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INTRODUCTION 

Stearns-Roger Service Co. has performed a study of a number of different thermodynamic 
electric power generating cycles under funding by the Solar Energy Research Institute 
(SERI) of Golden, Colorado. 

The purpose of the study was to provide energy conversion system efficiency data as a function 
of maximum system temperature for each of the thermodynamic cycles as defined in the 
contract Statement of Work. The energy conversion system was assumed to be that portion 
of a solar power system containing the prime mover. 

The data generated by this study will be used by SERI in evaluating the effects of various 
solar thermal transport and storage systems on the power generating system. 

The approach used in the analysis and presented in this report was to: 

1. Calculate the performance of the reference cycle as provided by SERI in the work 
statement. 

2. Maintain a constant cycle heat input and rejection temperature for each non-reference 
condition as determined from the reference cycle. 

3. Analyze each non-reference system assuming that it is operating at its design point. No 
11 off-design II conditions were analyzed. 

4. Assume component efficiencies based on current design practice derived from the 
literature or from Stearns-Roger power plant experience. 

5. Develop a schematic of the cycle components together with the cycle state points for 
each of the reference cycles. 

6. Calculate cycle performance for variable maximum cycle temperatures for each of 
the reference cycles. These data are presented as curves of cycle efficiency and ratios of 
cycle efficiency to reference cycle efficiency vs. maximum temperature. 

7. Describe each cycle together with the assumptions used and cycle limitations. 

A total of eleven cycles were evaluated for this study including steam Rankine (reheat and 
non-reheat), open and closed Brayton, organic Rankine and a total energy system using a 
steam Rankine cycle. 

Existing or specially developed digital computer programs were used to perforn1 the individual 
cycle calculations. 

The report is divided into eleven Sections. Each Section contains a brief description of the 
cycle analyzed with the assumptions used, and the cycle schematic and efficiency cunres. 



No conclusions or comparisons between cycles are drawn from this study since the sole 
purpose of the study is to present cycle performance data to be used by SERI in a further 
study of solar power generating storage systems. 
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SECTION 1 
ELEMENT lA - STEA1"I RANKINE NON-REHEAT CYCLE 

1.1 INTRODUCTION 

Cycle heat balances were performed for a 100 MWe (nominal) steam Rankine, non-reheat 
cycle incorporating a five heater feedwater heating system. The cycle was duplicated 
from that of the Barstow 100 MWe Commercial Plant using steam from a solar receiver. 

1.2 CYCLE DESCRIPTION 

For operation on receiver steam the throttle conditions are 1465 psia (10.10 x 106 Pa) 
and 950°F (510°C) for the reference cycle. At these throttle conditions and constant 
final feedwater conditions of 2600 psia (17.93 x 106 Pa) and 425.5°F (218.6°C), a 
heat input to the cycle was determined. This heat input was held constant for the 
varying throttle temperatures and pressures studied. The throttle temperatures were 
varied from the reference cycle conditions down to a temperature 825°F ( 441 °C) 
which yielded approximately 84 percent minimum quality steam leaving the last stage 
of the turbine, and up to 1100°F (593°C) (the upper limit for existing steam turbine 
technology). In actual operation, it is expected that the last stage quality will not be 
permitted to drop significantly below 88 percent. Generator output was allowed to 
vary with throttle conditions. 

A cycle schematic showing all component efficiencies is presented in Figure 1-1, 
with a plot of cycle efficiency versus throttle temperature at different pressures shown 
in Figure 1-2. The turbine and pump efficiencies were obtained from data given in 
Reference 1. The cycle efficiencies are presented as gross (total energy output divided 
by total energy input to the cycle) and net (assuming 8 percent of total energy output 
including pumping power goes to auxiliary demand). A plot of the ratio of non-reference 
cycle efficiency to reference cycle efficiency versus throttle temperature and pressure 
is shown in Figure 1-3, and generator output (gross and net) versus throttle temperature, 
in Figure 1-4. 

The turbine used in this model is a standard-frame General Electric utility, non-reheat 
steam turbine exhausting at an assumed 2.5 in. HgA (0.0984 mm HgA) to a tube and 
shell condenser. The turbine's five extractions are connected to three closed high
pressure heaters, an open deaerating heater and one closed low-pressure heater operating 
at various pressures. The heater operating characteristics were duplicated from the 
Barstow Commercial Solar Plant as documented in Reference 1, and held constant for 
the variable throttle conditions. The calculation procedure used to analyze this system· 
is as described in the appendix and Reference 2. 

For the case of steam supplied entirely from thermal storage (admission steam), the 
steam was admitted to the turbine downstream of normal throttle steam (receiver 
steam). Because of the point of admission and the low thermodynamic properties of 
the steam (365 psia (2.52 x 106 Pa) and 565°F (292°C)), the three top heaters are 
taken out of service for this operating mode. A flow of 3 to 5 percent of admission 

1-1 



steam is required for cooling the high-pressure turbine stages bypassed by the admission 

steam. This steam does no work in the high-pressure stages, however, it does perform 

work as it recombines with the admission steam. 

Again, the heat input to the reference cycle was determined and held constant for the 

non-reference cases. Also, the admission steam temperature was varied from the 

reference cycle admission temperature down to a temperature of 500°F (260°C) yielding 

a minimum 84 percent steam quality leaving the turbine, up to 925°F ( 496°C). Again, 

the last stage quality will actually be a minimum of approximately 88 percent. At the 

constant heat input, several throttle pressures were studied to illustrate the effects on 

the cycle if the admission point were varied up to the normal (receiver operation) 

pressure (1465 psia). 

A reference cycle diagram for the admission steam is shown in Figure 1-5. Plots of the 

gross and net cycle efficiencies versus throttle temperature at different pressures are 

shown in Figure 1-2, assuming 6 percent auxiliary power usage. A plot of the ratio of 

non-reference cycle efficiency to reference cycle efficiency versus throttle temperature 

and pressure is shown in Figure 1-3, and a plot of generator output (gross and net) 

versus throttle temperature and pressure, in Figure 1-4. 

