TO: 8453 MAVIS CLAYTON L IF. YOU DO NOT **WANT THIS** UMENT, PLEASE RETURN T. JEFFERSON, 8332 RETURN

ΤO

SANDIA REPORT SAND82-8767 • Unlimiteu nelease

Printed June 1982

MATHDOC and SLATEC, A User's Guide

(To be Presented at NASIG '82, June 23-25, 1982, Los Alamos, NM)

T. H. Jefferson

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 for the United States Department of Energy under Contract DE-AC04-76DP00789

Issued by Sandia Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. SAND82-8767 Unlimited Release June 10, 1982

MATHDOC AND SLATEC, A USER'S GUIDE

Thomas H. Jefferson Jr. Scientific Computing Division Sandia National Laboratories Livermore, California 94550

ABSTRACT

MATHDOC is an interactive documentation program for the VAX. MATHDOC was written to provide quick on-line access to documentation and is presently being used with the SLATEC FORTRAN Library. Capabilities of MATHDOC include retrieval of documentation specified explicitly by name, or implicitly by keywords or category. This document describes how to use MATHDOC and also contains the SLATEC categorization list and the SLATEC Version 1.0 table of contents.

TABLE OF CONTENTS

I.	INTRODUCTION	5
II.	DESIGN OF MATHDOC	6
III.	HOW TO USE MATHDOC	7
IV.	MORE ON GETTING HELP	16
V.	THE SLATEC CATEGORIZATION SCHEME	18
VI	THE SLATEC TABLE OF CONTENTS.	27

I. INTRODUCTION

The MATHDOC documentation program was written to provide the SNLL computer user with on-line documentation on various subjects. The immediate use for MATHDOC is with the SLATEC Mathematical Subroutine Library, but MATHDOC is designed to be able to provide documentation on multiple computers and libraries.

The SNLL computer user now has access to three major computers--the Cray, the VAX, and the 6600. The Cray has no interactive capability. The VAX is the newer timesharing computer, so MATHDOC was written to run on the VAX only, although documentation on all the SNLL computers is available through MATHDOC.

The SLATEC Mathematical Subroutine Library is a result of the continuing cooperation of the participating laboratories. These agencies include Sandia National Laboratories, Los Alamos National Laboratory, the Air Force Weapons Laboratory, Lawrence Livermore National Laboratory, the National Magnetic Energy Fusion Energy Computing Center, Oak Ridge National Laboratory, and the National Bureau of Standards. Version 1.0 of the SLATEC library was released in April 1982.

The SLATEC library is a large collection of FORTRAN subprograms, with 492 user-callable routines in Version 1.0. No hardcopy documentation is distributed with SLATEC. Instead, the documentation for SLATEC is entirely computer readable and is more than 45,000 lines long. MATHDOC gives on-line access to that documentation and relieves the computer user of keeping a document that would be more than 900 pages in length.

Via MATHDOC one can ask for SLATEC documentation by explicitly naming a subroutine, or by implicitly specifying all routines that have certain keywords (actually keyphrases) or are in particular categories. The documentation retrieved is that which matches all the selection criteria. An especially useful feature of the documentation selection process is capability of using the wildcard characters "*" and "%" in specifying the selections.

Although the immediate use of MATHDOC is to give on-line access to the SLATEC documentation, long range plans are to include documentation on other libraries and subjects.

II. DESIGN OF MATHDOC

The goals in designing MATHDOC included the following:

1. It should be self-contained. That is, a user should be able to use MATHDOC with no supporting documentation.

2. It should be easy-to-use.

3. It should be interactive.

4. It should be fast.

5. It should be easy to implement.

6. It should be versatile. That is, it should not be limited to one particular library and should be able to provide documentation for all the SNLL computers.

The only quantitative information applies to goal 4. For the SLATEC library, on the SNLL VAX system, a keyword search takes about two seconds. The time for writing out the appropriate documentation depends on the length of the documentation.

The MATHDOC program is written in FORTRAN, but is not portable. It runs under the VMS operating system and makes use of the VAX VMS Librarian utilities both to store and access the documentation and for the built-in documentation program HELP facility. The Librarian provides random access and eases the task of the implementor.

Additional speed in doing keyword and category searches is acquired by maintaining an index for each text library to be accessed via MATHDOC. The index contains one record for each document. That record holds the document name, the keywords, and the categories for that document.

MATHDOC has an extensive built-in help facility that gives the user information on using the program. The character "?" may be entered at any time input is requested and is always interpreted as a request for help. This help facility also uses the VAX Librarian. The help facility was designed to be, as nearly as possible, independent of the documentation that MATHDOC presents. This was done so that MATHDOC could be used to provide documentation on a variety of libraries with no change in the program help facility.

III. HOW TO USE MATHDOC

The documentation accessible via MATHDOC is stored as blocks of text called MODULES. MODULES are grouped together into collections identified by COMPUTER and LIBRARY. The documentation selection process consists of specifying the three attributes, COMPUTER, LIBRARY, and MODULE, either explicitly or implicitly, and then retrieving all documentation modules that match the selection criteria.

For example, in the SLATEC library each subroutine has a corresponding documentation module of the same name. AVINT is the name of a particular routine in the SLATEC library for integrating tabulated data. To get the documentation for the SLATEC subroutine AVINT for the Cray computer, you could explicitly specify the module name AVINT. Or you could implicitly select the AVINT documentation by asking for all modules that have the same keywords as AVINT--"tabulated", for example.

The document selection process uses character string matching to retrieve all those documentation modules that match your selection criteria. The following examples illustrate how to use MATHDOC to select the appropriate documentation. In the examples, the entry of the keystroke "return" is indicated by <ret>. In addition, the computer prompts are in UPPER CASE and user responses are in lower case. The examples are shortened for brevity and may not depict exactly what would appear on your terminal.

EXAMPLE: Start the MATHDOC program.

Login to the VAX and at the \$ prompt, enter mathdoc<ret> . You will then be at the documentation program command level, which is indicated by the "COMMAND =" prompt.

The documentation program starts at command level and returns to command level if you enter <control/c> anytime. This is helpful if you have made a mistake in input, or if your terminal is filling with unexpected output.

As you use the program you might need help on the input for a particular command, or you might want other information about the documentation program itself. Use the "?" for help. At any time input is requested, if you enter the single character "?" you will get a display explaining more about that particular input. At any time you can also enter "? topic" to get information about a particular topic. The "?" is always a request for help on the documentation program and never satisfies a prompt.

EXAMPLE: At command level, get help on the "COMMAND =" input.

COMMAND = ?<ret>

A DISPLAY OF THE AVAILABLE COMMANDS APPEARS FOLLOWED BY A REPEAT OF THE PREVIOUS "COMMAND =" PROMPT.

EXAMPLE: Enter the following at any time input is requested to get help on getting help.

? help<ret>

INFORMATION ON GETTING HELP ON USING THE DOCUMENTATION PROGRAM APPEARS, FOLLOWED BY A REPEAT OF THE PREVIOUS PROMPT.

From documentation program command level, three commands are accepted in response to the "COMMAND =" prompt. They are the following.

1. SELECT initiate the documentation selection process.

.

- 2. COMMENT make comments about the documentation program.
- 3. END end the documentation program.

These commands may be abbreviated, as may most documentation program entries. This is an important point and can save you much typing time.

The END command is self-explanatory. The COMMENT command gives you the opportunity to make comments on the documentation program. Your comments are written to a special file to be read later by the implementor. Your comments are most welcome.

At the "COMMAND =" prompt enter the command COMMENT, or C, for short. You will then be asked to enter your comments. The entry of your comments is terminated by the <control/z> character and you will be returned to documentation program command level.

EXAMPLE: Make comments to the MATHDOC implementor.

COMMAND = comment<ret>

ENTER YOUR COMMENTS AND TERMINATE BY A <CONTROL/Z>

this is a comment on the documentation<ret>

program that will be stored and read<ret>

later by the implementor. <control/z>

The SELECT command is the one to use to start the documentation selection process. Because SELECT is the major program command, the following example shows how to get help on SELECT.

EXAMPLE: Get help on the SELECT command.

COMMAND = ?select<ret>

A DISPLAY OF INFORMATION ON SELECT APPEARS, FOLLOWED BY A REPEAT OF THE PREVIOUS PROMPT.

After entering the documentation program command SELECT, or S for short, you will be shown the available COMPUTER\LIBRARY collections and be prompted for your choices for COMPUTER, LIBRARY, MODULE, KEYWORDS, and CATEGORY. If you make a KEYWORDS entry you will be prompted for another. If you do not want to make a selection entry for MODULE or KEYWORDS or CATEGORY, just enter <ret> when prompted.

Each of the selection entries is a list, delimited by commas. The commas mean "or", as will be illustrated in the next example. The documentation retrieved will be all documentation modules that match at least one component of each selection list entered.

You will always be prompted for COMPUTER, LIBRARY, MODULE, KEYWORDS, and CATEGORY. Your SELECTion entries are not complete until you have responded to each of the five prompts with either a list or just <ret>.

The following example shows how to retrieve a documentation module if you know the name of the module. Each SLATEC subroutine has a

-9-

corresponding documentation module of the same name.

EXAMPLE: Start selection process and get the documentation for the SLATEC routine AVINT for the Cray computer.

COMMAND = s<ret>

THE AVAILABLE COMPUTER/LIBRARY CHOICES ARE THE FOLLOWING

CRAY,6600,VAX\SLATEC

COMPUTER :cray<ret>

LIBRARY :slatec<ret>

MODULE :avint<ret>

KEYWORDS :<ret>

CATEGORY :<ret>

The documentation program will then search for AVINT, tell you that it has found one module, and ask where you want the documentation written.

If you want the documentation for more than one routine, list the routines separated by commas. For example, "avint,fzero,isort".

Remember that even if you explicitly specify a module name, you will always be prompted for KEYWORDS and CATEGORY too. Just enter <ret> in response to a prompt if you do not want to make a selection.

Often you do not know the name of the documentation module you are seeking. Rather you want documentation on a routine to solve a particular problem. In that case you can seek documentation by specifying keywords that a module must have. Or you can specify a category, or categories, in which the module must be classified. MATHDOC will then retrieve all documentation modules that match your selection criteria.

The next example shows how this is done. The example also illustrates that each selection entry list further limits the number of documentation modules that will satisfy the selection criteria.

EXAMPLE: SELECTion entries to retrieve all documents for computer either VAX or Cray, in the SLATEC library, with module name starting with either the letter "D" or the letter "G", with keywords (actually keyphrases) containing either "linear equations", "solve", or "decompose", and with keyword containing "double".

> COMPUTER :cray,vax<ret> LIBRARY :slatec<ret> MODULE :d*,g*<ret> KEYWORDS :linear equations,solve,decompose<ret> KEYWORDS 2:double<ret> KEYWORDS 3:<ret> CATEGORY :<ret>

The preceding example illustrates the use of the wildcard character "*" and that each of the selection entries can be a list with components delimited by commas. In the selection matching process the commas are interpreted as "or" and each list entered is qualified by "and". That is, in the previous example, the documentation modules selected must be for the Cray "or" VAX computer, "and" in the SLATEC library, "and" must begin with either D "or" G, "and" must contain keywords linear equations "or" solve "or" decompose, "and" must contain keyword double. Note that if a KEYWORDS entry is made you will be prompted for another.

Use of the wildcard characters * and % in making your selection entries is quite powerful. In fact, after you have made your selection entries, they are displayed, and usually have the wildcard character * inserted automatically in specific places.

* matches any character string of length 0 or greater.

% matches any character string of length 1.

The entire selection process is based on matching one character string by another.

EXAMPLE: character string matching.

LINEAR matches LINEAR, but not NONLINEAR.

LINEAR matches LINEAR and also NONLINEAR EQUATIONS.

%LINEAR* matches neither LINEAR nor NONLINEAR.

%%%LIN* matches NONLINEAR, but not LINEAR.

As mentioned above, if you do not instruct otherwise (otherwise means by preceding the component of your selection list by the underscore character "_") the documentation program will automatically insert the wildcard character * in the following places.

1. After each component of the COMPUTER list.

2. After each component of the LIBRARY list.

3. Both before and after each component of each KEYWORDS list.

4. After each component of the CATEGORY list.

This automatic insertion of the * makes your selections easier. For example, if Cray, VAX, and 6600 are the only available choices for COMPUTER, the entry of "C" will be converted automatically to "C*" and will thus match Cray, but not VAX nor 6600. Therefore, you can shorten your entries and save keystrokes.

EXAMPLE: Abbreviated SELECTion entries to retrieve all documents for computer either VAX or Cray, in the SLATEC library, with module name starting with either the letter "S" or the letter "G", with keywords of either "linear equations", "solve", or "decompose", and with keyword "positive definite". Make liberal use of wildcard characters.

> COMPUTER :c,v<ret> LIBRARY :sl<ret> MODULE :s*,g*<ret> KEYWORDS :lin*ions,solve,decomp<ret> KEYWORDS 2:pos*def<ret> KEYWORDS 3:<ret>

CATEGORY :<ret>

The insertion of the * after each component of your CATEGORY selection is appropriate because of the structure of the categorization scheme used for SLATEC, in particular. A subcategory begins with the same letters as its parent category, but has a longer name. See the SLATEC category list contained in this document.

If you do not want the automatic wildcard insertion to take place for any component in a selection list, prefix that component with the underscore ("_") character. This is not usually needed nor desirable, but could be helpful occasionally to eliminate extraneous documentation.

EXAMPLE: A KEYWORDS selection list that will match LINEAR EQUATIONS, but will not match NONLINEAR EQUATIONS.

KEYWORDS : linear*<ret>

EXAMPLE: A KEYWORDS selection list that will not match the sub-phrase NONLINEAR in any keyword, but will probably match all occurrences of the word LINEAR.

KEYWORDS :_linear*, * linear*, *(linear*<ret>

In making your SELECTion entries, take care not to be too restrictive. Each SELECTion list (MODULE, KEYWORDS, CATEGORY) that you enter will further limit the number of modules meeting your selection criteria. Adding more components to any selection entry can only expand the number of modules meeting your selection criteria. If a module might have the keyword "DECOMPOSE" try the keyword entry of "decomp", which, because of the addition of the implicit wildcards, will match both DECOMPOSE and DECOMPOSITION.

If you are not sure how to spell a keyword, or if you are not sure how the implementor spelled a keyword, try a list of variants. For example, instead of "non-linear", try "nonlinear, non linear, non-linear" or "non*linear".

Once the documentation modules that match all your selection criteria have been located you will be prompted for your output instructions.

You can direct the documentation to your terminal or to another VAX file for later perusal or printing. In addition you can ask that each module written be preceded by a form feed (convenient when the documentation is to be printed, so that each module starts on a new page), or be preceded by an identifying header (the header identifies the documentation module by name and date). The number of lines of each module written can be all the lines, or some fixed number of lines. Limiting the number of lines written is handy when browsing and when the items of interest are located at the start of the documentation modules.

*

-

The output options are specified by adding "/option" switches at the end of your input line.

Options

/[NO]Formfeed	[do not] precede each module output by a form feed
/[NO]Header	[do not] precede each module by an identifying header
/Lines=nnn	write out only nnn lines of each module

/Lines write out all lines of each module

The current output file and options are displayed when you are prompted for your output instructions. The options and the output file remain as is until you explicitly change them.

Abbreviations for the options are allowed, as in the following examples.

EXAMPLE: use current output file and current output options.

YOUR ENTRY? <ret>

EXAMPLE: Send documentation output to file doc.dat using current options.

YOUR ENTRY? doc.dat<ret>

EXAMPLE: Send output to file doc.dat with a form feed and no header.

YOUR ENTRY? doc.dat/f/noh<ret>

EXAMPLE: Use current output file and have just the first 10 lines of each documentation module output.

YOUR ENTRY? /lin=10<ret>

EXAMPLE: Send output to terminal with no form feed, no header and the first 15 lines only.

YOUR ENTRY? tt:/noform/nohead/line=15<ret>

EXAMPLE: Use current output file and current options, except write out all lines of every module.

YOUR ENTRY? /lines<ret>

Note, in the preceding examples, that TT: is the entry to use to direct output to your terminal.

Recall that you can enter <control/c> to terminate output prematurely and return to the program command level. In any case, when the documentation output is completed you will be returned to command level where you can again SELECT, COMMENT, or END.

IV. MORE ON GETTING HELP

The documentation program has a built-in help facility that provides information on using the documentation program. At any time input is requested, entering the character "?" is treated as a request for help on the documentation program and will not satisfy the current request for input.

The help facility was designed to be independent of the COMPUTER\LIBRARY collections of documentation. This was done so that the help facility would not have to be changed with the addition of a new COMPUTER\LIBRARY collection.

If, when input is requested, just the single character ? is entered, help on the current input is displayed. However, at any time input is requested, help on any topic can be obtained by entering "? topic".

The documentation program help facility is arranged in a tree-like fashion and uses the VAX VMS Librarian utilities. The list of all topics available is shown if "? help" is entered. If help is given on any of the topics displayed, e.g. SELECT, then subtopics are displayed. Help on a subtopic can be obtained by entering "? topic subtopic". If there is help available on the subtopic, then subsubtopics are shown. In general, then the format of the request for help is "? topic subtopic subsubtopic ...".

Abbreviations are accepted.

EXAMPLE: Two forms to request help on using wildcards in selecting.

- ? select wildcards
- ? sel wil

The help facility allows a limited use of wildcard characters. If you want to have displayed all the help text, or all the help text on a particular topic and its subtopics, then use the help wildcard characters. However, you will have to control the text as it fills your screen.

* may appear by itself and matches everything

***...** returns all help text in the library.

-16-

topic... returns all help text associated with the topic and its subtopics.

EXAMPLE: Entry to list all documentation program help text.

? *...

ALL DOCUMENTATION PROGRAM HELP TEXT WILL STREAM ACROSS YOUR TERMINAL. YOU MUST CONTROL THE SCROLLING. THE HELP TEXT CAN NOT BE INTERRUPTED BY ENTERING <CONTROL/C>.

