CONTRACTOR REPORT

SAND83-7124 Unlimited Release UC-62

1982 Annual Report of the Coolidge Solar Irrigation Project

Dennis L. Larson The University of Arizona Soils, Water and Engineering Department Tucson, AZ 85721

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 for the United States Department of Energy under Contract DE-AC04-76DP00789

Printed October 1983

When printing a copy of any digitized SAND Report, you are required to update the markings to current standards.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. **NOTICE:** This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement. recommendation, or favoring by the United States Government, any agency thereof or any of their contractors.

o

Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

NTIS price codes Printed copy: A07 Microfiche copy: A01

1982 ANNUAL REPORT OF THE COOLIDGE SOLAR IRRIGATION PROJECT

SAND83-7124

Dennis L. Larson The University of Arizona Soils, Water and Engineering Department Tucson, Arizona 85721

ABSTRACT

The Coolidge Solar Irrigation Facility at Coolidge, Arizona consists of a 2140.5-m^2 (23 040-ft²) line-focus collector subsystem, a 13.6-m² (30 000 gal) thermal storage subsystem, and a 150-kW_e power generation unit. The purpose of this document is to report the performance of the facility and its operational and maintenance requirements. This document covers the period of time from 1 September 1981 through 30 September 1982. This is the third in a series of annual reports on the operation of the Coolidge Solar Irrigation Facility.

Acknowledgements

The author wishes to acknowledge the following contributions:

Leroy E. Torkelson, Sandia National Laboratories, Albuquerque - developed the facility test and evaluation plan, provided direction and assistance during performance tests and shared in the preparation of the 1980 and 1981 Annual Reports. Tragically, he died of injuries suffered in an accident in Summer 1982. We miss him.

Jack Hoopes, Lee Ballard and Ruben Wood operated the Coolidge Solar Irrigation Facility. Ruben Wood was responsible for maintenance of the solar plant.

Andy Clark and Edie Griffith of the University of Arizona assisted with operation of the facility and processed the facility performance data. Table of Contents

<u>Chapter</u>	Title	Paç
1	Introduction	1
2	Overall Summary	5
	Performance	5
	Automation	5
	Uperating and Maintenance Requirements	
	Highlights	C F
3	Plant Energy Collection, Use, and Production Budgets	c
4	Solar Collector Subsystem 1981 Autumnal Equinox Performance	27
·	Methods	27
	September 25 (Day 268) Results	28
	September 26 (Day 269) Results	29
	September 28 (Day 271) Results	29
	Parasitic Electrical Energy Use	29
_	Comments	30
5	Solar Collector Subsystem 1981 Winter Solstice Performance	35
	Kesuits	35
6	Comments Solar Collector Subjustor 1982 Vonnal Equinox Donformance	30
0	Methods	30
	22 March Results	40
	23 March Results	40
	27 March Results	41
	Comments	41
7	Solar Collector Subsystem 1982 Summer Solstice Performance	47
	Methods	47
	20 June Results	48
	23 June Results	49
	Parastilic Energy Usage	49
ß	Solar Collector Subsystem 1982 Autumnal Equipox Performance	50
0	Methods	55
	20 September Results	56
	22 September Results	57
	Discussion	57
9	Cleaning and Reflectivity of Solar Collector Subsystem	63
	Reflector Panels	
10	Parasitic Electrical Energy Usage	67
	Introduction	67
	Energy Use	68
11	Summary	/1
11	Incluents FEK Delamination	/۲ رە
	Collector No-Flow Overheating	ע מע מע
	Flexhose Leakage and Fire	20 20
	realize contage and the	09

Table of Contents

Chapter	Title	Page
12	Equipment Problems and Solutions	91
	Collector Subsystem	93
	Reflective Panels	93
	Tracking Units	93
	Collector Drive Motors	94
	Flexible Hoses	94
	Receiver Tubes	95
	Receive <u>r</u> Glass Covers	96
	Caloria ^{IM} Pumps	96
	Flow Diversion Valve	97
	Storage Tank	97
	Power Conversion Subsystem	97
	Vaporiz <u>er</u>	97
	Caloria ^{IM} Flow Controller	9 8
	Cooling Towr	98
	Regenerator	99
	Vacuum Pump	99
	Toluene Pump	99
	Jurbine Gearbox Lubrication	100
	Jurbine Bearing Lubrication	100
	Turbine-Generator Coupling	100
	Generator-Utility Interconnection	101
	Automation	101
	Uther Equipment	102
	Lompressors Realium Concention	102
	Dackup Generator	102
	Anomenton	103
	Flowmotions	103
	Magnetic Tano Pecondon	103
	Summany	103
13	Operating Requirements	104
15	Personnel	105
	Sunnlies	105
14	Maintenance Requirements	109
T 1	Personnel	109
	Sunnlies	110
15	Project Termination	113
16	References	115
1V		110

÷

List of Tables

*	<u>No.</u>	Table Title	Page
1	1-1	Subsystem Description	4
	3-1	Coolidge Solar Power Plant Monthly Energy Balance (September 1981)	14
	3-2	Coolidge Solar Power Plant Monthly Energy Balance (October 1981)	15
	3-3	Coolidge Solar Power Plant Monthly Energy Balance (November 1981)	16
	3-4	Coolidge Solar Power Plant Monthly Energy Balance (December 1981)	1/
	3-5	Coolidge Solar Power Plant Monthly Energy Balance (January 1982)	18
	3-6	Coolidge Solar Power Plant Monthly Energy Balance (February 1982)	19
	3-7	Coolidge Solar Power Plant Monthly Energy Balance (March 1982)	20
	3-8	Coolidge Solar Power Plant Monthly Energy Balance (April 1982)	22
	3-9	Coolidge Solar Power Plant Monthly Energy Balance (May 1982)	22
	3 - 10	Coolidge Solar Power Plant Monthly Energy Balance (July 1982)	23
	3-11	Coolidge Solar Power Plant Monthly Energy Balance (July 1902)	25
	3-12	Coolidge Solar Power Plant Monthly Energy Balance (August 1902)	26
	3-13 4 1	Collector Subjector Test Information	31
	4-1	Densitic Electrical Energy Use During Collector Subsystem Startun	31
	4-2 51	Parastill Electrical Ellergy use but hig corrector subsystem startup	37
	5-1 6 1	Collector Subsystem Test Events MST	43
	6-2	Collector Subsystem Test Information	43
	7_1	Collector Subsystem Test Events MST	52
	7-2	Collector Subsystem Rese Evenes, Not	52
	8-1	Collector Subsystem Test Events. MST	59
	8-2	Collector Subsystem Summary Test Data	59
	9-1	Reflectance Data for Collector FEK-244 Reflector Panels	66
	10-1	Identification of Equipment Monitored by Each Meter	68
	10-2	Parasitic Energy Usage: September 1981	73
	10-3	Parasitic Energy Usage: October 1981	74
	10-4	Parasitic Energy Usage: November 1981	75
	10-5	Parasitic Energy Usage: December 1982	76
	10-6	Parasitic Energy Usage: January 1982	77
	10-7	Parasitic Energy Usage: February 1982	78
	10-8	Parasitic Energy Usage: March 1982	79
	10-9	Parasitic Energy Usage: April 1982	80
	10-10	Parasitic Energy Usage: May 1982	81
	10-11	Parasitic Energy Usage: June 1982	82
	10-12	Parasitic Energy Usage: July 1982	83
	10-13	Parasitic Energy Usage: August 1982	84
	10-14	Parasitic Energy Usage: September 1982	85
	12-1	Amount of Collector Operation Lost in 1981-82	92
	12-2	Amount of PCM Uperation Lost in 1981-82	92 107
	13-1	Monthly Uperational Supply Lost	107 112
~	14-1	Montnly Personnel Maintenance Effort (Nours)	112 110
	14-2	Monthly Maintenance Supply Lost	112

List of Figures

No.	Figure Title	Page
1-1	150 kWe Solar Powered Irrigation Facility Flow Diagram	4
2-1	Electricity Produced in 1981-82 Compared with 1980-81 Production	7
3-1	Total Available Solar Energy, Solar Energy Received During Collector	
	Subsystem Operation and Collected Thermal Energy for 9/81-9/82	13
3-2	Gross and Net Electrical Energy Production by the Solar Power Plant	
	Sept. 1981 through Sept. 1982	13
4-1	Autumnal Equinox, Insolation vs Hour	32
4-2	Autumnal Equinox, Efficiency vs Hour	32
4-3	Autumnal Equinox, Collected Power vs Hour	33
4-4	Autumnal Equinox, Inlet and Outlet Temperatures vs Hour	33
4 - 5	Autumnal Equinox, Flow Rate vs Hour	34
4-6	Autumnal Equinox, Wind Speed and Ambient Temperature vs Hour	34
5-1	Winter Solstice, Insolation vs Hour	38
5-2	Winter Solstice, Efficiency vs Hour	38
5 - 3	Winer Solstice, Collected Power vs Hour	38
5-4	Winter Solstice, Inlet and Outlet Temperatures vs Hour	38
5-5	Winter Solstice, Flow Rate vs Hour	38
5-6	Winter Solstice, Wind Speed and Ambient Temperature vs Hour	38
6-1	Vernal Equinox, Insolation vs Hour	44
6-2	Vernal Equinox, Efficiency vs Hour	44
6-3	Vernal Equinox, Collected Power vs Hour	45
6-4	Vernal Equinox, Inlet and Outlet Temperatures vs Hour	45
6-5	Vernal Equinox, Flow Rate vs Hour	46
6-6	Vernal Equinox, Wind Speed and Ambient Temperature vs Hour	46
7-1	Summer Solstice, Insolation vs Hour	53
/-2	Summer Solstice, Efficiency vs Hour	53
/-2	Summer Solstice, Collected Power vs Hour	53
/-4	Summer Solstice, Inlet and Outlet Temperatures vs Hour	53
/-5	Summer Solstice, Flow Rate vs Hour	54
/-6	Summer Solstice, Wind Speed and Ambient Temperature vs Hour	54
8-1	Autumnal Equinox, Insolation vs Hour	6U
8-2	Autumnal Equinox, Efficiency vs Hour	60
8-3	Autumnal Equinox, collected Power VS Hour	60
8-4	Autumnal Equinox, Inlet and Outlet Temperatures VS Hour	60
8-5	Autumnal Equinox, Flow Rate VS Hour	61
8-0	Autumnal Equinox, wind Speed and Ambient Temperature VS Hour	01 70
10-1	Average Daily Energy Usage by the collector Field Pump 9/81 - 9/82	72
10-2	Average Daily Energy Usage by collector tracking Motors 9/81-9/82	72
10-3	Average Daily Energy Usage by the Control Modulo 9/81 - 9/82	72
10-4	Average Daily Energy Usage by the Control Module 9/81 - 9/82	72
10-5	Average Daily Energy Usage by the couldry lower 9/81 - 9/82 Average Daily Energy Usage by Ain Compressions 0/01 0/02	/ C 7 0
10-0	Average Daily Energy Usage by Alt Compressurs 9/01-9/02 Average Daily Energy Usage by the Control Duilding Aim Conditioner/	12 -
10-1	Heater 9/81-9/82	72
11_1	FFK_244 Reflective Film Delamination Patterns	χς .
T T _ T		00 ,

÷

• •

1. Introduction

٩,

This document is a report on the performance of the Coolidge, Arizona, Solar Irrigation Facility during its third and final year of operation.

The facility was the largest operating solar thermal power plant in the United States when it began operation in October 1979. The site, the Dalton Cole farm south of Coolidge, Arizona, was selected in February 1977. A preliminary design study of the facility was undertaken early in 1977 by three contractors and was completed in August 1977. On the basis of the conceptual design competition, Acurex Corporation was selected as the prime contractor for this project as well as the supplier of the solar collectors. The major subcontractors to Acurex were Sundstrand Corporation and Sullivan and Masson Consulting Engineers. Sundstrand was the supplier of the Organic Rankine Cycle (ORC) power generation unit. The team of Sullivan and Masson and Acurex was responsible for the detailed design task.

The solar plant consists of solar collector, energy storage and power conversion subsystems. The facility is arranged around three heat transfer loops. One loop extracts warm heat-transfer oil (CaloriaTM) from the bottom of a thermal storage tank, circulates the oil through the collector field, and returns it hot to the top of the thermal storage tank. The second loop extracts hot oil from the top of the storage tank, circulates the oil through a vaporizer heat-exchange unit, and returns it to the bottom of the storage tank or directly to the collector field inlet. The third loop circulates liquid toluene through the vaporizer heat-exchanger unit to vaporize it and then expands the vapor through the turbine in the power conversion module to extract the energy for electrical power generation. The cycle is completed

by condensing the expanded vapor in an evaporative cooling tower and pumping the condensed toluene back to the vaporizer. The system flow diagram is shown in Figure 1-1.

5

The collector field is made up of 2140 m (23040 ft) of line-focusing parabolic trough collectors arranged in eight loops having a north-south orientation. The collector modules are about 1.8 m across by 3 m long and originally had aluminum reflective surfaces. These surfaces were laminated with aluminized acrylic film (FEK-244) in Spring 1981. CaloriaTM is pumped thorugh the receiver tube, located at the solar collector focus, at a rate controlled to obtain the desired collector loop outlet temperature. The receiver tubes are coated with a selective black chrome surface and surrounded by a glass tube to increase energy collection. The sun's energy, concentrated about 36 times by the reflectors, is absorbed by the oil heating it to the operating temperature, normally 288°C.

Heated CaloriaTM is returned to energy storage or sent directly to the vaporizer heat-exchanger. A 114 m (30,000 gal) insulated tank 4.2 m in diameter by 14.9 m high provides energy storage sufficient for over 5 hours of power conversion subsystem operation. A thermocline separates the heated CaloriaTM input at the top of the tank from cooler oil located in the lower part of the tank.

Thermal energy is converted to electrical energy by means of an organic Rankine cycle (ORC) power conversion subsystem. It includes a vaporizer unit consisting of preheater, evaporator and superheater sections, single stage impulse turbine, gear reduction unit, synchronous generator and evaporative cooling tower to recondense toluene. A regenerator stage is included to improve energy conversion efficiency. The electrical generator is interconnected with the local electrical utility company grid.

A control subsystem monitors and controls the collection and storage of solar energy, the supply of hot fluid to the power generation subsystem, and the generation and supply of electric power. In addition, it protects against system-related anomalies such as high temperatures or low flow in the collector field, as well as natural events such as high, gusty winds and external factors such as loss of utility electrical power. The control system also is equipped with manual override options for all control functions to enable greater flexibility for tests and experiments.

٩.

An auxiliary heater fired by natural gas was added to the plant to allow experiments which require thermal input equivalent to the output of a larger collector field and enable tests to be performed on the storage and power generation subsystem at times when the insolation level was inadequate. A summary of the major system elements is given in Table 1-1.

For a more complete description of the facility, see Reference 1. The operation, test and evaluation plan is reported in Reference 2. Performance of the facility during its first and second years of operation is documented in References 3 and 4, respectively.

Table 1-1. Subsystem Description

Collector Field	
Size:	48 Acurex collector groups with N-S axis orientation $= 23.040$ ft ²
Fluid	Caloria® HT-43
Temperatures:	Inlet, 392°F; outlet, 550°F
Thermal Storage	
Туре:	Stratified liquid (thermocline)
Tank size:	50 000 gal - 13.67 ft dia by 49-ft length
	(30 000-gal usable storage)
Storage temperature:	392° to 550°F
Storage medium:	Caloria [®] HT-43
Insulation:	12-inthick fiberglass
Cooling System	
Туре:	Vapor condenser
Water (make-up):	10 gal/min
Condensing	
temperature:	105°F
Power Generation	
Туре:	Organic Rankine Cycle
Working fluid:	Toluene
Gross efficiency:	20 <i>°</i> c

2. Overall Summary

Performance

*

The plant was operated to maximize operating hours and electrical energy production except during testing periods. The plant operated reliably. Three separate power conversion subsystem equipment problems resulted in a total of 10 days downtime. The collector subsystem operated 93-100 percent of the monthly hours having sufficient insolation.

Electrical energy production in 1981-82 was 178 MWh compared with 162 MWh the previous year. The increase was principally due to the installation of FEK-244 on collector reflector panels, removal of the buffer tank and changes in operating procedures which minimized the use of thermal energy storage.

Figure 2-1 shows the electrical energy generation for September 1981 through September 1982. The line-focus solar collectors were oriented in the north-south direction to maximize the amount of energy collected in the summer when irrigation energy demands are highest. This orientation results in reduced energy collection in the winter.

Automation

A number of equipment and control changes were made in 1981 to permit completely automatic operation of the solar power plant. Beginning in Autumn 1981, the plant opeated unattended part of each day with operator attendance mandated only during PCM

startup as a safety precaution. The plant operated automatically on routine, incident free days during 1981-82.

Operating and Maintenance Requirements

Operational tasks required a estimated one hour per day of operator effort. This time was spent monitoring PCM startup, inspecting equipment, and checking and replenishing supplies. Operating supplies cost about \$240 per month, about half of which was for purchasing water and water treatment chemicals for the cooling tower.

Maintenance tasks required an average of 3 additional hours of effort per day. About a third of the time was spent cleaning collectors and maintaining site appearance. The rest of the effort was devoted to equipment servicing and adjustment and troubleshooting activities. Maintenance supplies cost about \$260 per month with the largest expenditure being for replacement parts and services.

Project Termination

Operational evaluation of the Coolidge solar facility terminated September 30, 1982. The solar power plant became the property of Dalton Cole, Jr., the owner of the farm on which the plant is located, on October 1, 1982. The plant then was decommissioned pending a determination of its future.

Highlights

- The Coolidge solar facility completed three years of daily operation.

- Energy performance characterization was completed.

۹_

- The collector field was in operation <u>97%</u> of the time that adequate sunshine was available in 1981-82.
- Electrical energy generated this fiscal year was 178 MWh.
- The plant operated automatically on routine, incident free days with no operator in attendance during a substantial part of the time.
- The solar power plant became the property of Dalton Cole Jr., at the end of the year. Operational evaluation was terminated; plant disposition is pending.

Figure 2-1. Electricity produced in 1981-82 compared with 1980-81 production.

*1

3. Plant Energy Collection, Use, and Production Budgets

٠_

The amounts of available solar energy, collected thermal energy, and generated electrical energy have been compiled for September 1981 through September 1982. Available solar energy is the total amount of received direct radiation. The collector subsystem operated whenever direct insolation was greater than 300 W/m^2 (95 $\text{Btu/ft}^2 \cdot \text{h}$) unless disrupted by maintenance or test activities. That portion of the available solar radiation received during collector subsystem operation is listed as solar energy available during operation. The collected solar energy is the daily thermal energy output of the solar collector subsystem.

Natural gas used by the boiler to provide additional heat for tests also is listed. Since natural gas boiler heating efficiency was found to be about 70%, the total thermal energy input has been computed as solar energy collected plus 70% of the natural gas heating value.

Parasitic electrical energy usage, electricity used by solar plant equipment, is summarized for each day. A more detailed breakdown of parasitic energy use by type of plant equipment is provided in Section 10. For comparison with plant production, the quantity of electricity used by three irrigation pumps located near the solar plant on the Dalton Cole farm is listed. The three pumps require about 150 kW (200 hp) of power.

Energy data for the 13 months are listed in Tables 3-1 through 3-13. When unavailable due to data-gathering problems, the information has been estimated and is so noted. A footnote explains the estimation methods. Monthly totals for available

solar energy, collected thermal energy, and generated electrical energy are presented graphically in Figures 3-1 and 3-2.

As expected, more solar radiation was received in June than in any other month, with April and May totals being only slightly less. July had many cloudy days; only four August days were cloudless. Unexpectedly, more solar energy was recorded for October than for August or September. There was mostly clear weather throughout October. Cloudy weather in January and February reduced operating hours to less than 70 percent of that possible with clear conditions.

The amount of solar energy received during operation closely followed the total amount available. Each month the collector subsystem operated 93 to 100 percent of the hours having sufficient insolation. Insolation less than 300 W/m^2 accounted for most of the difference between the total quantity available and that received during operation.

The bars representing of collected thermal energy nearly paralleled the bars depicting available solar energy with two notable exceptions. Less energy was collected in October than in September and less was collected in January than in February even though more solar energy was available in October and January. The reason apparently was the lower solar collector efficiency in October and January as compared with September and February, respectively. The seasonal low efficiencies are due to the lower sun angle and are characteristic of collector arrays oriented in a north-south direction.

The amount of collected thermal energy as a percentage of available direct radiation received during collector operation was 12% in January, 26% in March and 35% in May.

Electrical energy production for 12 months was 178,030 kWh. June production was the highest, 27,350 kWh or an average of 912 kWh per day. Electrical energy production typically was greater than 1000 kWh on a sunny, summer day. The peak daily output was over 1,300 kWh. In January, 5020 kWh of electricity was produced, while September production totals were 16,510 and 17,440 kWh.

Solar energy collection and electrical energy production generally have increased from year to year. Electrical energy production in 1980-81 was 162,020 kWh, about 10% less than in 1981-82. In 1980-81, production was about 10% higher than in 1979-80. This outcome was due to increased operating experience and equipment improvements. The principal equipment improvements were installation of new collector reflective surfaces and achievement of fully automated power conversion subsystem operation. The primary operational change was an adjustment in power conversion subsystem operating time which maximized direct linkage of collector field and power conversion subsystems and minimized use of thermal energy storage.

Note: Superior letters (a through h) on the monthly energy balance summaries (Tables 3-1 through 3-13) refer to the following definitions and assumptions used in the compilation of energy budget information:

- a. Direct normal radiation.
- b. Solar energy available during collector system operation.
- c. Data unavailable; estimate based on hours of operation and seasonal data.
- d. Data unavailable; estimate based on seasonal ratio and operating period.
- e. Data unavailable; estimate based on seasonal efficiency, operating time, and electrical energy production.
- f. Heating value of natural gas used to heat Caloria $^{\text{TM}}$.
- g. Collected solar energy plus natural gas heating. Boiler efficiency was assumed to be 70%.
- h. Measured periodically and apportioned equally to each day within a period.

Figure 3-1. Total available solar energy, solar energy received during collector subsystem operation and collected thermal energy for Sept. 1981 - Sept. 1982.

Figure 3-2. Gross and net electrical energy production by the solar power plant from Sept. 1981 through Sept. 1982. 13

1	OPER	ATING TIME,	Hr.		THERMAI	L ENERGY, kWh			ELECTRICAL EN	ERGY,kWh	
		,			SOLAR ENERGY						Irrig. ^h
Day	Solar Energy Avail.	Coll. System	Gen. System	Total ^a Direct	Avail. ^b During Operation	Collected	Naturalf Gas	Total9 Input	Generator Output	Plant Usage	Pump Energy Usage (kWh)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	$ \begin{array}{r} 10.6 \\ 10.6 \\ 8.9 \\ 10.1 \\ 5.0 \\ 8.0 \\ 10.1 \\ 10.2 \\ 10.1 \\ 7.0 \\ 10.1 \\ 9.2 \\ 9.9 \\ 10.0 \\ 9.0 \\ 9.0 \\ 10.0 \\ 9.9 \\ 9.8 \\ 9.0 \\ 1.5 \\ 4.5 \\ 9.7 \\ \end{array} $	10.6 10.6 8.9 10.1 5.0 9.0 10.1 10.2 10.1 7.0 10.1 9.2 9.9 10.0 9.0 9.0 9.0 9.0 10.0 9.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.1 1.1 7.0 10.1 1.1 7.0 10.1 1.1 7.0 10.1 1.1 7.0 10.1 1.1 7.0 10.1 1.1 7.0 9.0 9.0 1.0 1.1 7.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	$\begin{array}{c} 3.3\\ 3.2\\ 4.2\\ 4.1\\\\ 4.8\\ 4.4\\ 4.2\\ 5.0\\\\ 6.1\\\\ 5.6\\ 4.4\\ 3.7\\ 3.5\\ 3.7\\ 2.9\\ 2.5\\ 3.1\\\\\\ 5.8\end{array}$	17000c 17000c 13772c 16000c 2747c 12969c 16800c 16947 16606 15599 14176 11638 13896 6818c 2565 10094	16000d 16000d 13163d 15300d 2610d 12396d 16000d 16000d 16000d 17412 12000d 17412 12000d 15320 15320 16059 14785 13715 11249 13000d 0 1493d 2481 9530	4800e 4800e 3456e 4600e 3255e 4600e 4600e 2913e 5271 3500e 3905 4817 4256 4140 3870 3226 2699 3700e 0 392e 650 3173	2015	4800 4800 3456 4600 4600 4600 2913 5271 3500 3905 4817 4256 4140 3870 3226 2699 3700 0 392 650 4580	600 570 800 760 890 800 760 880 1010 830 710 620 700 490 430 600 1080	175 163 208 215 106 220 198 205 219 119 252 119 252 119 220 196 198 206 202 178 185 142 105 101 107 245	3109 3109 3109 3591 3591 3591 3591 3591 3591 3591 359
25 26 27 28 29 30	9.8 9.7 9.5 9.5 8.0 0.5	9.8 9.7 9.5 9.5 8.0 0	5.1 4.7 4.4 4.3 2.4	15954 18000 14342 16096 9853 196	15651 16981 14231 14898 8959 0	5068 5400 4432 4600e 2463 0	2013	4580 5068 5400 4432 4600 2463 0	980 900 710 740 380	245 200 209 206 230 160 62	
TUTAI	259.1	249.6	95.4	386,981	365,289	105,931	2015	107,341	17,440	5351	68,677

.

