.7-27

PEDESTAL SET DUE TO WIND LOADS

~

			Load Direction	
Test	110% Load	Base Moment	(Pedestal Movement)	Pedestal Set
Elevation Axis	22,525 ft lbs pure moment	22,525 ft 1bs	South	Test 1 .018 mrad Test 2 .180 mrad
Cross-Elevation Test	24,005 ft lbs pure moment	24,005 ft 1bs	West	.071 mrad
Azimuth Axis Test	(a) 949.7 lbs lateral load	12,346 ft 1bs	North	Test 1 .043 mrad Test 2 .030 mrad
	(b) 10,447 ft lbs twist	10,447 ft 1bs (base torque)	Twist	Test 1 .017 mrad Test 2 .005 mrad

9.7.2.2.5 Motor Torque Adequacy

The motor torque must be sufficient to drive the heliostat in the elevation direction against the combined effects of gravity loads and a 22 m/s (50 mph) wind. In the azimuth direction, only the 22 m/s (50 mph) wind moments must be overcome. On start-up the motors must also provide a starting torque capable of overcoming the static frictional loads as well as the gravity and wind moments. Table 9.7-28 presents the gravity and 22 m/s (50 mph) wind moments which the elevation drive motor must overcome. Table 9.7-29 presents the 22 m/s (50 mph) wind moment which the azimuth drive motor must overcome. The maximum elevation moment is 1607 kg-m (11624 ft-1b), and the maximum azimuth moment is 1313 kg-m (9497 ft-1b).

Heliostat #1 was erected at the Northrup heliostat test facility on Sept 11, 1980. Heliostats #2 and #3 were erected on Sept 23, 1980 and Sept 30, 1980 respectively. All three of these heliostats were driven by Superior Electric Co. M112-FJ326 stepper motors and TBM 105-1230 motor control translators. The torque characteristic for this motor-translator combination is shown on Figure 9.7-41. Also shown on this figure is the torque characteristic for an M112-FJ327 stepper motor and TBM 105-1218 translator. As will be explained later, a change to this latter configuration was made during the test program to overcome a torque problem.

Torque adequacy tests were performed on heliostat #1 shortly after its erection. A deficiency in both the starting torque and running torque was noted, and was determined to be caused by higher than anticipated losses in the drive unit. An interim attempt to resolve the problem was to raise the voltage in the translator on heliostat #1. Heliostats #2 and #3 were not modified and were tested with stock M112-FJ326 motors and TBM105-1230 control translators. Table 9.7-30 summarizes the stall torque results for these initial tests. Peak output torques were 1272 kg-m (9200 ft-1b) for heliostat #1, 866 kg-m (6263 ft-1b) for heliostat #2, and 1115 kg-m (8060 ft-1b) for heliostat #3. Since the requirement for elevating to a horizontal position in

G-96

Elevation Drive Moment, 22 m/s (50 mph) Wind

Heliostat	Gravity	Wind	Combin	ed Moments
Elevation	Moment	Moment	Horiz.	$\pm 10^{\circ}$
Angle	ft-1b	ft-1b	Wind	Wind

0 ⁰ (vert)	4253	0	4253	6660
10	4188	2407	6595	8149
20	3996	3961	7957	9126
30	3683	5130	8813	9423
40	3258	5740	8998	9804
50	2734	6546	9280	10542
60	2127	7808	9935	11624
70	1455	9497	10952	9263
80	738	6320	7058	9575
90 (horiz)	0	0	0	6320

Azimuth Drive Moment, 22 m/s (50 mph) Wind

Wind Angle of Attack	Gravity Moment ft-lb	Wind Moment ft-lb
0	0	0
10	0	2407
20	0	3961
30	0	5130
40	0	5740
50	0	6546
60	0	7808
70	0	9497
80	0	6320
90 (normal)	0	0

.

Motor Running Torque Stall Test Results Model M112-FJ326 Motor, Model TBM105-1230 Translator Stepping Rate = 1000 steps/second

	Heliostat #1	Heliostat <u>#2</u>	Heliostat #3
Run #1	7315 ft-1b	6029 ft-1b	6413 ft-1b
Run #2	7477	6050	7241
Run #3	9200	6263	7501
Run #4	-	-	8060

Note: The heliostat #1 translator was set at a higher voltage than heliostats #2 and #3.

a 22 m/s (50 mph) wind is 1607 kg-m (11624 ft-1b), all three heliostats exhibited inadequate running torque.

The M112-FJ327 motor and TBM 105-1218 translator combination provides a significantly higher starting torque and running torque than the M112-FJ 326 motor and TBM 105-1230 combination, but must be operated at approximately one-half of the speed to realize this gain. For normal tracking operation this slower speed presents no problem. However, the slew rate for stowing is only 2.935 deg/min at a stepping rate of 500 steps/sec, so a 90 degree stow maneuver would take nearly 31 minutes. This stow time exceeds the specification requirement, but the new motor-translator combination was still selected for the deliverable heliostats since adequate torque was believed to be a more important parameter.

The new motor and translator combination was installed on heliostat #2 and a series of running torque-stall tests were conducted at stepping rates of 1000, 750, and 500 steps/sec. Table 9.7-31 presents the stall torque values measured on this test sequence. The peak value achieved was 1556 kg-m (11249 ft-1b) which is slightly lower than the 1607 kg-m (11624 ft-1b) required torque. The test was repeated on heliostat #3, and a peak torque of over 1672 kg-m (12092 ft-1b) was achieved without stalling. These two units were subsequently delivered to Sandia-Albuquerque.

All of the torque test results described thus far were running torque tests in which the motors were run continuously from a low load orientation (heliostat vertical) to a high load orientation (heliostat horizontal). The loading was obtained by water barrels hung from the ends of the trusses. Another type of test which was performed was a start torque test in which the heliostat was driven from vertical to horizontal in small angular increments, so the motor was repeatedly required to start with an ever-increasing torque requirement. The test results showed that the motor starting torque is somewhat higher than the peak running torque. The test results for the starting torque tests were performed on heliostat #2, and are presented on Table 9.7-32.

G-101

Motor Running Torque Stall Test Results Model M112-FJ327 Motor, Model TBM 105-1218 Translator

<u>Heliostat</u>	Test <u>Number</u>	Stepping <u>Rate</u>	Stall <u>Torque</u>
#2	1	1000 steps/	sec 6871
2	2	1000	7397
2	3	1000	7368
2	4	1000	6765
2	5	750	8261
2	6	750	7990
2	7	750	8027
2	8	500	11072
2	9	500	11249
3	1	500	▶12092

. •

Motor Start Torque Test-Heliostat #2

Model M112-FJ327 Motor & TBM105-1218 Translator Stepping Rate = 500 steps/sec

Heliostat		Motor
Elevation	Elevation	Start
Angle	Moment	Result
0 ⁰ (vertical)	2794 ft-1b	No stall
12.52	5283	87 FF
17.53	6214	11 11
20.03	6662	88 BE
22.54	7098	88 88
25.04	7520	97 19
27.55	7928	11 II
30.05	8320	87 81
32.56	8698	11 11
35.06	9057	11 11
37.57	9401	88 87
40.07	9725	77 TT
42.57	10031	11 11
45.08	10318	89 FE
47.58	10585	11 11
50.09	10833	88 83
52.59	11059	, IT IT
55.10	11265	start o.k some stall running
57.60	11448	start o.k stall during running

102

In addition to the basic running torque and start torque tests, an investigative test series was performed to determine the cause of the torque problem. Dynamometer tests were performed to measure the torque output of the motor, translator, microprocessor, and cabling system. These tests showed a motor output torque slightly higher than the values anticipated based on data provided by Superior Electric Co. The conclusion reached was that the problem must lie in the drive unit.

A D-C motor having a constant torque/amp characteristic was installed on each heliostat in place of the elevation stepper motor. The heliostats were elevated from a vertical position where a gravity moment of 588 kg-m (4253 ft-lb) exists, to a horizontal position where the gravity moment is zero. The D-C motor current was monitored during this elevation-up maneuver against the gravity load, and also during the elevation-down maneuver where the gravity load was assisting the motor. Figures 9.7-42 through 9.7-44 show motor current and drive input torque vs heliostat elevation angle for heliostats #1, 2, and 3 respectively. These motor current traces represent a "signature" of the frictional loss characteristics of the drive unit. The drive input stage contains a planetary gear set which provides a 460:1 speed reduction. The output stage consists of a worm and gear which provides a 40:1 speed reduction. The overall drive ratio is, therefore, 18400:1. The current traces show a high frequency input torque oscillation superimposed on a low frequency input torque oscillation. The interpretation of these cylic patterns is relatively straightforward. The low frequency characteristic is the variation in friction in the output stage caused by the engagement of the worm thread and gear teeth at different points on the tooth form. The ten discrete low frequency cycles correspond to the ten teeth of the output gear which would be encountered during the 90° of motion in elevating the heliostat from a vertical to a horizontal position. Superimposed on this low frequency worm and gear tooth characteristic is a high frequency torque variation which correlates with the frequency of the planet gear rotation. In the case of the heliostat #2 trace, this

G-104

G-105

12

G-106

. .

planet gear rotational torque variation has an amplitude of 130-150 oz-in which represents approximately 50% of the total torque requirement. Interestingly, if a lower bound is drawn on each of these cyclic patterns, it will be noted that all 3 of the heliostats exhibit a nearly identical torque vs elevation angle characteristic at the lower bound. Furthermore, the drive efficiency at the lower bound is approximately 20.0% versus a theoretical efficiency of 20.4% (55% theoretical planetary efficiency x 37% theoretical worm-gear efficiency). The small difference between the actual and theoretical is probably due to the seal drag at the planetary input shaft. Hence, the lower bound of the torque trace represents a close match with the theoretical torque prediction, and the high frequency torque oscillations above this boundary is an abnormal phenomenon caused by the planetary stage. This problem is currently being researched by Winsmith. One theory is that under a drive load, the worm and gear tooth contact zone experiences a separation force which causes worm shaft bending. Since the rotating ring gear is attached to the end of the worm shaft, any worm shaft bending is reflected as a shift in the concentricity of the rotating ring gear relative to the fixed ring gear (some out-of-plane angular misalignment of the two ring gears also occurs). This concentricity shift is further worsened by any worm shaft bearing deflection. With a concentricity off-set, each of the planet gears could experience a binding action which would peak at the point of maximum concentricity off-set and then drop-off as this point is passed. This theory is substantiated by the sinusoidal nature of the input torque variations, by the cylic frequency rate which matches the planetary gear half-cyle frequency, and by the fact that the amplitude varies with the output load and tooth forces. The apparent conflicting piece of data is that when the heliostat is being lowered from a horizontal to a vertical position, the same gravity moments are encountered, but the high torque oscillations are absent. However, in reality this is not a conflicting piece of data because on elevating the heliostat the tooth reactive forces are necessarily higher since the load plus

high frictional loads must be overcome, whereas the load assists the motor when the heliostat is lowered.

In summary, a higher-than-anticipated drive friction was encountered which required a change to a higher torque motor. This new motor provides sufficient torque to start and operate with the combined loads of the gravity moment and worst case 50 mph wind moments. The sacrifice which was made is a slow slew speed; the required maximum torques can only be achieved at a slew rate near 3 deg/min.

9.7.2.3 Operations and Accuracy Tests

Operations and tracking accuracy tests were performed informally on the three heliostats installed in Hutchins during the Sept. 12 to Oct. 30 period and on the two heliostats installed at the Albuquerque CRTF during the Nov. 11-20 period. Formal testing for the "Second Generation Heliostat" program evaluation began Dec 4 with the "Control System Operational Modes" test.

9.7.2.3.1 "Test 1 - Control System Operational Modes"

The objective of the control system operational mode test is to "Determine whether heliostats can perform such required functions as tracking, stowing, and assuming a commanded orientation." (ref. "Second Generation Heliostat Test Plan, p. 1)

Three sets of tests were performed over the two day period of Dec. 4 and 5th to demonstrate the control capability of the heliostat hardware and software. These were tests 1.3.1 Standard Modes, 1.3.2 Special Modes, and 1.3.4 Control Drive Repeatability.

Test 1.3.1 Standard (Control) Modes

In separate operational tests each heliostat was operated through the mode sequences of a normal operating day.

- a. Stow to Standby Line Bottom
- b. Standby Line Bottom to Standby Line Top
- c. Standby Line Top to Target Tracking
- d. Target Tracking to Standby Line Top
- e. Standby Line Top to Stow

Both heliostats demonstrated full compliance with the test requirements.

Test 1.3.2 Special Control Modes

In separate operational tests each heliostat was operated at slew speed to the extremes of both elevation and azimuth travel to evaluate individual slew rates, combined slew rates, limit switch functional status, and establish limit switch base positions. Both heliostats properly traversed in commanded slew directions in all tests. No 1 heliostat primary limit switches limited up, down, east, and west travel properly. No. 2 heliostat primary limit switches limited up, down, and east travel properly, but the west travel was stopped by the back up limit switch before the primary was reached. A bracket bent in shipping was found to be the cause. After restoring the bracket position normal west limit control was demonstrated.

Test 1.3.4 Control/Drive Repeatability

The control/drive repeatability test consists of up to 10 operational cycles between stow positions and an initial commanded position established by a laser image on a target located 250 ft behind the test heliostat. (3 inches on the laser target = 1 mrad).

During the initial sequence, between "vertical stow" and the "control command position", repeatability was demonstrated within .25 inches (0.08 mrad) in "no wind"conditions and 1.75 inches (0.58 mrad) when winds sufficient to toggle azimuth backlash were present. Throughout this sequence the pedestal was shaded.

During the second sequence, between "horizontal stow" and the "control command position", repeatability was demonstrated within a 2 inch x 2 inch (.67 mrad x .67 mrad) envelope. Pedestal bending from periods of solar exposure between "horizontal stow" and the "test" position is believed responsible for the slightly increased inaccuracy. It should be noted that this pedestal solar exposure is not a normally encountered condition during tracking for the basic configuration Northrup II heliostat.

9.7.2.3.2 Beam Centroid Pointing Accuracy

The objective of the "Beam Centroid Pointing Accuracy" test is to "measure beam centroid pointing error with the Beam Characterization System (BCS) while tracking the sun". The compliance with the specification beam pointing requirement is 1.5 mrad for each axis (equivalent to axis pointing of 0.75 mrad) is defined by the performance in this BCS monitored test.

Baseline beam centroid pointing accuracy testing was performed with both heliostats Dec 12 (Day 347) and Dec 18 (Day 353). Summarized numerical results are shown in Tables 9.7-33 (Dec 12) and 9.7-34 (Dec 18). Graphic plots for Dec 12 are shown in Figures 9.7-45 and 9.7-46 and for Dec 18 are shown in Figures 9.7-47 and 9.7-48.

The baseline tracking accuracy data indicated #2 heliostat to be within specification limits, 0.2597 mrad rms elevation error and 0.5532 mrad rms azimuth error. The #1 heliostat was beyond limit for the elevation error, 1.0270 mrad rms elevation error and 0.5442 mrad rms azimuth error. Correlation of the elevation error patterns for morning and afternoon against elevation angle show repeating patterns for #2 and a hysteresis effect between am elevation and pm elevation for #1. This generally correlates with the tilt data difference between the two heliostats (#1 tilt = 1.81 mad; #2 tilt = 0.27 mrad).

The Dec. 18, 1980 data confirmed the characteristic tracking performance pattern of higher accuracy for #2 heliostat than #1. The final point for each heliostat was with low sun angles and illustrates the increasing atmospheric refraction effect on the sun's apparent position at low sun angles. A correction model for the atmospheric refraction has been incorporated in the software subsequent to these tests.

The negative offset of azimuth data sets on Dec. 18 is believed to be the result of a slow clock. Current practice is to set the computer clock with WWV time each morning.
Table 9.7-33

Baseline Beam Centroid Pointing Accuracy

For Second Generation Northrup Heliostats

a) N-1 CRTF Heliostat (171.38, 1016.37, 102.88 target coordinates)

Dec 12 (Day 347)

	Azimuth Axi	S	Elevation Axis							
Time	Angle degrees	Mean Axis	Angle, degrees	Mean Axis Pointing						
	from West	Pointing Error for	from Vertical	Error for 30 Data						
		30 Data Points.		Points, mrad						
		mrad		1011103, mruu						
9:45-	100,96	-1.40	15.88	0.13						
9.48	200090		13,000	0.15						
2.40										
10:22-	96.69	-0.22	17 30	0.30						
10.25	JO:O	0.22	17.55	0.33						
10.25										
10.59-	92.41	-0.31	18.41	0 / 9						
11.03	72.41	0.51	10.41	0:45						
11.05										
11.38_	87' 31	-0.59	18 86	0.42						
11.41	07.51	-0.39	10.00	0.42						
11:41										
12.12-	83,10	0.28	18.78	1.02						
12.12	05.10	0.20	10.70	1.02						
12.15										
12.48-	78 72	0.47	18.23	1 41						
12:50	10.12	0.47	10.25	1.41						
12.30										
13.51_	71 27	-0.26	16 10	1 30						
12.5/	11.21	-0.20	10.10	1.30						
13:34										
14.48-	65 13	1 05	13.01	1 37						
14:40-	03.11	1.05	T3.0T	1.3/						
	······································		<u> </u>							
RMS For Ful	1 Day	0.5442		1.0270						

G-114

Table 9.7-33

b) N-2 CRTF Heliostat (-65.26, 769.55, 107.36 target coordinates)

	Azimuth A	xis	Elevat	ion Axis
Time	Angle, degrees from West	Mean Axis Point Error For 30 Data Points, mrad	Angle, degrees from Vertical	Mean Axis Pointing Error for 30 Data Points, mrad
9:53- 9:56	107.72	-1.06	16.78	-0.44
10:30- 10:34	103.36	-0.71	18.33	+0.02
11:08- 11:11	98.86	-0.72	19.36	+0.19
11:46- 11:49	94.13	-0.52	19.88	+0.26
12:20- 12:23	89.86	-0.38	19.88	+0.05
12:55- 12:57	85.57	-0.15	19.42	+0.43
14:00- 14:03	77.79	-0.36	17.33	-0.08
15:02- 15:05	71.17	-0.22	13.96	-0.56
RMS For Full Day		.5532		.2597

Dec 12 (Day 347)

1

G-116

Table 9.7-34

Baseline Beam Centroid Pointing Accuracy For Second Generation Northrup Heliostats

(a) N-1 CRTF Heliostat (171.38, 1016.37, 102.88 target coordinates)

	Azimuth a	xis	Elevatio	n axis
Time	Angle, degrees from West	Mean Axis Pointing Error for 30 Data Points, mrad	Angle,degrees from Vertical	Mean Axis Pointing Error for 30 Data Points, mrad
10:13- 10:16	98.038	-0.76	16.821	-0.47
11:13- 11:17	90.773	-0.53	18.446	-0.78
12:17- 12:23	82.863	-0.63	18.623	-0.42
13:10- 13:13	76.368	-1.37	17.579	02
15:19- 15:23	62.447	53	11.021	36
16:36- 16:39	55.685	.69	4.511	-1.11
RMS First 5 sets		.9292		.5663
RMS All 6 sets		.9005		.7531

Dec 18, 1980 (Day 353)

Figure 9.7-47 No. 1 Northrup Heliostat Dec 18, 1980

G-118

•

Table 9.7-34

Baseline Beam Centroid Pointing Accuracy For Second Generation Northrup Heliostats

(b) N-2 CRTF Heliostat (-65.26, 769.55, 107.36 target coordinates)

	Azimuth a	xis	Elevation	n axis
Time	Angle, degrees from West	Mean Axis Pointing Error for 30 Data Points, mrad	Angle, degrees from Vertical	Mean Axis Pointing Error for 30 Data Points, mrad
10:02- 10:05	106.93	-1.21	16.94	-0.09
11:25- 11:29	96.99	-0.55	19.49	0.13
12:28- 12:31	89.23	-0.76	19.70	-0.05
13:48- 13:51	79.57	46	17.81	30
15:39- 15:42	67.69	46	11.20	34
16:44- 16:47	62.22	14	5.37	-2.99
RMS First 5 sets		.8250		0.2666
RMS all 6 sets		.6532		.7044

Dec 18, 1980 (Day 353)

Figure 9.7-48 No 2 Northrup Heliostat Dec 18, 1980

9.7.2.3.3 Beam Quality

Initial "Beam Quality" tests were run on both heliostats Dec. 10,1980. The focal beam pattern for both heliostats was more diffuse than the "helios model" beam generated for the individual heliostats and the test time. Near-noon charts for the 90% power contour with the "helios model" points overlaid are shown in Figures 9.7-49 (No. 1 Northrup heliostat) and 9.7-50 (No. 2 Northrup heliostat).

