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ABSTRACT

Raman spectroscopy is shown to be a useful tool for the observation of

phase transitions in Y203 stabilized Zr02 thermal barrier coatings. Data have

been collected ~ situ at temperatures up to 1050°C as a function of Y203
content. Large hysteresis effects are observed in phase transition

temperatures.
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INTRODUCTION

Significantly improved gas turbine operating efficiencies can be achieved

by coating turbine blades with a ceramic thermal barrier. l This coating acts

to reduce metal surface temperatures and provide a barrier to the ingress of

corrosive species in the combustion products. As a result, higher inlet

temperatures can be tolerated, leading to improved efficiencies with the use

of existing high temperature, high strength alloys.

Numerous ceramics are being considered for use as thermal barriers.

Zirconia-based coatings containing 8-12 wt% Y203 have received the most

extensive investigation. These tetragonal/cubic phase Y203 stabilized coatings

have been utilized to avoid potentially severe cracking associated with the

large volume change (~6%) transition to ~he monoclinic phase inherent in pure

Zr02. Nevertheless, failure of the Zr02 based coatings is usually attributed

to destabilization and the associated phase transitions initiated by either

thermal cycling or reaction with fuel impurities. 2

Three phases have been reported for Zr02 based ceramics containing less

than 20 wt% Y203. 3,4 The exact compositions and temperature ranges over which

these phases exist is not well known, as shown by the numerous lines in

Fig. 1 representing the tentative phase boundaries. At low temperatures

«llOO°C) and low Y203 contents «5 wt Y203), a monoclinic structure is

reported to be the predominant stable phase. Upon increasing the tempera

ture or the Y203 content, a tetragonal structure predominates. Further

increases in the Y203 content lead to a cubic structure. The phase transition
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from either the cubic or tetragonal phases to the monoclinic structure results

in a large volume change and'potentially severe cracking.

In order to improve the performance of these coatings, a more precise

knowledge of the phase diagram is required to elucidate the processes occurring

during thermal cycling and the modes of the subsequent failure of the Zr02
based coatings. Furthermore, techniques are required to determine the uniformity

of Y203 content in commercially prepared coatings. This paper discusses the

feasibility of utilizing spontaneous Raman spectroscopy to determine the Zr02 

Y203 phase diagram as well as to monitor in-service phase transitions of Zr02

based thermal barrier coatings.

EXPERIMENTAL

Ceramic Zr02 disks containing nominally 1.0, 1.5, 2.5, 4.0, 6.0, 8.0,

13.8, and 16.0 wt% Y203 were obtained from Zircar Products, Inc. Powdered

starting materials were prepared by co-precipitation within a matrix and

calcining at 1200°C. The resultant <0.01 ~ powder was cold pressed at 12,000

psi and fired in air. Fired disks were furnace cooled from sintering tempera-

ture. Typical impurity levels are given in Table I. Thermal barrier coatings

were physical vapor deposited on an In 738 substrate with a NiCrA1Y bond

t ' 5coa lng.

A conventional, right-angle, quasi-backscattering configuration employing

either a cw argon or krypton laser, a triple grating monochromator, and GaAs

photomultiplier with photon counting electronics was utilized to obtain room

temperature Raman spectra of the Zr02 - Y203 disks as a function of Y203
content. For measurements as a function of temperature, a similar scattering

geometry was employed within a laboratory furnace in conjunction with an
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TABLE I

TYPICAL IMPURITY LEVELS (WT %)

Zr02 84.4 CaO 0.1

Y203 11. 7 MgO 0.1

Hf02 1.6 Fe203 0.01

A1 203 0.2 H2O 1.7

C1 0.3
--



optical multi-channel Raman analyzer consisting of a three-stage grating

spectrograph and SIT vidicon detector. Using the multichannel approach~

spectra could be recorded in times as short as 15 ms. Thus~ spectral or

sample symmetry changes occurring during the acquisition of individual Raman

spectra were virtually eliminated. The sample area probed was rectangular

with dimensions of ~50 ~ x 2.5 mm.

Initial Raman data obtained from the fired Zr02-Y203 ceramics as a

function of Y203 content at room temperature clearly indicate the distinct

nature of the Raman spectra obtained from the monoc1inic~ tetragonal, and

cubic phases~ as shown in Fig. 2a~ 2b~ and 2c~ respectively. The data are in

good agreement with a previous Raman ana1ysis 6 of pure Zr02 for the monoclinic,

tetragonal ~ and cubic phases~ respectively. Neverthe1ess~ the symmetry

designations in Fig. 2 are based on independent room temperature x-ray

diffraction results.

Spectra obtained at room temperature from the Zircar disks having varying

Y203 contents within the monoc1inic~ tetragonal ~ and cubic symmetry groups were

essentially identical. The ceramic disks containing 1.O~ 1.5~ and 2.5 wt%

Y203 had the monoclinic structure at room temperature. The predominant phase

in the 4.0, 6.0~ and 8.0 wt% Y203 samples was tetragonal. Both the 13.8 and

16.0 wt% disks were found to have the cubic structure.