۲

٠

Table 3-1. Coolidge Solar Power Plant Monthly Energy Balance (September 1981)

۲.

÷.

	OPER	ATING TIME,	Hr.		THERMAI	ENERGY, kWh		•	ELECTRICAL EN	ERGY, kWh	
					SOLAR ENERGY						Irrig. ^h
Day	Solar Eneryy Avail.	Coll. System	Gen. System	Totala Direct	Avail.b During Operation	Collected	Natural ^f Gas	Tota19 Input	Generator Output	Plant Usage	Pump Energy Usage (kWh)
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ \end{array} $	6.0 7.0 9.3 9.2 9.2 9.1 9.0 8.8 8.9 8.9 8.5 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.5	6.0 7.0 9.3 9.2 9.1 9.0 8.9 9.0 8.8 8.5 8.8 8.5 8.5 8.8 8.5	$\begin{array}{c} \\ 2.6 \\ 3.9 \\ 4.2 \\ 5.1 \\ 3.7 \\ 3.2 \\ 3.9 \\ 3.7 \\ 3.2 \\ \\ 3.1 \\ \\ 5.9 \\ \\ 4.1 \\ 2.9 \\ 2.6 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.7 \\ \\ 1.0 \\ 2.2 \\ 2.7 \end{array}$	8223 8657 17920 18184 15513c 16399c 16630c 13250 17849 16577 10597 15518 11773 16939 8399 18158 18232 16899 17120 17413 11034 16630 14425 16722 16477 3293 3230 15710 12550c	7651 7812 16677 16755 15207d 14975d 14345d 16673 16270 15148 10339 15202 11445 15883 7631 16695 16693 15361 15468 15474 9733 14811 14334 13452 15550 15320 2937 3141 14569 11880d 12750d	1287 1204 4711 4886 4400e 4300e 4300e 3383 4188 3716 1182 3424 2125 3765 893 3452 3431 3051 3018 3003 1601 2553 2388 2386 3030 2890 91 253 2386 3030	1040	1287 1204 4711 4886 5128 4300 4000 3383 4188 3716 1182 3424 2125 3765 893 3452 3431 3051 3051 3051 3051 3051 3051 3051 2553 2386 3030 1890 91 253 2336 2250	370 370 770 810 910 720 590 730 670 540 1030 1030 550 550 550 550 550 550 550 550 560 350 350 350 350 450 400 130 390	$\begin{array}{c} 105\\ 137\\ 154\\ 136\\ 187\\ 173\\ 165\\ 189\\ 144\\ 152\\ 76\\ 146\\ 78\\ 186\\ 73\\ 142\\ 122\\ 120\\ 117\\ 127\\ 67\\ 137\\ 179\\ 69\\ 115\\ 136\\ 76\\ 100\\ 106\\ 114 \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TUTAL	249.6	249.6	75.7	439,910	406,081	91,428	1040	92,155	13,380	3,960	0

Table 3-2. Coolidge Solar Power Plant Monthly Energy Balance (October 1981)

.

•

د.

÷ •

/ L

	OPER.	ATING TIME,	Hr.		THERMA	L ENERGY, kWh			ELECTRICAL EN	ERGY,kWh	Inniah
Day	Solar Energy Avail.	Coll. System	Gen. System	Total ^a Direct	Avail. ^b During Operation	Collected	Naturalf Gas	Total9 Input	Generator Output	Plant Usage	Pump Energy Usage (kWh)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	$ \begin{array}{r} 8.5 \\ 8.5 \\ 8.5 \\ 7.0 \\ 7.0 \\ 6.1 \\ 6.6 \\ 8.2 \\ 8.2 \\ 8.0 \\ 8.1 \\ 5.8 \\ 4.5 \\ 7.5 \\ 8.2 \\ 1.0 \\ 8.5 \\ 4.5 \\ 8.2 \\ 1.0 \\ 8.5 \\ 4.5 \\ 8.2 \\ 1.0 \\ 8.5 \\ 4.5 \\ 8.2 \\ 1.0 \\ 8.5 \\ 4.5 \\ 8.2 \\ 1.0 \\ 8.5 \\ 4.5 \\ 8.2 \\ 1.0 \\ 8.5 \\ 4.5 \\ 8.2 \\ 1.0 \\ 8.5 \\ 4.5 \\ 8.2 \\ 1.0 \\ 8.5 \\ 4.5 \\ 8.2 \\ 1.0 \\ 8.5 \\ 4.5 \\ 8.2 \\ 1.0 \\ 8.5 \\ 8.2 \\ 8.0 \\ 8.0 \\ \end{array} $	8.5 8.5 8.5 7.0 7.0 6.1 6.6 8.2 8.0 8.1 5.8 4.5 7.5 8.2 8.2 8.2 8.1 5.8 4.5 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	2.0 1.2 4.2 2.0 2.0 1.5 1.6 1.6 1.6 0.8 1.4 1.4 1.4 2.5 1.5 1.5 1.8 2.7	13130c 13140c 12565 15888 13992c 15148 9656 6989 15943 16995 14493 15339 14135 8131 16060 15946 11766 15146 2915 15210 10100 1407 15467 15906	12645d 12655d 12484 13819 13719d 13213d 8929 6890 14726 15456 13485 14074 13054 7243 14649 14547 10541 13768 2111 13768 2111 13778 9323 0 13940 14350	2150e 2155e 2116 2236 1000e 1076 495 1731 2114 1685 1771 1638 503 1909 1782 1039 1630 77 1668 834 0 1734		2150 2150 2166 2236 1000 1076 495 1731 2114 1685 1771 1638 503 1909 1782 1039 1630 77 1668 834 0 1734	 360 230 710 300 290 220 240 220 60 170 250 530 190 150 220	95 144 67 73 81 89 200 63 109 80 160 99 108 92 104 128 65 135 65 102 NA NA NA	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 26 27 28 29 30	3.5 3.0 0 6.0 0 7.9	3.5 3.0 0 6.0 0 7.9	1.4 1.6	9115 7307 4500C 8141 5970 15805	8501 6459 0 6954 0 13910	536 544 0 566 0 2052	2250	2111 544 0 566 0 2052	200 200 200	91 62 76 53 43 82	0 0 0 0 0
TUTAL	188.5	188.5	31.2	356,304	316,183	37,917	2,250	37,011	4,650	2603	0

•

Table 3-3. Coolidge Solar Power Plant Monthly Energy Balance (November 1981)

• • • •

•

•

is is

	UPER	ATING TIME,	Hr.		THERMAI	ENERGY, kWh			ELECTRICAL EN	RGY,kWh	
					SOLAR ENERGY						Irrig. ^h
Day	Solar Energy Avail.	Coll. System	Gen. System	Totala Direct	Avail. ^b During Operation	Collected	Natural ^f Gas	Total9 Input	Generator Output	Plant Usage	Pump Energy Usage (kWh)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	7.88.07.92.53.07.37.77.67.64.00.55.56.57.57.57.07.66.07.57.04.87.57.66.07.57.66.07.57.61.57.6	$7.8 \\ 8.0 \\ 7.9 \\ 2.5 \\ 3.0 \\ 7.3 \\ 7.7 \\ 7.6 \\ 7.6 \\ 4.0 \\ 0.5 \\ \\ 5.5 \\ 6.5 \\ 7.5 \\ 7.0 \\ 7.6 \\ 6.0 \\ 7.5 \\ 7.0 \\ 4.8 \\ 7.5 \\ 7.6 \\ 6.0 \\ 7.5 \\ 7.6 \\ 6.0 \\ 7.5 \\ 7.6 \\ 1.5 \\ 4.5 \\ 4.5 \\ 1.5 \\ 4.5 \\ 1.5 $	2.0 1.9 1.8 1.2 1.5 1.5 1.5 1.7 2.7 1.7 1.1 2.7 1.1 2.7 1.1 2.5 1.2 1.4 	15710 16487 15566 2998 1595 15148 14538 15170 15555 9342 568 450c 11419 8197c 12000c 12054 11820 12792 8241 14175 12894 10788 12777c 15186 5079 8331 8090 13629 13682 4304 3673	14134 14529 13602 1819 1192 13447 12608 13426 13764 8218 275d 0 9828 3941d 11000d 11273 10798 11271 6972 12930 11544 9555 10782d 13824 4779 7949 7391 12730 12451 3337 2545	1892 2192 1774 67 70 1852 1666 1763 1680 714 0 0 788 709 ^e 1005 ^e 1137 893 965 475 1530 973 775 923 ^e 1627 252 473 486 1351 1300 107 140	4800	1892 2192 1774 67 70 1852 1666 1763 1680 714 0 0 788 4069 1005 1137 893 965 475 1530 973 775 923 1627 252 473 486 1351 1300 107 140	200 240 280 160 180 200 230 430 230 90 360 110 320 150 170 	$\begin{array}{c} 118\\ 121\\ 123\\ 42\\ 110\\ 103\\ 94\\ 115\\ 107\\ 66\\ 65\\ 78\\ 151\\ 116\\ 102\\ 74\\ 75\\ 88\\ 89\\ 104\\ 98\\ 73\\ 119\\ 59\\ 59\\ 70\\ 82\\ 88\\ 61\\ 66\end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TUTAL	. 195.1	195.1	2.6	322,258	281,914	29,579	4800	32,939	3350	2783	n

Table 3-4. Coolidge Solar Power Plant Monthly Energy Balance (December 1981)

•

ŧ.,•

د) ج ه

-

.

	OPER	ATING TIME,	Hr.		THERMAL	ENERGY, kWh			ELECTRICAL EN	RGY,kWh	
					SOLAR ENERGY					[Irrig. ^h
Uay	Solar Energy Avail.	Coll. System	Gen. System	Totala Direct	Avail.b During Operation	Collected	Naturalf Gas	Total9 Input	Generator Output	Plant Usage	Pump Energy Usage (kWh)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	$\begin{array}{c} 0\\ 4.0\\ 5.0\\ 5.0\\ 5.5\\ 2.0\\ 7.0\\ 7.0\\ 4.0\\ 4.0\\ 4.0\\ 7.1\\ 2.0\\ 7.6\\ 8.1\\ 8.1\\ 7.8\\ 6.0\\ 7.0\\ 0\\ 8.1\\ 2.0\\ 7.5\\ 8.1\\ 8.3\\ 8.3\\ 8.4\\ 0.5\\ 3.7\\ 8.4 \end{array}$	$\begin{array}{c} 0\\ 4.0\\ 3.0\\ 3.0\\ 5.5\\ 2.0\\ 7.0\\ 7.0\\ 4.0\\ 4.0\\ 4.0\\ 7.1\\ 2.0\\ 7.6\\ 8.1\\ 8.1\\ 8.1\\ 8.1\\ 8.1\\ 8.1\\ 8.3\\ 8.4\\ 0.5\\ 3.7\\ 8.4 \end{array}$	 2.4 2.2 2.7 1.7 2.7 1.9 1.7 2.7 1.9 1.7 2.4 2.4 1.7 2.7 1.9 1.7 2.4 2.7 1.9 1.7 2.4 1.7 2.7 1.9 1.7 2.4 2.7 1.9 1.7 2.4 2.7 1.9 1.7 2.4 2.2 2.7 1.9 1.7 2.4 2.2 2.7 1.9 1.7 2.2 2.4 2.7 1.9 1.7 2.2 2.4 2.7 1.9 1.7 2.4 2.4 2.7 1.9 1.7 2.4 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 	2000C 10829 12037 1200C 1713 12368 14099 5000C 4591 4347 1395 16693 13620 15739 14644 10491 12030 300C 16295 4705 15644C 16719C 15805C 15769C 15095C 3152C 9842C 16002C	0 4000d 4143 5000d 1499 11116 13150 2000d 2000d 4209 1300d 14668 12322 14156 13313 9977 11052 0 14612 2027 14780d 15594d 14737d 14812d 15594d 14737d 14812d 15085d 14253d 2875d 8987d	0 458 300e 326 500e 177 930 1254 200e 200e 149 100e 2157 985 1912 1894 1047 1388 0 2207 100 1921e 2066e 1988e 2035e 2109e 2028e 416e 1323e	5700 3340 1840 3800	458 300 326 500 4107 930 1254 200 200 149 100 2157 3323 1912 1894 1047 1388 2207 100 3209 2066 1988 2035 2109 2028 3076 1323	 400 230 220 470 300 230 230 250 350 350 720 530 320 320 320	8 82 80 81 81 92 75 134 43 44 77 93 94 137 125 111 89 103 51 105 57 137 86 87 107 136 83 97 66	906 906 906 906 906 906 906 906 906 906
31	6.0	6.0		10775 ^c	9637d	2255e 1466e		2255 1466	380	110 93	0 0
TUTAL	174.6	170.6	22.7	332,696	270,367	33,831	14,680	44,107	5020	2764	21,842

.

`

5 ,

•

Table 3-5. Coolidge Solar Power Plant Monthly Energy Balance (January 1982)

	OPER	ATING TIME,	Hr.		THERMA	L ENERGY, kWh			ELECTRICAL EN	ERGY,kWh	
					SOLAR ENERGY						Irrig. ^h
Day	Solar Energy Avaîl.	Coll. System	Gen. System	Total ^a Direct	Avail. ^b During Operation	Collected	Naturalf Gas	Total9 Input	Generator Output	Plant Usage	Pump Energy Usage (kWh)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	$ \begin{array}{c} 8.5 \\ 8.6 \\ 8.5 \\ 7.0 \\ 0 \\ 6.0 \\ 0.5 \\ 7.0 \\ 1.5 \\ 3.8 \\ 6.0 \\ 8.4 \\ 7.5 \\ 8.2 \\ 8.3 \\ 8.9 \\ 0.5 \\ 8.9 \\ 9.0 \\ 8.6 \\ 4.0 \\ 0 \\ 4.0 \\ 9.1 \\ 6.5 \\ 9.1 \\ \end{array} $	$\begin{array}{c} 8.5 \\ 8.6 \\ 8.5 \\ 7.0 \\ 5.0 \\ 0 \\ 6.0 \\ 0.5 \\ 7.0 \\ 1.5 \\ 3.8 \\ 6.0 \\ 8.4 \\ 7.5 \\ 8.2 \\ 8.3 \\ 8.9 \\ 0.5 \\ 8.9 \\ 9.0 \\ 8.0 \\ 8.0 \\ 8.6 \\ 4.0 \\ 0 \\ 9.1 \\ 6.5 \\ 9.1 \end{array}$	3.0 2.7 2.1 1.8 1.1 3.0 2.2 5.6 2.7 2.7 2.7 2.7 2.7 3.6 3.4 2.2 3.2 	16036C 16276C 15529C 14122C 11658C 5557C 11888C 2414C 13862C 6806C 7032C 12472C 14382C 1696C 1389C 11788C 13416C 2061C 13222C 15803 15594 14239 5897 64 5207 13460 11627 16362	14879d 15269d 14511d 13219d 10825d 0 d 10968d 1877d 12816d 6293d 6279d 11400d 13096d 10640d 11644d 10682d 11912d 1886d 14451 14132 13407 4000 0 4574 12359 10508 15066	2300e 2398e 2315e 2141e 1780e 0 e 1857e 322e 2233e 1112e 1125e 2071e 2411e 1985e 2201e 2045e 2310e 363e 2364e 3317 2938 2536 541 0 785 3423 2034 3862	4100 5640	2300 2398 2315 2141 1780 1857 322 5103 1112 1125 2071 2411 1085 2201 2045 2301 363 2364 3317 2938 2536 4489 785 3423 2034 3862	440 450 370 280 130 560 260 260 1020 450 480 380 620 680 330 580 	$ \begin{array}{r} 107 \\ 136 \\ 108 \\ 84 \\ 31 \\ 85 \\ 80 \\ 131 \\ 67 \\ 70 \\ 114 \\ 67 \\ 67 \\ 175 \\ 120 \\ 122 \\ 61 \\ 109 \\ 146 \\ 64 \\ 126 \\ 116 \\ 48 \\ 69 \\ 136 \\ 80 \\ 81 \\ \end{array} $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TUTAL	171.4	171.4	41.4	311,559	278,543	52,769	9,740	59,587	7,030	2,708	29,876

Table 3–6. Coolidge Solar Power Plant Monthly Energy Balance (February 1982)

۲ f

· ·

i 5 5 e

· ,

	OPER	ATING TIME,	Hr.		THERMA	L ENERGY, kWh			ELECTRICAL EN	ERGY,kWh	
[SOLAR ENERGY			, <u>un to po</u> a			Irrig.
Day	Solar Energy Avail.	Coll. System	Gen. System	Total ^a Direct	Avail. ^b During Operation	Collected	Natural ^f Gas	Total ^g Input	Generator Output	Plant Usage	Pump Energy Usage (kWh)
1	U	0	4.6	3894				. 0	870	155	220
2	6.5	6.5		5800	4619	579		579		77	3860
3	9.3	9.3	4.0	19620	16787	4371		4371	790	194	3860
4	9.0	9.0	3.3	18037	16309	4103		4103	640	174	3860
5	8.6	8.6	3.6	17724	16231	4349		4349	700	182	3860
6	9.5	9.5	4.5	17800 ^C	16300 ^d	4375e		4375	850	205	3860
7	9.0	9.0		17012	15164	3588		3588		61	3960
8	5.0	5.0	3.1	7286	5678	969		969	610	156	3860
9	7.0	7.0	2.4	13779	11907	2936		2936	450	150	3860
10	6.5	6.5	2.6	8336	7175	869	1850	2164	420	137	3860
11	0	0		137			1000	0	420	3/	3912
12	0	0		219				Ő		37	3812
13	3.0	3.0		4236	2896	138		138		73	3912
14	3.5	3.5		3854	2611	885		885		73	3812
15	3.5	3.5	0.6	1456	254	33		33	90	110	3812
16	5.5	5.5	1.5	11403	10211	1901		1901	230	110	3912
17	6.0	6.0	2.1	11148	8977	2137		2137	340	128	6002
18	1.0	1.0		3500	1000d	24		24		69	6992
19	6.0	6.0	2.0	13115	11126	2165		2165	310	138	6002
20	6.9	6.9		13605	12658	3750		3750	510	82	6002
21	10.0	10.0		18963	17190	4561		4561		95	6992
22	10.0	10.0	11.7	19592	18954	5877		5877	2320	402	6002
23	10.0	10.0	5.0	19537	18444	5615		5615	980	244	6992
24	8.5	8.5	2.5	12919	10922	2662		2662	430	148	3840
25	5.5	5.5	2.3	8042	6957	1677	640	2125	380	119	3840
26	1.0	1.0		1078	475	47	• • •	47		59	3840
27	10.3	10.3	4.4	19448	18005	5841		5841	890	235	3840
28	5.5	5.5		9326	6829	1429		1429		75	3840
29	9.5	9.5	6.7	18853	17838	5398		5398	1170	264	3840
30	10.0	7.5	3.9	17796	16684	3812		3812	710	109	3840
31	8.7	8.2	4.0	16448	14814	4966		4966	770	275	3840
TUTAL	194.8	191.8	74.9	353,963	305,376	79,057	2490	80,800	13,950	4,389	137.40

. .

. .

Table 3-7. Coolidge Solar Power Plant Monthly Energy Balance (March 1982)

°.

:

	OPERATING TIME, Hr.			THERMAL ENERGY, KWh					ELECTRICAL ENERGY, kWh		
					SOLAR ENERGY						Irrig. ^h
Uay	Solar Energy Avail.	Coll. System	Gen. System	Totala Direct	Avail.b During Operation	Collected	Naturalf Gas	Total ^g Input	Generator Output	Plant Usage	Pump Energy Usage (kWh)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	$\begin{array}{c} 8.8\\ 10.2\\ 8.0\\ 10.3\\ 8.5\\ 0.8\\ 10.0\\ 8.5\\ 0.7\\ 10.0\\ 9.5\\ 5.0\\ 4.5\\ 10.1\\ 8.0\\ 10.6\\ 11.2\\ 11.0\\ 10.5\\ 11.0\\ 11.$	4.5 10.2 8.0 10.3 8.5 0.8 10.0 8.5 0.7 10.0 9.5 5.0 4.5 10.1 8.0 10.2 10.6 11.2 11.0 10.5 11.0 11.0 11.0 11.0 11.0	$\begin{array}{c} 3.3\\ 6.3\\ 2.7\\\\ 9.5\\ 1.3\\ 5.3\\ 4.4\\\\ 3.8\\ 3.3\\ 1.5\\\\ 6.4\\ 5.2\\ 4.8\\ 5.1\\\\ 8.7\\ 5.1\\ 5.5\\ 4.1\\ 4.8\\ 4.7\\ \end{array}$	16032 19152 9899 20653 15288 1553 17997 16328 1602 17406 11349 8976 11529 17462 16631 18557 19335 20305 15743 20656 20437 18708 19034 19193	10473 17586 9180 18831 13616 314 16915 14555 148 15852 10075 6881 9942 16127 15357 18285 18136 19121 13953 18854 18840 17587 17840 17737	3071 6844 2865 6335 4446 17 5816 4794 10 5093 2732 1649 2536 5027 4867 5476 5938 6024 4178 5829 5330 5182 5375 527	3110	3071 6844 2865 6335 6623 17 5816 4794 10 5093 2732 1649 2536 5027 4867 5476 5938 6024 4178 5829 5330 5182 5375	460 1150 460 1900 200 1020 850 690 560 260 1160 940 930 980 1720 960 940 800 880	124 210 95 88 262 125 147 154 88 82 233 123 69 182 171 175 172 87 248 200 163 190 142	3768 3768 687 687 687 687 687 687 687 687 687
25 26 27 28 29 30	11.0 10.0 9.8 10.1 8.0 11.0	$ \begin{array}{c} 11.0\\ 10.0\\ 9.8\\ 10.1\\ 8.0\\ 11.0 \end{array} $	4.7 2.3 3.8 4.6 3.5 4.5	19193 17746 14348 14799 17646 14446 19739	17737 16372 11964 13633 16258 13171 18541	5277 5132 3090 3739 4865 3357 5284		5277 5132 3090 3739 4865 3357 5284	890 890 410 700 820 580 830	129 129 212 108 196 133 191	1042 1042 2185 2185 2185 2185 2185
TUTAL	270.1	265.8	119.2	472,549	426,144	130,178	3110	132,355	21,980	4,628	49,318

Table 3-8. Coolidge Solar Power Plant Monthly Energy Balance (April 1982)

č ,*

	UPERATING TIME, Hr.		THERMAL ENERGY, KWh					ELECTRICAL EN			
					SOLAR ENERGY			[Irrig. ^h
Day	Solar Energy Avail.	Coll. System	Gen. System	Totala Direct	Avail.b During Operation	Collected	Natural ^f Gas	Total9 Input	Generator Output	Plant Usage	Pump Energy Usage (kWh)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	3.0 9.9 8.4 5.0 3.5 11.2 11.2 11.2 11.2 11.2 9.0 10.0 9.2 11.2 11.2 11.2 11.3 11.5 11.5 11.0 11.6 12.0 11.8 11.7 11.8 11.9 12.0 11.6	3.0 9.9 8.4 5.0 3.5 11.2 11.2 11.2 11.2 9.0 10.0 9.2 11.2 11.2 11.3 11.5 11.5 11.5 11.6 12.0 11.8 11.7 11.8 11.7 11.8 11.9 12.0 11.6	$\begin{array}{c} \\ 4.2 \\ 4.2 \\ 2.3 \\ \\ 7.7 \\ 6.5 \\ 5.0 \\ 4.2 \\ 4.4 \\ 5.2 \\ 3.7 \\ 5.7 \\ 4.3 \\ 4.9 \\ 5.1 \\ 4.9 \\ 6.4 \\ 6.7 \\ 5.8 \\ 6.8 \\ 6.8 \\ 6.8 \\ 6.1 \\ 6.1 \\ 4.4 \end{array}$	5375 10500C 14300C 5572 4705 21900C 22500C 17400C 10700C 12600C 17400C 17307 15175 13284 16591 16585 16017 20321 21932 19337 21438 21718 19920 20278 15501	3848 10000c 13600d 4415 3300 20800d 21400d 16500d 10200d 16500d 16500d 16800d 16447 14357 12077 15772 15735 14927 19164 20848 18402 20795 20915 18886 19403 14217	340 3459 4773 1642 1000 7248 7457 5788 3640 4174 5778 3854 5888 5536 4824 5706 5562 5250e 6821 7572 6567 7520 7469 6801 6852 4263	634 1037	340 3459 4773 1642 1000 7248 7457 5788 3640 4174 5778 4298 5588 5536 4824 5706 5562 5976 6821 7572 6567 7520 7469 6801 6852 4263	770 760 360 1480 1280 950 780 800 980 710 1080 900 820 950 900 1220 1310 1150 1310 1310 1300 1160 810	92 181 150 113 88 190 196 146 196 192 174 172 153 151 157 228 191 208 188 203 203 225 230 225 230 225 202 199	2186 2186 2186 2186 2186 2186 2186 2186
27 28 29 30 31	11.4 11.3 11.5 11.5 11.5	11.4 11.3 11.5 6.5	4.1 2.1 2.5 	13300 13000 ^C 21452 22115 22843	12100 12000d 20590 21127 0	4800 4200e 7154 5651 0		4203 4800 4200 7154 5651 0	750 420 460 	152 191 109 165 49	0 0 0 0 0
TUTAL	321.1	304.6	134.8	502,466	451,125	157,659	1671	158,759	25,520	5,320	31,956

· ·

.