Inspection of the mirror modules revealed a "built-in convex cant" of up to 1.4 mrad between the two facets of a single module. Inspection of the assembly tables indicated a position shift from the original alignment which caused the out of flat cant.

A design change decision to build in a concave cant matched to the slant range was made and implemented. Replacement modules were built and installed on both heliostats at CRTF. Beam quality data with a canted facet heliostat was taken Feb 5, 1981 on No. 2 heliostat. The 90% contour and 90% "helios" model plots are shown in Figure 9.7-51. Numerical data from the beam quality tests are summarized in Table 9.7-35. The gain in image size achieved by the canted facet mirror modules is quantified by the reduction in size of the 90 percent contour footprint from 19.88-19.97 m² in the Dec 10 test to 14.3-15.5 m² in the Feb. 5th test. The contour still exceeds the specified helios model by 1.5 m². Refinement of the "Y Direction" canting procedure is expected to improve this value.

G-122

Heliostat & Test time	Total Power kwt	Insolation w/m ²	Max Flux, w/m ²	90% Power Contour Area	Helios Model 90% Contour Area
No 1- Dec 10 11:03:49	42.658	969	2565.7	31.488	18.096
No 1-Dec 10 15:16:14	34.101	794	1980.2	30.345	17.887
No 2- Dec 10 11:22:56	41.066	963	3338.4	19.967	12.737
No 2-Dec 10 14:53:14	34.487	863	3060.2	19.877	12.968
No 2- Feb 5 11:28:41	40.544	1022	5192.0	15.528	not available
No 2- Feb 5 15:11:53	34.544	946	5428.5	14.299	12.797

9.7.2.3.4 Life Cycle Tests

Life cycle testing software was developed on the bench test electronics unit in Littleton and incorporated in the CRTF Software Jan. 12. Either 1 or 2 heliostats are operated in a simulated half day cycle which spans $a \stackrel{+}{=} 67$ degree range in elevation and $a \stackrel{+}{=} 50$ degree range in azimuth every hour.

The cycle count is recorded on the same type plot used during tracking operation where the lines are composed of plotted points for each tracking update. Figure 9.7-52 shows a typical plot for dual heliostat cycling showing the twenty four operating cycles and the simulation cycle.

As of Feb. 4, 1981 heliostat #2 had operated 380 cycles without any problems being encountered.

#2 Life Cycle Test Chart for 2 Heliostats Real Tame of Day 16 January 9 1981 Eycle-Denver 120 1 Pevedo Time of Day Ø G-127

Figure 9.7-52

APPENDIX H

MANUFACTURING

This appendix includes the following:

Direct Material, Direct Labor, and Equipment Cost Summaries	Page
Overall Summary	н-2
CBS 4410 Reflective Unit	H-3
CBS 4420 Drive Unit	H-7
CBS 4430 Controls	H-14
CBS 4440 Foundation	H-16
CBS 4450 Heliostat Support	H-18
Direct Labor Summaries	н-23
Production Equipment Cost Summaries	
Mirror Processing	H-28
Mirror Module	H-29
Drive Unit (Includes Direct Labor Details)	H - 40
Controls	H-75
Structural	H-78

Ž	OVERALL SUMMARY	(18)	• • • •						
		lie.		•			DESCRI	PTIC	N
QUANTITY			TER IN	i' J 1 'F	PER	COST HEL	IOSTAT		
PER HELIOSTAT	PART NO.	DESCRIPTION	HAREC'P MATERIA!	DIRECT LABOR	DIRECT MATERI	AL	DIREC LABOR	T	EQUIPMENT COST
1	CBS4410	Reflective Unit			960	36	15	48	9,161,000
1	CBS4420	Drive Unit			1,318	39	76	82	54,262,000
1	CBS4430	Controls			233	48	10	47	680,000
1	CBS4440	Foundation			309	40	4	50	1,464,000
1	CBS4450	Heliostat Support			450	84	10	96	6,640,000
5					3,272	47	118	23	72,207,000
	х. Х.								
							ł		

DESCRIPTION

H-2

Ŋ

SUMMARY

Reflective Unit

DESCRIPTION

i

	QUANTITY			× № r PPR UN	14	COS ⁴ PER HEI	r JIOSTAT	
	PER HELIOSTAT	PART NO.	DESCRIPTION	LAFPUT MATERIA	DIRECT LABOR	DIRECT MATERIAL	DIRECT LABOR	EQUIPMENT COST
	12	12-100	Mirror Module Assy	79 28	1 29	951 36	15 48	9,161,000
	36	12-010-0021	Stud	13		. 4 68		
	72	12-010-0022	Flat Washer	. 01		72		
	36	12-010-0023	Jam Nut	02		72		
	72	12-010-0024	Spherical Nut-Washer	04		2 88		
H-3						960 36	15 48	9,161,000
×								
								Υ.

ALCENCIA OPALLS

FART NO. 12-100 DESCRIPTION

Mirror Module Assy CBS 4410

	[T	9 . 19 <u>1</u> -	DET GAT	ar F AL		+		TRE	CT I	ABO	R		EQUIPMENT
OUANTITY PER ASSEMBLY	PART NO.	DESCRIPTION	୩೪ ₽41	21019 Labora 20 Dega 2019	HT FTC.	ST PER	COS PER ASS	T Y.	HOURS PER 100PC	LAI RA'	BOR FE	CO PE PC	ST R	COST PER ASSY	COST
1		Substrate Assy				\$31.94 ea	31	94	1				28	28	2,131,000
2	0115	Mirror Facet Assy				11.72 ea	23	44					27	54	4,158,000
1	0116	Backing Plate	Steel		43.5#	.27/#	11	75	.14	4	49		01	01	809,000
14 oz	0154	Silicone	#4			9.50/#	8	31							
4 oz		Adhesive				2.08/#		52						4	
1	0103	Center Molding	Foam		4 ft	.12/ft		48						+	
l oz	0156	Adhesive, Rubber				.98/#		06						+	
2	0106	Molding, End	P.P. Steel	0.22#	.44#	.35/#		15	.04	4	49		01	02	91,000
4	0105	Molding, Side	P.P. Steel	0.34#	1.36#	.35/#		48	.06	4	49		01	04	
4	0107	Corner	P.P. Steel	0.01#	.04#	.35/#		01	.02	4	49		01	04	37,000
6 oz		Sealant		1		5.50/#	2	06						+	
1		Center Trim	P.P. Steel		0.24#	.35/#		48	.08	4	49		01	01	37,000
		Assemble					_		7.84	4	49		35	35	1,898,000
							79	28						1 29	9,161,000

A:CPE E.		TAILS
a	•	· · · · · · · · · · · · · · · · · · ·
an a s hi si sebuah kata kata kata kata ka ta kata kata kat	•	THE R. P. LEWIS CO., LANSING MICH.

PART NO. _____ DESCRIPTION Substrate Assy _____ CBS 4410

					1.115	FCTP 21 VP	AL			D	TRE(CT L	ABOR		EQUIPMENT
	OUANTITY PER ASSEMBLY	PART NO.	DESCRIPTION	1'Y);:	ort Ho George Press Press Press	НТ , <u>ЕТС</u> , ГЕВ А:5.4У.,	OST PER	COS PER ASS	т Ү.	HOURS PER 100PC	LAI RAT	BOR FE	COST PER PC	COST PER ASSY	COST
	7	0131	Web	P.P.	3 6#	25 2#	35/#	8	82	04	4	10		07	101.000
	14	0132	Stiffener	Steel P.P. Steel	0.1#	1.4#	.33/#		46	.04	-3	49		. 07	37,000
	2	0121a	End Channel	P.P. Steel	1.2#	2.4#	.35/#		84	.07	4	49	01	02	60,000
	20	0151	Rivet				.05ea	1	00						
I-5	1	0113	Backing Plate	P.P. Steel	43.5#	43.5#	.35/#	15	23	.14	4	49	01	01	809,000
	2	0141	Rectangular Tube	P.P. Steel	7.5#	15#	.33/#	4	95	.07	4	49	0]	02	60,000
	4	0142	Floating Nut			• •	.03ea		12						
	4 oz.		Adhesive				2.08/#	!	52						
			Assemble			1 1				3.54	4	49	16	16	984,000
			,			1 1		31	94					28	2,131,000
		÷													
		ł	ļ (ł	ļ	i		1	1				I		۱ I

				ATH .	ECT MAT	ERTAL			D	IRE	CT L	ABO	R		EQUIPMEN
OUANTITY PER ASSEMBLY	PART NO.	DESCRIPTION	TYP+:	ULIG LENGTH PER CLECE	HP , ETC. PER ASEV.	OST PER	COS PEI ASS	ST R SY.	HOURS PER 100PC	LAI RA'	BOR FE	CO PE PC	ST (R 1	COST PER ASSY	COST
1		Glass	Low-iro Float	n 48 x 7:	2	.43/ft ²	10	32					1		
.06 o .05 g	z al	Silver Paint				\$15/oz \$10/gal		90 50	6.00	4	49		27	27	4,158,00
							11	72					ŧ	27	4,158,00
		NOTE: Each facet negligible	also requ cost.	ires .02	2 ounce:	s of copper	whic	h h	as						

ASSENCES OUTAILS

SUMMARY

D._.e Unit DESCRIPTION

				COST 1980 - Maria	1.10	COST DED UNIT	ፐብሮሞአሞ	
	PER	PART		DIRECH ON	DIRECT	DIRECT	DIRECT	EQUIPMENT
	HELIOSTAT	<u>NO.</u>	DESCRIPTION	MATERIAL	LABOR	MATERIAL	LABOR	COST
	1		Drive & Motor Assy.	1307 43	76 07	1307 43	76 07	54,262,000
	12	12-010-0018	Lockwashers	04	-4	24		
	12	12-010-0019	Nut, Hex	06		72		
	1		Cable Assy			10 00	75	
						1318 39	76 82	54,262,000
			· ·					
H-7								

ASOFMELY OFTAILS

PART NO.

£.

DESCRIPTION Drive and Motor Assy

CBS 4420

· ·				मान ।	CCIC MAT	E (IAL					I REC'I	LAB	OR		EQUIPMENT
1			{	 vii.rsa 	i' T	1									
OUANTITY				LENGTH,	, ETC .	-		COS	5T	HOURS		C	OST	COST	
PER	PART			[PF1] [110	'⊖ST I	'ER	PEF	२	PER	LABO	R P	ER	PER	
ASSEMBLY	110.	DESCRIPTION	TYLE	200.02	ASSY.	LB, FT	ETC.	ASS	SY.	100PC	RATE	P	с .	ASSY	COST
1	12-300	Drive Unit Assv	1			-		850	34					73 82	53.362.000
-			1												,
12	12-010-0017	Stud	Steel			\$.26 e	a.	3	12			1		└_ 	
								_							
5.2 gal		Oil (8.75/c	al	45	50	1					
4	12-600-0668	Limit Sw.				3.06 e	a.	12	25	1					
4	12-600-0669	Limit Sw.	1			3.42 e	ea.	13.	68					-	
	12-010-0011	Stepper Motor				\$150 ε	ea.	300	00						
						•							1		
2	12-010-0012	Flexible Coupling				\$1.10	ea	2	20	· .					
						i						ł			
2	12-010-0013	Keyway				.01	ea		02						
8	12-010-0014	Bolt, Hex Hd.				.02	ea		16					-{	
				1		1									
8	12-010-0015	Lockwasher				.01	ea		80					-	
8	12-010-0016	Nut, Hex				.01	ea		80			1		-	
		1				1									
1	1	Cable Assy				i		80	00	50	44	9		2 25	
	1	i				Ì									
													FI		
	ł							1307	43		ł			76 07	53,362,000
	1					ł					Ade	embly	ļ т.	ne	200 000
1	1												1 1		200,000
1	}										Pai	nt			700,000
1	1			t l		•					1				
[· ·					l	1								54,262,000
	1								1						
1															
	l .		1												
	1	P ·	11 Contraction of the second sec	[;		1)	•	, e	1	ļ	1		

H-8

ACCEMPTE SCRATES

Drive Unit Assy. CBS 4420

.

1 of 5

				DER	FOT MAT	Carl AL			1	IRECT I	ABOR		EQUIPMENT
OUANTITY PER ASSEMBLY	PART NO.	DESCRIPTION	TYL (:	WETC SEMERTI DEC DECE	er , Ero. , Ero. , Ero. , Assy.	OST PER	COS PEI ASS	ST R SY.	HOURS PER 100PC	LABOR RATE	COST PER PC	COST PER ASSY	COST
i	651137-85	GITS Expansion Ch				\$20 ea	20	00					
2	15118	Кеу				.01 ea		02					
12	13336	Lockwasher				.01 ea		12					
12	11870	Bolt				.01 ea		12				-	
1	651137-84	Mounting Plate	(Elimin	ated in	produc	tion design							
1	-86	Copper Tubing	3/16 0.	þ.		.18 ea		18					
2	15710	Кеу				.03 ea		06			×7		
5	11210	Pipe Plug ½				.09 ea		45					
6	11208	Pipe Plug ¼		-		.07 ea		42					
24	10548	Spirol Pin			\$ 8 9	.01 ea		24		× -		-	
8	20314	Tor. Needle B'rg				.45 ea	3	60					
12	11868	Bolt				.03 ea		36				-	
16	11281	Cap Screw				.07 ea	1	12				-	
24	11241	Cap Screw				.05 ea	1	20					
4	5908	Oil Seal			€ 	.19 ea		76				┃ ┥╌┙┃	
2	10241	Retaining Ring				.15 ea		30				+-	
					,					I			

-

ASSEMENT DETAILS

PART NO. 12-300

.

DESCRIPTI

Drive Unit Assy.

CBS

4420

2 of 5

j				F	1) ER	ECT MAT	E CEAL		1	TRECT	LABOR		EQUIPMENT
	OUANTITY PER ASSEMBLY	PART NO.	DESCRIPTION	TYP:"	928-096 1930-094 1992: 1992: 1930-092	APP EPP EB ASSY	OST PER	COST PER ASSY	HOURS PER 100PC	LABOR RATE	COST PER PC	COST PER ASSY	COST
	2	10240	Retaining Ring				\$.08 ea	1	6				
	2	20313	Ball Birg.	5 7 7			3.38 ea	67	6			+	
	2	651137-67	Gasket, Plan.				.61 ea	12	2				
	2	651137-63	Gasket, Plan				.44 ea	8	8			+	
	4	20311	Timken Cone				10.87 ea	43 4	8				
Ŧ	4	20312	Timken Cone				5.81 ea	23 2	4			+	
10	- 4	651137-56	Journal Pin	Steel	.34#	1.36#	.33/#	4	5 1.37	4 49	6	24	254,000
	4	-55	Planet Gear	Steel	2.5#	10#	.42/#	4 2	0 36.30	4 49	163	6 52	2,030,000
	2	-54	Planetary Pinion	Steel	1.5#	3#	.42/#	12	6 50.25	4 49	226	4 52	2,233,000
:	2	-72	Sec Ring Gear	Steel	8 .9#	17.8#	.42/#	74	8 37.18	4 49	167	3 34	
	2	71	Pri Ring Gear	Steel	8.9#	17.8#	.42/#	74	8 37.18	4 49	167	3 34	6,296,000
	2	52	Planet Drive	Casting	7#		4.00 ea	80	0 32.57	4 49	146	2 92	1,333,000
	; 2	57	Planet Gear Web	Casting	7#		4.08 ea	8 1	6 32.40	4 49	145	2 90	1,433,000
	2	51	Planet Cover	Casting	17#	1	6.08 ea	12 1	6 52.37	4 49	235	4 70	2,535,000
	ʻ2	50	Planet Housing	Casting	13#	1	6.00 ea	12 0	023.73	4 49	107	2 14	1,012,000
	2	59	H.S. Worm	Steel Cll17	82.8#	165.6#	45.5¢/#	75 3	5 115.42	4 49	518	10 36	9,839,000

					<u>^</u>	SEMISTS	PAILS	-						
	PART NO.	12-300	DESCR	EPPL 7.	Drive	e Unit A	ssy			CBS	442	0		
						3 of 9	5							
					DIR	ECT MAL	AL			<u> </u>	IRECT	ABOR		EQUIPMENT
	OUANTITY PER ASSEMBLY	РАНТ 110 .	DESCRIPTION	TY I (.		ETC.	OST PER	COS PEI ASS	5T R SY.	HOURS PER LOOPC	LABOR RATE	COST PER PC	COST PER ASSY	COST
	4	30178	Oil Seal				\$10.00 ea	40	00					
	3	30177	"O" Ring				.03 ea		09					
	24	651137-70	Spacer	(Elim	inated	in produ	uction desi	gn)						
i	24	13339	Lock Washer				.02 ea		48					
H	24	13338	Lock Washer				.01 ea		24					
Ė	38	13337	Lock Washer				.01 ea		38					
;	24	11878	Bolt				.14 ea	3	36					
	12	1187 9	H.H. Bolt				.07 ea		84					
	26	11871	H.H. Bolt			a 6 1	.02 ea		52					
	1	651137–66	Gasket			1 11 11 14 14	1.07 ea	1	07					
	1	-65	Gasket				1.77 ea	1	77					
	1	-64	Gasket			: :	1.44 ea	1	44					
	2	20315	Ball Bearing	(Elim	inated .	in prod	action desi	ign)						
ĺ	1	651137 –6 0	Worm Support	Casting		! ; ;	1.12 ea	1	12	17.43	4 49	78	78	558,000
	1	41.	S.S. Gear - Elev.	Casting		217#	114.80 ea	114	80	86.67	4 49	3 89	3 89	6,270,000
	1	44	S.S. Bearing, In	(Elim	inated	in prod	action desi	gn)						
	1	43	S.S. Bearing, Out	(Elim	inated	in prod	ction desi	gn)						1

.

۰.

.

ASSEMPLY CTAILS

1

PART NO. 12-300

DESCRIPTION Drive Unit Assy CBS 4420

4 of 5

	1		T	1)TR	ECTP MAR	AL				і. 1 с	IRE	CT 1	LAB	OR		1	EOUIPMENT
OUANTITY PER ASSEMBLY	PART NO.	DESCRIPTION	TYPE	VETC OBECTION DEE PERCE	HTP , ETC. PER ASSY.	OST FI	ER ETC.	COS PEI ASS	5'T R 5Y.	HOURS PER 100PC	LA RA	BOR TE	C P P	ost Er C	CC PE AS	OST ER SSY	COST
1	651137-42	S.S. Bearing Ring	Casting	45#		\$22.50	ea	22	50	37.37	4	49	1	68	1	68	1,337,000
1	40	Elevation Housing	Casting	229#		111.07	ea	111	07	45.13	4	49	2	03	2	03	5,250,000
1	73	Plug,Azi , Gear				.16	ea		16						-		
12	11869	Bolt				.06	ea		72						-		
1	11209	Pipe Plug 3/8				.08	ea		08						-		
2	30176	Oil Seal				10.00	ea	20	00						-		
6	651137-69	Stud	Thr.Stk.			.38	ea	2	28	.05	4	49		-	-		
1	87	Dust Shield				8.33	ea	8	33						-		
1	62	Gasket			f †	1.83	ea	1	83						-		
1	61	Worm Support	Casting		1	1.12	ea	1	12	17.43	4	49		78		78	
1	651137-46	S.S. Gear Azi	Casting	176#		87.42	ea	87	42	81.72	4	49	3	67	3	67	6,270,000
1	49	S.S. Bearing, Ring	(Eli	ninated	in pro	duction	des	ign)									
1	48	S.S. Bearing-Clamp	(Eli	ninated	in pro	luction	des	ign)						ĺ			
1	47	S.S. Cover	Casting	48#		24.00	ea	24	00	25.30	4	49	1	14	1	14	901,000
1	45 -	Azimuth Housing	Casting	297#		128.84	ea	128	84	44.80	4	49	2	01	2	01	5,250,000
2	1109	Elbow				.24	ea		48						-		
2	651137-58	Clamping Disc	C1117	1.3#	2.6#	25.7¢/#	ŧ		67	7.93	4	49		36		72	561,000

H-12

ASSUMMERY OUTATLS

PART NO. 12-300

DESCRIPTION Drive Unit Assy CBS 4420

1				. 5 o	f 5					-				_		
				L-LR	<u>ekc"r MAr</u>	FRI AL			1) I REC	CT L	ABO	OR	·		EQUIPMENT
OUANTITY PER ASSEMBLY	PART NO.	DESCRIPTION	TYLE	PILCE	нт РРС. АSSY.	OST FER	COS PEI ASS	5T ? 5Y.	HOURS PER 100PC	LAI RA'	BOR FE	C(Pl P(ost Er	CO PE AS	ST R SY	COST
140		Balls	3/4 D			\$.20 ea	28	00								
2		Plugs				2.00 ea	4	00								
.05 ga	1	Prime				10.00/gal		50								
.05 ga	a	Paint				20.00/gal	1	00	26.5	4	49	1	19	1	19	
		Assemble							333	4	49	14	95	14	95	
								_								
						1	850	34						73	82	53,362,000
		•														
													•			
						a										

QUANTITY PER HELIOSTAT	PART NO.	DESCRIPTION	DIRECT MATERI	CO.T ER ON	DIRECT LABOR		PER DIRECT MATERIA	OST HEL	IOSTAT DIREC LABOR	CT R	EQUIPMENT COST
1		Control Assy	233	00			233	00	10	47	680,000
16	12-010-0025	Bolt-Hex Hd.		02		-		32			
16	12-010-0026	Lockwasher		01		-		16			
						-					
							233	48	10	47	680,000

SUMMARY

CBS 4430

Controls

L.