EXAMPLE: Entry to list all help text on the topic SELECT and its subtopics.

?select...

ALL DOCUMENTATION HELP TEXT ON "SELECT" AND ITS SUBTOPICS WILL STREAM ACROSS YOUR TERMINAL. YOU MUST CONTROL THE SCROLLING. THE HELP TEXT CAN NOT BE INTERRUPTED BY <CONTROL/C>.

EXAMPLE: Entry to list all the first level help text.

? *

V. THE SLATEC CATEGORIZATION SCHEME

When you SELECT documentation, MATHDOC will prompt for an entry for CATEGORY. The appropriate categorization scheme could apply to each COMPUTER\LIBRARY collection separately. Because MATHDOC now provides documentation only for SLATEC, there is only one categorization scheme. That scheme is reproduced in this section.

If you are using MATHDOC with SLATEC and have not memorized the SLATEC categorization list or do not have this document handy, you can retrieve a copy of the category list for yourself. It has been stored with the SLATEC library documentation as the documentation module named CATEGORIES.

EXAMPLE: Retrieve the SLATEC Categorization list.

COMMAND = s<ret>

THE AVAILABLE COMPUTER/LIBRARY CHOICES ARE THE FOLLOWING

CRAY,6600,VAX\SLATEC

COMPUTER :*<ret>

LIBRARY :slatec<ret>

MODULE :categories<ret>

KEYWORDS :<ret>

CATEGORY :<ret>

The documentation program will then search for CATEGORIES, tell you that it has found one module, and ask where you want the documentation written.

When you are prompted for your CATEGORY selection input, enter only a <ret> if you have no category selection to make.

Otherwise, enter a list (delimited by commas) of category selections. Any documentation retrieved will be in one of the categories of the list.

EXAMPLE: Retrieve all documentation modules for the VAX computer, in the SLATEC library, in category C4 (Zeros/Solutions/Roots of a Single Nonlinear Equation).

COMPUTER :vax<ret> LIBRARY :slatec<ret> MODULE :<ret> KEYWORDS :<ret> CATEGORY :c4<ret>

The following categorization scheme is used to categorize the user-callable routines in the SLATEC library. Note, however, that the scheme is more general than SLATEC, so many categories may have no corresponding SLATEC routines.

SLATEC Categorization System

Major Category listing

- A. Arithmetic, Elementary Operations on Polynomials
- B. Evaluation of Elementary and Special Functions
- C. Roots/Zeros of Functions, Simultaneous Nonlinear Equations
- D. Operations Involving Derivatives and Integrals
- E. Interpolation and Approximation
- F. Operations on Matrices and Vectors (Simultaneous Linear
- Equations, Inversion, Canonical Forms)
- G. Statistical Analysis and Probability
- H. Operations Research Techniques, Simulation and Management Science (see also Optimization, I)
- I. Optimization: Minimizing or Maximizing a Function--with or without Constraints
- J. Input/Output
- K. Internal File Manipulations
- L. Language Processors
- M. Data Handling
- N. Debugging
- 0. Simulation of Computers and Data Processors, Emulators
- Q. Service Routines, Programming Aids
- R. Logical and Symbolic

s.

- Information Retrieval Applications and Application-Oriented Programs All Others т.
- z.

Complete Category listing

-

.

.

.

.

A. A1. A2. A3. A4. A5. A6.	<pre>Arithmetic, Elementary Operations on Polynomials Real (i.e., Floating Point) Arithmetic (Includes Interval Arithmetic) Complex Arithmetic Decimal Arithmetic Integer Arithmetic (e.g., Multiple Precision) Number Theory: Prime Numbers, Greatest Common Divisor, Partitions, etc. Algebraic Operations on Polynomials and Power Series. This excludes non-algebraic operations, such as the sum of</pre>
	an infinite series, but includes Horner's scheme, add two polynomials, divide two polynomials, exponentiate power series, etc.
В.	Evaluation of Elementary and Special Functions
B1.	Trigonometric and Inverse Trigonometric Functions
B2.	Hyperbolic and Inverse Hyperbolic Functions
B3.	Exponential and Logarithm
B4.	Roots and Powers (e.g., Square Root, A**X, where A and X are real)
B5.	Higher Transcendental Functions (Special Functions)
B5C.	Factorials, Binomial Coefficients
B5E.	Exponential and Logarithmic Integrals, Sine and Cosine Integrals, etc.
B5F.	Factorial or Gamma Function, Psi Function, Polygamma Functions, Beta Function, Incomplete Gamma and Beta Functions
B5G.	Error Integral, Higher Integrals, Derivatives, Normal Distribution Function, Hermite Functions, Moments
B5H.	Legendre Functions
B5I.	Bessel Functions of Real Argument
B5J.	Bessel Functions of Pure Imaginary Argument, or Modified Bessel Functions
B5K.	Bessel Functions of Complex Argument. Kelvin Functions
B5L.	Miscellaneous Bessel and Related Functions, Weber's Function
B5M.	Elliptic Integrals, Elliptic Functions, Theta Functions
B5N.	Hypergeometric and Confluent Hypergeometric Functions
B50.	Mathieu Functions
B5P.	Coulomb Wave Functions
B5Q.	Spheroidal Wave Functions
B5R.	Orthogonal Functions, Including Polynomials
B5Z.	Miscellaneous Higher Mathematical Functions

C. C2.	Roots/Zeros of Functions, Simultaneous Nonlinear Equations Roots/Zeros of Polynomials
C4.	Zeros/Solutions/Roots of a Single Nonlinear Equation
C44. C4A.	Derivatives Not Required
C4B.	Derivatives Required
	Zeros/Solutions/Roots of more than One Nonlinear Equation
C5.	
C5A.	Derivatives Not Required
C5B.	Derivatives Required
D.	Operations Involving Derivatives and Integrals
D1.	Quadrature (Numerical Integration)
D1A.	Background Calculation: Calculate Gaussian Weights and
	Abscissas for a Given Weight Function
D1B.	Finite Interval, Unit Weight Function
D1B1.	OrdinaryUser Specifies How Many Subdivisions
D1B1A.	Derivatives Not Required
D1B1B.	Derivatives Required
D1B2.	AutomaticUser Specifies Error Tolerance, Routine
	Automatically Subdivides
D1B2A.	Derivatives Not Required
D1B2B.	Derivatives Required
D1C.	Finite Interval, Built-in Weight Function
D1C1.	Ordinary
D1C2.	Automatic
D1D.	Semi-Infinite Interval (a to infinity), (with Weight
	Function)
D1D1.	Ordinary
D1D2.	Automatic
D1E.	Infinite Interval (with Weight Function)
D1E1.	Ordinary
D1E2.	Automatic
D1I.	Multiple Integration
D2.	Ordinary Differential Equations
D2A.	Initial Value Problems
D2A1.	Runge-Kutta Methods
D2A2.	Predictor-Corrector Methods (e.g., Adams' Methods) Extrapolation Methods (e.g., Bulirsch-Stoer)
D2A3.	•
D2A9. D2B.	Others Two-Point Boundary Value Problems
D2B1.	Shooting Methods
D2B1. D2B2.	Finite Difference Methods (Non-Shooting)
D3.	Partial Differential Equations
D3A.	Initial Boundary Value Problems (Hyperbolic, Parabolic)
D3D.	Boundary Value Problems (Elliptic)
D3D1.	Iterative Methods
D3D2.	Direct Methods
D3E.	Eigenvalue Problems
D4.	Numerical Differentiation
D5.	Integral Equations
D6.	Integral Transforms and Their Discrete Analogues (Laplace
	Transforms, Fourier Transforms, etc.)

Ε.	Interpolation and Approximation
E1.	Table Look-Up and Interpolation
E1A.	Splines/Piecewise Polynomial Interpolation
E1B.	Polynomial Interpolation
E1C.	Rational Interpolation
E2.	Curve and Surface Fitting/Approximation
E2A.	Spline Fits (All Norms)
E2B.	General L sub p Approximation
E2C.	L sub infinity (Minimax) Approximations
E2C1.	"True" Minimax Approximation (Remez Schemes, etc.)
E2C2.	Near-Minimax Approximations (Chebyshev Polynomial
	Expansions, Generalized Pade, etc.)
E2D.	Other Analytic Approximations (Pade, QD, etc.)
E2G.	Least Squares Approximation (see also Regression in the
	Statistics Section)
E2G1.	Unconstrained Least Squares
E2G1A.	Linear Least Squares Approximation
E2G1B.	Nonlinear Least Squares Approximation
E2G1B1.	Derivatives Not Required
E2G1B2.	Derivatives Required
E2G2.	Constrained Least Squares
E2G2A.	Linear Function with Linear Equality or Inequality
	Constraints, Quadratic Programming
E2G2B.	Nonlinear Function with Linear Equality or
	Inequality Constraints
E2G2B1.	Derivatives (of the Function) Not Required
E2G2B2.	Derivatives Required
E2I.	L sub 1 Approximation
E3.	Smoothing
E5.	Summation of Series, Convergence Acceleration (This does
	not include the Fast Fourier Transform but does include
	Aitken's del squared Algorithm, Wynn's & Algorithm, the
	Euler-Maclaurin Summation Formula, etc.)
F.	Operations on Matrices and Vectors (Simultaneous Linear
	Equations, Inversion, Canonical Forms)
F1.	Elementary Vector/Matrix Operations (e.g., Addition,
	Multiplication, Transpose, Dot Product). Excluded are
	Inverse, Triangular Factors, Singular Value Decomposition,
	etc.
F1A.	Elementary Vector Operations
F1B.	Elementary Matrix Operations
F2.	Eigenvalues and Eigenvectors of Matrices
F2A.	Reductions to Canonical Form (Givens, Householder)
F2A1.	Reduction to Symmetric Tridiagonal Form
F2A2.	Reduction to Hessenberg (Almost Triangular) Form
F2C.	Ordinary Eigenvalue Problems (Ax = Lambda x)
F2C1.	For Tridiagonal Matrices
F2C2.	For Real Symmetric Matrices
F2C3.	For Real Unsymmetric Matrices

j.

-22-

	_
F2C4.	For Hessenberg Matrices
F2C5.	For Complex Hermitian Matrices
F2C6.	For Complex Non-Hermitian Matrices
F2C8.	For Banded Matrices
F2C9.	For Sparse Matrices
F2D.	Generalized Eigenvalue Problems (Ax = Lambda Bx, etc.)
F3.	Determinants
F4.	Simultaneous Linear Equations, Inversion, LU Decomposition,
	Crout, Cholesky Decomposition
F4A.	For Arbitrary Real (Dense) Matrices
F4B.	For Positive Definite Symmetric Matrices
F4C.	For Symmetric Indefinite Matrices
F4F.	For Complex Matrices
F4H.	For Band Matrices
F4K.	
	For Sparse Matrices
F6.	Other Matrix Factorizations (Singular Value Decomposition)
F7.	Orthogonalization (Modified Gram-Schmidt)
G.	Statistical Analysis and Probability
	Statistical Analysis and Probability Data Reduction
G1.	
G1A.	Frequency Distributions (Histograms)
G1B.	Descriptive Statistics
G2.	Multivariate Analysis Including Correlation and Regression
	Analysis
G2A.	Partial Correlation
G2B.	Bivariate Correlation Analysis
G2C.	Stepwise Regression
G2D.	Multiple Regression
G2E.	Nonlinear Regression
G2F.	Discriminant Analysis
G2G.	Factor Analysis
G2H.	Canonical Correlation
G3.	Sequential Analysis
G4.	Analysis of Variance and Covariance
G4A.	One-Way Analysis of Variance
G4B.	Two- to N-way Factorial Analysis of Variance
G4C.	Non-Factorial Designs
G40.	Analysis of Covariance
G4D. G4E.	Multiple Comparisons
G5.	Random Number Generators & Probability Distributions
G5B.	Normal Distribution
G5C.	Other Distributions (t-, f-, Beta-, Chi-square-,
OF F	Binomial, Exponential, Poisson, Gamma, etc.)
G5E.	Uniform random Number Generators
G5F.	Normal Random Number Generators
G5G.	Other Random Number Generators (as in G5C above)
G5H.	Tests on Random Numbers
G6.	Permutations and Combinations
G7.	Subset Generators
G8.	Non-Parametric Statistics (Goodness of Fit)
G9.	Hypothesis Testing

-

G10. Non-Metric Techniques G10A. Scalogram Analysis G10B. Cluster analysis G10C. Multidimensional Scaling G11. Table Analysis Description of Subpopulations G12. Time Series Analysis, Autocorrelation G13. Η. Operations Research Techniques, Simulation and Management Science (see also Optimization, I) Transportation and Network Codes H3. Simulation Modeling and Models (GPSS, Simscript, etc.) H4. H6. Critical Path Programs (PERT) H8. Auxiliary Programs Optimization: Minimizing or Maximizing a Function---with or I. without Constraints Unconstrained Optimization (for sum of squares, see I1. "Least Squares") Minimize or Maximize a Function of One Variable I1A. Derivatives Not Required I1A1. I1A2. First Derivatives Required Second Derivatives Required I1A3. Minimize or Maximize a Function of Several Variables I1B. Derivatives Not Required I1B1. First Derivatives Required I1B2. Second Derivatives Required I1B3. Constrained Optimization, Mathematical Programming I2. I2A. Linear Programming: Minimize a Linear Function Subject to Linear Equality or Inequality Constraints I2A1. Dense, In-Core Matrix of Constraints Structured, Sparse Matrix of Constraints I2A2. Auxiliary Storage Required I2A3. I2B. Nonlinear Programming (for quadratic programming, see Constrained Least Squares) Linear Equality or Inequality Constraints I2B1. Derivatives (of the Objective Function) Not I2B1A. Required I2B1B. First Derivatives Required Second Derivatives Required I2B1C. Nonlinear Constraints I2B2. Equality Constraints Only I2B2A. I2B2A1. Derivatives Not Required First Derivatives of Function and Constraints I2B2A2. Required Second Derivatives of Function and First I2B2A3. Derivatives of Constraints Required I2B2A4. Second Derivatives of Both Function and Constraints Required Equality and Inequality Constraints I2B2B. Derivatives No Required I2B2B1.

•

I2B2B2.	First Derivatives of Function and Constraints Required
I2B2B3.	Second Derivatives of Function and First Derivatives of Constraints Required
I2B2B4.	Second Derivatives of Both Function and Constraints Required
I2D.	Integer Programming
J.	Input/Output
J1.	Binary
J2.	Octal/Hexadecimal
J3.	Decimal
J4.	Character String
J5.	Graphics, Plotting
J5A.	Batch
J5B.	Interactive
К.	Internal File Manipulations
K1.	Copy or Move File(s)
K2.	Create a File
K2A. K2B.	Sequential
K2Z.	Library ("Partitioned Data Set") Other
K3.	Destroy a File
κς. K4.	Compare Two Files
K5.	Update a File
K7.	File Maintenance
K8.	Program Library Maintenance
L.	Language Processors
L1.	Assemblers
L1A.	Macro Assemblers
L1B.	Other Assemblers (Which Produce Code for the Same Machine)
L1C.	Cross-Assemblers (i.e., One Which Runs on One Computer But Produces Code for Another Computer)
L2.	Compilers for Algebraic Languages (Excludes LISP, SNOBOL, etc.)
L2A.	Batch
L2B.	Debugging (e.g., WATFIV)
L2C.	Interactive or Incremental
L2D.	Cross-Compilers
L4.	Preprocessors
L5.	Disassembly and De-Relativizing
L6.	Loaders and Linkers
L7.	Computer Language to Computer Language Translators
L8.	Interpreters (But Not Emulators)
Μ.	Data Handling
M1.	Sorting
M2.	Conversion and/or Scaling
M3.	Merging
M4.	Character Manipulation

۲

M5.	Searching, Seeking, Locating
N.	Debugging
N1.	Tracing, Trapping, Breakpoints
N2.	Dumping
N2A.	Memory Dump
N2B.	Tape Dump
N2C.	Disk/Drum Dump
0.	Simulation of Computers and Data Processors, Emulators
01.	Off-Line Equipment
03.	Computers
04.	Pseudo-Computers
09.	Other or Composite
Q.	Service Routines, Programming Aids
Q1.	Program Timers
Q2.	Interrupt Processors
Q5.	Report Generator Routines
R.	Logical and Symbolic
R1.	Shifting, Masking, Logical Bit Operations
R2.	Symbol Manipulation (e.g., SNOBOL, REDUCE)
R3.	List Processing
R4.	Text Editors
s.	Information Retrieval
T.	Applications and Application-Oriented Programs
T1.	Physics (Including Nuclear)
T2.	Chemistry
T3.	Other Physical Sciences (Geology, Astronomy, etc.)
T4.	Engineering
T5.	Business Data Processing
T6.	Manufacturing, (Non-Data) Processing, and Process Control
T7.	Mathematics and Applied Mathematics
T8.	Social and Behavioral Sciences and Psychology
T9.	Biological Sciences

-

~

-

r

-

-1

Z. All Others

THE SLATEC TABLE OF CONTENTS. VT.

This section contains the table of contents for Version 1.0 of the SLATEC FORTRAN Library. The table is ordered by category. Following the table of contents is an alphabetical listing of the user-callable routines.

If you are using MATHDOC with SLATEC and have not memorized the SLATEC table of contents or do not have this document handy, you can retrieve a copy of the table of contents for yourself. It has been stored with the SLATEC library documentation as the documentation module named CONTENTS. If you retrieve the CONTENTS using MATHDOC you can be assured of getting the table of contents for the latest version of SLATEC.

EXAMPLE: Retrieve the SLATEC table of contents.

COMPUTER :*<ret>

LIBRARY :slatec<ret>

MODULE :contents<ret>

KEYWORDS :<ret>

CATEGORY :<ret>

The documentation program will then search for CONTENTS, tell you that it has found one module, and ask where you want the documentation written.

