Copy No. 23 Report No. SF11677-2

NEWMAN UNIT 1 SOLAR REPOWERING PRELIMINARY DESIGN

FINAL REPORT

Volume 2

prepared for: U.S. DEPARTMENT OF ENERGY

NOVEMBER 1983

EL PASO ELECTRIC COMPANY

NEWMAN UNIT 1

SOLAR REPOWERING

PRELIMINARY DESIGN

1248

FINAL REPORT

EL PASO ELECTRIC COMPANY NEWMAN UNIT 1 SOLAR REPOWERING PRELIMINARY DESIGN

NOVEMBER 1983

VOLUME 2

Prepared for U.S. Department of Energy Contract No. SF11677-2

NOTICE

This report was prepared for the U.S. Department of Energy (DOE) Contract No. DE-AC03-81SF11566. Any opinions, findings, conclusions, or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of DOE. Paso Electric Company, Stone & Webster Neither DOE, El Engineering Corporation, Babcock & Wilcox Company, Westinghouse Company, nor any person acting on their behalf: Electric (a) Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or (b) Assumes any liability with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

TABLE OF CONTENTS VOLUME 1

Section

.

Title

Page

	LIST OF ABBREVIATIONS AND ACRONYMS	
ו	EXECUTIVE CUMMADY	- ٦
1 1		- T -
1.0		<u> </u>
1.2	BACKGROUND	-T
1.3	SITE DESCRIPTION	-1
1.4	PRELIMINARY DESIGN DESCRIPTION 1.4	-1
1.5	SYSTEM PERFORMANCE	-1
1.6	DEVELOPMENT PLAN	-1
1.7	ECONOMIC FINDINGS	-1
1.8	SITE OWNER'S ASSESSMENT 19.	_1
1 0		_ _ _
1.01		ΞŤ.
1.9.1	Results	-1
1.9.2	Conclusions	-2
2	INTRODUCTION	-1
2.1	STUDY OBJECTIVE	-1
2.1.1	Technical Objective.	-1
2.1.2	Cost Estimating Objective 21-	- 2
2 1 2	Planning Objectives	- 2
2.1.5		- 2
2.1.4		- 2
2.2	TECHNICAL APPROACH AND UNIT SELECTION 2.2-	-1
2.2.1	Technical Approach	-1
2.2.2	Selection of Newman Unit for Solar Repowering 2.2-	-1
2.2.3	History of Conceptual and Advanced Conceptual	
	Design Evolution	-2
2.3	PROJECT ORGANIZATION	-1
2.4	FINAL REPORT ORGANIZATION 2 4-	-1
		<u>.</u>
3		. 7
с 2 Л		<u>,</u>
3.1		-Т
3.2	SITE TOPOGRAPHY, SEISMICITY, GEOLOGY, AND	_
	ENVIRONMENT	-1
3.3	CLIMATOLOGY	-1
3.3.1	Climatological Discussion	-1
3.3.2	On Site Meteorological Data	-2
3.4	EXISTING UNIT DESCRIPTION.	-1
3.4.1	Boiler 3 A-	- 1
3 4 2	Turbine-Generator 2 4	. 2
3 · 1 · 2		. 2
2.4.2	Boller and Turbine Control System	-2
3.4.4	reedwater System	-3
3.4.5	Condensing and Circulating Water System 3.4-	-3
3.4.6	Electrical System	-3
3.5	EXISTING UNIT PERFORMANCE SUMMARY	-1
3.5.1	Unit Operational Characteristics	•]
3.5.2	Unit Performance 35-	- 1
		-
4	SYSTEM PRELIMINARY DESIGN	. 7
- A 7		. Т
≖•⊥ / ٦	SELECTION OF PREFERRED SISTEM 4.1-	·Τ
4 ⊥•⊥	kenear configuration Selection 4.1-	·1

<u>Title</u>

<u>Section</u>	Title	Page
4.1.2 4.2 4.3.1 4.3.2 4.3.3.4 4.3.5 4.4.3.6 4.4.4.2 4.5.12 4.5.3 4.5.2 4.5.2 4.5.3 4.6.2 4.6.2 4.6.56 4.6.56 7	Receiver Configuration Selection SYSTEM REQUIREMENTS. SYSTEM DESCRIPTION Functional Description Site Arrangement Collector Subsystem Receiver Subsystem Electric Power Generating Subsystem (EPGS) Control Subsystem SYSTEM PERFORMANCE ESTIMATES Design Point Efficiencies. Annual Average Efficiencies. OPERATING MODES ANALYSIS Operating Modes Definition Operating Modes Description. Solar/Fossil System Transient Analysis PROJECT CAPITAL COST ESTIMATE SUMMARY. Direct Costs Indirect Costs Allowance for Indeterminants Escalation Owner's Costs.	$\begin{array}{c} 4 \cdot 1 - 2 \\ 4 \cdot 2 - 1 \\ 4 \cdot 3 - 1 \\ 4 \cdot 3 - 1 \\ 4 \cdot 3 - 2 \\ 4 \cdot 4 - 1 \\ 4 \cdot 4 - 2 \\ 4 \cdot 5 - 1 \\ 4 \cdot 4 - 2 \\ 4 \cdot 5 - 1 \\ 4 \cdot 5 - 2 \\ 4 \cdot 6 - 2 \\ 4 \cdot 6 - 3 \\ 4 \cdot 6 - 3 \\ 4 \cdot 6 - 5 \\ 4 - 5 \\ 4 - 5 \\ 4 - 5 \\ 4 - 5 \\ 4 - 5 \\ 4 - 5 \\ 4 - 5 \\ 4 -$
4.6.8	Expenditure Forecast	4.6-5
4.7 4.7.1 4.7.2 4.8 4.9 4.9.1 4.9.2 4.9.2 4.9.3 4.9.3 4.9.5 4.10 4.11	OPERATIONS AND MAINTENANCE COSTS AND CONSIDERATIONS	$\begin{array}{c} 4.7-1 \\ 4.7-1 \\ 4.8-1 \\ 4.9-1 \\ 4.9-1 \\ 4.9-2 \\ 4.9-3 \\ 4.9-5 \\ 4.9-5 \\ 4.9-5 \\ 4.10-1 \\ 4.11-1 \end{array}$
5 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.3.1	SUBSYSTEM PRELIMINARY DESIGNSUBSYSTEM DEFINITIONCOLLECTOR SUBSYSTEMDesign BasisHeliostat Field OptimizationCollector Subsystem DesignCollector Field PerformanceSOLAR RECIEVER SYSTEMDesign Requirements	5.1-1 5.2-1 5.2-1 5.2-1 5.2-1 5.2-4 5.2-4 5.2-4 5.3-1 5.3-1

_
<u>Section</u>

<u>Title</u>

|--|

5.3.2	Receiver Design.	. 5.3-2
5 3 3	Receiver Thermal Performance	5.3-17
5.5.5 E 2 A	Beaciver Structural Steal Decign	5 2-23
5.3.4	Receiver Structurar Steer Design	5.3 23
5.3.5	Mechanical Design and Stress Analysis.	5.3-24
5.3.6	Modes of Operation and Startup	5.3-25
5.3.7	Operations and Maintenance Costs	5.3-28
5.3.8	Receiver Tower	5.3-31
5.3.9	Reheat Heat Exchanger.	5.3-32
5 4	FOCSIL ENERGY STIRGYSTEM	5 4-1
		· · · · · · · ·
5.5	ELECTRIC POWER GENERATING SISTEM	. 5.5-1
5.5.1	Functional Requirements.	• 5•2-T
5.5.2	Design	. 5.5-1
5.5.3	Performance	5.5-10
5.6	MASTER CONTROL SUBSYSTEM	. 5.6-1
5.6.1	General Functional Requirements.	. 5.6-1
5.0.1	Brogong Computer Sustem	5 6-2
5.6.2		. 5.0~2
5.6.3	Operator/Unit Interface	. 5.6-3
5.6.4	Collector Controls	. 5.6-6
5.6.5	Receiver Control	. 5.6-9
5.6.6	Fossil Boiler Control.	5.6-15
5 6 7	Plant Control Room Modifications	5.6-17
5.0.7		5 7-1
5./	FOUNDATIONS,	• 5•7-1
5.7.1	General.	. 5./-1
5.7.2	Subsurface Conditions	. 5.7-1
5.7.3	Heliostat Foundation	. 5.7-1
5.7.4	Central Receiver Tower Foundation.	. 5.7-2
5 8	SITE FACILITIES AND STRUCTURES	5.8-1
	Functional Deguirements	5 9-1
5.0.1	functional Requirements.	. J.O I
5.8.2	Site Development	. 5.8-1
5.8.3	Heliostat Field Flood Protection and Drainage	. 5.8-2
5.8.4	Fire Protection and Other Supporting Systems	. 5.8-2
6	ECONOMIC ANALYSIS.	. 6.1-1
6 1	METHOD	6 1-1
6.2		6 2-1
0.2	UNIT OPERATING DESCRIPTION	. 0.21
6.3	EPE SYSTEM DESCRIPTION	. 6.3-1
6.3.1	EPE System Expansion Plan	. 6.3-1
6.3.2	Load Forecast	. 6.3-1
6.4	ECONOMIC ASSUMPTIONS	. 6.4-1
6.5	ECONOMIC ANALYSIS RESULTS.	6.5-1
6 5 1	Multi-voar Deculte Summary	6 5-1
0.5.1	Color Suctor Charter Impact	• 0•5 I
0.0.2	Solar System Startup Impact.	. 0.5-3
6.5.3	Economics and Cost Sensitivity	. 6.5-4
6.5.4	Typical Solar Plant Operations	. 6.5-4
6.5.5	Competing Conventional Technologies	. 6.5-6
7	OWNERSHIP AND FINANCING STRUCTURE	7,1-1
, יו ד		7 1 _ 1
/•⊥	TINANCING AFFROACHED	• /•7_7

1

FINAL DESIGN AND PROCUREMENT 8.1-1

Final Engineering and Design 8.1-1

SYSTEM CHECKOUT AND STARTUP PHASE. 8.3-1 Component and Subsystem Checkout 8.3-1

JOINT USER/INTERESTED PARTY OPERATION PHASE. . . . 8.5-1

Receiver Final Design. 8.6-1

Section

7.2

8

8.1 8.1.1

8.2

8.3

8.6

8.6.1 8.6.2

8.6.3 8.6.4 8.6.5

8.6.6

8.1.2

8.3.1

8.3.2 8.4 8.5

Title

ANALYSIS OF PROJECT AND UTILITY FINANCING

System Pe	erformance	Vá	1 1	ida	at	i or	1 7	Гез	sts	3.	•	٠	•		•		•	8.6-2
Milestone	e Schedule	•		٠		•	•	•	•		•	٠	•	•	•	٠	٠	8.6-2

APPENDIXES

VOLUME 2

Α	SUMMARY OF PREVIOUS DOCUMENTATION.	
В	DESIGN REQUIREMENTS DOCUMENT	
B.1	PURPOSE	1
B.2	DESIGN REQUIREMENTS	ī
B.3	ENVIRONMENTAL CRITERIA	ī
B.4	DESIGN DOCUMENTS B.4-	ī
c	DESCRIPTION OF WORK	-
c .1	DESCRIPTION OF WORK	٦
C.2	CAPITAL COST ESTIMATE	ī
C.3	RECEIVER COST ESTIMATE DETAIL C.3-	ĩ
D	RELIABILITY ANALYSIS RESULTS	-
E	DETAILS OF FOSSIL AND SOLAR SIMULATION MODELS E-1	
Ē.]	OBJECTIVE E-1	
E.2	OVERVIEW E-1	
E.3	FOSSIL SYSTEM SIMILATION E-1	
E.4	SOLAR SYSTEM SIMULATION F-1	
E.5	TRANSIENT TEST DATA	
С. С	RECEIVER SUPERHEATER HOT TUBE ANALYSIS PEDORT	
6	RECEIVER DESIGN AND DEDECOMANCE DETAILS	٦
G 1	CIMMADV	1
G. 2	$\mathbf{D} \mathbf{C} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{C} \mathbf{U} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{C} \mathbf{C} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} U$	1
G.2	DECEIVER DESIGN DRAWINGS	<u>т</u>
G.J	RECEIVER INERMONIDRAULIC PERFORMANCE	<u>т</u>
G.4 7 E	CDEED_EAMICHE AND CEADEUD CEDECC ANALYCIC OF MUR	T
6.5	CREEP-FATIGUE AND STARTUP STRESS ANALISIS OF THE	-
	TUBE PANEL G.5-	T
G.6	CREEP-FATIGUE ANALYSIS OF THE TUBE PANEL	_
	(REFERENCE ANALYSIS	1
G.7	STARTUP STRESS ANALYSIS	1

VOLUME 3

APPENDIXES

ਸ	HELIOSTAT TECHNICAL SPECIFICATION H-1	
T	STATE HIGHWAY RELOCATION DRAWINGS	
Ĵ	SWEC FLOW DIAGRAMS	
ĸ	SWEC SYSTEM DESCRIPTIONS	
<u>к</u> . 1	INTRODUCTION K.1-	1
K.2	EXCERPTS FROM SYSTEM DESCRIPTION NO. 3-1 K.2-	ī
K.3	EXCERPTS FROM SYSTEM DESCRIPTION NO. 3-2 K.3-	ī
K.4	EXCERPTS FROM SYSTEM DESCRIPTION NO. 3-4 K.4-	1
K.5	MINISYSTEM DESCRIPTION NO. 3-8 K.5-	1
K.6	EXCERPTS FROM SYSTEM DESCRIPTION NO. 6-1 K.6-	1
K.7	EXCERPTS FROM SYSTEM DESCRIPTION NO. 6-6 K.7-	1
K.8	MINISYSTEM DESCRIPTION NO. 11-3 K.8-	1
L	SWEC DRAWINGS L-1	
M	COLLECTOR FIELD STUDIES M-1	
N	PRELIMINARY FOUNDATION REPORT N-1	
0	CONCEPTUAL PIPE STRESS ANALYSIS REPORT 0-1	

,

Table	Title
1.4-1	Preliminary Design Summary Table
1.7-1	EPE Economic Scenarios (1987)
1.7-2	Multiyear Cost/Value Summary (1982 M\$ PWRR)
2.2-1	Work Breakdown Structure - Preliminary Design
3.2.1	Geographic Characteristics of Newman Station
3.3-1	Climatological 40-Year Averages for El Paso
3.3-2	Climatological Extremes
3.3-3	Summary of Insolation Data
3.5-1	Station Design Summary at Maximum Unit Capacity
3.5-2	Variation of Unit Heat Rate and Boiler Efficiency as a Function of Load
4.1-1	Summary of Major Plant Design Evolution
4.1-2	Comparison of Alternate Reheat and Receiver Configurations
4.4-1	System Performance Characteristics
4.6-1	Capital Cost Estimate Summary
4.7-1	Annual Plant Operations and Maintenance Costs (In Thousands of March 1987 Dollars)
4.7-2	Unit Operating and Maintenance Personnel
4.9-1	Newman Unit l Full-Forced Outage Reliability/Availability Characteristics
4.9-2	Comparative Analysis of Full-Forced Outages, Solar Repowering Newman Unit 1 Vs Fossil Industry Data
4.9-3	El Paso Electric Company Newman Unit l Solar Systems Critical Component List
5.2-1	Collector Field Optical Efficiencies
5.3-1	Receiver Design Point Base Data - Noon Winter Solstice

viii

.

LIST OF TABLES (Cont)

Table

Title

- 5.3-2 Absorber Module Design Parameters
- 5.3-3 Evaporator Circulation System Data
- 5.3-4 Circulation System Data
- 5.3-5 Boiler Circulating Pump Performance Data
- 5.3-6 Receiver Heat Losses
- 5.3-7 Performance of Receiver at Winter Solstice Design Point Solar-Only Operation
- 5.3-8 Overall Thermal Efficiency at Various Times of Winter Solstice Day
- 5.3-9 Performance of Receiver at Winter Solstice Design Point Maximum Turbine Capacity - Combined Solar/Fossil Operation
- 5.3-10 Receiver Loads
- 5.3-11 Receiver Live Loads
- 5.3-12 Weight Summary
- 5.3-13 Steps for Startup Using Steam (Starting from Ambient)
- 5.5-1 Operating Constraints of EPGS
- 5.5-2 Performance Summary
- 6.1-1 Dispatch Considerations in Solar Repowering Model
- 6.1-2 Solar Unit Economic Measures
- 6.1-3 Operating Value Factors
- 6.2-1 Solar Repowered Newman Unit 1 Performance Data
- 6.2-2 El Paso Solar Repowering Heliostat Field Efficiency as a Function of Sun Position
- 6.4-1 EPE Economic Scenarios (1987)
- 6.5-1 Annual Operating Costs and Savings (1983 M\$)
- 6.5-2 Multiyear Cost/Value Summary (1983 M\$ PWRR)

ix

LIST OF TABLES (Cont)

Table

Title

- 6.5-3 Electrical Energy Output Summary (GWh/year)
- 6.5-4 Solar Plant Cost Sensitivity
- 7.1-1 Comparison of Finacing Assumptions
- 7.2-1 Project Financing Economic Scenario A
- 7.2.2 Utility Financing Economic Scenario A
- 7.2-3 Project Financing Economic Scenario B
- 7.2-4 Utility Financing Economic Scenario B
- 7.2-5 Breakeven Analysis

LIST OF FIGURES

Figure

<u>Title</u>

- 1.3-1 Location of Newman Station
- 1.3-2 Newman Station Site and Surroundings
- 1.3-3 Newman Station Units 1-4
- 1.4-1 Solar Repowered Newman Unit 1
- 1.4-2 Flow Schematic
- 1.4-3 Site Arrangement
- 1.4-4 Water/Steam Solar Receiver
- 1.5-1 Efficiency Chart Design Point Noon Winter Solstice
- 1.5-2 Efficiency Chart Annual Average
- 1.6-1 Project Summary Milestone Schedule
- 3.1-1 Location of Newman Stations
- 3.3-1 Comparison of Insolation Data for November 10, 1981
- 3.4-1 Newman Station Units 1-4
- 4.1-1 Alternate Receiver Panel Designs
- 4.1-2 Schematic Arrangement of Interlaced Panel
- 4.1-3 Receiver Flow Schematic with HP to LP Reheat Exchanger
- 4.1-4 Heat Flux Profile for Interlaced Tube Design
- 4.1-5 Size Comparison of Interlaced Versus Screen Tube Receiver
- 4.3-1 Flow Schematic
- 4.3-2 Solar Repowered Newman Unit 1
- 4.3-3 Site Arrangement
- 4.4-1 Preliminary Heat Balance Diagram 81 MWe Fossil-Only Operation
- 4.4-2 Preliminary Heat Balance Diagram 42 MWe Solar-Only Operation

xi

LIST OF FIGURES (Cont)

Figure	Title
4.4-3	Preliminary Heat Balance Diagram - 79 MWe Solar/Fossil Operation
4.4-4	Electrical Power Efficiency Chart - Design Point
4.4-5	Electrical Energy Efficiency Chart - Annual Average
4.5-1	Solar Flux Transient for Semi-Infinite Cloud
4.5-2	Solar Flux Transient for Round Cloud
4.5-3	Solar System Transient Response Case 1 - Steam Pressures
4.5.4	Solar System Transient Response Case 1 - Bias Valve Position
4.5-5	Solar System Transient Response Case l - Primary Superheater Panel Exit Temperatures
4.5-6	Solar System Transient Response Case 1A - Feedwater and Steam Flow and Drum Level
4.5-7	Newman l Transient Test lA - Steam/Water Flows and Drum Level
4.5-8	Newman l Transient Test 1A - Superheater Attemperator, South
4.5-9	Newman l Transient Test 6 - Superheater Attemperator, South
4.5-10	Newman l Transient Test 6 - Reheater Attemperator, North
4.5-11	Newman l Transient Test 6 - Fuel/Air Flows and Superheater Outlet Pressure
4.5-12	Newman l Transient Test 2 - Superheater Attemperator, North
4.5-13	Newman 1 Transient Test 2 - Reheater Attemperator, North
5.2-1	Design Point Receiver Flux Distribution
5.2-2	Slant Range Dependent Aiming Strategy
5.2-3	Optimized Heliostat Field - 1875 Heliostats
5.2-4	Receiver Iso-Flux Contours at Design Point

xii

LIST OF FIGURES (Cont)

Figure	Title
5.2-5	Design Point Receiver Flux Distribution
5.2-6	Maximum Receiver Boundary Heat Flux Versus Time After Electrical Power Loss to the Heliostat Field
5.3-1	Receiver Flow Schematic with HP to LP Reheat Exchanger
5.3-2	Receiver Flow Schematic with Reheater Heat Exchanger
5.3-3	Water/Steam Solar Receiver
5.3-4	Schematic Arrangement of Interlaced Panel
5.3-5	Arrangement of Superheater Module Interlaced Panels
5.3-6	Detail of Lateral Module Support
5.3-7	General Arrangement of Solar Receiver
5.3-8	Incident Power on Receiver Modules at Various Times
5.3-9	Interlaced Panels Arrangement Around Receiver Periphery
5.3-10	Receiver Flow Diagram
5.3-11	Schematic Arrangement of Circulation Loop
5.3-12	Arrangement of Drum Internals
5.3-13	Circulation Pump
5.3-14	Pump Performance Curves
5.3-15	Layout of Discharge Tubes at Top of Receiver
5.3-16	Layout of Supply Tubes at Bottom of Receiver
5.3-17	Heat Flux on West Side of Receiver (Noon Winter Solstice)
5.3-18	Heat Flux on East Side of Receiver (Noon Winter Solstice)
5.3-19	Receiver Flux Profiles - Winter Solstice
5.3-20	Winter Solstice Circumferential Power Distribution at Various Hours

xiii

.

Figure	Title
5.3-21	Maximum Allowable Heat Flux for Membrane Wall As a Function of Steam Temperature and Conductance
5.3-22	Effect of Film Coefficient on Tube Temperature
5.3-23	Maximum Skew Angle of Incident Radiation
5.3-24	Skewed Heating Effects
5.3-25	Receiver Control Schematic
5.3-26	Temperature Enthalpy Diagram of Receiver Panels at Design Point
5.3-27	Steam and Metal Temperature Profiles Along Superheater Tubes
5.3-28	Actual Versus Allowable Heat Flux for Module 9 (PS1)
5.3-29	Effect of Wind Speed and Ambient Temperature on Efficiency and Heat Losses at Design Point
5.3-30	Thermal Performance of Receiver During Winter Solstice Day
5.3-31	Receiver Performance as Function of Incident Power
5.3-32	Pressures at Receiver and Inlet Temperatures as Function of Incident Power for Solar-Only Operation
5.3-33	Flux Distribution on Receiver Modules for 33 Percent Field Shading
5.3-34	Flux Distribution on Receiver Modules for 50 Percent Field Shading
5.3-35	Increase of Flux Spillage After Loss of Power
5.3-36	Schematic Location of Key Receiver Valves
5.3-37	Steam Warmup - Receiver and Pipes Cold
5.3-38	Steam Warmup - Receiver Cold, Pipes Hot
5.6-1	Conceptual Design - Main Control Board
5.6-2	General Arrangement - Control and Results Rooms

xiv

.

LIST OF FIGURES (Cont)

Figure	Title
5.6-3	Conceptual Control Architecture
5.7-1	East-West Subsurface Profile for Heliostat Field
6.1-1	Economic Model Flow Diagram
6.2-1	Turbine-Generator Part Load Efficiency Correction
6.2-2	Temperature vs Condenser Pressure Efficiency Correction
6.5-1	Solar Repowered Unit Energy Output
6.5-2	Conventional Energy Displaced by Solar Repowered Unit
6.5-3	Summer Day Total Unit Output and Solar Output
6.5-4	Winter Day Total Unit Output and Solar Output
6.5-5	Summer Day Original System Load and Adjusted Load
6.5-6	Winter Day Original System Load and Adjusted Load
6.5-7	Summer Week Total Unit Output and Solar Output
6.5-8	Winter Week Total Unit Output and Solar Output
6.5-9	Summer Week Original System Load and Solar-Adjusted Load
6.5-10	Winter Week Original System Load and Solar-Adjusted Load
6.5-11	1988 Original and Solar-Adjusted Load Duration Curve
8-1-1	Project Summary Network
8.6-1	Solar Receiver Schedule

۹.