، ،

Table 3-9. Coolidge Solar Power Plant Monthly Energy Balance (May 1982)

· · ·

	OPER	ATING TIME,	Hr.	THERMAL ENERGY, KWh					ELECTRICAL EN		
					SOLAR ENERGY						Irrig. ^h
Day	Solar Energy Avail.	Coll. System	Gen. System	Totala Direct	Avail. ^b During Operation	Collected	Naturalf Gas	Total ^g Input	Generator Output	Plant Usage	Pump Energy Usage (kWh)
1 2	11.8 12.1	2.9 12.1	6.3 6.0	23800 20815	4900 19772	1062 6280		1062	1170	209	399
3	12.0 7.0	12.0 7.0	5.3 3.5	19835 16483	18823 15399	5818 4266		5818	1030	183	399
6	7.5 11.9	7.5	3.1 2.5	12834 14455	11823 12838	3349 2911		3349	540 430	130	399 399
8	11.9 12.0	11.9	4.6	18130 21106	17095 20124	5671 7117		5671	820 1140	172	399 3290
10	12.1	12.1	5.3	20429 20369	19536 19531	6630 6722		6630 6722	1180 980	211 198	3290 3290
12 13	12.1	12.1	6.6	20005	19539	6/41 6537		6741 6537	980 1160	208 222	3290 3290
14 15	12.1 12.0	12.1 12.0	5.9 3.5	19307 17249	18471 16442	6019 4736		6019 6736	870	189 246	3290
16 17	8.0 9.9	8.0 9.9	3.2	16350 17652	14768 15525	3458 4537		3458 4537	540	146	2884 2884
18 19 20	11.2	11.2	5.3	20413 19011	18765 16526	6048 5475		6048 5475	990 930	214 195	2884
20 21 22	4.5	4.5	0.1 2.5 6.2	19922 10808	18733 7778	6467 971	1555	6467 2059	1080 410	237 145	2884 2884
23 24	11.7 11.7	11.7	6.2 5.9	20816	19544 19626 18909	6852 6533		6651	1180 1180	249 255	2884 946
25 26	$11.8 \\ 11.8$	11.8 11.8	5.3	20800¢ 21352	19500d 20110	6350e 6269		6350 6269	1020	258 206 210	946 946
27 28	11.8 11.0	11.8	6.5 5.4	21098 19660	20139 18538	6815 6145		6815 6145	1160	219	946 946
29 30	6.U 8.0	6.0 8.0	2.9 3.2	13466 16369	12177 15531	3386 3673		3386 3673	550 550	196 172	4916 4916
TUTAL	322.4	313.5	149.1	565,035	509,886	160,075	1,555	161,163	27,350	5,973	64,809

Table 3-10. Coolidge Solar Power Plant Monthly Energy Balance (June 1982)

• ×

•

. .

/ <u>;</u>

· ,

	OPERATING TIME, Hr.			THERMAL ENERGY, KWH					ELECTRICAL ENERGY, kWh		
					SOLAR ENERGY						Irrig. ^h
Day	Solar Energy Avail.	Coll. System	Gen. System	Total ^a Direct	Avail. ^b During Operation	Collected	Naturalf Gas	Total ^g Input	Generator Output	Plant Usage	Pump Energy Usage (kWh)
1	11.6	11.6	4.8	19014	17695	5480		5480	890	254	4916
2	11.6	11.6	5.3	18553	17558	5705		5705	960	251	4916
3	11.7	11.7	5.1	19064	17933	5765		5765	960	226	4915
4	11.7] 11.7	3.3	12892	11586	3312		3312	590	192	4916
5	8.0	8.0	2.1	17934	16640	3221		3221	370	155	4916
6			3.2	1384			4550	3185	530	125	1593
7	6.5	6.5	2.7	11624	9951	2712		2712	500	141	1593
8	11.7	11.7	7.2	21580	20242	8228		8228	1430	295	1593
9	11.7	11.7	7.4	21382	19941	8215		8215	1420	292	1593
10	11.9	11.9	6.9	21928	20682	8489		8489	1200	285	1593
111	11.9	11.9	7.5	21341	20110	8019		8019	1440	284	1593
12	11.8	11.8	6.8	16500 ^c	15500 ^d	6000e		6000	1350	312	1593
13	11.8	10.8	6.1	16500 ^C	15500 ^d	5500e		5500	1160	289	1593
14	11.8	11.8	6.0	18504	17735	6910		6910	1120	294	3171
115	/.5	7.5	2.4	11299	9522	2577		2577	400	171	3171
110	/.0	/.0	0.1	15110	12614	4506		4506		125	3171
	6.5			3567						57	3171
118	/.0			5378						57	3171
119	9.5	3.9		15760	5321	1612		1612		82	3171
120	5.6	5.4	5.0	8980	8270	2607		2607	980	180	3171
21	11.0	11.0	5.2	13610	12576	4466		4466	960	254	3171
122	11.8	11.8	5.0	16336	15497	5878		5878	950	257	3171
23	11.9	11.9	3.1	15870	14826	5571		5571	580	205	3171
24	9.8	9.8	4.3	14800	13750a	4900e		4900	810	214	3171
25	1.5	1.5	3.6	13/64	13288	4567		4567	650	141	3171
26	6.4	6.4	1./	9642	8842	3234		3234	340	141	3171
27	11.0	11.0	1.0	17985	16935	6739		6739	1330	284	3171
20	10.5	10.5	4.5	15643	139/1	4999		4999	850	236	3171
29	3.5	3.5		55/8	3646	494		494		70	3171
21		0.0	2.8	10029	9610	3114		3114	430	153	3245
31	5.0	5.0	2.3	3962	3660	1360		1360	360	135	3245
ΤΟΤΑΙ	281.2	260.9	121.4	435,513	382,901	134,180	4550	137,365	22,560	6,200	94,568

.

.

Table 3-11. Coolidge Solar Power Plant Monthly Energy Balance (July 1982)

ب ۲

•

,

1 ·

	OPER	OPERATING TIME, Hr.			THERMA	ENERGY, kWh			ELECTRICAL EN	ERGY,kWh	
					SOLAR ENERGY		•				Irrig. [†]
Day	Solar Energy Avail.	Coll. System	Gen. System	Total ^a Direct	Avail. ^b During Operation	Collected	Natural ^f Gas	Total ^g Input	Generator Output	Plant Usage	Pump Energy Usage (kWh)
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ \end{array} $	$\begin{array}{c} 4.5\\ 2.0\\ 10.4\\ 10.9\\ 2.5\\ 6.6\\ 10.7\\ 9.7\\ 11.2\\ 9.5\\ 7.0\\ 4.0\\ 10.0\\ 11.7\\ 5.6\\ 9.0\\ 8.0\\ 6.0\\ 10.0\\ 9.5\\ 7.0\\ 9.0\\ 5.0\\ 4.0\\ 11.1\\ 9.7\\ 9.0\\ 8.0\\ 9.5\\ 7.5\\ 9.8 \end{array}$	$\begin{array}{c} 4.5\\ 2.0\\ 10.4\\ 10.9\\ 2.5\\ 6.6\\ 10.7\\ 5.1\\ 11.2\\ 9.5\\ 7.0\\ 4.0\\ 10.0\\ 11.7\\ 5.6\\ 9.0\\ 8.0\\ 6.0\\ 10.0\\ 9.5\\ 7.0\\ 9.0\\ 5.0\\ 4.0\\ 11.1\\ 9.7\\ 9.0\\ 8.0\\ 9.5\\ 7.5\\ 9.8\end{array}$	$\begin{array}{c} 2.1 \\ \\ 5.0 \\ 4.9 \\ \\ 1.8 \\ 4.1 \\ \\ 5.5 \\ 3.7 \\ 2.4 \\ 1.3 \\ 3.7 \\ 4.8 \\ 2.2 \\ 4.2 \\ 3.6 \\ 2.3 \\ 4.1 \\ 4.0 \\ 2.8 \\ 2.9 \\ 2.3 \\ 1.7 \\ 4.7 \\ 4.0 \\ 4.5 \\ 2.4 \\ 3.0 \\ 2.6 \\ 4.4 \end{array}$	11004 7159 17769 18174 7576 6177 16856 8406 12661 13603 10446 4904 13335 16309 8225 16682 12658 10993 14879 13127 4079 12745 10076 8642 16682 14744 15314 10152 12648 11514 16511	9704 6232 17153 17508 3964 5075 15985 9500d 12215 12724 10094 3798 12647 15467 7594 15649 11283 8818 13641 12164 3774 11759 9593 7291 15740 13615 14226 8608 10785 10099 15776	2108 895 5360 5518 570 1122 4897 2600e 4054 3576 2774 598 3865 5432 2536 5056 3608 2380 4421 3900e 1327 3409 2666 2033 5285 4506 4939 2676 3211 2657 5195	1150	2108 895 5360 5518 570 1122 4897 2600 4054 3576 2774 1403 3865 5432 2536 5056 3608 2380 4421 3900 1327 3409 2666 2033 5285 4506 4939 2676 3211 2657 5195	310 850 870 220 740 970 650 420 190 670 870 390 790 620 400 730 730 730 730 730 730 730 7	130 180 220 230 220 130 260 210 130 220 130 260 110 220 130 200 180 200 190 180 200 230 230 230 230 230 230 210 180 200 210 130 200 210 130 200 210 190 190 190 160 200	3254 3254 3254 3254 2494 2494 2494 2494 2494 1664 1664 1664 1664 1664 1664 1664 1
τυται	_ 248.4	243.8	95.0	364,050	342,481	103,174	1,150	103,979	16,730	6,010	82, <u>?</u> 07

٠

Table 3-12. Coolidge Solar Power Plant Monthly Energy Balance (August 1982)

· 、

.* .*

	OPERATING TIME, Hr.				L ENERGY, kWh		<u></u>	ELECTRICAL ENERGY, KWh			
					SOLAR ENERGY	······································					Irrig. ^h Pump
Day	Solar Energy Avail.	Coll. System	Gen. System	Total ^a Direct	Avail. ^b During Operation	Collected	Naturalf Gas	Total ^g Input	Generator Output	Plant Usage	Energy Usage (kWh)
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	$ \begin{array}{c} 10.8\\ 6.1\\ 9.8\\ 8.8\\ 10.9\\ 5.1\\ 2.0\\ 12.0\\ 1.5\\ 5.0\\ 10.5\\ 10.1\\ 10.1\\ 10.1\\ 10.1\\ 10.1\\ 10.0\\ 10.0\\ 10.0\\ 9.9\\ 9.9\\ 9.9\\ \end{array} $	10.8 6.1 9.8 8.8 10.9 5.1 2.0 12.0 1.5 5.0 10.5 10.1 10.1 10.1 10.1 10.1	4.2 2.7 3.4 3.4 3.8 1.0 2.3 4.3 1.8 4.5 4.3 4.7 4.7 2.3 4.7 4.7 2.3 7 4.1 3.7 4.1 3.8 3.7	16642 12063 15253 13899 15896 9120 5030 16205 3148 5127 16984 16646 17471 18080 9000c 727 17070 17438 17421 16545 16320	15654 11005 14426 12400 15207 8420 4397 15326 2357 4473 15934 15875 16728 17282 8000d 0 16215 16110 16366 15336 15204	4948 2849 4081 3593 4412 1938 635 4351 264 1488 5441 4697 5215 5067 2335 ^e 0 4476 4670 4738 4294 4382	2880	4829 4948 2849 4081 3593 4412 1938 2651 4351 264 1488 5441 4697 5215 5067 2235 0 4476 4670 4738 4294 4382	300 760 490 580 580 690 170 390 780 260 810 790 890 380 650 760 670	220 190 220 210 210 210 160 180 140 150 100 210 210 210 210 210 210 180 210 180 210 180 210 210 150 230 230 210 210 210 210 210 210 210 21	3420 3420 3420 3420 3420 2086 2086 2086 2086 2086 2086 2086 20
23 24 25 26 27 28 29 30	9.4 10.0 8.2 9.8 3.0 9.8 9.3 9.3 9.8	9.4 10.0 8.2 9.8 3.0 9.8 9.3 9.3 9.8	3.7 3.5 2.2 3.7 2.9 2.6 2.7	16000C 15803 12147 16293 10233 15207 16027 14303	15000d 14806 11076 15230 8763 14184 14678 13144	4000e 3957 2497 3732 712 3469 3496 2941		4000 3957 2497 3732 712 3469 3496 2941	660 660 340 610 540 460 470	150 210 180 190 140 160 190 140	833 833 0 0 0 0 0 0
TUTAL	249.6	249.6	92.5	408,568	378,885	103,407	2880	105,423	16,510	5390	52,798

, *'*

۰.

'.

• '

Table 3–13. Coolidge Solar Power Plant Monthly Energy Balance (September 1982)

х г х 1 4. Solar Collector Subsystem 1981 Autumnal Equinox Performance

Solar collector subsystem efficiency was determined for operation on September 25, 26 and 28, 1981 (Days 268, 269 and 271). The first two days were mostly clear and collector subsystem outlet oil temperature was maintained at about 282°C. On September 28, the test was conducted with an outlet oil temperature of about 262°C. However, the 28th was hazy and partly cloudy and the results reflect the poorer test conditions. The collector subsystem efficiency ranged from 28 to 39 percent on the 25th, 30-37 percent on the 26th and 23-38 percent on the 27th. The average collection efficiency was about 32 percent on September 25, 33 percent on September 26 and 31 percent on September 27.

Collector subsystem parasitic electrical energy usage was recorded during startup, the period from collector focusing until flow is diverted to the tank. About 1.0 kWh was used for Caloria pumping; another 1.3 kWh was required for tracking and other controls.

Methods

• •

Collectors were washed with high pressure, deionized water on September 21 by a commercial firm.

Collectors were focused when insolation reached 300 W/m^2 . Caloria was recirculated through the collector subsystem until an outlet oil temperature of 215° C was attained. Flow then was directed to the storage tank or vaporizer from that time onward until operation was terminated for the day. During operation, Caloria was cir-

culated through the collector subsystem at a flow rate controlled to maintain the desired, constant outlet temperature.

Collector flow rate was measured with a vortex shedding type instrument, oil temperatures were sensed with RTD's and insolation was measured with a pyrheliometer. Data was digitized and recorded at two minute intervals on magnetic tape.

Collector subsystem efficiency was computed as the thermal energy gained by Caloria during passage from subsystem inlet to outlet manifold locations divided by the total direct normal solar radiation impinging on collector reflective surfaces. Average efficiency was determined for the operating period only.

September 25 (Day 268) Results

Energy was collected at a rate of 550-650 kW, Table 4-1. Collector subsystem efficiency ranged from 28 to 39 percent during the test. The efficiency averaged about 32 percent for the entire day. However, an early morning data gap caused this computation to be only an estimate.

September 25 was mostly clear with peak insolation measured to be 890 W/m^2 . Caloria inlet and outlet temperatures were $196-200^{\circ}$ C and $280-284^{\circ}$ C respectively. The flow rate ranged from 2.9-4.1 liters per second. Just after noon, the flow rate, and associated collector energy production and efficiency, dipped as the power conversion subsystem began operation.

28

.
September 26 (Day 269) Results

September 26 was a clear, sunny day with peak insolation of 900 W/m². Collector performance again was evaluated with an outlet manifold Caloria temperature of 278-282°C. The inlet oil temperature was 195-200°C. Caloria flow rate ranged from 3.0 to 3.8 l/s to maintain the desired outlet temperature throughout operation.

Thermal energy was collected at a rate of 580-650 kW and the collector subsystem efficiency was 30-37 percent during the test. Collector efficiency averaged about 33 percent over the day.

September 28 (Day 271) Results

An attempt to determine collector performance with Caloria outlet temperature maintained at only 260-262°C was made on September 28. However, haze and partial cloudiness interfered with evaluation. Energy was collected at a highly variable rate of 350-600 kW. Collector efficiency was only 23-38 percent. Results plotted for Day 271 to indicate subsystem response to varying insolation levels.

Parasitic Electrical Energy Use

Electrical energy use by collector subsystem pump and tracking systems was recorded for the start-up period. Start-up lasts from collector focusing until Caloria flow is diverted to storage. Caloria is recirculated through the collector subsystem during warm-up prior to diversion. Electrical energy usage was determined

by the difference between operator meter readings taken just before start-up of the collector subsystem and immediately after opening of the flow diversion valve.

The Caloria pump required 0.9-1.1 kWh during the start-up period. Collector subsystem controls and trackers required 1.1-1.5 kWh.

Comments

Collector subsystem efficiency was 28-39 percent during clear day operation with outlet Caloria temperature maintained at about 282°C. Average efficiencies for September 25 and 26 operation were 32 to 33 percent. These values were perhaps 2 percent higher than obtained in tests a year earlier when collectors had Coilzak reflective surfaces instead of the present FEK-244 aluminized acrylic surfaces. However, differences in environmental conditions prevent direct comparison of 1981 results with those obtained in 1980.

	Sept. 25 (268)	Sept. 26 (270)	Sept. 27 (271)
Event Times, MST		· · · · · · · · · · · · · · · · · · ·	
Collectors Focused	7:31 AM	7:32 AM	7:34 AM
Flow Diversion	7:55 AM	7:56 AM	8:04 AM
Collectors Defocused	5:57 PM	5:35 PM	5:35 PM
Collector Parameters			
Inlet Temp., °C	196-200	195-200	194-200
Outlet Temp., °C	280-284	278-282	260-262
Flow Rate, 1/s	2.9-4.1	3.0-3.8	2.3-4.7
Environmental Conditions			
Peak Insolation, W/m ²	890	900	820
Ambient Temp., °C	30-34		
Wind Speed, Km/h	4-10		
Performance			
Power, KW	550 -6 50	580-650	350-600
Efficiency Range, %	28-39	30-37	23-38
Avg. Efficiency, %	32	33	31

Table 4-1. Collector subsystem test information.

Table 4-2. Parasitic electrical energy use during collector subsystem start-up.

Date	Start-up Period, MST	Collector Field Caloria Pump, kWh	Collector Tracking and Control System, kWh	Total kWh
9/25	7:31-7:55 AM	0.9	1.5	2.4
9/26	7:32-7:56 AM	1.1	1.1	2.2
9/27	7:35-7:57 AM	0.9	1.5	2.4
9/28	7:34-8:00 AM	0.9	1.2	2.1
9/29	7:35-8:06 AM	1.0	1.4	2.4

Figure 4-1. Autumnal Equinox, Insolation vs Hour

Figure 4-2. Autumnal Equinox, Efficiency vs Hour

Figure 4-3. Autumnal Equinox, Collected Power vs Hour

•

.

Figure 4-4. Autumnal Equinox, Inlet and Outlet Temperatures vs Hour

Figure 4-5. Autumnal Equinox, Flow Pate vs Hour

5. Solar Collector Subsystem 1981 Winter Solstice Performance

Solar collector subsystem output and efficiency were computed for operation on December 24, 1981 (Day 358). Collectors had been pressure washed with soft water a few days prior to the test. On December 24, collectors were focused when insolation reached 300 W/m^2 . Collector flow rate was set to obtain a collector subsystem fluid outlet temperature of 265°C, with the minimum flow rate set at about 1.5 l/s.

Collector subsystem efficiency was computed as the thermal energy gained by Caloria during passage from subsystem inlet to outlet manifold locations divided by the total direct normal solar radiation impinging on collector reflective surfaces. Average efficiency was computed over the entire operating period.

Results

December 24 was a clear day with peak insolation recorded to be 920 W/m^2 . The morning low temperature was near freezing; mid-afternoon temperatures were 16-17°C. There were light afternoon winds of 3-8 km/h.

The outlet temperature did not remain constant, ranging from about 262°C at 10:00 AM to only 238°C at noon to 267°C at 3:00 PM. Collector inlet fluid temperature also varied, from 178°C at 10:00 AM to 184°C at noon to 191°C at 3:00 PM. The flow rate remained at or just above the minimum allowable flow rate quantity throughout the day.

The collector subsystem supplied about 160 kW of thermal energy at mid-day; up to 290 or more kW during mid-morning and mid-afternoon operation. Collection efficiency was about 8 percent at noon, 13-20 percent near 10:00 AM and 17-19 percent near 4:00 PM. Collector efficiency averaged 11.4 percent for the total operational period.

Comments

Collector subsystem performance on December 24, 1981 was substantially better than during a comparable evaluation on December 21-24, 1980. Differences in operating procedures and environmental conditions prevent direct quantifiable comparison of test results among the various test days. However, output was some 60 kW higher and efficiency was about 3-4 percent higher during the 1981 operating day.

It is believed that replacement of Coilzak reflective surfaces with FEK-244 aluminized acrylic reflective collector surfaces was responsible for the bulk of the apparent improvement. Aluminum reflective spill shields, newly installed at the north end of collector groups, also appeared to reflect some sunlight back toward receivers.