DESCRIPTION

.

ASSEMBLY OUTAILS

PART NO. No Drawing DESCRIPTION

Control Assy

CBS 4430

				118	CT MAT	BIAL			Γ	TREC	CT L	AB	OR			EQUIPMENT
OUANTITY PER ASSEMBLY	PART NO.	DESCRIPTION	ባ ሃን ፡:	Vitensa and De Mit Fridan Miteory	HEP • ETC • • FER • AREM •	OST PER	COS PEI ASS	ST R SY.	HOURS PER 100PC	LAF RAT	BOR	CC Pl P(OST ER	CC PE AS	ost R sy	CC 5T
1		Rack Assy	Steel	-	30#	\$.30/#	9	00	66.7	4	49	2	99	2	99	500,000
		Electronics														
		Microprocessor					30	00								
		Translators					150	00								180,000
		Power Supply					42	00	166 7		10			-	10	
		Gasket	Foam		5 Ft.	.10/Ft		50	100.1	4	49			·	40	
.05 ga	1 11 1	Prime			•	10.00/gal		50								
.05 ga	<u>1</u>	Paint				20.00/gal	1	00								
							233	00						10	47	680,000
							}									
		· ·														
			ll I						ŀ							

\$

H-15

		SUMMARY	CBS 4440		••••••••••••••••••••••••••••••••••••••		Foundatio	on .
	, 		N .				DESCRIPTI	UN
	QUANTITY PER	PART		COST TER UN DIRGT	DIRECT	COS PER HE DIRECT	T LIOSTAT DIRECT	EQUIPMENT
	HELIOSTAT	<u>NO.</u>	DESCRIPTION	MATERIAL	LABOR	MATERIAL	LABOR	COST
	1	M-101	Pile Assy	309 40	4 50	309 40	4 50	1,464,000
						309 40	4 50	1,464,000
4 L - N								
								ve
								ж. 44
	•							

	,			/.	GGC MB1A	TAILS	<u>.</u>					
FART NO.	M-10	1DESC	RIPTION	Pile A	Assy		-	CBS	5 444	0		
										,		
1				DER	DC"I" MAT	E.C.AL		1	DIRECT 1	LABOR		EQUIPMENT
OUANTITY PER ASSEMBLY	PART	DESCRIPTION	TYPE	PEDEC 1910 M GLUC 1911 1911 1911	AT <u>EEPC</u> EEE	OST PER	COST PER	HOURS PER	LABOR	COST PER	COST PER	0005
							A331.	IUOPC	KATE		K551	
L	M-101-5	Pipe	Steel	850#	850# i	\$.30/#	255 00	40.0	4 49		1 80	504,000
1	M-101-1	Flange	Steel	01#	410	40/#	26 40	3.3	4 49		15	480,000
1	M-105	Flange, E.O.	Steel	91#	91#	.40/#	30 40	3.3	4 49		15	480,000
		Assemble						26.7	4 49		1 20	
0.6 ga	1	Primer	HD-230			10.00/gal	6 00					
0.6 ga	1	Paint	DE-500			20.00/gal	12 00	26.7	4 49		1 20	
							309 40				4 50	1,464,000
					1							
												Al an internet
						1						
					i i	2 1						

	SUMMARY	CES 4450						He	liostat	Supp	ort
	al a fill the set of all successive spaces	11 .			,				DESCR	(PTI)	N
QUANTITY PER	PART		Pl D-FRERTP	COST ER UN	DIRECT	r	C PER DIRECT	OST HEL	IOSTAT DIREC	CT	EQUIPMENT
TIEMOSIAI	NO.	DESCRIPTION	TAYPER 17	<u></u>	LABOR		MATERIA		LABO	2	COST
2	12-200-0220	Torque Tube Assy.	126	02	2	56	252	12	5	12	1,094,000
4	12-200-0210	Truss Assy.	38	58	1	13	154	32	4	52	2,300,000
8	12-200-0201	Truss Cr o ss Brace	3	66	1	13	29	28		88	23,000
4	12-200-0202	Truss Lower Brace	3	51	1	13	14	04		44	23,000
4	12-200-0223	Rivet		03				12			
32	12-200-0225	Rivet		03				96			
							450	84	10	96	3,440,000
		Paint System									3,200,000
											6,640,000
								-			
			ł						I		!

,

H-18

ASSEMELY OPTATLS

PART NO. 12-200-0220

DESCRIPTION Torque Tube Assy.

CBS 4450

				DIRECT MATERIAL						DIRECT LABOR							
	OUANTITY PER ASSEMBLY	PART	DESCRIPTION	מעדעי	WEIG JENGPH PEL BLOCE	PT , ETC. PEK	· OST PER	COS'T PER	HOURS	LA	BOR	COS PEI	ST 2	COST PER			
			DESCRIPTION		3114.15	ASS1.	B, PP, ETC.	ASSY.	TOOLC	RATE		PC		ASSY	COST		
	1	0224	Torque Tube	Steel	310.2#	310.2#	\$.30/#	93 06	26.7	4	49			1 20	441,000		
	2	0222	Support Bracket	Steel	17#	34#	.30/#	10 20	0.8	4	49	1)4	08	173,000		
	1	0221	Flange	Steel	42#	42#	.40/#	16 80	1.7	4	49			08	480,000		
			Assemble						13.3	4	49			60			
н-19	0.2 gal	0226	Primer	HD-230			10.00/gal	2 00									
	0.2 gal	0227	Paint	DE-500			20.00/gal	4 00	13.3	4	49			60			
													+				
								126 06					Ī	2 56	1,094,000		
						1											
		· · · ·	•										Í				
					1			; 	 	1					I .		

ASSEMPLY OFTAILS

PART NO. 12-200-0210

0210 DES

DESCRIPTI) 4 Truss Assy.

CBS 4450

				IKJ AL			DIRECT LABOR						EQUIPMENT			
OUANTITY PER ASSEMBLY	PART NO.	DESCRIPTION	T YP1:	VETGI NEBOPH, PEE PIDCE	PP ETT FER ASSY.	COST PER	COS PEI ASS	ST R	HOURS PER 100PC	LAI RA'	BOR	CC PI PC	OST ER	CO PE AS	ST R SY	COST
														1001		
1		Top Chord	Steel		44.5#	\$.30/#	13	35	1.7	4	49				08	
1		Bottom Chord	Steel		37.1#	.30/#	11	13	1.7	4	49				80	689,000
		Web	Steel		32#	.30/#	9	60	8.3	4	49				37	393,000
		Assemble							6.7	4	49				30	1,218,000
0.15 ga	1	Primer	HD-230			10.00/gal	1	50								
0.15 ga	μ	Paint	DE-500			20.00/gal	3	00	6.7	4	49				30	, ,
			1				==		5				-		===	
							38	58						1	13	2,300,000
	· ·				1											
														L		
					I											
				ł												
									1							
									ļ							1
			1	1	i	i i										
		,					1									
			1												j	
1																
i 1																
			1													
						· · ·										
	1						1			1						к.
1		1	1	, ,		,		,	•			, •	•		•	

PART NO.	12-200	-0201 DESC	RIPTION	Truss-C	Cross Br	ace			Свя	;	4450		-	
		r	TI	1										11
ገተለ አነጥ ቸጥ ሃ				DIR WEIG	94 C/F 14A99 149	ERT <u>AL</u>			<u> </u>	DIRE	CT I	ABOR		EQUIPMEN'
PER	PART NO.	DESCRIPTION	יינציר	PE PE FECZ	PER ASSY.	OST PER	PEI AS	ST R SY.	PER 100PC	LA RA	BOR	COS PER PC	r Cost Pur Assy	COST
1	0201	Croce Brage	Stool		11 2#	\$ 30/#		26	0.0		40			22,000
.01 gal	0201	Primer	HD-230		11.2#	3.30/# 10.00/gal		30 10		4	49			23,000
.01 gal		Paint	DE-500			20.00/gal		20	1.6	4	49		07	
													++-	
							3	66						23,000
						4 4								
					1 1 2					ļ				

ASSEMPLY OPPAILS
PART NO.		12-200	-0202	DESCR	IPT IN .	Truss	- Lower	Brace			CBS	44	50			
					·····	DIR	ECT MAT	AL				IRECT	LABC	R		EQUIPMENT
OUANTITY PER ASSEMBLY	PART NO.		DESCRIPTION		1 975 :	1119 132-191 1913 1914 1916 (191	ETC. ETC. EB ASSY.	OST PER	COS PEI ASS	5T R SY.	HOURS PER LOOPC	LABOF RATE	CC PE PC	ST. R	COST PER ASSY	COST
1	202		Lower Brace	1	Steel		10.7#	\$.30/#	3	21	0.8	4 49	,		04	23,000
.01 gal .01 gal			Primer Paint		HD-230 DE-500			10.00/gal 20.00/gal		10 20	1.6	4 49	,		07	
									3	<u> </u>				ŧ	11	23,000
														J		
		-														
											ļ					

ASSEMBLY OUTAILS

	PRODUCT:		PART:	_n	1220	2	PAR	T NO.:	
	DRAWING NO.:		DATE:	2/5	160		SHE	et	_ of
CBS OPERATION 4411 4411 4411 4411 4411 4411 4411 4411 4411 4411	OPERATION DESCRIPTION UNEOAD GLASS. TRIM EDGES ; WASH: TRANSFER 90° TRANSFER LOAD MIRROR COATING	MACHINE OR <u>AUXILLARY EQUIP</u> UNI LOADER 4 TRANSFER DECRE EDGE 4 END SEMMER WASHER/DRYER ACCUM./ACCEL. CONVEYOR 90. TRANSFER DEVICE LOADER MIRIZOR SILVERING LINE	<u>SET UP</u>	RUN		NUMBER OPERATORS 2 2 2 5 11 per line per shif	AVG WAGE RATE 1.49 4.49 1.49	TOTAL LABOR COST	FLOO

Direct Labor Summary

Mirror Module

		Quantity	Hours	Oper	ators
Dart	Operation	Per	Per	Shift	Shift
Falt	operation	Day	<u>100 pc</u>		
Mirror Backing Sheet	Shear	2400	.14	72	0
End Pieces	Form	4800	.07	1 <u>7</u>	0
Backing Sheet	Shear	2400	.14	12	0
Mounting Bracket	Form	4800	.07	1 <u>2</u>	0
Mounting Bracket w/nuts	Staking	4800	.14	1	0
Stiffeners	Form	33600		0	0
Webs	roll-form	16800	.04	12	1 ₂
Edge Molding	roll-form	9600	.06	l	0
Edge Molding	roll-form	4800	.04	1/3	0
Center Trim	Form	2400	.08	1/3	0
Corner	Form	9600	.02	1/3	0
Web Assy	Bond	16800	.04	12	12
Grease Sheet	Grease	2400	.56	1	1
Substrate Assy		2400	3.36	6	6
Module Assy		2400	4.48	8	8
Final Assy		2400	2.24	4	4
Unload		2400	1.12	_2	_2
				27	22

· .

Direct Labor Summary

Drive Unit

	Quantity	Hours	Hours	No.		Operator	ors	
	Per	Per	Per	Of	Shift	Shift	Shift	
Part	Day	<u>100 pc</u>	Day	<u>Operators</u>		2	3	
Gear Cover	200	25.30	51	8	3	3	2	
Bearing Ring	200	37.37	75	11	4	4	3	
Gear-Elev.	200	86.67	173	26	9	9	8	
Gear-Azi	200	81.72	163	24	8	8	8	
Worm	400	115.42	462	69	23	23	23	
Housing-Elev	200	45.13	90	14	5	5	4	
Housing-Azi	200	44.80	90	14	5	5	4	
Frame	400	32.57	130	20	7	7	6	
Cover	400	52.37	209	31	11	11	9	
Housing	400	23.73	95	14	5	5	4	
Web	400	32.40	130	20	7	7	6	
Ring Gear-Pri	400	37.18	149	22	8	8	6	
Ring Gear-Sec	400	37.18	149	22	8	8	6	
Planet Gear	800	36.30	290	44	15	15	14	
Pinion	400	50.25	201	30	10	10	10	
Stud	1200	.05	1	1	1	0	0	
Worm Support	400	17.43	70	11	4	4	3	
Journal Pin	800	1.37	11	2	1	1	· 0	
Clamping Disc	400	7.93	32	5	2	2	1	
Paint	200	26.50	53	8	· 4	4	0	
Assemble Drive	200	400.00	800	100	50	50	0	
Drive Unit As	sy 200			496	190	189	117	

1

,

Drive Unit Assy 200

Direct Labor Summary

Controls

Part	Quantity Per Day	Hours Per 100 pc	Operators Shift <u>1</u>
Control Assy	200	166.7	50
Cable Assy	200	16.7	5
Limit Switch Assy	200	16.7	5
Cable Assy	200	50.0	15
			75

Structural Parts

Part	Operation	Quantity Per Day	Hours Per 100 pc	Shift	Shift 2
Flange, Opening	Fab	200	3.3	1	**
Flange, Top	Fab	200	3.3	1	***
Pile	Form	200	26.7	4	4
	Weld	200	13.3	2	2
Assemble	Weld	200	26.7	4	4
Paint	Load	200	13.3	2	2
	Unload	200	13.3	2	2
Flange, End	Fab	400	1.7	1	
Bracket	Fab	800	0.8	l	
Torque Tube	Form	400	13.3	4	4
-	Weld	400	13.3	4	4
Assemble	Weld	400	13.3	4	4
Paint	Load .	400	6.7	2	2
	Unload	400	6.7	2	2
Chord, Top	Form	800	1.7	1	1
Chord, Bottom	Form	800	1.7	l	1
Web	Weld	800	5.0	3	3
	Form	800	3.3	2	2
Assemble	Asm	800	3.3	2	2
	Weld	800	3,3	2	2
Paint	Load	800	3.3	2	2
	Unload	800	3.3	2	2
Cross Brace	Form	1600	0.8	1	1
Paint	Load	1600	0,8	1	1
	Unload	1600	0.8	1	1
Lower Brace	Form	800	0.8	1	
Paint	Load	800	0.8	1	
	Unload	800	0.8	1	• -
Control Box	Undefined	200	66.7	<u>20</u> 75	48

HELIOSTAT MIRROR MODULE PRODUCTION EQUIPMENT COST

MIRROR PROCESSING LINE (DESIGN NO 2.)

.

SHEET / OF /

MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERAGE YEARLY MAINTENANCE COST	TOTAL COST
LINILOADER \$TRANSFER DECK	2	#45K	^B 2.25K	#3.2K	10typo.	\$ 2 K	\$101K
EDGE ¢ END SEAMER	Z	\$140K	^{\$} 7К	\$ 14K	10° yrs.	* 7K	*322 K
WASHER!	2	\$30K	\$ 1.5K	RI.SK	10 yrs.	*1.5K	SLLK
ACCUM. & ACCEL. CONVEYOR	2	\$ 30K	*1.5K	*1.5K	10 yrs.	¥,2K	*66K
90° . TRANSFER	2	ZOK	#1.0×C	\$ IK	10 yrs.	\$ IK	\$ 44K
LOADERS	2	SOK	\$2.5K	\$ 2.2K	10tyro	\$ 2.2K	\$ 110 K
MIRROR SILJERING LINE	2	\$ 1,00 a K (2630 K)	# 50K (131.5 K)	\$100K	10tym.	35K	# 2300K
WATER	1	\$1,000 K	^{\$} SOK	\$ JOOK	20415	*50K	\$ 2300k
		3630K	19.		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		

WEBS

SHEET____OF

I	MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERAGE YEARLY MAINTENANCE COST	TOTAL COST
	Pay-off reel	2	12 (24)	1 (2)	1.2 (2.4)			
	Roll-former	2	45 (90)	2.2 (4.4)	4 (8)			
H	Cut-off Machine	2	21 (42)	1 (2)	2 (4)			
1-29	Run-out table	2	1.5 (3)					
						· ·		
!								
			159	8	14			181

STIFFENERS

SHEET____OF___

MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERACE YEARLY MAINTENANCE COST	TOTAL COST
Pay-out reel	1	12	1	1.2			
40-ton press	1	20	1	2			
2							
, s							
		-					
		32	2	3			37

END PIECE

					SI	IEETOF	
MACHINE NAME	NUMBER REQUIRED		TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERACE YEARLY MAINTENANCE COST	TOTAL COST
Pay-off reel	1	12	1	1.2			
100-ton press	1	40	2	4			
		· · ·					
				2			
		· ·					
		52	3	5			60
		52	5	5			60

BACKING SHEET

SHEET____OF__

ŝ.

MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERACE YEARLY MAINTENANCE COST	TOTAL COST
Coil Holder	1	49	2.5	2			
Coil Car	1	18	.7	2			
Leveler	1	200	5	20			
Special Cut-off	1	375	· 7	37			
Special Stacker	1	75	3.5	7	х. 		
Run-out Table	1	4	1				-
		721	20	68			809

MOUNTING BRACKET

SHEET____OF___

.

MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERAGE YEARLY MAINTENANCE COST	TOTAL COST
Pay-out reel	1	12	1	1.2			,
100-ton press	1	40	2	4			
-							
		52	3	5			60

H-33

1

SUBSTRATE ASSY

SHEET OF

	MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERAGE YEARLY MAINTENANCE COST	TOTAL COST
	Web Assy							
	Adhesive Dispenser	1	20	1	1			
	Stapler	1	10	1	1			
-Н,	Run-out table	1	30					
34	<u>Substrate Asm</u>		i i					
	Conveyor	1	920					
		2 2						
			980	2	2			984

MIRRON, JACKING SHEET

SHEET_

OF

	MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERAGE YEARLY MAINTENANCE COST	TOTAL COST
	Coil Holder	1	49	2.5	2			
	Coil Car	1	18	.7	2 ·			
	Leveler	1	200	5	20			
	Special Cut-off	1	375	7	37			
	Special Stacker	1	75	3.5	7			
H-35	Run-out Table	1	4	1				
ћ.								
17								
			,					
			721	20	68			809

MODULE ASSY

SHEET

OF

MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERAGE YEARLY MAINTENANCE COST	TOTAL COST
Grease Dispenser	1	50	3	5			
Module Assy Conveyer	1	1240					
Final Assy Conveyer	1	600					
		1890	3	5			1898

SHEET

OF

.

EDGE MOLDING

MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERAGE YEARLY MAINTENANCE COST	TOTAL COST
Pay-off reel	1	12	1	1.2			
Roll-former	1	45	2.2	4			
Cut-off Machine	1	21	1	2			
Run-out Table	1	1.5			,		
		80	4	7			91

CORNER - MOLDING

SHEET____OF____

MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERAGE YEARLY MAINTENANCE COST	TOTAL COST
Pay-out reel	1	12	1	1.2			
40-ton press	1	20	1	2			
		,					
		32	2	3			37

CENTER TRIM

SHEET____

OF

MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERACE YEARLY MAINTENANCE COST	TOTAL COST
Pay-out reel	1	12	1	1.2			
40-ton press	1	20	1	. 2			
		-	•				
						- - -	
		20					

		LABOR	AN	D EC	QUI	PM	ENT	ESTIN	IATING SHEET	Page No.		
CBS	Number:				Pa	ert	: 1	RIVE	Coure Part No.: 65 113	1-41		
	Date: 10/20/80	Q	ty.,	/Hei	ios	tat:		/	Sheet No.:/	Of	/	
0750		PF	RODI			ON ESTIMATE		E R		E	EQUIPMENT	
NO.	OPERATION DESCRIPTION	Min/Po	Hr Pc	∎/100 ♥		H 10	rs/ 0 PC	\$/Hour	MACHINERY & EQUIPMENT	Qt.	Est. Co	
010	FACE	5							NC CHUCKER	ž	8040	
	Torn M. A. J.D.		$\frac{1}{1}$						Installarian		2	
	- June 19.51 F.D	4							TRANSPORTATION		£	
	The leave & 20' Anne											
	- 1 Open for Miner may			-			-		HFAT TREAT	. 1	63,00	
			8	33		8	33		INSTALLATION		3,000	
020	TRANS PORT		Π				250		TRANSPORTATION		Z,00	
	Face		8	33		8	33		•		ļ	
190	The To benert								The mouran		100.00	
	Mienne st' Ang A.	-70	11									
	and an an car farme		ti									
	the second	1-0-	4	114								
	- June 12 Manno		Ĩ	~~ <i>~</i>					GRINDER	1	200.20	
	Transport						250		IN STALLATION		10.00	
40-	TRANSFIL							•	TRANSPORTATION		2,00	
10	Dans (12) 521 Dea + Rua	, ,		222		7	292		Minzi Service Paris		-0-	
~~ ~	Prine Inr. 4%.		3	den 1		3	An	r.			Erra	
	TNIPERIAN		Ĩ	<u> </u>		7	Mo			(A	eser74	
	and the first of the second									1 dra	er An	
	Tin Al		П									

25.30

ł.