SLATEC Table of Contents

Categor	y Name	Purpose
В	CARG	Computes the argument of a complex number.
B1	CACOS	Computes the complex arc cosine.
B1	CASIN	Computes the complex arc sine.
B1	CATAN	Computes the complex arc tangent.
B1	CATAN2	Computes the complex arc tangent in the proper quadrant.
B1	CCOT	Computes the complex cotangent.
B1	COSDG	Computes the cosine of an argument in degrees.
B1	COT	Computes the cotangent.
B1	CTAN	Computes the complex tangent.

-27-

B1	D9ATN 1	Evaluates datan(x) from first order relative accuracy so
		that datan(x) = $x + x^{**}3^*D9ATN1(x)$.
B1	DCOSDG	Computes the double precision cosine for degree
		arguments.
B1	DCOT	Computes the double precision cotangent.
B1	DSINDG	Computes the double precision sine for degree arguments.
B1	R9ATN 1	Evaluate atan(x) from first order relative accuracy so
		that $atan(x) = x + x^{**}3^{*}R9ATN1(x)$.
B1	SINDG	Computes the sine of an argument in degrees.
B2	ACOSH	Compute the arc hyperbolic cosine.
B2	ASINH	Computes the arc hyperbolic sine.
B2	ATANH	Compute the arc hyperbolic tangent.
B2	CACOSH	Computes the complex arc hyperbolic cosine.
B2	CASINH	Computes the complex arc hyperbolic sine.
B2	CATANH	Computes the complex arc hyperbolic tangent.
B2	CCOSH	Computes the complex hyperbolic cosine.
B2	CSINH	Computes the complex hyperbolic sine.
B2	CTANH	Computes the complex hyperbolic tangent.
B2	DACOSH	Computes the arc hyperbolic cosine.
B2	DASINH	Computes the arc hyperbolic sine.
B2	DATANH	Computes the double precision arc hyperbolic tangent.
B3	ALNREL	Evaluates ln(1+x) accurate in the sense of relative
		error.
B3	C9LN2R	Evaluates clog(1+z) from second order with relative error
•	-	so that $clog(1+z) = z - z^{**}2/2 + z^{**}3^*C9LN2R(z)$.
B3	CEXPRL	Evaluates $(cexp(z)-1)/z$ so that $exp(z) = 1 + z * CEXPRL(z)$.
B3	CLNREL	Computes the principal value of the complex natural
- 3		logarithm of 1+z with relative error accuracy for small
		cabs(z).
B3	CLOG10	Computes the principal value of the complex base 10
-3		logarithm.
В3	D9LN2R	Evaluate dlog(1+x) from second order relative accuracy so
-5		that $dlog(1+x) = x - x^{**}2/2 + x^{**}3^*D9LN2R(x)$.
B3	DEXPRL	Calculates the double precision relative error
-0		exponential $(dexp(x)-1)/x$.
B3	DLNREL	Evaluates double precision $ln(1+x)$ accurate in the
25	2=2=	relative error sense.
B3	EXPREL	Evaluates EXPREL(x) = $(exp(x)-1)/x$.
B3	R9LN2R	Evaluates alog(1+x) from second order relative accuracy
C.C.	KYENZK	so that $alog(1+x) = x - x^{**}2/2 + x^{**}3^{**}R9LN2R(x)$.
В4	CBRT	Computes the cube root of x.
B4	CCBRT	Computes the complex cube root of z.
B4	DCBRT	Computes the double precision cube root.
B5	R9AIMP	Evaluate the Airy modulus and phase.
B5C	BINOM	Computes the binomial coefficients.
B5C	DBINOM	Computes the double precision binomial coefficients.
B5C B5C	DFAC	Computes the double precision factorial of n.
B5C B5C	FAC	Computes the factorial of n.
B5C B5E	ALI	Computes the logarithmic integral.
	DE 1	Computes the double precision exponential integral E1(x).
B5E		Computes the double precision exponential integral EI(x).
85E	DEI	computes the double precision exponential integral EI(x).

B5E	DEXINT	DEXINT computes m member sequences of exponential integrals e(n+K,x), k=0,1,,m-1 for n.ge.1 and x.ge.0.
DEE	DLI	Computes the double precision logarithmic integral.
85E 85E	E1	Computes the exponential integral E1(x).
	EI	Computes the exponential integral EI(x).
B5E		EXINT computes m member sequences of exponential
B5E	EXINT	integrals $e(n+K,x)$, $k=0,1,\ldots,m-1$ for n.ge.1 and x.ge.0.
		Computes the natural log of the complete BETA function.
B5F	ALBETA	Computes log($abs(GAMMA(x))$).
B5F	ALGAMS	
B5F	ALNGAM	Computes the log of the absolute value of the GAMMA function.
B5F	BETA	Computes the complete BETA function.
B5F	BETAI	Computes the incomplete BETA function.
B5F	COLGMC	Evaluates (z+0.5)*clog((z+1.)/z) - 1.0 with relative
		accuracy.
B5F	C9LGMC	Computes the log GAMMA correction term for most z so that $clog(CGAMMA(z)) = 0.5*alog(2.*pi) + (z-0.5)*clog(z) - z + C9LGMC(z).$
B5F	CBETA	Computes the complete BETA function of complex parameters
		a and c.
B5F	CGAMMA	Computes the GAMMA function of complex argument.
B5F	CGAMR	Computes the reciprocal GAMMA function of complex
DCD		argument.
B5F	CLBETA	CLBETA computes the natural log of the complex valued
		complete BETA function of complex parameters a and B.
B5F	CLNGAM	CLNGAM computes the natural log of the complex valued
DCB	abat	GAMMA function at zin, where zin is a complex number.
B5F	CPSI	Computes the PSI function of complex argument.
B5F	D9GMIC	Calculates the double precision incomplete GAMMA function
DEE	DOGMTT	for a near a negative integer and x small.
B5F	D9GMIT	Computes double precision Tricomi-s incomplete GAMMA function for small x.
DEE	D9LGIC	Computes the double precision log incomplete GAMMA
B5F	DAFGIC	function for large x and for a .le. x.
DEE		Computes the log of Tricomi-s incomplete GAMMA function
B5F	D9LGIT	with Perron-s continued fraction for large x and a .ge.
DEE	DOLCMC	X. Computed the double precision log CAMMA correction
B5F	D9LGMC	Computes the double precision log GAMMA correction factor for x .ge. 10. so that dlog(DGAMMA(x)) =
		dlog(dsqrt(2*pi)) + (x-5.)*dlog(x) - x + D9LGMC(x).
DEE		
B5F	DBETA DBETAI	Computes the double precision complete BETA function. Calculates the double precision incomplete BETA function.
B5F		Calculates the double precision incomplete GAMMA
B5F	DGAMI	function.
DCD	DO ANTO	
B5F	DGAMIC	Calculates the double precision complementary incomplete GAMMA function.
DCF	DOM	
B5F	DGAMIT	Calculates Tricomi-s form of the incomplete GAMMA
DEF	DC ANT M	function.
B5F	DGAMLM	Computes the double precision minimum and maximum bounds
DEE		for x in GAMMA(x).
B5F	DG AMMA	Computes the double precision complete GAMMA function.

-

.

B5F B5F	DGAMR DLBETA	Calculates double precision reciprocal GAMMA function. Computes the double precision natural logarithm of the
85 F	DLGAMS	complete BETA function. Calculates the log of the absolute value of the GAMMA
	DEGIME	function.
B5F	DLNGAM	Computes the double precision logarithm of the absolute value of the GAMMA fn.
B5F	DPSI	Computes the double precision PSI (or digamma) function.
B5F	GAMI	Computes the incomplete GAMMA function.
B5F	GAMIC	Computes the complementary incomplete GAMMA function.
B5F	GAMIT	Computes Tricomi-s form of the incomplete GAMMA function.
B5F	GAMLIM	Computes the minimum and maximum bounds for x in GAMMA(x).
B5F	GAMMA	Computes the GAMMA function.
B5F	GAMR	Computes the reciprocal of the GAMMA function.
B5F	PSI	Computes the PSI (or digamma) function.
B5F	R9GMIC	Compute the complementary incomplete GAMMA function for a negative integer and for small x.
B5F	R9GMIT	Computes Tricomi-s incomplete GAMMA function for small x.
B5F	R9LGIC	Computes the log complementary incomplete GAMMA function for large x and for a .le. x.
B5F	R9LGIT	Computes the log of Tricomi-s incomplete GAMMA function with Perron-s continued fraction for large x and for a
B5F	R9LGMC	.ge. x. Computes the log GAMMA correction factor so that alog(GAMMA(x)) = alog(sqrt(2*pi)) + (x5)*alog(x) - x + R9LGMC(x).
B5G	DERF	Computes the double precision error function, ERF, of x.
B5G	DERFC	Computes the double precision complementary error
		function, ERFC.
B5G	ERF	Computes the error function, ERF.
B5G	ERFC	Computes the complementary error function.
B5I	AI AIE	Computes the Airy function. Computes the exponentially scaled Airy function.
B5I	BESI	BESI computes an n member sequence of i Bessel functions
B5I	DEST	i/sub(alpha+K-1)/(x), k=1,,n or scaled Bessel functions exp(-x)*i/sub(alpha+K-1)/(x), k=1,,n for
DET	BESJ	non-negative alpha and x. BESJ computes an n member sequence of j Bessel functions
B5 I	DEDU	j/sub(alpha+K-1)/(x), k=1,,n for non-negative alpha and x.
B5I	BESJO	Computes the Bessel function of the first kind of order zero.
B5I	BESJ1	Computes the Bessel function of the first kind of order one.
B5I	BESK	BESK implements forward recursion on the three term recursion relation for a sequence of non-negative order Bessel functions k/sub(fnu+i-1)/(x), or scaled Bessel functions exp(x)*k/sub(fnu+i-1)/(x), i=1,,n for real
B5I	BESY	x.gt.0.0e0 and non-negative orders fnu. BESY implements forward recursion on the three term

		recursion relation for a sequence of non-negative order Bessel functions y/sub(fnu+i-1)/(x), i=1,n for real
		x.gt.0.0e0 and non-negative orders fnu.
B5I	BESYO	Computes the Bessel function of the second kind of order zero.
B5I	BESY1	Computes the Bessel function of the second kind of order one.
B5I	BI	Computes the bairy function.
B5I	BIE	Computes the exponentially scaled bairy function.
B51	D9AIMP	Evaluates the Airy modulus and phase for x .le1.0.
B5I	DAI	Calculates the double precision Airy function.
B5I	DAIE	Calculates the double precision Airy function for
		negative x and an exponentially scaled Airy function for
	_	positive x.
B5I	DBESI	DBESI computes an n member sequence of i Bessel functions
		i/sub(alpha+K-1)/(x), k=1,,n or scaled Bessel
		functions dexp(-x)*i/sub(alpha+K-1)/(x), k=1,,n for
DET	DDD0 I	nonnegative alpha and x.
B5I	DBESJ	DBESJ computes an n member sequence of j Bessel functions
		j/sub(alpha+K-1)/(x), k=1,,n for non-negative alpha
B5I	DBESJO	and x. Computes the double precision Bessel function of the
T CO	DDE000	first kind of order zero.
B5I	DBESJ1	Computes the double precision Bessel function of the
0,1	222201	first kind of order one.
B5I	DBESK	DBESK implements forward recursion on the three term
		recursion relation for a sequence of non-negative order
		Bessel functions k/sub(fnu+i-1)/(x), or scaled Bessel
		functions dexp(x)*k/sub(fnu+i-1)/(x), i=1,,n for real
		x.gt.0.0d0 and non-negative orders fnu.
B5I	DBESY	DBESY implements forward recursion on the three term
		recursion relation for a sequence of non-negative order
		Bessel functions $y/sub(fnu+i-1)/(x)$, i=1,n for real
		x.gt.0.0d0 and non-negative orders fnu.
B5I	DBESYO	Computes the double precision Bessel function of the
DET	DBESY1	second kind of order zero. Computes the double precision Bessel function of the
B5I	DBESII	second kind of order one.
B51	DBI	Calculates the double precision bairy function (Airy of
דעם	DD1	second kind).
B5I	DBIE	Calculates the double precision bairy function for
291	2310	negative x and an exponentially scaled bairy function for
		positive x.
B5J	BESIO	Computes the hyperbolic Bessel function of the first kind
		of order 0.
B5J	BESIOE	Computes the exponentially scaled hyperbolic Bessel
		function of the first kind of order zero.
B5J	BESI1	Computes the hyperbolic Bessel function of first kind of
		order one.
B5J	BESKO	Computes the hyperbolic Bessel function of the third kind
		of order 0.

B5J	BESKOE	Computes the exponentially scaled hyperbolic Bessel function of the third kind of order zero.
B5J	BESK1	Computes the hyperbolic Bessel function of the third kind of order one.
B5J	BESK1E	Computes the exponentially scaled hyperbolic Bessel function of the third kind of order one.
B5J	BESKES	Computes a sequence of exponentially scaled modified Bessel functions of the third kind of fractional order.
B5J	BESKS	Computes a sequence of modified Bessel functions of the third kind of fractional order.
B5J	DBESIO	Computes the double precision hyperbolic Bessel function of the first kind of order zero.
B5J	DBESI1	Computes the double precision modified (hyperbolic) Bessel function of the first kind of order one.
B5J	DBESKO	Computes the double precision modified (hyperbolic) Bessel function of the third kind of order zero.
B5J	DBESK1	Computes the double precision modified Bessel function of the third kind.
B5J	DBESKS	Computes a double precision sequence of modified Bessel functions of the third kind of fractional order.
B5J	DBSIOE	Computes the double precision exponentially scaled hyperbolic Bessel function of the first kind of order zero.
B5J	DBSKOE	Computes the double precision exponentially scaled modified (hyperbolic) Bessel function of the third kind of order zero.
B5J	DBSK1E	Computes the exponentially scaled,modified (hyperbolic) Bessel function of the third kind of order one (double precision).
B5J	DBSKES	Computes a double precision sequence of exponentially scaled modified Bessel functions of the third kind of fractional order.
B5K	BESI1E	Computes the exponentially scaled hyperbolic Bessel function of the first kind of order one.
B5K	DBSI1E	Computes the double precision exponentially scaled modified (hyperbolic) Bessel function of the first kind of order one.
B5L	D9B0MP	Evaluates the double precision modulus and phase for j0 and y0 Bessel functions.
B5L	D9B1MP	Evaluate the double precision modulus and phase for the j1 and y1 Bessel fns.
B5L	D9KNUS	Computes Bessel functions exp(x)*K-sub-xnu(x) and exp(x)* K-sub-xnu+1(x) for 0le. xnu .lt. 1.
B5L	R9KNUS	Computes Bessel functions $exp(x)$ *K-sub-xnu(x) and $exp(x)$ * K-sub-xnu+1(x) for 0.0 .le. xnu .lt. 1.0.
B5N	СНИ	Computes the logarithmic confluent hypergeometric function.
B5N	D9CHU	Evaluates for large z z**a * u(a,B,z) where u is the logarithmic confluent hypergeometric function. (double precision).
B5N	DCHU	Calculates the double precision logarithmic confluent

,

	5.0.000	hypergeometric function.
B5N	R9CHU	Evaluates for large $z = z^{**}a + CHU(a, B, z)$.
B5R	CSEVL	Evaluate the n-term chebyshev series cs at x.
B5R	DCSEVL	Evaluate the double precision n-term chebyshev series a at x.
B5R	INITDS	Initializes the double precision properly normalized
		orthogonal polynomial series to determine the number of
		terms needed for specific accuracy.
B5R	INITS	Initializes an orthogonal series so that it defines the
		number of terms to carry in the series to meet a
		specified error.
B5Z	DAWS	Computes dawson-s function.
B5Z	DDAWS	Computes the double precision dawson-s function.
B5Z	DPOCH	Computes double precision generalized Pochhammer-s
		symbol.
B5Z	DPOCH 1	Calculates a generalization of pochhammers symbol
		starting from first order. (double precision).
B52	DSPENC	Computes a double precision form of Spence-s integral due
569	50.00	to K. Mitchell.
B5Z	POCH	Evaluates a generalization of Pochhammer-s symbol.
B5Z	POCH1	Computes Pochhammer-s symbol from first order.
B5Z	SPENC	Compute Spence-s function.
C2	CPQR79 CPZERO	Find the zeros of a polynomial with complex coefficients. Find the zeros of a polynomial with complex coefficients.
C2 C2		To find the zeros of a polynomial with complex coefficients.
C2 C2	RPQR79 RPZERO	Find the zeros of a polynomial with real coefficients.
C2 C4A	FZERO	FZERO searches for a zero of a function $f(x)$ in a given
04A	FZENU	interval (B,c). It is designed primarily for problems
		where $f(B)$ and $f(c)$ have opposite signs.
C5A	SNSQ	SNSQ finds to find a zero of a system of n nonlinear
0 JA		functions in n variables by a modification of the Powell
		hybrid method. this code is the combination of the
		MINPACK codes (Argonne) hybrd and hybrdj.
C5A	SNSQE	SNSQE is the easy-to-use version of SNSQ which finds a
		zero of a system of n nonlinear functions in n variables
		by a modification of Powell hybrid method. This code is
		the combination of the MINPACK codes (Argonne) hybrd1 and
		hybrj1.
C5B	SOS	SOS solves a system of nonlinear equations.
D1	QAGP	To evaluate a given definite integral over a finite
		interval with user supplied break points.
D1B	AVINT	Integrate a function tabulated at arbitrarily spaced
		abscissas using overlapping parabolas.
D1B1A	QNG	To estimate the value of a given definite integral over a
		finite interval using a non-adaptive scheme.
D1B2A	DGAUS8	DGAUS8 integrates double precision functions of one
		variable over finite intervals using an adaptive 8-point
		Legendre-Gauss algorithm. DGAUS8 is intended primarily
		for high accuracy integration or integration of smooth
D1D04	CAU00	functions.
D1B2A	GAUS8	GAUS8 integrates real functions of one variable over