Table 5-1 Performance Summary

Event Times, MST	
Collectors Focused	8:34 AM
Flow Diversion	9:18 AM
Generator Start-up	1:47 PM
Collectors Defocused	4:22 PM
Collector Parameters	
Inlet Oil Temp., °C	178-193
Outlet Temp., °C	238-271
Flow Rate, 1/s	1.50-1.65
Environmental Conditions	
Description	Clear
Peak Insolation, W/m ²	920
Ambient Temp., °C	0-17
Wind Speed, km/h	3-8
Performance	
Power, kW	160-290
Efficiency Range, %	8.0-19.0
Avg. Efficiency, %	11.4
Electrical Energy Produced, kWh	320

Figure 5-1. Winter Solstice, Insolation vs Hour

Figure 5-3. Winter Solstice, Collected Power vs Hour

e e e

Figure 5-2. Winter Solstice, Efficiency vs Hour

Figure 5-4. Winter Solstice, Inlet and Outlet Temperatures vs Hour

Figure 5-5. Winter Solstice, Flow Rate vs Hour

Figure 5-6. Winter Solstice, Wind Speed and Ambient Temperature vs Hour

6. Solar Collector Subsystem 1982 Vernal Equinox Performance

Solar collector subsystem performance was evaluated on 22, 23, and 27 March 1982 to determine collection efficiency during the period near vernal equinox. The average daily collection efficiency was about 31 percent on 22 and 23 March when the subsystem outlet oil temperature was maintained at about 282°C (540°F). With an outlet temperature of 275°C (525°F) on 24 March, daily collection efficiency was 32.5 percent.

Methods

٩

Collector reflective surfaces and receiver tubes were washed by rainfall on 2, 3, and 18 March.

During tests, Caloria flow rate through the collector tubes was controlled to maintain the desired collector subsystem outlet temperature. Inlet oil temperature during operation was about 190°C ($374^{\circ}F$). Outlet temperature was 275°C ($525^{\circ}F$) on one test day; 282°C ($540^{\circ}F$) on the other days.

Collector subsystem flow rates were measured with a vortex shedding type device, temperatures with RTD and thermocouple sensors, and insolation with a pyrheliometer. Data were recorded in digital form on magnetic tape at 2-minute intervals.

Collector system efficiency was computed as thermal energy gained by Caloria in passing from inlet to outlet manifold divided by total direct normal solar radiation incident on the reflector surfaces during collector operation.

22 March Results

Solar collector subsystem efficiency was 33 to 37 percent in midmorning and afternoon. Midday efficiency was about 31 percent. The average collection efficiency during operation was 31.3% on 22 March.

The subsystem collected energy at a rate of 650-710 kW_t. The test day was clear with peak insolation of 980 W/m². There was little wind during the test period. Collector inlet oil temperature was 192°C (378°F); outlet temperature was maintained at about 282°C (540°F). Caloria flow rate ranged from 3.6 to 3.8 l/s (57.0 to 60.2 gal/min) during the test.

23 March Results

On March 23, outlet oil temperature from the collector subsystem again was maintained at 280-283°C (536-541°F). Inlet oil temperature was 188-197°C (370-387°F). The flow rate varied considerably, from 2.5 to 3.7 l/s (39.6 to 58.6 gal/min), to maintain the desired outlet oil temperature.

23 March was a hazy day with peak insolation of 970 W/m^2 . Low wind speeds and ambient temperatures of 10°C to 24°C (50 - 75°F) were experienced.

Solar subsystem energy collection efficiency was about 30 percent at noon; 36 percent at 9 AM and 4 PM. All-day solar collector subsystem efficiency was 30.8 percent. Energy production ranged from 400 to 700 kW_t, apparently due to solar energy variability.

Collector field outlet temperature was maintained somewhat lower on 27 March, from 273 to 278°C (523-532°F). Inlet oil temperature ranged from 191 to 200°C (376-392°F). The Caloria flow rate therefore was somewhat higher than during the previous tests at 3.8-4.3 1/s (60.2 to 68.1 gal/min).

On March 27, collector subsystem efficiency was up to 39 percent during midmorning and mid-afternoon, averaging 32.5 percent for the whole day. For much of the day, energy production was $660-740 \text{ kW}_{t}$. However, occasional cloudiness resulted in varying efficiency and energy production.

Comments

Comparable collector subsystem performance evaluations were conducted in autumn and spring of 1980 and 1981. The earlier tests evaluated performance with CoilzakTM reflective surfaces. Tests since May 1981 have measured performance of the collector subsystem after replacement of CoilzakTM with FEK-244 aluminized acrylic film reflective surfaces.

The all day average collector efficiency on April 3, 1980 was found to be 30.1 percent. On September 24, 1980, the all day efficiency was 31.4 percent. The average collector efficiency on March 22, 1981 was only 26.8 percent. With FEK-244 reflective surfaces, the September 24, 1981 collector subsystem efficiency averaged about 33 percent. Spring 1982 tests resulted in efficiencies of 30.8-32.5 percent.

Since test days were not identical, performance is not directly comparable. However, it appears that collectors having FEK-244 reflective surfaces performed somewhat better than collectors with new Coilzak reflectors. Performance of collectors having older Coilzak reflective surfaces was substantially lower than obtained with either new Coilzak reflectors or with FEK-244 reflective collector surfaces.

Date (Julian Date			te)
Event	81	82	86
	3/22	3/23	3/27
Sunrise	6:25	6:23	6:21
Sufficient Insolation	7:35	7:34	7:30
Collectors Focused	7:35	7:34	7:30
Flow Diversion	8:15	8:11	8:21
Turbine Start-up	8:25	1:02	1:45
Insufficient Insolation	5:37	5:34	5:49
Collectors Defocused	6:04	6:04	6:39
Sunset	6:37	6:38	6:39

Table 6-1 Collector Subsystem Test Events, MST

Table 6-2 Collector Subsystem Test Information

.

Event	Date			
Lvent	3/22	3/23	3/27	
<u>Collector Parameters</u>			· · · · · · · · · · · · · · · · · · ·	
Inlet Temp. (°C) Outlet Temp. (°C) Flow rate (l/s)	192 282 3.6-3.8	188-197 280-283 2.5-3.7	191-200 273-278 3.8-4.3	
Environmental Conditions			İ	
Description Ambient Temp. (°C) Wind Speed (km/h)	Clear 15-23	Hazy 10-24 NOT RECORDED	Some Clouds 15-24	
Peak Insolation (W/m ²)	9 80	970	960	
Performance				
Power (kW) Efficiency Range (%) Avg. Eff., I>300 W/m ³ (%)	650-710 31-37 31.1	400-700 25-36 30.8	660-740 12-39 32.5	

Figure 6-1. Vernal Equinox, Insolation vs Hour

Figure 6-2. Vernal Equinox, Efficiency vs Hour

Figure 6-3.

Figure 6-4. Vernal Equinox, Inlet and Outlet Temperatures vs Hour

OUTLET

NLET

16

OUTLET

NLET

16

OUTLET

NLET

18

20

16

|4

14

18

20

18

20

45

Figure 6-5. Vernal Equinox, Flow Rate vs Hour

7. Solar Collector Subsystem 1982 Summer Solstice Performance

Solar collector subsystem performance was evaluated on 20 and 23 June 1982 to determine collection efficiency during the period near summer solstice. Average daily subsystem efficiency for each day was 35 percent, although the collector subsystem outlet CaloriaTM temperature was different during the two days.

Methods

Collectors were focused when insolation reached about 300 W/m² (95 Btu/ft² h). CaloriaTM was recirculated through the collector subsystem until an outlet temperature of 246°C (475°F) was attained. Then flow was diverted into the storage tank. CaloriaTM was circulated through the collector subsystem at a flow rate controlled to maintain the desired constant outlet temperature for the remainder of the test day. However at about 12:30 pm, the power conversion subsystem began operation and CaloriaTM was redirected from the collector subsystem through the vaporizer heat exchanger instead of to storage. The switchover resulted in a 15-20 minute perturbation in CaloriaTM flow rate and temperature while the vaporizer was heated to the operating temperature.

Collector reflectors and receiver tubes were washed with soft water using a portable pressure washer during the week prior to the test. Some windy, dusty conditions were experienced during the week so collectors were not completely clean at the time of performance testing. Moreover, it is felt that the water softening equipment was not adequately treating the wash water. There appeared to be a film on the reflective surfaces after washing was completed. Best collector reflectivity read-

ings before washing were about 65 percent. After pressure washing, reflectivity was measured to be about 80 percent. Collectors were rain washed in early July. After the rain, collector reflectivity was found to be about 83 percent.

Collector system flow rate was measured with a vortex-shedding type instrument, CaloriaTM temperatures with resistance temperature detectors (RTDs) and insolation with a pyrheliometer. Data were recorded at 2 minute intervals.

Collector subsystem efficiency was computed as the thermal energy gained by CaloriaTM during passage from subsystem inlet to outlet manifold locations divided by the total direct normal solar radiation impinging on the collector reflective surfaces. Average efficiency was computed for the entire period of collector subsystem operation.

20 June Results

The collector subsystem outlet CaloriaTM temperature was maintained at about 280°C (536°F). Inlet CaloriaTM temperature was 200°C (392°F). The subsystem CaloriaTM flow rate was 3.8 to 4.3 1/s (59.7 - 67.6 gpm).

The day was mostly clear with peak insolation of 845 W/m^2 (268 Btu/ft² h). Ambient temperature was 30 to 38°C (86 - 100°F). Wind speeds were variable, but were about 4-11 km/h (2.5 - 6.8 mph).

Solar collector subsystem efficiency during mid-day ranged from 36 to 40 percent. Collector efficiency averaged 35 percent for the day. Thermal energy was pro-

duced by the collector subsystem at 600 to 720 kWt (569 - 683 Btu/S) during the central part of the day.

23 June Results

Environmental conditions on 23 June were similar to those on 20 June, except peak insolation was somewhat higher, about 880 W/m² (279 Btu/ft² h). The outlet CaloriaTM temperature was maintained at about 264°C (507°F), about 16°C (29°F) cooler than on 20 June. The inlet CaloriaTM temperature was about 200°C (392°F), as on 20 June. The subsystem flow rate, however, was 4.7 to 5.4 1/s (74.5 - 85.7 gpm), about 25 percent greater than on 20 June in order to obtain the lower outlet temperature.

Solar collector subsystem efficiency was 37 to 40 percent during the period from 10 am to 4 pm. Collector efficiency averaged 35 percent over the entire operating period. Thermal energy was produced at a rate of 670 to 750 kW_t from mid-morning to mid-afternoon.

Parasitic Energy Usage

Tracking motors used 22 and 23 kWh_e during the two test days, The CaloriaTM pump required 36 kWh_e on 20 June. However on 23 June with lower collection temperatures, higher pump speed and flow rate resulted in the use of 52 kWh_e. Additional electrical energy is required to operate the air compressor and other controls associated with collector subsystem operation. These were previously estimated to be about 32 kWh_e per day. Adding this quantity to tracking motor and CaloriaTM pump

requirements yields estimated parasitic energy usage totals of 90 kWh_e for 20 June and 107 kWh_e for 23 June.

Thermal energy is converted to electrical energy by the power conversion subsystem at Coolidge with an efficiency of about 20 percent. Using a 20 percent energy conversion value, parasitic energy use of 90 kWh_e reduced the net collector subsystem efficiency from 35.0 percent thermal efficiency to 32.7 percent for 20 June. For 23 June, parasitic energy use reduced the net collector subsystem efficiency to 32.4 percent. The average thermal efficiency on 23 June was 35.0 percent.

Discussion

Collector subsystem solar energy collection efficiency peaked at about 40 percent and averaged about 35.0 percent on both test days. CaloriaTM outlet temperatures on the two test days were 280°C and 264°C respectively. Thus these tests confirmed earlier results showing collector subsystem performance not to be very sensitive to the operating temperature range.

Parasitic energy use reduced the average collector subsystem efficiency from 35.0 percent thermal efficiency to net values of 32.4 and 32.7 percent for the two test days. The higher CaloriaTM pumping rate required with lower temperature collector operation resulted in the lower net efficiency.

The collection efficiencies were 5 to 7 percent lower than measured during comparable collector subsystem performance tests conducted a year earlier in June 1981. It is believed that reduced collector reflectivity due to a poorer quality washing

job was responsible for the reduced performance in 1982. Freshly washed collector panels had a reflectivity of nearly 85 percent on June 18, 1981; about 80 percent before June 1982 tests. This reduction in reflectivity is not believed to be permanent. After rainwashing of collectors in early July 1982, reflectivity of panels was about 83 percent. Additional accumulation of dust within receiver tube glass covers also could account for some of the reduction in collector performance.

	Date	
Event	171 6/20	174 6/23
Sunrise Sufficient Insolation Collectors Focused Flow Diversion Turbine Start-up Insufficient Insolation Collectors Defocused Sunset	5:18 6:25 6:40 7:23 12:19 6:07 6:55 7:40	5:19 6:26 6:32 7:17 12:28 6:09 6:57 7:41

Table 7-1. Collector Subsystem Test Events, MST

Table 7-2. Collector Subsystem Summary Test Data.

Data	Date		
Dala	6/20	6/23	
Collector Parameters Inlet Temp (°C) Outlet Temp (°C) Flow Rate (l/s)	200 278-280 3.8-4.3	197-202 264 4.7-5.4	
Environment Conditions Description Ambient Temp (°C) Wind Speed (Km/h) Peak Insolation (W/m ²)	Clear 30-38 4-11 845	Clear 29-37 6-12 880	
$\frac{\text{Collector Performance}}{\text{Power }(\text{KW}_{t})}$ Eff. Range, 10 am - 4 pm (%) Avg. Eff., I > 300 W/m ² (%)	600-720 36-40 35.0	670-750 37-40 35.0	
Parasitic Energy Use, kWh _e Tracking Motors, daily use (use Pump during warmup)	22 36	23(2.1) 52(1.0)	

Figure 7-1. Summer Solstice, Insolation vs Hour

Figure 7-3. Summer Solstice, Collected Power vs Hour

Figure 7-2. Summer Solstice, Efficiency vs Hour

53 Figure 7-4.

Summer Solstice, Inlet and Outlet Temperatures vs Hour

Figure 7-5. Summer Solstice, Flow Rate vs Hour

Summer Solstice, Wind Speed and Ambient Temperature vs Hour

8. Solar Collector Subsystem 1982 Antumnal Equinox Performance

Solar collector subsystem performance was evaluated on 20 and 22 September, 1982 to determine collection efficiency during the period near the autumnal equinox. Average daily subsystem efficiency for both days was about 29 percent, although the collector subsystem outlet CaloriaTM temperature was about $285^{\circ}C$ ($545^{\circ}F$) on September 20 but only $266^{\circ}C$ ($510^{\circ}F$) on the 22nd.

Methods

Collectors were focused when insolation reached about 300 W/m^2 (95 Btu/ft² h). CaloriaTM was recirculated through the collector subsystem until an outlet temperature of 232°C (450°F) was attained. Then flow was diverted into the storage tank. CaloriaTM was circulated through the collector subsystem at a flow rate controlled to maintain the desired constant outlet temperature for the remainder of the test day. At about 1:25 PM, the power conversion subsystem began operation and CaloriaTM was directed from the collector subsystem through the vaporizer heat exchanger for the remainder of the day. The switchover resulted in a 15-20 minute perturbation of the CaloriaTM flow rate and temperature while the vaporizer was heated to the operating temperature.

Collector reflectors and receiver tubes all were washed by rainfall a few days prior to the tests. Some groups also were washed with soft water using a portable pressure washer during the week prior to the tests. However some windy conditions were experienced during the week so collectors were not completely clean at the time of performance testing.

Collector subsystem flow rate was measured with a vortex-shedding type instrument, CaloriaTM temperatures with resistance temperature detectors (RTDs) and insolation with a pyrheliometer. Data were recorded at 2 minute intervals.

Collector subsystem efficiency was computed as the thermal energy gained by CaloriaTM during passage from subsytem inlet to outlet mainfold locations divided by the total direct normal solar radiation impinging on the collector reflective surfaces. Average efficiency was computed for the entire period of collector subsystem operation.

20 September Results

The collector subsystem outlet CaloriaTM temperature was maintained at about 285°C (545°F). Inlet CaloriaTM temperature was 190-196°C (374-385°F). The subsystem CaloriaTM flow rate was 2.8 to 3.0 1/s (44-47 gpm).

The day was mostly clear with peak insolation of 830 W/m^2 (263 Btu/ft² h). Ambient temperature was 30 to 37°C (86-99°F). Wind speeds were variable, but were about 3-14 km/h (3/9 mph).

Solar collector subsystem efficiency during mid-day ranged from 28 to 35 percent. Collector efficiency averaged 29.5 percent for the day. Thermal energy ws produced by the collector subsystem at 520 to 585 kW_t (493-555 Btu/S) during the central part of the day.

22 September Results

September 22 was somewhat hotter and breezier than September 20. The outlet CaloriaTM temperature was maintained at about 266°C ($510^{\circ}F$), about 19°C ($34^{\circ}F$) cooler than on September 20. The inlet CaloriaTM temperature was 195-200°C ($382-392^{\circ}F$), about the same as on September 20. The subsystem flow rate, however, was 3.4 to 3.9 1/s (54-62 gpm), about 25 percent greater than on 20 September, in order to obtain the lower outlet temperature.

Solar collector subsystem efficiency was 30 to 33 percent during the period from 9 AM to 4 PM. Collector efficiency averaged 29.1 percent over the entire operating period. Thermal energy was produced at a rate of 490 to 530 kW_t (465-503 Btu/S) from mid-morning to mid-afternoon.

Discussion

Collector subsystem solar energy collection efficiency peaked at 33-35 percent and averaged a bit more than 29 percent on the two test days. CaloriaTM outlet temperatures on the two test days were 285°C and 266°C respectively. Thus these tests confirmed earlier results showing collector subsystem performance not to be very sensitive to the operating temperature range. However, the higher collection temperature is desirable since higher input temperatures increase energy conversion efficiency.

The collection efficiencies were about 2 to 3 percent lower than measured during comparable collector subsystem performance tests conducted a year earlier in Septem-

ber 1981. March 1982 test results were similar to September 1981 results. It is believed that reduced collector reflectivity, increased amounts of dust within glass receiver tube covers and collector subsystem insulation degradation all contributed to the decline in performance. Reduced reflectivity is due to delamination of FEK-244 on about 10 percent of the collector panels affecting perhaps 1 percent of the collector area.

	Date	
Event	263 9/20	265 9/22
Sunrise Sufficient Insolation Collectors Focused Flow Diversion Turbine Start-up Insufficient Insolation Collectors Defocused Sunset Collection Temperature Electricity Producted	6:14 7:28 7:28 8:00 1:23 5:30 5:40 6:28 545°F 770 kWh	6:16 7:31 7:31 8:08 1:28 5:29 5:40 6:25 510°F 670 kWh

Table 8-1 Collector Subsystem Test Events, MST

Table 8-2 Collector Subsystem Summary Test Data

Data	Date		
	263 9/20	265 9/22	
Collector Parameters			
Inlet Temp. (°C) Outlet Temp. (°C) Flow rate (l/s)	190-196 283-287 2.8-3.0	195-200 265-267 3.4-3.9	
Environmental Conditions			
Description Ambient Temp. (°C) Wind Speed (km/h) Peak Insolation (W/m ²)	Clear 30-37 3-14 830	Clear 30-41 4-16 820	
Performance			
Power (kW) Efficiency Range (%) Avg. Eff., I>300 W/m ³ (%)	520-585 28-35 29.5	490-530 30-33 29.1	

Figure 8-1. Autumnal Equinox, Insolation vs Hour

Figure 8-3. Autumnal Equinox, Collected Power vs Hour

Figure 8-2. Autumnal Equinox, Efficiency vs Hour

Figure 8-4.

60

Autumnal Equinox, Inlet and Outlet Temperatures vs Hour

Figure 8-5. Autumnal Equinox, Flow Rate vs Hour

Figure 8-6. Autumnal Equinox, Wind Speed and Ambient Temperature vs Hour

9. Cleaning and Reflectivity of Solar Collector Subsystem Reflector Panels

Solar collectors at the Coolidge facility originally had CoilzakTM reflector panels. However, the reflectivity of clean CoilzakTM refective surfaces was less than 60% after 1 year of service. In Spring 1981, the Coilzak panels were replaced with aluminized acrylic (FEK-244) laminated aluminum panels.

The solar collectors were cleaned periodically to improve energy collection performance. Effectiveness of the cleaning was determined by reflectivity measurements. The three methods used to clean the solar collectors were:

- a. Spraying on a mixture of cleaner and deionized water and rinsing with deionized water
- b. Pressure spraying with soft water and cleaner, then rinsing with soft water
- c. Rain washing.

The hard water available locally precluded use of tap water. Originally, the CoilzakTM reflector panels were cleaned with tap water in combination with a variety of cleaners, mops, and high-pressure spray equipment. The results using these techniques were not very satisfactory. It was determined that the tap water was causing a white film to build up on the CoilzakTM. The cause of 'the film was apparently the high hardness of the water (1 100 ppm total dissolved solids compared to 200 to 350 ppm for Albuguerque).

It was more cost effective to hire a commercial firm (Coffin Brothers Co., Phoenix, AZ) to perform the deionized water cleaning operations. The contractor brought 7 570 L (2,000 gal) of deionized water and spray equipment to the site. The cleaner used was "Car Wash Soap" from Schrader Chemical Co. The collectors were cleaned every 3 months (for the equinox and solstice tests) at a cost of \$500 per cleaning through September 1981.

A less expensive cleaning method was desired. Thus, in Autumn 1981, a water softening system and portable, high-pressure spray equipment were purchased for a study of the use of soft water as a substitute for deionized water.

The portable sprayer was used with soft water and cleaning agent to wash collectors in December 1981 and June 1982. The cleaner used was "Powered Power" made by Cal-Pak for washing cars with softened water in Arizona.

Collectors also were washed by rainfall whenever possible. Collector modules were rotated so as to face the rainfall and drain water from the lower edge.

The effectiveness of cleaning was checked by making reflectivity measurements on the reflector panels using a portable specular reflectometer provided by J.M. Freese of SNLA. A 23.1-mrad (1.32-degree) aperture was used in the reflectometer, which approximates the acceptance window of reflected solar radiation for the Acurex collector. Table 9-1 lists the reflectance data gathered in 1981-82. The reflectance values listed are average values representative of the collector field.

It appears that rain washing is as effective as pressure washing with deionized water. Reflectivity measurements were about 83% after washing with either of these two methods.

Reflectivity measurements after the December 1981 soft water washing were about equal to measurements obtained after washing with rainfall or deionized water. However, collector panel reflectivity was found to be somewhat lower following soft water washing in June 1982. It was determined that soft water treatment equipment was not performing properly and a film had been left on the FEK surface. Subsequent washings by rainfall and with properly softened water resulted in higher reflectivity measurements. Thus, it appears that soft water washing can be as effective as cleaning with rainfall or deionized water. However, soft water quality must be maintained carefully.
Date	Reflectance %	Comments
9/4/81	75.8	
9/11/81	73.3	
9/22/81	83.1	Pressure washed with deionized water on 9/21/81
9/25/81	82.1	
10/2/81	82.4	Rain washed on 10/1/81
10/16/81	77.2	
10/24/81	/1./	
11/6/81	/5./	Rain-washed on 10/2//81
11/18/81	68.4	
11/2//81	09./	$D_{2} = 11/20 + 20/01$
12/4/81	/0.2	Rain washed on 11/29 & 30/81 Decension washed with soft water on 12/15
12/1//81	83.8	Pressure-washed with soft water on 12/15
1/11/82	/1.9	Data washed on $1/12/02$
1/1//82	/3.1 76 7	Rain-Washed on 1/12/02 Rain washed on 1/21/02
1/22/82	/0./	Ram-washed on 1/21/02
2/12/02	72.J	Pain washed on $2/11/82$
2/12/02	70 0	Light rain wash on 2/18/82
2/19/02	75.5	
3/11/82	73.3	Rain-washed on 3/3/82
3/15/82	77 4	Rath-washed on 575762
A/5/82	79 4	Rain-washed on 3/26/82
4/13/82	76.2	Rath Washea on Sylevyol
4/26/82	69.1	Field operations on 4/5 to 20/82 caused dusty conditions
5/3/82	72.6	Rain-washed on 5/1/82
5/5/82	76.6	
5/24/82	69.6	Davs 5/8 & 9/82 were windy and dusty
5/23/82	69.2	
5/28/82	72.5	
6/6/82	70.6	
6/12/82	64.1	
6/19/82	80.2	Collectors pressure-washed with soft water on $6/13$ to $18/32$
7/7/82	83.1	Rain-washed on 7/6/82
7/27/82	81.4	Rain-washed on 7/26/82
8/1/82	80.0	Rain-washed on 7/30/82
8/18/82	79. 0	Rain-washed on 8/6/82
8/24/82	80.3	Rain-washed on 8/23/82
8/25/82	80.4	Rain-washed on 8/24/82
9/1/82	78.5	
9/8/82	79.8	

Table 9-1. Reflectance data for collector FEK-244 reflector panels.