;

ſ		L	ABOR	ANI	D EC	QUI	PM	ENT	ESTIN	ATING SHEET Page	No.	
	CBS	Number:4420				Pa	art	: 4	EARINK	RETAINER Rock Part No .: 651137-4	12	
		Date: 10/20/50	Q	t y ./	'Hei	ios	lat :	:		/ Sheet No.: Of		٢
Ì	OPER.		PF MAC	CHIN	ICTIC E	ON E	STI	LABO	E)R		E	QUIPMENT
	NO.	OPERATION DESCRIPTION	Min/Po	Hrs Pc ()/100 D		H 10	rs/ 0 PC	\$/Hour	MACHINERY & EQUIPMENT	Qt.	Est. Cost
ļ	A10	Ence	1							NC. CHINEMER.		Ono man
ł	010	BILL 17.250 I.D.	2	ti				İ		THITALATION	f	30 000
Ī		BORG IN. HOIN I.D.	1							TRANSPORTATION		6,000
		BIRG 18, 380 I.O.	5									
шL		CHAME ,09 × 45°	1	21	100		12	10				
-41		- 1 OPER / 2 MARNINES										
	020	TRANSPORT						2.50				
ľ	030	FALS TO LENGTH	3	ti						NC CHURKER	2	600,400
Ļ		TURN 21.125 0.D.	3					ļ		Installation		20,000
		Tuch 19.000 0.D.	1					, 		TRAN PORTATION		4.000
┟		CHAME 30'	2	21	000		2	500			<u> </u>	
\mathbf{F}		- 1 BREA / 2 MARKANES						 				
t	641	TRANSPORT						250				
				┼┟				 				
ŀ	·			┼┦							╀─	
ŀ			1	┼┦							1	
Ī				I				1				

		LABOR	AN	DEC	QUI	PM	ENT	T ESTIN	AATING SHEET Page M	No	
CBS	Number:				P	art:	ĺ	FALING	RETAINER RIVE Part No .: 651137	-4.	٤
	Date: 10/20/80	Q	ty.	/Hel	los	tat:			/ Sheet No.: Of		٤
		PF	ROD	UCTIO	DN E	STI	MAT	E	·	E	QUIPMENT
OPER. NO.	OPERATION DESCRIPTION	Min/Pc	:Hn Pc	NE 3/100 C	5	H 100	ABC	\$/Hour	MACHINERY & EQUIPMENT	Qt.	Est. Cost
050	DRILL (12) . 5 81 Dia 2	2	3	333		3	333		MUCTI Semons Dere		
	BURC	_							TASTALLATION	11	Exan
	······································								TRANSPORTATION	La	PALAY M
	SUMP LOIS 44.		2	5 <u>23</u>		2	<u> (33</u>			<i>On</i>	ne Anes
	Ins PERTION					Z	hes				
	,		Ц						12,97 THEGT	1	62,000
	Torse		\square			37	366		INSTALL MYTON		3000
			┟┤			┞╌┦			TRANSPORTATION		2,000
									GR INDEN	,	- 7
							:		INSTACLATION		10 1
			Ļ						TRANS PORTATION		2,000
						I					
			Γ								
			$\left \right $								

		LABOR	AN	D EC		PM	ENT	ESTIN	ATING	S SHEET	Page	No.	
CBS	Number:				Pa	art:	6	EVATIO.	~ 6 <i>c.</i>	Part P	No.: 651137-	41	
	Date:	. QI	ly./	/Hel	lost	at:		/		Sheet M	lo.: Of		٤
		PI	RODI	JCTIC	DN E	STI	MATI						OLIPMENT
OPER.	OPERATION DESCRIPTION	MAG	CHIN	E			ABO	R		MACHINERY & EQU	IPMENT		1
NO.	OF ERATION DESCRIPTION	Min/Pc	: Hri Pc	¢	Ъ С Е	Hi 100	rs/) PC	\$/Hour				Qt.	Est. Cost
						ļ						<u> </u>	
110	FACE	3							NC	Снискек		3	900.000
	Bore 12. 504 I.D.	5								INSTALLATION			30,000
	Tuer 16. 500 Dia	3								TRANSPORTATION			6.000
	TURN 16.000 Pin	4_											
	TURN 15. 147 Dia	4											
-	CNAME , 13 x 45°	1.5	32	500									
	- 1 OPER / 2 Marainer					16	250					-	
	Total Ara		┼┤										
015 A1A	I CAN JPORT		╉┤				500					+	(
020	FACE 13 CENETH	- 7	┼┤						NC	T		╧	400,000
	Turn 11 and A	12	┼╌╏							LASTACATION	<u> </u>	+	20,000
	10 A 10. 24 6 VIA	5		110		-1				/ RANSPORTATION			Y. 000
	CHAME , 15 X 43	0.5	K AI	167						<u></u>			
10-	- OTEA 2 MORAINES		┼┦			2	113					+	
025	I RANG PORF	120					100		C.	. thereas			d ula sa
050	CUT WORM I EETH	120	200	600					5 64	T		- <u> /r</u>	7,140,000
	- 1 OKa J in Mannes		╈				000			LASPALLATION			180, 190
			┼╌┦							[KANSPO ATTATTO N		+	36,000
			┼╌┦										

4

· -

		L	ABOR	AN	ID EC	QUII	PM	ENT	ESTIN	ATING SHEET Page N	lo	
	CBS	5 Number:4420				Pa	art	: <i>E</i>	: EVAT10	GEAR Part No.: 65 1137-	41	
		Date: 11/5/20	Q	ty.	/Hel	iost	lat:	:		/ Sheet No.: Of .		٢
	OPER.		MA	ROD			STI	MATE	R		E	QUIPMENT
	NO.	OPERATION DESCRIPTION	Min/Po	: Hr Pc	s/100 ; •	6 8 7 7 0 E	H 10	rs/ o PC	\$/Hour	MAUTINERT & EQUIPMENT	ભ.	Est. Cost
	040	DRILL # TAY (12) 5/10 - 11 Hours	, 3	5	600		2	100		Mur Sanas Pare	7	11,000
	150	DAILL & TAP (12) \$10-11 House	3	╞	1 140	$\left - \right $	5	100		JASTACATON TOMA ATTATAN	$\left - \right $	5,000
		P		Ē		H						
		JERAP LOSS 971			667			667		· · · · · · · · · · · · · · · · · · ·		
H-44		INSPACTION	10	+		┝─┢	/6	667		HEAT TREAT INSTALLA WOW		60,000
				\square		\square	04	117		TRANSPORTATION	\square	2,000
			·				2 -			· · · · · · · · · · · · · · · · · · ·		
						H				GKINDER.		201.333
				╉╼┦		┝─┤				INSTALLATION TRANSPURTATION	┠─┤	10,000 2,000
				F		H					\square	
						┢┼┤		$\left - \right $			\vdash	

	L.	ABOR	AND	EQ	UIP	AEN'	F ESTIN	ATING SHEET Page N	No	
CBS	Number: 4420				Par	t: _	Azimur	~ GEAR_ Part No.: 651137-5	16	
	Date:	Q	ly./ł	ieli	osta	l:		Sheet No.: Of		٤
OPER.		PF MAC	CODUC	IOIT:	I EST	LAB	re DR			QUIPMENT
NO.	OPERATION DESCRIPTION	Min/Pc	Hrs/ Pc Q	100		Hrs/ 00 PC	\$/Hour	MACHINERT & EQUIPMENT	91.	Est. Cost
010	FARE	3	┼┼	-+	╋	1		NC LANCKER	3	900, 100
	BORE 1.3956 I.D.	4				\prod		INSTALLATION		30, 100
	THEN N. 506 DIA	1		_		<u> </u>		TRANSPORTATION		6, 100
	TUEN 17. 825 LIA	5	<u>8313</u>	35	_					
- 115-	TRANSPORT		Ħ		(100				
020	FACE TO LENGTH	3	┼┼	+				NC CHUCKER	2	600, 000
	TURN 16,000 Dra	5				1		Instaccarus		21,00
	CHAMF . 13 × 45°	.~				+		TLANDARTON	 	4.000
025	- / BIER / 2 MORH TRANSPORT				2	\$00				
130	Lor WIRM TEETH	120	Rod	00		- 		Gene Housen	18	4. 140. NO O
	- 1 OPER / 6 MARAINES		l i		20	100		TRITALLATION		180.000
						$\frac{1}{1}$		/ RANS DI RTATION		36,000
					+	 		· · · · · · · · · · · · · · · · · · ·		
		1		-†	- -		1	······································	1	

		LABOR	AN	DEC	UIP	NEI	NT ESTI	MATING SHEET Page	No.	
CBS	Number:				Par	t: .	Azimu	-* GEM Part No.: 65/137-9	16	
	Date:/2//80	_ q	lty.	/Hei	iosta	t: _		Sheet No.: Of		٤
		P	ROD	UCTIO	N EST		ATE BOR		E	QUIPMENT
NO.	OPERATION DESCRIPTION	Min/P	rc Hr Pc	s/100 •	C R 70 1	Hrs, 00 F	/ \$/Hour	MACHINERY & EQUIPMENT	Q1.	Est. Cost
ALLA	Dave + Tap (1) 3/1-10	2		-		1 -12		Mure Service Deux	+,	70 000
040	URICC F 147 (G) 14 -10		┦	1		Ť		INSTALLATION	+	1- 100
150	DAIL + TAP (16) 3/8 - 16	3	5	100	7	00	71	TRANS PORTATION	1	2, 100
	Peres Loss 4%.		╀		10	12	8			
						T		L'FAT TREAT	1	10.000
	Instar 10 N	10			16	. 4	:7	INSTALL ATTURS		3,000
			+			Ļ		TRANSPORTAINEN		7,000
	Torac				B	///	2			
		_	-			<u>+</u>		GRINDER	1	202,000
						÷	_	INSTALLAMON	_	10,000
			+	 		+-		TRANCEORTAINON		Z,000
			Ţ			1-				
	······································		╉	 			_		+	
						1				
		_					_	· · · · · · · · · · · · · · · · · · ·		
										L

<u> </u>		LABOR	AN	D E(QUI	PM	ENT	ESTIN		Page No.	
CBS	Number: 44.20				Pa	art:	:_4	llora	Part No.:	137-59	
	Data:	Q	ly.	/Hel	ios	tat:			2 Sheet No.:	Of	2
OPER	,	PI MAG	RODI	UCTI	ON E	STI	MATI	E R		E	QUIPMENT
NO.	OPERATION DESCRIPTION	Min/Po	:Hr Pc	s/100 ¢	(* *) (**)	H: 100	rs/ p PC	\$/Hour	MACHINERY & EQUIPMENT	Qt.	Est. Cost
010	FACE		$\left \right $	i I					NC BAR MACNINE		1.500,00
	TURN O.D.	3							TATALATNY		50, 100
	DRILL, TAP & C'BORG	3							TRANS PORTATION		10, 100
	TURN 3.437 Pil	3							<u>\</u>		
	TURN 2. 393 Din	3	Ц	 	<u>`</u>						
; 	TVEN 2. 016 Dis	2									
	CHAMFER	.~	Ц								
·	CUT- Off	2	21	167							
	- Use Pee-Herr	_									
	TREATED AITRIDING STEEL										
	- 1 OPER / 2 M OCH INFO					W ₁	27				
OKT .	TRANSPORT	_	μ	L			\$00		· · · · · · · · · · · · · · · · · · ·		<u></u>
020	FARE TO LENARD	1	Г						NL CHRARA	3	910,000
	CENTER	.5			,				INSTALLATION		30, 100
	TURN 3.437 Dia	3	L						TRAKS PORTATION		6.000
	TURN 2. 393 Dia	3		L					·		
	CHAMPER	2.	3	553		3	353				
				l		\square					
						·					

	Ļ	ABOR	AND	EQ	UIP	MEI	IT ESTIN	ATING SHEET Pa	ige No.	
CBS	Number:				Pa	rt: .	Wor	Part No.: 65113	1-59	
	Date:	Q	ty./ŀ	el i	osta	et: _	2	Sheet No.:	Of	٤
OPER.		PI MA	RODUC	TIO	N ES	LA	TE - BOR		E	QUIPMENT
NO.	OPERATION DESCRIPTION	Min/Po	c Hrs/ Pc Ø	00	R D E	Hrs, 100 P	C ^{\$/Hour}	MACHINERT & EQUIPMENT	વા.	Est. Cost
030	Lur WORM	86	I			i		Thacas CRINDER	30	4.350,000
	- 2 lurs							INSTALLATION		30.10
	CHAMPAR WORM EDGE	18						TRANSPORTATION		60.00
	- Not SIMAN ON PRINTS	<u> </u>	70 A	0						
	- Open / 6 Margines		╉╬	╉	-#	<u>8/33</u>	3			
040	GRIND THREAD	30	50 00	ro	+			O. D. GRINAGE	9	1.110,100
	-1 Open / 2 Machinas					0 10	0	Instancastan		90,000
	r	ļ						TRANSOLTATION		18.000
150	GRIND 2, 3765 DIA	6			_					
	- 2 PLALES	ļ								
	GRINO 2.000 DIA	3	10	8		2 pt	0	GRINDER	3	600. 100
		<u> </u>			_			INSTALLATION		30,000
	NITRIDE	ļ	\downarrow	_				TRANS 10 ATOTION		6.000
	- LOAD / VALOAD					2 00	<u> </u>			
	Yelap Loss YY.			+	╉	+				
	INSPECTION	10	<u></u> ↓ ↓ ↓			64	2	HEAT THEAT		82,500
								INSTALLAYION		4,500
	Torac				_/	641	6	Taches DOR MALLOW		2,500

.

HELIOSTAT MIRROR MOULE PRODUCTION EQUIPMENT COST

WORM (deat Treat)

SHEET OF

	MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERAGE YEARLY MAINTENANCE COST	TOTAL COST
	Induction heater Work Station 0L - 204	1	⁸ 9.5K	*.5k	.sk	10 ⁺ egrs.	*sk	\$ 10.5K
H-49	Weld. Seanner 30"Atrokes (06.103)	ł	*23K	i.sk	81.5k	10 yrs		\$ 25 K
Ū	Ruenek System	t .	*16 K	s.ste	\$.5k	Iotyre	^{\$} IK	\$ 17K
	Cooling System	/	* 6K	*.5K	*.5k	10tyro	* stc	\$ 7 4
	Pawer Source Kookw, IOK HZ.	1	28K	*.sk	\$1.5k	10tyna.	_	50 K
			82.5K	2.5K	4.512			

	L	ABOR	AND) EQ	VIF	MEN	T ESTIA	ATING SHEET Page	No.	
CBS	5 Number:4420				Pa	rt: 🚄	LEVATIO	AN HOUSING Part No.: 65/137-9	18	
	Date:	Q	t y./	Heli	iost	at:		Sheet No.: Of	_2	
OPER.		PF MAC	CHINE	СТЮ	N ES	LAB	'E DR		E	QUIPMENT
NO.	OPERATION DESCRIPTION	Min/Pc	Hrs/ Pc Ø	/100	с 7 Д Е	Hrs/ 100 PC	\$/Hour	MACHINERT & EQUIPMENT	Q1.	Est. Cost
010	Mice borrow Face	5				<u> i </u>		IntegRATE MANDELT VENTE SYSTEM		5,00,000
	Dance & Ream (2) . 812 Hours	2				<u> </u>		on Transier Lins	_	
	- Use for Locarion		Ļļ							
	DAILL (4) . 112 Dro Hours		133	33						
ļ	- INDER FINTORE					<u> </u>				
120	Mice To 26.5 Dim	2				<u> </u>				
<u>۳</u>	Pore 1. 504 Dia	5				<u> </u>				
ő †	BORE 1. 711 Din & CHARE 15"	2	\square			<u> </u>			_	
	DAIL & TAP (4) 48-16 Holes	2						· · · · · · · · · · · · · · · · · · ·		
	DAILL & TAD (1) NPT 1/2-13	-/	2010	60				(CONTRACLING TIME)		
	- Kome Fromas			-+	_					
030	Mile Fare To 4.395 Dim	10	<u> </u>	-						
	Bara 19.005 DIA # 7	10	μĿ			- i			-	
	BARE 19. 152 Dia 5	(10)			<u> </u>					
	CHANE, 09 × 45	2			_			/		
	DRILL & Two (12) 1/2 - 13 Hours	12	K/0 0	00				(2 Journary)		
	- INDER TABLE	 	┣-┡-							
840	MILL FARE TO P. 250 Dim	5								
	Bare 5.125 Dia	12	μĻ			<u> </u>				
	DAIL & TAD (4) 1/2-16 Hours	2								
	MILL FALE TO 10.812 Pim	(7)								

			LABOR	AN	ID E	QUI	PM	EN.	_STIN	MATING SHEET Page No	
	CBS	Number:4420				P	art	: <i>E</i>	LEVANO	An HOUSING Part No.: 65/137-40	
		Date:/// 10	Q	ty.	/Hel	los	tat	:		Sheet No.: Of	
	OPER.		PI MA	ROD	UCTI		EST	LABC	E R		ENT
	NO.	OPERATION DESCRIPTION	Min/Po	e Hr Pc	s/100 0	2	H 10	irs/ 0 PC	\$/Hour	Qt. Est.	Cost
		DRILL . 500 Dia	(3)		<u>i</u>		Ļ	<u> </u>		·	
		DAILL & TAP (4) 14-20 HoLAS	(2)	31	667	'	_	 	 	2 STATIONT)	
	10	- INDER THESE		╞	1		╋─	 		· · · · · · · · · · · · · · · · · · ·	
	050	- INDRY TABLE	- <u> </u>	╞			┢				
		DAILL & TAD (1) 1/2 NPT	2	3	333		1-	j ·			
H-5	-										
-		Seens Loss 4%	_	12	135		1	133			
	<u></u>	2. Open / Lina	-	╀╴	 		2/	110		Assumase Bris Lines Cares Proports	
								[200 traveras Housmas / 5 Javars	
		INSPECTION			<u> </u>		16	800			
		·			<u> </u>	<u> </u>	-	 			
		Torne	_	+	<u> </u>		K r	133			
				╀╴	ļ		╆─	┨───			
			-	╋	∤ ↓		╞	1			
					<u> </u>						
				╇	<u> </u>		 				

<u> </u>	L	ABOR	AN		QUI	PME	NT E	STIN	AATING SHEET	Page N	o	
CBS	Number: 4420				Pa	art: /	Az 1.	nurn	Housing Part No.: _6.	(1137-4.	~	
	Date:	Q	ty.	/Hei	lios	tat: .			/ Sheet No.:	/ Of		2
OPER.	OPERATION DESCRIPTION	PI MAG		UCTI		STIM.	ATE		MACHINERY & EQUIPMENT		E	QUIPMENT
NU.	•••••••••••••••••••••••••••••••••••••••	Min/Po	Pc	\$/100 • 0	<u>}</u>	100	PC \$/	'Hour			Qt.	Est. Cost
010	FACE	5		i		<u> i </u>			INTEGRATES MARNING CENTER	or	/	5, 101, M
	BORK 17. 502 DIA	(10)							TRANSPER LINS			
	Bake 18. 000 Dra	5	<u> </u>	<u> </u>						·		
	Balle 18.504 210	10										
	FACE STEP	5	¥.	667	1				· · · · · · · · · · · · · · · · · · ·			
	- INDEY TABLE		L						· · · · · · · · · · · · · · · · · · ·			
120	Spor Face	3.									<u> </u>	
	BORE 5.127 Pia	12	L	 								
·	C' Bare 6.875	3		<u> </u>								
	DAILL & TAD (8) 3/8 -16 Holes	2	33	333								
	- INDEX TABLE			<u> </u>					······································			
020	MILL FALL TO 3, 155 DIM	5		Ļ		- i -						
	BORG 1. 504 Dia	2										
	C' Bollo 1. 711 Dia e. 15° Carone	3		 								
	DRILL & TAP (4) 3/8-16 Houss	Ĺ	78	353								
	······································			┣──								·
	- INDEN TARIA	<u> </u>	\mathbf{H}	 		 						
		 		ļ								
		 		ļ								
		 		<u> </u>		μĻ						

Ĺ	ABOR	AND E	QUI	ATING SHEET Page N	lo	· · · · · · · · · · · · · · · · · · ·				
Number:		_	Pa	art:	A	BIMUTI	Part No.:	15-		
Date:/// +0	Q	ly./Hei	iosi	tat:			/ Sheet No.: Of _		2	
	PF MAC	RODUCTIO	DN E	STIN	ABO	E DR		E	QUIPMENT	
OPERATION DESCRIPTION	Min/Pc	Hrs/100 Pc e		Hr 100	s/ PC	\$/Hour	MACHINERY & EQUIPMENT	Qt.	Est, Cost	
		<u> </u>		ļļ						
VAILL & TAP (12) 71 - 11 Abily	$\frac{2}{2}$			┝┼						
(1) 3/4 NPT	2	ti		Ħ	,					
I (11 1/2 NPT	2	10 000								
	 						·			
SCRAP LOSS 4%		4800		41	00				• •	
I Office / MARHINE				7/1	100 100		HSSOMED ONE LINE RUNNING		•	
· · · ·										
Toral			·	<i>44</i>	W		······································			
	<u> </u>			-i						
·····										
									۰.	
	 									