.

		finite intervals using an adaptive 8-point Legendre-Gauss
		algorithm. GAUS8 is intended primarily for high accuracy
D1B2A	QAG	integration or integration of smooth functions. To evaluate a given definite integral over a finite
DIDZA	QAG	interval.
D1B2 A	QAGS	To evaluate a given definite integral over a finite interval.
D1B2A	QNC79	Integrate a user defined function by a 7-point adaptive Newton-Cotes quadrature rule.
D1C2	QAWC	To evaluate a given definite integral over a finite interval with a Cauchy weight function.
D1C2	QAWO	To estimate the value of a given definite integral over a finite interval with an oscillatory weight function.
D1C2	QAWS	To estimate the value of a given definite integral over a finite interval with an algebraic or logarithmic weight function.
D1D2	QAGI	To estimate the value of a given definite integral over a semi-infinite or infinite interval.
D1D2	QAWF	To estimate the value of a definite integral over a semi-infinite interval with a fourier weight function.
D2A1	DERKF	DERKF solves initial value problems in ordinary differential equations using the Runga-Kutta-Fehlberg fifth order formula. It is variable step.
D2A2	DEABM	DEABM solves initial value problems in ordinary differential equations using an adams method. It is
D2A2	INTRP	variable order(1-12) and variable step. Approximates the solution at xout by evaluating the polynomial computed in STEP2 at xout. Must be used in conjunction with STEP2.
D2A2	STEP2	Integrates a system of first order odes one step.
D2A9	DEBDF	DEBDF solves initial value problems in ordinary differential equations using backward differentiation formulas. It is both variable order (1-5) and variable
D2B	BVSUP	step. Subroutine BVSUP solves a linear two-point boundary value problem using superposition coupled with an orthonormalization procedure and a variable-step
		integration scheme.
D3D2	BLKTRI	Solves a block tridiagonal system of linear equations (usually resulting from the discretization of separable elliptic equations).
D3 D2	POIS	Solves Poisson-s equation using a standard difference approximation.
D3D2	PWSCRT	Solves the Helmholtz equation in cartesian coordinates using the standard 5-point difference approximation.
D3D2	PWSCSP	Solves the modified Helmholtz equation in spherical coordinates (assuming axisymmetry) using a finite
D3 D2	PWSCYL	difference approximation. Solves the modified Helmholtz equation in cylindrical coordinates using a finite difference approximation.
D3D2	PWSPLR	Solves the Helmholtz equation in polar coordinates using

-

,

٠

-34-

D3D2	PWSSSP	a finite difference approximation. Solves the Helmholtz equation in spherical coordinates
2022	1 100001	and on the unit sphere using a finite difference approximation.
D6	CFFTB	Inverse fft of a complex periodic sequence.
D6	CFFTF	Forward fft of a complex periodic sequence.
D6	CFFTI	Initialize for CFFTF and CFFTB.
D6	COSQB	Inverse cosine transform with odd wave numbers (inverse
DC	COROF	of COSQF). Forward cosine transform with odd wave numbers.
D6 D6	COSQF COSQI	Initialize for COSQF and COSQB.
D6 D6	COSQI	Cosine transform of a real even sequence.
	COST	Initialize for COST.
D6 D6	EZFFTB	Simplified version of inverse fft of a real periodic
D6		sequence.
D6	EZFFTF	Forward fft of a real periodic sequence (simplifed version).
D6	EZFFTI	Initialize for EZFFTF and EZFFTB.
D6	RFFTB	Inverse fft of a real periodic sequence.
D6	RFFTF	Forward fft of a real periodic sequence.
D6	RFFTI	Initialize for RFFTF and RFFTB.
D6	SINQB	Inverse sine transform with odd wave numbers (inverse of
		SINQF).
D6	SINQF	Forward sine transform with odd wave numbers.
D6	SINQI	Initialize for SINQF and SINQB.
D6	SINT	Sine transform of a real odd sequence.
D6	SINTI	Initialize for SINT.
E 1	POLCOF	Converts POLINT coefficients to Taylor series form.
E1A	BFQAD	Computes the integral on (x1,x2) of a product of a
		function f and the id-th derivative of a K-th order
		B-spline (B-representation).
E1A	BINT4	Computes the B-representation of a cubic spline which
		interpolates data (x(i),y(i)),i=1,ndata.
E1A	BINTK	Produces the B-spline coefficients, bcoef, of the
		B-spline of order K with knots t(i), i=1,,n+K, which
		takes on the value y(i) at x(i), i=1,,n.
E1A	BSPDR	Uses the B-representation to construct a divided
		difference table preparatory to a (right) derivative
		calculation in BSPEV.
E1A	BSPEV	Calculates the value of the spline and its derivatives at x from the B-representation .
E1A	BSPPP	Converts the B-representation to the piecewise polynomial
		(PP) form for use with PPVAL.
E1A	BSPVD	Calculates the value and all derivatives of order less
		than nderiv of all basis functions which do not vanish at
		х.
E1A	BSPVN	Calculates the value of all (possibly) nonzero basis
		functions at x.
E1A	BSQAD	Computes the integral on (x1,x2) of a K-th order B-spline
		using the B-representation.
E1A	BVALU	Evaluates the B-representation of a B-spline at x for the

		Augstien welve en env of its denivetives
E1A	DBFQAD	function value or any of its derivatives. Computes the integral on (x1,x2) of a product of a
L I A	DDrQAD	function f and the id-th derivative of a K-th order
		B-spline (B-representation).
E1A	DBINT4	Computes the B-representation of a cubic spline which
		interpolates data (x(i),y(i)),i=1,ndata.
E1A	DBINTK	Produces the B-spline coefficients, bcoef, of the
		B-spline of order K with knots t(i), i=1,,n+K, which.
E1A	DBSPDR	Uses the B-representation to construct a divided
		difference table adif preparatory to a (right) derivative
	DDODEN	calculation in BSPEV.
E1A	DBSPEV	Calculates the value of the spline and its derivatives at x from the B-representation .
E1A	DBSPPP	Converts the B-representation to the piecewise polynomial
LIA	DDDTTT	(PP) form for use with PPVAL.
E1A	DBSPVD	Calculates the value and all derivatives of order less
		than nderiv of all basis functions which do not vanish at
		х.
E1A	DBSPVN	Calculates the value of all (possibly) nonzero basis
	DDGOAD	functions at x. Computes the integral on (x1,x2) of a K-th order B-spline
E1A	DBSQAD	using the B-representation.
E1A	DBVALU	Evaluates the B-representation of a B-spline at x for the
1 11	221120	func value or any of its derivatives.
E1A	DINTRV	Computes the largest integer ileft in 1.le.ileft.le.lxt
		such that xt(ileft).le.x where xt(*) is a subdivision of
		the x interval.
E1A	DPFQAD	Computes the integral on $(x1,x2)$ of a product of a
		function f and the id-th derivative of a B-spline,
E1A	DPPQAD	(PP-representation). Computes the integral on (x1,x2) of a K-th order B-spline
E IA	DFFQAD	using the piecewise polynomial representation.
E1A	DPPVAL	Calculates (at x) the value of the ideriv-th derivative
		of the B-spline from the PP-representation.
E1A	INTRV	Computes the largest integer ileft in 1.le.ileft.le.lxt
		<pre>such that xt(ileft).le.x where xt(*) is a subdivision of</pre>
	55045	the x interval. $(x1, x2)$ of a product of a
E1A	PFQAD	Computes the integral on (x1,x2) of a product of a function f and the id-th derivative of a B-spline,
		(PP-representation).
E1A	PPQAD	Computes the integral on (x1,x2) of a K-th order B-spline
2		using the piecewise polynomial representation.
E1A	PPVAL	Calculates (at x) the value of the ideriv-th derivative
		of the B-spline from the PP-representation.
E1B	POLINT	To produce the polynomial which interpolates a set of
E 1 D	DOI YUT	discrete data points.
E1B	POLYVL	Calculates the value of the polynomial and its first nder derivatives where the polynomial was produced by a
		previous call to POLINT.
E1B	PVALUE	To use the coefficients generated by POLFIT to evaluate
		the polynomial fit of degree 1, along with the first nder

		and the state of the second field maint
		of its derivatives, at a specified point.
E2	CHKDER	Checks user supplied jacobians for SNSQ and SNSQE.
E2	CV	Covariance companion to least squares code FC().
E2	PCOEF	Converts POLFIT coefficients to Taylor series form.
E2A	EFC	Fits a piece-wise polynomial curve to discrete data. The
		piece-wise polynomials are represented as B-splines. The
		fitting is done in a weighted least squares sense.
E2A	FC	Fits a piece-wise polynomial curve to discrete data. The
		piece-wise polynomials are represented as B-splines. The
		fitting is done in a least squares sense. Equality and
		inequality constraints can be imposed on the fitted
		curve.
E2G1A	POLFIT	To fit data in a least squares sense by polynomials in
		one variable.
E2G1A	SODS	Solves an overdetermined system of linear equations. For
		full rank matrices the unique least squares solution is
		provided.
E2G1A	SUDS	Solves an underdetermined system of linear equations.
		For full rank matrices the least squares solution is
		provided.
E2G1B1	SNLS	SNLS minimizes the sum of the squares of m nonlinear
		functions in n variables by a modification of the
		Levenberg-Marquardt algorithm. This code is the
		combination of the MINPACK codes (Argonne) lmder, lmdif,
		and lmstr.
E2G1B1	SNLSE	SNLSE is the easy-to-use version of SNLS which minimizes
		the sum of the squares of m nonlinear functions in n
		variables by a modification of the Levenberg-Marquardt
		algorithm. This code is the combination of the MINPACK
		codes (Argonne) lmder1, lmdif1, and lmstr.
E2G2A	LSEI	Solve a linearly constrained least squares problem with
		equality and inequality constraints, and optionally
		compute a covariance matrix.
E2G2A	WNNLS	Solves a linearly constrained linear least squares
		problem where the constraints can be equality or
		nonnegativity constraints.
F1A	CAXPY	Complex computation $y = a^*x + y$.
F1A	CCOPY	Complex vector copy $y = x$.
F1A	CDCDOT	Complex inner productsee SDSDOT.
F1A	CDOTC	Dot product of complex vectors, uses complex conjugate of
		first vector.
F1A	CDOTU	Inner product of complex vectors.
F1A	CROTG	Constructs complex Givens rotation see SROTG.
F1A	CSCAL	Complex vector scale x = a*x.
F1A	CSROT	Applies a plane rotation to complex vectors.
F1A	CSSCAL	Scale a complex vector.
F1A	CSWAP	Interchange complex vectors.
F1A	DASUM	Sum of magnitudes of double precision vector components.
F1A	DAXPY	Double precision computation $y = a^*x + y$.
F1A	DCDOT	Complex inner productsee DSDOT.
F1A	DCOPY	Double precision vector copy $y = x$.

F1A	DDOT	Double precision inner product of double precision vectors.
F1A	DNRM2	Euclidean length (12 norm) of double precision vector.
F1A	DQDOTA	Double precision inner product with extended precision
		accumulation and result.
F1A	DQDOTI	Double precision inner product with extended precision
		accumulation and result.
F1A	DROT	Apply double precision Givens rotation.
F1A	DROTG	Construct double precision plane Givens rotation.
F1A	DROTM	Apply double precision modified Givens transformation.
F1A	DROTMG	Construct double precision modified Givens
		transformation.
F1A	DSCAL	Double precision vector scale $x = a^*x$.
F1A	DSDOT	Double precision inner product of single precision
T 1 A	DOLLAD	vectors.
F1A F1A	DSWAP ICAMAX	Interchange double precision vectors. Find largest component of complex vector.
F1A F1A	IDAMAX	Find largest component of double precision vector.
F1A F1A	ISAMAX	Find largest component of single precision vector.
F1A	SASUM	Sum of magnitudes of single precision vector components.
F1A	SAXPY	Single precision computation $y = a^*x + y$.
F1A	SCASUM	Sum of magnitudes of real and imaginary components of
		complex vector.
F1A	SCNRM2	Unitary norm of complex vector.
F1A	SCOPY	Copy single precision vector $y = x$.
F1A	SCOPYM	Copy negative of real sx to real sy.
F1A	SDOT	Single precision inner product of single precision vectors.
F1A	SDSDOT	Single precision result with inner product accumulated in double precision.
F1A	SNRM2	Euclidean length (12 norm) of single precision vector.
F1A	SROT	Apply single precision Givens rotation.
F1A	SROTG	Construct single precision plane Givens rotation.
F1A	SROTM	Apply single precision modified Givens transformation.
F1A	SROTMG	Construct single precision modified Givens
		transformation.
F1A	SSCAL	Single precision vector scale $x = a^*x$.
F1A F2G2	SSWAP	Interchange single precision vectors.
F2C2	SSIEV	To compute the eigenvalues and, optionally, the eigenvectors of a real symmetric matrix.
F2C2	SSPEV	To compute the eigenvalues and, optionally, the
1202	00101	eigenvectors of a real symmetric matrix stored in packed
		form.
F2C3	SGEEV	To compute the eigenvalues and, optionally, the
-		eigenvectors of a general real matrix.
F2C5	CHIEV	To compute the eigenvalues and, optionally, the
		eigenvectors of a complex Hermitian matrix.
F2C6	CGEEV	To compute the eigenvalues and, optionally, the
		eigenvectors of a general complex matrix.
F4A	DGECO	Factors a double precision matrix by Gaussian elimination
		and estimates the condition of the matrix.

F4A	DGEDI	Computes the determinant and inverse of a matrix using factors computed by DGECO or DGEFA.
F4A	DGEFA	Factors a double precision matrix by Gaussian
		elimination.
F4A	DGEFS	DGEFS solves a general double precision nxn system of linear equations.
F4A	DGESL	Solves the double precision system a*x=b or
		trans(a)*x=b using the factors computed by DGECO or DGEFA.
F4A	DGTSL	Solves the system t*x=b where t is a general
		tridiagonal matrix.
F4A	DTRCO	Estimates the condition of a double precision triangular
		matrix.
F4A	DTRDI	Computes the determinant and inverse of a double
		precision triangular matrix.
F4A	DTRSL	Solves systems of the form t*x=b or trans(t)*x=b where
		t is a triangular matrix of order n.
F4A	SGECO	Factors a real matrix by Gaussian elimination and
		estimates the condition number of the matrix.
F4A	SGEDI	Computes the determinant and inverse of a matrix using
		the factors computed by SGECO or SGEFA.
F4A	SGEFA	Factors a real matrix by Gaussian elimination.
F4A	SGEFS	SGEFS solves a general single precision real nxn system
	00050	of linear equations.
F4A	SGEIR	SGEIR solves a general single precision real nxn system
		of linear equations. Iterative refinement is used to obtain an error estimate.
F4A	SGESL	Solves the real system a*x=b or trans(a)*x=b using the
г 4 А	DOFOL	factors of SGECO or SGEFA.
F4A	SGTSL	Solves the system a*x=b where a is tridiagonal.
F4A	STRCO	Estimates the condition of a real triangular matrix.
F4A	STRDI	Computes the determinant and inverse of a real triangular
	01101	matrix.
F4A	STRSL	Solves systems of the form t*x=b or trans(t)*x=b where t
		is a triangular matrix of order n.
F4B	CCHDC	Computes the Cholesky decomposition of a positive
		definite matrix. a pivoting option allows the user to
		estimate the condition of a positive definite matrix or
		determine the rank of a positive definite matrix.
F4B	CCHDD	Downdates an augmented Cholesky decomposition or the
		triangular factor of an augmented QR decomposition.
F4B	CCHEX	CCHEX updates the Cholesky factorization a=ctrans(r)*r
		of a positive definite matrix a of order p under diagonal
		permutations of the form u*r*e=rr, where e is a
P UD		permutation matrix.
F4B	CCHUD	Updates an augmented Cholesky decomposition of the
END	CBRCO	triangular part of an augmented QR decomposition. Factors a complex Hermitian positive definite matrix
F4B	CPBCO	stored in band form and estimates the condition of the
		matrix.
F4B	CPBDI	Computes the determinant of a complex Hermitian positive
t, 4D	OLDDT	sompates the determinant of a comprex hermititan positive