10. Parasitic Electrical Energy Usage

INTRODUCTION

Electrical meters have been used to monitor electrical energy used by various components and subsystems of the solar power plant. Collector subsystem feed pump and tracking motors, control module, power conversion subsystem vaporizer pump, cooling tower, air compressor, and control building were the principal metering divisions. Meter designations and equipment monitored by the meters are summarized in Table 10-1. In some cases, other smaller uses also were monitored by a meter. For example, the control module meter also included data logger and weather station electrical energy usage.

Daily energy usage for these categories is shown in Tables 10-2 through 10-14. Total electrical energy usage by the plant was monitored by another meter. This measurement is listed in the energy budget tables in Section 3 of the report. The total energy-use meter should indicate a somewhat higher value than the total of the seven meters since energy usage by the natural gas boiler, outdoor lights, and make-up pump and that consumed by plant transformers are not metered separately. However, possible differences in meter calibration make comparison valueless.

ENERGY USE

Total parasitic energy use varied considerably from day to day and month to month. Day-to-day energy consumption varied with equipment usage; month-to-month changes were principally due to day length and control building environmental control

requirements. Day-to-day energy use data are listed in Tables 10-2 to 10-14. However, the data can be used only with great care since the meters were read by the operator who frequently completed work before plant operation terminated. Thus, meter readings were recorded at different times on different days.

Table 10-1. Identification of	f Equipment Monitored by Each Meter.
Meter Designation	Equipment Metered
Field pump	Collector subsystem pump motor
Tracking motors	Collector subsystem tracking motors, collector subsystem controls, electrical outlets in collector field
Vaporizer pump	Power conversion subsystem vaporizer Caloria TM pump
Control module	Power conversion subsystem motors and controls, including vacuum pump and toluene feed pumps, data logger, weather station
Cooling tower	Cooling tower water pump and fans, PCM area electrical outlets water treatment system
Air compressors Air conditioner/heater	Air compressors and air dryer Control building air conditioner, furnace, lights, and electrical outlets

Unmonitored Usage: Natural gas boiler CaloriaTM make-up pump Floodlights Transformer losses (480:240/120)

The average daily solar plant parasitic energy use ranged from 89 kWh in January to 154 kWh in April and 200 kWh in July.

In early spring on a day when neither collector nor power conversion subsystems were operated, the plant used 31-37 kWh. The air compressors used about 10 kWh and the control module 12-13 kWh of this amount. Building utilities required a smaller amount. On a sunny spring day when collectors operated but the turbine-generator did not operate, the plant used about 90 kWh. Of this total, the collector subsystem CaloriaTM pump and tracking motors required about 50 kWh. The solar plant used about 175 kWh in April on sunny days when the power conversion subsystem operated about 5 hours. Almost 80 kWh of that total was used by the cooling tower and power conversion subsystem vaporizer CaloriaTM pump. The greater use of parasitic energy in summer is due, in about equal parts, to increased operation of the power conversion subsystem and building air conditioner.

Collector subsystem energy usage was monitored by field pump and tracking motor meters, Figures 10-1 and 10-2. Field pump energy use depends primarily on flow rate and length of operating period. The pumping power required in January was about 3.1 kW, while in July the pumping power requirement was nearly 4.0 kW due to the higher flow rate. Average daily pumping energy use ranged from 18 kWh in December to 33 kWh in July. Collector tracking motor average energy usage varied from about 21 to 26 kWh per day. The tracking energy use was only modestly greater in summer when operating hours are much longer.

Power conversion subsystem energy consumption was monitored by vaporizer CaloriaTM pump and cooling tower electrical meters, Figures 10-3 and 10-5. The

vaporizer Caloria pump required about 5 kW of power; the cooling tower used about 11 kW. Energy use varied directly with hours of power conversion subsystem operation, from about 30 kWh for the vaporizer pump and cooling tower on an operational December day to about 80 kWh during a sunny June day.

Other power conversion subsystem equipment, including vacuum and toluene feed pumps, monitored by the control module electrical meter, require an estimated 3 kW of power. Thus, the power conversion subsystem needs about 20 kW of power to support its operation. Original estimates of solar plant performance estimated power conversion subsystem electrical energy output to be 174 kW with 24 kW of that amount being required to drive subsystem equipment. Apportioning commonly metered energy use to power conversion subsystem operation would make actual usage nearly equal the predicted quantity.

The electrical meters monitoring control module and air compressor energy use measured energy use in support of both solar collector and power conversion subsystem operation. Control module energy use ranged from about 10 kWh per day in winter to nearly 50 kWh on a sunny summer day, Figure 10-4. Air compressor energy use was reduced by operational control adjustments in Autumn 1981. Thereafter, air compressor energy use ranged from an average of 11 kWh per day in winter to 16 kWh per day in summer when operating hours are greatest, Figure 10-6.

Control building environmental control and electrical outlets required about 4 kWh per day in winter. Average daily energy consumption increased to about 50 kWh per day in July, Figure 10-7. Some energy usage was unmonitored, principally outdoor night lights and transformer losses. The natural gas boiler and CaloriaTM make-up

pump were used infrequently. It is believed that the unmonitored energy usage was small.

SUMMARY

The parasitic energy usage study has quantified the primary plant energy requirements and indicated areas of potential conservation. As a result, energy usage by the air compressors and for control building environmental control has been reduced substantially during the past year, as compared with the previous year.

Energy use by collector and power conversion subsystems was found to meet expectations. Power conversion equipment required over 20 kW of power. The collector subsystem used an average of 39 to 59 kWh of energy per day for oil circulation and tracking. The requirement varied with amount of equipment operation.

Thus, on a winter day when the power conversion subsystem operated about one hour, it used about 20 kWh of parasitic energy while the collector subsystem pump and tracking motors used about 40 kWh. On a sunny summer day, the power conversion subsystem used about 120 kWh in 6 hours of operation and the collector subsystem required about half as much, 60 kWh. Other plant requirements increased total parasitic energy use by 30 to 100 kWh per day.

Since the base energy usage by the solar plant is substantial, increased power conversion subsystem operation would increase the ratio of net to gross electrical energy production. Thus it appears that increasing the collector field size would result in a higher ratio of net to gross energy producton.

Figure 10-1. Average Daily Energy Usage by the Collector Field Pump. Sept. 1981-Sept. 1982.

Figure 10-2. Average Daily Energy Usage by Collector Tracking Motors. Sept. 1981-Sept. 1982.

Figure 10-3. Average Daily Energy Usage by the Vaporizer Pump. Sept. 1981-Sept. 1982.

Figure 10-4. Average Daily Energy Usage by the Control Module. Sept. 1981-Sept. 1982.

Figure 10-5. Average Daily Energy Usage by the Cooling Tower. Sept. 1981-Sept. 1982.

Figure 10-6. Average Daily Energy Usage by Air Compressors. Sept. 1981-Sept. 1982.

Figure 10-7. Average Daily Energy Usage by the Control Building Air Conditioner/ Heater. Sept. 1981-Sept. 1982.

			ENERGY	CONSUMPTION IN		OPE	RATED HOURS			
Day	Field Pump	Tracking Motors	Control Module	Vaporizer Pump	Cooling Tower	Air Comp.	AC/HEAT	Collectors	Boiler	Generator
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 AUC	24 24 25 26 20 27 24 27 29 21 20 20 21 29 21 29 21 20 20 21 29 21 20 20 21 29 21 20 20 21 20 20 21 20 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 20 21 20 20 21 20 20 21 20 20 21 20 20 21 20 20 21 20 20 20 21 20 20 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	$\begin{array}{c} 22\\ 21\\ 21\\ 22\\ 11\\ 22\\ 22\\ 24\\ 21\\ 25\\ 24\\ 21\\ 25\\ 24\\ 21\\ 25\\ 24\\ 21\\ 21\\ 23\\ 32\\ 11\\ 14\\ 22\\ 25\\ 23\\ 21\\ 21\\ 21\\ 22\\ 20\\ 19\\ 21\\ 0\\ \end{array}$	70 63 81 78 20 89 80 83 86 23 111 26 98 82 75 71 75 69 58 68 23 20 24 102 93 86 83 55 0 85 8 8 8 8 8 8 8 8 8 8 8 8 8	$ \begin{array}{r} 16\\ 16\\ 20\\ 19\\ 0\\ 20\\ 19\\ 0\\ 26\\ 22\\ 23\\ 0\\ 33\\ 0\\ 29\\ 21\\ 19\\ 17\\ 19\\ 14\\ 13\\ 16\\ 0\\ 0\\ 0\\ 29\\ 25\\ 24\\ 23\\ 23\\ 12\\ 0\\ 20 9 $	$\begin{array}{r} 34 \\ 34 \\ 34 \\ 43 \\ 51 \\ 0 \\ 39 \\ 45 \\ 43 \\ 47 \\ 0 \\ 65 \\ 0 \\ 56 \\ 45 \\ 39 \\ 27 \\ 39 \\ 27 \\ 39 \\ 27 \\ 39 \\ 31 \\ 26 \\ 34 \\ 0 \\ 0 \\ 0 \\ 62 \\ 52 \\ 48 \\ 47 \\ 45 \\ 26 \\ 0 \\ 0 \\ 0 \\ 62 \\ 52 \\ 48 \\ 47 \\ 45 \\ 26 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 13\\ 16\\ 16\\ 18\\ 13\\ 13\\ 18\\ 16\\ 21\\ 18\\ 17\\ 20\\ 19\\ 19\\ 19\\ 19\\ 16\\ 20\\ 19\\ 19\\ 19\\ 16\\ 20\\ 17\\ 18\\ 20\\ 18\\ 17\\ 14\\ 13\\ 17\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 17\\ 19\\ 16\\ 17\\ 19\\ 10\\ 17\\ 19\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	$\begin{array}{r} 43\\ 39\\ 61\\ 70\\ 55\\ 58\\ 51\\ 50\\ 59\\ 51\\ 58\\ 47\\ 45\\ 53\\ 55\\ 63\\ 62\\ 55\\ 63\\ 62\\ 55\\ 63\\ 62\\ 55\\ 36\\ 53\\ 43\\ 38\\ 51\\ 30\\ 50\\ 43\\ 68\\ 47\\ 11\\ 11\\ 49\\ 9\end{array}$	$\begin{array}{c} 10.6\\ 10.6\\ \hline 10.1\\ \hline 5.0\\ \hline 8.9\\ \hline 10.1\\ \hline 5.0\\ \hline 8.0\\ \hline 10.1\\ \hline 9.2\\ \hline 9.9\\ \hline 10.1\\ \hline 9.2\\ \hline 9.9\\ \hline 10.0\\ \hline 9.0\\ \hline 10.0\\ \hline 9.0\\ \hline 10.0\\ \hline 9.0\\ \hline 10.0\\ \hline 9.0\\ \hline 10.0\\ \hline 9.9\\ \hline 9.9\\ \hline 9.8\\ \hline\\ \hline 1.5\\ \hline 4.5\\ \hline 9.7\\ \hline 9.8\\ \hline 9.7\\ \hline 9.8\\ \hline 9.7\\ \hline 8.5\\ \hline 9.5\\ \hline 8.0\\ \hline\\ \hline -\end{array}$	2.5	$\begin{array}{r} 3.3\\ 3.2\\ 4.2\\ 4.1\\\\ 4.8\\ 4.4\\ 4.2\\ 5.0\\\\ 6.1\\\\ 5.6\\ 4.4\\ 3.7\\ 3.5\\ 3.7\\ 2.9\\ 2.5\\ 3.1\\\\ 5.8\\ 5.1\\ 4.7\\ 4.4\\ 4.3\\ 2.4\\\\ \end{array}$
ATG.	24.0	21.0	05.0	20.9	43.0	1 1/ .5	43.3			

Table 10-2. Parasitic Energy Usage: September 1981

• ,

7

4

· · · · ·

			ENERGY	CONSUMPTION IN	к кмн) OPF	RATED HOURS	5
Day	Field Pump	Tracking Motors	Control Module	Vaporizer Pump	Cooling Tower	Air Comp.	AC/HEAT	Collectors	Boiler	Generato
1	16	23	45			14	21	6.0		
2	19	23	60	14	29	16	21	7.0		2.6
3	34	22	75	19		16	4	9.3		3.9
4	16		<u>/8</u>]	20	44	16	3	9.3		4.2
<u> </u>						15	<u> </u>	9.7	1.7	<u></u>
-7	- 27		75	<u>19</u>	41	1/		9.7		
$\frac{1}{8}$			70		<u> </u>	19	30	9.1		
<u>a</u>	- 25	12	68	18		15	21	91		37
10^{-1}		23	71	16	35	27	17	9.5		3.2
11	17	20	21			6	18	8.7		
12	23	21	70	16	35	19	16	8.9		3.1
13	20	22	25		1	17	11	8.9		
14	24	23	106	30	62	20	3	9.0		5.9
15	19	30	21			14	3	9.0		
16	23	13	82	21	43	20	3	8.8		4.1
17	20	20	64	15	32	16	3	8.9		2.9
18	21	22	61	13	30	17	3	8.7		2.6
19	20	20	59	13	27	16	5	<u> </u>		2.5
$\frac{20}{21}$			20	13	20	14		0.0	·	
$\frac{21}{22}$	20	24				14	20	8.8		
23	29	33	77	16	34		24	8.6		2.1
24	10	10	37	11	19	8	1	7.5		1.9
25	21	22	57	12	29	15	3	8.8		2.5
26	21	22	58	22	29	16	13	8.5		2.7
27	19	10	30		2	16	17	7.0		
28	20	33	21			14	26	1.0		
29	21	21	41	3	14	14	20	8.0		1.0
30	19	22	47	<u> </u>	24	16	15	8.0	·	<u>?.?</u>
31	19	20	65	12	27	19	<u>16</u>	8.5		2.1

.

1

1 *

,

۲

,

٠

Table 10-3. Parasitic Energy Usage: October 1981

		ENERGY CONSUMPTION IN KWH						OPER	RATED HOURS	
Day	Field Pump	Tracking Motors	Control Module	Vaporizer Pump	Cooling Tower	Air Comp.	AC/HEAT	Collectors	Boiler	Generator
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18 29 9 25 28 18 18 17 29 8 17 16 29 8 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 16 13 24	20 21 21 22 23 23 23 24 20 18 25 21 20 13 31 21 21 21 21 20 13 31 21 21 21 20 13 31 21 21 20 13 31 21 21 20 13 31 21 20 13 31 21 21 20 13 31 21 21 20 13 31 21 21 20 13 31 21 21 20 13 31 21 21 20 13 31 21 21 20 13 31 21 21 20 13 31 21 21 21 21 20 13 31 21 21 21 21 20 13 31 21 21 21 21 21 21 21 21 21 2	35 63 18 19 17 27 117 3 47 26 73 46 48 38 41 63 13 58 24 50 NA NA NA NA NA NA NA NA NA NA NA 20 31 8 12 7	3 11 0 0 0 8 28 0 9 5 17 9 8 4 6 11 0 13 0 8 NA NA NA NA NA NA 0 0 9 9 5 17 9 8 4 6 11 0 13 0 8 0 9 9 17 9 8 11 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 9 9 13 0 11 0 13 0 13 0 9 9 13 0 13 0 13 0 13 0 13 0 9 9 13 0 9 9 13 0 13 0 13 0 13 0 13 0 13 0 13 0 9 9 9 13 0 13 0 9 9 9 13 0 13 0 0 9 9 9 9 9 9 9 9 9 9 9 9 9	0 37 0 0 15 63 1 20 25 19 19 20 20 10 17 23 1 27 0 18 NA NA NA NA NA 29 19 0 0 0 0 0 0 22 22	14 20 11 12 11 10 16 16 15 13 17 15 14 15 16 16 16 16 16 16 16 17 17 19 NA NA NA NA NA 14 13 14 17 23 23	19 20 19 7 14 21 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 25 14 5 NA NA NA NA 33 4 13	$\begin{array}{r} 8.5 \\ 8.5 \\ 8.5 \\ 8.5 \\ 7.0 \\ 7.0 \\ 6.1 \\ 6.6 \\ 8.2 \\ 8.2 \\ 8.2 \\ 8.0 \\ 8.1 \\ 5.8 \\ 4.5 \\ 7.5 \\ 8.2 \\ 4.5 \\ 8.2 \\ 4.5 \\ 8.2 \\ 1.0 \\ 8.5 \\ 4.5 \\ 8.2 \\ 1.0 \\ 8.5 \\ 3.0 \\ \\ 6.0 \\ \\ 7.9 \\ \hline\end{array}$		$\begin{array}{c} \hline \\ 2.0 \\ \hline \\ 1.2 \\ 4.2 \\ \hline \\ 2.0 \\ 2.0 \\ 1.5 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.4 \\ 1.4 \\ \hline \\ 2.5 \\ \hline \\ 1.5 \\ \hline \\ 1.8 \\ 2.7 \\ 1.4 \\ \hline \\ 1.8 \\ 2.7 \\ 1.4 \\ \hline \\ 1.6 \\ \hline \end{array}$
AVG	18.4	21.7	77.8	11.4	26	15.3	11.7		- 	+

Table 10-4. Parasitic Energy Usage: November 1981

۶ »

y - - - y

1

2

3 a - 4 +

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				ENERGY	CONSUMPTION IN	KWH			OPE	RATED HOURS	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Day	Field Pump	Field Motors	Control Module	Vaporizer Pump	Cooling Tower	Air Comp.	AC/HEAT	Collectors	Boiler	Generator
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31$	$\begin{array}{c} 18\\ 20\\ 20\\ 16\\ 17\\ 19\\ 17\\ 19\\ 16\\ 15\\ 17\\ 18\\ 37\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18$	20 22 20 20 21 20 21 20 21 20 21 20 23 15 27 21 22 22 22 22 22 22 22 22 22 22 22 22	66 62 49 36 36 51 46 63 55 29 25 30 30 76 62 52 31 33 45 46 50 26 57 18 18 28 34 38 20 22	$\begin{array}{c} 11 \\ 10 \\ 9 \\ 0 \\ 0 \\ 0 \\ 6 \\ 7 \\ 11 \\ 10 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 24 \\ 20 \\ 20 \\ 0 \\ 0 \\ 18 \\ 12 \\ 26 \\ 20 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	28 30 27 24 22 24 24 23 24 24 22 24 25 25 26 25 26 25 26 25 26 25 26 24 19 12 25 26 25 26 24 19 12 11 11 12 13 12 10 10 10	$ \begin{array}{r} 3 \\ 7 \\ 23 \\ 4 \\ 3 \\ 6 \\ 4 \\ 3 \\ 4 \\ 5 \\ 5 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 \\ 5 \\ 5 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 \\ 5 \\ 5 \\ 3 \\ $	$\begin{array}{c} 7.8 \\ \hline 8.0 \\ \hline 7.9 \\ 2.5 \\ \hline 3.0 \\ \hline 7.3 \\ \hline 7.7 \\ \hline 7.6 \\ \hline 7.6 \\ \hline 7.6 \\ \hline 7.6 \\ \hline 7.5 \\ \hline 7.6 \\ \hline 6.0 \\ \hline 7.5 \\ \hline 7.0 \\ \hline 4.8 \\ \hline 7.5 \\ \hline 7.6 \\ \hline 6.0 \\ \hline 7.5 \\ \hline 7.6 \\ \hline 6.0 \\ \hline 7.5 \\ \hline 7.6 \\ \hline 1.5 \\ \hline 4.5 \\ \end{array}$	3.8	$\begin{array}{c} 2.0 \\ \hline 1.9 \\ \hline 1.8 \\ \hline \\ 1.2 \\ \hline 1.5 \\ \hline 1.5 \\ \hline 1.7 \\ \hline \\ 2.7 \\ \hline 1.7 \\ \hline \\ 2.7 \\ \hline 1.7 \\ \hline 1.1 \\ \hline \\ 2.7 \\ \hline 1.1 \\ \hline \\ 2.7 \\ \hline 1.1 \\ \hline \\ 2.5 \\ \hline \\ \hline 1.2 \\ \hline 1.4 \\ \hline \\ 1.2 \\ \hline 1.4 \\ \hline \\ \\ \hline \\ 1.2 \\ \hline 1.4 \\ \hline \\ \\ \hline \\ -$

e.

Y

.

\$

,

•

Table 10-5. Parasitic Energy Usage: December, 1981

• •

			ENERGY	CONSUMPTION IN	KWH			OPEF	RATED HOURS	
Day	Field Pump	Field Motors	Control Module	Vaporizer Pump	Cooling Tower	Air Comp.	AC/HEAT	Collectors	Boiler	Generator
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pump 0 24 24 24 23 27 10 11 17 18 14 20 13 32 21 22 10	NOCOTS 0 26 26 26 26 25 20 21 26 21 26 21 20 21 22 20 21 23 12 23 16 21 24 22 20 20 21 23 23 24 22 20 20 21 23 24 22 20 20 20 20 20 20 20 21 9 34	Hodulie 5 28 29 15 15 15 15 15 15 15 15 20 65 15 21 17 52 58 48 54 22 52 18 48 17 60 20 80 75 37 46	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 12 \\ 0 \\ 0 \\ 13 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 10 \\ 1$	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 28\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} \text{COMP.} \\ \hline \\ 5 \\ 11 \\ 11 \\ 11 \\ 12 \\ 13 \\ 13 \\ 13 \\ 13$	$ \begin{array}{r} 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 9 \\ 15 \\ 17 \\ 12 \\ 11 \\ 3 \\ 7 \\ 3 \\ 9 \\ 3 \\ 4 \\ 3 \\ 9 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 2 \\ 2 \\ 7 $	$\begin{array}{c} \\ 4.0 \\ 3.0 \\ \hline 3.0 \\ \hline 3.0 \\ \hline 5.5 \\ 2.0 \\ \hline 7.0 \\ \hline 7.0 \\ \hline 4.0 \\ \hline 7.1 \\ 2.0 \\ \hline 7.6 \\ \hline 8.1 \\ \hline 8.1 \\ \hline 8.1 \\ \hline 7.8 \\ \hline 6.0 \\ \hline 7.0 \\ \hline \\ \hline 8.1 \\ \hline 2.0 \\ \hline 7.5 \\ \hline 8.1 \\ \hline 8.1 \\ \hline 8.1 \\ \hline 8.3 \\ \hline 8.4 \\ \hline 0.5 \\ \hline 2.7 \\ \end{array}$		$ \begin{array}{c} \hline \\ \hline \\ \hline 2.4 \\ \hline \\ \hline 2.2 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline 1.7 \\ \hline 2.7 \\ \hline 1.9 \\ \hline 1.7 \\ \hline \\ \hline 2.7 \\ \hline 1.9 \\ \hline 1.7 \\ \hline \\ \hline 2.2 \\ \hline \\ \hline 4.2 \\ \hline 3.3 \\ \hline 2.0 \\ \hline 1.8 \\ \hline \end{array} $
30 31 AVG	29 19 20.4	12 27 21.7	53 40 35.7	12 0 12.7	28 0 26.9	12 11 11.5	4 7 5.2	8.4 6.0		2.3

Table 10-6. Parasitic Energy Usage: January, 1982

.

ŀ

٠

;

, .

