
Molten Salt Electric Experiment Steam Generating Subsystem

The steam generating system depicted above was supplied by Babcock & Wilcox for use in the Molten Salt Electric Experiment (MSEE). The background to the MSEE and B&W's involvement in the program is explained in this paper.

Molten Salt Electric Experiment Steam Generating Subsystem

Program Overview and B&W Involvement

MOLTEN SALT ELECTRIC EXPERIMENT (MSEE)

The MSEE, constructed at Sandia National Laboratories' Central Receiver Test Facility (CRTF) in Albuquerque, New Mexico, integrates the major components of a Molten Salt Solar Thermal Central Receiver (STCR) power generation system. These include the collector field, receiver, thermal storage units, steam generator, turbine-generator, and integrated control system.

The MSEE is the second STCR system to be constructed in the United States, and the first U.S. system to use a non-phase-change working fluid (Solar One, the first STCR system to operate in the U.S., uses water/steam as the working fluid).

The MSEE produces electrical power which is dispatched into the Kirtland Air Force Base electric grid. An illustration of the system concept is shown in Figure 1.0.

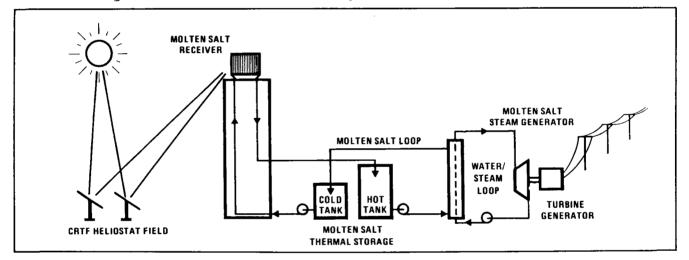


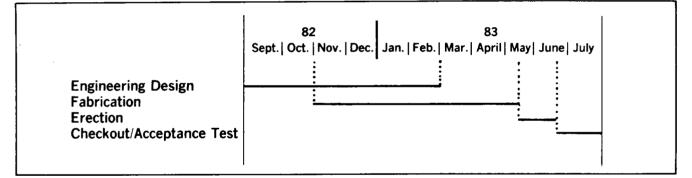
Figure 1.0 - Molten Salt Electric Experiment (MSEE) System Concept

It is expected that the MSEE program, begun in late 1981, will demonstrate that a molten salt based STCR system is efficient and workable. Hopefully the demonstration will stimulate more intense interest in the technology, showing that molten salt STCR systems represent a credible alternative to oil-fired power generation.

The program is expected to formally terminate in mid-1984, after which the CRTF may be used for alternate working fluid experiments or for extended development of molten salt technology. Organizations involved in the MSEE program include those listed in Table 1.0.

Arizona Solar Energy Commission	Martin Marietta
Arizona Public Service Company	McDonnell Douglas
Babcock & Wilcox	Olin
Black & Veatch	Pacific Gas & Electric Company
Department of Energy (U.S.)	Sandia National Laboratories
Electric Power Research Institute	Southern California Edison Co.
Foster Wheeler	Stearns-Roger

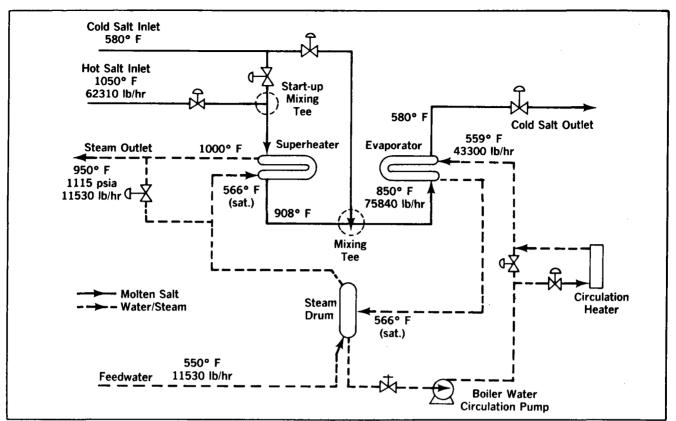
Table 1.0 - Project Participants


MSEE STEAM GENERATING SUBSYSTEM (SGS)