*NOTE - Abbreviations used for equipment mark numbers and plant systems have not been included in this table

Α

В

С

D

A ac AFI AFUDC AISC ANSI APS ASME Attemp	 ampere alternating current allowance for indeterminates allowance for funds used during construction American Institute of Steel Construction American National Standards Institute Arizona Public Service American Society of Mechanical Engineers attemperator
B&W BCS BOP Btu	 Babcock & Wilcox beam characterization system balance of plant British thermal unit
°C c-c cl cm CPU CRT c-t C/V	 degree Celsius combined cycle class centimeter computer processing unit cathode ray tube combustion turbine plant cost/value
dc DDC DEH DNB DOE DOE-SAN	 direct current direct digital control digital electrohydraulic control departure from nucleate boiling Department of Energy Department of Energy-San Francisco Operations Office

Ε

	EHL el EPE EPGS EPRI	 extreme high level elevation El Paso Electric Company electric power generating system Electric Power Research Institute
F		
	°F FAA FMEA ft ft ² FTA	 degree Fahrenheit Federal Aviation Administration failure mode and effects analysis foot square foot fault tree analysis
G		
	gpm GWh GWhe	- gallons per minute - gigawatt hour - gigawatt hour electric
Н		
	HAC HC HFC Hg hp hr HVAC HWL Hz	 heliostat array controller heliostat controller heliostat field controller mercury horsepower hour heating, ventilating, and air conditioning high water level hertz
I		
	ID IEEE in. IIE I/O IP I/P	 inside diameter Institute of Electrical and Electronic Engineers inch Instituto de Investigacionas Electricas input/ouput intermediate pressure current to pneumatic converter

J

K

L

М

N

.

 kilograms per hour kilojoules per kilowatt hour kilometer square kilometer kilopascal kilovolt kilovolt ampere kilowatt kilowatt hour
- pounds per hour - load duration curve - low pressure
<pre>meter square meter million British thermal units motor control center maximum continuous rating master control system cubic meters per hour mega joules millimeter motor operated valve mega pascals miles per hour meters per second megavolt amperes megawatt megawatt electric</pre>
 National Electric Manufacturers Association National Energy Reliability Council National Fire Protection Association Newton meter National Pollution Discharge Elimination System nonelectric parts reliability data net positive suction head Nuclear Regulatory Commission nonreturn valves Newman Solar Repowering Model Nuclear Regulatory Commission Report

0

	OA/FA OD O&M OSHA	 oil air/forced air outside diameter operation and maintenance Occupational Safety and Health Administration
Ρ	lb/ft ³ pf P&I PID ppb lb/ft ² psi psia psig	 pounds per cubic foot power factor piping and instrumentation piping and instrumentation diagram parts per billion pounds per square foot pounds per square inch pounds per square inch absolute pounds per square inch gage
Q		
R		
	R&D RH ROE ROW RV	 research and development reheat return on equity right-of-way relief valve
S		
	SEC SH SH Solar One SWEC	 secondary superheater superheater DOE 10MWe Solar Thermal Central Receiver Pilot Plant - Barstow, California Stone & Webster Engineering Corporation
т		
	TDH TEMA T-G thk TMY TX	 total dynamic head Tubular Exchanger Manufacturers' Association turbine-generator thick typical meteorological year Texas
U		
	UBC UAC USGS	- Uniform Building Code - Utility Advisory Council - United States Geodetic Survey

V

	V VWO	- volt - valves wide open
W		
	WEC W/m ²	- Westinghouse Electric Corporation - Watts per square meter
X		
Y		
Z		

APPENDIX A

SUMMARY OF PREVIOUS DOCUMENTATION

Results of the Conceptual Design Phase of the Newman Unit 1 Solar Repowering Program were documented in "Newman Unit 1 Solar Repowering Final Report" (El Paso Electric Company, Volumes I and II, No. DOE/SG-10740-1/I,II. July 1980).

These results were superseded by the Advanced Conceptual Design effort reported in "Newman Unit 1 Advanced Solar Repowering Final Report" (El Paso Electric Company, Volumes I and II, No. DOE/DF 11566-2. April 1982). The Table of Contents, List of Tables, and List of Figures for the April 1982 report are provided in Tables A-1, A-2, and A-3, respectively.

In addition, the following articles were published relating to this program:

- "Solar Repowering an 82 MW Reheat Steam Turbine," presented at the 8th Energy Technology Conference, Washington, D.C. March 10, 1981
- "Solar Repowering: The Next Step to Commercial Solar Power Generation," Modern Power Systems, pp. 51-55. August 1982
- "Solar Repowering A Step Forward," Right of Way, pp. 18-20. August 1982
- "Preliminary Design of a Solar Repowered Gas-Fired Generating Station," ASME Joint Power Conference, Indianapolis, Indiana. September 28, 1983
- "Newman Unit 1 Solar Repowering Project," presented at the IEEE MEXICON 83, Cuernavaca, Mexico. November 23, 1983

TABLE OF CONTENTS

VOLUME 1

<u>Secti</u>	on		1	<u>Tit</u>	:16	2																			Page
TITLE	PA	GE.	•	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	A
TABLE	OF	CO	NTE	NTS	5.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	i
LIST	OF	TABI	LES	•	•	••	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	vi
LIST	OF	FIG	URE	S	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ix
1. E	XEC	UTI.	VE	SUI	MM	ARY	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	1.1-1
1.1	BAC	KGR	OUN	D	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1.1-1
1.2	SIT	'E D	ESC	RI	PT:	ION	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1.2-1
1.3	PRC	JEC	тS	JUM	MA	RY.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1.3-1
1.4	CON	ICEP	TUA	VL I	DE	SIG	N I	DES	SCF	SI E	PTI	ON	۱.	•	•	•	•	٠	•	•	•	•	•	٠	1.4-1
1.5	SYS	TEM	PE	IRF	ORI	MAN	CE	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1.5-1
1.6	ECC	NOM	IC	FI	ND	I NG	s.	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	1.6-1
1.7	DEV	7ELO	PME	ENT	P	LAN	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	٠	•	1.7-1
1.8	SIT	re o	WNE	ER'	S .	ASS	ES	SMI	ENT	٢.	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	1.8-1
2 IN	TR	DUC	TIC	N	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	2.1-1
2.1	STU	JDY	OBJ	JEC	TI	VE.	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2.1-1
2.2	TEC	CHNI	CAI	L A	PP	ROA	СН	Al	ND	U	NI 7	r s	SEI	ΈC	TI	101	1.	•	•	•	•	•	•	•	2.2-1
2.2.1 2.2.2 2.2.3	1 7 2 5 3 F	Fech Sele Hist	nic cti ory	al ion y o	A o f	ppr f N Con	oa lew ice	ch mai pti	n l ua:	Jn: L I	it Des	fc sic	Jn	Sc Ev) 	ar Lut	Re ic	epo on		eri •	ing		• •	• •	2.2-1 2.2-1 2.2.3
2.3	SI	re l	OCF	\TI	ON		•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	2.3-1
2.4	SI	FE G	EOC	JRA	PH	ч.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	2.4-1
2.5 2.5. 2.5.	CL: 1 (2 (IMAT CLIM ON S	'OLC IATC I TH	DGY DLO E M	GI ET	CAL	D D D	IS GI	CUS	ss: L 1		ГА	• •	•	•	•	•	•	•	•	• •	• •	•	• •	2.5-1 2.5-1 2.5-2

۰.

1 of 7

TABLE OF CONTENTS (Cont)

Sectio	<u>n Title</u>	Page
2.6 E	XISTING UNIT DESCRIPTION	2.6-1
2.7 E	XISTING UNIT PERFORMANCE SUMMARY	2.7-1
2.8 P	PROJECT ORGANIZATION	2.8-1
2.9 F	INAL REPORT ORGANIZATION	2.9-1
3 SEL	ECTION OF PREFERRED SYSTEM	3.1-1
4 SYS	TEM CONCEPTUAL DESIGN	4.1-1
4.1 S	YSTEM DESCRIPTION	4.1-1
4.2 F	UNCTIONAL REQUIREMENTS	4.2-1
4.3 E	ESIGN AND OPERATING CHARACTERISTICS	4.3-1
4.3.1 4.3.2 4.3.3	Plant Arrangement	4.3-1 4.3-1 4.3-2
4.4 S	ITE REQUIREMENTS	4.4-1
4.5 S	YSTEM PERFORMANCE	4.5-1
4.5.1 4.5.2 4.5.3	Normal Operating Analysis	4.5-1 4.5-3 4.5-8
4.6 F	PROJECT CAPITAL COST SUMMARY	4.6-1
4.6.1 4.6.2 4.6.3 4.6.4 4.6.5 4.6.5 4.6.6 4.6.7 4.6.8	Direct Costs	$\begin{array}{r} 4.6-1 \\ 4.6-2 \\ 4.6-2 \\ 4.6-2 \\ 4.6-3 \\ 4.6-3 \\ 4.6-3 \\ 4.6-5 \\ 4.6.5 \end{array}$
4.7 0	PERATIONS AND MAINTENANCE COSTS AND CONSIDERATIONS.	4.7-1
4.7.1 4.7.2	Operations	4.7-1 4.7-1

.

TABLE OF CONTENTS (Cont)

Section <u>Title</u>	Page
4.8 SYSTEM SAFETY	4.8-1
4.8.1Technical Approach4.8.2Literature4.8.3Design Guidelines4.8.4Solar Reflectance Hazards	4.8-1 4.8-2 4.8-3 4.8-5
4.9 ENVIRONMENTAL CONSIDERATIONS	4.9-1
4.9.1 Summary of Major Environmental Considerations 4.9.2 Environmental Site Description 4.9.3 Environmental Impacts of Construction 4.9.4 Environmental Impacts of Operation	4.9-1 4.9-2 4.9-8 4.9-12 4.9-14
4.10 INSTITUTIONAL AND REGULATORY CONSIDERATIONS	4.10-1
5 SUBSYSTEM CONCEPTUAL DESIGN, COST, AND PERFORMANCE	5.1-1
5.1 SUBSYSTEM DEFINITION	5.1-1
5.2 COLLECTOR SUBSYSTEM	5.2-1
<pre>5.2.1 Design Basis</pre>	5.2-1 5.2-3 5.2-9 5.2-10
5.3 SOLAR RECEIVER SUBSYSTEM	5.3-1
5.3.1 Design Requirements	5.3-1 5.3-3 5.3-10 5.3-11 5.3-13 5.3-16 5.3-17
5.4 FOSSIL BOILER SUBSYSTEM	5.4-1
5.5 ELECTRIC POWER GENERATING SYSTEM	5.5-1
5.5.1 Functional Requirements	5.5-1 5.5-1 5.5-7 5.5-9

3 of 7

TABLE OF CONTENTS (Cont)

Section Title Page	<u>e</u>
5.6 MASTER CONTROL SUBSYSTEM	-1
5.6.1General Functional Requirements.5.65.6.2Process Computer System.5.65.6.3Operator/Unit Interface.5.65.6.4Collector Controls5.65.6.5Receiver Control5.65.6.6Fossil Boiler Control.5.65.6.7Plant Control Room Modifications5.6	-1 -3 -5 -12 -15 -18
5.7 SITE PREPARATION	-1
5.8 SITE FACILITIES AND STRUCTURES	-1
5.8.1 Functional Requirements. 5.8 5.8.2 Design 5.8 5.8.3 Cost 5.8	-1 -1 -2
6 ECONOMIC ANALYSIS	-1
6.1 METHOD	-1
6.2 UNIT OPERATING DESCRIPTION 6.2	-1
6.3 EPE SYSTEM DESCRIPTION 6.3	-1
6.3.1 EPE System Expansion Plan 6.3 6.3.2 Load Forecast	-1 -1
6.4 ECONOMIC ASSUMPTIONS	-1
6.5 ECONOMIC ANALYSIS RESULTS 6.5	-1
6.5.1Multi-year Results Summary6.56.5.2Solar System Start-up Impact6.56.5.3Economic and Cost Sensitivity6.56.5.4Typical Solar Plant Operations6.5	-1 -3 -3 -4
7 DEVELOPMENT PLAN	-1
7.1 DESIGN PHASE	-1
7.1.1 Preliminary Design 7.1.2 7.1.2 Procurement 7.1.3 7.1.3 Final Design 7.1.3	-1 -2 -2

4 of 7

TABLE OF CONTENTS (Cont)

<u>Secti</u>	on <u>Title</u>									Page
7.2	CONSTRUCTION PHASE	٠	•	•	•	•	•	•	•	7.2-1
7.3	SYSTEM CHECKOUT AND STARTUP PHASE	•	•	•	•	•	•	•	•	7.3-1
7.3.1 7.3.2	Component and Subsystem Checkout . System Startup	•	•	•	•	•	•	•	•	7.3-1 7.3-1
7.4	SYSTEM PERFORMANCE VALIDATION PHASE.	•	•	•	•	•	•	•	•	7.4-1
7.5	JOINT USER/DOE OPERATION PHASE	•	•	•	•	•	•	•	•	7.5-1
7.6	SCHEDULE AND MILESTONE CHART	٠	•	•	•	• •	•	•	•	7.6-1

5 of 7

A-6

VOLUME 2

Appendix Title	Page
A SELECTION OF PREFERRED SYSTEM.	A.1-1
A.1 DESCRIPTION OF SYSTEM ALTERNATIVE	A.1-1
A.2 SUBSYSTEM ANALYSIS RESULTS	A.2-1
A.2.1 Collector Field Studies.	A.2-1
A.2.2 Water/Steam Receiver Concepts	A.2-1 A.2-3
A 2 CYCHEM ANALYCIC DECILITS	A. 3-1
A.3 SISIEM ANALISIS RESULTS	A.0 1
A.4 CHARACTERISTICS OF PREFERRED SYSTEM	A.4-1
B NEWMAN UNIT 1 SOLAR REPOWERING SYSTEM SPECIFICATION	B.1-1
B.1 GENERAL	B.1-1
B.1.1 Scope.	B.1-1
B.1.2 System Description	B.1-1 B.1-5
B.2 REFERENCES	B.2 -1
B.2.1 Standards and Codes	B.2-1
B.2.2 Other Publication and Documents	B.2-2
B.3 REQUIREMENTS	B.3-1
B.3.1 Site	B.3-1
B.3.2 Site Facilities	B.3-1 B.3-2
B.3.4 Receiver Subsystem	B.3-7
B.3.5 Master Control Subsystem	B.3-9
B.3.6 Fossil Boiler Subsystem	B.3-11
B.3.7 Electric Power Generation Subsytem	B.3-12
B.3.8 Service Life	B.3-13
B.3.9 Plant Availability and Reliability	B.3-13
B.3.10 Maintainability	B.3-13
B.4 ENVIRONMENTAL CRITERIA	B.4-1
B.4.1 Design Requirements	B.4-1
B.4.2 Environmental Standards	B.4-2
C SOLTES 1 INPUT DATA	C.1-1
D CONCEPTUAL DESIGN DRAWINGS AND DIAGRAMS	D.1-1

A-7

Page

Appendix <u>Title</u>

E.1-1 E.1-1 E.1-1 E.1-4 E.1-6 E.1-11 E.1-12 E.1-12 E.1-12 E.1-13 E.1-13 E.2-1 E.2 EXISTING UNIT PERFORMANCE SUMMARY. E.2-1

LIST OF TABLES

Table	Title	
Section 1		
1.1-1	1982 Southwest Solar Repowering Utility Advisory Council	
1.4-1	Conceptual Design Summary Table	
1.5-1	System Performance Characteristics	
1.6-1	Economic Scenarios (1985)	
1.6-2	Multi-Year Cost/Value Summary (1982 M\$ PWRR) Section 2	
2.4-1	Geographic Characteristics of Newman Station	
2.5-1	Climatological 40 Year Averages for El Paso	
2.5-2	Climatological Extremes	
2.8-1	1982 Southwest Solar Repowering Utility Advisory Council	
Section 4		
4.2-1	System Performance Requirements	
4.5-1	Conceptual Solar Field Performance	
4.5-3	List of Cases	
4.6-1	Construction Cost Estimate Summary	
4.6-2	Cost Account Scope Definition	
4.6-3	Owner's Costs	
4.7-1	Annual Plant Operations and Maintenance Costs	
4.7-2	Unit Operating Personnel	
4.9-1	Plants Occurring in the Area of the Newman Power Plant Site	
4.9-2	Mammals Likely to be Found at the Newman Station	

1 of 4

A-9

LIST OF TABLES (Cont)

Table <u>Title</u>

4.9-3 Reduction in Air Pollutant Emissions Resulting from Operation of Solar Repowered Newman Unit 1

Section 5

- 5.2-1 Generic Heliostat Design Characteristics
- 5.2-2 Heliostat Field Performance
- 5.2-3 Flux Map, Noon Winter Solstice
- 5.2-4 Flux Map, 10 a.m. Winter Solstice
- 5.2-5 Flux Map, 9 a.m. Winter Solstice
- 5.3-1 Primary Receiver Panel Data
- 5.3-2 General Design Data for Primary Receiver Panels
- 5.3-3 Primary Receiver Circulating System Data
- 5.3-4 Reheater Receiver Panel Data
- 5.3-5 Design Point Primary Receiver Flux Map
- 5.3-6 Performance of Primary Receiver at Winter Solstice Design Point
- 5.3-7 Design Point Reheat Receiver Flux Map
- 5.3-8 Performance of Reheater Receiver At Winter Solstice Design Point
- 5.3-9 Overall Thermal Efficiency At Various Times
- 5.3-10 Energy Required for Warm-Up
- 5.3-11 Start-Up Sequence--Receiver Cold
- 5.3-12 Receiver Component Weights
- 5.3-13 Budgetary Cost Estimate for Receiver Subsystem
- 5.5-1 Operating Constraints of EPGS
- 5.5-2 Solar Repowered System Piping

2 of 4

LIST OF TABLES (Cont)

- Table <u>Title</u>
- 5.5-3 Station Heat Rates
- 5.5-4 Effect of Steam Temperature and Reheat Pressure Drop Variation on Unit Heat Rate
- 5.7-1 Site Improvement Costs

Section 6

- 6.1-1 Dispatch Considerations in Solar Repowering Model
- 6.1-2 Solar Unit Economic Measures
- 6.1-3 Operating Value Factors
- 6.2-1 Solar Repowered Newman Unit 1
- 6.4-1 EPE Economic Scenarios (1987)
- 6.5-1 Annual Operating Costs and Savings
- 6.5-2 Multi-Year Cost Value Summary (1982 M\$ PWRR)
- 6.5-3 Electrical Energy Output Summary (GWh/year)
- 6.5-4 Solar Plant Cost Sensitivity

Appendix A

- A.1-1 Solar Repowered Newman Unit 1 Characteristics of Alternate System Configurations
- A.1-2 Solar Repowered Newman Unit 1 Baseline Configuration
- A.2-1 Collector Subsystem-Trade Study Results
- A.2-2 Characteristics of Alternate Receiver Concepts
- A.3-1 EPE Economic Scenarios
- A.3-2 Cost/Benefit Analysis Results for Baseline Configuration
- A.3-3 Characteristics of Alternate Solar Repowering Systems
- A.3-4 Comparative Evaluation of System Alternatives

3 of 4

LIST OF TABLES (Cont)

Table <u>Title</u>

A.4-1 Solar Repowered Newman Unit 1 Characteristics of Preferred Configuration

Appendix C

C-1 Summary of Plant Efficiencies for SOLTES Program Inputs

Appendix E

- E.1-1 Variation of Unit Heat Rate and Boiler Efficiency as a Function of Load
- E.1-2 Overall Efficiency of Generator and Exciters as a Function of Load
- E.2-1 Station Design Summary at Maximum Unit Capability

LIST OF FIGURES

Section 11.1-1Solar Repowered Newman Unit 11.2-1Location of Newman Station1.2-2Newman Station Site and Surroundings1.2-3Newman Station Units 1-41.4-1Simplified Flow Schematic1.4-2Site Arrangement1.4-3Second Generation Heliostats1.4-4External Water/Steam Solar Receiver System1.4-5Construction Cost Breakdown1.5-1Solar Repowering Newman Units/Efficiency Chart1.5-2Solar Repowered Unit Energy Output1.7-1Milestone ScheduleSection 22.3-1Location of Newman Station2.5-1El Paso Wind RosesSection 44.1-1Solar Repowered Newman Unit 14.1-3Site Arrangement4.5-1Solar Repowering Newman Unit 1 Efficiency Chart - Norwinter Solstice4.5-2Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average		Figure	Title	
 1.1-1 Solar Repowered Newman Unit 1 1.2-1 Location of Newman Station 1.2-2 Newman Station Site and Surroundings 1.2-3 Newman Station Units 1-4 1.4-1 Simplified Flow Schematic 1.4-2 Site Arrangement 1.4-3 Second Generation Heliostats 1.4-4 External Water/Steam Solar Receiver System 1.4-5 Construction Cost Breakdown 1.5-1 Solar Repowering Newman Units/Efficiency Chart 1.5-2 Solar Repowered Unit Energy Output 1.7-1 Milestone Schedule Section 2 2.3-1 Location of Newman Station 2.5-1 El Paso Wind Roses Section 4 4.1-1 Solar Repowered Newman Unit 1 4.1-2 Simplified Flow Schematic 4.1-3 Site Arrangement 4.5-1 Solar Repowering Newman Unit 1 Efficiency Chart - Norwinter Solstice 4.5-2 Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average 		Section 3	<u>1</u>	
 1.2-1 Location of Newman Station 1.2-2 Newman Station Site and Surroundings 1.2-3 Newman Station Units 1-4 1.4-1 Simplified Flow Schematic 1.4-2 Site Arrangement 1.4-3 Second Generation Heliostats 1.4-4 External Water/Steam Solar Receiver System 1.4-5 Construction Cost Breakdown 1.5-1 Solar Repowering Newman Units/Efficiency Chart 1.5-2 Solar Repowered Unit Energy Output 1.7-1 Milestone Schedule Section 2 2.3-1 Location of Newman Station 2.5-1 El Paso Wind Roses Section 4 4.1-1 Solar Repowered Newman Unit 1 4.1-2 Simplified Flow Schematic 4.1-3 Site Arrangement 4.5-1 Solar Repowering Newman Unit 1 Efficiency Chart - Now Winter Solstice 4.5-2 Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average 		1.1-1	Solar Repowered Newman Unit l	
 1.2-2 Newman Station Site and Surroundings 1.2-3 Newman Station Units 1-4 1.4-1 Simplified Flow Schematic 1.4-2 Site Arrangement 1.4-3 Second Generation Heliostats 1.4-4 External Water/Steam Solar Receiver System 1.4-5 Construction Cost Breakdown 1.5-1 Solar Repowering Newman Units/Efficiency Chart 1.5-2 Solar Repowered Unit Energy Output 1.7-1 Milestone Schedule Section 2 2.3-1 Location of Newman Station 2.5-1 El Paso Wind Roses Section 4 4.1-1 Solar Repowered Newman Unit 1 4.1-2 Simplified Flow Schematic 4.1-3 Site Arrangement 4.5-1 Solar Repowering Newman Unit 1 Efficiency Chart - Now Winter Solstice 4.5-2 Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average 		1.2-1	Location of Newman Station	
 1.2-3 Newman Station Units 1-4 1.4-1 Simplified Flow Schematic 1.4-2 Site Arrangement 1.4-3 Second Generation Heliostats 1.4-4 External Water/Steam Solar Receiver System 1.4-5 Construction Cost Breakdown 1.5-1 Solar Repowering Newman Units/Efficiency Chart 1.5-2 Solar Repowered Unit Energy Output 1.7-1 Milestone Schedule Section 2 2.3-1 Location of Newman Station 2.5-1 El Paso Wind Roses Section 4 4.1-1 Solar Repowered Newman Unit 1 4.1-2 Simplified Flow Schematic 4.1-3 Site Arrangement 4.5-1 Solar Repowering Newman Unit 1 Efficiency Chart - Not Winter Solstice 4.5-2 Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average 		1.2-2	Newman Station Site and Surroundings	
 1.4-1 Simplified Flow Schematic 1.4-2 Site Arrangement 1.4-3 Second Generation Heliostats 1.4-4 External Water/Steam Solar Receiver System 1.4-5 Construction Cost Breakdown 1.5-1 Solar Repowering Newman Units/Efficiency Chart 1.5-2 Solar Repowered Unit Energy Output 1.7-1 Milestone Schedule Section 2 2.3-1 Location of Newman Station 2.5-1 El Paso Wind Roses Section 4 4.1-1 Solar Repowered Newman Unit 1 4.1-2 Simplified Flow Schematic 4.1-3 Site Arrangement 4.5-1 Solar Repowering Newman Unit 1 Efficiency Chart - Not Winter Solstice 4.5-2 Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average 		1.2-3	Newman Station Units 1-4	
 1.4-2 Site Arrangement 1.4-3 Second Generation Heliostats 1.4-4 External Water/Steam Solar Receiver System 1.4-5 Construction Cost Breakdown 1.5-1 Solar Repowering Newman Units/Efficiency Chart 1.5-2 Solar Repowered Unit Energy Output 1.7-1 Milestone Schedule Section 2 2.3-1 Location of Newman Station 2.5-1 El Paso Wind Roses Section 4 4.1-1 Solar Repowered Newman Unit 1 4.1-2 Simplified Flow Schematic 4.1-3 Site Arrangement 4.5-1 Solar Repowering Newman Unit 1 Efficiency Chart - Not Winter Solstice 4.5-2 Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average 		1.4-1	Simplified Flow Schematic	
 1.4-3 Second Generation Heliostats 1.4-4 External Water/Steam Solar Receiver System 1.4-5 Construction Cost Breakdown 1.5-1 Solar Repowering Newman Units/Efficiency Chart 1.5-2 Solar Repowered Unit Energy Output 1.7-1 Milestone Schedule Section 2 2.3-1 Location of Newman Station 2.5-1 El Paso Wind Roses Section 4 4.1-1 Solar Repowered Newman Unit 1 4.1-2 Simplified Flow Schematic 4.1-3 Site Arrangement 4.5-1 Solar Repowering Newman Unit 1 Efficiency Chart - Now Winter Solstice 4.5-2 Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average 		1.4-2	Site Arrangement	
 1.4-4 External Water/Steam Solar Receiver System 1.4-5 Construction Cost Breakdown 1.5-1 Solar Repowering Newman Units/Efficiency Chart 1.5-2 Solar Repowered Unit Energy Output 1.7-1 Milestone Schedule Section 2 2.3-1 Location of Newman Station 2.5-1 El Paso Wind Roses Section 4 4.1-1 Solar Repowered Newman Unit 1 4.1-2 Simplified Flow Schematic 4.1-3 Site Arrangement 4.5-1 Solar Repowering Newman Unit 1 Efficiency Chart - Not Winter Solstice 4.5-2 Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average 		1.4-3	Second Generation Heliostats	
 1.4-5 Construction Cost Breakdown 1.5-1 Solar Repowering Newman Units/Efficiency Chart 1.5-2 Solar Repowered Unit Energy Output 1.7-1 Milestone Schedule Section 2 2.3-1 Location of Newman Station 2.5-1 El Paso Wind Roses Section 4 4.1-1 Solar Repowered Newman Unit 1 4.1-2 Simplified Flow Schematic 4.1-3 Site Arrangement 4.5-1 Solar Repowering Newman Unit 1 Efficiency Chart - Not Winter Solstice 4.5-2 Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average 		1.4-4	External Water/Steam Solar Receiver System	
 1.5-1 Solar Repowering Newman Units/Efficiency Chart 1.5-2 Solar Repowered Unit Energy Output 1.7-1 Milestone Schedule Section 2 2.3-1 Location of Newman Station 2.5-1 El Paso Wind Roses Section 4 4.1-1 Solar Repowered Newman Unit 1 4.1-2 Simplified Flow Schematic 4.1-3 Site Arrangement 4.5-1 Solar Repowering Newman Unit 1 Efficiency Chart - Norwinter Solstice 4.5-2 Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average 		1.4-5	Construction Cost Breakdown	
<pre>1.5-2 Solar Repowered Unit Energy Output 1.7-1 Milestone Schedule Section 2 2.3-1 Location of Newman Station 2.5-1 El Paso Wind Roses Section 4 4.1-1 Solar Repowered Newman Unit 1 4.1-2 Simplified Flow Schematic 4.1-3 Site Arrangement 4.5-1 Solar Repowering Newman Unit 1 Efficiency Chart - Now Winter Solstice 4.5-2 Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average</pre>		1.5-1	Solar Repowering Newman Units/Efficiency Chart	
1.7-1 Milestone Schedule Section 2 2.3-1 Location of Newman Station 2.5-1 El Paso Wind Roses Section 4 4.1-1 Solar Repowered Newman Unit 1 4.1-2 Simplified Flow Schematic 4.1-3 Site Arrangement 4.5-1 Solar Repowering Newman Unit 1 Efficiency Chart - Now Winter Solstice 4.5-2 Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average		1.5-2	Solar Repowered Unit Energy Output	
<pre>Section 2 2.3-1 Location of Newman Station 2.5-1 El Paso Wind Roses Section 4 4.1-1 Solar Repowered Newman Unit 1 4.1-2 Simplified Flow Schematic 4.1-3 Site Arrangement 4.5-1 Solar Repowering Newman Unit 1 Efficiency Chart - Nor Winter Solstice 4.5-2 Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average</pre>		1.7-1	Milestone Schedule	
 2.3-1 Location of Newman Station 2.5-1 El Paso Wind Roses Section 4 4.1-1 Solar Repowered Newman Unit 1 4.1-2 Simplified Flow Schematic 4.1-3 Site Arrangement 4.5-1 Solar Repowering Newman Unit 1 Efficiency Chart - Not Winter Solstice 4.5-2 Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average 	Section 2			
 2.5-1 El Paso Wind Roses Section 4 4.1-1 Solar Repowered Newman Unit 1 4.1-2 Simplified Flow Schematic 4.1-3 Site Arrangement 4.5-1 Solar Repowering Newman Unit 1 Efficiency Chart - Not Winter Solstice 4.5-2 Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average 		2.3-1	Location of Newman Station	
<pre>Section 4 4.1-1 Solar Repowered Newman Unit 1 4.1-2 Simplified Flow Schematic 4.1-3 Site Arrangement 4.5-1 Solar Repowering Newman Unit 1 Efficiency Chart - Not Winter Solstice 4.5-2 Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average</pre>		2.5-1	El Paso Wind Roses	
 4.1-1 Solar Repowered Newman Unit 1 4.1-2 Simplified Flow Schematic 4.1-3 Site Arrangement 4.5-1 Solar Repowering Newman Unit 1 Efficiency Chart - Not Winter Solstice 4.5-2 Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average 		Section 4		
 4.1-2 Simplified Flow Schematic 4.1-3 Site Arrangement 4.5-1 Solar Repowering Newman Unit 1 Efficiency Chart - Not Winter Solstice 4.5-2 Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average 		4.1-1	Solar Repowered Newman Unit l	
 4.1-3 Site Arrangement 4.5-1 Solar Repowering Newman Unit 1 Efficiency Chart - Not Winter Solstice 4.5-2 Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average 		4.1-2	Simplified Flow Schematic	
 4.5-1 Solar Repowering Newman Unit 1 Efficiency Chart - Not Winter Solstice 4.5-2 Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average 		4.1-3	Site Arrangement	
4.5-2 Solar Repowering Newman Unit 1 Efficiency Chart - Annua Average		4.5-1	Solar Repowering Newman Unit 1 Efficiency Chart - Noon Winter Solstice	
		4.5-2	Solar Repowering Newman Unit l Efficiency Chart - Annual Average	