			ENERGY	CONSUMPTION IN	I KWH			OPEI	RATED HOURS	
Day	Field Pump	Tracking Motors	Control Module	Vaporizer Pump	Cooling Tower	Air Comp.	AC/HEAT	Collectors	Boiler	Generator
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 25 \\ 26 \\ 27 \\ 28 \\ 28 \\ 25 \\ 26 \\ 27 \\ 28 \\ 25 \\ 26 \\ 26 \\ 27 \\ 28 \\ 25 \\ 26 \\ 27 \\ 28 \\ 25 \\ 26 \\$	$ \begin{array}{r} 18 \\ 25 \\ 22 \\ 20 \\ 29 \\ 0 \\ 29 \\ 20 \\ 29 \\ 20 \\ 15 \\ 20 \\ 22 \\ 22 \\ 22 \\ 22 \\ 23 \\ 24 \\ 14 \\ 21 \\ 26 \\ 20 \\ 20 \\ 24 \\ 9 \\ 19 \\ 22 \\ 26 \\ 27 \\ 26 \\ 27 \\ 26 \\ 27 \\ 26 \\ 27 \\ 26 \\ 27 \\ 26 \\ 27 \\ 26 \\ 27 \\ 26 \\ 27 \\ 26 \\ 27 \\ 26 \\ 27 \\ 26 \\ 27 \\ 26 \\ 27 \\ 26 \\ 27 \\ 26 \\ 27 \\ 27 \\ 26 \\ 27 \\ 26 \\ 27 \\ 26 \\ 27 \\ 27 \\ 26 \\ 27 \\ 26 \\ 27 \\ 26 \\ 27 \\ 26 \\ 27 \\ 26 \\ 27 \\ 27 \\ 26 \\ 27 \\ 27 \\ 26 \\ 27 \\ 27 \\ 27 \\ 26 \\ 27 \\ 27 \\ 27 \\ 26 \\ 27 \\ 27 \\ 27 \\ 26 \\ 27 \\ 27 \\ 27 \\ 20 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 26 \\ 27 \\ $	$\begin{array}{r} 26\\ 21\\ 22\\ 25\\ 30\\ 5\\ 30\\ 15\\ 22\\ 25\\ 28\\ 23\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 25\\ 24\\ 20\\ 23\\ 26\\ 20\\ 21\\ 26\\ 18\\ 30\\ 23\\ 31\\ 31\\ 31\\ \end{array}$	50 59 44 47 20 21 20 45 60 18 17 55 20 20 20 21 20 45 60 18 17 55 20 97 56 57 22 50 72 21 65 51 17 70 20 20	$\begin{array}{c} 16\\ 14\\ 11\\ 10\\ 0\\ 0\\ 0\\ 0\\ 0\\ 12\\ 0\\ 0\\ 12\\ 0\\ 0\\ 12\\ 0\\ 0\\ 12\\ 13\\ 13\\ 14\\ 0\\ 12\\ 18\\ 0\\ 12\\ 18\\ 0\\ 12\\ 18\\ 0\\ 12\\ 18\\ 0\\ 12\\ 18\\ 0\\ 12\\ 0\\ 0\\ 16\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{r} 33\\ 30\\ 25\\ 21\\ 0\\ 0\\ 0\\ 0\\ 21\\ 33\\ 0\\ 0\\ 21\\ 0\\ 0\\ 27\\ 0\\ 0\\ 0\\ 27\\ 0\\ 0\\ 0\\ 27\\ 0\\ 0\\ 0\\ 29\\ 30\\ 0\\ 0\\ 29\\ 41\\ 0\\ 26\\ 0\\ 0\\ 39\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 12 \\ 14 \\ 14 \\ 12 \\ 14 \\ 5 \\ 15 \\ 14 \\ 13 \\ 11 \\ 10 \\ 12 \\ 11 \\ 11 \\ 11 \\ 10 \\ 12 \\ 11 \\ 11$	$ \begin{array}{r} 7 \\ 7 \\ 9 \\ 6 \\ 5 \\ 5 \\ 5 \\ 6 \\ 5 \\ 5 \\ 4 \\ 4 \\ 2 \\ 4 \\ 3 \\ $	$\begin{array}{r} 8.5 \\ 8.6 \\ 8.5 \\ 7.0 \\ 5.0 \\ \hline \\ 6.0 \\ 0.5 \\ 7.0 \\ 1.5 \\ 3.8 \\ 6.0 \\ 8.4 \\ 7.5 \\ 8.2 \\ 8.3 \\ 8.9 \\ 0.5 \\ 8.9 \\ 9.0 \\ 8.0 \\ 8.6 \\ 4.0 \\ \hline \\ 4.0 \\ 9.0 \\ 6.5 \\ 9.1 \\ \end{array}$	 	$\begin{array}{r} 3.0\\ 2.7\\ 2.1\\ 1.8\\\\\\ 1.1\\ 3.0\\\\ 2.2\\\\ 5.6\\ 2.7\\\\ 5.6\\ 2.7\\ 2.7\\\\\\ 3.6\\\\ 3.4\\ 2.2\\\\ 3.2\\\\ 3.2\\\\\\ 3.2\\\\\\\\\\\\\\\\\\\\ $
AVG	20.9	23.5	40.4	14.7	30.6	11.4	4.2	1	•	

* x

1 (• •

· ·

Table 10-7. Parasitic Energy Usage: February 1982

ENERGY CONSUMPTION IN KWH OPERATED HOURS Field Tracking Control Vaporizer Cooling Air AC/HEAT Collectors Boiler Generator Day Tower Pump Motors Module Pump Comp. 4.6 ---6.5 ---4.3 4.0 9.0 3.3 8.6 3.6 9.5 4.5 9.0 ---5.0 3.1 2.4 7.0 6.5 2.1 2.6 -------------3.0 ---3.5 ---0.6 3.5 21 5.5 1.5 6.0 2.1 1.0 ---2.0 6.0 6.9 ---10.0 ---11.7 10.0 10.0 5.0 2.5 8.5 5.5 0.9 2.3 1.0 ---10.3 4.4 5.5 ---9.5 6.7 7.5 3.9 8.2 4.0 AVG 28.9 26.5 52.4 19.4 41.5 11.3 3.8

Table 10-8. Parasitic Energy Usage: March 1982

ε ,

•

* 2

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ENE			ENERGY	CONSUMPTION IN	, , , , , , , , , , , , , , , , , , ,	OPERATED HOURS				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tracking Contro Motors Module	Field Track Pump Motor	ay	Control Module	Vaporizer Pump	Cooling Tower	Air Comp.	AC/HEAT	Collectors	Boiler	Generator
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	54 93 20 148 62 70 83 38 29 100 57 20 100 57 20 100 80 75 86 20 140 102 85 97 75 75 75 75 89 54 93 65 91	$ \begin{array}{r} 14 \\ 29 \\ 8 \\ 0 \\ $	$\begin{array}{r} 30\\ 57\\ 8\\ 0\\ 113\\ 33\\ 40\\ 49\\ 15\\ 10\\ 58\\ 27\\ 0\\ 68\\ 47\\ 42\\ 51\\ 0\\ 68\\ 47\\ 42\\ 51\\ 0\\ 68\\ 47\\ 42\\ 51\\ 68\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45$	$\begin{array}{c} 10\\ 14\\ \hline 9\\ 9\\ 11\\ 13\\ 12\\ 12\\ \hline 12\\ 14\\ 12\\ \hline 15\\ 15\\ 15\\ 15\\ 15\\ \hline 15\\ 15\\ 13\\ 14\\ 13\\ 13\\ 15\\ 15\\ 15\\ 13\\ 13\\ 14\\ 18\\ 14\\ 18\\ 14\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15$	$ \begin{array}{r} 3 \\ 4 \\ 2 \\ 4 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 2 \\ 5 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 2 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 3 \\ 2 \\ 3 \\ 3 \\ 2 \\ 3 \\ $	$\begin{array}{r} 4.5\\ \hline 10.2\\ \hline 8.0\\ \hline 10.3\\ \hline 8.5\\ \hline 0.8\\ \hline 10.0\\ \hline 8.5\\ \hline 0.7\\ \hline 10.0\\ \hline 8.5\\ \hline 0.7\\ \hline 10.0\\ \hline 9.5\\ \hline 5.0\\ \hline 4.5\\ \hline 10.1\\ \hline 8.0\\ \hline 10.6\\ \hline 11.2\\ \hline 11.0\\ \hline 10.0\\ \hline 10.5\\ \hline 11.0\\ \hline 11.$		$\begin{array}{r} 3.3 \\ 6.3 \\ \hline 2.7 \\ \hline \\ 9.5 \\ \hline 1.3 \\ 5.3 \\ \hline 4.4 \\ \hline \\ 3.8 \\ 3.3 \\ \hline 1.5 \\ \hline \\ 6.4 \\ 5.2 \\ \hline 4.8 \\ 5.1 \\ \hline \\ 6.4 \\ 5.2 \\ \hline 4.8 \\ 5.1 \\ \hline \\ 5.5 \\ \hline 4.1 \\ \hline 5.5 \\ \hline 4.1 \\ \hline 4.8 \\ \hline 4.7 \\ \hline 2.3 \\ 3.8 \\ \hline 4.6 \\ \hline 3.5 \\ \hline 4.5 \\ \end{array}$

e 1

r i

•

Table 10-9. Parasitic Energy Usage: April, 1982

, i , i

			ENERGY	CONSUMPTION IN		OPEF	RATED HOURS	i		
Day	Field Pump	Tracking Motors	Control Module	Vaporizer Pump	Cooling Tower	Air Comp.	AC/HEAT	Collectors	Boiler	Generator
$\begin{array}{c c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ \end{array}$	$\begin{array}{c} 22\\ 27\\ 30\\ 25\\ 19\\ 47\\ 40\\ 35\\ 30\\ 28\\ 34\\ 32\\ 30\\ 31\\ 27\\ 34\\ 27\\ 34\\ 27\\ 34\\ 27\\ 38\\ 36\\ 44\\ 43\\ 38\\ 38\\ 38\\ 39\\ 34\\ 32\\ 26\\ 44\\ 18\\ 85\\ 11\\ \end{array}$	$\begin{array}{r} 40\\ \hline 26\\ \hline 20\\ \hline 28\\ \hline 35\\ \hline 13\\ \hline 22\\ \hline 23\\ \hline 25\\ \hline 25\\ \hline 25\\ \hline 25\\ \hline 22\\ \hline 23\\ \hline 24\\ \hline 26\\ \hline 18\\ \hline 22\\ \hline 23\\ \hline 23\\ \hline 23\\ \hline 23\\ \hline 23\\ \hline 21\\ \hline 24\\ \hline 24\\ \hline 22\\ \hline 23\\ \hline 23\\ \hline 21\\ \hline 24\\ \hline 28\\ \hline 25\\ \hline 16\\ \hline 36\\ \hline 16\\ \hline \end{array}$	$\begin{array}{r} 37\\ 78\\ 77\\ 45\\ 31\\ 98\\ 97\\ 68\\ 106\\ 108\\ 89\\ 88\\ 76\\ 68\\ 63\\ 118\\ 98\\ 88\\ 76\\ 68\\ 63\\ 118\\ 98\\ 99\\ 84\\ 100\\ 100\\ 100\\ 121\\ 121\\ 121\\ 108\\ 99\\ 84\\ 74\\ 88\\ 50\\ 33\\ 16\\ \end{array}$	$\begin{array}{c} 0\\ 23\\ 20\\ 12\\ 0\\ 29\\ 29\\ 29\\ 29\\ 29\\ 29\\ 29\\ 29\\ 29\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23$	$\begin{array}{c} 11 \\ 45 \\ 45 \\ 18 \\ 8 \\ 59 \\ 59 \\ 59 \\ 36 \\ 64 \\ 68 \\ 51 \\ 50 \\ 42 \\ 36 \\ 33 \\ 71 \\ 60 \\ 60 \\ 60 \\ 60 \\ 60 \\ 60 \\ 61 \\ 77 \\ 77 \\ 69 \\ 61 \\ 51 \\ 41 \\ 48 \\ 29 \\ 5 \\ 0 \\ \end{array}$	$\begin{array}{c} 17\\ 14\\ 13\\ 15\\ 14\\ 17\\ 15\\ 15\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 15\\ 16\\ 15\\ 20\\ 15\\ 16\\ 16\\ 16\\ 16\\ 17\\ 15\\ 16\\ 16\\ 17\\ 15\\ 16\\ 16\\ 17\\ 15\\ 16\\ 15\\ 18\\ 9\\ 16\\ 20\\ \end{array}$	$\begin{array}{r} 3\\ \hline 3\\ \hline 17\\ \hline 3\\ \hline $	$\begin{array}{r} 3.0\\ \hline 9.9\\ \hline 8.4\\ \hline 5.0\\ \hline 3.5\\ \hline 11.2\\ \hline 11.3\\ \hline 11.5\\ \hline 11.6\\ \hline 12.0\\ \hline 11.8\\ \hline 11.7\\ \hline 11.8\\ \hline 11.9\\ \hline 12.0\\ \hline 11.6\\ \hline 11.4\\ \hline 11.3\\ \hline 11.5\\ \hline 6.5\\ \hline\\ \hline \end{array}$		$\begin{array}{c} \\ 4.2 \\ 4.2 \\ 2.3 \\ \\ 7.7 \\ 6.5 \\ 5.0 \\ 4.2 \\ 4.4 \\ 5.2 \\ 3.7 \\ 5.7 \\ 4.7 \\ 4.3 \\ 4.9 \\ 5.1 \\ 4.9 \\ 5.1 \\ 4.9 \\ 6.4 \\ 6.7 \\ 5.8 \\ 6.8 \\ 6.8 \\ 6.1 \\ 6.1 \\ 6.1 \\ 4.4 \\ 4.1 \\ 2.1 \\ 2.5 \\ \\ \end{array}$

Table 10-10. Parasitic Energy Usage: May, 1982

, ,

4 n

•

4

.

.

ه د

د •

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				ENERGY	ENERGY CONSUMPTION IN KWH					RATED HOURS	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Day	Field Pump	Tracking Motors	Control Module	Vaporizer Pump	Cooling Tower	Air Comp.	AC/HEAT	Collectors	Boiler	Generator
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 27 28 29 30	$ \begin{array}{r} 19 \\ 32 \\ 33 \\ 33 \\ 24 \\ 29 \\ 25 \\ 31 \\ 36 \\ 29 \\ 38 \\ 51 \\ 52 \\ 30 \\ 27 \\ 26 \\ 41 \\ 27 \\ 24 \\ \end{array} $	26 21 24 22 26 19 22 23 23 23 23 23 23 23 23 23 23 23 23 23 23 29 18 26 23 22 21 22 23 24 27 28	$\begin{array}{c} 115\\ 110\\ 97\\ 64\\ 57\\ 56\\ 80\\ 112\\ 113\\ 97\\ 102\\ 121\\ 90\\ 102\\ 121\\ 90\\ 108\\ 64\\ 59\\ 69\\ 97\\ 91\\ 112\\ 46\\ 113\\ 113\\ 108\\ 97\\ 91\\ 112\\ 46\\ 113\\ 113\\ 108\\ 97\\ 53\\ 59\\ 59\\ 59\\ 59\\ 59\\ 59\\ 59\\ 59\\ 59\\ 59$	$\begin{array}{r} 30\\ \hline 29\\ \hline 25\\ \hline 17\\ \hline 15\\ \hline 12\\ \hline 23\\ \hline 29\\ \hline 30\\ \hline 25\\ \hline 27\\ \hline 32\\ \hline 27\\ \hline 32\\ \hline 23\\ \hline 28\\ \hline 17\\ \hline 15\\ \hline 18\\ \hline 25\\ \hline 24\\ \hline 29\\ \hline 12\\ \hline 30\\ \hline 30\\ \hline 28\\ \hline 25\\ \hline 30\\ \hline 30\\ \hline 30\\ \hline 28\\ \hline 25\\ \hline 30\\ \hline 31\\ \hline 26\\ \hline 14\\ \hline 15\\ \hline \end{array}$	$\begin{array}{r} 67\\ 64\\ 57\\ 37\\ 33\\ 27\\ 52\\ 65\\ 66\\ 57\\ 60\\ 70\\ 52\\ 63\\ 37\\ 34\\ 41\\ 57\\ 53\\ 65\\ 27\\ 66\\ 66\\ 63\\ 57\\ 66\\ 66\\ 63\\ 57\\ 66\\ 64\\ 58\\ 31\\ 34\\ \end{array}$	$\begin{array}{r} 9\\ \hline 19\\ \hline 15\\ \hline 18\\ \hline 14\\ \hline 19\\ \hline 12\\ \hline 16\\ \hline 15\\ \hline 17\\ \hline 16\\ \hline 15\\ \hline 26\\ \hline 12\\ \hline 11\\ \hline 17\\ \hline 16\\ \hline 15\\ \hline 26\\ \hline 12\\ \hline 11\\ \hline 17\\ \hline 14\\ \hline 16\\ \hline 15\\ \hline 18\\ \hline 14\\ \hline 22\\ \hline 15\\ \hline 15\\ \hline 18\\ \hline 14\\ \hline 12\\ \hline 16\\ \hline 14\\ \hline 11\\ \hline 16\\ \hline 14\\ \hline 13\\ \end{array}$	$ \begin{array}{r} 19 \\ 17 \\ 9 \\ 17 \\ 12 \\ 26 \\ 15 \\ 28 \\ 10 \\ 19 \\ 19 \\ 21 \\ 22 \\ 37 \\ 18 \\ 34 \\ 30 \\ 33 \\ 28 \\ 38 \\ 32 \\ 41 \\ 39 \\ 47 \\ 32 \\ 27 \\ 24 \\ 52 \\ 75 \\ 46 \\ \end{array} $	$\begin{array}{r} 2.9\\ \hline 12.1\\ \hline 12.0\\ \hline 7.0\\ \hline 7.5\\ \hline 11.9\\ \hline 11.9\\ \hline 12.0\\ \hline 12.1\\ \hline 12.2\\ \hline 12.4\\ \hline 12.1\\ \hline 12.2\\ \hline 12.4\\ \hline 12.1\\ \hline 11.1\\ \hline 11.7\\ \hline 11.7\\ \hline 11.7\\ \hline 11.7\\ \hline 11.8\\ \hline 11.8\\ \hline 11.8\\ \hline 11.0\\ \hline 6.0\\ \hline 8.0\\ \hline \end{array}$	2.1	$\begin{array}{r} 6.3 \\ \hline 6.0 \\ \hline 5.3 \\ \hline 3.5 \\ \hline 3.5 \\ \hline 3.1 \\ \hline 2.5 \\ \hline 4.9 \\ \hline 6.1 \\ \hline 6.2 \\ \hline 5.3 \\ \hline 5.6 \\ \hline 6.6 \\ \hline 4.9 \\ \hline 5.9 \\ \hline 3.5 \\ \hline 3.5 \\ \hline 3.2 \\ \hline 3.8 \\ \hline 5.3 \\ \hline 5.0 \\ \hline 6.1 \\ \hline 2.5 \\ \hline 6.2 \\ \hline 6.2 \\ \hline 5.9 \\ \hline 5.3 \\ \hline 6.2 \\ \hline 6.5 \\ \hline 5.4 \\ \hline 2.9 \\ \hline 3.2 \end{array}$

.

,

•

,

Table 10-11. Parasitic Energy Usage: June, 1982

.

, **•**

.

		<u> </u>	ENERGY	GY CONSUMPTION IN KWH				OPERATED HOURS		
Day	Field Pump	Tracking Motors	Control Module	Vaporizer Pump	Cooling Tower	Air Comp.	AC/HEAT	Collectors	Boiler	Generator
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 40\\ 41\\ 41\\ 41\\ 40\\ 29\\ 13\\ 23\\ 42\\ 41\\ 42\\ 39\\ 40\\ 27\\ 25\\\\ -14\\ 19\\ 39\\ 40\\ 27\\ 25\\\\ -14\\ 19\\ 39\\ 42\\ 41\\ 35\\ 27\\ 23\\ \end{array}$	$\begin{array}{r} 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 22 \\ 22 \\ \\ 18 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 29 \\ 32 \\ 20 \\ 19 \\ \\ \\ 11 \\ 15 \\ 30 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 27 \\ 20 \\ 17 \\ \end{array}$	94 94 100 65 41 63 53 141 133 135 147 133 120 118 47 40 12 12 12 12 12 12 12 13 90 98 61 84 71 33	24 26 25 16 10 16 13 36 37 34 30 30 12 2 23 26 25 15 21 18	$ \begin{array}{r} 53 \\ 59 \\ 56 \\ 36 \\ 23 \\ 35 \\ 30 \\ 80 \\ 82 \\ 76 \\ 83 \\ 75 \\ 67 \\ 66 \\ 27 \\ 25 \\ \\ \\ 50 \\ 52 \\ 50 \\ 29 \\ 43 \\ 40 \\ 19 \\ \hline $	14 14 14 13 16 20 13 14 12 13 13 14 12 13 13 13 13 13 13 13 14 12 12 12 13 14 15 13 15	$\begin{array}{r} 64 \\ 48 \\ 28 \\ 39 \\ 53 \\ 33 \\ 34 \\ 44 \\ 49 \\ 41 \\ 27 \\ 71 \\ 71 \\ 74 \\ 65 \\ 59 \\ 45 \\ 45 \\ 45 \\ 45 \\ 45 \\ 45 \\ 4$	$ \begin{array}{r} 11.6 \\ 11.6 \\ 11.7 \\ 11.7 \\ 8.0 \\ \\ 6.5 \\ 11.7 \\ 11.7 \\ 11.9 \\ 11.9 \\ 11.8 \\ 10.8 \\ 11.8 \\ 7.5 \\ 7.0 \\ \\ 3.9 \\ 5.4 \\ 11.0 \\ 11.8 \\ 11.9 \\ 9.8 \\ 7.5 \\ 6.4 \\ \end{array} $	3.6	$\begin{array}{r} 4.8 \\ 5.3 \\ 5.1 \\ 3.3 \\ 2.1 \\ 3.2 \\ 7.7 \\ 7.2 \\ 7.4 \\ 6.9 \\ 7.5 \\ 6.8 \\ 6.1 \\ 6.0 \\ 2.4 \\ 0.1 \\ \\ \\ 5.0 \\ 5.2 \\ 5.0 \\ 3.1 \\ 4.3 \\ 3.6 \\ 1.7 \end{array}$
27 28 29 30 31 AV6	$ \begin{array}{r} 39 \\ 38 \\ 13 \\ 21 \\ 18 \\ 33.4 \\ \end{array} $	30 29 10 16 14 25-4	125 88 7 55 45 88_2		// 50 31 25 49.7	$ \begin{array}{r} 16 \\ 17 \\ 7 \\ $		$ \begin{array}{r} 11.0 \\ 10.5 \\ \hline 3.5 \\ \hline 6.0 \\ \hline 5.0 \\ \end{array} $		2.8 2.3

Table 10–12. Parasitic Energy Usage: July, 1982

• •

х,

.