		 _ 		┝┼				$\left - \right $		
· · · · · · · · · · · · · · · · · · ·	<u> </u>								· · · · · · · · · · · · · · · · · · ·	
	Number: 4490 Date: $11/1/10$ OPERATION DESCRIPTION Date: $11/1/10$ Date: $11/10$ Date: $11/100$ Date: <	LABORNumber: $\frac{1/1/42}{200}$ QtDate: $\frac{1/1/42}{1/1/42}$ QtOPERATION DESCRIPTIONDAILL & Tao (12) $\frac{1}{10}$	LABOR AND EdNumber: 4420 Date: $4/1/10$ PRODUCTIONOPERATION DESCRIPTIONMin/Pc Hrs/100ProductionMin/Pc Hrs/100ProductionDAILCL & Two (rd) $4/r$ - 11 AbussQ (rd) $4/r$ - 12 AbussQ (rd) $4/r$ - 13 (rd) $4/r$ - 13 (rd)Q (rd) $4/r$ - 13 (rd) $4/r$ - 13 (rd)Q (rd) $4/r$ - 13 (rd) $4/r$ - 14 (rd) $4/r$	LABOR AND EQUI Number: 4420 Production Date: 4420 Date: 4420 OPERATION DESCRIPTION PRODUCTION E DAULL & T_AO (42) 4/0 - 11 //budy 2 I DAULL & T_AO (42) 4/0 - 11 //budy 2 I DAULL & T_AO (42) 4/0 - 11 //budy 2 I DAULL & T_AO (42) 4/0 - 11 //budy 2 I DAULL & T_AO (42) 4/0 - 11 //budy 2 I DAULL & T_AO (42) 4/0 - 11 //budy 2 I DAULL & T_AO (42) 4/0 - 11 //budy 2 I I I I I I I I I I I I I I I I I <th co<="" td=""><td>LABOR AND EQUIPME Number: $\frac{14/30}{100}$ Part: Date: $\frac{11/1/10}{100}$ Part: Date: $\frac{11/1/10}{100}$ Part: OPERATION DESCRIPTION PRODUCTION ESTIN MACHINE L DIMUL & T_no (nd) $\frac{1}{10} - \frac{11}{100}$ MACHINE L DIMUL & T_no (nd) $\frac{1}{10} - \frac{11}{100}$ MACHINE L DIMUL & T_no (nd) $\frac{1}{10} - \frac{11}{100}$ MACHINE L L DIMUL & T_no (nd) $\frac{1}{10} - \frac{10}{10}$ MACHINE L L DIMUL & T_no (nd) $\frac{1}{10} - \frac{10}{10}$ MACHINE L L L DIMUL & T_no (nd) $\frac{1}{10} - \frac{10}{10}$ L L L L DIMUL & T_no (nd) $\frac{1}{10} - \frac{10}{10}$ L L L L L L L <</td><td>LABOR AND EQUIPMENTNumber:4430Part: 4Date:$4/4/20$Qty./Heliostat:PRODUCTION ESTIMATMACHINEOPERATION DESCRIPTION<math>MachineLABOMin/PcHrs/2Hrs/100 %Prove11<math>MachineLABOMin/PcHrs/2Hrs/100 %Prove11<math>MachineLABOMin/PcHrs/2Hrs/100 %Prove11<math>Machine21<math>Machine21<math>Machine21<math>Machine21<math>Machine21<math>Machine21<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine1<math>Machine1<math>Machine1<math>Machine<t< math=""></t<></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></td><td>LABOR AND EQUIPMENT ESTIM Part: Asianver Date:</td><td>LABOR AND EQUIPMENT ESTIMATING SHEET Page N Number: </td><td>LABOR AND EQUIPMENT ESTIMATING SHEET Page No. Number: Labor Part Monime Part No.: Labor Dete: </td></th>	<td>LABOR AND EQUIPME Number: $\frac{14/30}{100}$ Part: Date: $\frac{11/1/10}{100}$ Part: Date: $\frac{11/1/10}{100}$ Part: OPERATION DESCRIPTION PRODUCTION ESTIN MACHINE L DIMUL & T_no (nd) $\frac{1}{10} - \frac{11}{100}$ MACHINE L DIMUL & T_no (nd) $\frac{1}{10} - \frac{11}{100}$ MACHINE L DIMUL & T_no (nd) $\frac{1}{10} - \frac{11}{100}$ MACHINE L L DIMUL & T_no (nd) $\frac{1}{10} - \frac{10}{10}$ MACHINE L L DIMUL & T_no (nd) $\frac{1}{10} - \frac{10}{10}$ MACHINE L L L DIMUL & T_no (nd) $\frac{1}{10} - \frac{10}{10}$ L L L L DIMUL & T_no (nd) $\frac{1}{10} - \frac{10}{10}$ L L L L L L L <</td> <td>LABOR AND EQUIPMENTNumber:4430Part: 4Date:$4/4/20$Qty./Heliostat:PRODUCTION ESTIMATMACHINEOPERATION DESCRIPTION<math>MachineLABOMin/PcHrs/2Hrs/100 %Prove11<math>MachineLABOMin/PcHrs/2Hrs/100 %Prove11<math>MachineLABOMin/PcHrs/2Hrs/100 %Prove11<math>Machine21<math>Machine21<math>Machine21<math>Machine21<math>Machine21<math>Machine21<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine11<math>Machine1<math>Machine1<math>Machine1<math>Machine<t< math=""></t<></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></td> <td>LABOR AND EQUIPMENT ESTIM Part: Asianver Date:</td> <td>LABOR AND EQUIPMENT ESTIMATING SHEET Page N Number: </td> <td>LABOR AND EQUIPMENT ESTIMATING SHEET Page No. Number: Labor Part Monime Part No.: Labor Dete: </td>	LABOR AND EQUIPME Number: $\frac{14/30}{100}$ Part: Date: $\frac{11/1/10}{100}$ Part: Date: $\frac{11/1/10}{100}$ Part: OPERATION DESCRIPTION PRODUCTION ESTIN MACHINE L DIMUL & T_no (nd) $\frac{1}{10} - \frac{11}{100}$ MACHINE L DIMUL & T_no (nd) $\frac{1}{10} - \frac{11}{100}$ MACHINE L DIMUL & T_no (nd) $\frac{1}{10} - \frac{11}{100}$ MACHINE L L DIMUL & T_no (nd) $\frac{1}{10} - \frac{10}{10}$ MACHINE L L DIMUL & T_no (nd) $\frac{1}{10} - \frac{10}{10}$ MACHINE L L L DIMUL & T_no (nd) $\frac{1}{10} - \frac{10}{10}$ L L L L DIMUL & T_no (nd) $\frac{1}{10} - \frac{10}{10}$ L L L L L L L <	LABOR AND EQUIPMENTNumber: 4430 Part: 4 Date: $4/4/20$ Qty./Heliostat:PRODUCTION ESTIMATMACHINEOPERATION DESCRIPTION $MachineLABOMin/PcHrs/2Hrs/100 %Prove11MachineLABOMin/PcHrs/2Hrs/100 %Prove11MachineLABOMin/PcHrs/2Hrs/100 %Prove11Machine21Machine21Machine21Machine21Machine21Machine21Machine1Machine1Machine1Machine$	LABOR AND EQUIPMENT ESTIM Part: Asianver Date:	LABOR AND EQUIPMENT ESTIMATING SHEET Page N Number:	LABOR AND EQUIPMENT ESTIMATING SHEET Page No. Number: Labor Part Monime Part No.: Labor Dete:

.

		LABOR	AN	D E	QUI	PMI	ENT	ESTIN	ATING SHEET Page No	»	
CBS	5 Number:				P	art:	k	ANSTAN	y France Part No .: 651137-52	, 	
	Date:	Q	ty.	/Hel	lios	tat:	<u></u>		2 Sheet No.: Of	2	<u> </u>
OPER. NO.	OPERATION DESCRIPTION	PI MA(Min/Po	ROD CHII	UCTIONE	ON E	STI L Hr	ABO	E R \$/Hour	MACHINERY & EQUIPMENT	E Qt.	QUIPMENT Est. Cost
010	FACE	2			Ē				NC CNUCKER	4	7.28, 100
	Boke 1.637 Dia	8	-	1					INTERCATION		20 000
	Citigue , 66 × 45	0.5	22	500		$\left \right $			TRANS DO ATATEON		7,000
	- 1 OPER / 2 MOUNINES					//	250				
015	TRANSMAT						250		· · · · · · · · · · · · · · · · · · ·		
120	FARE TO LENGTH	3	1	1000		3	600		NC CARRIER	7	120,000
021-	Thansport		$\left \right $				250		TRANS MATOTION		51, AD
020	ROULD MILL S. 00 CADINS	•	╀	 		╞┊			Mu	34	300000
	Sien /	#	-	ļ					Iduraliarion		2000
	Finisa Mac			↓ ↓		<u></u> ┤─┤ ┤─┧			/ KARS ZO CTATION		
	Side 2	4	90	1000			 1.1.7				
140	1- OPER & Macaines		<u> </u> _	<u>در در</u> 	-		20				
-				1			~~0				

	1	ABOR	AN	DEC	วบเ	PM	ESTIN	ATING SHEET Pa	ge No.		
СВ	5 Number:				Pa	art	:	LANG	My FRAME Part No.: 65113	7-52	······································
	Date:////50	Q	ly.	/Hel	ios	tat	:		ع المحمد المحم المحمد المحمد ا	Of	2
OPER.		PF MAC	ROD CHIN	UCTIO	DN E	STI	MAT	E DR			QUIPMENT
NO.	OPERATION DESCRIPTION	Min/Po	: Hr Pc	s/100 Q	0 2 7 0 E	H 10	rs/ 0 PC	\$/Hour	MACHINERY & EQUIPMENT	Qt	Est. Cost
060	DAILL & BORG (2). 627 D.A	3	1	000		~	000		MULTI SAMOLE PARL	/	70,000
			┨						IN STALLATION		1.000
	Sclar Loss 4%.		2	910	-	2	900		Than Naraszon		2,000
	INIPERTION		L			Ζ	ss				
		<u> </u>									·
н л л	Torm					45	910				
						<u>3</u> 2	567				
							L		· · · · · · · · · · · · · · · · · · ·		
	·	 							-		
		4		L			, 				
						-	<u>`</u>				
		1				-1		······			
		1		1							

	Ł	ABOR	AN	D EC	QUI	PMI	ENT	ESTIN	NATING SHEET Page	No.	
CBS	Number:				P	art:	Z	ANGTA	ARY COUSE Part No.: 651137-3	1	
	Date: 11/4/50	Q	ty.,	/Hei	ios	tat:			2 Sheet No.: Of		2
OPER.	OPERATION DESCRIPTION	PI MA	RODI	JCTIC E	DN E	STIN L	ABO	R	MACHINERY & EQUIPMENT	E	QUIPMENT
NU.		MIN/P	Pc	6 6	2	100	PC	\$/Hour		Qt.	Est. Cos
010	FACE	3				l			NC CHUCKER	8	1,440,00
	TURN 7.499 Dia	5							INITALATION		80,00
	BORG 1.250 DIA	3							TRANIPORTATION	_	16,10
	TORN 1.625 DIA + FACE	5				Ļļ					
	BORE 5,375 Dia	5				Ļļ					
	BILL 6.753 DIA	5									
	- 1 DIER / 2 MARNINES	<u> </u>	13	333		k/	(17				
120	TRANSPORT		ţ				20				
030	FALL TO LANKTH	3							NC CHARREN	4	720. Mg0
	Bars 2. 1257 DIA	5					_		In I stallarian		40,000
	C' BORG 2. 192 DIA	2							TRANS 10 ASASSIM		8,000
	Cur I.D. GRANNE	2									
	CHAME , 193 × 45°	2	23	333							
	- LOCATING PLUG ON FACE		11								
	PLATE		┼╌┼								. <u>.</u>
	- 1 Open / 2 Martines		┼┼			// 1/	67				
040	TRANSPORT					k	250		· · · · · · · · · · · · · · · · · · ·		

•

		L	ABOR	AN	D EC	QUIF	M	ENT	ESTIN		Page No.		
	CBS	Number: <u>4420</u>				Pa	rt:	Ĺ	ANETA	est laver Part No.:	(1137- J	-1	
		Date:/4/51	Q	l y .	/Hel	iost	at:			2 Sheet No.:	<u>≠</u> 0f .		2
ł	OPER.		PI MAC	ROD CHII	UCTIONE	DN ES	ST IA L	ABO	E R			E	QUIPMENT
	NO.	OPERATION DESCRIPTION	Min/Po	: Hr Pc	s/100 Ø	٦ ₂	Hr 100	s/ PC	\$/Hour			Q1.	Est. Cost
	050	Darce (6) . 406 Dra Hocas	/		İ		ļ			MULTI SANDLE DEILL		3	210,000
		Buen	1	3	333		_			INSTALLATION		 	15,000
				╞	1					TLANS DO ATTION			6,000
	060	VAILL & TAP (6), 250 Lin	2	3	333					·			
H-5	070	Dance & Two (4) 1/4-20 Hoves	2	3	333					· · · · · · · · · · · · · · · · · · ·			
57	- 050	DAIL + TAD (3) 1/4 NPT	2	3	333		3	332					
	<u>.</u>	Schar Lics 4%.		3	200		3	200					
		INS 1BETINA					₹ŗ	680					
			<u> </u>				-+			· · · · · · · · · · · · · · · · · · ·	·. ·.·································		
			·			 	1				<u></u>		
		/ orse	 	-				366					
			 				╉				· · · · · · · · · · · · · · · · · · ·		
			 		 		1						·
							T				<u></u>		
i													
	·						1						
	L	ABOR	AND	EQ	UIP	IEN	TESTI	MATING SHEET Page	No.				
-------	-------------------------	----------	----------------	-------	-------	---------------	----------	---------------------------------------	-----	-----------			
CBS	5 Number:4420				Par	t:∠	PLANET	Act Housing Part No .: _651137-	-51				
	Date:////30	Q	ty./ł	lei i	osta	t:	ė	Sheet No.: Of		7			
OPER.		PI MA	RODUC	TIO	N EST	IMA'	TE OR			QUIPMENT			
NO.	OPERATION DESCRIPTION	Min/P	c Hrs/ Pc O	100		Hrs/ 00 PC	\$/Hour	MACHINERY & EQUIPMENT	Qt	Est. Cost			
010	Face	\$	I					NC CHUCKER	3	540,000			
	TURN 5.124 DIA.	5		_		1		Instaccaroon		15.000			
	FALE To . 627 Dia	2	16 6	67		<u> </u>	4	TRASPLATION		6.000			
	-1 Open / 2 Morning	ļ			- 19	1339	4						
020	TRANSPORT					250	ø						
		ļ				1				ļ			
030	FACE TO LENATH	4				<u> </u>		NE CAUCRAR	12	360,000			
	BORG 7. 502 DIA	3	1160	17		<u> </u>		Insinguarien		10,000			
	- OPER 2 MARNINGS	ļ		_		185	4	TRANS PORTATION		4.000			
040	TRANSPORT	Į	┼┼			20	»		_				
050	DAILL & TAD (6) 3/8 -16	2	3 3	13	3	133,3	•	MULTI SANALE PRILL	1	70.000			
			T					INSTALLATION		5,000			
		[1		Teansperson		2,000			
060	Dance & Sar Free (P)	2	33	33	3	1357	-	· · · · · · · · · · · · · · · · · · ·					
	.406 Pra Hocas			1	1	†			1				
	Scame Loss 44.		/ 15/	-	+	400	,	· · · · · · · · · · · · · · · · · · ·					
	Inflaction		1	_	1	1 sa	1		1				
]	TA			-		100	ļ	· · ·	+-				

	L	ABOR	AN	DEC	QUIP	ME	NT	ESTIN	ATING SHEET Page N	ło	
CBS	Number:4420				Pa	rt: ,	Pin	NERA	Gran Wes Part No.: 651137-	-57	
	Date:	Q	ty.	/Hel	iosta	at: .		•	2 Sheet No.: Of	-	2
OPER. NO.	OPERATION DESCRIPTION	PI MAC Min/Pc	CHIN CHIN	UCTIO NE 100	ON ES	TIM. LA Hrs	ATE	R \$/Hour	MACHINERY & EQUIPMENT	E	QUIPMENT
A1A	The 7 MA 1 R	2	Pc	• i	E E	100	PC		NI Luncusa		9 H 44
010	Bace 2 218 TD	$\frac{3}{\sqrt{2}}$	+			╈	+		Turner		25 44
	Brille 2.630 Dia	3	+			Ť			TIANI MOTATION	┼─	10.00
	Ball 6.753 Dia & FALE	4	1			Τ	╡			1	
	BORE S. 375 & 30' ANGLE	3	28	335		14/1	11				
	- 1 Open / 2 Marxines										
820	FACE TO LENGTH	3	╉		$\left - \right $	+	-		NC CHUCKER	17	180,000
<u>.</u>	CHAME . 662 × 45°	0.5	5	853		5 1.	13		INITALLATION		5 000
									TRANSPORTATION		2,000
025	TRANSPORT				$\left - \right $	-12	ro		· · · · · · · · · · · · · · · · · · ·		
030	BRBACH , SOO KEYWAN	0.5		133		1	53		Веластик Мания	1	150, 100
									Instructor		S, HO
035	TRANSPORT		-	ļ		R.	50		TLANS PORTHON		2, 100
140	DRILL (6).250 Dia Hores	2	3	353		3 17	33		MULTI SANOLE DELL	2	140,000
	* Buen						T		INSTALLATION		10,000
	DRILL & TAO (6) 1/4 - 20 Hours	3	7	100	Ļ	rla	00		TLANS POATATION		4. 100
	- FIXTURE TO LOLATE FROM KEY										
	- 1 SPER / 2 MACHINES										

.