REFERENCES 

1. McDonnell Douglas Astronautics Company, "Central 
Receiver Solar Thermal Power System, Phase 1," 
(Volume 6, EPGS, MDC-G-6776), October 1977. 

2. General Electric Company, "A Method for Predicting 
the Performance of Steam Turbine Generators 
16,500 KW and Larger," (GER-2007C) Revised July 
1974. 
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NOTES 
1- SYMBOLS 

W = FLOW,LBS/HR 
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SCI\LE 

NONE 

2- WORKING FLUID: STEAM 
3- COMPONENT EFFICIENCIES 
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SECTION 2 
ELEMENT IB - REHEAT STEAM RANKINE CYCLE 

2.1 INTRODUCTION 

Cycle heat balances were performed for a 100 MWe (nominal) reheat steam Rankine 
cycle employing six stages of regenerative feedwater heating. The cycle is based on the 
Advanced Central Receiver Power System using steam generated by a liquid metal 
solar receiver system. The turbine exhausts to a condenser at 2.5 inches HgA 
(8.46 x 103 Pa). 

The cycle was analyzed using an in-house computer program (D 135B), which performs 
a mass and energy balance around the specified cycle. The shape of the turbine expansion 
curve is as specified in Figure 25 in Reference I. The program accesses subroutines to 
calculate the fluid state conditions around the cycle using the relationships specified in 
the ASME steam tables. 

2.2 CYCLE DESCRIPTION 

The throttle conditions used for the reference cycle are 2400 psi a (16. 5 5 x 106 Pa) and 
1000°F (537.8°C), with the reheat temperature of 1000°F (537.8°C). The final feed water 
temperature selected is 480°F (248. 9°C), which allows a reasonable pressure ratio 
across the high pressure turbine. A 10 percent pressure loss is assumed across the steam 
generator, and a pressure loss of 15 percent is assumed across the reheater. 

For this study the total heat input to the cycle was held constant while the throttle 
conditions and reheat temperatures were varied. The throttle and reheat temperatures 
were varied over the range of 800°F to l l00°F (426.7°C to 593.3°C) and the throttle 
pressure was varied over the range of 1250 psia to 2400 psia (8. 62 x 106 Pa to 
16.55 x 106 Pa). The lower temperature limit was selected to limit the turbine exhaust 
steam quality to 88 percent and the upper temperature limit was selected as the limit 
of existing steam turbine technology. The throttle pressures selected are those normally 
used in the power industry. Representative high pressure and low pressure turbine 
efficiencies were calculated using the method specified in Reference 1. The representative 
turbine efficiencies were based on the throttle conditions of the reference cycle. The 
turbine efficiencies were held constant over the range of throttle conditions in order to 
prevent distortion of the effect of throttle conditions on overall cycle efficiency. In 
reality, the efficiency of the turbines will increase slightly as the amount of superheat 
of the throttle steam increases. Generator output was allowed to vary with the throttle 
conditions. 

Turbine extractions provide steam to three high-pressure closed feedwater heaters, an 
open deaerating feedwater heater, and two low-pressure closed feedwater heaters. The 
heater performance characteristics are derived from standard design values and are 
held constant over the range of throttle conditions. Most turbine steam leakages are 
not accounted for in the cycle, as these leakages are small when compared to other 
cycle flows. One leakage was included, the shaft leakage from the high pressure turbine 
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to the low pressure turbine, as this is three percent of the throttle flow. The neglected 
leakages include shaft leakage from the exhaust of the HP turbine, the sealing flows to 
the LP turbine shaft seals, and packing leakage from the turbine stop and control 
valves. The total of these leakages is typically less than one percent of the throttle 
flow in current commercial units. 

A cycle schematic showing component efficiencies and cycle flow data is shown in 
Figure 2-1 for the base cycle. Plots of cycle efficiency versus throttle temperature 
are shown in Figure 2-2 and Figure 2-3. A normalized representation of cycle efficiency 
with respect to base cycle efficiency versus throttle temperature is shown in Figure 2-4. 
A plot of generator output versus throttle temperature is shown in Figure 2-5. Gross 
cycle efficiency is defined as the total cycle input energy divided into the generator 
output. Net cycle efficiency is defined as the total cycle input energy divided into the 
generator output less the plant auxiliary power requirement (which is assumed to be 
8 percent of the generator output). Plant auxiliary power includes that power used by 
the boiler feed pump, condensate pump, circulating water pump, controls, plant 
lighting, plant HV AC, solar collector field usage, cooling tower fans, etc. 

REFERENCE 

1. General Electric Company, "A Method for Predicting 
the Performance of Steam Turbine Generators 
16,500 KW and Larger," (GER-2007C) Revised July 
1974. 
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SECTION 3 
ELEMENT 2- OPEN REGENERATIVE BRAYTON CYCLE 

3.1 INTRODUCTION 

Cycle heat balances were performed for a 100 MWe (nominal) open regenerative, Brayton 
cycle. Heat input to the cycle is from a solar receiver/thermal storage system and from 
an oil fired air heater. 

The cycle was analyzed using a computer program based on thermodynamic relationships 
contained in Reference 1 to perform the required mass and energy balance around the 
cycle. The program assumes a constant specific heat for the working fluid. 

3.2 CYCLE DESCRIPTION 

The reference cycle for this element is composed of a compressor with an efficiency of 
80 percent and a pressure ratio of 4. 75. Inlet air is compressed and discharged to the 
recuperator. Cooling air for the turbine is diverted from the compressor discharge to 
various parts of the turbine. Cooling air which is injected into the turbine in the flow 
path does useful work, while cooling air going to the turbine casing does no work. 
A general industry guide was used to determine how much of the total system flow was 
used as cooling air which did no work in the turbine. This guide states that cooling air 
is required at a turbine inlet temperature of l 700°F (926. 7°C) and will be one percent 
of the compressor flow for every 100°F (55.6°C) of temperature increase. 