 definite band matrix using factors from CPBU OF CPFA. Use CPBSL or inverse. using the factors computed by CPBCO or CPBFA. F4B CPBSL Solves the complex Hermitian positive definite matrix (band form). F4B CPOCO Factors a complex Hermitian positive definite matrix and estimates the condition of the matrix. F4B CPOCO Factors a complex Hermitian positive definite matrix and estimates the determinant and inverse of a certain complex Hermitian positive definite matrix. F4B CPOFA Factors a complex Hermitian positive definite matrix. F4B CPOFA Factors a complex Hermitian positive definite matrix. F4B CPOFA Factors a complex Hermitian positive definite matrix. F4B CPOFA Factors a complex Hermitian positive definite matrix. F4B CPOFA Factors a positive definite symmetric complex nun system of linear equations. iterative refinement is used to obtain an error estimate. F4B CPOCO Factors a complex Hermitian positive definite matrix stored in packed form and estimates the condition of the matrix. F4B CPFCO Factors a complex Hermitian positive definite matrix (packed form). F4B CPFCA Factors a complex Hermitian positive definite matrix (packed form). F4B CPFA Factors a complex Hermitian positive definite matrix (packed form). F4B CPFA Factors a complex Hermitian positive definite matrix (packed form). F4B CPFSL Solves the complex Hermitian positive definite matrix (packed form). F4B CPFSL Solves the complex Hermitian positive definite matrix (packed form). F4B CPFSL Factors a complex Hermitian positive definite matrix. F4B CPFSL Solves the Cholesky decomposition of a positive definite matrix (packed form). F4B DCHDC Computes the Cholesky decomposition of the setimate the condition of a positive definite matrix. F4B DCHDC Computes the Cholesky decomposition or the estimate the condition of a positive definite matrix. F4B DCHDC Downda			
 CPBCO or CPBFA. F4B CPBSL Solves the complex Hermitian positive definite matrix (band form). F4B CPBSL Solves the complex Hermitian positive definite band system a*x=b using factors from CPBCO or CPBFA. F4B CPOC0 Factors a complex Hermitian positive definite matrix and estimates the condition of the matrix. F4B CPOD1 Computes the determinant and inverse of a certain complex Hermitian positive definite matrix. F4B CPOFA Factors a complex Hermitian positive definite matrix. F4B CPOFA Factors a complex Hermitian positive definite matrix. F4B CPOFS CPOFA solves a positive definite symmetric complex nxn system of linear equations. F4B CPOIR CPOIR Solves a positive definite Hermitian complex nxn system of linear equations. F4B CPOSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPOCO or CPDFA. F4B CPOC1 Factors a complex Hermitian positive definite matrix stored in packed form and estimates the condition of the matrix. F4B CPD1 Computes the determinant and inverse of a complex Hermitian positive definite matrix (packed form). F4B CPP5L Solves a complex Hermitian positive definite matrix (packed form). F4B CPP5L Solves a complex Hermitian positive definite matrix (packed form). F4B CPP5L Solves a complex Hermitian positive definite matrix (packed form). F4B CPP5L Solves the complex Hermitian positive definite matrix or determine the rank of a positive definite matrix. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. F4B DCHDC Downdates an augmented Cholesky decomposition. F4B DCHDD Downdates an augmented Cholesky decomposition. F4B DCHDD Downdates an augmented Cholesky decomposition. F4B DCHDD Factors a double precision symmetric positive definite matrix. F4B DCHDD Factors a double precision symmetric positive definite matrix. F4B DCHDD Factors			definite band matrix using factors from CPBCO or CPBFA.
 F4B CPBFA Factors a complex Hermitian positive definite matrix (band form). F4B CPBSL Solves the complex Hermitian positive definite band system a*x=b using factors from CPBC0 or CPBFA. F4B CPC0 Factors a complex Hermitian positive definite matrix and estimates the condition of the matrix. F4B CPODI Computes the determinant and inverse of a certain complex Hermitian positive definite matrix using factors of CPC00, CPOFA, or CQRDC. F4B CPOFA Factors a complex Hermitian positive definite matrix. F4B CPOFA Factors a positive definite symmetric complex nxn system of linear equations. F4B CPOSL Solves a positive definite Hermitian complex nxn system of linear equations. F4B CPOSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPOC0 or CPOFA. F4B CPC0 Factors a complex Hermitian positive definite matrix stored in packed form and estimates the condition of the matrix. F4B CPPII Computes the determinant and inverse of a complex Hermitian positive definite matrix (packed form). F4B CPFA Factors a complex Hermitian positive definite system a*x=b using the factors computed by CPOC0 or CPFA. F4B CPFA Factors a complex Hermitian positive definite system a*x=b using the factors computed by CPOC0 or CPFA. F4B CPFSL Solves the complex Hermitian positive definite matrix (packed form). F4B CPFSL Solves a complex Nermitian positive definite matrix or determine the rank of a positive definite matrix or determine the rank of a positive definite matrix. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition. F4B DCHDD Downdates an augmented Cholesky decomposition. F4B DCHDD Factors a double precision symmetric positive definite matrix. F4B DCHDD Factors a double precision symmetric positive definite matrix. F4B DCHDD Factors a double pre			
 (band form). F4B CPBL Solves the complex Hermitian positive definite band system a*x=b using factors from CPBCO or CPBFA. F4B CPOCO Factors a complex Hermitian positive definite matrix and estimates the condition of the matrix. F4B CPOID Computes the determinant and inverse of a certain complex Hermitian positive definite matrix using factors of CPCCO, CPCPA, or CQRDC. F4B CPOFA Factors a complex Hermitian positive definite matrix. F4B CPOFS CPOFS solves a positive definite symmetric complex nxn system of linear equations. iterative refinement is used to obtain an error estimate. F4B CPOCO Factors a complex Hermitian positive definite system a*x=b using the factors computed by CPCCO or CPOFA. F4B CPCO Factors a complex Hermitian positive definite matrix F4B CPPCI Factors a complex Hermitian positive definite matrix F4B CPPCI Factors a complex Hermitian positive definite matrix F4B CPPCI Factors a complex Hermitian positive definite matrix F4B CPPCI Computes the determinant and inverse of a complex Hermitian positive definite matrix (packed form). F4B CPPEI Computes the complex Hermitian positive definite matrix (packed form). F4B CPPSL Solves a complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPFA. F4B CPPSL Solves the complex Hermitian positive definite system of equations. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition. F4B DCHDD Downdates an augmented Cholesky decomposition. F4B DCHDD Updates the cholesky decomposition of the triangular factor of an augmented QR decomposition. F4B DCHDD Updates the determinant of a double precision symmetric positive definite matrix. F4B DCHUD Updates the determinant of a double precision symmetric optive definite matrix. F4B DCHUD Downdates an augmented Cho		00000	
 F4B CPESL Solves the complex Hermitian positive definite band system a*x=b using factors from CPECO CPEFA. F4B CPOC0 Factors a complex Hermitian positive definite matrix and estimates the condition of the matrix. F4B CPOI1 Computes the determinant and inverse of a certain complex Hermitian positive definite matrix. F4B CPOFA Factors a complex Hermitian positive definite matrix. F4B CPOFA Factors a complex Hermitian positive definite matrix. F4B CPOFA Factors a complex Hermitian positive definite matrix. F4B CPOFA Factors a positive definite symmetric complex nxn system of linear equations. F4B CPOIR CPOIR solves a positive definite matrix such to obtain an error estimate. F4B CPOC0 Factors a complex Hermitian positive definite system a*x=b using the factors computed by CPOC0 or CPOFA. F4B CPC0 Factors a complex Hermitian positive definite matrix stored in packed form and estimates the condition of the matrix. F4B CPPDI Computes the determinant and inverse of a complex Hermitian positive definite matrix (packed form). F4B CPFSL Solves the complex Hermitian positive definite matrix (packed form). F4B CPFSL Solves the Cholesky decomposition of a positive definite matrix. F4B CPTSL Solves the Cholesky decomposition of a positive definite matrix. F4B DCHDC Computes the Cholesky factorization a=trans(r)*r of a positive definite matrix. F4B DCHDD Updates an augmented Cholesky decomposition. F4B DCHUD Updates the determinant of a double precision symmetric positive definite matrix. F4B DCHUD Updates the determinant of a double precision symmetric positive definite matrix. F4B DCHUD Updates the determinant of a double precision symmetric positive definite matrix. F4B DCHUD Depres the determinant of a double precision symmetric positive definite matrix. F4B DCHUD DEPESL Notes the determinant of a double precision symmetric positive def	F4B	CPBFA	-
 system a*x=b using factors from CPECO or CPEFA. F4B CPOCO Factors a complex Hermitian positive definite matrix and estimates the condition of the matrix. F4B CPOFA Computes the determinant and inverse of a certain complex Hermitian positive definite matrix using factors of CPOCO, CPOFA, or CQRDC. F4B CPOFA Factors a complex Hermitian positive definite matrix. F4B CPOFS Solves a positive definite symmetric complex nxn system of linear equations. F4B CPOSL CPOFA solves a positive definite Hermitian complex nxn system of linear equations. F4B CPOSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPOCO or CPOFA. F4B CPOC Factors a complex Hermitian positive definite matrix stored in packed form and estimates the condition of the matrix. F4B CPPOI Computes the determinant and inverse of a complex Hermitian positive definite matrix (packed form). F4B CPPEA Factors a complex Hermitian positive definite system a*x=b using the factors computed by CPOCO or CPPFA. F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPCO or CPFFA. F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPCO or CPFFA. F4B CPSL Solves a complex Nermitian positive definite system a*x=b using the factors computed by CPCO or CPFFA. F4B CPSL Solves the complex Hermitian positive definite matrix (packed form). F4B CPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPCO or CPFFA. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix or determine the rank of a positive definite matrix or determine the rank of a positive definite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition. F4B DCHDD Downdates an augmented Cholesky decomposition. F4B DCHUD Updates an augmented Chole		CDDQI	
 F4B CPOCO Factors a complex Hermitian positive definite matrix and estimates the condition of the matrix. F4B CPODI Computes the determinant and inverse of a certain complex Hermitian positive definite matrix using factors of CPOCO, CPOFA, or CQRDC. F4B CPOFA Factors a complex Hermitian positive definite matrix. F4B CPOFA Factors a positive definite symmetric complex nxn system of linear equations. F4B CPOIR CPOIR Solves a positive definite Hermitian complex nxn system of linear equations. F4B CPOSL Solves the complex Hermitian positive definite system a system of linear equations. F4B CPOSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPOCO or CPFA. F4B CPPCO Factors a complex Hermitian positive definite matrix stored in packed form and estimates the condition of the matrix. F4B CPPCI Computes the determinant and inverse of a complex Hermitian positive definite matrix (packed form). F4B CPPSL Solves a complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPFA. F4B CPPSL Solves a complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPFA. F4B CPPSL Solves a complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPFA. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. F4B DCHDC Downdates an augmented Cholesky decomposition. F4B DCHDD Downdates an augmented Cholesky decomposition or the triangular factor of an augmented QR decomposition. F4B DCHDU Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix. F4B DCHDU Downdates an augmented Cholesky decomposition. F4B DCHDU Dupates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DCHDU Dipates the determinant of a double precision symmetric positive definite matr	F 4 B	CPBSL	Solves the complex hermitian positive definite band
 estimates the condition of the matrix. GODDI COMPLEX the determinant and inverse of a certain complex Hermitian positive definite matrix using factors of CPOCO, CPOFA, or CQRDC. F4B CPOFA Factors a complex Hermitian positive definite matrix. F4B CPOFS CPOFS solves a positive definite symmetric complex nxn system of linear equations. iterative refinement is used to obtain an error estimate. F4B CPOSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPOCO or CPOFA. F4B CPOC Factors a complex Hermitian positive definite matrix stored in packed form and estimates the condition of the matrix. F4B CPPCI Computes the determinant and inverse of a complex Hermitian positive definite matrix (packed form). F4B CPPSL Solves a complex Hermitian positive definite system a*x=b using the factors computed by CPCCO or CPFA. F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPFA. F4B CPTSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPFA. F4B CPTSL Solves the Cholesky decomposition of a positive definite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition or the triangular factor of an augmented QR decomposition. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DCHUD Downdates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBDI Computes the determinant of a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric	E 113	CDOCO	System a x=D using factors from trotto of there.
 F4B CPDI Computes the determinant and inverse of a certain complex Hermitian positive definite matrix using factors of CPCOC, CPCA, or CQRDC. F4B CPOFA Factors a complex Hermitian positive definite matrix. F4B CPOFA Factors a complex Hermitian positive definite matrix. F4B CPOFA CPOIR solves a positive definite symmetric complex nxn system of linear equations. F4B CPOIR CPOIR solves a positive definite Hermitian complex nxn system of linear equations. F4B CPOIR CPOIR solves a positive definite Hermitian complex nxn system of linear equations. F4B CPOIR CPOIR solves a positive definite Hermitian complex nxn system of linear equations. F4B CPOSL Solves the complex Hermitian positive definite system a⁴x=b using the factors computed by CPOC or CPOFA. F4B CPPCO Factors a complex Hermitian positive definite matrix stored in packed form and estimates the condition of the matrix. F4B CPPII Computes the determinant and inverse of a complex Hermitian positive definite matrix (packed form). F4B CPPSL Solves the complex Hermitian positive definite system a⁴x=b using the factors computed by CPCO or CPFA. F4B CPPSL Solves a complex Nermitian positive definite system a⁴x=b using the factors computed by CPCO or CPFA. F4B CPTSL Solves a complex positive definite tridiagonal system of equations. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition. F4B DCHEX Updates an augmented Cholesky decomposition or the triangular factor of an augmented QR decomposition. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite matrix. 	F 4B	CPUCU	
 Hermitian positive definite matrix using factors of CPOCO. CPOFA, or CQRDC. F4B CPOFA Factors a complex Hermitian positive definite matrix. F4B CPOFS CPOFS solves a positive definite symmetric complex nxn system of linear equations. F4B CPOIR CPOR solves a positive definite Hermitian complex nxn system of linear equations. iterative refinement is used to obtain an error estimate. F4B CPOS Solves the complex Hermitian positive definite system a⁴x=b using the factors computed by CPOCO or CPOFA. F4B CPPCO Factors a complex Hermitian positive definite matrix stored in packed form and estimates the condition of the matrix. F4B CPPDI Computes the determinant and inverse of a complex Hermitian positive definite matrix (packed form). F4B CPPSL Solves the complex Hermitian positive definite matrix (packed form). F4B CPPSL Solves a complex Hermitian positive definite system a⁴x=b using the factors computed by CPPCO or CPFA. F4B CPPSL Solves a complex Hermitian positive definite matrix (packed form). F4B CPPSL Solves a complex Hermitian positive definite system a⁴x=b using the factors computed by CPPCO or CPFA. F4B CPTSL Solves a complex positive definite tridiagonal system of equations. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition. F4B DCHDD Downdates an augmented Cholesky decomposition of the triangular factor of an augmented QR decomposition. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DCHUD Dybates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DCHUD Dybates the determinant of a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite matrix. F4B DPBD		CDODT	
 CPOCO, CPOFA, or CQRDC. F4B CPOFA Factors a complex Hermitian positive definite matrix. F4B CPOFS CPOFS solves a positive definite symmetric complex nnn system of linear equations. F4B CPOIR CPOIR solves a positive definite Hermitian complex nnn system of linear equations. iterative refinement is used to obtain an error estimate. F4B CPOSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPOCO or CPOFA. F4B CPCO Factors a complex Hermitian positive definite matrix stored in packed form and estimates the condition of the matrix. F4B CPPCI Computes the determinant and inverse of a complex Hermitian positive definite matrix (packed form). F4B CPPSL Solves the complex Hermitian positive definite matrix (packed form). F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPFA. F4B CPPSL Solves a complex Nermitian positive definite system a*x=b using the factors computed by CPPCO or CPFA. F4B CPTSL Solves a complex positive definite tridiagonal system of equations. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. A pivoting option allows the user to estimate the condition of a positive definite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition. F4B DCHDD Downdates an augmented Cholesky decomposition of the triangular factor of an augmented QR decomposition. F4B DCHDD Factors a double precision symmetric positive definite matrix. F4B DPBCO Factors a double precision symmetric positive definite matrix. 	F 4B	CPUDI	
 F4B CPOFA Factors a complex Hermitian positive definite matrix. F4B CPOFS CPOFS solves a positive definite symmetric complex nxn system of linear equations. F4B CPOIR CPOIR solves a positive definite Hermitian complex nxn system of linear equations. F4B CPOIR CPOIR solves a positive definite Hermitian complex nxn system of linear equations. F4B CPOSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPOCO or CPOFA. F4B CPPCO Factors a complex Hermitian positive definite matrix stored in packed form and estimates the condition of the matrix. F4B CPPDI Computes the determinant and inverse of a complex Hermitian positive definite matrix (packed form). F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPCCO or CPPFA. F4B CPTSL Solves the Cholesky decomposition of a positive definite matrix. F4B CPTSL Solves a complex positive definite tridiagonal system of equations. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix or determine the rank of a positive definite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition. F4B DCHDD Downdates an augmented Cholesky decomposition. F4B DCHDD Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition. F4B DCHUD Updates an augmented Cholesky decomposition. F4B DCHUD Definite matrix a of order p under diagonal permutations of the form trans(e)*a*e where e is a positive definite matrix. F4B DCHUD Definite matrix a of order p under diagonal permutations of the form trans(c)*a*e of a positive definite matrix. F4B DCHUD Definite the determinant of a double precision symmetric positive definite matrix. F4B DCHUD Definite the determinant of a double precision symmetric positive definite matrix. 			•
 F4B CPOFS CPOFS solves a positive definite symmetric complex nxn system of linear equations. F4B CPOIR CPOIR Solves a positive definite Hermitian complex nxn system of linear equations. iterative refinement is used to obtain an error estimate. F4B CPOSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPOCO or CPOFA. F4B CPPCO Factors a complex Hermitian positive definite matrix stored in packed form and estimates the condition of the matrix. F4B CPPDI Computes the determinant and inverse of a complex Hermitian positive definite matrix (packed form). F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPPFA. F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPPFA. F4B CPPSL Solves a complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPPFA. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix or determine the rank of a positive definite matrix or determine the rank of a positive definite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition or the triangular factor of an augmented QR decomposition. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DPBCO Factors a double precision symmetric positive definite matrix. 	FUB	CPOFA	
 system of linear equations. F4B CPOIR CPOIR solves a positive definite Hermitian complex nxn system of linear equations. iterative refinement is used to obtain an error estimate. F4B CPOSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPOCO or CPOFA. F4B CPPCO Factors a complex Hermitian positive definite matrix stored in packed form and estimates the condition of the matrix. F4B CPPDI Computes the determinant and inverse of a complex Hermitian positive definite matrix (packed form). F4B CPPFA Factors a complex Hermitian positive definite system a*x=b using the factors computed by CPCO or CPFA. F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPCO or CPFA. F4B CPTSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPCO or CPFA. F4B CPTSL Solves the conditive definite tridiagonal system of equations. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix or determine the rank of a positive definite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition. F4B DCHDZ Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 			CPOFS solves a positive definite symmetric complex nxn
 F4B CPOIR CPOIR solves a positive definite Hermitian complex nxn system of linear equations. iterative refinement is used to obtain an error estimate. F4B CPOSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPOCO or CPOFA. F4B CPPCO Factors a complex Hermitian positive definite matrix stored in packed form and estimates the condition of the matrix. F4B CPPDI Computes the determinant and inverse of a complex Hermitian positive definite matrix (packed form). F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPPFA. F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPPFA. F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPPFA. F4B CPTSL Solves a complex positive definite tridiagonal system of equations. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. A pivoting option allows the user to estimate the condition of a positive definite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition or the triangular factor of an augmented QR decomposition. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DCHUD Updates an augmented Cholesky decomposition. F4B DCHUD Updates an augmented Cholesky decomposition. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DPBCI Computes the determinant of a double precision symmetric positive defin	140	01010	
 system of linear equations. iterative refinement is used to obtain an error estimate. F4B CPOSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPOCO or CPOFA. F4B CPPCO Factors a complex Hermitian positive definite matrix stored in packed form and estimates the condition of the matrix. F4B CPPDI Computes the determinant and inverse of a complex Hermitian positive definite matrix using factors from CPPCO or CPFA. F4B CPPSI Computes the determinant and inverse of a complex Hermitian positive definite matrix (packed form). F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPFA. F4B CPTSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPFA. F4B CTSL Solves a complex positive definite tridiagonal system of equations. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition. F4B DCHDD Downdates the Cholesky factorization a=trans(r)*r of a positive definite matrix. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular factor of an augmented QR decomposition. F4B DCHUD Updates an augmented Cholesky decomposition. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DCHUD Updates an augmented Cholesky decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 	F4B	CPOIR	CPOIR solves a positive definite Hermitian complex nxn
 F4B CPOSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPOCO or CPOFA. F4B CPPCO Factors a complex Hermitian positive definite matrix stored in packed form and estimates the condition of the matrix. F4B CPPDI Computes the determinant and inverse of a complex Hermitian positive definite matrix using factors from CPPCO or CPPFA. F4B CPPFA Factors a complex Hermitian positive definite matrix (packed form). F4B CPTSL Solves the complex hermitian positive definite system a*x=b using the factors computed by CPPCO or CPPFA. F4B CPTSL Solves a complex positive definite tridiagonal system of equations. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. F4B DCHDD Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix. F4B DCHDU Updates an augmented Cholesky decomposition. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 			system of linear equations. iterative refinement is used
 a*x=b using the factors computed by CPOCO or CPOFA. F4B CPPCO Factors a complex Hermitian positive definite matrix stored in packed form and estimates the condition of the matrix. F4B CPPDI Computes the determinant and inverse of a complex Hermitian positive definite matrix using factors from CPPCO or CPPFA. F4B CPPFA Factors a complex Hermitian positive definite matrix (packed form). F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPPFA. F4B CPTSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPPFA. F4B CPTSL Solves a complex positive definite tridiagonal system of equations. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. A pivoting option allows the user to estimate the condition of a positive semidefinite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition or the triangular factor of an augmented QR decomposition. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. 			
 F4B CPPCO Factors a complex Hermitian positive definite matrix stored in packed form and estimates the condition of the matrix. F4B CPPDI Computes the determinant and inverse of a complex Hermitian positive definite matrix using factors from CPPCO or CPPFA. F4B CPPFA Factors a complex Hermitian positive definite matrix (packed form). F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPPFA. F4B CPTSL Solves a complex positive definite tridiagonal system of equations. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix or determine the rank of a positive definite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition. F4B DCHEX Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix. F4B DCHUD Updates an augmented Cholesky decomposition. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DCHUD Factors a double precision symmetric positive definite matrix. F4B DCHUD Factors a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 	F4B	CPOSL	
 stored in packed form and estimates the condition of the matrix. F4B CPPDI Computes the determinant and inverse of a complex Hermitian positive definite matrix using factors from CPPCO or CPPFA. F4B CPPFA Factors a complex Hermitian positive definite matrix (packed form). F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPPFA. F4B CPTSL Solves a complex positive definite tridiagonal system of equations. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix or determine the rank of a positive definite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition. F4B DCHEX Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix. F4B DCHEX Updates an augmented Cholesky decomposition. F4B DCHEX Updates an augmented Cholesky decomposition. F4B DCHUD Downdates an augmented Cholesky decomposition. F4B DCHEX Updates an augmented Cholesky decomposition. F4B DCHUD Updates an augmented Cholesky decomposition. F4B DCHUD Updates an augmented Cholesky decomposition. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 			
 F4B CPPDI Computes the determinant and inverse of a complex Hermitian positive definite matrix using factors from CPPCO or CPPFA. F4B CPPFA Factors a complex Hermitian positive definite matrix (packed form). F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPPFA. F4B CPTSL Solves the Conclexy decomposition of a positive definite matrix or determine the condition of a positive definite matrix or determine the rank of a positive definite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition or the triangular factor of an augmented QR decomposition. F4B DCHEX Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix. F4B DCHDD Updates an augmented Cholesky decomposition. F4B DCHEX Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix. F4B DCHUD Updates an augmented Cholesky decomposition. F4B DCHEX Updates an augmented Cholesky decomposition. F4B DCHEX Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 	F4B	CPPCO	Factors a complex Hermitian positive definite matrix
 F4B CPPDI Computes the determinant and inverse of a complex Hermitian positive definite matrix using factors from CPPCO or CPPFA. F4B CPPFA Factors a complex Hermitian positive definite matrix (packed form). F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPPFA. F4B CPTSL Solves a complex positive definite tridiagonal system of equations. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. A pivoting option allows the user to estimate the condition of a positive definite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition or the triangular factor of an augmented QR decomposition. F4B DCHEX Updates the Cholesky factorization astrans(r)*r of a positive definite matrix. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite matrix. 			-
 Hermitian positive definite matrix using factors from CPPCO or CPPFA. F4B CPPFA Factors a complex Hermitian positive definite matrix (packed form). F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPPFA. F4B CPTSL Solves a complex positive definite tridiagonal system of equations. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. A pivoting option allows the user to estimate the condition of a positive definite matrix or determine the rank of a positive semidefinite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition or the triangular factor of an augmented QR decomposition. F4B DCHEX Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite matrix. 			
 CPPCO or CPPFA. F4B CPPFA Factors a complex Hermitian positive definite matrix (packed form). F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPPFA. F4B CPTSL Solves a complex positive definite tridiagonal system of equations. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. A pivoting option allows the user to estimate the condition of a positive definite matrix or determine the rank of a positive semidefinite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition. F4B DCHEX Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix. F4B DCHUD Updates an augmented Cholesky decomposition. F4B DCHUD Updates an augmented Cholesky decomposition. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 	F4B	CPPDI	
 F4B CPPFA Factors a complex Hermitian positive definite matrix (packed form). F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPPFA. F4B CPTSL Solves a complex positive definite tridiagonal system of equations. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. A pivoting option allows the user to estimate the condition of a positive definite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition or the triangular factor of an augmented QR decomposition. F4B DCHEX Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 			
 (packed form). F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPPFA. F4B CPTSL Solves a complex positive definite tridiagonal system of equations. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. A pivoting option allows the user to estimate the condition of a positive semidefinite matrix or determine the rank of a positive semidefinite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition or the triangular factor of an augmented QR decomposition. F4B DCHEX Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 			
 F4B CPPSL Solves the complex Hermitian positive definite system a*x=b using the factors computed by CPPCO or CPPFA. F4B CPTSL Solves a complex positive definite tridiagonal system of equations. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. A pivoting option allows the user to estimate the condition of a positive definite matrix or determine the rank of a positive semidefinite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition or the triangular factor of an augmented QR decomposition. F4B DCHEX Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix. F4B DCHUD Updates an augmented Cholesky decomposition. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix stored in band form and estimates the condition of the matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 	F4B	CPPFA	
 a*x=b using the factors computed by CPPCO or CPPFA. F4B CPTSL Solves a complex positive definite tridiagonal system of equations. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. A pivoting option allows the user to estimate the condition of a positive definite matrix or determine the rank of a positive semidefinite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition or the triangular factor of an augmented QR decomposition. F4B DCHEX Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix. F4B DCHUD Updates an augmented Cholesky decomposition of the grant of the form trans(e)*a*e where e is a permutation matrix. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 		CDDSI	
 F4B CPTSL Solves a complex positive definite tridiagonal system of equations. F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. A pivoting option allows the user to estimate the condition of a positive definite matrix or determine the rank of a positive semidefinite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition or the triangular factor of an augmented QR decomposition. F4B DCHEX Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix. F4B DCHUD Updates an augmented Cholesky decomposition of the germutation matrix. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 	F 4B	CPPSL	seven using the factors computed by CPPCO or CPPFA.
 F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. A pivoting option allows the user to estimate the condition of a positive definite matrix or determine the rank of a positive semidefinite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition or the triangular factor of an augmented QR decomposition. F4B DCHEX Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix. F4B DCHUD Updates the form trans(e)*a*e where e is a permutation matrix. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 	EHD	CDTSI	Solves a complex positive definite tridiagonal system of
 F4B DCHDC Computes the Cholesky decomposition of a positive definite matrix. A pivoting option allows the user to estimate the condition of a positive definite matrix or determine the rank of a positive semidefinite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition or the triangular factor of an augmented QR decomposition. F4B DCHEX Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix. F4B DCHUD Updates an augmented Cholesky decomposition. F4B DCHUD Updates an augmented Cholesky decomposition of the form trans(e)*a*e where e is a permutation matrix. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 	r4D	CLIPP	
 definite matrix. A pivoting option allows the user to estimate the condition of a positive definite matrix or determine the rank of a positive semidefinite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition or the triangular factor of an augmented QR decomposition. F4B DCHEX Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix a of order p under diagonal permutations of the form trans(e)*a*e where e is a permutation matrix. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 	FЛВ	DCHDC	
 F4B DCHDD Downdates an augmented Cholesky decomposition or the triangular factor of an augmented QR decomposition. F4B DCHEX Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix a of order p under diagonal permutations of the form trans(e)*a*e where e is a permutation matrix. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 	1 40	201120	definite matrix. A pivoting option allows the user to
 F4B DCHDD determine the rank of a positive semidefinite matrix. F4B DCHDD Downdates an augmented Cholesky decomposition or the triangular factor of an augmented QR decomposition. F4B DCHEX Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix a of order p under diagonal permutations of the form trans(e)*a*e where e is a permutation matrix. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 			estimate the condition of a positive definite matrix or
 F4B DCHDD Downdates an augmented Cholesky decomposition or the triangular factor of an augmented QR decomposition. F4B DCHEX Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix a of order p under diagonal permutations of the form trans(e)*a*e where e is a permutation matrix. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 			determine the rank of a positive semidefinite matrix.
 F4B DCHEX triangular factor of an augmented QR decomposition. F4B DCHEX Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix a of order p under diagonal permutations of the form trans(e)*a*e where e is a permutation matrix. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBC0 Factors a double precision symmetric positive definite matrix stored in band form and estimates the condition of the matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 	F4B	DCHDD	Downdates an augmented Cholesky decomposition or the
 positive definite matrix a of order p under diagonal permutations of the form trans(e)*a*e where e is a permutation matrix. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix stored in band form and estimates the condition of the matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 	-		triangular factor of an augmented QR decomposition.
 permutations of the form trans(e)*a*e where e is a permutation matrix. F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix stored in band form and estimates the condition of the matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 	F4B	DCHEX	Updates the Cholesky factorization a=trans(r)*r of a
 F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix stored in band form and estimates the condition of the matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 			positive definite matrix a of order p under diagonal
 F4B DCHUD Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix stored in band form and estimates the condition of the matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 			
 F4B DPBCO triangular part of an augmented QR decomposition. F4B DPBCO Factors a double precision symmetric positive definite matrix stored in band form and estimates the condition of the matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 			permutation matrix.
 F4B DPBCO Factors a double precision symmetric positive definite matrix stored in band form and estimates the condition of the matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 	F4B	DCHUD	Updates an augmented Cholesky decomposition of the
 matrix stored in band form and estimates the condition of the matrix. F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse. 		2224	triangular part of an augmented QR decomposition.
F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse.	F4B	DPBCO	Factors a double precision symmetric positive definite
F4B DPBDI Computes the determinant of a double precision symmetric positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse.			
positive definite band matrix using factors of DPBCO or DPBFA. Use DPBSL n times for inverse.	EhD	זיקסט	
DPBFA. Use DPBSL n times for inverse.	Г 4D	DL DNT	positive definite hand matrix using factors of DPBCO or
	FUR	DPRFA	