ſ			LABOR	AN	D EC	QUI	PM	EN'	r estin	ATING SHEET Page N	o	•••••••••••••••••••••••••••••••••••••••
ľ	CBS	Number: <u>4420</u>	•			Pa	art	: 2	Carem	- 4 Gen Wes Part No.: _ 65-1137-	<u>; ک</u>	1
		Date:4/50	. Qt	y.	/Hel	ios	tat	:	-	2 Sheet No.: Of _		<u> </u>
ľ	OPER.		PR MAC	OD	UCTIO		STI	MAT	e DR		E	QUIPMENT
	NO.	OPERATION DESCRIPTION	Min/Pc	Hr Pc	s/100 Ø	٦	H 10	rs/ 0 PC	\$/Hour		91.	Est. Cost
		Serra Loso 4%.		,	735		1	755	r			
		The Arrived						an)		$\left - \right $	
ļ												
ļ		Tork					3.2	399	}			
н-60			_					 				
ł		· · · · · · · · · · · · · · · · · · ·						 				
ļ								 		· · · · · · · · · · · · · · · · · · ·		
ł								├ ├				
ł										·		
		·····										
t								 				

		LABOR	ANI	D EC	QUI	MEN	IT ESTI	MATING SHEET Page N	10.	······
CBS	Number: 44.20				Pa	irt: "	Prima. Secono.	2 C 2 Shart No.: 651137-3	<u>)</u>	<u>e 72</u> 2
	Date:	. v	τ γ ./	Hei	1051	at: _		Sheet No.: 01 .		
OPER.		P	RODL CHIN	ICTIC E	DN E	LAI	TE BOR		E	QUIPMENT
NO.	OPERATION DESCRIPTION	Min/P	c Hrs Pc (/100 9		Hrs/ 100 P	c \$/Hour	MACHINERT & EQUIFMENT	Qt.	Est, Cost
110	Fare	3	┼┤			+		NL Bar Macmine is Aun Langue	5	1:251.000
	TUEN 6. 803 DA	3				Т		THISTACLASTIC	1	SD NO
	THEN 6.751 DIA	2	13	333				TRANS ARCTATION		10,000
	- CHUCK I.D.									
-020	FARE TO CENARN	3	+					NL CHUCKER	1	900, 100
	Cola 4.9387 0.0	4	//	667				Torstaclarion		30 000
	- 1 Open / 2 MARAINES					12 50	0	Thans correried		10,000
	- CADIR U.U.	_							-	
025	TRANSPORT					- 25	8			
030	LUT GEAR TEETH	24	461	661		+		Gem Hosser	16	3. 6'80. MO
	- 3 Pes Ar A TIMA							Ins rollarion		160, 100
	- 1 Deca / G MAN		Ļi			2/2/	8	TLAN 10 A FATURA		32.M
840	TRANS PORT		łł			21	8			
			┼┼			1	-	······································		

	·	LABOR	AND	EQ	UIP	MEN	NT ESTIN	ATING SHEET	Page No)	
CBS	5 Number: <u> </u>	Qt	¦y.∕I	leli	Pai osta	rt: / 	PRIMARY ECONDAN	Rink Gean Part No.: LS 2 e 2 Sheet No.: 2	<u>//37 - 7/</u> L Of	t	<u>78</u> 2
OPER.		PR MAC	CHINE		N ES		ATE BOR			E	QUIPMENT
NO.	OPERATION DESCRIPTION	Min/Pc	Hrs/ Pc O	100		Hrs/	c ^{\$/Hour}	MACHINERY & EQUIPMENT		Qt.	Est. Cos
150	DAILL & C'BORG (6)	/	16	12		146	2	MULTI SAMOLE PRILL		۲	140,000
	, 281 Acces	_		_	_		_	INSTACLATION			10,000
						1		Than warmound			4.00
160	Dance (6) . 250 Hours	-/-	16	67	-4	146	2				
010	Dance, C'BORE & The	1	11	67		14	2				
	(3) 14-20 Hocas		$\left \right $	-							
180	HEAT TREAT										· · · · · · · · · · · · · · · · · · ·
	Schap Lows 44. One		310	17		3 04					
	810, 130, 130, 850, 860, 870					+-		· ••••••••••••••••••••••••••••••••••••		_	
	In DATTO N.				1	37	3				
			Ļ	-							
	Torax		┝┼╴	-+	-3	Z/2	8			_	
	4	-				1					
		_									

			LABOR	AN	ID E	QUI	PM	ENT	ESTIN	ATING SHEET Page	No.	
	CBS	Number:	-			Pa	art:	: <i>L</i>	laner	Gene Part No.: 651137	- 55	
		Date:/3/30	. q	ty.	/Hel	liost	tat:			Sheet No.: Of		2
	OPER. NO.	OPERATION DESCRIPTION	P MA Min/P	ROD CHII	NE S/100	ON E	STI L	MATI	E R \$/Hour	MACHINERY & EQUIPMENT	E Qt.	QUIPMENT Est. Cost
	010	Free	/			Ē				NC MULTI SAMOLO BAR MACATAG	5	800, 100
		TVEN O.D. Rece T.D	2	+	 					Installa TON	+	25,000
		CUT - OFF	2	1	100							70,000
	020	- Oper 2 Much Temis Mat		┢	! 		2	510 250				
H-63	-	Cana I. Leven	~		10			0		Reading	12	100,000
		- 30 To 40 Pes Ar One Tone		1						INISALAMON	É	1.100
	040	TRANSMAT		+	 		└ ↓ └ ∤	250		TRANSPORTATION		4:000
	00	Luz Gene Teern		18	333	$\left - \right $				Gene Horaca	12	710.000
		- 3 To 4 Ar A TIME		\downarrow	ļ					INITALLAT NA		\$1,000
	060	- / OPER / 2 PIDEN TRANSMET		╞	↓ ↓		Z -	250		/RANSFORTHTIDA	1	19,000
	070	MILL 3.0 RADIUS Side 1	1 2	+	 				_	MILLINE MALAINS	3	301,100
		Mice 3.0 " "	2 2	6	667		21	667		INSTALLATION	-	15,000
		- 10 PES AT A TIME		\mathbf{T}						/ KANSPORTATION		¢,000

			ABOR	AN		QUI	PM	ENT	ESTIN	ATING SHEET Page N	10.	
Ĩ	CBS	i Number:				P	art	: 2	LANET	Gen Part No.: 651157-	55	
		Date:/ 5/00	Q	ty.	/Hel	ios	tat	:	4	Sheet No.: Of	ہ 	٤
	OPER.		PF MAC		NE		STI	LABO	E R		E	QUIPMENT
	NO.	UPERATION DESCRIPTION	Min/Pc	: Hr Pc	s/100 0		H 10	o PC	\$/Hour		91.	Est, Cost
	18	Hear Theat			<u>i</u>			İ			_	- <u></u>
		NITRIDE	_	_	1	 		 		·		
		Long / UNIONO		┢	<u> </u>			500			1	
				-	<u> </u>			 				
	890	HoNG I. P.	•/	Z	467			447		Auromarn Here	/	15,000
F		· · · · · · · · · · · · · · · · · · ·	<u> </u>							INSTAG Arren		2,00
64		Scare Loss 4%. 010,000	<u> </u>	K	469		Z	669		TRANSMATATION	 	1.000
┟		050, 070, 010	- 	-	 							
ł	·	Inspection		┢	<u> </u> 		8	333		· · · · · · · · · · · · · · · · · · ·		
		TOTAL					36	303				
					 			 				
ļ					 							
┟												·
ŀ					ļ							
╞					<u> </u>							
ł					I						$\left - \right $	

	L	ABOR	AND E	QUI	PMI	ENT	ESTIM	ATING SHEET Page N	10.	
CBS	Number: 4420			P	art:	<u>P</u> .	ANEMA	9 Port No.: _65/137 - 5	· 4	
	Date:	Q	ty./He	lios	tat:		4	2 Sheet No.: Of		2
OPER.		PF MAG	RODUCT		ESTI	ABO	R		Ē	QUIPMENT
NO.	OPERATION DESCRIPTION	Min/Po	Hrs/10 Pc Ø	0 3	H: 100	rs/) PC	\$/Hour		Qt.	Est. Cost
010	TURN 1.389 Dia	5	I					NL BAR MARME	3	900,000
	TURN 1.147 Dia	5						INITALLATION		25,100
	MACAINE UNSELLUT 1.063 Dia	/						TRANS PO APATION		10, 100
	TURN . 741/. 145 Gam D.D.	1								
	CHAME . 185 × 450	./								
	GEAR UNDERCOT	1								
	Cor DEE	2	31 000			,				
4	- 1 Oper / 2 Manines				27	000		·		
015	TRANSPORT					20				
020	FALL TO LENKTH	1						NE CAURICE	2	361, 100
	GUN DRILL FOR . 625 Dia	3						INSTRUCTION		10,000
	GUN REAM . 625 DIA	1						TRANS AS RETOFICAN		4. 200
	MACNINE UNOSALUT I. D.	1								
	CHAME . 062 × 45'	1.5	10 83	7						
	- 1 pper / 2 Marnues		II		5	417				
030	TRANSPORT					250		<u></u>		
					Π					
140	BROACH 3/16 KEYWAY	2	3 333	,	3	333		BLOACHMG MACNING	1	1.59 000
								INSTALLATION		5,000
045-	TRANSPORT				4	RSO		TRANS PORTATION		2. 800

H--65

ſ		LABOR	AND	EQ	2011	PME	ENT	ESTIN	NATING SHEET Page N	<u>lo.</u>	
CBS	Number:				Pa	nrt:	Ž	CANETA	Ay Provon Part No .: 651137-5	4	
	Date:/ 4/50	Q	ty./	Heli	iost	at:		•	2 Sheet No.: Of .		2
OPER.	OPERATION DESCRIPTION	PI MA	CHINE	СТІО	N E	STIA	ABO	E PR	MACHINERY & EQUIPMENT	E	QUIPMENT
NU.		Min/Po	Pc Ø	100	۳ ک ۳	100	s/ PC	\$/Hour		Qt.	Est. Cost
050	GRINO 1.376 Dia	2	ļļ	İ		İ			O.D. GANAC	2	Les HOD
	GAINO 1.1255 Dia	2	64	62		64	1.1.7		Installation		10,000
	P. 6.4						200		Themilo armind		4,000
0.00	1 OMA / 2 MARMINES			~~			178		Lairacarin	Ľ	20 100
	Seene Loss 4%.		219	67		وأير	167		TRANSPORTATION		8 000
	THIPECTON		Π			93	33				
			┝┼	-+	-					<u> </u>	
			┼┼								
	/ OTAL		\uparrow		[1 1	73				
						 			· · · · · · · · · · · · · · · · · · ·		
			┼╀			-+-			·		
			┨╌┞╴	-	-	-i					·
			╁┼	-+	-+	Ť					
	<u></u>	1			1	T					
											L

	• • • • • • • • • • • • • • • • • • •	LABOR	AND E	QUI	PMEN		MATING SHEET Page N	10.	
CBS	Number:	•		Pa	ort: <u> </u>	TUD - 1	Azimurn Daive Part No.: 651137-	69	
	Date:	- Q	ty./He	lios	at:		C Sheet No.: Of		
OPER.	OPERATION DESCRIPTION	PF MAC				E DR		Ε	QUIPMEN
NU.		Min/Pc	Hrs/100 Pc 0		Hrs/ 100 PC	\$/Hour		Qt.	Est. Co
								<u> </u>	
010	CUT OFF & CHAMF	.03	050	/	6.50	8.48	HORIZONTA 6 SPINOLE BAN MOLA		- 0 -
	Scarp Loss 4%		102		ava.		- UTILIZE EXCESS CAPACITY IN OTNER ALEAS	+	
	Tim				652				
					<u> </u>				
		_						┼─	
	· · · · · · · · · · · · · · · · · · ·								
1			- <u> </u>						
					<u> </u>				

· ·

		LABOR	AN	ID EQ	QUI	PME	ENT	ESTIN	AATING SHEET Page M	No	
	CBS Number:4420				Pa	art:	Wo	em J	UPPORT - ELEVATION Part No.: 67/137-6	60	<u>+ 61</u>
	Date:/4/80	Q	ty.	/Hel	los	tat:		<u></u>	/ _ / Of		,
OP		P MA	ROD	UCTIONE	ON E	STIA	ABO	R		E	QUIPMENT
N	0. OPERATION DESCRIPTION	Min/P	c Hr Pc	rs/100 : Ø	٦ ٩	Hr 100	s/ PC	\$/Hour		વા.	Est. Cost
01	10 TURN 1.499 DIA	5	8	333					NC CHUCKER	2	360,000
								3	INSTACLATION		10,000
			+	 		\square			TRANS PORTATION	-	4,000
02	O FACE TO D. 25 Dim	3	╋				-			-	
	TURN 3. 800 D.A	2	19	333							
	- 1 OPER / 2 MACHINAS		Ť	I		8	333				
6a 03	O TRANSPORT		L			Ŀ	250				
04	10 DAILL (4), 406 Dia Holes	2	3	333		33	33		MULTI SAMALE DERL	17	90:000
	+ Bun		Τ						TNITAUATION	ú	5 800
05	O TRANSPORT		F				250		TRANSPORTATION		2,000
16	0 Mill 2.250 RADINI			[] 		-			MILLING MARYING	1	110. 100
	- 10 Per AT A TIME	2	3	333		3 1	333		Instantarian		5 100
			Ť			T			TRANSPORTATION		2,000
	Scan Loss 4%.		L	933			33				
	Trippenin		╋	 			441		· · · · · · · · · · · · · · · · · · ·		
			╈	•		Í			MARTINE ALS LEGAL RECORDENCES		
			T			121	432		E. Roras Press		

		LABOR	AND E	201	PM	L	ESTIN	ATING SHEET Page	• •	
CBS	Number:			Pa	art:	<u>_</u>	OULNAG	: Pin Part No.: <u>L51137</u> .	56	
	Date:	Q	ty . /Hel	ios	tat:	ميريي	4	Sheet No.: Of		
OPER.		PI MAC	RODUCTI	on e	STI	MATI ABO	E R		E	QUIPMENT
NO.	OPERATION DESCRIPTION	Min/Po	: Hrs/100 Pc Ø		Hi 100	rs/ PC	\$/Hour	MACHINERY 5 EQUIPMENT	Qt.	Est. Cost
010	Long Ban Ferrar	INT			ļ					'
020	THEN D. D. & CHAME	0.2	333	-		333		Hacizonna & Janas Ban Marame	+	160,000
	Cur OFF & CHAMF	8.2	333			333		- INSTALLATION	\square	5,000
								- TRANSPORTATION	╉╾	2,000
030	CENTERIESS GRIND	0,1	167		Ţ	167		CENTERLESS GAMOER	12	80,000
	SCRAD LOSA 4%.		055			155		- INSTACIATION - TRANS MATATION		5, 100 A, 000
848	Alar Thear					_				
	- LONO/UNISMO					500				
	/ DTAC		┼╌┼╌╌		4	366				
			↓					· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·				Γ				1	

	L	ABOR	AN	D EC	QUI	ATING SHEET Page N	Page No					
CBS	Number: 4420				Pa	art:		CAMP,	wa Dise Part No.: 651137.	5	8	
	Date:80	Q	iy. ,	/Hei	iost	lat:			<u> ス Sheet No.:/ Of</u> .		٤	
PER.	······································	PR MAC	PRODUC		PRODUCTION ESTIMATE			ABO	e PR		E	QUIPMENT
NO.	OPERATION DESCRIPTION	Min/Pc	Hr:	s/100 Q.	0 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2	Hr 100	s/ PC	\$/Hour	MACHINERY & EQUIPMENT	Qt.	Est. Cost	
bs	LOAD BAR STOCK	I							Stermene Jis & Serva	4	1,000	
· · ·	- INTERNAL TO MACH. LYCLE	· · · ·		 					Installa from		2,000	
10	TURN 2.625 Dig 0. D.	1.		 					NC. CHUCKER	/	180,000	
	FACE	0.5				Т			INSTACLATION	Ĺ	S. MO	
	CONTER DANL	1.5							FREILNT		2,00	
	E' Boll 1.25	1.5								 		
	CUT OFF		Þ	1833						┨──		
	- J OPER / 2 MACN					3	033				·	
120	TAMSPORT			 						É		
130	FACE TO LENGTH	2		 					NE CHRIXER	2	360,000	
	TURN 1.000 0.0.	2		<u> </u>	 				INSTALLATION		10,000	
	CHAME . 032 × 45	0.5	12	500		┝┤			FREIGHT		4,000	

		ABOR AND E	QUIPMENT	ESTIMATI	NG SHEET Page	No.	
CBS	Number:		Part: <u>/</u>	CAMP IN h	Disc Part No.: 451137 -	54	
	Date:	Qty./Hel	iostat:	2	Sheet No.: Of		2
OPER. NO.	OPERATION DESCRIPTION	PRODUCTIO MACHINE Min/Pc Hrs/100	DN ESTIMAT LABC ^C R Hrs/	E DR	MACHINERY & EQUIPMENT	E	QUIPMENT
	0	Pc @	3 100 PC	\$/Hour		Qt.	Est. Cost
050	- S'ERAP 4%. - 1 OPER / 2 MARNINGS	300	3 960			+	
	· · · · · · · · · · · · · · · · · · ·					$\overline{+}$	
840	INSPECTION		1000			╞	
						╋	
	Тота		7 933			1	
		<u> </u>					
		┨───┤┥──					
	· · · · · · · · · · · · · · · · · · ·						
		╂──┤╎──		 		+	

LABOR AND EQUIPMENT ESTIMATING SHEET										Page No			
CBS	Number:			Pa	art:	D	RIVE	Marc Assem Part No.: 12-300					
	Date:	QI	y./Hei	ios	tat:			Sheet No.: Of	/ of 3				
		PR	ODUCTI	ON E	STIN	AATE			E	QUIPMENT			
OPER. NO.	OPERATION DESCRIPTION	MACHINE Min/Pc Hrs/10 Pc Q		5	Hr	ABO	R \$/Hour	MACHINERY & EQUIPMENT	91.	Est. Cost			
010	INSPACE MAIN GEAR		1	Ē	1			AZIMUTA + ECEVATION ASSEMACY					
	- MOUNT SS RETAINS RINAS							Line & Equipment					
	+ SEALS												
	- SET MAIN GEAR								┟──┤				
ļ	- INSTALL BEAKING								4				
	- " Ourse Camo							- Alen SO per/Source					
	RING & GASHET.												
	- INSPACE INNER CLAMA												
	RING & GAURET												
	- Instan Ore Seaces												
020	MANNE PLANETARY HANTING								╂╼┦				
	- SURALIANRIE PLANFORM												
	Crear Wes + Primary												
	Ring Gean												
030	INSTAL PLANETARY GEAR												
	Well Supported								\square				
					Ī								
			i		T								

-

H-72

1

	L	ABOR		QUI	PMI	ENT	ESTIN		Page No				
CBS	Number: 4420			P	art:	D	ane e	Mon Assen. Part No.	:	6			
	Date:	Q	ty./Hel	ios	tət:			Sheet No.	Sheet No.: Of				
OPER		PF MAC	PRODUCTIO MACHINE		STI	MAT	E PR			E	QUIPMENT		
NO.	OPERATION DESCRIPTION	Min/Pc	Hrs/100 Pc 0		Hr 100	rs/) PC	\$/Hour	MACHINERY & EQUIP	MENI	Qt.	Est. Cost		
050	INSTALL CLAMPING DISC									_			
	- SUGALSEMALE KANGTARY				Ħ								
	FRAME " D. ANG-ADY FRAME		\square	-				· · · · · · · · · · · · · · · · · · ·					
	" PLANET GEAR		ļ										
	· JOURNAL PIN		$\left \right $										
060	INSTALL RAVERALY FRAME				Ц								
	-SUBASSENALE PLANETARY												
	Cover Assensed	<u> </u>											
	" BEARING				┝─╁								
	··· KARAMER RINK		<u> </u>		$\left \cdot \right $				······				
	" SECONDARY RING GAR		<u> -</u> 										
870	Town Maria-ANV Cover												
	Assensey												
L				L									

			LABOR	AN	ATING SHEET Page N	lo							
	CBS	Number:	Part: DAINE & MOTOR ASSEM Part No .: 12-300										
		Dete:/ 50	Q	ly./	/Hei	ios	tat:			Sheet No.: Of _	فح	·	
	OPER		PF MAC	RODI	JCTI E	ON E	STIA	ABO	R		E	QUIPMENT	
	NO.	OPERATION DESCRIPTION	Min/Pc	Hrs Pc	s/100 0		Hr 100	s/ PC	\$/Hour	MACHINERY & EQUIPMENT	Q1.	Est. Cost	
	040	TASPAL WER STOP											
		EXPANSION LAIRMORK,								·			
		MINA, DIC		$\left\{ - \right\}$			$\left \right $	_					
•	690	TEST											
H-74	100	PAINT	-	┢╏						Paint Line		7 <i>00,0</i> 00	
	110	ASSEMPLE AZIMUSA DAINE		fi									
		TO ELEVATION DENE .					1						
										Assembly Line		200,000	
							+						
				Ļį									
				╞╌╿			1	-+		· · · · · · · · · · · · · · · · · · ·			
		***************************************					1					· · · · · · · · · · · · · · · · · · ·	
				Ļļ				\square					
		· ·	-[┼┼				-					

HELIOSTAT CONTROLS PRODUCTION EQUIPMENT COST

SHEET 1 OF 2

ſ	MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE (TOTAL)	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERAGE MAINTE COS PARTS	YEARLY NANCE T	TOTAL COST
7	YOW SOLDER MACHINE DEGREACER HOLLIS ÉNOIMEERING	I	10,000			15	500	1200	
	Semi-Automatic Dip Inserter Amistar Corp.	1	15,900			15	250	500	
	LEAD FORM NACHINE ELECTROVERT	1	3,000			15	200	500	
	CLINCH & TRIM TOOL	20	200			1	_		
H-75	Born-In Oven Bemco	1	12,000			15	200	500	
ľ	TEST Equipment For Module Repair	-	8,000			15	100	500	
ľ	40 Pin \$24 Pin IC INSERTION TOOL	20	-200-			2	-	-	
	CARLE TERMINATION Equipment AND INC.	-	5,000			10	100	500	
	MP BIARD TESTER	5	2500			10	-	250	
	POWER SUMPLY TESTER	5	1500			10	_	250	
	TEANSLATOR TESTER	5	(1750)			10		250	•

- INDIRECT MATERIALS

.