The compressor flow is ducted to the recuperator where it is heated by the turbine 
exhaust air. For this cycle, the recuperator effectiveness is 90 percent and a pressure 
drop of two percent is assumed across the recuperator. The air temperature is further 
increased by the solar receiver/themial storage system to a temperature of 1250°F 
(676. 7°C). A pressure drop of three-and-one-half percent is assumed across the solar 
system. The air is finally heated to 2000°F (1093.3°C) by the oil-fired air heater. A 
pressure drop of one percent is assumed across the heater. The hot air is expanded 
through the turbine and produces shaft work which drives the compressor and the 
generator. The turbine efficiency used for this cycle is 90 percent. The air from the 
turbine exhaust passes through the recuperator where it is cooled by air from the 
compressor. A pressure drop of two percent is again assumed across the recuperator. 
The spent air is then exhausted to the atmosphere. 

The turbine and compressor efficiencies, the recuperator effectiveness, and the amount 
of cooling air required are based on verbal information from several industry sources, 
Reference 2. These values are considered to be conservative. 

For this study, the generator output was held constant for the non-reference cycles while 
the pressure ratio of the compressor was varied over the range of 2 to 10. The turbine 
inlet temperature was held at a constant 2000°F ( 1093.3°C). As the compressor pressure 
ratio is increased, the pressure ratio of the turbine also increases. The exhaust temperature 
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of the compressor increases and the exhaust temperature of the turbine decreases with 
increasing pressure ratios. The overall effect is to reduce the duty of the recuperator. 
This relationship is shown in Figure 3-1. 

For any specific compressor ratio the relationship between the temperature of the air 
out of the solar receiver/thermal storage system and amount of oil burned in the air 
heater can be calculated. In defining this relationship it is assumed that the generator 
output and the turbine inlet temperature are constant. This relationship is shown in 
Figure 3--2. 

The cycle schematic showing component efficiencies and reference cycle flow data is 
shown in Figure 3-3. A plot of cycle efficiency versus compressor pressure ratio is 
shown in Figure 3-4. A normalized representation of cycle efficiency with respect to 
base cycle efficiency versus compressor pressure ratio is shown in Figure 3-5. 

Gross cycle efficiency is defined as the total cycle input energy divided into the generator 
output. Net cycle efficiency is defined as the total cycle input energy divided into the 
generator output less the plant auxiliary requirement (which is assumed to be 8 percent 
of the generator output). 

REFERENCES 

1. "Gas Dynamics", A. D. Lewis, 1964. 

2. Telephone conversations with manufacturers concerning 
turbine efficiencies, compressor efficiencies, recuperator 
effectiveness, and cooling flows. 
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SECTION 4 
ELEMENT 3A - STEAM RANKINE NON-REHEAT CYCLE 

4.1 INTRODUCTION 

This cycle is similar to Element IA, but is modeled after the Barstow 10 MWe Pilot 
Plant, Reference 1. A four-heater feedwater system (including two closed high-pressure 
heaters, one open deaerating heater and one closed low-pressure heater) is utilized. The 
gland steam condenser is eliminated from the feedwater system for this cycle 
configuration. 

4. 2 CYCLE DESCRIPTION 

For throttle steam supplied from the receiver, the steam conditions are 1465 psia 
(10.10 x 106 Pa) and 950°F (510°C). The turbine exhaust conditions and basis for 
throttle temperature and pressure variations are identical to Element 1 A for receiver 
operation. The throttle temperatures were varied from 800°F (427°C) up to l I00°F 
(593°C), while holding total heat input to the cycle constant. These calculations were 
based on the method described in the Appendix and Reference 2. 

For the case of operation from thermal storage, the admission steam conditions are 
384. 7 psia (2.65 x 106 Pa) and 525°F (274°C), with 5 percent of admission steam used 
for cooling the high-pressure turbine. The two top heaters are out of service for operation 
from thermal storage. Throttle temperatures were varied from 500°F (260°C) up to 
750°F (399°C), using last stage quality as an indicator of the lower temperature limit 
and holding heat input constant. Throttle pressures were varied to illustrate the effects 
on the cycle of changing the admission point up to the normal admission (receiver 
operation) pressure. 

Reference cycle diagrams are presented as Figure 4-1 (receiver operation) and 
Figure 4-2 (thermal storage operation), with plots of gross and net cycle efficiencies 
versus throttle temperature and pressure given in Figure 4-3, for receiver and thermal 
storage operation (assuming 8 percent and 6 percent for total auxiliaries, respectively, 
including pumping power). Plots of the ratio of non-reference cycle efficiency to 
reference cycle efficiency versus throttle temperature and pressure, and generator 
output (gross and net) versus throttle temperature and pressure are shown in Figures 
4-4 and 4-5. 

REFERENCES 

1. McDonnell Douglas Astronautics Company, "Central 
Receiver Solar Thermal Power System, Phase 1," 
(Volume 6, EPGS, MDC-G-6776), October 1977. 

2. General Electric Company, "A Method for Predicting 
the Performance of Steam Turbine Generators 
16,500 KW and Larger," (GER-2007C) Revised July 
1974. 
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SECTION 5 
ELEMENT 3B - ORGANIC RANKINE CYCLE 

5 .1 INTRODUCTION 

Performance data were calculated for the reference cycle as defined in the project 
statement of work for a 150 KWe net generation, organic Rankine Cycle Power System. 
Toluene (Monsanto Chemical Co. designation CP-25) was used as the working fluid 
as specified in the statement of work. 

5.2 CYCLE DESCRIPTION 

The reference cycle is based on a maximum boiler outlet temperature of 350°F (176. 7°C) 
saturated. Saturation pressure is 71.0 psia (489.54 x 1 Q3 Pa). 

The Organic Rankine Cycle is identical, thermodynamically to a steam Rankine cycle 
used in large utility generating plants, however due to the thermal properties of organic 
fluids there are certain component differences. 

Figure 5-1 shows a schematic of the Organic Rankine Cycle analyzed together with 
the state points and performance for the 150 KWe (net) reference cycle. 