•

.

t

			ENERGY	OPERATED HOURS						
Day	Field Pump	Tracking Motors	Control Module	Vaporizer Pump	Cooling Tower	Air Comp.	AC/HEAT	Collectors	Boiler	Generator
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 24 25\\ 26\\ 27\\ 28\\ 29\\ 24 25\\ 26\\ 27\\ 28\\ 29\\ 24 25\\ 26\\ 27\\ 28\\ 29\\ 24 25\\ 26\\ 27\\ 28\\ 29\\ 29\\ 24 25\\ 26\\ 27\\ 28\\ 29\\ 29\\ 24 25\\ 26\\ 27\\ 28\\ 29\\ 29\\ 24 25\\ 26\\ 27\\ 28\\ 29\\ 29\\ 28\\ 29\\ 29\\ 28\\ 29\\ 29\\ 28\\ 29\\ 29\\ 28\\ 29\\ 29\\ 28\\ 29\\ 29\\ 29\\ 28\\ 29\\ 29\\ 28\\ 29\\ 29\\ 28\\ 29\\ 29\\ 28\\ 29\\ 29\\ 28\\ 29\\ 29\\ 28\\ 29\\ 29\\ 28\\ 29\\ 29\\ 29\\ 28\\ 29\\ 29\\ 29\\ 20\\ 21\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 29\\ 29\\ 29\\ 29\\ 29\\ 29\\ 20\\ 20\\ 20\\ 27\\ 28\\ 29\\ 29\\ 29\\ 20\\ 27\\ 28\\ 29\\ 29\\ 28\\ 29\\ 29\\ 29\\ 29\\ 29\\ 29\\ 29\\ 29\\ 29\\ 29$	23 19 41 19 24 22 32 20 24 26 23 24 26 23 24 26 27 26 25 27 26 25 27 21 27 23 21 27 23 21 27 23 21 27 29 25 23 21 27 29 25 23 23 23 23 23 23 23 23 23 23 23 23 25 23	$\begin{array}{r} 25\\ 26\\ 21\\ 21\\ 21\\ 26\\ 23\\ 28\\ 18\\ 20\\ 23\\ 21\\ 25\\ 23\\ 21\\ 25\\ 23\\ 22\\ 23\\ 22\\ 22\\ 23\\ 22\\ 22\\ 22\\ 22$	$\begin{array}{r} 48 \\ 41 \\ 65 \\ 86 \\ 58 \\ 30 \\ 105 \\ 20 \\ 74 \\ 64 \\ 74 \\ 55 \\ 56 \\ 75 \\ 83 \\ 75 \\ 63 \\ 62 \\ 69 \\ 86 \\ 42 \\ 68 \\ 81 \\ 40 \\ 74 \\ 95 \\ 73 \\ 60 \\ 52 \\ 52 \\ 52 \\ 52 \\ 52 \\ 53 \\ 54 \\ 54 \\ 55 \\ 56 \\ 75 \\ 56 \\ 75 \\ 75 \\ 75 \\ 75$	$ \begin{array}{r} 11 \\ \\ 27 \\ 26 \\ \\ 10 \\ 24 \\ \\ 22 \\ 14 \\ 19 \\ 10 \\ 11 \\ 20 \\ 21 \\ 19 \\ 10 \\ 11 \\ 20 \\ 21 \\ 19 \\ 13 \\ 14 \\ 17 \\ 22 \\ 12 \\ 12 \\ 12 \\ 12 \\ 14 \\ 11 \\ 18 \\ 26 \\ 18 \\ 13 \\ 11 \\ 11 \\ 16 \\ \end{array} $	$ \begin{array}{r} 21 \\ \\ 57 \\ 56 \\ \\ 20 \\ 61 \\ \\ 44 \\ 32 \\ 41 \\ 26 \\ 27 \\ 43 \\ 48 \\ 41 \\ 32 \\ 32 \\ 37 \\ 49 \\ 27 \\ 28 \\ 35 \\ 22 \\ 42 \\ 56 \\ 41 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27$	$\begin{array}{c} 15\\ 13\\ 15\\ 14\\ 15\\ 15\\ 15\\ 15\\ 17\\ 12\\ 12\\ 12\\ 12\\ 15\\ 14\\ 15\\ 14\\ 15\\ 14\\ 15\\ 14\\ 15\\ 14\\ 15\\ 14\\ 15\\ 14\\ 15\\ 14\\ 15\\ 14\\ 15\\ 14\\ 15\\ 14\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 13\\ 3\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15$	$\begin{array}{r} 48 \\ -44 \\ -55 \\ 69 \\ -60 \\ -53 \\ -58 \\ -55 \\ -72 \\ -60 \\ -29 \\ -30 \\ -45 \\ -74 \\ -64 \\ -74 \\ -64 \\ -74 \\ -64 \\ -54 \\ -46 \\ -60 \\ -31 \\ -26 \\ -34 \\ -38 \\ -40 \\ -35 \\ -46 \\ -60 \\ -31 \\ -26 \\ -34 \\ -38 \\ -40 \\ -35 \\ -46 \\ -60 \\ -31 \\ -26 \\ -34 \\ -54 \\ -$	$\begin{array}{r} 4.5\\ \hline 2.0\\ \hline 10.4\\ \hline 10.9\\ \hline 2.5\\ \hline 6.6\\ \hline 10.7\\ \hline 5.1\\ \hline 11.2\\ \hline 9.5\\ \hline 7.0\\ \hline 4.0\\ \hline 10.0\\ \hline 11.7\\ \hline 5.6\\ \hline 9.0\\ \hline 8.0\\ \hline 6.0\\ \hline 10.0\\ \hline 9.5\\ \hline 7.0\\ \hline 9.0\\ \hline 5.0\\ \hline 4.0\\ \hline 11.1\\ \hline 9.7\\ \hline 9.0\\ \hline 5.0\\ \hline 4.0\\ \hline 11.1\\ \hline 9.7\\ \hline 9.0\\ \hline 8.0\\ \hline 9.5\\ \hline 7.0\\ \hline 9.0\\ \hline 5.0\\ \hline 7.0\\ \hline 7.0\\ \hline 9.0\\ \hline 7.0\\ \hline $		$\begin{array}{r} 2.1 \\ \hline \\ 5.0 \\ 4.9 \\ \hline \\ 1.8 \\ 4.1 \\ \hline \\ 5.5 \\ 3.7 \\ \hline 2.4 \\ 1.3 \\ \hline 3.7 \\ \hline 4.2 \\ 3.6 \\ \hline 2.3 \\ \hline 4.1 \\ \hline 4.0 \\ \hline 2.8 \\ \hline 2.9 \\ \hline 2.3 \\ \hline 1.7 \\ \hline 4.7 \\ \hline 4.0 \\ \hline 4.5 \\ \hline 2.4 \\ \hline 3.0 \\ \hline 2.6 \\ \hline \end{array}$
<u>30</u> 31 AVG	<u>23</u> <u>26</u> 25.2	26 22 23.7	<u>- 68</u> 78 69.7	20 16.2	<u>36</u> <u>45</u> <u>36.3</u>	<u>15</u> <u>15</u> 14.4	46 49 48.8	9.8		4.4

•

•

ſ

-

,

.

Table 10-13. Parasitic Energy Usage: August, 1982

٠

.

			ENERGY	OPERATED HOURS						
Day	Field Pump	Tracking Motors	Control Module	Vaporizer Pump	Cooling Tower	Air Comp.	AC/HEAT	Collectors	Boiler	Generator
$\begin{array}{c c} 1\\ 2\\ 3\\ 4\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ \end{array}$	26 35 16 23 27 22 21 22 22 19 25 16 23 22 22 22 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 25 25 25 25 25 25 26 29 21 24 19 20 20	22 21 25 22 24 23 25 20 24 37 23 29 20 22 31 24 0 25 23 19 21 22 20 23 19 21 22 20 23 30 20 22 23 30 29 20 22 23 29 20 22 23 19 21 22 22 23 29 20 22 22 20 22 23 29 20 22 20 22 20 22 20 22 20 22 20 22 20 20	$\begin{array}{c} 72 \\ 81 \\ 70 \\ 61 \\ 69 \\ 75 \\ 69 \\ 55 \\ 47 \\ 51 \\ 53 \\ 100 \\ 98 \\ 92 \\ 69 \\ 92 \\ 69 \\ 27 \\ 69 \\ 87 \\ 79 \\ 71 \\ 78 \\ 54 \\ 85 \\ 31 \\ 20 \\ 74 \\ 71 \\ 79 \\ \end{array}$	$\begin{array}{c} 21 \\ 17 \\ 18 \\ 13 \\ 16 \\ 20 \\ 15 \\ 12 \\ 21 \\ 0 \\ 6 \\ 10 \\ 27 \\ 26 \\ 17 \\ 22 \\ 1 \\ 15 \\ 21 \\ 20 \\ 18 \\ 20 \\ 11 \\ 23 \\ 3 \\ 0 \\ 18 \\ 17 \\ 18 \\ \end{array}$	$\begin{array}{r} 46 \\ 39 \\ 38 \\ 31 \\ 35 \\ 43 \\ 37 \\ 28 \\ 47 \\ 0 \\ 20 \\ 22 \\ 62 \\ 58 \\ 40 \\ 51 \\ 22 \\ 62 \\ 58 \\ 40 \\ 51 \\ 2 \\ 34 \\ 51 \\ 45 \\ 39 \\ 44 \\ 27 \\ 49 \\ 11 \\ 0 \\ 39 \\ 38 \\ 44 \\ \end{array}$	$\begin{array}{c} 13\\ 14\\ 15\\ 14\\ 16\\ 14\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 16\\ 15\\ 16\\ 15\\ 16\\ 15\\ 16\\ 15\\ 14\\ 14\\ 13\\ 14\\ 14\\ 13\\ 16\\ 12\\ 12\\ 17\\ 15\\ 16\\ 16\\ 12\\ 12\\ 17\\ 15\\ 16\\ 16\\ 12\\ 12\\ 17\\ 15\\ 16\\ 16\\ 12\\ 12\\ 16\\ 16\\ 16\\ 12\\ 15\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16$	$\begin{array}{r} 49\\ 40\\ 60\\ 51\\ 49\\ 44\\ 58\\ 18\\ 31\\ 15\\ 7\\ 7\\ 12\\ 5\\ 13\\ 20\\ 22\\ 7\\ 21\\ 39\\ 40\\ 21\\ 45\\ 26\\ 41\\ 24\\ 10\\ 24\\ 15\\ 26\\ \end{array}$	$ \begin{array}{r} 10.7 \\ 10.8 \\ 6.1 \\ 9.8 \\ 8.8 \\ 10.9 \\ 5.1 \\ 2.0 \\ 12.0 \\ 1.5 \\ 5.0 \\ 11.5 \\ 10.1 \\ 10.1 \\ 10.1 \\ 10.1 \\ 10.1 \\ 10.1 \\ 10.1 \\ 10.0 \\ 10.0 \\ 9.9 \\ 9.9 \\ 9.4 \\ 10.0 \\ 8.2 \\ 9.8 \\ 3.0 \\ 9.8 \\ 9.8 \\ 9.8 \\ 9.8 \\ 9.8 \\ 9.8 \\ 7.0 \\ 10.0 \\ 7.0 \\ $	2.8	$\begin{array}{r} 4.4 \\ 4.2 \\ 2.7 \\ 3.4 \\ 3.4 \\ 3.8 \\ 1.0 \\ 2.3 \\ 4.3 \\ 0 \\ 1.8 \\ 4.5 \\ 4.3 \\ 4.7 \\ 4.7 \\ 2.3 \\ \\ 3.7 \\ 4.1 \\ 4.1 \\ 3.8 \\ 3.7 \\ 3.7 \\ 3.5 \\ 2.2 \\ 0 \\ 3.7 \\ 2.9 \\ 2.6 \end{array}$
30 AVG	20 23.4	22	41 66.2	7	<u>15</u> 34.5	14	<u>36</u> 28.97	9.3		2.7

Table 10-14. Parasitic Energy Usage: September, 1982

. . • •

۰**،**

.

ι

.

,

а. с. – , э.

11. Incidents

Three incidents which occurred during the last year and a half of plant operation were cause for special concern or attention. These were delamination of collector reflective film, collector loop overheating and a flexhose CaloriaTM fire.

FEK Delamination

Collector subsystem CoilzakTM reflective panels were replaced with aluminized acrylic (FEK-244) laminated aluminum panels in Spring 1981. The change was made because the reflectivity of clean CoilzakTM was less than 60 percent after 1 year of service.

Two major FEK-244 delamination incidents occurred since installation. Initial delamination appeared after a rainstorm accompanied by heavy winds in July 1981. Ten to fifteen percent of the panels were affected, but the delaminated area on each affected panel was small. Forty two of the most damaged panels were replaced.

Delamination occurred as tunnel separations of FEK from aluminum backing sheets or within FEK film layers, Figure 11-1. Tunnel separations were initiated at collector edges where the FEK film had been trimmed. Tunnels continued to grow until meeting another FEK edge.

A few new tunnel separations were initiated during the following year and some older tunnels continued to grow. Various methods for preventing and halting tunnel-

ing were evaluated, including edge taping. These methods seemed to be beneficial for only a short period of time, perhaps for a few months.

A second major delamination incident occurred after deliberate washing by gentle rainfall in July 1982. Next morning, tunnel delamination appearing similar to that of previous occurrences was discovered to have affected nearly 10 percent of the panels. About half of the newly affected panels previously had not experienced delamination. Edges of affected panels again were sealed or edge taped to limit delamination.

Figure 11-1. FEK-244 Reflective Film Delamination Patterns.

Each reflective panel was laminated with 2 strips of FEK-244 and edges were trimmed. This figure shows four observed delamination patterns. Tunnels are about 1/8-1/4 inch wide. It is expected that all tunnels observed in area "C" would progress until reaching an FEK side or edge. Delamination continued from razor cuts after about one year's service. Tunnels also have been observed to widen somewhat.

88

J

Collector No-Flow Overheating

One flexhose ruptured in August 1981, probably due to operator error. The failure was discovered upon operator investigation after noting smoke emanating from the field. One collector loop had been kept inoperative to permit early morning maintenance. The loop was returned to service with the manual flow control valve closed. Collectors began tracking even though CaloriaTM flow was restricted or nonexistent. After about an hour of service, one flexhose ruptured. Pressure buildup due to no-flow overheating of trapped CaloriaTM was the probable cause of the failure. Collectors did not desteer as expected in an overtemperature situation. Sensors located between collector groups apparently did not sense the temperature rise.

The flexhose was replaced and the collector loop returned to service next day. No other detrimental effects of the incident were observed until June 1982. From June to October 1982, six additional flexhoses in the affected collector loop began leaking CaloriaTM. Leaks began as and were limited to seepage or oozing of CaloriaTM from a small single crack in the flexhoses. Leaks were indicated by a small amount of smoke emanating from oil soaked flexhose insulation.

Flexhose Leakage and Fire

Two flexhoses located in other flow loops also developed leaks of the oozing or slow leakage type. One leak was detected after noticing a small amount of emanating smoke. The other leak, in June 1982, led to a fire.

The fire was noticed by the operator, who was performing PCM maintenance tasks, and extinguished with a single fire extinguisher. The fire was confined to

CaloriaTM soaked insulation surrounding the flexhose. The fire apparently was initiated spontaneously in hot, Caloria soaked insulation or from contact of the in-sulation cover with the exposed flexhose.

This was the second fire at the Coolidge plant. The first, in February 1980, occurred in the shroud area of the collector field pump. Caloria leaking from the pump seal pooled in the shroud area and apparently auto-ignited. The fire was discovered and extinguished by the operator.

These two incidents led to routine, careful leak inspections and immediate maintenance efforts to halt leakage.

12. Equipment Problems and Solutions

The Coolidge solar power plant was operated on a daily basis from startup in October 1979 to closeout in November 1982. The amounts of collector and power conversion subsystem operation lost in 1981-82 due to tests and equipment problems are listed in Tables 12-1 and 12-2.

Three PCM problems prevented PCM operation for more than one successive day. In November 1981, the PCM was inoperative for 3 days awaiting procurement of a toluene pump seal. Because seal failure occurred in November when thermal energy collection was reduced, little PCM operation was lost. A relay in the generator-utility connection jammed on May 30 and could not be repaired until the next working day, June 1, preventing PCM operation for two days. Failure of a gasket in the vaporizer on Friday, July 16 prevented PCM operation for 4 days. The gasket could not be obtained until Monday the 19th.

Collector subsystem equipment problems prevented operation for part of the day on 4 occasions. On two occasions, the high wind speed/ambient temperature lockout relay failed to reset automatically. The plant operator reset the relay permitting plant startup upon arrival to inspect plant operation or monitor PCM startup. On the other two occasions, collectors were kept inoperative to permit pump motor repair.

A collector or PCM problem did impact an operation of the other subsystem. Naturally when energy was not collected the PCM could not operate. Additionally, on two occasions, PCM equipment problems resulted in terminating operation of the col-

Iı	noperativ	e				
Date	Hours	Reason				
Sept. 21, 1981	9	Pressure washing for performance tests				
Jan. 3, 1982	2	Wind/temp. lockout relay req'd manual reset				
March 30, 1982	3	Collector pump motor SCR relay repair				
April 1, 1982	4	Collector pump motor SCR relay repair				
May 30-June 1, 1982	2 25	PCM inoperative - thermal storage full				
July 17-19, 1982	19	PCM inoperative - thermal storage full				
Aug. 8, 1982	6	Wind/temp. relay req'd manual reset				

Table 12-1. Amount of lost collector operation in 1981-82

Table 12-2. Amount of PCM operation lost in 1981-82

Date	Hours Operation	of Missed	Reason

Sept. 21, 198	1 3		Collector test preparations
Nov. 3-5, 198	ļ 4		Toluene pump seal procured and replaced
May 30-31, 198	32 12		Generator-utility connection relay malfunction
July 16-19, 19	982 7		Vaporizer toluene gasket replacement
Aug. 8, 1982	4		Collectors inoperative - no heat

lector subsystem when the thermal energy storage tank was filled with hot $Caloria^{TM}$.

A number of other equipment problems reduced plant energy performance, affected operation for short periods of time or stopped operation of only a small part of the plant (for example, one collector group). The principal equipment problems encountered during the year and their solutions, or needs for solutions, are summarized in the following paragraphs.

Collector Subsystem

Reflective Panels

The original CoilzakTM reflective panels were replaced with aluminized acrylic (FEK-244) laminated aluminum panels in Spring 1981. Tunnel separations of FEK film occured, principally in two incidents. These are described in Chapter 11. Reflectivity of sample panels was measured periodically; results are listed in Chapter 9.

Tracking Units

The original collector tracking system required considerable attention to assure proper operation. Malfunctions included failure to track and tracking off-sun. Malfunctions were attributed to moisture, thermal stress and electronic component failures. Redesigned sensors and control boards were installed during the last half of 1981. Modifications included changes in sensor cases to minimize moisture intrusion and changes in photodiode encapsulation to reduce thermal stressing.

Isolated incidences of erratic tracking occured infrequently with the new tracking systems. Moisture collected in four sensor cases in separate occurences, requiring opening and drying of the cases. Relays in three of the new tracker control boards required replacement. An unsecured sensor cable caught and tore loose in a July 1982 wind storm. A few other instances of erratic tracking caused by changing insolation levels required manual resetting of proper tracking operation. On one cloudy but bright day, the collectors wandered in search of the sun and stowed until manually unstowed. One day in June, collectors did not unstow until the operator tapped on the low air pressure sensors. Toward the end of the year, seven collector groups tended to lose the sun at low insolation levels.

Collector Drive Motors

Electric motor failures in 1979-80 resulted in institution of a program whereby all motors were returned to the manufacturer for inspection, and , if required, maintenance or repair. Six motors were exchanged at a time, so the program wasn't completed until February 1982. There have been few problems with motors sent to the manufacturer and returned to service again. Two motors were replaced due to noisy, slow operation in 1982. A capacitor was replaced in another motor. At year's end, two additional motor were operating noisily and hesitantly.

Flexible Hoses

One flexible hose (flexhose) ruptured in August 1981, apparently due to collector loop overheating. Several other flexhoses in that loop and two flexhoses in

other collector loops began leaking in Summer 1982. One of the leaks resulted in a fire. Flexhose leakage incidents are described in more detail in Chapter 11.

The top portion of flexhose covers has deteriorated on all hoses located at the north ends of collector groups due to sunlight reflection. Covers also failed on some hoses located at south ends of groups. A number of the covers severed or became detached from collector attachment points permitting cover and insulation to drop down and expose several inches of the flexhose. The result is unsightly, and heat loss is greater due to reduced flexhose insulation.

Sun shields to prevent reflection of concentrated sunlight onto flexhose covers were installed on the north end of the collector group in Fall 1981. A new style flexhose assembly also was installed on one group for evaluation. It performed well after being painted with high temperature aluminum paint to reflect sunlight spilling over the sun shield.

All flexhose-to-receiver tube connection areas have unsightly sags. Relative motion of the receiver tube caused an increasingly larger inside diameter in the surrounding foam glass insulation, allowing the insulation cover to sag. The new style flexhose apparently eliminates this problem.

Receiver Tubes

Ξ

The discoloration and apparent deterioration of black chrome receiver tube coatings that appeared during the first 6 months of operation seems to have stabilized. The deterioration is substantial in the two highest temperature groups, moderate in the two central groups, and slight in the two lowest temperature groups of collectors within each collector loop.

Receiver Glass Covers

Inadequate end sealing of collector receiver tube glass covers permitted dust intrusion, particularly into tubes at the ends of collector groups. There, sunlight reflection from covers is apparent. Installation of a modified receiver tube insulation cover that abuts the end of the glass cover tube has minimized dust intrusion in a trial conducted on one collector group. The new type flexhose with its modified receiver tube connection also may lessen dirt intrusion.

CaloriaTM Pumps

CaloriaTM leakage from the shaft seal area of the collector subsystem pump was minimized by seal replacement and installation of a system to purge the seal area with carbon dioxide (CO_2) gas during operation in 1980. However, leakage from the vaporizer CaloriaTM pump continued to be substantial. The seal assembly was changed and adjusted, and CO_2 purging was used. However, apparently because hotter oil is being pumped, leakage was a continuing problem. Thus in 1981, a closed system was installed to catch and store oil leaking past the shaft seal of the vaporizer CaloriaTM pump.

Collector pump motor brushes required replacement twice during the year. The SCR motor controller also caused the electrical input circuit breaker to trip at high flow in March 1982. The controller was inspected and cleaned and operated satisfactorily thereafter.

Flow Diversion Valve

The collector manifold value directing CaloriaTM to recirculate or go to storage stuck in the recirculation position in November 1982. The value was programmed to automatically switch from recirculation mode to send oil to storage when the collector outlet oil temperature reached 246°C (475°F). Manual value switching was required after the failure which apparently was caused by a control module malfunction.

Storage Tank

CaloriaTM leakage from flanged manhole covers on the side of the CaloriaTM thermal energy tank was sufficient to contaminate local insulation and yield a dirty tank appearance below the covers. In December 1980, the flanged covers were retightened. Since that time, only the lower, larger of the covers has exhibited significant leakage.

A high level signal from the condensate tank shut down the collector subsystem in January 1982. The control module was found to have malfunctioned. Only about 8 liters of condensate were obtained during the year.

Power Conversion Subsystem

Vaporizer €

-

Vaporizer toluene leakage required retightening of flange bolts on three separate occasions. In July, a piece of gasket was blown out from one flanged pipe

connection. Gasket replacement required removal of a 6 meter long heat exchange tube bundle. It was found that pipe supports interferred with tube bundle removal. Gasket procurement and installation caused the plant to be inoperative for most of 4 days. CaloriaTM leakage from a drain cap also was halted by installation of a new gasket.

The toluene used by the PCM was accidentally contaminated with CaloriaTM in early 1980. The CaloriaTM was removed from the vaporizer by staged distillation in Summer 1980. Some of the material apparently remained in the system and was removed in periodic draining of the vaporizer in succeeding months. About 80L of dark liquid was removed in two draining operations during this past year.

CaloriaTM Flow Controller

The vaporizer CaloriaTM flow control valve required maintenance on two occasions. In March, an air leak in the line to the pneumatic controller was halted. In July, the controller was adjusted to steady the control of flow, which had been somewhat erratic and variable.

Cooling Tower

A bolt broke in September, permitting a fan blade to strike the shroud. The bolt was replaced.

The hard water was treated to prevent mineral buildup on cooler tubes. In addition, "Lime-away" was used effectively to remove scale on one occasion.

The valve controlling rate of water treatment chemical disbursement and the cooling tower float valve each became stuck or clogged during the year and had to be cleaned and reset.

The water supply line froze and broke overnight in December 1981.

Regenerator

A capped vent pipe began leaking toluene. The cap was re-sealed and tightened, stopping the leaking.

Vacuum Pump

Vacuum pump packing and seal required replacement to obtain and maintain sufficient vacuum in September 1981.

Toluene Pump

The toluene boost pump seal was replaced twice during the year, in November 1981 and again in July 1982. In both cases, the pump had begun providing inadequate pressure for turbine lubrication, resulting in PCM shutdowns. The seal also was replaced twice during the previous year of operation. In late July, the boost pump drive motor failed and was replaced.

Turbine Gearbox Lubrication

Turbine gearbox overtemperature signals resulted in PCM shutdown on 3 occasions. The temperature sensor was replaced. Overfilling of the oil in the gearbox and inserting an overrestrictive oil filter also resulted in overtemperature conditions during the year.

Turbine Bearing Lubrication

Turbine lubricant underpressure signals also caused PCM shutdown on 3 occasions. The boost pump seal was replaced after 2 of the incidents; the lubricant filter was changed after the other underpressure shutdown. A check valve also was installed to prevent air from entering the top of the backup lubrication cylinders. This eliminated underpressure shutdowns from occurring immediately following startup.