×

		matrix stored in band form.
F4B	DPBSL	Solves the double precision symmetric positive definite band system a*x=b using the factors computed by DPBCO or
		DPBFA.
F4B	DPOCO	Factors a double precision symmetric positive definite matrix and estimates the condition of the matrix.
F4B	DPODI	Computes the determinant and inverse of a certain double precision symmetric positive definite matrix (see abstract) using the factors computed by DPOCO, DPOFA or DQRDC.
F4B	DPOFA	Factors a double precision symmetric positive definite matrix.
F4B	DPOFS	DPOFS solves a positive definite symmetric double precision nxn system of linear equations.
F4B	DPOSL	Solves the double precision symmetric positive definite system a*x=b using the factors computed by DPOCO or DPOFA.
F4B	DPPCO	Factors a double precision symmetric positive definite matrix stored in packed form and estimates the condition of the matrix.
F4B	DPPDI	Computes the determinant and inverse of a double precision symmetric positive definite matrix using factors from DPPCO or DPPFA.
F4B	DPPFA	Factors a double precision symmetric positive definite matrix (packed form).
F4B	DPPSL	Solves the double precision symmetric positive definite system a*x=b.
F4B	DPTSL	Solves the system t*x=b where t is positive definite tridiagonal.
F4B	SCHDC	Computes the Cholesky decomposition of a positive definite matrix. a pivoting option allows the user to estimate the condition of a positive definite matrix or determine the rank of a positive semidefinite matrix.
F4B	SCHDD	Downdates an augmented Cholesky decomposition or the triangular factor of an augmented QR decomposition.
F4B	SCHEX	Updates the Cholesky factorization a=trans(r)*r of a positive definite matrix a of order p under diagonal permutations of the form trans(e)*a*e where e is a permutation matrix.
F4B	SCHUD	Updates an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition.
F4B	SPBCO	Factors a real symmetric positive definite matrix (band form) and estimates the condition of the matrix.
F4B	SPBDI	Computes the determinant of a real symmetric positive definite band matrix using the factors computed by SPBCO or SPBFA. if the inverse is needed, use SPBSL n times.
F4B	SPBFA	Factors a real symmetric positive definite matrix (band form).
F4B	SPBSL	Solves the real symmetric positive definite band system a*x=b using the factors computed by SPBCO or SPBFA.
F4B	SPOCO	Factors a real symmetric positive definite matrix and

		estimates the condition number of the matrix.
F4B	SPODI	Computes the determinant and inverse of a certain real
		symmetric positive definite matrix (see abstract) using
THD	CDOFA	the factors computed by SPOCO, SPOFA or SQRDC. Factors a real symmetric positive definite matrix.
F4B F4B	SPOFA SPOFS	SPOFS solves a positive definite symmetric real nxn
I TD	DIOID	system of linear equations.
F4B	SPOIR	SPOIR solves a positive definite symmetric real nxn
		system of linear equations. Iterative refinement is used
		to obtain an error estimate.
F4B	SPOSL	Solves the real symmetric positive definite system a*x=b
-	00000	using the factors computed by SPOCO or SPOFA. Factors a real symmetric positive definite matrix stored
F4B	SPPCO	in packed form and estimates the condition of the matrix.
F4B	SPPDI	Computes the determinant and inverse of a real symmetric
1 12	0.124	positive definite matrix using factors from SPPCO or
		SPPFA.
F4B	SPPFA	SPPFA factors a real symmetric positive definite matrix
-		(packed form).
F4B	SPPSL	Solves the real symmetric positive definite system a*x=b using the factors computed by SPPCO or SPPFA.
F4B	SPTSL	Solves the system a*x=b where a is positive definite
1 40	01100	tridiagonal.
F4C	CHICO	Factors a complex Hermitian matrix by elimination with
		symmetric pivoting and estimates the condition of the
		matrix.
F4C	CHIDI	Computes the determinant, inertia and inverse of a complex Hermitian matrix using the factors from CHIFA.
F4C	CHIFA	Factors a complex Hermitian matrix by elimination
r 40	OIIITA	(symmetric pivoting).
F4C	CHISL	CHISL solves the complex Hermitian system a*x=b using
		factors of CHIFA.
F4C	CHPCO	Factors a complex Hermitian matrix (packed form) by
		elimination with symmetric pivoting and estimates the condition of the matrix.
F4C	CHPDI	Computes the determinant, inertia and inverse of a
r 40	OULDI	complex Hermitian matrix (packed form) using the factors
		from CHPFA.
F4C	CHPFA	Factors a complex Hermitian matrix (packed form) by
		elimination with symmetric pivoting.
F4C	CHPSL	Solves the complex Hermitian system a*x=b using factors
F4C	CSICO	of CHPFA. Factors a complex symmetric matrix by elimination with
r 40	05100	symmetric pivoting and estimates the condition of the
		matrix.
F4C	CSIDI	Computes the determinant and inverse of a complex
		symmetric matrix using the factors from CSIFA.
F4C	CSIFA	Factors a complex symmetric matrix by elimination
FUC	COTO	(symmetric pivoting). Solves the complex symmetric system a*x=b using factors
F4C	CSISL	from CSIFA.