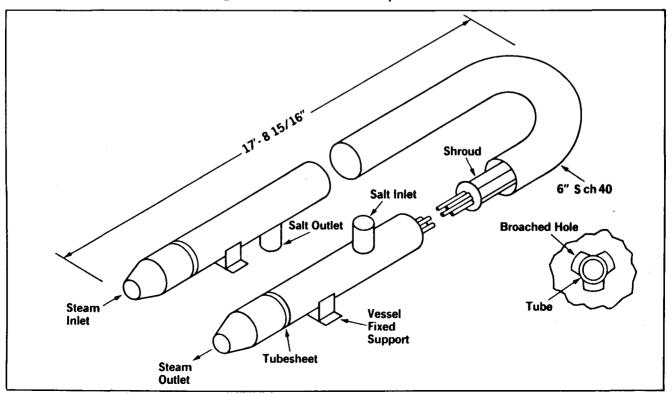
The MSEE steam generating subsystem, which is depicted on the front cover, represents a pioneering application in the use of molten nitrate salts for the production of electric power. Babcock & Wilcox designed, fabricated, and erected the complete subsystem including the components listed in Table 2.0. As shown in Table 3.0, B&W contracted for the skid-mounted SGS unit in September, 1982, and delivered the system to the site on May 16, 1983. The unit was checked out and ready to operate in late August, 1983.

Table 2.0 - Major MSEE SGS Components

^o Evaporator	^o Insulation/Lagging
^o Superheater	^o Salt-Side Heat Tracing
^o Steam Drum	^o Instrumentation
^o Boiler Water	^o Control System
Recirculation Pump	^o Electrical System
^o Circulation Heater	^o Water-Side Piping/Valves
^o Salt-Side Piping/Valves	° Skid



The MSEE SGS schematic is shown in Figure 2.0. A mixture of molten salts (NaNO3 and KNO3) enters the system at 1050° F with a mass flow rate of 62,310 pounds/hour. The salt is attemperated with cooler salt at 580° F to achieve proper input conditions for both the superheater and evaporator. Feedwater is heated in the system to form steam, which is transported to the turbine generator at 950° F, 1,115 psia, with a mass flow rate of 11,530 pounds/hour. The cooler salt is piped back into the thermal storage subsystem. The SGS is designed for complete control by a Bailey Controls Company Network 90 system.


Forced recirculation of boiler water, together with using ribbed-tube evaporator construction ensures that departure from nucleate boiling (DNB), and resultant tube dryout does not occur.

An illustration of the SGS superheater appears in Figure 3.0. Major features shown are typical of the evaporator construction. Both units are designed according to the requirements of ASME Code Section VIII, Division I. Design Characteristics and benefits of the design are summarized in Table 4.0.

Design of the more critical SGS components was based on the full size component concepts developed by B&W in an earlier contract from Sandia National Laboratories. Prototypicality was a major design objective of the MSEE SGS program. Both heat exchangers, for instance, use the U-shell, U-tube configuration, typical of the units designed by B&W for both the APS Saguaro Repowering plant and SCE's Solar 100 plant.

	Design Characteristics and Benefits
0	U-Tube, U-shell design - Tube-to-tube and shell-to-shell flexibility - Separate inlet and outlet tubesheets
0	 Separate water/steam side inlet and outlet plenums Long flow, countercurrent flow design Efficient heat transfer
ο	- Good salt side pressure drop characteristics Multi-lead ribbed tubing
	 Maintains nucleate boiling at a higher steam quality than smooth tubing for a given pressure, heat flux, and mass flux Absence of DNB minimizes the potential for under-deposit corrosion Permits lower circulation rate which results in less pumping power and therefore better cycle efficiency
0	 Shroud and support plate design Shroud provides uniform salt flow and uniform heat transfer to all tubes Support plate pressure drop promotes good salt flow distribution in tube bundle
0	 Shroud/support plates reduce salt stratification potential Shroud by-pass restrictors Limits salt by-pass of tube bundle
0	Tubesheet thermal baffles - Reduces thermal gradients at the tubesheet-shell juncture
0	- Gravity drain through system piping

 Table 4.0 - MSEE SGS Evaporator/Superheater

Babcock & Wilcox hopes to gain important design and operating experience with the MSEE SGS. Combined with the insight we will gain from building and operating other planned CRTF experimental hardware, this experience will become part of the foundation for our involvement in planned future full size STCR power plants.

B&W has received sixteen Solar Thermal technology contracts since 1975. Solar Thermal work is primarily carried out in B&W's Nuclear Equipment Division. Located in Barberton, Ohio, the Nuclear Equipment Division's 2,500 employees are also engaged in designing and building equipment for use in Naval Nuclear propulsion systems, Ballistic Missile defense systems, commercial Nuclear Steam systems, Liquid Metal Fast Breeder Reactor systems, and fossil-fueled power generation systems.