Turbine-Generator Coupling

Sundstrand engineers felt vibrational forces transmitted from the turbine to the generator might reduce component life. This judgment was based primarily on manufacturer (Sundstrand) experiences at other installations. Thus, new turbine-to-gearbox and gearbox-to-generator couplings were procured. The new turbine-to-gearbox coupling was installed in February. Vibration of auxiliary equipment was substantially reduced during subsequent turbine operation. The sound level and pitch emitted during turbine operation also were altered by the coupling change.

The gearbox-to-generator coupling was found to be very difficult to remove and was not replaced. A key was found to have sheared and then wedged itself between shaft and coupling housing.

Generator-Utility Interconnection

Operator activation of generator synchronization and utility connection controls originally was required during PCM startup and occasionally during its operation. Installation of equipment to automatically balance voltage among the three phases produced by the generator in Summer 1981 eliminated the need for operator intervention. However, the automatic voltage balancing equipment stopped operating in April 1982. Thereafter, operator actions occasionally were required to maintain phase voltage balance.

After a PCM shutdown caused by a low generator power signal, the relay connecting the generator with the utility grid would not automatically reset itself. Outside technician assistance was required to reset the relay. This problem never reoccured.

Automation

Power conversion subsystem start-up originally required monitoring and frequently required operator intervention. Thus, a number of start-up function controls were reprogrammed to facilitate automatic operation in Summer 1981. The reprogramming, in conjunction with sealing of vacuum leaks, installation of phase voltage balancing equipment, changes in CaloriaTM flow control, and installation of a new vaporizer level sensor, resulted in achieving the capability for automatic operation in August 1981.

Until phase voltage balancing equipment stopped operating in Spring 1982, the PCM started up and operated automatically when operated on a daily basis. When PCM

operation was omitted for a day or more, operator assistance with startup usually was required. Assistance was required because input conditions were somewhat different, for example temperatures and vacuum level probably were reduced after an extended inoperative period. The PCM operated automatically on the last 42 days of PCM operation at the end of the year, except for required phase voltage balancing assistance.

Other Equipment

Compressors

The air compressors are outdoors; overnight freezing of water in the dryer delayed startup on one winter morning. The plastic bowl on the air filter was broken during a storm in December. The water bleed-off valve repeatedly stuck in the open position, so was replaced with a valve which functioned reliably. The larger of the two compresors began showing signs of wear during the year and was not operated during the last few months.

Backup Generator

The backup gasoline powered generator was started manually and operated for one half to one hour on a weekly basis to assure automatic operation after a utility outage. The engine failed to start on five occasions; three times during maintenance startups and twice after utility power outages. Those outages occurred during operation in January and early April and there was no apparent collector overheating. Routine maintenance actions, such as cleaning and adjusting distributor points, were needed before the engine would start on each of these occasions.
The pyrheliometer motor failed in September 1981. A new motor was installed. Moisture was removed from the unit twice - in May and June.

Anemometer

The anemometer stopped operating on one occasion. It was cleaned and functioned satisfactorily thereafter.

Flowmeters

The toluene flowmeter sensor/transducer failed during the year and was not repaired. The meter was used only for detailed PCM performance evaluation.

Magnetic Tape Recorder

The tape drive malfunctioned in October 1981. Factory repair required 4 months during which a substitute rental unit was used to record data. The tape drive again failed in October 1982. This was the fifth time that the magnetic tape recorder required repair in three years of plant operation. Data gaps and discrepancies were found when magnetic tapes were removed following tape drive failures. These caused substantial data recovery problems and resulted in some data losses.

Summary

Equipment changes made during the first two years of plant operation increased equipment reliability, improved plant performance, and reduced operator requirements. Collector subsystem changes included lamination of reflective panels with aluminized acrylic film (FEK-244) and procurement of tracker systems of a new design. In the power conversion subsystem, the vaporizer level sensor was replaced, vacuum leakage was stopped and controls were reprogrammed to improve performance and permit automatic operation.

Equipment problems prevented operation on only a few days during the past year. The equipment problems - a toluene pump seal, the generator relay, a vaporizer gasket, the Caloria pump controller - were resolved by plant operators with telephonic assistance from the manufacturers and use of local repair services. Third year operation did result in some new equipment problems, e.g. flow diversion valve control failure, flexhose leakage. These may have been among the first of the "lifetime" type of problems discovered by daily operation for three years.

13. Operating Requirements

Personnel

The Coolidge Solar Irrigation Facility operated on a daily basis throughout the year. During the first two years of plant operation, one or more individuals were in attendance durng all operating hours. These individuals performed operational, repair and maintenance tasks, recorded data and incidents of interest, explained plant operation to visitors and made plant equipment improvements.

The equipment improvements made possible fully automatic operation of the solar facility. Thus during the third year of plant operation described in this report, the facility was operated by one full-time technician with some student assistance. Plant operation was not attended full time, but operator attendance was mandated during PCM startup as a safety precaution. The operator also made a daily inspection of equipment condition and operational supply status and recorded information of interest.

During the past year, the plant operated automatically on routine incident-free days. The collector subsystem operated completely automatically every day except for the few occasions when equipment malfunctions necessitated repair efforts. The PCM also operated automatically when operated every successive day. However when lack of thermal energy prevented operation for a day or more, operator control actions often were required to effect a start-up of PCM operation. These actions usually involved varying the preprogrammed warm-up sequence and reestablishing adequate vacuum.

Therefore, plant operational tasks required an average of only about one hour per day of operator time. The tasks were: monitoring and, if necessary, assisting with PCM start-up, inspecting equipment for changes in condition, checking supply status and replenishing supplies as required, and recording data.

Supplies

Operational supplies included cooling tower water and water treatment chemicals, carbon dioxide to purge CaloriaTM pump seal areas, and nitrogen to blanket CaloriaTM in the energy storage tank. Toluene was required to replace that lost due to leakage. Electrical energy required to operate plant equipment and condition the control building environment was charged against plant electricity production.

Operational supplies cost about \$240 per month, Table 13-1. Cooling tower water was purchased from the municipality. Water and water treatment chemicals each cost about \$60 per month, together totalling over 50 percent of the operational supply cost. Carbon dioxide and nitrogen gas cost about \$60 per month, largely for the carbon dioxide. Replacement toluene cost \$50 per month. Gasoline was used by the backup gasoline-powered electrical generator during occasional utility outage and weekly maintenance operation.

Use of less costly water, elimination of the need for carbon dioxide gas purging of pump seals and decreased toluene loss could reduce operational supply costs substantially. It is estimated that the cost of operational supplies for the Coolidge facility could be reduced to \$100-150 per month with implementation of these changes.

Table 13-1. Monthly operational supply cost.

OPERATIONAL SUPPLIESCooling tower water60Water treatment chemicals65Toluene50Nitrogen2Carbon dioxide60Gasoline3TOTAL\$240/mo

14. Maintenance Requirements

Personnel

Maintenance activities included cleaning, lubrication and adjustment efforts required to keep plant equipment in operational condition, help maximize plant energy production, and maintain good site appearance. Maintenance required an average of about 3 hours per day or 15 hours per week, Table 14-1.

Nearly 2/3 of the maintenance effort, or 10 hours per week, was devoted to the collector subsystem. Perhaps half of the collector subsystem maintenance effort was spent washing collectors and maintaining site appearance. Collectors were washed by rainfall when possible and on a quarterly basis by pressure washer. Pressure washing of the collector field required about 4 man-days effort. Weed control was the principal task required to maintain site appearance.

The remaining collector maintenance time was used to inspect equipment and check collector alignment, lubricate equipment, and perform troubleshooting missions. Most troubleshooting efforts involved determination of the cause of a control malfunction and repair or replacement of the identified component. An example problem was the failure to correctly track the sun by a collector group. The problem was caused, at various times, by control relay and motor failures and sun sensor malfunctions. Another problem, caused by a failure in the pump motor controller, was initially indicated by abnormal CaloriaTM flow rate readings.

Most of the rest of the solar facility maintenance effort, about an hour a day, was devoted to the power conversion subsystem. The cooling tower required a substantial portion of this time. Cooling tower water was tested periodically and treatment chemical addition adjusted as required. Dirt had to be removed from the tank and scale from the cooling tubes 3-4 times a year. PCM lubrication and filter servicing required a small amount of operator time.

The remaining PCM mainteance time was occupied by troubleshooting efforts. Fluid leakage made ncessary replacement of the toluene pump seal, adjustment of a pneumatic control valve and replacement of a gasket in the vaporizer heat exchange unit during the past year. Other troubleshooting efforts involved the control system. For example, high turbine bearing temperature readings caused automatic PCM shutdown. A malfunctioning temperature sensor and inadequate oil pressure caused this problem.

Air compressors, control building and other equipment common to both collector and power conversion subsystem operation also required some maintenance. This effort was included in the quantification of collector and PCM maintenance activities.

Supplies

Maintenance supplies included lubricants and filters, fuses and lamps, cleansing products, pesticides, and office supplies, Table 14-2. Lubricants were required for collector drive gearboxes and the PCM gearbox; filters were replaced in the PCM, air compressor and data logger. A number of facility control system fuses, relays and lamps required replacement. Toluene boost pump and vaporizer gaskets also were replaced. Herbicides were used to control weeds in the collector field, insecticides

to kill insects in the control building. Cleansing products were needed to wash collectors and maintain control building appearance. Office supplies were used to record data.

In addition to the supplies, some maintenance service also was purchased. Electric motor rebuilding and welding services were included in the repair services accounting summarized in Table 14-1. Maintenance supplies and services cost an estimated \$260 in 1981-82. It is believed that increased equipment reliability could reduce this cost to less than \$200 per month.

Month	Collector	Power Conversion	Total	
September	37	13	50	
October	34	8	42	
November	51	22	73	
December	68	11	79	
Januarv	35	16	51	
February	43	38	81	
March	53	23	76	
April	46	19	6 5	
May	11	14	25	
June	48	28	76	
July	26	104	130	
August	27	13	40	
September	34	12	46	
Average	39	25	64	

Table 14-1. Monthly personnel maintenance effort (hours)

Table 14-2. Monthly maintenance supply cost.

MAINTENANCE S	SUPPLIES &	SERVICES	
Lubricants & Filters Fire Protection Replacement Parts & Repair S Office Supplies	Services		25 25 200 10
		TOTAL	\$2607mo

15. Project Termination

The Coolidge solar power plant was operated for over three years. During that time, subsystem energy performance, equipment reliability and plant operating and maintenance requirements were determined for the solar facility. A number of equipment modifications were made to improve performance and evaluate alternative designs. The changes included replacing reflective panels to improve collector performance, replacing collector tracker systems and vaporizer level sensor to obtain more reliable operation, removing the buffer tank and collector loop flow control valves to evaluate operation of a simpler system and adjusting and changing controls to permit fully automatic operation. The effect of these changes then was evaluated during subsequent operation and testing. Operational experiences and performance data were reported to manufacturers on a monthly basis and summarized in annual reports.

The plant was operational at the time of project termination; continued operation would have obtained additional information of interest to researchers, designers and manufacturers. The additional information could have included discovery of new equipment problems and solutions and a better indication of equipment lifetimes. Some equipment experienced their first problem during the last months of plant operation (for example, the collector flow diversion valve controller) while other equipment had not yet been fully tested (for example, most of the new generation collector tracking systems were installed during the past year). Energy performance changes with age and use could have been monitored with periodic tests. A better indication of operating and maintenance costs also could have been obtained through continued solar facility operation. The plant operated completely automatically for 42 days at the end of the year.

However, operation of Coolidge solar facility is not cost effective. Annual operating and maintenance costs were higher than the return from energy sales. This was expected due to the configuration of the experimental facility - the collector field was undersized relative to the energy storage and power conversion subsystems. Therefore since research support ended, the operational evaluation project was terminated at the end of the third year of solar plant operation.

The Coolidge solar power pant became the property of Dalton Cole, Jr., owner of the farm on which the plant is located, on October 1, 1982. The University of Arizona then decommissioned the plant for Mr. Cole. The mothballing process consisted of cooling CaloriaTM and isolating the storage tank, removing toluene from and venting the PCM, lubricating equipment and discontinuing most utility services.

16. References

- 1. D. Duffy, M. Matteo, and D. Rafinejad, Design, Construction and Operation of a 150-kW Solar-Powered Irrigation Facility. ALO/4159-1. Price: printed copy, A07; microfiche, A01.
- 2. L.E. Torkelson, 150 kW Solar Irrigation Project Test and Evaluation Plan, SAND80-1568 (Albuquerque: Sandia National Laboratories, August 1980). Price: printed copy, A03, microfiche, A01.
- 3. L.E. Torkelson and D.L. Larson, 1980 Annual Report of the Coolidge Solar Irrigation Project, SAND80-2378 (Albuquerque: Sandia National Laboratories, February 1981, reprinted July 1981). Price: printed copy, A08; microfiche, A01.
- 4. L.E.Torkelson and D.L. Larson, 1981 Annual Report of the Coolidge Solar Irrigation Project, SAND82-0521 (Albuquerque: Sandia National Laboratories, June 1982) Price: printed copy, A07; microfiche, A01.

(All of these documents are available from

National Technical Information Service U.S. Department of Commerce 5285 Port Royal Rd. Springfield, VA 22161.

NTIS Price Codes are shown with each reference.)

Custom Engineering, Inc. 2805 South Tejon Street Englewood, CO 80110 Attn: C. Demoraes

Datron Systems Inc. 20700 Plummer St. Chatsworth, CA 91311

DSET Black Canyon Stage P. O. Box 185 Phoenix, AZ 85029 Attn: G. A. Zerlaut

Donnelly Mirrors, Inc. 49 West Third Street Holland, MI 49423 Attn: J. A. Knister

Dow Corning Corporation Midland, Mich. 48640 Attn: R. S. Woodward G. A. Lane

Electric Power Research Institute 3412 Hillview Avenue Palo Alto, CA 94303 Attn: E. A. Demaeo

Energetics Corporation 1201 Richardson Dr., Suite 216 Richardson, TX 75080 Attn: Lee Wilson

Energy Technology Engineering Center P. O. Box 1449 Canoga Park, CA 91304 Attn: J. Roberts

E-Systems, Inc. Energy Tech Center P. O. Box 226118 Dallas, TX 75266 Attn: R. R. Walters

Eurodrive, Inc. 2001 W. Main Street Troy, OH 45373

Florida Solar Energy Center 300 State Road, Suite 401 Cape Canaveral, FL 32920 Attn: Library

Ford Aerospace Ford Road Newport Beach, CA 92663 Attn: Al Gates

Ford Motor Company Glass Div., Technical Center 25500 West Outer Drive Lincoln Park, MI 48246 Attn: V. L. Lindberg Foster Wheeler Solar Devel. Corp. 12 Peach Tree Hill Road Livingston, NJ 07039 Attn: M. D. Garber General Atomic P. O. Box 81608 San Diego, CA 92138 Attn: D. Williamson General Motors Harrison Radiator Division Lockport, NY 14094 Attn: L. Brock Georgia Institute of Technology Atlanta, GA Attn: T. Stelson Georgia Power Co. (3) 270 Peachtree P. O. Box 4545 Atlanta, GA 30302 Attn: J. Roberts W. Davis E. Ney Haveg Industries, Inc. 1287 E. Imperial Highway Santa Fe Springs, CA 90670 Attn: J. Flynt Highland Plating 1128 N. Highland Los Angeles, CA 90038 Attn: M. Faeth Honeywell, Inc. Energy Resources Center 2600 Ridgeway Parkway Minneapolis, MN 55413 Attn: J. R. Williams Hughes Industrial Electronics Group 23822 Hawthorne Blvd. Suite 200 Torrance, CA 90509 Attn. K. Lian Insights West

14022 Condessa Drive Del Mar, CA 92014 Attn: David W. Kearney AAI Corporation P. O. Box 6787 Baltimore, MD 21204 Acurex Aerotherm (2) 485 Clyde Avenue Mountain View, CA 94042 Attn: J. Vindum H. Morse Advanco Corporation 999 N. Sepulveda Blvd. Suite 314 El Segundo, CA 90245 Alpha Solarco 1014 Vine Street Suite 2230 Cincinnati, OH 45202 Anaconda Metal Hose Co. 698 South Main Street Waterbury, CT 06720 Attn: W. Genshino Applied Concepts Corp. 2501 S. Larimer County Rd. 21 Berthoud, CO 80513 Attn: Stan Pond Applied Concepts Corp. P. O. Box 2760 Reston, VA 22090 Attn: J. S. Hauger BDM Corporation 1801 Randolph Street Albuquerque, NM 87106 Attn: J. Alcone W. E. Schwinkendorf Battelle Memorial Institute Pacific Northwest Laboratory P. O. Box 999 Richland, WA 99352 Attn: K. Drumheller Bechtel National, Inc. P. O. Box 3965 50 Beale Street San Francisco, CA 94119 Attn: E. Y. Lam

Black & Veatch P. O. Box 8405 Kansas City, MO 64114 Attn: J. C. Grosskreutz Boeing Engineering & Construction PO Box 3707 Seattle, WA 98124 Attn: J. R. Gintz Budd Company (The) Fort Washington, PA 19034 Attn: W. W. Dickhart Budd Company (The) Plastic R&D Center 356 Executive Drive Troy, MI 48084 Attn: J. N. Epel Burns & Roe 800 Kinderkamack Rd. Oradell, NJ 07649 Attn. G. Fontana Burns & Roe, Inc. 185 Crossways Park Dr. Woodbury, NY 11797 Attn: R. J. Vondrasket J. Wysocki Carrier Corp. Energy System Div. Summit Landing PO Box 4895 Syracuse, NY 13221 Attn: R. A. English Chicago Bridge and Iron 800 Jorie Blvd. Oak Brook, IL Attn: J. M. Shah Colorado State University Ft. Collins, CO 80521 Attn: T. G. Lene Columbia Gas System Service Corp. 1600 Dublin Road Columbus, OH 43215 Attn: J. Phillip Dechow Corning Glass Company (2) Corning, NY 14830 Attn: A. F. Shoemaker W. Baldwin

Shelltech Associates 809 Tolman Drive Stanford, CA 94305 Attn: C. R. Steele

*

Solar Kinetics, Inc. P. O. Box 47045 Dallas, TX 75247 Attn: J. A. Hutchison

Solar Steam Suite 400 Old City Hall 625 Commerce Street Tacoma, WA 98402 Attn: D. E. Wood

Southwest Research Insitute P. O. Box 28510 San Antonio, TX 78284 Attn: D. M. Deffenbaugh

Stanford Research Institute Menlo Park, CA 94025 Attn: A. J. Slemmons

Stearns-Roger 4500 Cherry Creek Denver, CO 80217 Attn: W. R. Lang

W. B. Stine 1230 Grace Drive Pasadena, CA 91105

Sun Gas Company Suite 930, 3 N Park E Dallas, TX 75221 Attn: R. I. Benner

Sundstrand Electric Power 4747 Harrison Avenue Rockford, IL 61101 Attn: A. W. Adam

Sunpower Systems 510 S 52 Street Tempe, AZ 85281 Attn: W. Matlock

Suntec Systems, Inc. 2101 Wooddale Drive St. Paul, MN 55110 Attn: J. H. Davison

Swedlow, Inc. (2) 12122 Western Avenue Garden Grove, CA 92645 Attn: E. Nixon M. M. Friefeld

3M-Decorative Products Div. 209-2N 3M Center St. Paul, MN 55144 Attn: B. Benson 3M-Product Development Energy Control Products 207-1W 3M Center St. Paul, MN 55144 Attn: J. B. Roche Texas Tech University Department of Electrical Engineering PO Box 4709 Lubbock, TX 79409 Attn: E. A. O'Hair Toltec Industries, Inc. 40th and East Main Clear Lake, IA 50428 Attn: D. Chenault US Department of Energy (4) Albuquerque Operations Office PO Box 5400 Albuquerque, NM 87185 Attn: G. S. Hearron D. L. Krenz G. N. Pappas J. Weisiger US Department of Energy. Division of Energy Storage Systems Washington, DC 20585 Attn: J. Gahimer US Department of Energy (6) Division of Solar Thermal Tech. Washington, DC 20585 Attn: G. W. Braun J. E. Greyerbiehl C. McFarland J. E. Rannels M. Scheve F. Wilkins US Department of Energy San Francisco Operations Office 1333 Broadway, Wells Fargo Bldg. Oakland, CA 94612 Attn: R. W. Hughey W. L. Lambert University of Houston Houston, TX 77004 Attn: Lorin Vant-Hull University of New Mexico Department of Mechanical Eng. Albuquerque, NM 87113 Attn: M. W. Wilden W. A. Gross

Institute of Gas Technology 34245 State Street Chicago, IL 60616 Jacobs Engineering Co. 251 South Lake Avenue Pasadena, CA 91101 Attn: Meyer Schwartz Jet Propulsion Laboratory (3) 4800 Oak Grove Drive MS 502-419 Pasadena, CA 91103 Attn: J. Becker 1 J. Lucas A. Marriott LaJet Energy Co. 3130 Antilley Rd. Abilene, TX 79606 Attn: Monte McGlaun Lawrence Livermore Laboratory University of California P. O. Box 808 Livermore, CA 94500 Attn: W. C. Dickinson Los Alamos National Laboratory (2) Los Alamos, NM 87545 Attn: J. D. Balcomb Martin Marietta Corp. P. O. Box 179 MS S8120 Denver, CO 80201 Attn: P. Brown T. Tracy McDonnell-Douglas Astronautics Company (3) 5301 Bolsa Avenue Huntington Beach, CA 92647 Attn: J. B. Blackmon J. Rogan D. Steinmeyer Mechanical Technology Inc. 968 Albany Shaker Road Latham, NY 12110 Attn. H. M. Leibowitz Midwest Research Institute 425 Volker Blvd. Kansas City, MO 64110 Attn: R. L. Martin J. Williamson

Naval Research Laboratory E. O. Hulburt Center for Space Research Washington, DC 20375 Attn: T. A. Chubb New Mexico State University Solar Energy Department Las Cruces, NM 88001 Owens-Illinois 1020 N. Westwood Toledo, OH 43614 Attn: Y. K. Pei PPG Industries One Gateway Center Pittsburgh, PA 15222 Attn: C. R. Frownfelter Parsons of California 3437 S. Airport Way Stockton, CA 95206 Attn: D. R. Biddle Power Kinetics, Inc. 1223 Peoples Avenue Troy, NY 12180 Attn: Mark Rice Rocket Research Company Redmond, WA 98052 Attn: C. H. Li E. W. Smith Rockwell International Energy Systems Group 8900 De Soto Avenue Canoga Park, CA 91304 Attn: T. Springer Schott America 11 East 26th Street New York, NY 10010 Attn: J. Schrauth Solar Energy Information Center 1536 Cole Blvd. Golden, CO 80401 Attn: R. Ortiz Solar Energy Research Institute (4) 1617 Cole Blvd. Golden, CO 80401 Attn: B. L. Butler G. Gross B. P. Gupta J. Thornton

Viking 3223 N. Verdugo Road Glendale, CA 91208 Attn: G. Goranson Winsmith Div. of UMC Industries, Inc. Springville, NY 14141 Attn: R. Bhise Wyle Laboratory 7800 Governor's Drive West Huntsville, AL 35807 Attn: R. Losey 400 R. P. Strombert 1510 D. B. Hayes 400 1520 T. B. Lane R. G. Kepler 1810 R. E. Whan 1820 1830 M. J. Davis 1840 N. J. Magnani 2540 K. L. Gillespie 2541 J. P. Abbin 3161 J. E. Mitchell 3600 R. W. Hunnicutt Attn: K. D. Harper 3640 3700 R. R. Russell 7530 W. E. Caldes 7550 F. W. Neilson 8540 J. B. Wright 8452 A. C. Skinrood 8453 W. G. Wilson 8454 J. B. Woodard 6000 E. H. Beckner 6200 V. L. Dugan 6220 D. G. Schueler 6221 J. F. Banas 6222 J. V. Otts 6223 E. L. Burgess 6224 E. C. Boes 6225 R. H. Braasch 6227 J. A. Leonard 8214 M. A. Pound 3141 L. J. Erickson (5) 3151 W. L. Garner (3) 3154-3 C. Dalin (20) for DOE/TIC