Liquid Toluene is preheated and vaporized in the vaporizer with heat supplied by the 
solar receiver or thennal storage systems. In most Organic Rankine Systems, the 
working fluid is admitted to the turbine from the vaporizer with little or no superheat. 
The reason for this is that for the organic fluids and Toluene specifically, the saturated 
vapor line when plotted on a T-S diagram has a positive slope. This means that if the 
fluid leaving the vaporizer and entering the turbine is saturated, vapor expansion 
through the turbine will result in the turbine exit fluid being considerably superheated, 
with no danger of wet fluid causing blade erosion as in a conventional steam turbine. 

After the working fluid is expanded in the turbine, the vapor is passed through a 
regenerator which is a vapor/liquid heat exchanger used to remove the superheat from 
the vapor and transfer this heat to the liquid Toluene at the discharge of the feed pump. 
The utilization of this superheat to preheat the liquid to the vaporizer improves cycle 
efficiency since it is not rejected in the condenser. 

The condenser used in this analysis is a conventional shell-and-tube, water-cooled heat 
exchanger. As specified in the work statement, a condensing temperature of 100°F 
(37.8°C) was used. Two degrees of subcooling was assumed to take place in the condenser 
to provide adequate net positive suction head at the feed pump inlet. 

The feed pump is assumed to be a centrifugal type, and could be powered either by an 
electric motor drive or be driven directly off the turbine shaft. 

Typically, Organic Rankine Cycle Turbines use impluse type blade design and operate 
at significantly higher speeds than do conventional steam turbines due to the 
thermodynamic properties of the fluid (Reference 1 and 2). For this reason, Figure 5-1 
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shows a speed reducer between the turbine and the generator. Details of the turbine/ 

generator system can only be determined after an engineering design of the system has 

been performed. 

Component efficiences which were used in this analysis are shown on Figure 5-1 and 

were obtained from Reference 3 and are considered typical for this cycle. These 

efficiencies were held constant for all the cycle temperatures investigated. 

Pressure losses through the system were based on the assumption in Reference 3. The 

most significant pressure loss relating to cycle performance is the hot-side of the 

regenerator, since this loss affects the available energy in the turbine when condenser 

temperature is held constant. Regenerator hot-side losses will directly affect regenerator 

size and the losses assumed for this study are judged to be typical. 

The Toluene fluid property data were obtained from Monsanto Chemical Co., Reference 

4. 

The analysis for the reference cycle consisted of performing a heat balance around the 

cycle using a 150 KWe net generator output, 350°F (176. 7°C) saturated boiler output 

and l00°F (37.8°C) condensing temperature. A 5 percent auxiliary power requirement 

was assumed resulting in a gross generation of 157.5 KWe. The cycle analysis showed 

that the vaporizer feed pump will require 2.25 KWe with 5.25 KWe available for the 

remainder of the auxiliary power requirements such as circulating water pump power 

to the condenser and cooling tower fan power. 

A vaporizer heat input requirement was calculated for the reference cycle and was 

held constant for the cycle calculations at the other maximum temperature conditions. 

Generator output was allowed to vary for each of the nonreference cycles. 

A net and gross cycle efficiency was calculated for a number of fluid temperatures. 

Gross cycle efficiency is defined as the ratio of the gross generator output divided by 

the total heat into the cycle. Net efficiency includes the auxiliary power. 

The data for the reference cycle are shown on Figure 5-1. The efficiency data for 

each of the non-reference cycles are shown on Figures 5-2 and 5-3. Cycle efficiency 

is plotted as a function of maximum cycle temperature on Figure 5-2. Figure 5-3 

shows the ratio of cycle efficiency to reference cycle efficiency plotted as a function of 

maximum cycle temperature. Data were calculated for cycles both below and above 

the critical point of Toluene. All of the supercritical cycles were calculated at a pressure 

of 800 psi (5516 x 1 o3 Pa). The discontinuity that exists between the subcritical and 

supercritical cycles is due to the pressure change and the fluid data inconsistancy at the 

critical point. Auxiliary power requirements of 7 to 9 percent were used for the 

supercritical cycles. The reason for the higher auxiliary power for these cycles is the 

increase in feed pump power for the supercritical pressures. 

Figure 5-4 shows a plot of gross and net generator output as a function of maximum 

cycle temperature and based on a constant cycle heat input as determined from the 

reference cycle. 
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SECTION 6 
ELEMENT 3C- STEAM RANKINE CYCLE, TOTAL ENERGY SYSTEM 

6.1 INTRODUCTION 

Cycle heat balances were performed for a 400 KWe (nominal) steam Rankine cycle 
used in a total energy system. This cycle uses a single automatic extraction condensing 
turbine with one stage of regenerative feedwater heating. The extraction point on the 
turbine provides steam at 125 psia (8.62 x 105 Pa) which supplies the deaerator 
requirement and is de superheated to 340°F ( 1 71.1 °C) to supply the process requirement. 
The condensate is returned to the condenser at a temperature of 230°F (110°C). The 
turbine exhausts to a condenser at 20. 78 psia (1.43 x 1 oS Pa). The cycle is largely 
based on the General Electric Solar Total Energy Cycle as referenced in the statement 
of work. 

The cycle was analyzed using a computer program to perform the required mass and 
energy balances around the cycle. The program assumes that the expansion of the 
steam through the turbine is a straight line on a Mollier diagram. The program accesses 
subroutines to calculate the fluid state conditions around the cycle using the relationships 
specified in the ASME steam tables. 

6.2 CYCLE DESCRIPTION 

Throttle conditions used for the reference cycle are 715 psia ( 4. 93 x 106 Pa) and 
720°F (382. 2°C). A pressure loss of 10 percent is assumed across the steam generator. 