1 of 7

A-13
Figure	Title					
4.5-3	Newman Solar Repowering Model (NSRM) Forcing Function					
4.5-4	NSRM Block Diagram					
4.5-5	NSRM - Transient Response to 10 Percent Cloud Coverage with 8 m/sec Velocity					
4.5-6	NSRM - Transient Response to 50 Percent Cloud Coverage with 8 m/sec Velocity					
4.5-7	NSRM - Transient Response to 100 Percent Cloud Coverage with 8 m/sec Velocity					
4.5-8	NSRM - Transient Response to 10 Percent Cloud Coverage with 22 m/sec Velocity					
4.5-9	NSRM - Transient Response to 50 Percent Cloud Coverage with 22 m/sec Velocity					
4.5-10	NSRM - Transient Response to 100 Percent Cloud Coverage with 22 m/sec Velocity					
4.5-11	NSRM - Transient Response to 50 Percent Cloud Coverage with 8 m/sec Velocity					
4.5-12	NSRM - Transient Response to 50 Percent Cloud Coverage with 22 m/sec Velocity					
4.5-13	NSRM - Transient Response to 50 Percent Cloud Coverage with 8 m/sec Velocity					
4.5-14	NSRM - Transient Response to 50 Percent Cloud Coverage with 22 m/sec Velocity					
4.5-15	NSRM - Transient Response to 50 Percent Cloud Coverage with 8 m/sec Velocity					
4.5-16	Advanced Solar Repowering SOLTES Model: Newman Unit 1					
4.6-1	Construction Cost Breakdown					
4.6-2	-2 Construction Cost Breakdown For Varying Heliostat Costs					
Section 5						
5.2-1	Heat Flux Profile					
5.2-2	El Paso Heliostat Field (2998 Heliostats)					

Figure	Title
5.2-3	Second Generation Heliostats
5.3-1	External Water/Steam Solar Receiver System
5.3-2	Section Through Receivers
5.3-3	Membrane Wall With Screen Tubes
5.3-4	External Receiver Schematic
5.3-5	Primary Receiver Panel Design
5.3-6	Screen Tube Vibration Support
5.3-7	Schematic Flow Diagram of Primary Receiver System
5.3-8	Reheat Receiver System
5.3-9	Reheater Panel Design
5.3-10	Junction At Primary and Reheat Receiver
5.3-11	Arrangement Of Columns and Vertical Braces
5.3-12	Typical Truss In Primary Receiver Area
5.3-13	Typical Truss In Reheat Receiver Area
5.3-14	Top Support Steel
5.3-15	Peak Incident Heat Flux At Various Elevations Of The Receiver For 3 Times A Day
5.3-16	Power Distribution To Primary Receiver At Design Point
5.3-17	Fluid and Metal Temperature Profile Of Primary Receiver At Design Point
5.3-18	Power Distribution To Reheat Receiver
5.3-19	Fluid And Metal Temperature Profile Of Reheat Receiver At Design Point
5.3-20	Thermal Performance Of Receivers During Winter Solstice Day
5.3-21	Receiver Thermal Losses Versus Power Output

F	i	qure	Title
		-	

- 5.3-22 Receiver Performance As Function Of Incident Power
- 5.3-23 Temperature Enthalpy Diagram At Design Point
- 5.3-24 Boiler Start Up
- 5.3-25 Primary Receiver Warm-Up Data
- 5.3-26 Reheater Warm-Up Data
- 5.3-27 Steam Consumption At Start Up
- 5.5-1 Primary Steam Piping Interface
- 5.5-2 Reheat Steam Piping Interface Points
- 5.5-3 EPGS Efficiency
- 5.6-1 Master Control System
- 5.6-2 Primary Control Board
- 5.6-3 Receiver Simplified Flow Diagram
- 5.6-4 Solar Receiver Superheat Steam Temperature Control
- 5.6-5 Biasing Valve Control
- 5.6-6 Panel Bias Valve Control
- 5.6-7 Solar Feedwater Control System
- 5.6-8 Combustion Controls with Manual Fuel/Air Adjustment
- 5.6-9 Feedwater Control System
- 5.6-10 Steam Temperature Control System
- 5.6-11 Control and Results Room
- 5.6-12 Computer/Control Board Interface
- 5.7-1 Site Arrangement
- 5.7-2 Site Arrangement Showing Shallow Ditches

Figure	Title					
Section	_6					
6.1-1	Economic Model Flow Diagram					
6.5-1	Solar Repowered Unit Energy Output					
6.5-2	Conventional Energy Displaced by the Solar Repowered Unit					
6.5-3	Day 174 (Summer Day) Total Unit Output and Solar Output					
6.5-4	Day 334 (Winter Day) Total Unit Output and Solar Output					
6.5-5	Day 174 (Summer Day) Original System Load and Adjusted Load					
6.5-6	Day 334 (Winter Day) Original System Load and Adjusted Load					
6.5-7	Week 25 (Summer Week) Total Unit Output and Solar Output					
6.5-8	Week 48 (Winter Week) Total Unit Output and Solar Output					
6.5-9	Week 25 (Summer Week) Original System Load and Adjusted Load					
6.5-10	Week 48 (Winter Week) Original System Load and Adjusted					
6.5-11	1988 Original LDC and Adjusted LDC					
Section 7						
7.6-1	Project Milestone Schedule					
7.6-2	Project Summary Milestone Schedule					
7.6-3	Heliostat Schedule					
7.6-4	Receiver Schedule					
Appendiz	<u>« A</u>					
A.2-1	Low Vapor Pressure Storage Media Concept Using Desuperheat to Charge System					
A.2-2	Variable Pressure Accumulator Heat Storage Concept					

A-17

Figure		<u>Title</u>					
A.3-1	Repowering Configurat	y Fra ion	ction	Analysis	for	the	Baseline
Appendix	B						
B.1-1	Location o	of Newma	n Statio	n			
B.1-2	Newman Sta	tion Si	te and s	Surrounding	S		
B.1-3	Proposed S	Site Arr	angemen	t			
Appendix	C						
C-1	Receiver H	Performa	ince As	Function of	Incid	ent Po	wer
Appendix	D						
14067-EM-	-9-SR-1	Flow Feedwat	Diagram er, and	- Solar Main Steam	Repow	ering,	Reheat,
14067-PI	D-1-1	Flow Di	.agram -	Station Fu	ndamen	tal	
14067-FP	-59 A-S R-1	Piping Steam,	Arrange and Rehe	ement of eat - Sheet	Solar 1 1	Feedwa	ter, Main
14067-FP	-59B- S R-2	Piping Steam,	Arrang and Reh	ement of eat - Sheet	Solar 1 2	Feedwa	t er, Ma in
13505-FP	-la-sr	Main St	eam Lin	e - Sheet l			
13505-FP	-1B-SR	Main St	eam Lin	e - Sheet 2		•	
13505-FP	-2A-SR	High Te	emperatu	re Reheat S	team L	ine -	Sheet l
13505-FP	-2B-SR	High Te	emperatu	re Reheat S	team L	ine -	Sheet 2
13505-FP-	-3A-SR	Low Ten	peratur	e Reheat St	eam Li	ne - S	heet l
13505 7 FP-	-3B-SR	Low Ten	peratur	e Reheat St	eam Li	ne - S	heet 2
14067-EW-	-SIA-SR-1	One Lir	ne Diagra	am for Sola	r Repo	wering	
13505-FY-	-3A-SR	Lot Pla	ເກ				
14067-FM-	-31A-SR-1	General	. Arrang	ement - Hel	iostat	Field	
14067-EM-	-31B-SR-1	General	. Arrang	ement - Hel	iostat	Field	

TABLE A-3 (Cont)

Figure

Title

B&W 5328J Arrangement Solar Receiver with Reheater for Advanced Repowering

B&W 268068E Solar Boiler Plan - Sections A-A and B-B

Appendix E

- E.1-1 Newman Station Units 1-4
- E.1-2 Boiler Cross-Section
- E.1-3 Turbine Cross-Section
- E.1-4 Boiler-Following Unit Control Scheme
- E.2-1 Heat Balance Diagram 83 MW Load
- E.2-2 Heat Balance Diagram 41 MW Load

APPENDIX B

.

DESIGN REQUIREMENT DOCUMENT

SOLAR REPOWERING NEWMAN UNIT 1 EL PASO ELECTRIC CO.

Section	Title
l	PURPOSE
$\begin{array}{c} 2\\ 2.1\\ 2.1.1\\ 2.1.2\\ 2.1.3\\ 2.1.4\\ 2.1.5\\ 2.1.6\\ 2.2\\ 2.3\\ 2.4\\ 2.4.1\\ 2.4.2\\ 2.5\\ 2.5.1\\ 2.5.2\\ 2.5.1\\ 2.5.2\\ 2.5.3\\ 2.5.4\\ 2.6\\ 2.6.1\\ 2.6.3\\ 2.6.3\\ 1\\ 2.6.3.1\\ 2.6.3.2\\ 2.6.3.3\\ 2.7\\ 2.8\end{array}$	DESIGN REQUIREMENTS OVERALL SYSTEM REQUIREMENTS System Design Point Performance Station Fundamental Flow Diagram Plant Arrangement Economic Criteria Plant Availability and Reliability Maintainability SITE SITE FACILITIES COLLECTOR SUBSYSTEM Collector Field Heliostats RECEIVER SUBSYSTEM Structural Design Receiver Working Fluid Receiver Tower MASTER CONTROL SYSTEM (MCS) General Design Requirements Design Criteria Operating Modes Fossil Mode Solar Mode Combined Solar/Fossil Mode FOSSIL BOILER SUBSYSTEM
3 3.1 3.2	ENVIRONMENTAL CRITERIA DESIGN REQUIREMENTS ENVIRONMENTAL STANDARDS
4 4.1 4.1.1 4.1.2 4.1.3	DESIGN DOCUMENTS APPLICABLE DOCUMENTS Standards and Codes Other Publications and Documents Permits and Licenses Required

LIST OF FIGURES

Figure

Title

- B.2.1-1 Station Fundamental Flow Diagram
- B.2.1-2 Site Arrangement

SECTION 1

PURPOSE

The purpose of the Design Requirement Document is to define design requirements and system environmental requirements for solar repowering Newman Unit 1.

General and specific system and subsystem design requirements are presented in Section 2. These requirements are primarily functional and based on a system configuration selected in January 1983.

Environmental criteria are provided in Section 3. These criteria will assist in proper selection of materials and sizing of structures to support operational, survival and lifetime requirements.

Applicable standards, codes, regulations and other published documents that may constrain plant design are identified in Section 4.

SECTION 2

DESIGN REQUIREMENTS

The Solar Repowered Newman Unit 1 shall be designed to meet the requirements of this section. Section 2.1 describes overall system design requirements; Sections 2.2-2.6 provide specific design requirements for each subsystem.

2.1 OVERALL SYSTEM REQUIREMENTS

General requirements applicable to all subsystems are presented as follows:

2.1.1 System Design Point Performance

The system design point shall achieve 50 percent repowering fraction, a nominal 41 MWe (net), at solar noon, winter solstice with a direct normal insolation level of 1000 watts/m². The solar multiple at the design point is 1.0 which means that essentially all energy received is used immediately; no thermal storage is provided beyond the inherent thermal mass of the system. At the design point, 112 MW of thermal power is absorbed by the water/steam flow in the solar receiver. The thermal power incident on the receiver surface shall be sufficient to offset the losses due to reradiation and convection from the receiver, and the loss due to the reflectivity of the receiver surface, while still providing required thermal input to the water/steam flow.

The repowering system shall supply 10.1 MPa/538°C (1465 psia/1000°F) steam to the high pressure turbine inlet and 1.52 MPa/533°C (220 psia/992°F) reheat steam to the intermediate stage turbine.

2.1.2 Unit Fundamental Flow Diagram

The concept for solar repowering Newman Unit 1 is summarized in Figure 2.1-1, "Unit Fundamental Flow Diagram." This configuration allows for operation of the combined unit in either fossil/solar, fossil-only or solar only mode.

During fossil/solar operation, main steam generated by the receiver is mixed with the steam provided by the existing fossil steam generator prior to admission to the high pressure (HP) turbine. The cold reheat steam (HP turbine exhaust) is split between the fossil boiler reheater section and the solar reheat heat exchanger. The resulting hot reheat steam is mixed prior to entering the intermediate pressure (IP) turbine. Attemperation of the solar and fossil generated steam ensures that the temperature is maintained within turbine design limits.

Fossil-only unit operation requires isolation of the solar portion of the combined unit. Isolation is accomplished at the piping tie-in-points for feedwater, main steam and reheat steam.

The fossil steam generator and first and second point heaters are isolated during solar-only operation.

2.1.3 Existing Plant Arrangement

Newman Station consists of four electric power generating units rated at a combined total of 477 MWe. Newman Unit 1, the unit selected for solar repowering is an 82 MWe (net) unit built in 1960. Unit 1 represents an ideal repowering situation for a water/steam cycle configuration. The plant arrangement minimizes feedwater, reheat steam and main steam piping runs by locating the receiver tower adjacent to the turbine building, which offers a simple repowering design. The placement of the receiver tower reduces piping costs, pressure drop, and thermal losses associated with long piping runs, and decreases the likelihood and extent of maintenance problems.

The heliostat field is to be located on available land north of the tower. Figure 2.1-2 is a site arrangement showing the approximate location of the tower and heliostat field relative to the existing unit.

2.1.4 Economic Criteria

The following nominal economic factors are used to support component tradeoff evaluations:

- 1. Incremental plant capital cost: \$2,000/kW (1983)
- 2. Annual solar plant output: 70 GWh
- 3. Incremental energy cost: \$0.10/kWh

2.1.5 Unit Availability and Reliability

Consideration in the design shall be given to achieving high reliability, by providing design and operating margins and by utilizing sound engineering design practices.

Special consideration shall be given to protecting receiver and tower external surfaces in the event of loss of heliostat tracking capability, and to protect heliostats from extreme weather conditions. This protection manifests itself primarily in careful design of a reliable power supply and control systems.

B.2-2

2.1.6 Maintainability

Unit modifications and new installations shall be designed to be compatible with existing unit maintainability characteristics and practices. Potential maintenance locations shall be easily reached and components, such as electronic units, motors, drivers, etc., readily replaced. Elements subject to wear and damage shall be easily serviced or replaced. The combined unit shall be capable of being serviced with a minimum of specialized equipment or tools.

2.2 SITE

The heliostat field and other facilities associated with solar repowering Newman Unit 1 will require approximately 1.1 km² (224 acres) of land north of the unit. Site preparation will include minor grading and surface preparation. An existing state highway, Farm-to-Market Road 2529, will be rerouted. Existing transmission lines currently located along a right-of-way north of the Newman Station switchyard will be rerouted to the west of the heliostat field. A new access road to the Newman Station and a perimeter road around the heliostat field will be provided to support vehicular traffic.

Heliostats shall be excluded from portions of the land where existing equipment and piping rights-of-way (ROWs) are required, and where future transmission line ROWs will be located.

Existing underground natural gas and other pipelines which transect the northern portion of the field will remain, with an exclusion area provided along their 55 m (180 foot) ROW. ROW for pipelines currently along Farm-to-Market Road 2529 will be maintained.

Drainage ditches are required to channel rain run-off away from the heliostat field to minimize erosion of the graded surfaces and protect foundation integrity. The solar repowering site shall include fences to protect against unauthorized entry to portions of the site.

2.3 SITE FACILITIES

New site facilities will include a new solar equipment building and new tower equipment rooms, as well as additions to the existing control room and maintenance building.

The control room will require a second level to house the new electronic equipment. The second level shall be air condition to maintain the correct ambient temperature for the new computers and associated equipment.

Suitable space will be located in the tower to house receiver control cabinet equipment and motor control centers.

An addition to the maintenance building will be required to enable plant personnel to repair and test complete heliostat assemblies. Additional evaporative coolers will be required to circulate fresh air through the maintenance area.

A solar equipment building will be required to house the solar feed pumps, the solar repowering secondary unit substation and motor control center, condensate polishing equipment, and feedwater heaters.

The existing fire protection system will be extended to protect the new site facilities.

Outdoor lighting shall be provided along the heliostat field perimeter road and at the base and upper levels of the tower.

2.4 COLLECTOR SUBSYSTEM

The Collector Subsystem shall reflect solar radiation onto the Receiver Subsystem in a manner which satisfies receiver incident heat flux requirements specified in Section 2.4.2. In addition, the Collector Subsystem shall respond to commands from the Master Control System (MCS) for unit control integration, emergency defocusing of the reflected energy, or to protect the heliostat field against environmental extremes. The heliostats shall be properly positioned for repair or maintenance in response to either MCS or manual commands. Heliostat design shall provide for stored or safe positions for use at night, during periodic maintenance, and during adverse weather conditions. The Collector Subsystem shall be designed to provide energy in accordance with the requirements of the receiver. The Collector Subsystem shall include a Beam Characterization System (BCS) to provide periodic evaluation and correction of individual heliostat optical performance.

2.4.1 Heliostat Field

The heliostat field shall be designed so that 134 MWt of the redirected solar energy will impinge on the receiver absorber surfaces at solar noon, winter solstice, assuming a direct normal insolation value of 1000 W/m^2 , clean mirrors, and two percent of the heliostats unavailable.

The heliostat field design shall provide minimum capital cost for the solar plant considering at least the following:

- The power requirement given above
- Limitations on the solar energy flux incident on receiver as specified by the receiver manufacturer
- Installed cost of the heliostats

B.2-4

- Field wiring cost
- Land availability
- Height of center of the receiver above ground level
- Cost of piping in the tower
- Cost of foundations

The Collector Subsystem shall function as appropriate for all steady-state modes of plant operation. This shall include the capability of controlling the number of heliostats in the tracking mode to vary the redirected flux to the receiver when necessary to maintain control of steam temeprature.

Drive systems must be capable of positioning a heliostat to stowage, standby, cleaning, or maintenance orientation from any operational orientation in response to a command signal.

Elevation and azimuth drives shall not drift from last commanded positions due to environmental conditions.

The drive system shall provide for cost effective stowage of the reflective surface to minimize reflected beam safety hazards and dust or dirt build-up on the mirrors. Heliostat orientation shall be available to the MCS at all times.

Heliostat control shall be by computer hierarchy. Control functions shall be accomplished as follows or in a comparable manner:

Heliostat Array Controller (HAC) shall:

- Initiate operational mode commands to heliostat field controller (HFC)
- Address commands to HFC groups or individual heliostat controller (HC)
- Respond to MCS commands and requests
- Interface with BCS
- Provide time base

Heliostat Field Controller (HFC) shall:

- Determine sun vector
- Transmit sun vector to HC
- Transmit status and data to HAC

- Initiate safe stowage command
- Control groups of HCs

Heliostat Controller (HC) shall:

- Determine heliostat azimuth and elevation position requirements
- Control drive motors
- Provide heliostat axis position data to HFC

The Collector Subsystem shall be capable of emergency defocusing upon command to reduce peak incident radiation on the receiver to less than 3 percent of initial value within 120 seconds.

Heat fluxes on the tower and on normally unheated portions of the Receiver Subsystem are limited to 25 kW/m^2 (7,880 Btu/hr-ft²).

Heat fluxes on the receiver will satisfy flux distribution requirements specified by receiver design.

Beam control strategy and equipment will protect personnel and property within and outside the plant facility, including air space.

The Collector Subsystem will be designed to satisfy the environmental conditions specified in Section 3.

2.4.2 Heliostats

Detailed heliostat design requirements are provided in the heliostat field technical specification.

2.5 RECEIVER SUBSYSTEM

The Receiver Subsystem shall include a receiver mounted on a single tower and shall provide a means of transferring the incident radiant flux energy from the Collector Subsystem into water/steam flow and transport the main steam to the HP turbine (at throttle condition) 10.1 MPa/538°C (1,450 psig/1,000°F) and primary steam at 12.6 MPa/549°C (1,825 psia/1,020°F) to the reheat heat exchanger.

2.5.1 Structural Design

The receiver and tower shall be designed to provide access for maintenance and inspection of the tower structure, receiver, working fluid, instruments and controls, hydraulic equipment, etc. Consideration shall be given to ease of maintenance. Adequate provisions shall be made to ensure crew safety at all times for required operations, inspection, maintenance, and repair. The receiver design shall be consistent with Section 1 of the ASME Boiler Codes and appropriate sections of the construction codes. The design lifetime shall be 30 years. The tower and receiver will be designed to satisfy the environmental conditions specified in Section 3.

2.5.2 Receiver

The receiver shall have an external panel configuration with a forced recirculation boiler and shall face a north field of heliostats. The receiver shall be capable of operating safely and reliably for 30 years with heat flux levels not exceeding a skewed flux profile with a peak heat flux on the bottom half not to exceed 400 kW/m² at solar noon, winter solstice with an incident power level of 134 MWt.