Project No.	Working Fluid	Component	Span	Customer	Applicatior
	Develop baseline	design for 55 MWt Plan	Description	al and detail materials, fa	abricate.
	Develop baseline	instrument, and ere	ct on-site solar suba	issemblies.	
1	W/S	Receiver	1975/1977	Honeywell	All
	Encircoving		Description	define e subsustem desi	
2	Na	Heater	1978/1979	define a subsystem desi Rockwell	Hybrid
2			1978/1979		
		ry specifications, paran ments, assessment of 1		ction of commercial con al scale advanced water/ an.	
3	W/S	Receiver	1979	Sandia	All
- <u>····</u> ·			Description sign of 33 MWe Rec	eiver.	
4	W/S	Receiver	1979/1980	Black & Veatch	Repower
	Prepare & delive	r a cost and schedule for	Description or the design and co am generating system	nstruction of a 60 MWe s m.	odium
5	Na	Steam Gen.	1980	General Electric	Repower
	Complete studies cost and perform	ance improvement. Cor pref	nceptual design of a ferred concept.	ge systems with objective commercial scale syster	n using
6	_	Storage	1980	Sandia	All
	Develop concept tradeoff stud	ual design and provide	Description cost and performane nce of receiver and f	ce data for system & sub ossil fired steam general	system or.
7	W/S	Receiver	1980	Black & Veatch	Cogeneration
	Specification	and preliminary design recommendation of s	Description for 100 MWe salt st subsystem experime	eam generating system, ent program.	and
8	Salt	Steam Gen.	1981/1982	Sandia	All
		tions, soloot stoom ava	Description	figurations, & prepare 10	00 MW/e
9	Salt	Receiver	1981/1982	Sandia	All
					·····
	Develop systems &	components level spec	Description ification, evaluate co iminary design.	onfiguration improvemer	nts, select
10	Salt	Steam Gen. & Receiver	1981/1982	Martin- Marietta	Repower
sangen an	Develop systems &	components level spec	Description inication, evaluate co iminary design.	onfiguration improvement	its, select
11	W/S	Receiver	1981/1982	Stone & Webster	Repower

Babcock & Wilcox Solar Thermal Central Receiver Contract List . . .

roject No.	: Working Fluid	Component	Span	Customer	Application
			Description		
	Prepare prelimina	ry design of a receiver ar		r subsystem for use in	n a pilot plant
			Saudi Arabia.		
12	Salt	Receiver & Steam Generator	1982	Martin- Marietta	Desalination
	Decign build and are	ct a 3.1 MWt steam gene	Description	ustem for use in a Mo	lten Salt Electric
	Design, build, and ere	Experiment. Provide a	a complete SGS co	ntrol system.	
13	Salt	Steam Generator	1982/1983	Sandia	All
			Description	No receivor	
14	MI/C	Prepare preliminary	1982/1983	Stone &	Repower
14	W/S	Receiver	1902/1903	Webster	Nepower
			Description		
	• •	reliminary design of a 60			
15	Salt	Receiver Steam Generator	1982/1983	Martin- Marietta	Repower
			Description		
16	Salt	Provide site support to	a Molten Salt Elect 1983	ric Experiment. Sandia	All
10					
			Description	to use estauthormeel	0.000 m
	Prepare cor	nceptual design of an exp	perimental process ly hazardous waste		energy
17	_	System	1983/1984	U.S. DOE	PCB Destruction
			Description	<u> </u>	
	Conceptual de	ا sign and cost estimate fo	Description or a 20MWe steam	generator and receiv	er system.
18	Salt	Receiver &	1983/1984	Cambrian	Stand Alone
		Steam Generator		Engineering	Power
			Description		· · · · · · · · · · · · · · · · · · ·
		a 5MWe model receiver			
19	Salt	Receiver & Pumps & Valves	1984/1986	Sandia	Repower
	0		Description	ation of activated ac-	
		lesign study for the produ			Fuels &
20	Salt	System	1984/1985	Sandia	chemicals

Babcock & Wilcox Solar Thermal Central Receiver Contract List . . .

For more information about Babcock & Wilcox Solar Technology, contact:

Babcock & Wilcox Nuclear Equipment Division Components & Technology 91 Stirling Avenue Barberton, Ohio 44203 Attention: Manager, Marketing & Sales 216-860-2867

NED-8 | M 7/84

For more information, contact the following Babcock & Wilcox office.

Nuclear Equipment Division Babcock & Wilcox Manager, Commercial Marketing P.O. Box 271 91 Stirling Avenue Barberton, OH 44203 (216) 860-6387

€,

3