For this study, the total heat input to the cycle and the process steam usage was held 
constant while the throttle conditions were varied. The throttle temperature was varied 
over the range of 650°F to l l00°F (343.3°C to 593.3°C), and the throttle pressure 
was varied over the range of 715 psia to 1450 psia (4.93 x 106 Pa to 10.0 x 106 Pa). 
The throttle pressures selected are those normally used in the power industry. The 
upper temperature limit was selected as the limit of existing steam turbine technology. 
The lower temperature limit varied with throttle pressure such that the required 
process steam temperature could be achieved at the extraction point. For the 715 psia 
(4.93 x 106 Pa) pressure, the minimum temperature is 650°F (343.3°C); for the 850 
psia (5.86 x 104 Pa) pressure, the minimum temperature is 700°F (371.1°C); and for 
the 1250 psia and 1450 psia (8.62 x 106 Pa and 10.0 x 106 Pa) pressures, the minimum 
temperature is 800°F ( 426. 7°C). The turbine efficiency was calculated from the throttle 
and exhaust conditions of the reference cycle, the General Electric Solar Total Energy 
System. The turbine efficiency was held constant over the range of throttle conditions 
in order to prevent distortion of the effect of throttle conditions on the overall cycle 
efficiency. In reality, the turbine efficiency will increase slightly as the amount of 
superheat of the throttle steam increases. Generator output was allowed to vary with 
the throttle conditions. 

A cycle schematic showing component efficiencies and flow data is shown in Figure 6-1 
for the base cycle. Plots of cycle efficiency versus throttle temperature are shown in 
Figure 6-2 and Figure 6-3. A normalized representation of cycle efficiency with 
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respect to base cycle efficiency versus throttle temperature is shown in Figure 6-4. 
A plot of generator output versus throttle temperature is shown in Figure 6-5. Gross 
cycle efficiency is defined as the total cycle input energy divided into the generator 
output. Net cycle efficiency is defined as the total cycle input energy divided into the 
generator output less the plant auxiliary power requirement (which is assumed to be 
8 percent of the generator output). Plant auxiliary power includes that power used by 
the boiler feed pump, condensate pump, circulating water pump, cooling tower fans, 
controls, plant lighting, plant HV AC, solar collector field usage, etc. 

Figure 6-6 is a plot of gross cycle efficiency versus process flow for the base case 
throttle conditions. The efficiency of the cycle decreases as process flow increases 
because the boiler duty is held constant. As more steam is extracted to the process, 
less steam is available to produce electric power. 
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SECTION 7 
ELEMENT 4A- REPOWER - STEAM RANKINE NON-REHEAT CYCLE 

7 .1 INTRODUCTION 

Cycle heat balances were performed for a 100 MWe (nominal) steam Rankine, non-reheat 
cycle incorporating a six heater feedwater heating system. The cycle was duplicated 
from that of the Public Service of New Mexico Repowering Study, Reference 1, using 
steam from a solar receiver to repower an existing fossil-fuel-fired unit. A seventh 
condensing feedwater heater is added to the top of the cycle to recover heat from the 
discharge of the thermal storage system. It is assumed that the amount of heat absorbed 
in the thermal storage unit reduces the steam conditions from superheated (throttle 
temperature and pressure) to saturated conditions, after a pressure drop of 10 percent 
through the thermal storage unit. For this study the fossil-fuel-fired boiler was out of 
service. 

7.2 CYCLE DESCRIPTION 

The turbine used in this model is a standard-frame General Electric utility, non-reheat 
steam turbine exhausting at an assumed 2.5 inches HgA (0.0984 mm HgA) to a tube
and-shell condenser. The turbine's six extractions are connected to two closed high
pressure heaters, an open deaerating heater, and three closed low-pressure heaters 
operating at various pressures. The heater operating characteristics are as shown on the 
cycle diagram Figure 7-1. 

Throttle conditions are 1250 psia (8.62 x 106 Pa) and 950°F (510°C) for the reference 
cycle. At these throttle conditions (no steam to thermal storage, and constant final 
feedwater conditions of 2400 psia (16.55 x 106 Pa) and 425°F (218.3°C)), the heat 
input to the reference cycle was determined. This heat input was held constant for the 
varying throttle temperatures and pressures, and thermal storage duties studied. The 
amount of steam to thermal storage was varied from zero up to the point at which the 
feedwater temperature leaving the thermal storage heater equals the temperature of 
the heater shell (i.e., saturation temperature at heater shell pressure). This yields a hot 
end tenninal temperature difference (TTD) of 0°, for which it is assumed the thermal 
storage heater is designed. The throttle temperatures were varied from the reference 
cycle conditions down to a temperature of 800°F ( 427°C) which yields approximately 
84 percent quality steam leaving the last stage of the turbine, and up to a temperature 
of 1100°F (593°C) (the upper limit for existing steam turbine technology). It is expected 
that the turbine will actually operate at a minimum quality of approximately 88 
percent steam leaving the last stage. Generator output was allowed to vary with the 
throttle conditions. 

A cycle schematic diagram showing all component efficiencies is presented in Figure 7-1. 
A parametric plot of cycle efficiency versus throttle temperature at different throttle 
pressures and thermal storage duties is presented in Figure 7-2. Component efficiencies 
were determined from Reference 2 (turbine) and from existing conventional power 
plant operating data (pumps). It must be kept in mind that each pressure, temperature 
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and extraction as a percent of boiler duty shown on Figure 7-2 represents a discrete 
storage system and heater design. Off design conditions were not considered. The cycle 
efficiencies are presented as gross (total energy output divided by total energy input to 
the cycle) and net (assuming 8 percent of total energy output including pumping 
power goes to auxiliary demand). The ratio of non-reference cycle efficiency to reference 
cycle efficiency, and generator output (gross and net) are also presented in this Figure. 
The maximum percent of receiver duty to thermal storage versus throttle temperature 
is plotted in Figure 7-3 to illustrate the limits of heat to the thermal storage heater 
before the feedwater temperature reaches a maximum, based on the assumptions 
above. 

1. 

REFERENCES 

Maddox, J. D., Public Service Company of New Mexico, 
"A Technical and Economic Assessment of Solar Hybrid 
Repowering," SAMD 78-8511, November 1978, p. 65. 

General Electric Company, "A Method for Predicting 
the Performance of Steam-Turbine Generators . . . 
16,500 KW and Larger," (GER-2007C) Revised July 
1974. 
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SECTION 8 
ELEMENT 4C - CLOSED ADV AN CED BRAYTON AIR 

REGENERATIVE CYCLE 

8.1 INTRODUCTION 

Cycle heat balances were performed for a 100 MWe (nominal) closed advanced Brayton 
air regenerative cycle. Heat input to the cycle is from a solar receiver/thermal storage 
system. References 1, 2 and 3 were used to set up the thermodynamic relationships 
to be used in the computer model for performance calculations and to detennine 
component efficiencies. 