Figure 3 shows the Raman data from Zr02-1 wt% Y203 obtained at 25°C and

1050°C using the single channel Raman apparatus. Upon heating from room

temperature to 1050°C~ the sharp peaks associated with the monoclinic phase

become less clearly resolved because of thermal broadening. Nevertheless,

the frequency shifts of the characteristic vibrational modes are only slightly

modified~ indicating that no phase transformation has occurred within this

temperature range. As can be seen in Fig. 1 ~ the published phase diagrams
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would have predicted a phase transition~ In contrast, a transition from the

monoclinic to tetragonal phase was clearly observed to begin a approximately

790°C during heating of the Zr02-2.5 wt% Y203 sample at 6°/min, as shown in

the multichannel Raman data of Fig. 4(a). The appearance of a strong mode

at 275 cm-1 provides the most dramatic indication of tetragonal symmetry.

This observed start of the phase transition is above the 630°C previously

reported. 1,2 However, it is expected that some hysteresis will exist in a

ceramic system at these temperatures, because of the slow rate of the solid

state transformation. In fact, large hysteresis effects were observed using

the Raman technique as the Zr02-2.5 wt% Y203 sample was cooled from 1000°C at

approximately 6°/min. Figure 4(b) indicates that the tetragonal to monoclinic

transition occurs at approximately 600°C upon cooling, compared to the 790°C

value found upon heating. Hysteresis effects have also been observed by
. 7

Raman spectroscopy in the Zr02-Hf02 system.

Analysis of the Zr02 based thermal coatings prepared by Airco-Temesca1

indicated that these coatings were either tetragonal or cubic. Coatings

containing 8 wt% Y203 applied by physical vapor deposition were tetragonal,

as can be seen in Fig. 5. The Raman data for the 12 wt% Y203 coating suggests

a cubic symmetry with minor indications of the tetragonal phase. Complementary

x-ray diffraction analysis showed that these coatings exhibit strong preferred

orientations, the specific crystallographic orientation varying from sample to

sample. In this technique, where deposition is achieved by vaporization of an

oxide melt by an electron beam, the orientation of the initial oxide deposit

apparently strongly influences the subsequent deposition process.

Another characteristic of the physical vapor deposited thermal barrier

coatings was the existence of strong fluorescence bands at ~523, 543, and

562 nm which were absent from the purer Zr02 - Y203 disks. The occurrence

12

;



800

Fi gure 40

(a)
20

>-
!::

~...
~ 15

Z
~
~
~
a:: •10

6~"--H
:1I

200 400
F'REQUENCY SH IF'T 100 800

(cm-'

I

(b)

0~~~--:-r:-----1200 400
F'REQU£NCY SH IF'T eoo

(cm-')

Multichannel Raman data obtained from Zr02-2 0 5 wt% Y203 as a function
of temperature showing the occurrence of the monoclinic to tetragonal
phase transition during heating (a) and coolinq (b) at a rate of 6°C/
min o The mode at ~275 cm-l is the most dramatic indication of
tetragonal symmetry 0

13



4

u3
w

~
z
:::>
o
~.--
~ 2...
(i)
z
w...
Z

1

14

Fi gure 50

oL----IL...----IL...-.......IL....----&_.....L_ _L.~-L.-~=__.......-_:'

o 200 400 600 1000
FREQUENCY SHIFT (cm-1)

A comparison of room temperature Raman spectra from Zr02 based
thermal barrier coatings containing 8% and 12% Y2030 The 8%
coating is clearly tetragonal, while the 12% material is cubic
with a minor quantity of tetragonal phase.



of these bands is a possible indication of rare earth impurities in the

coatings and the source material. If detrimental effects due to ceramic

impurities are identified during further investigations of Zr02-Y203' the

observed fluorescence could be used effectively to determine the impurity

species and to screen the source materials.

Extension of these preliminary Raman results to in-service mapping of

these phase homogeneity of Zr02 based coatings should be possible. For

example, utilizing the two dimensional capability of the vidicon array, as

many as 500 spectra could be obtained nearly simultaneously as a function of

position along the ~50 ~m x 2.5 rom laser-illuminated focal area. Thus, high

resolution mapping of the phases present along the illuminated line could be

achieved.

CONCLUSION

Raman spectroscopy has been found to be a sensitive technique for

determining the phase sYmmetry of Zr02-Y203 thermal barrier coatings. Unique

Raman spectra are obtained for the three structural phases present in the

system .. While somewhat limited by thermal broadening, the technique can be

utilized in situ at high temperatures. In agreement with previous results,

large hysteresis effects have been observed in the temperatures at which phase

transitions occur, depending upon whether the sample was being heated or

cooled. Future studies will be aimed at a more accurate determination of

the Zr02-Y 203 phase diagram than is currently available, and at characterizing

thermal barrier coatings as a function of deposition conditions and temperature

cycling.
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