At solar noon, winter solstice (design point), the receiver shall be capable of absorbing 112 MWt with a receiver incident power of 134 MWt and shall at least generate, in the first (primary) superheater pass, steam at the rate of 119,000 kg/hr (262,000 1b/hr) with outlet conditions of 12.58 MPa/549°C (1,825 psia/1,020°F) and, in the second (final) superheater pass, generate main steam at the rate of 131,000 kg/hr (289,000 1b/hr) with outlet conditions of 10.41 MPa/540.5°C (1,510 psia/1,005°F). The maximum allowable pressure drop in the two pass superheater shall not exceed 1.79 MPa (260 psi) in the first pass and 1.59 MPa (230 psi) in the second pass.

The receiver shall be designed for stable operation at all possible sun angles and for most expected partial cloud cover conditions.

2.5.3 Working Fluid

The receiver working fluid shall be water/steam for the first superheater pass and superheated steam for the second superheater pass.

2.5.4 Receiver Tower

The receiver tower must support the receiver, piping, other elements of the Receiver Subsystem, and the targets for the BCS. Tower design will be based on Section 3 and the following:

- Tower height 136 m (447 ft)
- Elevation of receiver centerline 155 m (509 ft)
- Weight of receiver including support structure -725,600 kg (1,600 kips)

The tower will be required to support receiver feedwater, steam, and auxiliary piping and associated controls and provide access

for maintenance and repair. Two equipment rooms are provided near the top of the tower to house receiver instrumentation and control equipment. In addition to internal ladders, platforms, and walkways, the design of the tower shall include an internal elevator having a capacity of approximately 1225 kg (2,700 lb).

2.6 MASTER CONTROL SYSTEM (MCS)

The MCS provides overall supervisory plant control, integrating all major plant control functions.

2.6.1 General Design Requirements

The Newman Unit 1 control system and existing plant equipment shall be modified to provide daily cycling of the unit and utilize fossil and solar energy for generation of electrical power. The MCS shall control the solar steam supply system and the existing unit equipment in a safe and reliable condition for all modes of operation.

The MCS shall permit the operator to select one of three unit operating modes: fossil-only, solar-only, or combined solar/fossil.

The MCS shall operate the unit for all conditions including startup, shutdown, transient, steady state, and emergency operation.

2.6.2 Design Criteria

To satisfy the general design requirements the MCS shall meet the following design criteria:

- a. High Availability
 - High component/circuit reliability employing the latest solid state technology and conservative designs.
 - Major control systems and components shall have full redundant backup with automatic fail-over.
 - Modular architecture to enhance fault detection and maintenance.
 - Self-diagnostic capability wherever possible.

b. Redundancy

The MCS will include full system redundancy where feasible. A failure of one computer processing unit (CPU) will not cause a reduction in control, monitoring, display recording, or other required plant control functions.

- c. Comprehensive Operator/Plant Interface
 - Adequate CRT displays shall be provided to support the following:
 - Process monitoring
 - Trouble identification
 - Operator guidance
 - Interactive communications
 - Status information
 - Historical review
 - Main control board with conventional analog displays, control stations, alarms, etc, providing the operator with a familiar operation/process interface for those unit portions unaffected by the repowering.
- d. Flexibility

All control logic functions and control algorithms are implemented in comprehensive direct digital control software. The system is programmed in a manner which allows changes to be made simply and quickly.

e. System Modifications

Existing control systems will be modified only where necessary. The following criteria will determine which controls are changed:

- Direct interface with MCS.
- Significant enhancement of the repowered unit's ability to meet the design requirements.
- Ability of the equipment to function properly for the required 30-year lifetime.

In general, all instrumentation replaced satisfies two or more of the above criteria.

2.6.3 Operating Modes

Through the MCS, the operator shall select the unit operating mode.

2.6.3.1 Fossil Mode

When the fossil mode has been selected, the solar steam supply system is isolated from the existing fossil fueled plant. In this mode, the MCS allows the unit to be placed in either a boiler-following control, turbine-following control, or coordinated boiler/turbine control.

2.6.3.2 Solar-Only Mode

With clear day insolation available, the operator may select the solar-only mode of operation. The fossil boiler is isolated from the balance of plant (BOP) equipment and the solar steam supply system and the BOP is placed in a turbine following control. The solar receiver, and the Collector Subsystem will be automatically controlled to maximize thermal energy output from the solar steam supply system. The turbine inlet control valves will be automatically positioned to maintain stable steam conditions to the turbine inlets.

2.6.3.3 Combined Solar/Fossil Mode

When meteorological conditions are unstable or when it is economical to operate the unit at high load, the Master Control System will control the plant in a solar/fossil mode. The main steam from the solar receiver and the fossil boiler shall be combined prior to being admitted to the turbine. The control system will operate the solar steam supply system to maximize solar thermal output and use the fossil boiler to supplement steam to meet the unit's load demand.

2.7 FOSSIL BOILER SUBSYSTEM

The Fossil Boiler Subsystem of Newman Unit 1 shall interface with the solar steam supply system according to the following boiler performance requirements:

- Minimum automatic operation 28 percent load (36 percent rated steam flow)
- Maximum boiler ramp rate 10-20 percent/min (change in boiler thermal output) above 28 percent load.
- Energy required from cold startup to 28 percent load -1.06 x 10¹¹ J (100 MBtu) over 4 hours
- Energy required from hot standby to 28 percent load -1.58 x 10¹⁰ J (15 MBtu)

B.2-10

- Boiler efficiency 84.4 percent
- Ability to maintain superheat and reheat temperature of 538°C (1,000°F) to minimum load

2.8 ELECTRIC POWER GENERATING SUBSYSTEM (EPGS)

The EPGS will be required to accept steam from either or both the solar or fossil steam supply systems.

Operating constraints imposed by the existing EPGS are as follows:

a. b.	Maxi Rate outp	num gross electric output 85.8 MWe d main steam flow for guaranteed ut 257,000 kg/hr				
c. d.	Main steam rated temperature 538°C (1000°F) Reheat steam rated temperature 538°C (1000°F) (May be revised pending detailed rebeat beat exchanger design)					
e.	Main	steam rated pressure 10.1 MPa				
f.	(1,450 psig) Rated reheat pressure drop 255 kPa (37 psi)					
g.	Stear valve	n temperature limitations (at turbine main stop e)				
	1.	Average over 12 months not to exceed 538°C (1,000°F)				
	2.	552°C (1,025°F) for not more than 400 hours for 12 months				
	3.	566°C (1,050°F) for up to 15 minutes: not more than 80 hours/year				

- h. Steam pressure limitations
 - 1. 10.1 MPa (1,450 psig) at rated output
 - 2. 10.6 MPa (1,523 psig) as turbine approaches zero output
 - 3. 13.0 MPa (1,885 psig) momentarily, not exceeding 12 hours/year
- i. Load limitations

Rate of load change is limited by metal temperatures in critical areas of turbine. Normal turbine load change rates are limited to about 5 MWe/min. Faster load

1		STONE & WEBSTER ENGINEERING CORPO		
RWK	APP	RETA	14280 - DID - 1 - 1 - 5	
4/15/82	DATE		14360 = FID * 1 = 1 = 3 R	
T				

SECTION 3

ENVIRONMENTAL CRITERIA

This section addresses plant environmental design requirements and environmental standards.

3.1 DESIGN REQUIREMENTS

The system shall be capable of operating in appropriate combinations of the following environments.

- a. Temperature: The plant shall be able to operate in the ambient air temperature range from -22° to +50°C (-8° to 122°F). Performance requirements shall be met throughout an ambient air temperature range of 0°C to 50°C (32°F to 122°F).
- b. Wind: Performance requirements shall be met for a wind speed, including gusts of 12 m/s (27 mph) at a height of 10 m (33 ft). The plant shall be capable of operating using a wind speed, including gusts of 16 m/s (36 mph) at a height of 10 m (33 ft.) for the operating condition (Degraded performance allowed). Wind analyses shall satisfy the requirements of ANSI A58.1-1982.

The system shall be capable of surviving appropriate combinations of the environments specified below.

- a. Wind: The plant shall survive winds with a maximum speed, including gusts of 40.3 m/s (90 mph), at a height of 10 m (33 ft), without damage. Heliostats shall be designed to survive the 40.3 m/s (90 mph) winds when stowed in the horizontal position. In addition, the heliostats, in any orientation, shall survive winds with a maximum speed, including gusts of 22 m/s (50 MPH), without damage. A local wind vector variation of ±10 degrees from the horizontal shall be assumed. Wind analyses shall satisfy the requirements of ANSI A58.1-1982.
- b. Snow: The plant shall survive a static snow load of 250 Pa (5 lb/ft²) and a snow deposition rate of 0.3 m (1 ft) in 24 hours.
- c. Rain: The plant shall survive the following rainfall conditions at a maximum 24-hr rate of 75 mm (3 in).
- d. Ice: The plant shall survive freezing rain and ice deposits in a layer 50 mm (2 in) thick.

B.3-1

- e. Earthquake: The receiver tower shall withstand loading consistent with a peak horizontal ground acceleration of 0.05g. The response spectrum shall be developed based upon the procedures outlined in NRC Regulatory Guide 1.60. Since wind load governs for the heliostats, seismic analysis is not required.
- f. Hail: The plant shall survive hail impact up to the following limits:

Diameter	25 mm (l in)
Specific Gravity	0.9
Terminal Velocity	23 m/s (75 fps)
Temperature	-6.7°C (22°F)

- g. Sandstorm Environment: The plant shall survive after being exposed to flowing dust comparable to the conditions described by Methods 510 of MIL-STD-810B.
- h. Lightning: The plant shall be provided with a lightning protection system for the tower and receiver to protect against direct strikes.

3.2 ENVIRONMENTAL STANDARDS

Federal, state, and local regulations applicable to solar repowering Newman Unit 1 are presented in Section 4.

SECTION 4

DESIGN DOCUMENTS

4.1 APPLICABLE DOCUMENTS

Various codes, standards, and other documents identified below will provide the guidelines for development of designs that are presented in this document. These applicable documents will influence the design and selection of vessels, heat-transfer equipment, mechanical equipment, structures, civil work, piping, instrumentation, and electrical items that are used in the utility industry.

4.1.1 Standards And Codes

The latest revisions of each of the following standards and codes in effect during final design will be used.

American Society of Mechanical Engineers (ASME), Boiler and Pressure Vessel Code

- ASME I Power Boilers, including: ANSI B31.1-1977 Power Piping
- ASME II Materials Specifications
- ASME VIII Pressure Vessels

Instrument Society of America

• ASME TDP-1-1980, Part 1 Instrumentation and Controls

Occupational Safety and Health Administration (OSHA), Code of Federal Regulations

• OSHA Title 29, Part 1910 Occupational Safety and Health Standard

NRC Regulatory Guides 1.60

Institute of Electrical and Electronic Engineers (IEEE) Code

• IEEE 112 - 1978 Test Procedures for Polyphase Induction Motors and Generators.

National Electrical Manufacturers Association (NEMA)

 NEMA ICS 1 - 1980 General Standards for Industrial Control and Systems

B.4-1

- NEMA ICS 2 1980 Industrial Control Devices, Controllers, and Assemblies
- NEMA ICS 6 1980 Enclosures for Industrial Control Systems
- NEMA MG 1 1978 Motors and Generators

National Fire Protection Association (NFPA) National Fire Codes Human Engineering Design Criteria

- MIL-STD-801C
- MIL-STD-1472

Design, Construction, and Fabrication Standards

- Manual of Steel Construction, 8th edition, 1980, American Institute of Steel Construction (AISC)
- ACI 318-77 Building Code Requirement for Reinforced Concrete-American Concrete Institute
- Standards of TEMA (Tubular Exchanger Manufacturer's Association)
- ANSI A58.1 1982 Minimum Design Loads for Buildings and Other Structures - American National Standards Institute
- Uniform Building Code, 1979 Edition, by International Conference of Building Officials.

4.1.2 Other Publications And Documents

Newman Station Spill Prevention Containment Countermeasure (SPCC) Plan

4.1.3 Permits and Licenses Required

Construction Permit

Waste Water Discharge Permit National Pollutant Discharge Elimination System (NPDES)

Air Navigation Approval Federal Aviation Administration (FAA)

Elevator Permit/Certificate

State (Highway Connector)

Local (land use, general construction, private road construction and use)

4.1.4 Applicable Laws and Regulations

Texas Clean Air Act of 1973 (Air Control Board)

Texas Water Quality Act of 1977 (Dept. of Water Resources) t)

Federal Aviation Regulation, Part 77 (FAA)

El Paso Building Laws

El Paso Zoning Laws

Department of Transportation, State Highway Dept Reg

Texas Regulation, Control of Air Pollution from Visible Emissions of 1975

Appendix C consists of the following components:

- C.l Description of Work Includes Direct Cost Items and Owners Costs
- C.2 Capital Cost Estimate
- C.3 Detail of Solar Receiver Costs

APPENDIX C.1

DESCRIPTION OF WORK NEWMAN UNIT 1 - SOLAR REPOWERING EL PASO ELECTRIC COMPANY

This Description of Work discusses or provides references to the individual items identified and included in the capital cost estimate, detailed in Appendix C.2. The same account numbers are used for the Description of Work and cost estimate for easy cross reference. Metric units are not shown since they were not used to derive cost information.

5100 SITE IMPROVEMENTS

5100.101 Clearing and Grading

An approximate 275-acre portion of the site will be cleared of vegetative growth and graded to provide a reasonably smooth working surface and to control drainage. The natural configuration of the ground will be retained, as much as practicable, in order to minimize earthwork.

*Stem account estimated costs shown in 1983 dollars.

5100.102 Diversion Channel and Drainage - Heliostat Field

A diversion channel, approximately 5,000 ft long, will be constructed from the southwest corner of the heliostat field around the north side of the field. This channel will intercept several arroyos which enter the site area from the west. These arroyos carry significant flows after intense storms in nearby mountains. The diversion channel and ditches will have side slopes of approximately 2.5 horizontal to 1 vertical. The first 1,000 ft will be about 3 ft deep with a 5-ft bottom width. The remainder will be about 5-ft deep with a 10-ft bottom width. No special allowances for unusual design of the pipeline crossing for the diversion channel have been included pending detailed design.

Site drainage ditches will be designed to utilize the existing contours as much as practicable. The diversion channel and drainage ditches will be lined with riprap or gravel or asphalt pavement where necessary to prevent erosion.

5100.103 Crushed Rock Surface - Heliostat Field

Heavily traveled areas in the heliostat field will be provided with a crushed stone surface for added trafficability and dust prevention.

5100.104 Roads

A paved perimeter road around the heliostat field, approximately 10,200-ft long x 30-ft wide for access to service the heliostats, will be constructed. A new paved access road to the existing plant, approximately 3,200-ft long x 30-ft wide, will be provided.

C.1-1

5100.105 Fences and Gates

A new 8-ft high chain link fence, approximately 12,500 ft in length, will be installed around the perimeter of the heliostat field and will connect with the existing fence. Gates will be provided at roadways and for access to the El Paso Natural Gas Company and Southern Pacific Pipelines ROWs.

5100.201 Waste Disposal System

Existing liquid and solid waste disposal facilities at the Newman Station will be utilized.

5100.202 Yard Fire Protection

The existing yard fire protection will be extended and fire hydrants added as required to protect the added buildings. Fire protection for the heliostat field will be in the form of wheeled, dry, chemical units.

5100.401 Electrical Structures

New duct lines will be provided to the receiver tower, solar equipment building, and heliostat field. New structures will be tied into the station grounding system.

5100.402 Wire and Cable

Control and power cable and ground wire will be provided for operation and protection of the heliostats.

Power to the 2,400 V bus in the Solar Equipment Building will be supplied by a cable, in underground duct, connected to the auxiliary solar transformer secondary.

The 2,400 V transfer bus will provide startup and backup power for the solar auxiliaries. This bus is accessible in a junction box located on Reserve Station Service Transformer No. 1. A feeder will be run in underground duct from this junction box to the 2,400 V solar bus.

A source of 480 V, 3-phase, 60 Hz, power will be supplied to the Maintenance Building from the motor control center (MCC) in the Solar Equipment Building. This feeder will be run in underground duct.

Drawings

General Arrangement Heliostat Field 14380-EE-S1

Main One-Line Diagram Solar Repowering 14380-EW-1A System

One-Line Diagram 480 V Motor Control 14380-EW-3A Centers

5100.403 Electrical Equipment

An auxiliary solar transformer, 5,000 kVA, 13.8/2.4 kV, 3-phase, 60 Hz, will be located adjacent to Unit 1 generator step-up (GSU) transformer and tied to the GSU transformer 13,800 V bus. This transformer secondary will supply power to the solar 2,400 V bus in the Solar Equipment Building.

A 480 V feeder fed from the motor control center in the Solar Equipment Building will supply power to the uninterruptible power supply (UPS) which serves the control room, solar equipment building, and receiver tower.

Additional yard lighting will be provided by El Paso Electric Company.

5100.601 Yard Piping and Supports

Drainage from the new structures will be tied into the existing drainage system in the yard. Any fire protection water required in the new structures will be supplied from the existing yard fire protection system.

Service water return lines will be rerouted in the area of the new Solar Equipment Building.

5200 SITE FACILITIES

- \$1,700,000
- 5210 Control Room Extension (Results Center)
- 5210.101 Substructure

The substructure for the building extension will consist of a concrete floor slab with concrete grade beams and footings to support the structural steel framing.

5210.102 Superstructure

A second floor approximately 1,650 sq ft will be added to the existing control room for solar repowering electronic equipment. All new structural and architectural materials such as steel framing, siding, roofing, and interior finishes will be selected on the basis of compatibility with the existing construction.

5210.201 Fire Protection and Facilities

The computer room and the relay room will each have a separate, self-contained Halon fire protection system. Portable fire extinguishers will be provided for the other areas of the control room.

Heating, ventilating, and air conditioning will be provided in all areas of the control room extension. The men and ladies rooms will have separate exhaust systems.

5210.402 Wire and Cable

A separate 480 V, 3-phase, 60 Hz, power feeder, taken from the existing Unit 1 station service load center, will supply power for the electrical loads in the control room extension.

5210.403 Electrical Equipment

One lighting transformer and one distribution panel will be provided for the 120 V ac loads. An uninterruptible power supply (UPS), including a 125 V dc battery, battery charger, inverter, and UPS bypass transformer will be provided to power the computer complex and instrumentation. This battery will be sized to power the UPS for 15 minutes upon loss of ac power. Emergency lighting will consist of an emergency fluorescent battery pack in selected normal fluorescent lighting fixtures.

The 125 V dc battery for the UPS will be caged in a metal mesh enclosure on the Unit 1 turbine building mezzanine floor.

5210.601 Piping and Supports

The existing plumbing will be extended to provide drinking water and water for new sanitary facilities (men's and ladies' rooms). Sanitary drainage from the new sanitary facility will be
added and tied into the existing yard piping. New roof drains will collect and transfer the rain water to the existing yard storm drainage piping.

- 5220 Solar Equipment Building
- 5220.101 Substructure

The substructure for the building will consist of a concrete floor slab with concrete grade beams and footings to support the structural steel framing and mechanical equipment.

5220.102 Superstructure

The Solar Equipment Building will be a two-level steel framed building with insulated metal siding. The ground level will be approximately 3,125 sq ft and the second level will be approximately 1,743 sq ft.

5220.201 Fire Protection and Facilities

Fire protection will be provided by the installation of interior hose stations fed from the existing yard loop. Ventilation and cooling will be provided by evaporative coolers and exhaust fans. Heating will be provided by gas or electric unit heaters. Floor and equipment drainage piping will also be provided.

5220.402 Wire and Cable

Control wire and cable will be provided for control and instrumentation associated with the various loads and power sources. Power cable will be provided for connection of the pump and MOV motors to the 2,400 V and 480 V buses.

Drawings

Main One-lin	ne Diagram	Solar	14380-EW-1A
Repowering S	System		

One-Line Diagram 480 V 14380-EW-3A Motor Control Centers

5220.403 Electrical Equipment

The solar 2,400 V switchgear; solar secondary unit substation comprised of one 750 kVA, 2,400/480 V, 3-phase, 60 Hz transformer and one 480 V bus; backup 750 kVA, 2,400/480 V 3-phase, 60 Hz

transformer; and one 480 V motor control center will be housed in the Solar Equipment Building. These will supply power to the heliostat field power centers, solar feed and recirculation pumps, service water pumps, fire pump, motor-operated valves, HVAC system, uninterruptible power system, lighting; and other miscellaneous electrical accessories in the Solar Equipment Building, and all loads in the receiver and tower. The 2,400 V bus will consist of Bus Sections A and B with a bus tie breaker inbetween. The backup 750 kVA transformer will be connected to solar 2,400 V Bus A. Station solar Bus A will be connected to the station 2,400 V transfer bus through a 2,400 V ACB and disconnect switch. The connection to the transfer bus will be made in a junction box on Unit 1 Reserve Station Service Transformer.

A 240 kW, 0.8 p.f. (300 kVA), 2,400 V, 3-phase, 60 Hz emergency diesel engine generator (housed in an outdoor enclosure) will supply power to the heliostats upon loss of system and station power.

Drawings

Main One-Line Diagram Solar 14380-EW-1A Repower System

One-Line Diagram 480 V Motor Control Centers 14380-EW-3A

5220.601 Piping and Supports

Steel framing will be provided above the electrical equipment area for pipe support.

Drawings

General Arrangement-SolarEquipment Building, SolarPlan EM-232A-SR-1Reheat ExchangerSect. EM-232B-SR-1

- 5230 Maintenance Building Extension
- 5230.101 Substructure

The substructure for the building extension will consist of a concrete floor slab with concrete grade beams and footings to support the structural steel framing. 5230.102 Superstructure

The existing maintenance building will be extended to provide space for assembly and testing of heliostats prior to field installation. The new maintenance area, 40 ft x 60 ft, will be enclosed by a steel framed building with insulated metal siding.

5230.201 Fire Protection and Facilities

New interior hose stations will be provided. These stations will be fed from the existing yard fire protection loop.

Ventilation and cooling will be provided by evaporative coolers and exhaust fans. Heating will be provided by gas or electric unit heaters. Floor and equipment drainage piping will also be provided.

5230.402 Wire and Cable

Wire and cable will be provided for lighting and the distribution circuits to miscellaneous 120 V, 1-phase loads.

5230.403 Electrical Equipment

One 480 V, 3-phase, distribution panel and lighting transformer with one 120 V, 1-phase, distribution panel will be provided for electrical loads in the building, including the HVAC system lighting, and other miscellaneous loads.

Drawings

One-Line Diagram 480 V Motor Control Centers

5230.601 Piping and Supports

Covered in account 5230.201.

5300 COLLECTOR SUBSYSTEM

\$56,600,000

14380-EW-3A

5300.101 Heliostat Foundations

Foundations for heliostats will consist of a castin-place reinforced concrete pier installed in an augered hole approximately 2 ft-6 in. in dia, using selected depths of 15 and 20 ft.

C.1-7

Sketches

Heliostat Foundation No. 14380-SSK-1A

5300.201 Heliostat Assemblies

The collector field will consist of 1,875 heliostat assemblies which will include modules, structural support, drive units, control sensors, pedestal and mounting interface to foundations, and heliostat cabling and termination boxes.

5300.301 Heliostat Controls

Heliostat controls consist of a heliostat field controller, redundant heliostat array controller, heliostat controllers, and peripherals. Heliostat controls are provided by the heliostat vendor.

5300.302 Beam Characterization System

The beam characterization system will be provided by the heliostat vendor and includes the beam characterization computer, specification for the beam targets, television cameras, and peripherals. Three BCS targets will be provided.

5300.402 Heliostat Field Wiring

The heliostat field and the three beam characterization installations will utilize armored direct burial power and control cable or cables in PVC conduit. The cable will be buried in a trench system designed for optimum use of the cable. A No. 4/0 bare copper ground cable will also be run in the trench to each heliostat and power supply transformer. Four 200-ft deep uncased grounding wells will be driven in the heliostat field. No. 4/0 bare copper cable connected to the heliostat field ground grid will be dropped to the bottom of each well.

Drawings

General Arrg't Heliostat Field

14380-EE-S1

5300.403 Electrical Equipment

Fifteen 75 kVA, 2,400/208/120 V, 3-phase, 60 Hz, transformers with a low voltage distribution cabinet will be located throughout the heliostat field for powering the heliostats and heliostat field controllers.

C.1-8

5400 RECEIVER SYSTEM

5400.101 Tower Foundation

The foundation for the receiver tower will consist of a circular reinforced concrete mat 85 ft in dia. Excavation for the foundation will include removal of unsuitable soils and replacement with compacted backfill to a depth of approximately 25 ft.

Drawings

Receiver Tower and Foundation

EC-601A-SR EC-601B-SR

5400.102 Tower Superstructure including Platforms, Stairs, Instrument and Control Equipment Rooms.

> The solar central receiver will be supported on a reinforced concretre tower 447 ft high. The tower will support feedwater, steam and auxiliary piping, and associated controls with access for maintenance and repairs provided by internal stairs, ladders, platforms, and walkways. Two equipment rooms will be located near the top of the tower to house receiver instrumentation and control equipment.

Drawings

Receiver Tower and Foundation

EC-601A-SR EC-601B-SR

5400.103 Elevator

A 2,700 lb capacity rack and pinion type electric elevator will be furnished. The elevator will provide access to the equipment rooms, receiver, and pipe support platforms. The elevator speed will be 105 fpm.