8. 2 CYCLE DESCRIPTION 

The reference cycle for this element based on Reference 4, is composed of a two-stage 
compressor with efficiencies of 80 percent each and a total combined pressure ratio of 
4.75. Inlet air is compressed in the first stage, cooled in a water-cooled intercooler, 
compressed further in the second stage, and discharged to a recuperator. Cooling air for 
the turbine is diverted from the compressor discharge to various parts of the turbine. 
Cooling air which is injected into the turbine in the flow path does useful work, while 
cooling air going to the turbine casing does no work. From the compressor, the air 
flows to the recuperator where it is heated by the turbine exhaust. The air temperature 
is further increased by the solar receiver/thermal storage system to a temperature of 
1500°F (815.6°C) for the reference cycle. The hot air is expanded in a 90 percent 
efficient turbine to produce shaft work which drives the compressor and the generator. 
The turbine exhaust passes through the recuperator where it releases heat to the 
compressor discharge air. From the recuperator, the turbine exhaust is further cooled 
by a water-cooled precooler to a constant 100°F (37.8°C) prior to reentering the 
compressor. 

A general industry guide was used to determine how much of the total system flow was 
used as cooling air which did no work in the turbine. This guide is that cooling air is 
required above a turbine inlet temperature of 1700°F (926. 7°C), and will be one percent 
of the compressor flow for each 100°F ( 5 5. 6°C) above 1 700°F. The cooling air flow 
considered in this study represents that amount of flow that does no work in the 
turbine. 

For this study, the generator output was held constant at 100 MWe gross, while the 
pressure ratio of the compressor was varied over the range of 2 to 9 at various turbine 
inlet temperatures ranging from 1500°F (815.6°C) to 2400°F (1315.6°C). A cycle 
schematic showing component efficiencies, pressure drops, heat exchanger effectiveness, 
and cycle flow data is shown in Figure 8-1 for the reference cycle. A plot of cycle 
efficiency (gross and net) versus compressor pressure ratio at several turbine inlet 
temperatures is shown in Figure 8-2. A normalized representation of cycle efficiency 
with respect to reference cycle efficiency versus compressor pressure ratio is also 
shown in Figure 8-2. The effects of the cooling air flow on cycle efficiency are 
demonstrated by the temperature lines of Figure 8-2 crossing each other at lower 
pressure ratios. Note that there is no cooling flow for turbine inlet temperatures below 
I 700°F (926. 7°C). 
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Gross cycle efficiency is defined as the gross generator output divided by the total 
cycle input energy. Net cycle efficiency is defined as the net generator output divided 
by the total cycle input energy, where the total plant auxiliary requirements are 
assumed to be 8 percent of the gross generator output. 

REFERENCES 

1. Lewis, A. D., Gas Dynamics, 1964. 

2. Faires, V. M., Thermodynamics, 1959. 

3. Telephone conversations with various gas turbine 
manufacturers relative to current compressor and 
turbine efficiencies and cooling flows. 

4. Gintz, J., Boeing Engineering and Constrnction, "Closed 
Cycle Brayton Advanced Central Receiver Solar Thermal 
Electric Power Plant," SAND 78-8511, November 
1978, p. 85. 
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SECTION 9 
ELEMENT 5- REHEAT STEAM RANKINE CYCLE 

9.1 INTRODUCTION 

Cycle heat balances were performed for a 100 MWe (nominal) reheat steam Rankine 
cycle employing six stages of regenerative feedwater heating. The turbine exhausts to 
a condenser at 2.5 inches HgA (8.40 x 103 Pa). An allowance is made to extract up to 
50 percent of the throttle flow from the second extraction on the low pressure turbine 
for use by the thermal storage system in a thermochemical reaction. The extraction 
pressure was varied to be 100, 150, and 200 psia (6.90 x 105, 1.03 x 106, and 
1.38 x 106 Pa). Condensate is returned to the cycle in the condenser and is assumed 
to be at a temperature of 200°F (93.3°C). 

The cycle was analyzed using an in-house computer program (Dl 35E) which performs 
a mass and energy balance around the cycle. The shape of the turbine expansion curve 
is as specified in Figure 25 in Reference 1. The program accesses subroutines to calculate 
the fluid state conditions around the cycle using the relationships specified in the 
ASME steam tables. 

9. 2 CYCLE DESCRIPTION 

The throttle conditions used for the reference cycle are 2400 psia (16. 5 5 x 106 Pa) and 
1000°F (537.8°C), with the reheat temperature of 1000°F (537.8°C). The final feed water 
temperature selected is 480°F (248.9°C), which allows a reasonable pressure ratio 
across the high pressure turbine. A 10 percent pressure loss is assumed across the steam 
generator, and a pressure loss of 15 percent is assumed across the reheater. 

For this study, the total heat input to the cycle was held constant while the throttle 
conditions and reheat temperature were varied. The throttle and reheat temperatures 
were varied over the range of 800°F to l l00°F (426.7°C to 593.3°C) and the throttle 
pressure was varied over the range of 1250 psia to 2400 psia (8.62 x 106 Pa to 
16. 5 5 x 106 Pa). The lower temperature limit was selected to limit the turbine exhaust 
steam quality to 88 percent and the upper temperature limit was selected as the limit 
of existing steam turbine technology. The throttle pressures selected are those normally 
used in the power industry. Representative high pressure and low pressure turbine 
efficiencies were calculated using the method specified in Reference 1. The representative 
turbine efficiencies were based on the throttle conditions of the reference cycle. The 
turbine efficiencies were held constant over the range of throttle conditions in order to 
prevent distortion of the effect of throttle conditions on overall cycle efficiency. In 
reality, the efficiency of the turbines will increase slightly as the amount of superheat 
of the throttle steam increases. Generator output was allowed to vary with the throttle 
conditions. 