SHEET 2 OF 2

MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERAGE MAINTE COS PARTS	YEARLY ENANCE ST LABOR	TOTAL COST
HFC TESTER	3	1500			10	-	150	
CABLE #1 TESTER	3	150 (456)			10	-	150	
CARLE #2 TESTER	3	(450)			10	-	150.	
CARLE #3 TESTER	3	(450)			10	-	150	
CARLE #4 TESTER	3	150 (450)			10	-	15,0	
CAPLE # 5 TESTER	3	150 (450)			10	_	150	
Assembly Tester	3	1500 (4500)			10	-	150	
BOARD STORAGE TRAYS	50	-388-			5	-	-	
Parts Bins	264	-792-			5~		-	
		93900						

.

ELECTRONICS

HELIOSTAT MATERIAL HANDLING PRODUCTION EQUIPMENT COST

SHEET_____OF____

	MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERACE YEARLY MAINTENANCE COST	TOTAL COST
	PART CARIOSE L	2	22,500 (45000)	500 (1000)	1,000 (2000)	10	500	48,000
	PALLET RACKS	11 PALLET PESITIONS	4,400	500	INCLUDED IN LOST	10	180	4,100
H-77	4,800 CB FORK LIFT	1	32,200	580	-	7	960	<i>32, 10</i> 0
			5 - -					
			81600	2000	2000		· · · · · · · · · · · · · · · · · · ·	

85600

PRODUCTION EQUIPMENT COST

PILE ASSY

					SI	HEETOF	·
MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERACE YEARLY MAINTENANCE COST	TOTAL COST
Flange, end							
1000-Ton pres	s 1	420	20	40			
Flange, openi	ng						
1000-ton pres	5 1	420	20	40			
<u>Pile</u>							
200-ton press	1	⁺ 80	8	12			
Feeder Stacker	2	40 (80)	.5	.5			
Bending rolls	2	75 (150)	.5	.5			
Seam welder	2	35 (70)	.7	.7			
<u>Pile Assy</u>							
Welder	2	50 (100)					
		1320	50	94			1464

PRODUCTION EQUIPMENT COST

TORQUE TUBE ASSY

				,	SI	IEETOF	
MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERAGE YEARLY MAINTENANCE COST	TOTAL COST
Flange							
1000-Ton Pres	s 1	420	20	40			
Bracket							
300-ton press	1	150	8	15			- -
		570					
		570	28	55			653

.

HELIOSTAT STRUCTURAL SUPPORT PRODUCTION EQUIPMENT COST

R	とのして	Tuse 1	à PLATE				
MACHINE NAME	NUMBER REQUIRED	NVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERAGE VEARLY MAINTENANCE COST	TOTAL COST
FEEDER	rd Fd	\$0,00 0	(0.05/ (3.00)	500 (1000)	0/	ه م ^ر ا	6-2,000
BENDING ROLLS	2	75,000	(200) (200)	500	0/	1000 Loo 0	22 000
Scam Velock	4	16000 (0400)	70 C (0.8%)	700 (8.)	د/	1000	0022
Assenacy	2 5	20,000 (4000)	(00) (100)	1000 (000)	0/	500	43,000
FLANCE W Assembly	105	(2000) (2000)	50U (1990)	200	c/	500	52 000
			-				
						7 800	092217

440,600

c c.«L

8800

424,000

TRUSS

.

H-81

SLITTIN	JE LIN	E			Sł	IEETOP	
MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERACE YEARLY MAINTENANCE COST	TOTAL COST
PRYOFF OREEL	1	49,000	600	500	10		69:500
COIL CAR	-1	18200	500	500	10		19200
QUNIT SLITTING MACH.	ľ	236,000	1000	1500	10		24,000
SCRAP REWIND	1	5,600	500	500	10		6,600
2 ARM TURNSTILE	1	28,000	600	500	10		29100
				· ·			
<u>, , , , , , , , , , , , , , , , , , , </u>		336800	3200	3500		5000	LJ

5000 \$ 343,500 HELIOSTAT STRUCTURAL SUPPORT PRODUCTION EQUIPMENT COST

TRUSS

FLANGE LINE

SHEET 2 OF

	MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERAGE YEARLY MAINTENANCE COST	TOTAL COST
	STOCK REEL	1	17250	500	500	10	500	18520
	Leveler	1	21000	600	700	10	1000	72300
H-82	Norch MACHINE	1	52,200	1000	/000	10	2000	5 4 200
	NOTCH THBLE	1	5,200	400	200	10	100	5800
	NOTCH MACHINE	1	50,000	/000	1000	10	/000	52 000
	NOTCH THALE	1	5,200	400	200	10	/00	5800
	POLL FIRMER 12MWZ	- 1	63,000	2000	1000	10	2000	66000
						·		

5900

4600

203,371

STAT STRUCTURAL SUPPORT

TRUSS

		Fin	ICE LN	ć		Ś	IEETO	P
	MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERACE YEARLY MAINTENANCE COST	TOTAL COST
	CUTOFF CO-10-10	1	37,000	600	700	. 10	1000	38300
	ELECTRONI COUNTER	C 1	11,700	300	400	10	400	1 2400
	TO OLING (FLANGE)		70,000	600	200	/ 0.	2500	70800
H- 83	-Rous - Piece Pi	es			L			
	-Cutoff							
	-	· .						
	L	I	1187 10	1500	1300		3900	121500

HELIOSTAT STRUCTURAL SUPPORT PRODUCTION EQUIPMENT COST

.

Tube	Line				Ŧ	EET OF	
MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERAGE YEARLY MAINTENANCE COST	TOTAL COST
STICK	/	15000	500	5 6 0	0/	500	26000
KR-(1-0 Leverer		2/000	009	002	6	000/	2 2 3 0 0
Jointer Coir Guo	_	00011	200	500	10	0 o o	00 00
FLOOP STOR Acc.		62000	2000	000/	/0	2000	63000
MR-10 Rotembe	-	63000	2000	0001	0/	2000	9 00 0
12-MW SEAMWED VIT-100		100,000	2000	0001	0/	000/	000 00
		275 000	20076	gat 11		7000	J97300

H-84

.

6.12

~	T	T					ר
	TOTAL COST	41300	2300	4 800	3500		10 5 2 00
	AVERACE YEARLY MAINTENANCE COST	1000	000/	001	2500		0 °7 h
	ESTIMATED MACHINE UFE YEARS/UNITS	01	0/	0/	٥/		
,	UNLOADING AND INSTALLATION REMODELING AND COST	700	700	007	002		٥•٤١
	TRANSPORTATION COST	600	009	00\$	009		22 00
	MVOICE PRICE	40000	12000	4200	35000	· · · · · · · · · · · · · · · · · · ·	101200
N.N.	NUMBER	- 20	~	-			
TURE K		STRAIGNEE	CUT0FF C0-9-8	RUNOUT	Tooling		

ABTAT STRUCTURAL SUPPORT UCTION EQUIPMENT COST

HELIOSTAT STRUCTURAL SUPPORT PRODUCTION EQUIPMENT COST

アベリシシ

TRUSS ASSEMBLY

1			······			COTINATED MACHINE	AVEDACE VEADLY	
	MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	AND INSTALLATION REMODELING AND COST	LIFE YEARS/UNITS	MAINTENANCE	TOTAL COST
H-86	WEB BENDE	r 1	150,000	1000	1000	10	1000	1 52,000
	ASSEMBLYJ -FLANGE -WEB	<i>1</i> 5 /	250,000	2000	2000	10	1000	25 4000
	- AUTOMATIC RESISONACE WELD	1	350,000	2000	3000	10	2000	3 55,00 0
	STURAGE RAC -TRANSPO	rs / e	250,000	2000	4000	10	1000	256 000
	System		200,000	1000				
	TOTAL System	-	1,200,000	:8000	10,000	10	5000	1 2.1 3,000
	v							
				1213,000				

SHEET 6 OF

PRODUL IN EQUIPMENT COST

CONTROL BOX

SHEET OF

MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSPORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNITS	AVERAGE YEARLY MAINTENANCE COST	TOTAL COST
Undefined		500		,			
		- - -					
		500					

PRODUCTION EQUIPMENT COST

BRACES

ς.

SHEET OF

MACHINE NAME	NUMBER REQUIRED	INVOICE PRICE	TRANSFORTATION COST	UNLOADING AND INSTALLATION REMODELING AND COST	ESTIMATED MACHINE LIFE YEARS/UNI TS	AVERACE YEARLY MAINTENANCE COST	TOTAL COST
Cross Brace							
40-ton press	1	20	1	2			
Lower Brace							
40-ton press	1	20	1	2			
				•			
		40	2	4			46

PAINT

OF SHEET UNLOADING ESTIMATED MACHINE AVERAGE YEARLY TRANSPORTATION NUMBER AND INSTALLATION LIFE MAINTENANCE MACHINE NAME REQUIRED **INVOICE PRICE** COST REMODELING AND COST YEARS/UNITS COST TOTAL COST Paint System 1,000 Conveyor 2,200 3,200

۰.

APPENDIX I

SPECIFICATION S-101

INSTALLATION OF OPEN END PIPE PILES

BECHTEL NATIONAL, INC.

March 1980

I-l

TECHNICAL SPECIFICATION

FOR

INSTALLATION OF OPEN END PIPE PILES

- 1. SCOPE
 - A. ITEMS INCLUDED
 - Installation of two open end steel pipe piles at the Central Receiver Test Facility in Albugerque, New Mexico
 - 2) Installation of tapered leveling shims
 - B. RELATED ITEMS NOT INCLUDED
 - 1) Survey for pile location
 - 2) Excavation, backfill and grading
 - 3) Testing of piles

2. QUALITY STANDARDS

A. GENERAL

The contractor shall control the quality of items and services to meet the requirements of this specification, applicable codes and standards, and other contract documents

B. REFERENCED CODES AND STANDARDS

Code

Title

ASTM 252

Welded and Seamless Steel Pipe Piles

3. DESIGN REQUIRMENTS

- A. PILE DESCRIPTION
 - The pile shall be fabricated of welded steel pipe in conformance with ASTM 252.

- Pile dimensions, flange, electronic package mounting and coating shall conform to Bechtel Drawing M-101.
- B. DRIVING EQUIPMENT
 - Vibratory hammers, either hydraulically or electrically driven, shall be used to drive the piles.
 - 2) If for any reason (e.g., large rock or thick cemented layers of soil) the vibratory hammer driven pile is refused, the piles will be placed in augered holes and set in concrete grout.

4. FIELD OPERATIONS

- A. PILE DRIVING
 - The piles shall be driven to satisfy the requirements of Bechtel Drawing M-102.
 - 2) Piles shall be located as shown and driven to the plumb condition as indicated. The maximum deviation from indicated plan location shall be 152 millimeters (6 inches). The maximum deviation for piles out of plumb shall be 2 percent.
 - 3) Piles will be driven to the depth indicated in Bechtel Drawing M-102. Maximum deviation from the indicated depth (i.e., elevation of flange above grade) shall be 51 millimeters (2 inches).
- B. FLANGE LEVELING SHIM INSTALLATION

The flange leveling shims (Bechtel Drawing M-103) shall be installed in conformance with Bechtel Drawing M-102 and the following instructions.

 Place the L.S. Starrett Co. (Athol, Mass.) Level No. 1992, or equivalent, across a diameter of the flange-face. Rotate the level about the flange center until a level reading is obtained. Centering the bubble within the finest gradations on this instrument will locate a line, intersecting the flange, that is level within 10 arc seconds (1/20 milliradian). Mark the two intersections of this line on the flange 0.D.

- Place two tapered leveling shims (Bechtel Drawing M-103) on the flange with one flange location hole aligned with each of the two diametrically opposed marks on the flange O.D.
- 3) Place three 15.9 x 51 mm (5/8 x 2 inch) bolts through the shim slots and flange holes at equally spaced locations along the shim/flange circumference to serve as concentricity guides.
- Place 6.35 x 76 mm (1/4 x 3 inch) bolts in the two shim location holes to serve as handles for subsequent rotation of the shims.
- 5) Place the level across the diameter of the leveling shims perpendicular to a line connecting the two marks on the flange O.D. Note which side of the shim surface is low.
- 6) Rotate the two shim handles toward the low edge of the shim surface, keeping equal distances between each handle and the adjacent flange level mark as illustrated in Figure 1. If desired rotation is blocked by a concentricity guide bolt, relocate the guide bolt in the adjacent slot so as to permit continued rotation.
- When the level, still perpendicular to a line connecting the two level marks on the flange O.D., gives a level reading; the shims are properly adjusted.
- Replace the three concentricity guide bolts with three 102 mm (4 inch) long No. 10 American Standard Taper Pins (ANSI B5.20). Tack weld the shims in place per Bechtel Drawing M-102.
- 9) Remove the taper pins.
- C. PILE DRIVING ATTACHMENTS

Installation of the pile driving attachment of Bechtel Drawing M-104 is illustrated in Figure 2.
The M104-1 Driving Stub is intended for attachment to the pile flange. Its purpose is to permit driving of the pile with a conventional vibratory hammer pipe driving head, which does not have sufficient bite to bridge the flange.

The M104-3 Flange Cover protects the flange mating surface from damage while the pile is driven by a vibratory hammer with a custom head, which has sufficient bite to bridge the flange. If the custom head is not available for driving the CRTF piles, the M104-1 Driving Stub will be used (with the M104-3 Flange Cover removed).

The M104=5 Cover Plate is bolted to the control electronics package opening during driving of the pile.

Figure 1 – TAPERED LEVELING SHIMS ADJUSTMENT

Figure 2 PILE DRIVING ATTACHMENTS

SURFACE PREPARATION, APPLICATION, AND INSPECTION

OF

PROTECTIVE COATINGS

FOR

CARBON STEEL HELIOSTAT PILES

JOB NO. 13353

SPECIFICATION S-102

1980 75 kuch Date: Prepared: Coatings/Specialist Reviewed: Coatings and Plastics Group Manager Approved: Quality Services Materials REVISIONS NO. DATE MATERIALS AND QUALITY SERVICES SPEC./DOC. NO. REV. RESEARCH AND ENGINEERING

MQS-001 Rev. 0, 9/79

PAGE

SURFACE PREPARATION, APPLICATION, AND INSPECTION

OF

PROTECTIVE COATINGS

FOR

CARBON STEEL HELIOSTAT PILES

CONTENTS

1.	SCOPE	3
2.	QUALITY STANDARDS	3໌
3.	ENGINEERING DOCUMENTS	4
4.	MATERIALS	4
5.	SHIPPING, HANDLING, AND STORAGE	5
6.	EQUIPMENT	6
7.	SURFACE PREPARATION	6
8.	MIXING AND APPLYING COATINGS	7
9.	INSPECTION AND TESTING	8
10.	REMEDIAL WORK	9

SURFACE PREPARATION, APPLICATION, AND INSPECTION

OF

PROTECTIVE COATINGS

FOR

CARBON STEEL HELIOSTAT PILES

1.0 SCOPE

1.1 Items Included

<u>1.1.1</u> This specification covers the surface preparation and application of inorganic zinc coating to the interior surfaces, and the surface preparation and application of inorganic zinc coating and epoxy polyamide cured primer and white polyurethane topcoats to the exterior surfaces.

1.1.2 Documentation of the materials and procedures

1.1.3 Inspection and tests

1.1.4 Protection of coated surfaces

<u>1.1.5</u> Environmental control equipment to provide the application and curing conditions required

1.1.6 Touch-up and repair of defective or damaged coated surfaces

1.1.7 Shop priming and finishing

1.2 Related Items Not Included

1.2.1 The following surfaces shall not be coated:

1.2.1.1 Surfaces within two inches of field welds, unless otherwise specified

1.2.1.2 Name and instruction plates, etc.

1.2.1.3 Rubber or similar nonmetallic parts

1.2.1.4 Surfaces to be completely embedded in concrete, unless otherwise specified

1.2.1.5 Prefinished metal

2.0 QUALITY STANDARDS

2.1 General

2.1.1 The Seller shall control the quality of items and services to meet the requirements of this specification, applicable codes and standards, and other procurement documents.

2.2 Referenced Codes and Standards:

Sponsor	Number	Subject
ASTM	E337-1972	Test for Relative Humidity by Wet-and- Dry-Bulb Psychrometer
SSPC	SP-1-1971	Solvent Cleaning
SSPC	SP-10-1971	Near-White Blast Cleaning
SSPC	Vis-1-1967	Pictorial Surface Preparation Standards for Painting Steel Surfaces
SSPC	PA-2-1973	Measurement of Dry Paint Thickness with Magnetic Gages

2.2.1 The Seller shall meet the specific requirements of this specification. If the requirements of this specification differ from or otherwise conflict with the normal procedures of the Seller, the requirements of this specification shall govern.

3.0 ENGINEERING DOCUMENTS

<u>3.1</u> A listing of all coating materials to be used in this work which shall identify the specific products by manufacturer and catalog number in each coating system as scheduled.

<u>3.1.1</u> The Seller's written procedures for storage, handling, surface, preparation, environmental control, application, touch-up and repair, curing, and inspection of the coating system shall be submitted for the Buyer's review and assignment of a status recommendation prior to use. Conflicts, if any, between the coating manufacturer's recommendations and this specification shall be brought to the attention of the Project Engineer for resolution.

4.0 MATERIALS

4.1 Material Manufacturers

<u>4.1.1</u> Unless otherwise specified, all coating materials used on any one surface or piece of equipment shall be products accepted by the Buyer. Materials from different manufacturers shall not be used over each other without prior written acceptance.

4.1.2 The coating materials shall be in pre-measured units.

4.2 Inorganic Zinc Coatings

4.2.1 The following materials are acceptable:

Material

Manufacturer

Dimetcote 6 Interzinc QHA 027/QHA 028 Mobilzinc 7 Ameron Protective Coatings Div. International Paint Co. Mobil Chemical Co.

Document No. Job No. 13353 Only Rev.

<u>4.3</u> Epoxy Polyamide Cured Primers

4.3.1 The following materials are acceptable:

<u>Material</u>

Manufacturer

Amercoat 71Ameron Protective Coatings Div.Intergard 4400/4414International Paint Co.Valchem 13-R-56Mobil Chemical Co.

<u>4.4</u> Polyurethane Coatings

4.4.1 The following materials are acceptable:

Material

Manufacturer

Amercoat 450	Ameron Protective Coatings Div.
Interthane PA Series	International Paint Co.
Urethane Enamel 40 Series	Mobil Chemical Co.

4.5 Abrasive Materials

<u>4.5.1</u> Abrasives for blast cleaning shall be clean and dry, furnished either in bulk or packaged, and shall be free of oil or contaminants. The particle size shall be capable of producing the specified surface profile. Cast iron or malleable iron shot shall not be used. Chilled iron shot may be used. Recycled sand shall not be used.

4.6 Touch-Up Materials

4.6.1 Materials for touch-up of damaged areas of surfaces shall be the same as those originally applied, thinned according to recommendations of the manufacturer.

 $\frac{4.6.2}{\text{Buyer}}$ Alternate materials for touch-up may be used, subject to acceptance by the Buyer and the coating manufacturer.

4.7 Thinners, Solvents, and Cleaners

<u>4.7.1</u> Thinners, solvents, and cleaners shall be as recommended by the coating material manufacturer and shall be identified by the product number or generic formulation.

5.0 SHIPPING, HANDLING AND STORAGE

5.1 Delivery and Storage

5.1.1 Coating materials shall be delivered to the place of application in the manufacturer's unopened, original containers bearing a legible product designation, batch number, and date of manufacture. Containers which are damaged to the point of jeopardizing the contents shall not be used.

5.1.2 The material shall be handled and stored in accordance with the manufacturer's latest published instructions, and shall be protected from damage, moisture, direct sunlight, and temperatures below 40F or above 100F. 5.2 Date of Materials

5.2.1 The materials shall be used within twelve months of their manufacture. The date of use shall in no case exceed the manufacturer's recommended shelf life, if such shelf life is less than twelve months.

5.2.2 Containers of coatings or components shall not be opened except for immediate use.

5.3 Handling of Coated Items

5.3.1 Coated surfaces shall be protected from damage during lifting or handling. Coated items shall be protected on non-abrasive supports during shipment and storage.