5400.201 Receiver

The solar receiver will supply main steam at approximately 310,000 lb/hr at 1,000°F and 1,450 psig to the existing Newman Unit 1 Turbine-Generator. The receiver absorber surface will be made up of 18 panels, supported by structural steel, consisting of economizers, evaporators, and multiple stages of superheaters. Details of receiver cost scope are presented in Appendix C.3. 5400.202 Heat Exchanger (Reheater)

The heat exchanger (reheater) is located near the base of the tower. It receives reheating steam from the primary superheater of the solar receiver. Cold reheating steam is returned to the solar receiver. The reheat heat exchanger will be a single pass shell and tube design, approximately 4 ft in dia by 50 ft long. The shell side design pressure and temperature are 500 psig and 1,005°F, respectively. The tube side design pressure and temperature are 2,250 psig and 1,045°F, using type 304 SS tubes. The exchanger will contain 13,125 ft² of heating surface.

5400.203 Recirculation Drain Tank, Pump, and Driver

The recirculation drain tank, located at the base of the receiver tower, will provide storage capability for the receiver water inventory for maintenance and for overnight storage when freezeup is likely. The tank will be designed to 50 psig and 300°F. Capacity will be 8,000 gal. The tank will be fabricated in accordance with ASME Section VIII. A return pump will be provided to return the water in the drain tank to the receiver before daily plant operation begins if water chemistry permits. The pump would be a horizontal centrifugal pump with a design point of 200 gpm and 800 ft tdh. The pump driver will be a 50 hp, 480 V odp electric motor.

5400.204 Fire Protection and Facilities

Fire protection will be provided for the tower equipment room by a high pressure carbon dioxide system with automatic detection and activation. Each control equipment room will have a separate, self-contained fire protection system. The upper equipment room will be cooled by a single air conditioning unit. The lower equipment room will be cooled by a vent fan. Each area will be heated by an electric unit heater. A floor and equipment drainage system will be provided to serve the equipment at the top of the tower.

5400.205 Boiler Blowoff Tank

The boiler blowoff tank, located near the base of the receiver tower, will provide storage capability of emergency drain from the receiver steam drum during cloud transients. The tank will be designed to 50 psig and 655°F. Capacity will be 4,000 gallons.

5400.301 Receiver Instrumentation and Controls (Local)

The receiver controls are a microprocessor-based distributed system provided by the receiver manufacturer and interface with other plant controls via a "data highway" brought to the upper equipment room.

5400.402 Wire and Cable

The output signals from the solar receiver control system provided by the receiver manufacturer will be routed to the control interface in the upper equipment control room. A new motor control center (MCC) and one MCC provided by the receiver manufacturer, located in the same tower equipment room, will be powered by a 480 V feeder from the load center in the solar equipment building.

Wire and cable will be provided for tower aircraft obstruction lighting, tower lightning protection, tower grounding, internal tower lighting below the receiver level, tower elevator and hoist, and tower equipment rooms, vent and HVAC systems. Lighting in the receiver area and all wire and cable in the upper equipment room directly below the receiver, except as listed above, will be provided by the receiver manufacturer.

Drawings

One-Line Diagram 480 V Motor Control Centers 14380-EW-3A

5400.403 Electrical Equipment

The following electrical equipment will be provided and installed in the tower:

- One 480 V, 3-phase, 60 Hz MCC
- Aircraft Obstruction Lighting
- Tower Lightning Protection and Grounding
- Internal Tower Lighting below the receiver area

The following electrical equipment will be provided and installed in the solar tower by the receiver manufacturer:

- One 480 V, 3-phase, 60 Hz MCC
- All receiver controls in the equipment room immediately below the solar boiler area
- All equipment including lighting in the receiver area

Drawings

One-Line Diagram 480V 14380-EW-3A Motor Control Centers

- 5500 CONTROL SYSTEM
- 5510 Solar System
- 5510.101 Miscellaneous Foundations

Concrete pad foundations will be provided for heliostat field controller. Power supply boxes to be provided by the heliostat manufacturer.

5510.301 Master Control System Including Computer and Control Board (Solar and Fossil)

> The master control system includes all hardware and software required to integrate the operation of the solar collector, solar receiver, fossil boiler control and burner management subsystems. The system includes sequence recording, data logging annunciation, sequential control hardware and software, algorithms software and operator/system interface console. Also included are input/output cabinets for field interfaces, trend recorders, printers, and engineers programming and analysis console. Dedicated controls for safety oriented functions are included on the operator/system interface main control board console.

5510.302 Miscellaneous Instruments and Controls

Miscellaneous instruments and controls includes field mounted transmitters, process sensing elements, indicators, switches and local controllers associated with the solar receiver and its support subsystems. 5520 Existing Fossil Control System

5520.301 Modifications to Existing Fossil Unit Control System and Miscellaneous Instruments and Controls

> Existing fossil unit modifications include a new burner management system, new boiler control system, and modified turbine-generator control system.

> Instrumentation and control equipment located in the field is provided to monitor and control equipment from the MCS. Included are transmitters, switches, analyzers, valves, etc.

5800 ELECTRICAL POWER GENERATION SYSTEM 10,400,000

5800.101 Miscellaneous Foundations

Foundations will be provided for additional small pumps such as feed pumps, seal water pumps, and high pressure auxiliary service water pumps. Foundation dimensions will be 2 ft x 4 ft x 12 in.

5800.102 Pipe Support Structures

Steel structures will be provided to support pipes from the solar equipment building and the receiver tower.

5800.201 Solar Feedwater Pumps and Drivers

Two half-size, six-stage horizontal centrifugal motor-driven feedwater pumps, rated at 450 gpm and 6,300 ft tdh, will be provided. Each pump will be driven by an 1,250 hp, 2,400 V, odp electric motor.

5800.202 Solar Feedwater Booster Pumps Drivers

Two full-size horizontal, end suction, tap discharge centrifugal, single-stage motor-driven solar feedwater booster pumps, rated at 900 gpm and 100 ft tdh, will be provided. Each pump will be driven by a 40 hp, 480 V, odp electric motor.

5800.203 Solar Feedwater Heaters

Two new shell and tube horizontal heat exchangers, "A" and "B", will be provided to heat the solar feedwater. Both the "A" and "B" heaters will be approximately 2.5 ft in dia x 31 ft long with total surface areas of 1,800 sq ft each. The "A" heater shell side design pressure and temperature will be 510 psig and 770°F while the tube side will be designed for 3,000 psig and 510°F. The "B" heater shell side will have a design pressure and temperature of 190 psig and 850°F while the tube side will be designed to 3,000 psig and 420°F.

5800.204 Condensate Polishing System

The polishing system shall be a powdered resin type of unit. The system shall consist of one equipment skid measuring 8 ft x 20 ft x 15 ft high, a NEMA ICS Type 12 control panel measuring 4 ft-6 in. x 10 ft-6 in. x 7 ft-6 in. high, and a freestanding sample sink measuring 48 in. x 10 in.

The equipment skid shall contain the following major components:

- Three 50 percent unlined carbon steel polishing filter vessels constructed in accordance with the VIII ASME code.
- One 100 percent three-coat epoxy lined carbon steel precoat tank (atmospheric).
- Two 100 percent capacity precoat pumps with stainless steel wetted parts construction.
- Two 100 percent capacity backwash pumps with stainless steel wetted parts construction.
- One stainless steel precoat tank agitation.
- Internal (skid boundary) interconnecting piping and instrumentation.
- Resin strainers utilizing a carbon steel body and a 24 x 110 mesh stainless steel basket.
- 5800.205 Chemical Feed Equipment

With the exception of a new coordinated phosphate feed system (skid mounted), chemical control using all volatile treatment (AVT) may be accomplished with existing chemical feed equipment.

A new coordinated phosphate feed system shall be provided for protection of the receiver in the event of a condensate polishing system upset. The system consists of a 316L stainless steel mixing tank (150 gal capacity), mixer, one metering pump and associated controls, valves, and piping, all mounted on a skid. The approximate dimensions of the skid are 7 ft x 4 ft x 6 ft high. The discharge line from the skid shall feed directly into the receiver drum.

5800.206 High Pressure Auxiliary Service Water Pumps and Drivers

Two full-size single stage centrifugal motor-driven pumps rated at 30 gpm, 430 ft tdh, shall be provided. Each pump will be driven by a 7.5 hp, 480 V, TEFC motor.

5800.207 High Pressure Auxiliary Service Water Tank

Provided by receiver manufacturer.

5800.208 HVAC Equipment

Covered in accounts 5210.201, 5220.201, and 5230.201.

5800.209 Relocated Equipment

No allowance included

5800.301 New Control System for Existing Turbine-Generator

The existing turbine-generator mechanical hydraulic control system will be modified to include a throttle pressure control which will interface with the MCS. Additional turbine monitoring instrumentation will be added to provide closed loop control for an automatic turbine startup.

5800.402 Wire and Cable

The control wiring for the fossil boiler and turbine-generator modifications will be routed to the addition to the control room.

5800.403 Electrical Equipment

Supplied by others, see controls.

5800.404 Heat Tracing

Electric heat tracing will be provided for freeze protection of piping as described below:

Inside Receiver Tower

Feedwater Line - Top to base of tower, Boiler Blowdown Vent and Drain Lines - Top to base of tower, Main and High Pressure Steam Drain Lines -Top to base of tower, Main Stream Valves - Top of Tower

Outside on Open Pipe Rack

Feedwater Line

Main and High Pressure Steam Drain Lines

Cold and Hot Reheat Motor Operator and Air Operated Valves

Hot Reheat Steam Drain Lines

The equipment/material will consist of distribution transformers, centralized power distribution controllers, sensors (RTDs), heat tracing cable (MI), and supporting hardware. Isometric drawings will be provided as required.

The power source for heat tracing inside the tower will be from the MCC in the lower equipment room beneath the boiler. The power source for heat tracing outside will be from the MCC in the Solar Equipment Building.

5800.405 Relocated Electrical Equipment, Wire and Cable, and Cable Trays

No allowance included

5800.406 Communications

The communications system will be an extension to the present Gai Tronics voice-paging system in the plant. A handset station with speakers will be provided in the following locations:

Solar Equipment Building Tower Upper Equipment Room Base of Tower Maintenance Building Extension

5800.601 Piping and Supports

Piping shall be provided for each of the following systems:

A. Solar Feedwater

Drawings

Solar Feedwater BoosterPiping -Plan EP-660A-SR-1Existing Turbine BuildingSect. EP-660B-SR-1Boiler Feed Suction Piping -
Existing Turbine BuildingPlan and Sect.
EP-605A-SR-1P&IDsPeedwater System14380-PID-6-1A-SR
14380-PID-6-1B-SR

B. New 1st and 2nd Point Extraction Steam

Drawings

2nd Point Extraction -Steam System

Plan EP-607-A-SR-1

14380-PID-6-1C-SR

P&IDs

Extraction Steam System 14380-PID-3-4-SR-1

C. <u>Attemperation</u> piping will be as shown on 14380-PID-6-1-SR

D. <u>Solar Steam</u>

A chromium coating will be applied to the steam side surface of the main, high pressure and hot reheat steam piping to alleviate scale exfoliation. The solar steam systems will include the piping for the following systems:

High Pressure Steam

Drawings

Area Piping - ExistingPlan EP-659A-SR-1Turbine BuildingPlan EP-659B-SR-1TowerSect. EP-659C-SR-1

P&IDs

Main and High Pressure SteamSystems14380-PID-3-1A-SRSteam Systems14380-PID-3-1B-SR

C.1-17

Main Steam

Drawings

Main Steam Piping - Plan EP-601A-SR-1 Existing Turbine Building Sect. EP-601B-SR-1

P&IDs

Main and High Pressure Steam Systems 14380-PID-3-1A-SR 14380-PID-3-1B-SR

Cold Reheat Steam

Drawings

Low Temp. Reheat Steam Piping Plan EP-603A-SR-1 Existing Turbine Building Sect. EP-603B-SR-1

P&IDs

Cold and Hot Reheat System 14380-PID-3-2-SR

Hot Reheat Steam

Drawings

High Temp. Reheat Steam Piping - Plan EP-602A-SR-1 Existing Turbine Building Sect. EP-602B-SR-1

All the steam piping will be provided with vents and drain piping.

Safety relief valves vent piping will be provided for safety valves on the solar steam lines.

P&IDs

Solar Heater Drain, Vent 14380-PID-6-6-SR Relief System

- E. <u>Receiver Blowdown, Vents, and Drains System</u> piping is shown on 14380-PID-11-3-SR.
- F. <u>Condensate Polishing System</u> is shown on Sketch 14380-WT-1.

The turbine plant sampling system will include water quality analyzers, pressure reducers, a

sample cooker, main sample conditioning panel, and a recording and monitoring panel.

5800.602 Valves and Specialties

All necessary gear operated and manual isolation valves, check valves, motor-operated stop valves, feedwater regulator valves, nonreturn valves, bypass valves, air operated and solenoid control valves, safety valves, vent and drain valves are provided.

Specialties such as temporary strainers, traps, restricting orifices, expansion joints, blowoff pots, orifices, desuperheaters, and other miscellaneous pipe fittings for pipe and instruments, etc., are included.

5800.603 Insulation

Thermal Insulation (calcium silicate) will be used for equipment and piping whose operating temperature is above 150°F for energy conservation and safety.

5800.604 Relocated Piping and Supports

No allowance included.

- 5900.050 OWNERS COSTS (Cost shown in 1987 dollars)
 - A. Land Requirements

A total of 418 acres will be required for the addition of the solar facilities. This includes land for the heliostat field, relocated transmission line ROWs, relocated employee park and the relocated highway. The estimated cost of this land is \$1,066,000.

B. Relocation of the State Highway

The estimated cost for relocating Farm-to-Market Road 2529 which borders the existing Newman Station at its northern boundary is \$895,000. This estimate is based on relocating the highway to the south as shown on the drawings in Appendix I.

C. Perimeter Lighting

An estimated 28 lighting fixtures spaced every 400 ft around the perimeter of the heliostat

field will be installed for security and inspection purposes. The cost of this activity is estimated at \$134,000.

D. Relocation of Transmission Lines

Five transmission lines will have to be relocated as a result of solar repowering Newman Unit 1. The cost to perform this relocation is estimated at \$551,000. The cost of additional ROWs is included in Subsection A.

E. Distribution Facilities Relocation

The cost of this activity is \$130,000. This work includes rerouting existing distribution lines and relocating transformers servicing a pump station and a landfill, relocating existing present overhead lighting in the collector field area and providing underground power to water wells located north of the fossil plant.

F. Environmental Studies

An allowance of \$125,000 is included to cover the cost of environmental studies necessary for the licensing of the solar plant and for the relocation of the state highway.

G. Relocation of Irrigation System

Existing wastewater at the Newman Station is used for irrigation of land just north of the plant. The location of the collector field will necessitate relocating the irrigation system. The cost of this activity is estimated at \$131,000.

H. Relocation of Employee Park

An allowance of \$113,000 is included to cover the cost of rebuilding the existing employee park located north of the plant. The land requirements for the park are included in Subsection A.

I. <u>Public Relations</u>

An allowance of \$101,000 is included to cover the cost of the Public Relations' activities associated with the dissemination of

TABLE C.1-1

OWNER'S COSTS FOR EPE

Description	<u>1983 Dollars</u>
Site Land Requirement	1,028,000
Relocating State Highway	852,000
Relocation of Transmission Lines	524,000
Perimeter Lighting	125,000
Relocation of Distribution Facilities	123,000
Environmental Studies	122,000
Relocation of Irrigation System	121,000
Relocating Employee Park	104,000
Public Relations Activities	100,000
Total (1983 dollars)	\$3,099,000
Escalation	147,000
Total Owner's Cost in First Quarter 1987 dollars	3,246,000

.

TABLE C.2-1 CAPITAL COST ESTIMATE

	Account	Description	MATERIAL	LABOR Cost	TOTAL Cost
5100 !	SITE IMPROVI	EMENTS			
	5100.101	Clearing and Grading	0	378,955	378,955
	5100.102	Diversion Channel and Drainage - heliostat field	138,000	289,717	427,717
	5100.103	Crushed Rock Surface - heliostat field	15,300	10,754	27,254
	5:00.104	Roads	200,800	137,200	338,000
	5100.105	Fences and Setes	48,750	26,250	75,000
	5100.201	Waste Disposal System - Existing Facilities	0	0	0
	5100.202	Yard Fire Protection	27,600	15,012	44,512
	5100.401	Electrical Structure	35,300	E1,235	116,535
	5100.402	Wire and Cable	63,944	84,870	148, 814
	5100.403	Electrical Equipment	61,600	17,290	78,890
	5100,501	Yard Piping and Supports	5,000	15,012	20,012
otal 5	5100 SITE I	MPROVEMENT	599,294	1,056,495	1,655,789
i200 S	ITE FACILIT	IES			
	5210	Control Room Extension			
	5210.101	Substructure	0	0	0
	5210.102	Superstructure	63,756	77,220	140,976
	5210.201	Fire Protection	36,760	54,324	71,084
	5210.402	Wire and Cable	4,298	28,203	32, 501
	5210.403	Electrical Equipment	83,400	13,580	75, 980
	5210.601	Piping and Supports (Incl. in A/C 5210.201)	. 0	0	0
	5220	Solar Equipment Building			
	5220.101	Substructure (Incl. in A/E 5220.102)	0	0	0

TABLE C.2-1 CAPITAL COST ESTIMATE (CONT)							
herough	Beerintion	MATERIAL	LABOR	TOTAL			
HELVANC							
5220.102	Superstructure	147,622	164,109	311,731			
5220.201	Fire Protection	10,049	13,824	23,864			
5220.402	Wire and Cable	9,499	63,101	72,600			
5220.403	Electrical Equipment	485,710	87,782	574,492			
5220.601	Fiping and Supports (Incl. in A/E 5220.201)	0	0	0			
5230	Naintenance Building Extension						
5230.101	Substructure (Incl. in A/C 5230.102)	0	0	0			
5230.102	Superstructure	129,600	147.888	277,488			
5230.201	Fire Protection	12,930	29,304	42,234			
5230.402	Wire and Cable	3,690	22,395	26,085			
5230.403	Electrical Equipment	8,732	3,780	12,512			
5230 .6 01	Fiping and Supports (Incl. in A/C 5230.201)	0	0	0			
TOTAL 5200 SITE F	ACILITIES	997,037	705,510	1,702,547			
5300 COLLECTOR SI	JESYSTEM		,				
5300.101	Heliostat Foundations	855, 575	1,461,360	2,316,935			
5300.201	Heliostat Assemblies including drivers	47,000,000	3,000,000	50,000,000			
5300.301	Heliostat Controls	300	10,500	10, 8 00			
5300.302	Beam Characterization System	197,889	108,092	305,981			
5300.402	Heliostat Field Wiring (Power and Control)	1,740,228	2,041,957	3,782,185			
5300.403	Electrical Equipment	133,500	63,525	197,025			
TOTAL 5300 COLLE	CTOR SUBSYSTEM	49,927,492	6,685,434	56,612,926			

5400 RECEIVER SYSTEM

	TABEL C.2-1 CAPITAL COST ESTIMA	TE (CONT)		
Account	Description	MATERIAL COST	LABOR COST	TOTAL COST
			و هم هه ان مو که که که به بو چه په وه که ا	
5400.101	Tower Foundation	126,859	462,646	589,505
5400.102	Tower Superstructure (including platforms, stairs, instrument and Control Equipment Room)	1,013,120	1,341,023	2,354,143
5400,103	Elevator	190,532	36,015	226,547
5400.201	Receiver	11,868,000	6,734,00 0	18,602,000
5400.202	Reheat Heat Exchanger	350,000	23,800	373 ,9 00
5400.203	Drain Tank and Return Pump and Driver	28,000	5,950	33,950
5400.204	Fire Protection	52,100	75, 760	128,060
5400.205	Boiler Blowoff Tank	14,000	1,750	15,750
5400.301	Receiver Instrumentation and Controls (Local) (Included in A/C 5400.201)	0	0	0
5400.402	Wire and Cable	30,264	153,817	184,091
5400.403	Electrical Equipment	48,650	21,560	70,210
5400.404	Electric Heat Tracing	65,862	55, 634	121,495
5400.601	Piping and Supports (Incl. in 5800.601)	0	0	0
5400.602	Valve and Specialties (Incl. in 5800.602)	0	0	0
5400.603	Insulation (Incl. in 5800.603)	0	0	0
OTAL 5400 RECEIV	ER SYSTEM	13,787,387	8,912,155	22,699,542
1500 CONTROL SYST	ЕМ			
5510	Solar System			
5510.101	Miscellaneous Foundations	7,075	13, 532	20,607
5510.301	Master Control System (Sclar and Fossil) including computer and control board	1,348,550	143,500	1,492,050
5510.302	Miscellaneous Instruments and Controls	63,258	59,838	123,096
5520	Existing Fossil Control System			

TABLE C.2-1 CAPITAL COST ESTIMATE (CONT)

Account	Description	MATERIAL Cost	LABOR Cost	TOTAL Cost
5520.301	Modifications to Existing Fossil Unit Control Ststem and Misc. Instruments and Controls	1,320	39,200	40,520
TOTAL 5500 CONTRO	IL SYSTEM	1,420,203	256,070	1,676,273
5800 ELECTRICAL P	OWER GENERATION SYSTEM			
5800.191	Miscellaneous Foundations	527	1,380	2,407
5800.102	Pipe Support Structure	44,340	36,967	E1,307
5900.201	Solar Feedwater Pumps and Drivers	396,000	23,100	417,100
5800.202	Solar Feedwater Booster Pumps and Drivers	34,000	4,900	38,900
5B00.203	Solar Feedwater Heaters	180,000	11,900	191,900
5800.204	Condensate Polishing System	260,000	10,500	270,500
5800.205	Chemical Feed Equipment	123,000	43,750	166,750
5800.206	High Prssure Auxiliary Service Water Pumps and Drivers	6,000	3,150	9,150
5800.207	High Pressure Auxiliary Service Water Tank (Included in A/C 5400.201)	0	Û	0
5800.208	HVAC Equipment (Incl. in Bldg. Accts.)	0	0	0
5800.209	Relocated Equipment (No Allow, Included)	0	0	0
5800.301	New Control System for Existing Turbine Generator	25,000	2,800	27,800
5800.402	Wire and Cable	1,402	15,981	17,383
5800.403	Electrical Equipment (None Required)	0	0	0
5800.405	Relocated Electrical Equipment, Wire & Cable and Cable Trays (No Allow, Included)	0	0	0
5800.406	Communication System	4,666	12,756	17,422
5800.401	Piping and Supports	3,577,211	3,741,837	7,319,048
5800.602	Valves and Specialties	774,361	168,879	943,240
5800,403	Insulation	444,890	448,427	893,317

TABLE C.2-1 CAPITAL COST ESTIMATE (CONT)

Account Bescription	MATERIAL COST	LABOR COST	TOTAL Cost
5800.604 Relocated Piping and Supports (No Allow Incl)	0	Q	Û
TOTAL 5800 ELECTRICAL POWER GENERATION SYSTEM	5,871,397	4,526,827	10, 398, 224
TOTAL DIRECT COSTS	72,602,810	22,142,491	94, 745, 301
5900 OTHER COSTS			
5700.010 Distributable Costs	200,000	1,341,04B	1,541,048
TOTAL CONSTRUCTION COSTS	72,802,810	23,483,539	96,286,349
5900.020 Indirect Costs	1,422,000	6,895,662	8,317,652
TOTAL CONSTRUCTION & INDIRECTS	74,224,810	30, 379, 201	104,604,011
5900.030 Allowance for Indeterminates	1,571,000	3,096,274	4,667,274
TOTAL EETIMATE - PRESENT DAY, 01 SEPT 83	75,795,810	33, 475, 475	109,271,285
5900.040 Escalation	9,757,000	3,883,000	13,640,000
TOTAL EST. EXCL. DWNERS COSTS, AFUDC & SPARE PARTS	85, 552, 810	37, 358, 475	122,911,285
5900.050 Dwners Costs	3,246,000	0	3,246,000
5900.060 AFUDC	17,158,000	0	17,158,000
TOTAL ESTIMATE	105,956,810	37,358,475	143, 315, 285

C.3. RECEIVER COST ESTIMATE DETAIL

This section describes the costs for the receiver subsystem. The scope of work includes engineering, materials, fabrication, erection, checkout and performance evaluation of all the equipment located above the top of the tower. The major components are the receiver, tanks, piping, pump, valves, insulation, instruments, controls, structural steel, enclosure and all auxiliary equipment.

The receiver cost used for the the capital cost estimate is \$18,200,000* in 1983 dollars. Table C.3-1 identifies a complete breakdown per the significant items that make up the receiver subsystem cost.

*For the commercially binding estimate required by EPE, a cost of \$14,570,000 was provided with a cost tolerance set from +25 percent to-10 percent of this value, resulting in a range from \$18,200,000 to \$13,100,000.

The approach used to prepare the receiver cost estimates are typical of the methods used to establish a commercially binding quote for a boiler being supplied to the utility industry. Some general information pertaining to the procedures used to obtain the cost estimates are as follows:

- Material and equipment costs include freight and insurance, and are FOB the job site.
- Spare panels and parts are included.
- Competitive bid approach has not been used due to limitation in time and money. However, the quotes have been obtained from organizations selected as being viable suppliers on past utility type boiler contracts.
- A contingency factor has been provided to cover areas where insufficient design information is available, or where the cost database is minimal.
- The methods of cost estimating were vendor quotes, "inhouse" estimating, ratioing based on prior information from other contracts and some judgment applied where impact on cost was considered negligible. Construction costs include all those services normally furnished in the construction of a boiler for the utility industry. Typical items covered are:

- Temporary Housing
- Erection Equipment
- Site Supervision
- Craft Management
- Material Procurement
- Site Supervision Costs
- Clean Up
- Escalation, AFUDC, transaction privilege taxes, etc, have not been included since it is included when the overall plant estimate is prepared.