The turbine extractions provide steam to three high-pressure closed feedwater heaters, 
an open deaerating feedwater heater, and two low-pressure closed feedwater heaters. 
The heater performance characteristics are derived from standard design values and are 
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held constant over the range of throttle conditions. Most turbine steam leakages are 
not accounted for in the cycle, as these leakages are small when compared to other 
cycle flows. One leakage was included, the shaft leakage from the high pressure turbine 
to the low pressure turbine, as this is three percent of the throttle flow. The neglected 
leakages include shaft leakage from the exhaust of the HP turbine, the sealing flows to 
the LP turbine shaft seals, and packing leakage from the turbine stop and control 
valves. The total of these leakages are typically less than one percent of the throttle 
flow in current commercial units. 

A cycle schematic showing component efficiencies and cycle flow data is shown in 
Figure 9-1 for the base cycle, and in Figure 9--2 for the base cycle with an extraction 
flow of 50 percent of throttle flow. Plots of cycle efficiency versus throttle temperature 
are shown in Figure 9-3 and Figure 9--4. A normalized representation of cycle efficiency 
with respect to base cycle efficiency versus throttle temperature is shown in Figure 9-5. 
A plot of generator output versus throttle temperature is shown in Figure 9--6. The 
change in cycle efficiency versus the extraction flow is shown in Figure 9--7. The 
change in generator output versus the extraction flow is shown in Figure 9--8. Gross 
cycle efficiency is defined as the total cycle input energy divided into the generator 
output. Net cycle efficiency is defined as the total cycle input energy divided into the 
generator output less the plant auxiliary power required (which is assumed to be 
8 percent of the generator output). Plant auxiliary power includes that power used by 
the receiver feed pump, condensate pump, circulating water pump, cooling tower 
fans, controls, plant lighting, plant HV AC, solar collector field usage, etc. 

REFERENCE 

1. General Electric Company, "A Method for Predicting 
the Performance of Steam Turbine Generators 
16,500 KW and Larger," (GER-2007C) Revised July 
1974. 
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SECTION 10 
ELEMENT 6A - STEAM RANKINE CYCLE 

I 0.1 INTRODUCTION 

Cycle heat balances were performed for a IO MWe (nominal) non-reheat steam Rankine 
cycle employing four stages of regenerative feed water heating. The turbine exhausts to 
a condenser at 2. 5 inches HgA (8.46 x I o3 Pa). 

The cycle was analyzed using an in-house computer program (D 135A), which performs 
a mass and energy balance around the specified cycle. The shape of the turbine expansion 
curve is as specified in Figure 25 of Reference I. The program accesses subroutines to 
calculate the fluid state conditions around the cycle using the relationships specified 
in the ASME steam tables. 

10.2 CYCLE DESCRIPTION 

The throttle conditions used for the reference cycle are 1250 psia (8. 62 x I 06 Pa) 
and 950°F (510°C). The final feed water temperature is 400°F (204.4°C), which allows 
a reasonable pressure ratio from the throttle to the first extraction point. A IO percent 
pressure loss is assumed across the steam generator. 

For this study, the total heat input to the cycle was held constant while the throttle 
conditions were varied. The throttle temperature was varied over the range of 700°F 
to 1100°F (371. 1 °C to 593.3°C), and the throttle pressure was varied over the range 
of 850 psia to 1800 psia (5. 86 x I 06 Pa to 12.4 I x 106 Pa). The pressures selected 
are those which are normally used in the power industry. The upper temperature 
limit was selected as the limit of existing steam turbine technology. The lower limit of 
temperature varies with the throttle pressure, as it is desirable to maintain the turbine 
exhaust steam quality at a value greater than 84 percent. For the 1800 psia (12.41 x 
106 Pa) pressure, the minimum temperature is 825°F (440.6°C); for the 1450 psia 
(10.0 x 106 Pa) pressure, the minimum temperature is 775°F (412.8°C); for the 1250 
psia (8.62 x 106 Pa) pressure, the minimum temperature is 725°F (385°C); and for the 
850 psia (5.86 x 106 Pa) pressure, the minimum temperature is 650°F (343.3°C). A 
representative turbine efficiency was calculated using the method specified in Reference 
1. The turbine efficiency was based on the throttle conditions of the reference cycle. 
The turbine efficiency was held constant over the range of throttle conditions in order 
to prevent distortion of the effect of throttle conditions on overall cycle efficiency. In 
reality, the efficiency of the turbine will increase slightly as the amount of superheat 
of the throttle steam increases. Generator output was allowed to vary with the throttle 
conditions. 

Turbine extractions provide steam to two high-pressure closed feedwater heaters, an 
open deaerating feedwater heater, and a low-pressure closed feedwater heater. The 
heater performance characteristics are derived from standard design values and are held 
constant over the range of throttle conditions. Turbine steam leakages are not accounted 
for in the cycle, as these leakages are small when compared to other cycle flows. 
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These leakages include shaft leakage from the high pressure end of the turbine, seal 
steam flow to the low pressure end of the turbine, and throttle stop and control valve 
packing leakage. The total of these leakages is typically less than one percent of the 
throttle flow in current commercial units. 

A cycle schematic showing component efficiencies and cycle flow data is shown in 
Figure 10--1 for the base cycle. Plots of cycle efficiency versus throttle temperature 
are shown in Figure 10--2 and Figure 10-3. A normalized representation of cycle 
efficiency with respect to the base cycle efficiency versus throttle temperature is 
shown in Figure 10--4. A plot of generator output versus throttle temperature is shown 
in Figure 10--5. Gross cycle efficiency is defined as the total cycle input energy divided 
into the generator output. Net cycle efficiency is defined as the total cycle input 
energy divided into the generator output less the plant auxiliary power requirement 
(which is assumed to be 8 percent of the generator output). Plant auxiliary power 
includes that power used by the boiler feed pump, condensate pump, circulating water 
pump, cooling tower fans, controls, plant lighting, plant HV AC, solar collector field 
usage, etc. 