F4C	CSPCO	Factors a complex symmetric matrix stored in packed form by elimination with symmetric pivoting and estimates the condition of the matrix.
F4C	CSPDI	Computes the determinant and inverse of a complex symmetric matrix stored in packed form using factors from CSPFA.
F4C	CSPFA	Factors a complex symmetric matrix stored in packed form by elimination with symmetric pivoting.
F4C	CSPSL	Solves the complex symmetric system a*x=b using factors from CSPFA.
F4C	DSICO	Factors a double precision symmetric matrix by elimination with symmetric pivoting and estimates the condition of the matrix.
F4C	DSIDI	Computes the determinant, inertia and inverse of a double precision symmetric matrix using the factors from DSIFA.
F4C	DSIFA	Factors a double precision symmetric matrix by elimination with symmetric pivoting.
F4C	DSISL	Solves the double precision symmetric system a*x=b using the factors computed by DSIFA.
F4C	DSPCO	Factors a double precision symmetric matrix stored in packed form by elimination with symmetric pivoting and estimates the condition of the matrix.
F4C	DSPDI	Computes the determinant, inertia and inverse of a double precision symmetric matrix using the factors from DSPFA, where the matrix is stored in packed form.
F4C	DSPFA	Factors a double precision symmetric matrix stored in packed form by elimination with symmetric pivoting.
F4C	DSPSL	Solves the double precision symmetric system a*x=b using the factors computed by DSPFA.
F4C	SSICO	Factors a real symmetric matrix by elimination with symmetric pivoting and estimates the condition of the matrix.
F4C	SSIDI	Computes the determinant, inertia and inverse of a real symmetric matrix using the factors from SSIFA.
F4C	SSIFA	Factors a real symmetric matrix by elimination with symmetric pivoting.
F4C	SSISL	Solves the real symmetric system a*x=b using the factors of SSIFA.
F4C	SSPCO	Factors a real symmetric matrix stored in packed form by elimination with symmetric pivoting and estimates the condition of the matrix.
F4C	SSPDI	Computes the determinant, inertia and inverse of a real symmetric matrix (packed form) using the factors from SSPFA.
F4C	SSPFA	Factors a real symmetric matrix stored in packed form by elimination with symmetric pivoting.
F4C	SSPSL	Solves the real symmetric system a*x=b using factors from SSPFA.
F4F	CGECO	Factors a complex matrix by Gaussian elimination and estimates the condition of the matrix.
F4F	CGEDI	Computes the determinant and inverse of a complex matrix

~

•

۰

		using the factors computed by CGECO or CGEFA.
F4F	CGEFA	Factors a complex matrix by Gaussian elimination.
F4F	CGEFS	CGEFS solves a general complex nxn system of linear
1 11	00010	equations.
F4F	CGEIR	CGEIR solves a general complex nxn system of linear
		equations. Iterative refinement is used to obtain an
		error estimate.
F4F	CGESL	Solves the complex system a*x=b or ctrans(a)*x=b using
		the factors computed by CGECO or CGEFA.
F4F	CGTSL	Solves a general complex tridiagonal system of equations.
F4F	CTRCO	Estimates the condition of a complex triangular matrix.
F4F	CTRDI	Computes the determinant and inverse of a complex
		triangular matrix.
F4F	CTRSL	Solves systems of the form t*x=b or ctrans(t)*x=b
		where t is a triangular matrix. Here ctrans(t) is
		conjugate transpose.
F4H	CGBCO	Factors a complex band matrix by Gaussian elimination and
	CODDT	estimates the condition of the matrix.
F4H	CGBDI	Computes the determinant of a complex band matrix using factors from CGBCO or CGBFA. If the inverse is needed,
F4H	CGBFA	use CGBSL n times. Factors a complex band matrix by elimination.
F4H	CGBSL	Solves the complex band system a*x=b or ctrans(a)*x=b
1 411	CODDE	using the factors computed by CGBCO or CGBFA.
F4H	CNBCO	Factors a complex band matrix by Gaussian elimination and
		estimates the condition of the matrix.
F4H	CNBDI	Computes the determinant of a complex band matrix using
		factors computed by CNBCO or CNBFA.
F4H	CNBFA	Factors a complex band matrix by elimination.
F4H	CNBFS	CNBFS solves a general nonsymmetric banded complex nxn
		system of linear equations.
F4H	CNBIR	CNBIR solves a general nonsymmetric banded complex nxn
		system of linear equations. iterative refinement is used
		to obtain an error estimate.
F4H	CNBSL	Solves a complex band system using factors computed by
ehn	DC DCO	CNBCO or CNBFA.
F4H	DG BCO	Factors a double precision band matrix by Gaussian elimination and estimates the condition of the matrix.
F4H	DGBDI	Computes the determinant of a band matrix using factors
г 4П	DGDD1	computed by DGBCO or DGBFA. Use DGBSL n times for the
		inverse.
F4H	DG BF A	Factors a double precision band matrix by elimination.
F4H	DGBSL	Solves the double precision band system a*x=b or
		trans(a)*x=b using the factors computed by DGBCO or
		DGBFA.
F4H	DNBCO	Factors a double precision band matrix by Gaussian
		elimination and estimates the condition of the matrix.
F4H	DNBDI	Computes the determinant of a band matrix using the
		factors computed by DNBCO or DNBFA.
F4H	DNBFA	Factors a double precision band matrix by elimination.
F4H	DNBFS	DNBFS solves a general nonsymmetric banded double

		precision nxn system of linear equations.
F4H	DNBSL	Solves a double precision band system using the factors computed by DNBCO or DNBFA.
F4H	SG BCO	Factors a real band matrix by Gaussian elimination and estimates the condition number of the matrix.
F4H	SGBDI	Computes the determinant of a band matrix using the factors computed by SGBCO or SGBFA. if the inverse is needed, use SGBSL n times.
F4H	SGBFA	Factors a real band matrix by elimination.
F4H	SG BSL	Solves the real band system a*x=b or trans(a)*x=b using the factors computed by SGBCO or SGBFA.
F4H	SNBCO	SNBCO factors a real band matrix by Gaussian elimination and estimates the condition number.
F4H	SNBDI	Computes the determinant of a band matrix using the factors computed by SNBCO or SNBFA.
F4H	SNBFA	SNBFA factors a real band matrix by elimination. nxn system of linear equations.
F4H	SNBFS	SNBFS solves a general nonsymmetric banded nxn system of linear equations.
F4H	SNBIR	SNBIR solves a general nonsymmetric banded nxn system of linear equations. Iterative refinement is used to obtain an error estimate.
F4H	SNBSL	SNBSL solves a real band system using factors computed by SNBCO or SNBFA.
F6	CQRDC	Uses Householder transformations to compute the QR factorization of an n by p matrix x. Column pivoting is optional.
F6	CQRSL	Applies the output of CQRDC to compute coordinate transformations, projections, and least squares solutions.
F6	CSVDC	Perform the singular value decomposition of a complex nxp matrix.
F6	DQRDC	Uses Householder transformations to compute the QR factorization of n by p matrix x. Column pivoting is
F6	DQRSL	optional. Applies the output of DQRDC to compute coordinate transformations, projections, and least squares
F6	DSVDC	solutions. Perform the singular value decomposition of a double
F6	SQRDC	precision nxp matrix. Uses Householder transformations to compute the QR factorization of an n by p matrix x. Column pivoting is
F6	SQRSL	a users option. Applies the output of SQRDC to compute coordinate transformations projections, and least squares solutions.
F6	SSVDC	Perform the singular value decomposition of a real nxp matrix.
G5E	RAND	Generates a uniformly distributed random number.
G5E	RUNIF	A portable random number generator.
G5F	RGAUSS	Generates a normally distributed (Gaussian) random number.

M1	SSORT	SSORT sorts array x and optionally makes the same interchanges in array y. The array x may be sorted in increasing order or decreasing order. A slightly modified quicksort algorithm is used.
M1A1	ISORT	ISORT sorts integer array x and optionally makes the same interchanges in integer array y. The array x may be sorted in increasing order or decreasing order. A slightly modified quicksort algorithm is used.
M2	D9PAK	Pack a base 2 exponent into a double precision floating point no.
M2	D9UP AK	Unpack a double precision floating point no. x so that x=y*2**n.
M2	R9PAK	Pack a base 2 exponent into a floating point number.
M2	R9UPAK	Unpack a floating point number x so that x=y*2**n.
Q	D1MACH	Returns double precision machine dependent constants.
Q	I 1MACH	Returns integer machine dependent constants.
Q	R 1MACH	Returns single precision machine dependent constants.
Q	XERABT	Aborts program execution and prints error message.
Q	XERCLR	Resets current error number to zero.
Ž	XERCTL	Allows user control over handling of individual errors.
Q	XERDMP	Prints the error tables and then clears them.
Q	XERMAX	Sets maximum number of times any error message is to be
-		printed.
Q	XERPRT	Prints error messages.
Q	XERROR	Processes an error (diagnostic) message.
Q	XERRWV	Processes error message allowing 2 integer and two real
		values to be included in the message.
Q	XERSAV	Records that an error occurred.
Q	XGETF	Returns current value of error control flag.
Q	XGETUA	Returns unit number(s) to which error messages are being sent.
Q	XGETUN	Returns the (first) output file to which messages are being sent.
Q	XSETF	Sets the error control flag.
Q	XSETUA	Sets up to 5 unit numbers to which messages are to be
-		sent. Sets output file to which error messages are to be sent.
Q	XSETUN	Sets output file to which error messages are to be sent.
Q2	FDUMP	Symbolic dump (should be locally written).

•

...

*

·

-

Below is the list of SLATEC user-callable routines ordered by subroutine name.

Name Category

1	ACOSH	B2
2	AI	B5I
3	AIE	B5I
4	ALBETA	B5F

F	ALCAMO	85 F	г (CATANO	D 1	107	CNBFA	F4H
5 6	ALGAMS ALI	B5F B5E	56	CATAN2	B1 BC	107	CNBFA	г 4 п F 4 H
7	ALIGAM	B5F	57	CATANH	B2	108	CNBFS	г 4п F4H
8	ALNGAH	B3	58	CAXPY	F1A	110	CNBSL	г 41 F4H
	ALINKEL	B2	59	CBETA	B5F	111	COSDG	г 4п В1
9	ATANH	B2	60	CBRT	B4			
10			61	CCBRT	B4	112	COSQB	D6
11	AVINT	D1B	62	CCHDC	F4B	113	COSQF	D6
12	BESI	B5I	63	CCHDD	F4B	114	COSQI	D6
13	BESIO	B5J	64	CCHEX	F4B	115	COST	D6
14	BESIOE	B5J	65	CCHUD	F4B	116	COSTI	D6
15	BESI1 BESI1E	B5J	66	CCOPY	F1A	117	COT	B1
16 17		B5K	67	CCOSH	B2	118	CPBCO	F4B
17	BESJ	B5I	68	CCOT	B1	119	CPBDI	F4B
18	BESJO	B5I B5I	69	CDCDOT	F1A	120	CPBFA	F4B
19	BESJ1	B5I	70	CDOTC	F1A	121	CPBSL	F4B
20	BESK	B5I	71	CDOTU	F1A	122	CPOCO	F4B
21	BESKO	B5J	72	CEXPRL	B3	123	CPODI	F4B
22	BESKOE	B5J	73	CFFTB	D6	124	CPOFA	F4B
23	BESK1	B5J	74	CFFTF	D6	125	CPOFS	F4B
24	BESK1E	B5J	75	CFFTI	D6	126	CPOIR	F4B
25	BESKES	B5J	76	CGAMMA	B5F	127	CPOSL	F4B
26	BESKS	B5J	77	CGAMR	B5F	128	CPPCO	F4B
27	BESY	B5I	78	CGBCO	F4H	129	CPPDI	F4B
28	BESYO	B5I	79	CGBDI	F4H	130	CPPFA	F4B
29	BESY1	B5I	80	CGBFA	F4H	131	CPPSL	F4B
30	BETA	B5F	81	CGBSL	F4H	132	CPQR79	C2
31	BETAI	B5F	82	CGECO	F4F	133	CPSI	B5F
32	BFQAD	EIA	83	CGEDI	F4F	134	CPTSL	F4B
33	BI	B5I	84	CGEEV	F2C6	135	CPZERO	C2
34	BIE	B5I	85	CGEFA	F4F	136	CQRDC	F6
35	BINOM	B5C	86	CGEFS	F4F	137	CQRSL	F6
36	BINT4	E1A	87	CGEIR	F4F	138	CROTG	F1A
37	BINTK	E1A	88	CGESL	F4F	139	CSCAL	F1A
38	BLKTRI	D3D2	89	CGTSL	F4F	140	CSEVL	B5R
39	BSPDR	E1A	90	CHICO	F4C	141	CSICO	F4C
40	BSPEV	E 1A	91	CHIDI	F4C	142	CSIDI	F4C
41	BSPPP	E1A	92	CHIEV	F2C5	143	CSIFA	F4C
42	BSPVD	E1A	93	CHIFA	F4C	144	CSINH	B2
43	BSPVN	E1A	94	CHISL	F4C	145	CSISL	F4C
44	BSQAD	E1A	95	CHKDER	E2	146	CSPCO	F4C
45	BVALU	E1A	96	CHPCO	F4C	147	CSPDI	F4C
46	BVSUP	D2B	97	CHPDI	F4C	148	CSPFA	F4C
47	COLGMC	B5F	98	CHPFA	F4C	149	CSPSL	F4C
48	C9LGMC	B5F	99	CHPSL	F4C	150	CSROT	F1A
49	C9LN2R	B3	100	СНИ	B5N	151	CSSCAL	F1A
50	CACOS	B1	101	CLBETA	B5F	152	CSVDC	F6
51	CACOSH	B2	102	CLNGAM	B5F	153	CSWAP	F1A
52	CARG	В	103	CLNREL	B3	154	CTAN	B1
53	CASIN	B1	104	CLOG10	B3	155	CTANH	B2
54	CASINH	B2	105	CNBCO	F4H	156	CTRCO	F4F
55	CATAN	B1	106	CNBDI	F4H	157	CTRDI	F4F

-47-

158	CTRSL	F4F	20	9 DBSPD	R E1A	26	DLNGAM	B5F
159	CV	E2	21	0 DBSPE	V E1A	26	1 DLNREL	B3
160	D1MACH	Q	21	1 DBSPP	P E1A	262	2 DNBCO	F4H
161	D9AIMP	B5 I	21	2 DBSPV	D E1A	26		F4H
162	D9ATN1	B1	21	3 DBSPV		26		F4H
163	D9B0MP	B5L	21			265		F4H
164	D9B1MP	B5L	21	-		260		F4H
165	D9CHU	B5N	21		B4	267		F1A
166	D9GMIC	B5F	21		F1A	268		F4B
167	D9GMIT	B5F	21		F4B	269		F4B
168	D9KNUS	B5L	21			209		
169	D9LGIC	B5F	22		F4B			F4B
170	D9LGIT	B5F	22			27 1		F4B
171	D9LG11 D9LGMC	B5F	222		B5N	272		E1A
172			22		F4B	273		B5Z
	D9LN2R	B3	22			274		B5Z
173	D9PAK	M2				275		F4B
174	D9UPAK	M2	22		B1	276		F4B
175	DACOSH	B2	220		-	277		F4B
176	DAI	B51	22'		B5Z	278		F4B
177	DAIE	B5I	228		F1A	279		F4B
178	DASINH	B2	229		B5E	280		F4B
179	DASUM	F1A	230		D2A2	281		F4B
180	DATANH	B2	23		D2A9	282		F4B
181	DAWS	B5Z	232		B5E	283		E 1 A
182	DAXPY	F1A	233		B5G	284		F4B
183	DBESI	B5 I	231		B5G	285		E 1 A
184	DBESIO	B5J	235		D2A1	286	DPSI	B5F
185	DBESI1	B5J	236			287	DPTSL	F4B
186	DBESJ	B5I	237		. B3	* 288	DQDOTA	F1A
187	DBESJO	B5I	238		B5C	289	DQDOTI	F1A
188	DBESJ1	B5I	239	DGAMI	B5F	290	DQRDC	F6
189	DBESK	B5I	240	DGAMIC	B5F	291	DQRSL	F6
190	DBESKO	B5J	241	DGAMIT	B5F	292	DROT	F1A
191	DBESK1	B5J	242	DGAMLM	B5F	293	DROTG	F1A
192	DBESKS	B5J	243	DGAMMA		294	DROTM	F1A
193	DBESY	B5I	244	DGAMR	B5F	295	DROTMG	F1A
194	DBESYO	B5I	245	DGAUS8		296		F1A
195	DBESY1	B5I	246		F4H	297	DSDOT	F1A
196	DBETA	B5F	247		F4H	298	DSICO	F4C
197	DBETAI	B5F	248		F4H	299	DSIDI	F4C
198	DBFQAD	EIA	249		F4H	300	DSIFA	F4C
199	DBI	B5I	250		F4A	301	DSINDG	B1
200	DBIE	B5I	251	DGEDI	F4A	302	DSISL	F4C
201	DBINOM	B5C	252		F4A	303	DSPCO	F4C F4C
202	DBINT4	E1A	253		F4A	304	DSPDI	F4C F4C
203	DBINTK	E1A	254	DGESL	F4A	305	DSPENC	r 40 B5Z
204	DBSIOE	B5J	255	DGTSL	F4A	306	DSPEAC	
205	DBSI1E	B5K	256	DINTRV	E1A			F4C
206	DBSKOE	B5J	257	DLBETA	B5F	307	DSPSL	F4C
207	DBSK1E	B5J	258	DLGAMS		308	DSVDC	F6
207	DBSKES	в5J В5J	250	DLGAMS	B5F	309	DSWAP	F1A
200	DONEO	0.00	209		B5E	310	DTRCO	F4A