The impact of having to produce a commercially binding quote has resulted in a sizeable additional uncertainty factor to be considered on top of the \$14,570,000 base estimate. The upper limit of this range from +25 percent to -10 percent (or \$18,200,000 to \$13,100,000) exceeds those used as previous estimates for this and other solar receiver subsystem studies. The implied meaning is that although the estimates are sound and legitimate, the unknowns such as incomplete workscope, time of performance not being well defined, and lack of a positive data point for costs of a solar water/steam receiver, necessitate that one more engineering phase and resulting cost estimate must be provided before a commercial venture of this size can be undertaken.

The final phase of engineering would produce a set of fabrication drawings, erection drawings, hardware specifications and a detailed engineering workscope for the receiver subsystem and a formal cost estimate which would reduce this large uncertainty. It is recommended that for this study, the cost figures given in Table 6.3-1 be used without the uncertainty factor to provide a consistent rationale between this and other solar repowering studies.

It is noted that receiver fabrication, erection, startup, and checkout is the expected critical path of the construction network.

TABLE C.3-1

SOLAR RECEIVER CAPITAL COST DETAIL

Item	<u>Material</u>	Labor	Total	Remarks
Panel Assemblies	\$1,634,600	\$1,796,000	\$ 3,430,600	(1)
Piping	791,700	443,700	1,235,400	(1)
Steam Drum	61,900	133,300	195,200	(1)
Tooling	509,500		509,500	(1)
Pump	493,600		493,600	(2)
Valves	405,700		405,700	(2)
Instruments/ Controls	946,600		946,600	(1)
Structural Steel/Stairs	448,300		448,300	(2)
Supports, (Piping, Panels)	78,500		78,500	(3)
Water Storage Tank	13,500		13,500	(2)
Engineering		1,690,500	1,690,500	(1)
Erection	1,953,500	2,885,000	4,838,500	(2)
Startup Cost		284,000	284,000	(1)

 Subtotal
 \$7,337,400 \$7,232,500 \$14,570,000*

 Spare Parts
 311,000

 Factor for Commercial Price
 3,721,000

 Total
 \$18,602,000

* Rounded to nearest thousand dollars

NOTES:

i.

- 1. By Estimating Department
- 2. Outside vendor quote
- 3. Engineering estimate using ratioing methods and other approximating techniques

APPENDIX D

RELIABILITY ANALYSIS DETAILED RESULTS

TABLE OF CONTENTS

Section	Title
D. 1	SOLAR FEEDWATER SYSTEM
D. 2	SOLAR MAIN STEAM AND HIGH PRESSURE STEAM SYSTEM
D. 3	SOLAR COLD AND HOT REHEAT SYSTEM
D. 4	POWER SUPPLY TO THE HELIOSTAT FIELD
D. 5	POWER SUPPLY TO THE HELIOSTAT LOOPS
D.6	POWER SUPPLY TO THE 1500 HP FEED PUMP MOTORS
D. 7	POWER SUPPLY TO SOLAR 480V BUS
D.8	POWER SOLAR 2400V BUSES
D.9	POWER SOLAR 115-2.4 KV POWER LINE

.

FTSK	CONPONENT IDENTIFIER	Component Ald Failure Hode	HETHOD OF FATLURE DETECTION	EFFECT ON System	ANNANANANANANANANANANANANANANANANANANA
*****	****	***	*******	*********	*****
SOLAR-A	SFH50011	FEEDNATER SYSTEM Piping Common Hode Failure	ANRUNCIATED IN Control Room	FAILURE OF SOLAR FEEDWATER SYSTEM PID-1(A-C)-SR	CATEGORY A-B-C
SOL AR-B	SFN50021	FAILURE OF HEATER FLOH RECEIVER CONTROL SYSTEH	ANNUNCIATED IN Control Room	FAILURE OF SOLAR FEEDHATER SYSTEM PID-l(A-C)-SR	CATEGORY C Shitch to Lic 31
SOLAR-D	SFNS0032	FDHTR BOOSTR PSA Fails to operate Leakage PID-6-1 A-S R	Indicating Light In Control Room	LOSS OF BOOSTER PUMP LINE A PID-6-1A-SR	CATEGORY C 2–1002 Capacity fuips Dual Failure Required
SOLAR-D	SFH5004 6	PI 56A FAILS TO OPERATE FALSE OUTPUT PID-6-1A-SR	PERIODIC INSPECTION	LOSS OF BOOSTER PUMP LINE A PID-6-1A-SR	CATEGORY C *NO IHPACT ON* *System reliability*
SOLAR-D	SFH50056	FDHTR BOOSTR PHP Line A Cohhoh Mode Operator Error	PERIODIC INSPECTION	LOSS OF BOOSTER PUMP LINE A PID-6-1A-SR	CATEGORY C 2-100% Capacity Lines Dual Failure Required
SOLAR-E	SFHS0062	FDHTR BOOSTR P5B FAILS TO OPERATE LEAKAGE PID-6-1A-SR	INDICATING LIGHT IN CONTROL ROOM	LOSS OF BOOSTER PUMP LINE B PID-6-1A-SR	CATEGORY C 2–1002 CAPACITY PUNPS DUAL FAILURE REQUIRED
SOLAR-E	SFH50076	PI 56B FAILS TO OPERATE FALSE OUTPUT PID-6-1A-SR	PERIODIC INSPECTION	LOSS OF BOOSTER PUNP LINE B PID-6-IA-SR	CATEGORY C *NO INPACT ON* *System reliability*
SOLAR-E	SFHS0086	FDHTR BOOSTR PUMP Line B Common Hode Operator Error	PERIODIC INSPECTION	LOSS OF BOOSTER PUMP LINE B PID-6-1A-SR	CATEGORY C 2-100% CAPACITY LINES DUAL FAILURE REQUIRED
Solar-6	SFN50092	FE 20A FAILS TO OPERATE FALSE OUTPUT PID-6-1B-SR	INDICATING LIGHT IN CONTROL ROOH	LOSS OF FONTR PUMP LINE A PID-6-18-SR	CATEGORY C *NO INPACT ON* *SYSTEN RELIABILITY*
SOLAR-G	SFH50101	FORTR PURP LINE A Contron Hode Operator Error	ANNUNCIATED IN CONTROL ROOM	LOSS OF FONTR PUMP LINE A PID-6-18-SR	CATEGORY B 2–50% Capacity Lines

					IFAILURE HODES AND EFFECTS ANALYSIS	— I
					 SOLAR FEEDHATER SYSTEM	j
4	 3	 2	.	1	 .1	1
					FHEA-SOLARFHS SH	L

D.1 Solar Feedwater System (Cont)

-- --- --

********* Ftsk	COPONENT		NANANANANANANANANANANANANANANANANANANA	***X**********************************	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*****		*********		******	******
SOLAR-F	SFWS0112	FE 20B-FT-FIC FAILS TO OPERATE FALSE OUTPUT PID-6-1B-SR	INDICATING LIGHT IN CONTROL ROOM	LOSS OF FONTR PUNP LINE B PID-6-18-SR	CATEGORY C *NO INPACT ON* *Systeh reliability*
SOLAR-F	SFH30121	FONTR PURP LINE B Connon Hode Operator Error	ANNUNCIATED IN Control Room	LOSS OF FDWTR PUMP LINE B PID-6-1B-SR	CATEGORY 8 2–50% CAPACITY LINES DUAL FAILURE REQUIRED
SOLAR-C	8FH30136	BLOCK LV 31 Fails to Rehain Open or Leaks Pid-6-18-Sr	PERIODIC INSPECTION	LOSS OF MAIN LINE FOWTR CONTROL PID-6-1B-SR	CATEGORY B Startup-Bypass Line Available
SOLAR-C	SFHS0141	FDHTR CONTROL HAIN LINE CONNON HODE OPERATOR ERROR	ANNUNCIATED IN CONTROL ROOM	Loss of Main Line Fdhtr Control Pid-6-1B-Sr	CATEGORY B Startup-Bypass Line Available
SOLAR-H	SFH30156	BLOCK LV 32 Fails to rehain Open or leakage Pid-6-1B-SR	PERIODIC INSPECTION	LOSS OF STRTUP-BYPSS FONTR CONTROL PID-6-1B-SR	CATEGORY C Line Required for Startup-Bypass Only
SOLAR-H	SFH50161	FDHTR CONTROL STRTUP-BYPSS LN COLINON HODE OPERATOR ERROR	ANNINGIATED IN Control Room	LOSS OF STRTUP-BYPSS FDHTR CONTROL PID-6-18-SR	CATEGORY C Line Required for Startup-Bypass Only
SOLAR-D	SFHS0176	LOCKED OPEN VALVE Fails to Rehain Open or Leakage Pid-6-1A-SR	PERIODIC INSPECTION	LOSS OF BOOSTER PURP LINE A PID-6-1A-SR	CATEGORY C 2–1002 Capacity Lines Dual Failure Required
SOLAR-D	SFHS0184	RV 51A INADVERT OPENIN g HECH FAILURE LEAK PID- 6-1A-S R	PERIGOIC INSPECTION	LOSS OF BOOSTER PLAYP LINE A PID-6-1A-SR	CATEGORY C 2–100% Capacity Lines Dual Failure Required
SOLAR-D	SFN50196	CHECK VALVE Fails to Rehain Open or Check Leak Pid-6-1A-SR	PERIODIC INSPECTION	LOSS OF BOOSTER PURP LINE A PID-6-1A-SR	CATEGORY C 2–1002 Capacity Lines Dual Failure Required
SOLAR-D	SFHS0201	START-STOP VALVE Position ZS 57A Inadvert closure Leak Pid-6-1	ANNUNCIATED IN Control Room	LOSS OF BOOSTER PUHP LINE A PID-6-1A-SR	CATEGORY C 2–100% Capacity Lines Dual Failure Required

_				Γ	FAILURE	E HODES	AND	EFFECTS	AI4	U.YSI	S
					 SOLAR	FEEDHAT	TER S	SYSTEN			
4	3	 2	I	1							
		E I					FHE/	A-SOLARFI	IS	SH	2

******* FTSK	COMPONENT	CONFORMENT AND FAILURE MODE	NETHOD OF	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	OTHER REMARKS
*****	****	***	*****	*********	********
SOLAR-E	SFW50216	LOCKED OPEN VALVE Fails to Remain Open or Leaks Pid-6-1A-Sr	PERIODIC INSPECTION	LOSS OF BOOSTER PURP LINE B PID-6-1A-SR	CATEGORY C 2-1002 Capacity Lines Dual Failure Required
SOLAR-E	SF1150226	DRAIN RV 51B Inadvert opening Mech Failure Leak Pid-6-1A-SR	PERIODIC INSPECTION	LOSS OF BOOSTER PUMP LINE B PID-6-1A-SR	CATEGORY C 2-100% Capacity Lines Dual Failure Required
SOLAR-E	SFNS0236	CHECK VALVE Fails to Rehain Open or Check Leak Pid-6-1A-SR	PERIODIC INSPECTION	LOSS OF BOOSTER PUMP LINE B PID-6-1A-SR	CATEGORY C 2-1002 CAPACITY LINES DUAL FAILURE REQUIRED
SOLAR-E	SFW50241	START-STOP VALVE Position ZS 578 Inadvert closure Leak Pid-6-1	ANNUNCIATED IN Control Room	LOSS OF BOOSTER PURP LINE B PID-6-1A-SR	CATEGORY C 2–100% Capacity Lines Dual Failure Required
Solar-g	SFWS0251	LOCKED OPEN VALVE Fails to Rehain Open or Leaks Pid-6-1B-SR	ANRINCIATED IN Control Room	LOSS OF FDHTR PUMP LINE A PID-6-18-SR	CATEGORY B 2–50% Capacity Lines
SOL AR-6	SFK50266	RV 21A INADVERT OPENING LEAKAGE PID-6-1B-SR	PERIODIC INSPECTION	LOSS OF FONTR PUNP LINE A PIO-6-18-SR	CATEGORY B 2-50% Capacity Lines
SOLAR-G	SFHS0276	CHECK VALVE Fails to Rehain Open or Check Leak Pid-6-1B-SR	PERIODIC INSPECTION	LOSS OF FDHTR PUHP LINE A PID-6-18-SR	CATEGORY B 2–50% Capacity Lines
Solar-K	SFHS0281	FDWTR PHP CONTRL FS 23A-PS 22A FAILS TO OPERATE PID-6-1B-SR	AMARICIATED IN Control Room	LOSS OF FDHTR PURP LINE A PID-6-1B-SR	CATEGORY B Shitch to FV 26A and Hov 26A
SOLAR-K	SFH50292	PRESS TRAILSM 24A FAILS TO OPERATE FALSE OUTPUT PID-6-1B-SR	INDICATING LIGHT IN CONTROL ROOH	LOSS OF FOHTR PURP LINE A PID-6-18-SR	CATEGORY C *NO IHPACT ON* *SYSTEM RELIABILITY*
Solar-J	SFH50306	ORIFICE RO 27A Leakage or blockage Pid-6-1B-SR	PERIODIC INSPECTION	LOSS OF FDHTR PUMP LINE A PID-6-18-SR	CATEGORY C *NO INFACT ON* *SYSTEH RELIABILITY*

	J	1	ł	FAILURE HODES AND EFFECTS ANALYSIS
I				SOLAR FEEDNATER SYSTEM
41	3	121	[1]	1
		<u> </u>	<u>I.I</u>	FNEA-SOLARFWS SH 3

.

********	*********	<u> </u>	******	****	*****
FTSK	COMPONENT IDENTIFIER	COMPONENT AND FAILURE MODE	METHOD OF FAILURE DETECTION	EFFECT ON SYSTEM	OTHER REMARKS
******	***	*****	*******	*******	*****
SOLAR-J	SFH50316	SHUTOFF VALVE FAILS TO OPERATE LEAKAGE PID-6-1B-SR	PERIODIC INSPECTION	LOSS OF FOMTR PURP LINE A PID-6-18-SR	CATEGORY C *NO IHPACT DN# *SYSTEH RELIABILITY#
Solar-J	SFNS0326	CHECK VALVE Fails to Rehain Open or Check Leak Pid-6-1B-SR	PERIODIC INSPECTION	LOSS OF FONTR PUMP LINE A PID-6-18-SR	CATEGORY C *NO IMPACT ON* *System reliability*
Solar-f	SFH50331	LOCKED OPEN VALVE FAILS TO REHAIN OPEN OR LEAKS PID-6-18-SR	ANNUNCIATED IN Control Room	LOSS OF FONTR PURP LINE B PID-6-18-SR	CATEGORY B 2-50% Capacity Lines
SOLAR-F	SFHS0346	RV 218 Inadvert Opening Leakage Pid-6-18-Sr	PERIODIC INSPECTION	LOSS OF FONTR PURP LINE B PID-6-18-SR	CATEGORY B 2-50% Capacity Lines
SOLAR-F	SFKS0356	CHECK VALVE Fails to Remain Open or Check Leak Pid-6-1B-SR	PERIODIC INSPECTION	Loss of Fontr Pump Line B Pid-6-18-Sr	CATEGORY B 2-50% Capacity Lines
SOLAR-H	SFHS0361	FDWTR PMP CONTRL FS 23B-PS 22B FAILS TO OPERATE PID-6-1B-SR	ANNUNCIATED IN Control Room	LOSS OF FONTR PUMP LINE B PID-6-1B-SR	CATEGORY B Shitch to FV 26B and Nov 28B
SOLAR-H	SFHS0372	PRESS TRANSH 24B Fails to operate False output PID-6-1B-SR	INDICATING LIGHT IN CONTROL ROOM	LOSS OF FOHTR PURP LINE B PID-6-18-SR	CATEGORY C *NO INFACT ON* *System reliability*
SOLAR-L	SFH50386	ORIFICE RO 27B LEAHAGE OR BLOCHAGE PID-6-1B-SR	PERIODIC INSPECTION	LOSS OF FOHTR PURP LINE B PID-6-18-5R	CATEGORY C *NO INPACT ON* *Systeh Reliadility*
SOLAR-L	SFN50396	SHUTOFF VALVE FAILS TO OPERATE LEAKAGE PID-6-1B-SR	PERIODIC INSPECTION	LOSS OF FOHTR PUIP LINE B PID-6-18-SR	CATEGORY C *NO IHPACT ON* *SYSTEN RELIADILITY*
Solar-l	SFN50406	CHECK VALVE Fails to Rehain Open or Check Leak Pio-6-18-SR	PERIODIC INSPECTION	LOSS OF FONTR PURP LINE B PID-6-18-SR	CATEGORY C *NO IMPACT ON* *Systen reliability*

,

D.1 Solar Feedwater System (Cont)

******** FTSK		COIPONENT AND	HERRENES HER HERRENES HERRENES HER HERRENES HERRENES HERRENES HERRENES HERRENES HERRENES HERRENES HERRENES HERRENES HERRENES HERRENS HERRENS HERREN	**************************************	OTHER REHARKS
教授教法授外领导	********	MANANANANANANANA		***************************************	*******
SOLAR-C	SFNS0412	NOV 29 FAILS CLOSED LEAKAGE PID-6-1B-SR	INDICATING LIGHT IN CONTROL ROOM	LOSS OF MAIN LINE FDHTR CONTROL PID-6-1B-SR	CATEGORY B Bypass-Startup Line Available
SOLAR-C	SFHS0422	HOTOR FAILURE SFURIOUS SIGNAL NOV 29 PID-6-1B-SR	INDICATING LIGHT IN CONTROL ROOM	LOSS OF MAIN LINE FOMTR CONTROL PID-6-1B-5R	CATEGORY B Bypass-Startup Line Available
SOLAR-C	SFN50432	SRCS FAILURE Hov 29 PID-6-1B-SR	INDICATING LIGHT In Control Room	LOSS OF HAIN LINE FOWTR CONTROL PID-6-18-SR	CATEGORY B
SOLAR-C	SFWS0441	LV 31 (AIR OPERATED) Fails to operate Pid-6-18-SR	ANNURCIATED IN Control Room	LOSS OF HAIN LINE FOWTR CONTROL Pid-6-18-SR	CATEGORY B BYPASS-STARTUP LINE AVAILABLE
SOLAR-C	SFH30451	LVL TRANSD LV 31 Failure Spurious Signal Pid-6-18-Sr	ANNUICIATED IN Control Room	Loss of Hain Line Fohtr Control Pid-6-18-Sr	CATEGORY B-C Spurious Signal Closes LV 31
SOLAR-H	SFH30462	HOV 30 FAILS TO Rehain Closed Leak Pid-6-1B-SR	INDICATING LIGHT IN CONTROL ROOM	loss of Strtup-Bypss Fdittr Control PID-6-18-Sr	CATEGORY C LINE NOT REQUIRED FOR NORHAL OPERATION
SOLAR-H	SFH50472	MOTOR FAILURE Hov 30 PID-6-18-sr	INDICATING LIGHT IN CONTROL ROOM	Loss of Strtup-Bypss Fdhtr Control PID-6-18-Sr	CATEGORY C LINE NOT REQUIRED FOR NORHAL OPERATION
SOLAR-H	SFNS0482	SRCS FAILURE Hov 30 PID-6-18-5R	INDICATING LIGHT In Control Rodh	Loss of Strtup-Bypss Fdhtr Control PID-6-18-Sr	CATEGORY C LINE NOT REQUIRED FOR NORMAL OPERATION
Solar-H	SFWS0491	LV 32 (AIR OPERATED) FAILS TO OPERATE PID-6-1B-SR	AMPRECIATED IN CONTROL ROOH	LOSS OF STRTUP-BYPSS FDWTR CONTROL PID-6-18-SR	CATEGORY C LINE NOT REQUIRED FOR NORHAL OPERATION
SOLAR-H	SFN50501	LYL TRANSD LV 32 Failure Spurious Signal PID-6-1B-SR	AIRUNCIATED IN CONTROL ROOM	LOSS OF STRTUP-BYPSS FDWTR CONTROL PID-6-18-SR	CATEGORY C LINE NOT REQUIRED FOR NORHAL OPERATION
Solar-P	SFHS0516	ISOLATION HOV 63 Fails to rehain Closed or leaks Pid-6-1C-Sr	PERIODIC INSPECTION	FAILURE OF FONTR HTR "A" ISOL HOV 63 FID-6-1C-SR	CATEGORY C BYPASS VALVE FOR "B" SOLAR HEATER
				Image: Failure Modes Image: Failure Modes Image: Failure Modes Image: Failure Failure Image: Failure	AND EFFECTS ANALYSIS ER SYSTEM FNEA-SOLARFHS SH 5

뜢 꼵쓹쉋꾞쓹 <u>꾡</u> 궭	****	*****	냙씆 챓쓹섉셿졠똜븮똜븮븮슻슻슻슻슻슻		
ftsk	Component Identifier	COMPONENT AND FAILURE MODE	METHOD OF FAILURE DETECTION	EFFECT ON SYSTEM	OTHER REMARKS
机关关始长关关键	*********	********	****	********	***
SOLAR-N	SFHS0526	ISOLATION HOV 66 Fails to rehain Closed or leaks Pid-6-1C-SR	PERIODIC INSPECTION	FAILURE OF FOHTR HTR "B" ISOL HOV 66 PID-6-1C-SR	CATEGORY C BYPASS VALVE FOR "A" SOLAR HEATER
SOLAR-G	SFHS0536	HOV 28A FAILS CLOSED LEAKAGE PID-6-1B-SR	PERIODIC INSPECTION	LOSS OF FONTR PURP LINE A PID-6-18-SR	CATEGORY B 2-50% CAPACITY LINES
Solar-g	SFH30542	Hotor Failure Hov 28a Pid-6-18-SR	INDICATING LIGHT IN CONTROL ROOM	LOSS OF FOHTR PUMP LINE A PID-6-18-SR	CATEGORY B 2-50% CAPACITY LINES
Solar- g	SFH50552	LOGIC FAILURE SPURIOUS SIGNAL HOV 28A PID-6-1B-SR	INDICATING LIGHT IN CONTROL ROOM	LOSS OF FONTR PURP LINE A PID-6-1B-SR	CATEGORY B-C Spurious Signal Closes Hov 28A
SOLAR-F	SFHS0566	HOV 28B FAILS CLOSED LEAKAGE PID~6~1B~SR	PERIODIC INSPECTION	LOSS OF FDHTR PUMP LINE B PID-6-1B-SR	CATEGORY B 2-50% CAPACITY LINES
SOLAR-F	SFHS0572	Hotor Failure Mov 28b Pid-6-18-Sr	INDICATING LIGHT In Control Room	Loss of Fontr Pump Line B Pid-6-18-Sr	CATEGORY B 2-50% CAPACITY LINES
Solar-f	SFH30582	LOGIC FAILURE Spurious Signal Nov 28B PID-6-1B-SR	INDICATING LIGHT IN CONTROL ROOM	Loss of Fdhtr Purp Line B Pid-6-1B-Sr	CATEGORY B-C Spurious Signal Closes Mov 28b
SOLAR-P	SFHS0592	PT 35-PE-PI FAILS TO OPERATE FALSE OUTPUT PID-6-1C-SR	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF FOHTR HEATER PATH A PID-6-1C-SR	CATEGORY C *NO IMPACT ON* *Systen reliability*
SOLAR-P	SFHS0601	"A" HEATER E3 Fails or Leaks Blockage PID-6-1C-SR	ANNUNCIATED IN Control Room	FAILURE OF FOHTR HEATER PATH A PID-6-1C-SR	CATEGORY C HEATER CAN BE BYPASSED
SOLAR-P	SF#30611	FDNTR HTR PATH A Common Hode Operator Error PID-6-1C-SR	ANNUNCIATED IN Control Room	FAILURE OF FOHTR HEATER PATH A PID-6-1C-SR	CATEGORY C

.