REFERENCE 

1. General Electric Company, ''A Method for Predicting 
the Performance of Steam Turbine Generators 
16,500 KW and Larger," (GER-2007C) Revised July 
1974. 
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SECTION 11 
ELEMENT 6B - STEA1"I RANKINE CYCLE 

11.1 INTRODUCTION 

Cycle heat balances were performed for a 300 KWe (nominal) non-reheat steam Rankine 

cycle employing two stages of regenerative feed water heating. The turbine exhausts to 

a condenser at 2. 5 inches HgA (8.46 x 103 Pa). 

The cycle was analyzed using an in-house computer program (Dl35A), which performs 

a mass and energy balance around the specified cycle. The shape of the turbine expansion 

curve is as specified in Figure 25 of Reference 1. The program accesses subroutines to 

calculate the fluid state conditions around the cycle using the relationships specified 

in the ASME steam tables. 

11.2 CYCLE DESCRIPTION 

The throttle conditions used for the reference cycle are 125 0 psia ( 8. 62 x 106 Pa) 

and 950°F (510°C). TI1e final feed water temperature is 400°F (204.4°C), which allows a 

reasonable pressure ratio from the throttle to the first extraction point. A 10 percent 

pressure loss is assumed across the steam generator. 

For this study, the total heat input to the cycle was held constant while the throttle 

conditions were varied. The throttle temperature was varied over the range of 700°F 

to 1100°F (3 71.1 °C to 5 93. 3°C), and the throttle pressure was varied over the range of 

850 psia to 1800 psia (5.86 x 106 Pa to 12.41 x 106 Pa). The pressures selected are 

those which are normally used in the power industry. The upper temperature limit was 

selected as the limit of existing steam turbine technology. The lower limit of temperature 

varies with the throttle pressure, as it is desirable to maintain the turbine exhaust 

steam quality at a value greater than 84 percent. For the 1800 psia (12.41 x 106 Pa) 

pressure, the minimum temperature is 82 5°F ( 440. 6°C); for the 145 0 psia (10. 0 x 106 Pa) 

pressure, the minimum temperature is 725°F (385°C); and for the 850 psia (5.86 x 

106 Pa) pressure, the minimum temperature is 650°F (343.3°C). A representative 

turbine efficiency was calculated using the method specified in Reference 1. The 

turbine efficiency was based on the throttle conditions of the reference cycle. The 

turbine efficiency was held constant over the range of throttle conditions in order to 

prevent distortion of the effect of throttle conditions on overall cycle efficiency. In 

reality, the efficiency of the turbine will increase slightly as the amount of superheat of 

the throttle steam increases. Generator output was allowed to vary with the throttle 

conditions. 

Turbine extractions provide steam to one high-pressure closed feedwater heater and 

one open deaera ting feed water heater. The heater performance characteristics are 

derived from standard design values and are held constant over the range of throttle 

conditions. Turbine steam leakages are not accounted for in the cycle, as these leakages 

are small when compared to other cycle flows. These leakages include shaft leakage 

from the high pressure end of the turbine, seal steam flow to the low pressure end of 
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the turbine, and throttle stop and control valve packing leakage. The total of these 
leakages is typically less than one percent of the throttle flow in current commercial 
units. 

A cycle schematic showing component efficiencies and cycle flow data is shown in 
Figure 11-1 for the base cycle. Plots of cycle efficiency versus throttle temperature 
are shown in Figure 11-2 and Figure 11-3. A normalized representation of cycle 
efficiency with respect to the base cycle efficiency versus throttle temperature is 
shown in Figure 11-4. A plot of generator output versus throttle temperature is 
shown in Figure 11-5. Gross cycle efficiency is defined as the total cycle input energy 
divided into the generator output. Net cycle efficiency is defined as the total cycle 
input energy divided into the generator output less the plant auxiliary power requirement 
(which is assumed to be 8 percent of the generator output). Plant auxiliary power 
includes that power used by the receiver feed pump, condensate pump, circulating 
water pump, cooling tower fans, controls, plant lighting, plant HY AC, solar collector 
field usage, etc. 
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SECTION 12 
APPENDIX 

CALCULATION PROCEDURE FOR STEAM RANKINE CYCLES 

Several computer programs were used to generate the heat balances for the various steam 
Rankine cycles evaluated in this study. Where possible, existing in-house programs were used 
to reduce the total manhour requirement. With cycles that could not be evaluated using 
existing programs, additional programs were generated to meet the requirements of the 
study. The input values, basic calculation procedure, and output results of all programs were 
similar with only minor changes in the physical configuration of the cycle. 

The input generally consisted of desired throttle conditions, turbine efficiency, condenser 
pressure, performance criteria for the feedwater heaters, final feedwater temperature, 
pump efficiency, system mechanical and electrical losses, and required electrical output or 
specified throttle flow. Additional input would depend on the specific cycle. 

The calculation procedure usually began with an input or assumed throttle flow value and 
calculated a value for the power generated. If a specific generator output was required the 
value of the throttle flow was modified and the required output value was obtained using a 
convergence technique. The procedure used to arrive at the power output for a given throttle 
flow was as follows: 

1. A final feed flow was calculated from the throttle flow and any other boiler flows. 

2. From the performance characteristics of the top heater the saturation pressure in the 
heater shell was determined. Using a specified pressure loss for the extraction piping, 
the pressure at the turbine extraction port was found. Knowing the shape and orientation 
of the turbine expansion line, based on the turbine efficiency, an enthalpy for the steam 
at that extraction point was calculated. Finally, knowing the feedwater flow, the 
feedwater heater performance, and the enthalpy of the extraction steam, the flow of 
extraction steam was calculated. 

3. The above procedure was repeated for each heater. 

4. The turbine exhaust conditions were calculated from the turbine efficiency and specified 
exhaust losses. 

5. The turbine shaft power produced was found by completing an energy balance of all 
flows iuto and out of the turbine. 

The output of the programs included a restatement of input data, state conditions and flows 
for all major components, power generated, and heat rate or thermal efficiency values. 

A sample of the output of one in-house program is included on the following page. 
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