311	DTRDI	F4A	362		D1B2A	413	SGEFS	F4A
312	DTRSL	F4A	363		D1D2	414	SGEIR	F4A
313	E1	B5E	364		D1	415	SGESL	F4A
314	EFC	E2A	365		D1B2A	416	SGTSL	F4A
315	EI	B5E	366		D1C2	417	SINDG	B1
316	ERF	B5G	367	QAWF	D1D2	418	SINQB	D6
317	ERFC	B5G	368	QAWO	D1C2	419	SINQF	D6
318	EXINT	B5E	369	QAWS	D1C2	420	SINQI	D6
319	EXPREL	B3	370	QNC79	D1B2A	421	SINT	D6
320	EZFFTB	D6	371	QNG	D1B1A	422	SINTI	D6
321	EZFFTF	D6	372	R1MACH	Q	423	SNBCO	F4H
322	EZFFTI	D6	373	R9AIMP	B5	424	SNBDI	F4H
323	FAC	B5C	374	R9ATN 1	B1	425	SNBFA	F4H
324	FC	E2A	375	R9CHU	B5N	426	SNBFS	F4H
325	FDUMP	Q2	376	R9GMIC	B5F	427	SNBIR	F4H
326	FZERO	C4A	377	R9GMIT	B5F	428	SNBIL	F4H
327	GAMI	B5F	378	R9KNUS	B5L	420		
			379	R9LGIC	B5F		SNLS	E2G1B1
328	GAMIC	B5F	380	R9LGIT	B5F	430	SNLSE	E2G1B1
329	GAMIT	B5F	381	R9LGII		431	SNRM2	F1A
330	GAMLIM	B5F	382	R9LGMC R9LN2R	B5F	432	SNSQ	C5A
331	GAMMA	B5F			B3	433	SNSQE	C5A
332	GAMR	B5F	383	R9PAK	M2	434	SODS	E2G1A
333	GAUS8	D1B2A	384	R9UPAK	M2	435	SOS	C5B
334	I1MACH	Q	385	RAND	G5E	436	SPBCO	F4B
335	ICAMAX	F1A	386	RFFTB	D6	437	SPBDI	F4B
336	IDAMAX	F1A	387	RFFTF	D6	438	SPBFA	F4B
337	INITDS	B5R	388	RFFTI	D6	439	SPBSL	F4B
338	INITS	B5R	389	RGAUSS	G5F	440	SPENC	B5Z
339	INTRP	D2A2	390	RPQR79	C2	441	SPOCO	F4B
340	INTRV	E1A	391	RPZERO	C2	442	SPODI	F4B
341	ISAMAX	F1A	392	RUNIF	G5E	443	SPOFA	F4B
342	ISORT	M1A1	393	SASUM	F1A	444	SPOFS	F4B
343	LSEI	E2G2A	394	SAXPY	F1A	445	SPOIR	F4B
344	PCOEF	E2	395	SCASUM	F1A	446	SPOSL	F4B
345	PFQAD	E1A	396	SCHDC	F4B	447	SPPCO	F4B
346	POCH	B5Z	397	SCHDD	F4B	448	SPPDI	F4B
347	POCH1	B5Z	398	SCHEX	F4B	449		F4B
348	POIS	D3D2	399	SCHUD	F4B	450	SPPSL	F4B
349	POLCOF	E1	400	SCNRM2	F1A	451	SPTSL	F4B
350	POLFIT	E2G1A	401	SCOPY	F1A	452	SQRDC	F6
351	POLINT	E1B	402	SCOPYM	F1A	453	SQRSL	F6
352	POLYVL		403	SDOT	F1A	454	SROT	F0 F1A
		E1B	404	SDSDOT	F1A	455	SROTG	
353 254	PPQAD	E1A	405	SGBCO	F4H	455		F1A
354	PPVAL	E1A	406	SGBDI	F4H		SROTM	F1A
355	PSI	B5F	407	SGBFA	F4H	457	SROTMG	F1A
356	PVALUE	E1B	407	SGBFA	F4H F4H	458	SSCAL	F1A
357	PWSCRT	D3D2	408			459	SSICO	F4C
358	PWSCSP	D3D2		SGECO	F4A	460	SSIDI	F4C
359	PWSCYL	D3D2	410	SGEDI	F4A Faca	461	SSIEV	F2C2
360	PWSPLR	D3D2	411	SGEEV	F2C3	462	SSIFA	F4C
361	PWSSSP	D3D2	412	SGEFA	F4A	463	SSISL	F4C

د

-

464	SSORT	M 1
465	SSPCO	F4C
466	SSPDI	F4C
467	SSPEV	F2C2
468	SSPFA	F4C
469	SSPSL	F4C
470	SSVDC	F6
471	SSWAP	F1A
472	STEP2	D2A2
473	STRCO	F4A
474	STRDI	F4A
475	STRSL	F4A
476	SUDS	E2G1A
477	WNNLS	E2G2A
478	XERABT	Q
479	XERCLR	Q
480	XERCTL	Q
481	XERDMP	Q
482	XERMAX	Q
483	XERPRT	Q
484	XERROR	Q
485	XERRWV	Q
486	XERSAV	Q
487	XGETF	Q
488	XGETUA	Q
489	XGETUN	Q
490	XSETF	Q
49 1	XSETUA	Q
492	XSETUN	Q

ACKNOWLEDGMENTS

Many thanks go to Dona L. Crawford and Hilary D. Jones. These colleagues were always happy to provide constructive criticism and helpful suggestions.

REFERENCE

.

1. K. W. Fong, T. H. Jefferson, T. Suyehiro, "SLATEC Library Source File Format," informal SLATEC document, August 1981.

UNLIMITED RELEASE

INITIAL DISTRIBUTION

DR. DAVID KAHANER NATIONAL BUREAU OF STANDARDS SCIENTIFIC COMPUTING DIVISION 713 WASHINGTON, DC 20234

DR. MARTIN CORDES MATHEMATICAL ANALYSIS DIVISION BUILDING 101, ROOM A-302 NATIONAL BUREAU OF STANDARDS WASHINGTON DC 20234

DR. WAYNE FULLERTON COMPUTING SCIENCE RESEARCH CENTER 2C-459 BELL LABORATORIES MURRAY HILL, NJ 07974

DR. RONALD PEIERLS APPLIED MATHEMATICS DEPARTMENT BROOKHAVEN NATIONAL LABORATORY UPTON, NY 11973

DR. PATRICK W. GAFFNEY UNION CARBIDE CORPORATION NUCLEAR DIVISION, COMPUTER SCIENCE P.O. BOX X, BUILDING 9704-1 OAK RIDGE, TN 37830

DR. ROBERT WARD UNION CARBIDE CORPORATION NUCLEAR DIVISION, COMPUTER SCIENCE P.O. BOX X, BUILDING 9704-1 OAK RIDGE, TN 37830

DR. THEODORE HATCHER EG&G IDAHO COMPUTER SCIENCE CENTER P.O. BOX 1625 IDAHO FALLS, IDAHO 83415

DEPARTMENT OF COMPUTER SCIENCES REPORT SECTION ROYAL INSTITUTE OF TECHNOLOGY 5-100 44 STOCKHOLM 70 SWEDEN \$

DR. C. L. LAWSON MS 125/128 JET PROPULSION LABORATORY 4800 OAK GROVE DRIVE PASADENA, CA 91103

DR. C. B. MOLER DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF NEW MEXICO ALBUQUERQUE, NM 87131

DR. PAUL MESSINA AMD ARGONE NATIONAL LABORATORY 9700 SOUTH CASS AVENUE ARGONNE, IL 60439

DR. MYRON GINSBERG GENERAL MOTORS RESEARCH LABORATORY COMPUTER SCIENCE DEPARTMENT RAND-234 GENERAL MOTORS TECHNICAL CENTER WARREN, MI 48090-9055

DR. JOHN RICE DIVISION OF MATHEMATICAL SCIENCES PURDUE UNIVEERSITY WEST LAFAYETTE, IN 47907

DR. PHYLISS FOX BELL LABORATORIES 600 MOUNTAIN HILL MURRAY HILL, NJ 07974

MARGARET BUTLER NATIONAL ENERGY SOFTWARE CENTER ARGONNE NATIONAL LABORATORY 9700 SOUTH CASS AVENUE ARGONNE, IL 60439

DR. BRIAN FORD NAG, LTD. MAYFIELD HOUSE 256 BANBURY ROAD OXFORD, OX2 7DE UNITED KINGDOM

AFWL/ADS LT. A. FUNK AFWL/AD R. C. ALLEN LANL K. BERKBIGLER, MS-B296 LANL R. BOLAND, MS-265 LANL B. BUZBEE, MS-265 LANL J. CHOW, MS-265 LANL P. FREDERICKSON, MS-265 LANL A. HAYES, MS-265 LANL T. JORDAN, MS-265 LANL T. MANTEUFFEL, MS-265 LANL E. VOORHEES, MS-265 LANL A. B. WHITE, MS-265 LLNL R. C. BASINGER, L 316 LLNL K. W. FONG, L 560 LLNL F. N. FRITSCH, L 316 LLNL A. C. HINDMARSH, L 316 LLNL N. G. SMIRIGA L 316 LLNL T. SUYEHIRO, L 316 2614 JONES R E 2614 SHEPHERD G C 2646 SCOTT M R 2646 HASKELL K H 2646 VANDEVENDER W H 2646 WALTON L 5642 SHAMPINE L F 5642 AMOS DE 8000 CLAASEN R S 8100 OLSON D M 8112 WITEK H M 8113 HILES L A 8115 WOODARD JAMES B JR 8116 BOLTON WILLARD R JR 8116 PURA CAROLYN A SCOTT CARLTON A 8121 8121 KEILMAN JOHN C 8121 CALLABRESI MELVIN L 8121 VOELKER L EUGENE 8121 KAN YIH-RENN 8121 CHIESA MICHAEL L 8122 HOYLE CHARLES S 8122 ROGERS L ALICE 8122 GRANT JOSEPH E 8122 WEINGARTEN LAWRENCE I 8122 DUNDER VERA D 8122 CHANG ROSEMARY E 8122 NAPOLITANO LEONARD M 8122 MASON WILLIAM E JR 8123 ZINKE WILLIAM D

JORGENSON WILBUR E 8123 PERRA MARK W 8123 8123 KAWAHARA WENDELL A 8123 BIELER THOMAS R CHENOWETH DONALD R 8124 8124 ABRAMS MARTIN GALLAGHER ROBERT J 8124 8124 HACKETT COLIN E OWENS DOUGLAS D 8124 SIEBERS DENNIS L 8124 WINTERS WILLIAM S JR 8124 8124 FISH MIRIAM JOHN KRAABEL JOHN S 8124 PAOLUCCI SAMUEL 8124 8124 BELL DIANE M ORTEGA ARTHUR R 8124 8124 STODDARD MARY C 8131 DEAN DAVID K HENDERSON GERALD W 8131 YOKOMIZO CLIFFORD T 8132 CULL EDWARD T 8132 8132 HENSON DOUGLAS R 8132 MCDONALD ALFREDO HIRANO HOWARD H 8132 RYCHNOVSKY R E 8152 DREMALAS JAMES F 8152 NELSON DENNIS B 8152 EVERETT ROGER N 8152 8152 LOLL MARVIN B LAPETINA NEIL A 8152 8153 WRIGHT JAMES B 8153 DIGHTON LEONARD E SKOOG CLIFFORD D 8153 FURNBERG CARLTON M 8162 RIVENES ARNOLD S 8162 AMARAL RONALD J 8162 ROGERS MICHAEL H 8162 BURRIS KEITH L 8162 TILLEY ROGER S 8162 CHILDERS CARL W 8163 8163 DIDLAKE JOHN E JR HICKS MEARLE G 8168 BLACKWELL A N 8200 CONNORS MATTHEW J 8214 INZERILLA JANET K 8215 CUPPS FRANK J 8215 8215 YANO HESA 8215 JOINER EMILY A 8215 BARNCORD LINDA JO BIRNBAUM MICHAEL R 8254 8265 DEAN PETER W

8271 EICHERT FRED F JR 8272 COOK RICHARD S JR FINN RICHARD W 8274 8274 NEIGHBORS PAULA K 8274 HACHMAN JIM M 8274 KOOPMANN BRUCE E 8274 JONES JOHN F JR 8300 MURPHEY B F 8310 SCHUSTER D M 8312 SMUGERESKY JOHN E 8313 NICHOLS MONTE C 8313 BOEHME DALE R 8315 WEST LLOYD A 8315 MILLS BERNICE E 8320 RINNE R L 8322 DOLAN KENNETH W 8324 HANKINS JOE D 8324 ROGERS JAMES N 8324 BREAZEAL NORMAN L 8324 CZAPINSKI ROBERT H 8324 STRUVE JAMES E 8324 LOOK GEORGE W 8324 TOOMAN TIM P 8328 STRANDIN GERALD E 8328 BRANDT LARRY D 8328 IANNUCCI JOSEPH J 8328 VITKO JOHN JR 8329 KRIEGER HAROLD A 8329 DECARLI CHARLES J 8329 WAGNER NORMAN R 8330 ANDERSON G W JR 8331 GABRIELSON VERLAN K 8331 CLARK GARY L 8331 BISSON CHARLES L 8331 KEE ROBERT J JR 8331 LEARY PATRICIA L 8331 MARGOLIS STEPHEN B 8331 SMOOKE MITCHELL D 8331 PETZOLD LINDA R 8332 MILLER GORDON J 8332 LATHROP JAMES F 8332 MANSFIELD JUANITA 8332 HUDDLESTON ROBERT E JEFFERSON THOMAS H JR (15) 8332 8332 CRAWFORD DONA L 8332 ELLIS RAYMOND W 8332 RINGLAND JAMES T 8334 BARKER BERTON E 8334 SHORT HAROLD G 8334 LEONARD CHARLES M JR 8334 LEE ROY Y

JONES HILARY D 8334 SCHUKNECHT ARNOLD G 8335 WHITWORTH FREDDY L 8335 ANGVICK GENE L 8335 ISLER RICHARD E 8335 MITCHELL DONNA L 8335 PENDLEY MICHAEL H 8335 DRISCOLL PATRICIA A 8335 DRUMMOND G B JR 8336 8340 BAUER W WILSON WILLIAM D 8341 THOMAS GEORGE J 8341 8341 HAGGMARK LEROY G BASKES MICHAEL I 8341 BROWN LESLIE A 8341 8341 STOLL MICHAEL E 8341 BINKLEY JOHN S VAN HOOK ARTHUR R 8342 GRAY STEPHEN C 8342 8342 RAHN LARRY A GAY RICHARD D 8342 8342 FARROW ROGER L 8342 SELBERG LARS A CORONADO PAUL R 8343 FOLK DANIEL R 8343 8343 SWANSIGER WILLIAM A 8343 MELIUS CARL F KOSZYKOWSKI MICHAEL L 8343 8343 NOELL J OAKEY 8347 CHRISMAN WAYNE L 8347 MORSE DANIEL H 8347 MALINOWSKI MICHAEL E 8347 GUTHRIE STEPHEN E 8347 WILSON KENNETH L 8347 VER BERKMOES ALFRED A 8347 STULEN RICHARD H BASTASZ ROBERT J 8347 8347 PONTAU ARTHUR E KERST RONALD A 8347 8400 GUTIERREZ L BENTON JOE D 8411 8411 STOCKLEY C H JR SWAN HERBERT W 8411 8411 HOLBROOK ELMOND D 8411 MACMILLAN DOUGLAS C GRISBY SYLVESTER 8411 CONVERSE LOUISE S 8411 MANROW BRITT MARIE 8411 8411 BAUMAN JIMMIE L 8411 HUMPHREY ROBERT E 8411 MAYER ELIZABETH R

8415 ESTILL WESLEY B 8415 TALLERICO LOUIE N 8431 RADOSEVICH LEE G 8431 EICKER PATRICK J 8431 BATTLESON KIRK W 8441 SCHAFER CLIFFORD T 8441 BYROADS WILLIAM T JR 8441 BORELLO LAWRENCE A 8441 NG RAYMOND 8441 WEST ANTON J 8442 HARTWIG CHARLES M 8442 WHEELER JOHN C 8442 BEHRENS RICHARD JR 8442 HINCKLEY C MARTIN 8442 CAROTHERS KAREN A 8444 WILLIS ALEC R 8444 OIEN CHARLES T 8445 BOLEN JACK L 8445 HANSER HENRY 8445 PUTZ DONALD W 8445 DERICKSON LINN W 8452 BAKER ALVIN F 8452 RORKE WILLIAM S JR 8452 FAAS SCOTT E 8452 FALCONE PATRICIA K 8453 MAVIS CLAYTON L 8453 NORRIS HAROLD F JR 8453 WILSON WM G 8453 DELAMETER WILLIAM R 8453 DAWSON DANIEL B 8453 DELAQUILL PASCAL III 8453 YANG CHRISTINE L 8461 TOCKEY ROBERT J 8465 POTTHOFF C M 8466 BARR VERNON C 8466 STIMMELL KATHLEEN 8500 HARTLEY D M 8510 MATTERN PETER L 8511 SCHMIEDER ROBERT W 8511 CATTOLICA ROBERT J 8511 WERTENBERG RUSSELL F 8511 FLOWER WILLIAM L 8511 STEPHENSON DAVID A 8512 BENTHUSON D E 8512 MARION JOHN E 8512 LIBKIND MARCUS A 8513 MILLER JAMES A 8520 ROBINSON CLARENCE W 8521 TICHENOR DANIEL A 8521 MITCHELL REGINALD E 8521 WANG JAMES C F

8522 WITZE PETER O 8522 SMITH JAMES R 8522 GREEN ROBERT M 8522 JOHNSTON SHERIDAN C 8522 KEETON STEWART C 8522 WOODARD JOAN BRUNE 8522 RAMBACH GLENN D 8523 MARX KENNETH D 8523 ASHURST WILLIAM T 8523 SANDERS BILLY R 8523 KERSTEIN ALAN R 8523 DIBBLE ROBERT W 8523 BARR PAMELA K PUBLICATIONS DIVISION, 8265/TECHNICAL LIBRARY PROCESSES DIVISION, 3141 TECHNICAL LIBRARY PROCESSES DIVISION, 3141 (3) M. A. POUND, 8214, FOR CENTRAL TECHNICAL FILES (3)

,

Org.	Bldg.	Name	Rec'd by	Org.	Bldg.	Name	Rec'd by
			2 2				
2							
2				-			
12	e e ie			×			
					6		
а							
			and the second second				

Sandia National Laboratories