D.1 Solar Feedwater System (Cont)

***	****	***	훳 <i>쏡틪훳꺍닅볛슻</i> 쭕붱 윩붱칅윩븮똜슻놂놂	똜왞条윉똜줂뜾홂왉굦햜볛롲븮똜쿋똜븮븮븮슻햜븮큟녻쓹픛슻렮슻슻슻	*****
FTSK	COMPONENT IDENTIFIER	COMPONENT AND FAILURE MODE	NETHOD OF FAILURE DETECTION	EFFECT ON SYSTEM	OTHER REMARKS
******	****	****	****	ŢĸŢĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	*****
SOLAR-N	SFHS0622	TH 40-TE-TI FAILS TO OPERATE FALSE OUTPUT PID-6-1C-SR	INDICATING LIGHT IN CONTROL ROCH	FAILURE OF FOWTR HEATER PATH B PID-6-1C-SR	CATEGORY C
Solar-N	SFHS0431	"B" HEATER E4 Fails or leaks Blockage Pid–6–1C–Sr	ANNERCIATED IN Control. Room	FAILURE OF FDWTR HEATER PATH B PID-6-1C-SR	CATEGORY C HEATER CAN BE BYPASSED
SOLAR-N	SFHS0641	FDHTR HTR PATH B Common Hode Operator Error PID-6-1C-SR	ANNUNCIATED IN Control Room	FAILURE OF FOMTR HEATER PATH B PID-6-1C-SR	CATEGORY C
SOLAR~P	SFN30656	TH 33 FAILS TO OPERATE PID-6-1C-SR	PERIODIC INSPECTION	NONE	CATEGORY C #NO IMPACT ON# #SYSTEH RELIABILITY#
Solar-P	SFH50666	TH 34-TE-TI FAILS TO OPERATE FALSE OUTPUT PID-6-1C-SR	PERIODIC INSPECTION	NONE	CATEGORY C *NO IHPACT ON* *System reliability*
SOLAR-Q	SFKS067 6	RV 37 Inadvert opening Leakage Pid-6-1C-SR	PERIODIC INSPECTION	FAILURE OF FDHTR HEATER PATH A PID-6-1C-3R	CATEGORY C Heater can be bypassed
SOLAR-Q	SFHS0 682	LOGIC INTEGRAL CS FAILURE FDHTR HTR PATH A PID-6-IC-SR	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF FDHTR HEATER PATH A PID-6–1C–SR	CATEGORY C Increases, probability of system failure
SOLAR-R	5FKS0696	RV 42 INADVERT OPENING LEAKAGE PID-6-1C-SR	PERIODIC INSPECTION	FAILURE OF FDWTR HEATER PATH B PID-6-1C-SR	CATEGORY C Heater can be bypassed
SOLAR-R	SFHS0702	LOGIC INTEGRAL CS Failure Fdntr Htr Path B Pid-6-1C-Sr	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF FOHTR HEATER PATH B PID-6-1C-SR	CATEGORY C Increases probability of system failure
SOLAR-N	SFH50716	TH 46-TE-TI Fails to operate False output Pid-6-1C-SR	PERIODIC INSPECTION	NONE	CATEGORY C *NO INPACT ON* *System reliability*

11				FAILURE HODES AND EFFECTS ANALYSIS	
				SOLAR FEEDHATER SYSTEM	
4	31	21	11	1	
				FNEA-SOLARFHS SH 7	
FTS	K COMPONENT IDENTIFIER	COHPONENT AND FAILURE MODE	METHOD OF FAILURE DETECTION	EFFECT ON Systeh	OTHER REMARKS
-------	---------------------------	---	-------------------------------------	---	--
*****	*** ********	******	****	**********	****
SOLAR	-N SFHS0726	TH 47 FAILS TO OPERATE PID-6-1C-SR	PERIODIC INSPECTION	NONE	CATEGORY C *NO INPACT ON: *SYSTEH RELIABILITY*
SOLAR	-Q SFH50736	FDHTR HTR PATH A BLOCK HOV 62 FAILS CLOSED LEAK PID-6-1C-SR	PERIODIC INSPECTION	FAILURE OF FONTR HEATER PATH A PID-6-1C-SR	CATEGORY C DOWNSTREAN BLOCK VALVE S BYPASS VALVE AVAILADLE
SOLAR	-9 SFN50746	FDHTR HTR PATH A Bypass valve Fails open Leah Pid-6-1C-SR	PERIODIC INSPECTION	FAILURE OF FDHTR HEATER PATH A PID-6-1C-SR	CATEGORY C VALVE USED FOR BYPASS CHLY
Solar	-R SFN507 <i>5</i> 6	FDHTR HTR PATH B BLOCK HOV 65 FAILS TO CLOSE LEAK PID-6-1C-SR	PERIODIC INSPECTION	FAILURE OF FONTR HEATER PATH B PID-6-1C-SR	CATEGORY C I DOWNSTREAM BLOCK VALVE & BYRASS VALVE AVAILABLE I
SOLAR	-R SFWS0766	FOHTR HTR PATH B Bypass valve Fails open Leak Pid-6-1C-SR	PERIODIC INSPECTION	FAILURE OF FOMTR HEATER PATH B PID-6-1C-SR	CATEGORY C USED FOR STARTUP- BYPASS ONLY
SOLAR	-6 SFH50771	50% CAPACITY Solar Fontr P2A Fails to operate Leak Pid-6-1B-SR	ANNUNCIATED IN CONTROL ROCH	LOSS OF FONTR PUMP LINE A Pid-6-1B-SR	CATEGORY B 2–502 Capacity Pumps
SOLAR	-F SFH30781	50% CAPACITY Solar FdWTR P2B Fails to operate Leak Pid-6-18-SR	ANNINCIATED IN Control Roon	LOSS OF FOWTR PUMP LINE B PID-6-18-SR	CATEGORY B 2-50% CAPACITY PUMPS
SOLAR	-Q SFN50796	FONTR NTR PATH A Block Hov 61 Fails Closed Leak Pid-6-1C-SR	PERIODIC INSPECTION	FAILURE OF FDWTR HEATER PATH A PID-6-1C-SR	CATEGORY C HEATER CAN BE BYPASSED
SOLAR	-Q SFH50802	FDWTR HTR PATH A Notor Failure Block Hov 61 PID-6-1C-SR	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF FDWTR HEATER PATH A PID-6-1C-SR	CATEGORY C Heater can be bypassed
SOLAR	-R 5FH30816	FDHTR HTR PATH B BLOCK MOV 64 FATLS CLOSED LEAK PID-6-1C-SR	PERIODIC INSPECTION	FAILURE OF FDWTR HEATER PATH B PID-6-1C-SR	CATEGORY C Heater can be bypassed

1

D.1-8

D.1 Solar Feedwater System (Cont)

***	**	****	****	***	******
FTSK	COMPONENT IDENTIFIER	Component and Failure Node	HETHOD OF FAILURE DETECTION	EFFECT ON SYSTEM	OTHER REHARKS
*****	********	***	*******	教授所资格等的资料的复数的 的复数形式的资格的资格的资格的资格	*****
SOLAR-R	SF1150822	FOHTR HTR PATH B Hotor Failure Block Mov 64 PIO-6-1C-SR	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF FOWTR HEATER PATH B PID-6-1C-SR	CATEGORY C Heater Can be bypassed
SCLAR-P	SFH91512 ≁	Hotor Failure Isolation hov 63 Pid-6-1C-SR	INDICATING LIGHT IN CUNTROL ROOM	FAILURE OF FOHTR HTR "A" ISOL HOV 63 PID-6-1C-SR	CATEGORY C Bypass valve for "B" solar heater
SOLAR-N	SFHS1522	HOTOR FAILURE ISOLATION HOV 66 PID-6-1C-SR	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF FOHTR HTR "B" ISOL HOV 66 PID-6-1C-SR	CATEGORY C BYPASS VALVE FOR "A" SOLAR HEATER
SOLAR-Q	SFH51732	FOHTR HTR PATH A INITOR FAILURE BLOCH HOV 62 PID-6-1C-SR	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF FDHTR HEATER PATH A PID-6-1C-SR	CATEGORY C DOWNSTREAM BLOCK VALVE & BYPASS VALVE AVAILABLE
SOLAR-R	SFW51752	FONTR NTR PATH B Notor Failure Block Hov \$5 Pid-6-1C-Sr	INDICATING LIGHT IN CONTROL ROCH	FAILURE OF FDWTR NEATER PATH B PID-6-1C-SR	CATEGORY C DOWN-STREAM BLOCK VALUE BYPASS VALUE AVAILABLE

	1	1	FAILURE HODES AND EFFECTS ANALYSIS
 1			SOLAR FEEDWATER SYSTEM
			EHEA-SOLARFIIS SH 9

D.1 Solar Feedwater System (Cont)

EL PASO SOLAR REPONERING NEMMAN UNIT 1: SOLAR FEEDMATER SYSTEM * OPERATING HODE ENDOPH * RATES

COMPONENT INDICES, NAMES, AND FAILURE RATES (PER HOUR) -

TREE INDEX	COMPONENT NAME	LANBDA(FAILURE INTENSITY/HR.)	TAU
1	SFHS0756	1.000000-05	9.00000+00
2	SFNS1752	2.50000D-05	2.000000+01
3	SFNS0736	1.000000-05	9.0000D+00
4	SFW51732	2.500000-05	2.000000+01
5	SFNS0816	1.00000-05	9.000000+00
6	SFHS0822	2.500000-05	2.000000+01
7	SFWS0796	1.000000-05	9.000000+00
8	SFHS0802	2.500000-05	2.00000D+01
9	SFNS0716	2.000000-06	8.000000+00
10	SFH50726	0.0	0.0
11	SFW90656	0.0	0.0
12	SFHS0666	2.000000-06	8.0000D+00
13	SFWS0526	1.000000-05	9.000000+00
14	SFWS1522	2.50000D-05	2.00000D+01
15	SFWS0516	1.000000-05	9.0000D+00
16	SFMS1512	2.5000D-05	2.00000D+01
17	SFNS0566	1.00000D-05	9.0000D+00
18	SFWS0572	2.5000D-05	2.00000D+01
19	SFHS0582	7.0000D-0 6	1.50000D+01
20	\$FN\$0536	1.000000-05	9.00000+00
21	SFNS0542	2.500000-05	2.000000+01
22	SFWS0552	7.0000D-06	1.500000+01
23	SFWS0491	3.500000-05	4.000000+01
24	SFHS0501	2.0000D-06	8.000000+00
25	SFNS0462	2.0000D-05	1.0000D+01
26	SFW90472	2.50000D-05	7.000000+00
27	SFNS0482	7.000000-04	1.50000D+01
28	SFRS0441	2.000000-05	4.50000D+01
29	SFM50451	2.000000-06	8.000000+00
20	SFW50412	1.000000-05	9.000000+00
31	3FN3U422	2.500000-05	2.00000D+01
32	3FN3U432 6FU50707	7.000000-06	1.500000+01
33	3FN30308	1.000000-07	1.000000+00
34	2FM20390	5.000000-06	8.000000+00
35	5FM30406	8.000000-06	9.000000+00
20	3FN203310	1.500000-05	3.00000+01
37	3FN3U372	3.000000-06	1.000000+01
30	3FN30306 85480714	1.000000-07	1.000000+00
37	SEMGUADY DLUDADYO	3.00000-00	8.000000+00
ትሀ //1	36 N3V320 861/60203	8.00000-06	9.000000+00
41	SEMEUSOS SLUGACOT	1.500000-05	3.000000+01
46 47	ofnoult Celicogia	3.000000-00	1.00000101
43 AA	GELICUDDA GELICUDDA	1.300000-05	9.000000+00
44	JFNJUCCO SELICARZA	1.200000-02	1.000000+01
45	351120220	2.000800-05	9.000000+00

D.1 Solar Feedwater System (Cont)