6.0 EQUIPMENT

6.1 General Requirements

6.1.1 The Seller shall provide equipment capable of regulating and controlling the conditions within the work area to the extent that the temperature of the substrate is always a minimum of 5F above the dew point. The substrate temperature during coating application and curing shall be maintained between a minimum of 55F and a maximum of 100F.

<u>6.1.2</u> The spray equipment shall be as recommended by the coatings manufacturer and shall be suitably sized to the configuration of the work.

<u>6.1.3</u> Spray equipment air supply lines shall be equipped with traps to remove moisture and oil.

<u>6.1.4</u> For field applications, coatings listed shall comply with all air pollution control requirements applicable at jobsite.

7.0 SURFACE PREPARATION

7.1 General Requirements

7.1.1 Prior to blast cleaning or application of the topcoat, contamination shall be removed from the steel surfaces. Oil and grease shall be removed by solvent cleaning in accordance with SSPC-SP-1.

<u>7.1.2</u> Surfaces to be coated shall be abrasive blast cleaned in accordance with SSPC-SP-10.

7.1.3 The surface profile of the steel cleaned by blasting shall be between 1.0 and 3.0 mils. A comparison shall be made with a Keane-Tator Profile Comparator, or Clemtex anchor profile chips, or Testex Press-O-Film, or other Buyer accepted equivalent which is appropriate to the type of abrasive material being used.

7.1.4 The abrasive mixture and the compressed air shall be clean, dry, and oilfree. Separators, in addition to oil and water extractors mounted on the compressor, shall be used in compressed air lines to remove oil and moisture from the air close to the point of use.

Document No. Job No. 13353 Only Rev.

7.1.5 Abrasive blast cleaning shall not be performed in the immediate area where the coating or curing of coated surfaces is in progress. All surfaces and equipment which are not to be coated shall be suitably protected from abrasive blast cleaning.

7.1.6 Burrs, slivers, scabs, and weld spatter which become visible after blasting shall be removed by the Seller. Repaired areas shall have the surface profile suitably restored.

7.1.7 If rusting occurs or if the cleaned surfaces become wet or otherwise contaminated prior to coating, they shall be recleaned to the degree specified above.

7.1.8 After blast cleaning and immediately before coating, dust shall be removed with compressed air, free of oil and moisture. Vacuuming shall be used if the surface is not dust free.

8.0 MIXING AND APPLYING COATINGS

8.1 General Requirements

<u>8.1.1</u> The mixing, applying, and curing of the coating material shall be in accordance with the manufacturer's latest published instructions and the requirements specified herein. When multiple component units are mixed, each component shall be mixed separately prior to the mixing of the combined materials. Only complete, pre-measured units shall be mixed. After mixing, the coating material shall be applied within the manufacturer's latest published pot life time.

 $\underline{8.1.2}$ Coating materials shall be thoroughly mixed until they are smooth and free from lumps, then strained through a 30 mesh or finer screen. Mixed material shall be agitated to keep the solids in suspension.

 $\frac{8.1.3}{100}$ Inorganic zinc coating shall be a single coat applied over all specified ferrous surfaces, except as noted, to a dry film thickness of between 2.0 mils minimum and 4.0 mils maximum.

<u>8.1.4</u> Epoxy polyamide cured primer shall be a single coat applied over all specified surfaces, except as noted, to a dry film thickness of between 1.0 mils minimum and 2.0 mils maximum.

<u>8.1.5</u> White polyurethane finish shall be applied in two or more coats over all specified surfaces, except as noted, to a dry film thickness for the polyurethane of between 2.0 mils minimum and 4.0 mils maximum.

<u>8.1.6</u> The total dry film thickness of the entire exterior system shall be a minimum of 5.0 mils and a maximum of 10.0 mils.

8.1.7 The curing time between costs and the final cure shall be in accordance with the manufacturer's latest published instructions.

8.1.8 The application of the coating shall be performed only when the environmental conditions meet the parameters specified in paragraphs 6.1.1 and 6.1.2 of this specification.

 $\underline{8.1.9}$ The coating materials shall not be applied when there is moisture on the surface, dust is present which can contaminate the freshly-coated surface, dirt or other detrimental materials have recontaminated the surface, or when the surface temperature of the steel is below 55F or above 100F or less than 5F above the dew point.

<u>8.1.10</u> The spray equipment shall be conventional or airless and in acceptable operating condition as determined by the Seller through inspection and testing. The air supply lines shall be equipped with traps to remove moisture and oil.

<u>8.1.11</u> Runs, sags, voids, drips, overspray, loss of adhesion, blistering, peeling, mudcracking, inadequate cure, or rusting of the substrate shall not be permitted.

9.0 INSPECTION AND TESTING

9.1 Surface Preparation Inspection

<u>9.1.1</u> The temperature, dew point, and relative humidity shall be determined with a sling psychrometer or an accepted equal following procedures in ASTM E337. Readings are required at the start of work and every four hours or at time intervals designated by the Buyer. Alternatively, continuous monitoring shall be performed using systems established and/or reviewed by the Buyer.

<u>9.1.2</u> Blast cleaned surfaces shall be compared with SSPC-Vis-1, Swedish Pictorial Standards, or accepted NACE Standards. The anchor pattern profile depth shall be verified with a Keane-Tator Profile Comparator, or Clemtex anchor pattern profile chips, or Testex Press-O-Film, or other Buyer accepted equivalent which is appropriate to the type of abrasive material being used.

<u>9.1.3</u> Recirculated shot and grit used for abrasive cleaning shall be tested for the presence of oil by immersing them in water and checking for oil flotation. Tests shall be made at the start of blasting, every four hours thereafter, and at the end of blasting. If oil is evident, the contaminated abrasive shall be replaced with clean abrasive and retested before proceeding. All steel blasted after the previous satisfactory test shall be completely recleaned.

9.2 Coating Inspection

9.2.1 Surface temperature and humidity readings shall be taken every four hours.

<u>9.2.2</u> The dry film thickness shall be measured with a Mikro-test FIM gage or an accepted equivalent, at five random points for each 50 square feet of surface area or at three random points on each piece less than 50 square feet in area. The testing method shall be in accordance with SSPC PA-2.

9.2.3 The film shall be visually inspected for defects such as overspray, runs, sags, mudcracking, inadequate cure or lack of adhesion. The Seller shall repair all defects according to the touch-up and repair procedures accepted by the Buyer.

9.2.4 The total dry film thickness of sags and runs shall not exceed 120 percent of the maximum specified dry film thickness nor shall it be less than 90 percent of the minimum specified dry film thickness. Document No. Job No. 13353 Only Rev.

10.0 REMEDIAL WORK

10.1 Touch-Up

<u>10.1.1</u> Coated surfaces within the scope of this specification that have been damaged during assembly or handling shall be repaired in accordance with procedures as reviewed by the Buyer.

<u>10.1.2</u> The surface profile shall be restored to meet the specified surface preparation requirements for cleanliness and profile. The periphery of a damaged area shall be feathered in with an acceptable material.

<u>10.1.3</u> Precautions shall be taken to protect adjacent coated areas from damage caused by abrasive blast cleaning. The use of vacuum blast type equipment and needle guns will be permitted for abrasive blast cleaning.

UNLIMITED RELEASE INITIAL DISTRIBUTION UC-62d (350) U.S. Department of Energy 600 E Street NW Washington, D. C. 20585 Attn: W. W. Auer G. W. Braun K. Cherian M. U. Gutstein L. Melamed J. E. Rannels U.S. Department of Energy San Francisco Operations Office 1333 Broadway Oakland, CA 94612 Attn: S. D. Elliott S. Fisk R. W. Hughey W. Nettleton U.S. Department of Energy Solar Ten Megawatt Project Office P. O. Box 1449 Canoga Park, CA 91304 Attn: M. Slaminski U.S. Department of Energy Solar Ten Megawatt Project Office 5301 Bolsa Ave. MS14-1 Huntington Beach, CA 92649 Attn: R. N. Schweinberg **USAF Logistics Command** P. O. Box 33140 Wright-Patterson AFB Ohio 45433 Attn: G. Kastanos UCLA 900 Veteran Avenue Los Angeles, CA 90024

 \sim

Georgia Institute of Technology Engineering Experiment St. Atlanta, GA 30332 Attn: S. H. Bomar, Jr.

Attn: F. Turner

University of Houston Houston Solar Energy Laboratory 4800 Calhoun Houston, TX 77004 Attn: A. F. Hildebrandt L. L. Vant-Hull U.S. Department of Interior Water & Power Res. Service P.O. Box 427 Boulder City, NV 89005 Attn: J. Sundberg Acurex 485 Clyde Avenue Mountain View, CA 94042 Attn: J. Hull Aerospace Corporation Solar Thermal Projects Energy Systems Group, D-5 Room 1110 P.O. Box 92957 El Segundo, CA 90009 Attn: P. deRienzo P. Mathur Airesearch Manufacturing Co. 2525 West 190th Street Torrance, CA 90509 Attn: M. G. Coombs For: P. F. Connelly AMFAC 700 Bishop Street Honolulu, HI 96801 Attn: G. St. John AR-CO 911 Wilshire Blvd Los Angeles, CA 90017 Attn: J. H. Caldwell, Jr. Arizona Public Service P. 0. Box 21666 Phoenix, AZ 85036 Attn: D. L. Barnes For: E. Weber Arizona Solar Energy Commission 1700 W. Washington - 502 Phoenix, AZ 85007 Attn: R. Sears

Babcock & Wilcox 91 Stirling Avenue Barberton, OH 44203 Attn: G. Grant For: J. Pletcher M. Seale Babcock & Wilcox P. O. Box 1260 Lynchburg, VA 24505 Attn: W. Smith Babcock & Wilcox 20 S. VanBuren Avenue Barberton, OH 44203 Attn: M. Wiener Badger Energy, Inc. One Broadway Cambridge, MA 02142 Attn: F. D. Gardner Battelle Pacific Northwest Labs P. O. Box 999 Richland, WA, 99352 Attn: M. A. Lind Bechtel National, Inc. P. O. Box 3965 San Francisco, CA 94119 Attn: E. Lam For: J. B. Darnell R. L. Lessley Black & Veatch P. O. Box 8405 Kansas City, MO 64114 Attn: C. Grosskreutz For: J. E. Harder S. Levy Boeing Engineering & Construction P. 0. Box 3707 Seattle, WA 98124 Attn: R. L. Campbell R. Gillette J. R. Gintz Booz, Allen & Hamilton, Inc. 8801 E. Pleasant Valley Road Cleveland, OH 44131 Attn: W. Hahn Brookhaven National Laboratory Upton, NY 11973 Attn: G. Cottingham

Burns and Roe, Inc. 550 Kinderkamack Rd. Oradell, NJ 07649 Attn: J. Willson Burns and Roe, Inc. 185 Crossways Park Drive Woodbury, NY 11797 Attn: R. Vondrasek Busche Energy Systems 7288 Murdy Circle Huntington Beach, CA 92647 Attn: K. Busche California Public Utilities Commission 350 McAllister St., Room 5024 San Francisco, CA 94102 Attn: B. Barkovich For: C. Waddell Chevron Research P. O. Box 1627 Richmond, CA 94804 Attn: L. Fraas Chevron Oil Research P. 0. Box 446 La Habra, CA 90631 Attn: W. Peake For: J. Ploeg W. Stiles Colt Industries Trent Tube Division East Troy, WI 53170 Attn: J. Thackray Corning Glass Works Advanced Products Dept. M/S 25 Corning, NY 14830 Attn: W. M. Baldwin A. Shoemaker Custom Metals Enterprises, Inc. 3288 Main Street Chula Vista, CA 92011 Attn: T. J. Bauer Data Science Corp. 1189 Oddstad Drive Redwood City, CA 94063 Attn: M. Liang

Electric Power Research Institute P. 0. Box 10412 Palo Alto, CA 93403 Attn: J. Bigger El Paso Electric Company P. O. Box 982 El Paso, TX 79946 Attn: J. E. Brown Energy, Inc. P. 0. Box 736 Idaho Falls, ID 83401 Attn: G. Meredith Exxon Enterprises-Solar Thermal Systems P. 0. Box 592 Florham Park, NJ 07932 Attn: P. Joy For: D. Nelson G. Yenetchi Ford Aerospace 3939 Fabian Way, T33 Palo Alto, CA 94303 Attn: I. E. Lewis For: H. Sund Foster-Miller Associates 135 Second Avenue Waltham, MA 02154 Attn: E. Poulin Foster Wheeler Dev. Corp. 12 Peach Tree Hill Road Livingston, NJ 07039 Attn: A. C. Gangadharan For: R. Zoschak GAI Consultants, Inc. 570 Beatty Rd. Monroeville, PA 15146 Attn: H. Davidson General Atomic Company P. 0. Box 81608 San Diego, CA 92138 Attn: H. A. Chiger General Electric Company Advanced Energy Programs P. 0. Box 8661 Philadelphia, PA 19101 Attn: A. A. Koenig

J-14

~

General Electric Company 1 River Road Schenectady, NY 12345 tric Company 1 River Road Schenectady, NY 12345 Attn: J. A. Elsner For: R. N. Griffin R. Horton GM Transportation System Center GM Technical Center Warren, MI 48090 Attn: J. Britt GM Corp. Harrison Rad. Division A and E Building Lockport, NY 14094 Attn: A. Stocker Houston Lighting and Power P. 0. Box 1700 Houston, TX 77001 Attn: J. Ridgway Institute of Gas Technology Suite 218 1825 K Street, NW Washington, D. C. 25006 Attn: D. R. Glenn Jet Propulsion Laboratory Building 520-201 4800 Oak Grove Drive Pasadena, CA 91103 Attn: M. Adams H. Bank W. Carley E. Cuddihy J. Sheldon J. Swan V. Truscello Kaiser Engineers, Inc. 300 Lakeside Drive Oakland, CA 94612 Attn: I. Kornyey Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 Attn: A. J. Hunt

÷

Los Alamos National Laboratory P. 0. Box 1663 Los Alamos, NM 87545 Attn: S. W. Moore Los Angeles Water and Power 111 North Hope Street Los Angeles, CA 90051 Attn: B. M. Tuller R. Radmacher Martin Marietta Corporation P. 0. Box 179 Denver, CO 80201 Attn: P. R. Brown A. E. Hawkins T. Heaton L. Oldham H. C. Wroton McDonnell Douglas Astronautics Co. 5301 Bolsa Avenue Huntington Beach, CA 92647 Attn: P. Drummond R. L. Gervais D. A. Steinmeyer L. Weinstein Meridian Corporation 5515 Cherokee Avenue Alexandria, VA 22312 Attn: B. S. Macazeer Nielsen Engineering. & Research 510 Clyde Avenue Mt. View, CA 94043 Attn: R. Schwind Northrup, Inc. 302 Nichols Drive Hutchins, TX 75141 Attn: J. A. Pietsch ARCO Power Systems Suite 301 7061 S. University Boulevard Littleton, CO 80122 Attn: J. Anderson F. Blake Olin Corporation 275 Winchester Avenue New Haven, CT 06511 Attn: S. L. Goldstein

OSC Department of Commerce 341 West 2d Street San Bernardino, CA 92401 Attn: M. G. Heaviside

Pacific Gas and Electric Co. 77 Beale Street San Francisco, CA 94105 Attn: P. D. Hindley For: J. F. Doyle A. Lam

ŝ

Pacific Gas and Electric Co. 3400 Crow Canyon Road San Ramon, CA 9426 Attn: H. Seielstad For: J. Raggio

Phillips Chemical Co. 13-D2 Phillips Building Bartlesville, OK 74004 Attn: M. Bowman

Pittsburgh Corning 800 Presque Isle Drive Pittsburgh, PA 15239 Attn: W. F. Lynsavage

Pittsburgh Corning 723 N. Main Street Port Allegany, PA 16743 Attn: W. J. Binder For: R. Greene

PPG Industries, Inc. One Gateway Center Pittsburgh, PA 15222 Attn: C. R. Frownfelter

Public Service Co. of New Mexico P. O. Box 2267 Albuquerque, NM 87103 Attn: A. Akhil

Research and Development Public Service Co. of Oklahoma P. O. Box 201 Tulsa, OK 74102 Attn: F. Meyer

Rockwell International Energy Systems Group 8900 De Soto Avenue Canoga Park, CA 91304 Attn: T. Springer

S. C. Plotkin & Associates 6451 West 83rd Street Los Angeles, CA 90045 Attn: W. Raser Safeguard Power Transmission Co. Hub City Division P. 0. Box 1089 Aberdeen, SD 57401 Attn: R. E. Feldges Sargent and Lundy 55 East Monroe Chicago, IL 60603 Attn: N. Weber Schumacher & Associates 2550 Fair Oaks Blvd., Suite 120 Sacramento, CA 95825 Attn: J. C. Schumacher Sierra Pacific Power Co. P. 0. Box 10100 Reno, NV 89510 Attn: W. K. Branch Solar Energy Research Institute 1617 Cole Boulevard Golden, CO 80401 Attn: L. Duhham, TID G. Gross B. Gupta D. W. Kearney L. M. Murphy R. Ortiz, SEIDB J. Thornton Solar Thermal Test Facility User Association Suite 1205 First National Bank East Albuquerque, NM 87112 Attn: F. Smith Solar Turbines International P. O. Box 80966 San Diego, CA 92138 Attn: P. Roberts Southern California Edison 2244 Walnut Grove Road Rosemead, CA 91770 Attn: J. Reeves For: C. Winarski

Southwestern Public Service Co. P. O. Box 1261 Amarillo, TX 78170 Attn: A. Higgins Standard Oil of California 555 Market Street San Francisco, CA 94105 Attn: S. Kleespies Stanford Research Institute 333 Ravenswood Avenue Menlo Park, CA 94025 Attn: A. Slemmons Stearns-Roger P. O. Box 5888 Denver, CO 80217 Attn: W. Lang For: J. Hopson Stone & Webster Engineering Corp. 245 Summer Street P. O. Box 2325 Boston, MA 02107 Attn: R. Kuhr Townsend and Bottum 9550 Flair Drive El Monte, CA 91731 Attn: R. Schwing US Gypsum 101 S. Wacker Drive Chicago, IL 60606 Attn: Ray McCleary US Water & Power Resources Service Bureau of Reclamation Code 1500 E Denver Federal Center P. 0. Box 25007 Denver, CO 80225 Attn: S. J. Hightower Van Leer Plastics 15581 Computer Lane Huntington Beach, CA 92649 Attn: Larry Nelson Veda, Inc. 400 N. Mobile, Building D Camarillo, CA 90310 Attn: L. E. Ehrhardt For: W. Moore

ŝ

Westinghouse Corporation Box 10864 Pittsburgh, PA 15236 Attn: J. J. Buggy For: R. W. Devlin W. Parker Winsmith Division of UMC Industries Springville, NY 14141 Attn: W. H. Heller K. R. Miller, 3153 G. E. Brandvold, 4710; Attn: J. F. Banas, 4716 J. A. Leonard, 4717 B. W. Marshall, 4713; Attn: D. L. King A. B. Maish, 4724 R. G. Kepler, 5810; Attn: L. A. Harrah, 5811 J. G. Curro, 5813 F. P. Gerstle, 5814 J. N. Sweet, 5824; Attn: R. B. Pettit and E. P. Roth T. B. Cook, 8000; Attn: A. N. Blackwell, 8200 B. F. Murphey, 8300 C. S. Hoyle, 8122; Attn: V. D. Dunder R. J. Gallagher, 8124; Attn: B. A. Meyer D. M. Schuster, 8310; Attn: R. E. Stoltz, 8312, for M. D. Skibo A. J. West, 8314 W. R. Even, 8315 R. L. Rinne, 8320 C. T. Yokomizo, 8326; Attn: L. D. Brandt P. L. Mattern, 8342 L. Gutierrez, 8400; Attn: R. A. Baroody, 8410 D. E. Gregson, 8440 C. M. Tapp, 8460 C. S. Selvage, 8420 V. Burolla, 8424; Attn: C. B. Frost R. C. Wayne, 8450 T. D. Brumleve, 8451 W. R. Delameter, 8451 P. J. Eicker, 8451 (5) R. M. Houser, 8451 C. L. Mavis, 8451 W. L. Morehouse, 8451 H. F. Norris, Jr., 8451 W. S. Rorke, Jr., 8451 D. N. Tanner, 8451 S. S. White, 8451 A. C. Skinrood, 8452 W.'G. Wilson, 8453 Publications Division, 8265/Technical Library Processes Division, 3141 Technical Library Processes Division, 3141 (2) M. A. Pound, 8214, for Central Technical Files (3)

*U.S. GOVERNMENT PRINTING OFFICE: 1981 - 791-8 6/326 9-II