47 SFHS0176 1.30000-05 9.000001+00 48 SFHS0186 1.50000-05 1.00000+00 50 SFHS0196 2.00000-05 9.000000+00 51 SFHS0746 1.00000-05 9.000000+00 52 SFHS0746 1.00000-05 9.000000+00 53 SFHS0746 1.50000-05 1.00000+00 54 SFHS0746 1.50000-05 1.000000+00 55 SFHS0476 1.50000-05 1.000000+00 54 SFHS0462 7.000000-06 8.00000+00 55 SFHS0462 7.000000-05 1.00000+01 56 SFHS0462 2.000000-05 1.60000+01 57 SFHS0462 3.000000-05 2.00000+00 60 SFHS041 9.000000-05 2.00000+00 61 SFHS0592 3.000000-05 2.00000+00 62 SFHS041 9.000000-05 2.00000+00 63 SFHS0546 1.500000-05 9.00000+00 64 SFHS0546 1.500000-05 9.00000+00 64 SFHS0546 1.500000-05 9.00000+00 </th <th>46</th> <th>SFHSD241</th> <th>2.200000-05</th> <th>1.200000+01</th>	46	SFHSD241	2.200000-05	1.200000+01
48 SFHS0186 1.500000-05 1.000000+01 49 SFHS0196 2.00000-05 9.00000+00 50 SFHS0201 2.20000-05 1.200000+00 51 SFHS0746 1.000000-05 9.00000+00 52 SFHS0746 1.000000-05 9.00000+00 53 SFHS0696 1.500000-05 1.000000+01 54 SFHS0676 1.500000-05 1.000000+01 55 SFHS0672 7.000000-06 1.500000+01 56 SFHS0682 7.000000-06 1.500000+00 57 SFHS0641 9.000000-05 1.600000+00 58 SFHS0641 9.000000-05 2.000000+00 60 SFHS0641 9.000000-05 2.000000+00 61 SFHS0311 1.500000-05 2.000000+00 62 SFHS0331 1.500000-05 2.000000+00 63 SFHS0346 1.500000-05 9.000000+00 64 SFHS0356 2.000000-05 9.000000+00 64 SFHS03156 1.500000-05 </th <th>47</th> <th>SFHS0176</th> <th>1.300000-05</th> <th>9.000000+00</th>	47	SFHS0176	1.300000-05	9.000000+00
49 SFHS0196 2.00000-05 9.00000+00 50 SFHS0201 2.20000-05 1.20000+01 51 SFHS0746 1.000000-05 9.000000+01 52 SFHS0746 1.000000-05 9.000000+01 53 SFHS072 7.000000-06 1.500000+01 54 SFHS072 7.000000-06 1.500000+01 55 SFHS0676 1.500000-05 1.000000+01 56 SFHS0622 2.00000-06 3.500000+01 57 SFHS0641 9.00000-05 1.600000+01 59 SFHS0641 9.00000-05 2.00000+01 60 SFHS0592 3.00000-05 2.00000+01 61 SFHS0641 9.00000-05 2.00000+01 62 SFHS0331 1.300000-05 2.00000+01 63 SFHS0356 2.00000-05 9.00000+01 64 SFHS0356 2.00000-05 9.00000+01 64 SFHS0356 2.00000-05 9.00000+01 65 SFHS0356 2.00000-05 9.	48	SFWS0186	1.500000-05	1.000000+01
50 SFHS0201 2.20000D-05 1.20000+01 51 SFHS0766 1.0000D-05 9.00000+00 52 SFHS0766 1.50000D-05 9.00000+00 53 SFHS0776 1.0000D-05 9.00000+00 54 SFHS072 7.0000D-06 1.50000D+01 55 SFHS0676 1.50000D-06 1.50000D+01 54 SFHS0682 7.00000D-06 1.50000D+01 57 SFHS0672 2.0000D-06 1.50000D+01 58 SFHS0682 7.00000D-06 1.6000D+00 59 SFHS0672 3.0000D-05 2.0000D+00 60 SFHS0592 3.0000D-05 2.0000D+01 61 SFHS0311 7.40000D-05 2.0000D+01 62 SFHS0313 1.30000D-05 9.0000D+00 63 SFHS0331 1.30000D-05 9.0000D+00 64 SFHS0356 2.0000D+05 9.0000D+00 64 SFHS0364 1.5000D-05 9.0000D+00 68 SFHS0316 1.3000D-05 9.	49	SFWS0196	2.000000-05	9,000000+00
51 SFHS0746 1.00000-05 9.00000+00 52 SFHS0746 1.00000-05 9.00000+00 53 SFHS0702 7.00000-06 1.50000+01 54 SFHS0702 7.00000-06 1.50000+01 55 SFHS0476 1.500000-05 1.00000+01 56 SFHS0476 1.500000-05 1.00000+01 57 SFHS0472 2.000000-06 8.00000+01 58 SFHS0622 2.000000-06 8.00000+01 59 SFHS0641 9.000000-05 2.00000+00 60 SFHS0641 9.000000-05 2.00000+00 61 SFHS0641 9.000000-05 2.00000+00 62 SFHS0411 9.00000-05 2.00000+00 63 SFHS0356 2.00000-05 9.00000+00 64 SFHS0356 1.000000-05 9.00000+00 65 SFHS0276 2.00000-05 9.00000+00 66 SFHS0276 2.00000-05 9.00000+00 67 SFHS0141 9.00000-05 9.00000+00 70 SFHS0141 9.000000-05 9.000000+00	50	SFW50201	2.200000-05	1,200000+01
52 SFHS0746 1.00000-03 9.00000+00 53 SFHS0696 1.500000-05 1.00000+00 54 SFHS0702 7.00000-06 1.500000+01 55 SFHS0676 1.500000-05 1.00000+01 56 SFHS0682 7.00000-06 3.50000+01 57 SFHS0622 2.00000-06 8.00000+01 59 SFHS0641 9.00000-05 2.00000+00 60 SFHS0641 9.00000-05 2.00000+01 61 SFHS0641 9.00000-05 2.00000+01 62 SFHS0641 9.00000-05 2.00000+01 63 SFHS0311 1.30000-05 2.00000+00 64 SFHS0346 1.50000-05 1.00000+01 65 SFHS0346 1.50000-05 9.00000+00 64 SFHS0346 1.50000-05 9.00000+00 65 SFHS0276 2.00000-05 9.00000+00 66 SFHS0276 2.00000-05 9.00000+00 67 SFHS0141 9.000000-05 2.000000+	51	SFHS0766	1.000000-05	9.000000+00
53 SFHS0696 1.500000-05 1.000000+01 54 SFHS0702 7.000000-06 1.500000+01 55 SFHS0676 1.500000-05 1.000000+01 56 SFHS0682 7.000000-06 8.00000+01 57 SFHS0622 2.000000-06 8.00000+01 59 SFHS0641 9.000000-05 1.600000+01 60 SFHS0611 9.000000-05 2.000000+01 61 SFHS0611 9.000000-05 2.000000+01 62 SFHS0611 9.000000-05 2.000000+01 63 SFHS0331 1.300000-05 2.000000+01 64 SFHS0356 2.000000-05 9.00000+01 65 SFHS0251 1.300000-05 9.00000+01 66 SFHS0251 1.300000-05 9.00000+01 67 SFHS0266 1.500000-05 9.00000+01 68 SFHS0276 2.000000-05 9.00000+01 69 SFHS0164 1.300000-05 9.00000+00 71 SFHS0136 1.300000-05 9.00000+00 72 SFHS0136 1.300000-05	52	SFHS0746	1.000000-05	9.00000+00
54 SFHS0702 7.000000-04 1.500000+01 55 SFHS0676 1.500000-05 1.000000+01 56 SFHS0622 2.00000-06 1.500000+01 57 SFHS0622 2.00000-06 3.000000+00 58 SFHS0631 7.600000-05 2.000000+00 59 SFHS0641 9.000000-05 2.000000+00 60 SFHS0592 3.000000-05 2.000000+00 61 SFHS0611 7.600000-05 2.000000+00 62 SFHS0311 1.300000-05 2.000000+00 63 SFHS0331 1.300000-05 2.000000+00 64 SFHS0346 1.500000-05 9.000000+00 65 SFHS0356 2.000000-05 9.000000+00 66 SFHS0251 1.300000-05 9.000000+00 67 SFHS0156 1.300000-05 9.000000+00 68 SFHS0276 2.000000+00 9.000000+00 70 SFHS0136 1.300000-05 2.00000+00 71 SFHS0136 1.300000-05 2.00000+00 73 SFHS0136 1.300000-05	53	SFHS0696	1.500000-05	1.000000+01
55 SFHS0676 1.500000-05 1.000000+01 56 SFHS0682 7.000000-06 1.500000+01 57 SFHS0622 2.00000-05 1.600000+01 58 SFHS0631 7.600000-05 1.600000+01 59 SFHS0641 9.000000-05 2.00000+01 60 SFHS0592 3.000000-05 1.600000+01 61 SFHS0311 9.00000-05 2.00000+01 62 SFHS0311 9.00000-05 2.00000+01 63 SFHS0331 1.300000-05 9.000000+01 64 SFHS0356 2.00000-05 9.000000+01 65 SFHS0356 2.000000-05 9.000000+01 66 SFHS0256 1.300000-05 9.000000+00 67 SFHS0266 1.500000-05 9.000000+00 68 SFHS0276 2.000000-05 9.000000+00 70 SFHS0161 9.000000-05 9.000000+00 72 SFHS0121 9.000000-05 2.000000+00 72 SFHS0121 9.0000000-05 <th>54</th> <th>SFHS0702</th> <th>7.000000-06</th> <th>1,500000+01</th>	54	SFHS0702	7.000000-06	1,500000+01
56 SFHS0682 7.00000-06 1.500000+01 57 SFHS0631 7.60000-05 8.00000+00 58 SFHS0631 7.60000-05 1.60000+01 59 SFHS0631 7.60000-05 2.00000+01 60 SFHS0631 7.60000-05 2.00000+01 61 SFHS0601 7.60000-05 1.60000+01 62 SFHS0331 1.30000-05 2.00000+00 63 SFHS0331 1.30000-05 2.00000+00 64 SFHS0346 1.50000-05 9.00000+00 64 SFHS0251 1.30000-05 9.00000+00 65 SFHS0266 1.50000-05 9.00000+00 66 SFHS0266 1.30000-05 9.00000+00 67 SFHS0156 1.30000-05 9.00000+00 70 SFHS0131 9.000000-05 2.00000+00 71 SFHS0131 9.000000-05 2.00000+00 72 SFHS0131 1.120000-05 2.000000+00 73 SFHS0131 1.200000-05 2.00000	55	SFHS0676	1.50000D-05	1.000000+01
57 SFMS0622 2.00000-06 8.000000+00 58 SFMS0631 7.60000-05 1.600000+00 59 SFMS0641 9.00000-05 2.000000+00 60 SFMS0592 3.000000-05 1.600000+01 61 SFMS0592 3.00000-05 1.600000+01 62 SFMS0311 9.00000-05 2.000000+00 63 SFMS0331 1.300000-05 9.000000+00 64 SFMS0356 2.00000-05 9.000000+00 65 SFMS0251 1.300000-05 9.000000+00 66 SFMS0256 2.000000-05 9.000000+00 67 SFMS0256 2.000000-05 9.000000+00 68 SFMS0276 2.000000-05 9.000000+00 69 SFMS0166 1.300000-05 9.000000+00 70 SFMS0136 1.300000-05 2.000000+00 71 SFMS0134 9.000000-05 2.000000+00 73 SFMS0121 9.000000-05 2.000000+00 74 SFMS0121 9.000000-05 2.000000+00 75 SFMS0171 1.120000-04 <	56	SFHSU682	7.00000D-06	1.500000+01
58 SFHS0631 7.60000B-05 1.60000D-01 59 SFHS0641 9.0000D-05 2.00000D+00 60 SFHS0592 3.0000D-05 1.60000D+01 61 SFHS0601 7.60000D-05 1.60000D+01 62 SFHS0411 9.0000D-05 2.00000D+00 63 SFHS0331 1.3000D-05 9.00000D+00 64 SFHS0346 1.5000D-05 9.00000D+00 65 SFHS0356 2.0000D-05 9.00000D+00 66 SFHS0251 1.30000D-05 9.00000D+00 67 SFHS0266 1.50000D-05 9.00000D+00 68 SFHS0276 2.00000D-05 9.00000D+00 70 SFHS0161 9.00000D-05 2.00000D+00 71 SFHS0161 9.00000D-05 2.00000D+00 72 SFHS0181 9.00000D-05 2.00000D+00 73 SFHS0121 9.00000D-05 2.00000D+00 74 SFHS0121 9.00000D-05 2.00000D+00 75 SFHS0131 1.12000D-04 <th>57</th> <th>SFWS0622</th> <th>2.000000-06</th> <th>8.00000+00</th>	57	SFWS0622	2.000000-06	8.00000+00
59 SFH30641 9.00000D-05 2.00000+00 60 SFHS0592 3.0000D-06 1.00000+01 61 SFHS0601 7.40000D-05 2.00000+00 62 SFHS0411 9.0000D-05 2.00000+00 63 SFHS0331 1.30000D-05 2.00000+00 64 SFHS0356 2.0000D-05 9.000000+00 64 SFHS0251 1.30000D-05 9.000000+00 64 SFHS0254 1.00000D-05 9.000000+00 64 SFHS0254 1.30000D-05 9.000000+00 64 SFHS0266 1.50000D-05 9.000000+00 67 SFHS0156 1.30000D-05 9.00000D+00 68 SFHS0136 1.30000D-05 2.00000D+00 70 SFHS0141 9.00000D-05 2.00000D+00 71 SFHS0136 1.30000D-05 2.00000D+00 72 SFHS0112 9.00000D-05 2.00000D+00 73 SFHS0121 9.00000D-05 2.00000D+00 74 SFHS0101 9.00000D-05	58	SFWS0631	7.600000-05	1.60000D+01
60 SFH30592 3.000000-06 1.000000+01 61 SFHS0601 7.600000-05 1.600000+01 62 SFHS0611 9.000000-05 2.00000+00 63 SFHS0331 1.300000-05 9.000000+00 64 SFHS0346 1.500000-05 1.000000+00 64 SFHS0356 2.000000-05 9.000000+00 64 SFHS0251 1.300000-05 9.000000+00 64 SFHS0254 1.500000-05 9.000000+00 64 SFHS0276 2.000000-05 9.000000+00 67 SFHS0156 1.300000-05 9.000000+00 68 SFHS0136 1.300000-05 2.000000+00 70 SFHS0136 1.300000-05 2.000000+00 71 SFHS0136 1.300000-05 2.000000+00 72 SFHS0121 9.000000-05 2.000000+00 73 SFHS0121 9.000000-05 2.000000+00 74 SFHS0022 2.000000-05 2.000000+00 75 SFHS011 9.000000-05	59	SFNS0641	9.00000D-05	2.00000+00
61 SFHS0601 7.40000D-05 1.60000D+01 62 SFHS0611 9.00000D-05 2.0000D+00 63 SFHS0331 1.30000D-05 9.00000D+00 64 SFHS0346 1.50000D-05 1.0000D+01 65 SFHS0356 2.00000D-05 9.00000D+00 66 SFHS0251 1.30000D-05 9.00000D+00 67 SFHS0266 1.50000D-05 9.00000D+00 68 SFHS0276 2.00000D-05 9.00000D+00 69 SFHS0156 1.30000D-05 9.00000D+00 70 SFHS0141 9.00000D-05 2.00000D+00 71 SFHS0136 1.30000D-05 2.00000D+00 72 SFHS0141 9.00000D-05 2.00000D+00 73 SFHS0121 9.00000D-05 2.00000D+00 74 SFHS0781 1.12000D-04 4.20000D+00 75 SFHS0101 9.00000D-05 2.00000D+00 76 SFHS0782 2.00000D-05 2.00000D+00 76 SFHS0062 9.20000D-05 2.00000D+00 78 SFHS0062 9.20000D-05	60	SFHS0592	3.000000-06	1.000000+01
62 SFHS0411 9.000000-05 2.000000+00 63 SFHS0331 1.300000-05 9.000000+00 64 SFHS0346 1.500000-05 1.00000+00 65 SFHS0356 2.000000-05 9.000000+00 64 SFHS0256 2.000000-05 9.000000+00 64 SFHS0251 1.300000-05 9.000000+00 64 SFHS0266 1.500000-05 9.000000+00 67 SFHS0156 1.300000-05 9.000000+00 68 SFHS0156 1.300000-05 9.000000+00 70 SFHS0141 9.000000-05 2.000000+00 71 SFHS0141 9.000000-05 2.000000+00 72 SFHS0141 9.000000-05 2.000000+00 73 SFHS0121 9.000000-05 2.000000+00 74 SFHS0781 1.120000-04 4.200000+00 75 SFHS0101 9.000000-05 2.000000+00 76 SFHS0771 1.120000-05 2.000000+00 78 SFHS0042 9.200000-0	61	SFHS0601	7.40000D-05	1.600000+01
63 SFHS0331 1.300000-05 9.000000+00 64 SFHS0346 1.500000-05 1.000000+01 65 SFHS0356 2.00000-05 9.000000+00 66 SFHS0251 1.300000-05 9.000000+00 67 SFHS0266 1.500000-05 9.000000+00 68 SFHS0276 2.000000-05 9.000000+00 69 SFHS0156 1.300000-05 2.000000+00 70 SFHS0136 1.300000-05 2.000000+00 71 SFHS0136 1.300000-05 2.000000+00 72 SFHS0141 9.000000-05 2.000000+00 73 SFHS0121 9.000000-05 2.000000+00 74 SFHS0121 9.000000-05 2.000000+00 75 SFHS0101 1.120000-04 4.200000+01 76 SFHS0771 1.120000-05 2.000000+01 78 SFHS0171 1.120000-05 2.000000+01 79 SFHS0042 9.200000-05 2.000000+01 79 SFHS0042 9.200000-05 2.000000+01 60 SFHS0045 9.000000-05	62	SFH50611	9.00000-05	2.000000+00
64 SFHS0346 1.50000D-05 1.00000D+01 65 SFHS0356 2.0000D-05 9.00000D+00 64 SFHS0251 1.30000D-05 9.00000D+00 67 SFHS0266 1.50000D-05 9.00000D+00 68 SFHS0276 2.00000D-05 9.00000D+00 69 SFHS0156 1.30000D-05 9.00000D+00 70 SFHS0141 9.00000D-05 2.00000D+00 71 SFHS0136 1.30000D-05 2.00000D+00 72 SFHS0141 9.00000D-05 2.00000D+00 73 SFHS0121 9.00000D-05 2.00000D+00 74 SFHS0121 9.00000D-05 2.00000D+00 75 SFHS0781 1.12000D-04 4.20000D+01 76 SFHS0711 1.12000D-04 4.20000D+00 78 SFHS0725 9.20000D-05 2.00000D+00 79 SFHS0731 1.12000D-04 4.20000D+01 79 SFHS0042 9.20000D-05 8.80000D+01 60 SFHS0032 9.20000D-0	63	SFWS0331	1.300000-05	9.000000+00
65 SFHS0356 2.00000D-05 9.00000D+00 66 SFHS0251 1.30000D-05 9.00000D+00 67 SFHS0246 1.50000D-05 1.00000D+01 68 SFHS0276 2.00000D-05 9.00000D+00 69 SFHS0156 1.30000D-05 9.00000D+00 70 SFHS0141 9.00000D-05 2.00000D+00 71 SFHS0136 1.30000D-05 2.00000D+00 72 SFHS0112 2.00000D-05 2.00000D+00 73 SFHS0112 2.00000D-05 2.00000D+00 74 SFHS0781 1.12000D-04 4.20000D+00 75 SFHS0781 1.12000D-04 4.20000D+00 76 SFHS0781 1.12000D-04 4.20000D+00 76 SFHS011 9.00000D-05 2.00000D+00 76 SFHS0782 2.00000D-05 2.00000D+00 77 SFHS012 9.00000D-05 2.00000D+00 78 SFHS0771 1.12000D-04 4.20000D+01 79 SFHS0046 9.00000D-05	64	SFH50346	1.50000D-05	1.000000+01
66 SFHS0251 1.30000D-05 9.00000D+00 67 SFHS0246 1.50000D-05 1.00000D+01 68 SFHS0276 2.00000D-05 9.00000D+00 69 SFHS0156 1.30000D-05 9.00000D+00 70 SFHS0141 9.00000D-05 2.00000D+00 71 SFHS0136 1.30000D-05 2.00000D+00 72 SFHS0141 9.00000D-05 2.00000D+00 73 SFHS0112 2.00000D-05 2.00000D+00 74 SFHS0121 9.00000D-05 2.00000D+00 75 SFHS0781 1.12000D-04 4.20000D+00 76 SFHS0101 9.00000D-05 2.00000D+00 76 SFHS0771 1.12000D-04 4.20000D+01 79 SFHS0042 9.20000D-05 8.80000D+01 79 SFHS0042 9.20000D-05 2.00000D+00 80 SFHS0032 9.20000D-05 8.80000D+01 81 SFHS0046 0.0 0.0 82 SFHS0032 9.20000D-05	65	SFHS0356	2.00000D-05	9.0000D+00
67 SFHS0266 1.500000-05 1.000000+01 68 SFHS0276 2.000000-05 9.000000+00 69 SFHS0156 1.300000-05 9.000000+00 70 SFHS0141 9.000000-05 2.000000+00 71 SFHS0136 1.300000-05 2.000000+00 72 SFHS0141 9.000000-05 2.000000+00 73 SFHS0121 9.000000-05 2.000000+00 74 SFHS0781 1.120000-04 4.000000+00 75 SFHS0101 9.000000-05 2.000000+00 76 SFHS0101 9.000000-05 2.000000+00 78 SFHS0771 1.120000-04 4.200000+01 79 SFHS0042 9.200000-05 8.800000+01 60 SFHS0076 0.0 0.0 61 SFHS0046 9.000000-05 2.000000+00 62 SFHS0032 9.200000-05 8.800000+01 63 SFHS0046 0.0 0.0 64 SFHS0021 4.000000-05 2.00000+00 65 SFHS0011 9.0000000-05 2.000000+00 </th <th>66</th> <th>SFH50251</th> <th>1.30000D-05</th> <th>9.000000+00</th>	66	SFH50251	1.30000D-05	9.000000+00
68 SFHS0276 2.00000D-05 9.00000D+00 69 SFHS0156 1.30000D-05 9.00000D+00 70 SFHS0141 9.00000D-05 2.00000D+00 71 SFHS0136 1.30000D-05 9.00000D+00 72 SFHS0141 9.00000D-05 2.00000D+00 73 SFHS0112 2.00000D-05 2.00000D+00 74 SFHS0121 9.00000D-05 2.00000D+00 75 SFHS0781 1.12000D-04 4.20000D+01 76 SFHS0781 1.12000D-04 4.00000D+00 77 SFHS0101 9.00000D-05 2.00000D+00 78 SFHS0771 1.12000D-04 4.20000D+01 79 SFHS062 9.20000D-05 8.80000D+01 80 SFHS076 0.0 0.0 81 SFHS0076 0.0 0.0 82 SFHS0076 0.0 0.0 83 SFHS0076 0.0 0.0 84 SFHS0076 0.0 0.0 84	67	SFNS0266	1.500000-05	1.00000D+01
69 SFHS0156 1.30000D-05 9.00000D+00 70 SFHS0161 9.00000D-05 2.00000D+00 71 SFHS0136 1.30000D-05 9.00000D+00 72 SFHS0141 9.00000D-05 2.00000D+00 73 SFHS0112 2.00000D-06 4.00000D+00 74 SFHS0121 9.00000D-05 2.00000D+00 75 SFHS07A1 1.12000D-04 4.20000D+00 76 SFHS07A1 9.00000D-05 2.00000D+00 76 SFHS07A1 1.12000D-04 4.20000D+00 76 SFHS0711 1.12000D-04 4.20000D+00 78 SFHS0771 1.12000D-04 4.20000D+00 79 SFHS0042 9.20000D-05 8.80000D+01 80 SFHS0076 0.0 0.0 81 SFHS0076 0.0 0.0 82 SFHS0076 0.0 0.0 82 SFHS0076 0.0 0.0 83 SFHS0032 9.20000D-05 8.80000D+01	68	SFWS0276	2.00000D-05	9.000000+00
70 SFHS0161 9.00000D-05 2.00000D+00 71 SFHS0136 1.30000D-05 9.00000D+00 72 SFHS0136 1.30000D-05 2.00000D+00 73 SFHS0112 2.00000D-06 4.0000D+00 74 SFHS0121 9.00000D-05 2.00000D+00 75 SFHS0781 1.12000D-04 4.20000D+00 76 SFHS0101 9.00000D-05 2.00000D+00 76 SFHS011 9.00000D-05 2.00000D+00 76 SFHS011 9.00000D-05 2.00000D+00 76 SFHS012 9.20000D-05 2.00000D+00 76 SFHS011 1.12000D-04 4.20000D+01 79 SFHS0062 9.20000D-05 8.80000D+01 80 SFHS0076 0.0 0.0 81 SFHS0032 9.20000D-05 8.80000D+01 82 SFHS0032 9.20000D-05 8.80000D+01 83 SFHS0036 9.00000D-05 2.00000D+00 84 SFHS0046 9.00000D-05 2	69	SFW30156	1.300000-05	9.000000+00
71 SFHS0136 1.30000D-05 9.00000D+00 72 SFHS0141 9.00000D-05 2.00000D+00 73 SFHS0112 2.00000D-05 2.00000D+00 74 SFHS0121 9.00000D-05 2.00000D+00 75 SFHS0781 1.12000D-04 4.20000D+00 76 SFHS0101 9.00000D-05 2.00000D+00 78 SFHS0771 1.12000D-04 4.20000D+01 79 SFHS0062 9.20000D-05 8.80000D+01 79 SFHS0076 0.0 0.0 80 SFHS0076 0.0 0.0 81 SFHS0032 9.20000D-05 8.80000D+01 82 SFHS0032 9.20000D-05 8.80000D+01 83 SFHS0032 9.20000D-05 8.80000D+01 84 SFHS0056 9.00000D-05 2.00000D+00 85 SFHS0021 4.00000D-06 2.00000D+00 86 SFHS0011 9.00000D-06 2.00000D+00	70	SFH50161	9.0000D-05	2.00000D+00
72 SFHS0141 9.00000D-05 2.00000D+00 73 SFHS0112 2.00000D-06 4.00000D+00 74 SFHS0121 9.00000D-05 2.00000D+00 75 SFHS0781 1.12000D-04 4.20000D+00 76 SFHS0101 9.00000D-05 2.00000D+00 78 SFHS0771 1.12000D-04 4.20000D+01 79 SFHS0062 9.20000D-05 8.00000D+01 60 SFHS0076 0.0 0.0 61 SFHS0084 9.00000D-05 2.00000D+00 82 SFHS0076 0.0 0.0 63 SFHS0032 9.20000D-05 8.60000D+01 63 SFHS0056 9.00000D-05 2.00000D+00 64 SFHS0021 4.00000D-05 2.00000D+00 65 SFHS0011 9.00000D-06 2.00000D+00	71	SFHS0136	1.300000-05	9.000000+00
73 SFHS0112 2.00000D-06 4.00000D+00 74 SFHS0121 9.00000D-05 2.00000D+00 75 SFHS0781 1.12000D-04 4.20000D+01 76 SFHS0101 9.00000D-05 2.00000D+00 77 SFHS0101 9.00000D-05 2.00000D+00 78 SFHS0771 1.12000D-04 4.20000D+01 79 SFHS0042 9.20000D-05 8.80000D+01 80 SFHS0076 C.0 C.0 81 SFHS0032 9.20000D-05 8.80000D+01 82 SFHS0032 9.20000D-05 8.80000D+01 83 SFHS0046 0.0 0.0 84 SFHS054 9.00000D-05 2.00000D+00 85 SFHS0021 4.00000D-06 2.00000D+00 86 SFHS0011 9.00000D-06 2.00000D+00	72	SFHS0141	9.0000D-05	2.000000+00
74 SFHS0121 9.00000D-05 2.00000D+00 75 SFHS0781 1.12000D-04 4.20000D+01 76 SFHS0092 2.00000D-05 2.00000D+00 77 SFHS0101 9.00000D-05 2.00000D+00 78 SFHS0771 1.12000D-04 4.20000D+01 79 SFHS0042 9.20000D-05 8.800000+01 80 SFHS0076 0.0 0.0 81 SFHS0076 0.0 0.0 82 SFHS0032 9.20000D-05 8.80000D+01 83 SFHS0046 9.00000D-05 2.00000D+00 84 SFHS0054 9.00000D-05 2.00000D+00 85 SFHS0021 4.00000D-06 2.00000D+00 86 SFHS0011 9.00000D-06 2.00000D+00	73	SFWS0112	2.00000D-06	4.00000p+00
75 SFHS0781 1.12000D-04 4.20000D+01 76 SFHS0092 2.00000D-06 4.00000D+00 77 SFHS0101 9.00000D-05 2.00000D+00 78 SFHS0771 1.12000D-04 4.20000D+01 79 SFHS0076 0.0 0.0 80 SFHS0076 0.0 0.0 81 SFHS0076 0.0 0.0 82 SFHS0032 9.20000D-05 8.80000D+01 83 SFHS0046 0.0 0.0 84 SFHS0054 9.00000D-05 2.000000+00 84 SFHS0054 9.00000D-05 2.000000+00 85 SFHS0021 4.00000D-06 7.000000+00 86 SFHS0011 9.00000D-06 2.000000+00	74	SFH50121	9.0000D-05	2.00000D+00
76 SFMS0092 2.000000-06 4.000000+00 77 SFMS0101 9.00000-05 2.000000+00 76 SFMS0101 1.120000-05 2.000000+00 76 SFMS0771 1.120000-05 8.000000+01 79 SFMS0076 0.0 0.0 60 SFMS0076 0.0 0.0 81 SFMS0032 9.200000-05 8.800000+01 82 SFMS0032 9.200000-05 8.800000+01 83 SFMS0046 0.0 0.0 84 SFMS0054 9.000000-05 2.000000+00 85 SFMS021 4.000000-06 7.00000+00 86 SFMS0011 9.000000-06 2.000000+01	75	SFHS0781	1.12000D-04	4.20000D+01
77 SFNS0101 9.00000D-05 2.00000D+00 78 SFNS0711 1.12000D-04 4.20000D+01 79 SFNS0062 9.20000D-05 8.80000D+01 80 SFNS0076 0.0 0.0 81 SFNS0086 9.00000D-05 2.00000D+00 82 SFNS0032 9.20000D-05 8.80000D+01 83 SFNS0034 0.0 0.0 84 SFNS0054 9.00000D-05 2.00000D+00 85 SFNS0021 4.00000D-06 7.00000D+00 86 SFNS0011 9.00000D-06 2.00000D+01	76	SFHS0092	2.0000D-06	4.00000+00
78 SFHS0771 1.12000D-04 4.20000D+01 79 SFHS0062 9.20000D-05 8.80000D+01 60 SFHS0076 0.0 0.0 81 SFHS0086 9.00000D-05 2.00000D+00 82 SFHS0032 9.20000D-05 8.80000D+01 83 SFHS0054 0.0 0.0 84 SFHS0054 9.00000D-05 2.00000D+00 85 SFHS0021 4.00000D-06 7.00000D+00 86 SFHS0011 9.00000D-06 2.00000D+01	77	SFNS0101	9.000000-05	2.000000+00
79 SFHS0062 9.20000D-05 8.80000D+01 80 SFHS0076 0.0 0.0 81 SFHS0076 9.0000D-05 2.00000D+00 82 SFHS0032 9.20000D-05 8.80000D+01 83 SFHS0046 0.0 0.0 84 SFHS0054 9.00000D-05 2.00000D+00 85 SFHS0021 4.00000D-06 7.00000D+00 86 SFHS0011 9.00000D-06 2.00000D+01	78	SFWS0771	1.120000-04	4.20000B+01
80 SFHS0076 0.0 0.0 81 SFHS0086 9.000000-05 2.000000+00 82 SFHS0032 9.200000-05 8.800000+01 83 SFHS0046 0.0 0.0 84 SFHS0054 9.000000-05 2.000000+00 85 SFHS0021 4.000000-06 7.000000+00 86 SFHS0011 9.000000-06 2.000000+01	79	SFHS0062	9.20000D-05	8.800000+01
81 SFHS0086 9.000000-05 2.000000+00 82 SFHS0032 9.200000-05 8.800000+01 83 SFHS0046 0.0 0.0 84 SFHS0056 9.000000-05 2.000000+00 85 SFHS0021 4.000000-06 7.000000+00 86 SFHS0011 9.000000-06 2.000000+01	80	SFHS0076	0.0	0.0
82 SFHS0032 9.20000D-05 8.80000D+01 63 SFHS0046 0.0 0.0 84 SFHS0056 9.00000D-05 2.00000D+00 85 SFHS0021 4.00000D-06 7.00000D+00 86 SFHS0011 9.00000D-06 2.00000D+01	41	SFHSOO86	9.000000-05	2.000000+00
as SFHS0046 0.0 0.0 84 SFHS0056 9.00000D-05 2.000000+00 85 SFHS0021 4.00000D-06 7.00000D+00 86 SFHS0011 9.00000D-06 2.00000D+01	82	SFNS0032	9.2000D-05	8.80000+01
64 5FHS0056 9.00000D-05 2.000000+00 85 SFHS0021 4.00000D-06 7.00000D+00 86 SFHS0011 9.00000D-06 2.00000D+01	85	SFHS0046	0.0	0.0
65 5FN3U221 4.000000-06 7.000000+00 86 SFHS0011 9.000000-06 2.000000+01	644 A T	SFWS0056	9.0000D-05	2.000000+00
86 SFMS0011 9.0000D-06 2.0000D+01	85	SFW30021	4.000000-06	7.00000D+00
	8 0	SFW50011	9.0000D-06	2.0000D+01

D.1-11

D.1 Solar Feedwater System (Cont)

DIFFERENTIAL CHARACTERISTICS-UPPER BOUNDS

T (HOURS)	Q	н	L
0.0	0.0	1.30000000-05	1.300000000-05
7.3000000D+02	3.474328990-04	2.46144718D-05	2.46230266D-05
1.4600000D+03	3.474328990-04	2.461447180-05	2.46230266D-05
2.1900000D+03	3.474328990-04	2.461447180-05	2.46230266D-05
2.920000000+03	3.474328990-04	2.46144718D-05	2.46230266D-05
3.45000000D+03	3.474328990-04	2.46144718D-05	2.46230266D-05
4.38000000+03	3.474328990-04	2.46144718D-05	2.462302660-05
5.110000000+03	3.474328990-04	2.461447180-05	2.46230266D-05
5.840000000+03	3.474328990-04	2.46144718D-05	2.46230266D-05
6.570000000+03	3.474328990-04	2.461447180-05	2.46230266D-05
7.300000000+03	3.474328990-04	2.46144718D-05	2.46230266D-05
8.0300000D+03	3.4 7432899D-04	2.461447180-05	2.46230266D-05
8.76000000+03	3.474328990-04	2.461447180-05	2.46230266D-05

3

INTEGRAL CHARACTERISTICS-UPPER BOUNDS

T (HOURS)	NSLRI	FSLM
7.3000000D+02	1.37292822D-02	1.36385454D-02
1.4600000D+03	3.16978466D-02	3.120981140-02
2.1900000D+03	4.96664110D-02	4.846805890-02
2.9200000D+03	6.763497540-02	6.54188641D-02
3.65000000D+03	8.540353980-02	8.206770380-02
4.38000000+03	1.03572104D-01	9.841995730-02
5.11000000D+03	1.21540669D-01	1.14480908D-01
5.84000000+03	1.39509233D-01	1.30255745D-01
6.570000000+03	1.574777970-01	1.457495660-01
7.300000000+03	1.75446362D-01	1.609673770-01
8.0300000000+03	1.93414926D-01	1.759140940-01
8.76000000+03	2.11383491D-01	1,90594546D-01

*****CONCLUSION OF OUTPUT FROM KITT-1*****

D.2 SOLAR MAIN STEAM AND HIGH PRESSURE STEAM SYSTEM

******** FTSK	COMPONENT IDENTIFIER	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	**************************************	**************************************	**************************************
**	****	***	***	新 新发展的开始的是在美国发生的基本的是有关系的是美国的资源的	<u>94974545446946949525469555555</u>
SOLAR-A	SH550011	PIPING Condon Hode Failure Pid-3-1A-SR	ANNRICIATED IN Control Room	FAILURE OF MAIN STEAM AND High press steam pid-3-1(A-B)-sr	***SINGLE FAILURE*** CATEGORY A-B-C
Solar-C	SH550021	REHEATER E3 Leakage or Blockage PID-3-IA-SR	ANNERICIATED IN CONTROL ROOM	FAILURE OF HAIN STEAN AND High press stean pid-3-1(A-B)-sr	***SINGLE FAILURE*** Category A
SOLAR-C	SH\$50031	HI PRESS STEAN Conflon Hode Operator Error PID-3-1A-SR	ANNUNCIATED IN Control. Rooh	FAILURE OF HAIN STEAN AND High press steam pid-3-1(A-B)-sr	***SINGLE FAILURE*** Category A-B-C
SOLAR-C	SH\$\$0042	TH 21-TI-TH 22-TE FAILS TO OPERATE FALSE OUTPUT PID-3-1A-SR	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF MAIN STEAN AND High press steam pid-3-1(A-B)-sr	CATEGORY C **NO IMPACT ON* *System reliability*
SOLAR-C	5 H5 5005 2	PT 23-PI-PI 24 FAILS TO OPERATE FALSE OUTPUT PID-3-1A-SR	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF HAIN STEAM AND High press steam pid-3-1(A-B)-SR	· CATEGORY C *NO INPACT ON* *Systen reliability*
SQLAR-C	511350062	TH 27-TE-TH 28-TI FAILS TO OPERATE FALSE OUTPUT PID-3-1A-SR	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF MAIN STEAH AND High press steam pid-3-1(A-B)-sr	CATEGORY C *NO IMPACT ON* *Systeh reliability*
SOLAR-C	SH550072	PT 26-PI-PI 24 Fails to operate False output PID-3-1A-SR	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF HAIN STEAN AND High press steam pid-3-1(A-B)-Sr	CATEGORY C *NO INPACT ON* *System reliability*
SOLAR-C	SH550082	HI PRESS STEAH BLR BLOHDOLN HOV Motor Failure PID-3-1A-SR	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF HAIN STEAN AND High press stean pid-3-1(A-B)-sr	CATEGORY C HOV NORHALLY CLOSED
SOLAR-C	SH550096	HI PRESS STH NOV Fails to rehain Closed or leaks PID-3-1A-SR	PERIODIC INSPECTION	FAILURE OF HAIN STEAN AND High press stean pid-3-1(A-B)-SR	CATEGORY A-B HOV NORHALLY CLOSED
SOLAR-C	SH\$\$0102	HI PRESS STEAM BLR BLONDONN HOV NCS FAILURE PIO-3-1A-SR	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF HAIN STEAH AND High press steah pid-3-1(A-B)-sr	***SINGLE FAILURE*** Category A-B-C

D.2 SOLAR MAIN STEAM AND HIGH PRESSURE STEAM SYSTEM (CONT)

FTSK	COMPONENT IDENTIFIER	CONPONENT AND FAILURE MODE	**************************************	EFFECT	инкин ИО	**************************************	ANNER REMARKS
*******	*****	***	****	****	*****	*****	****
Solar-B	511550111	HAIN STEAH Coltion Hode Operator Error PID-3-18-sr	ANGRECIATED IN Control Room	FAILURE OF HIGH PRESS	HAIN Stean	STEAM AND PID-3-1(A-B)~SR	***SINGLE FAILURE*** Category A-B-C
Solar-B	SH550122	TH 32-TH 33-TE 33- FAILS TO OPERATE FALSE OUTPUT PID-3-1B-SR	INDICATING LIGHT IN CONTROL ROCH	FAILURE OF HIGH PRESS	HAIN STEAH	STEAH AND PID-3-1(A-B)-SR	CATEGORY C *NO IMPACT OH* *SYSTEN RELIABILITY*
SOLAR-B	SMSS0132	FT 29-FE-FI FAILS TO OPERATE FALSE OUTPUT PID-3-1B-SR	INDICATING LIGHT In Control Room	FAILURE OF HIGH PRESS	MAIN STEAN	STEAH AND PID-3-1(A-B)-SR	CATEGORY C *NO INPACT ON: *System reliability*
SOLAR-B	SH550142	PT 31-PI-PI 30 Fails to operate False output PID-3-18-5R	INDICATING LIGHT In Control Roch	FAILURE OF High press	HAIN Stean	STEAH AND PID-3-1(A-8)-SR	CATEGORY C *NO IMPACT ON* *SYSTEM RELIABILITY*
Solar-D	SHSS0151	HN STH CHK VALVE FAILS TO REHAIN OPEN OR CHECK PID-3-18-SR	ARRINCIATED IN CONTROL ROOM	FAILURE OF NIGH PRESS	HAIN Stean	STEAM AND PID-3-1(A-B)-SR	***SINGLE FAILURE*** Category A-B
SOLAR-D	54550162	AUX STEAN	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF High press	HAIN STEAM	STEAM AND PID-3-1(A-B)-SR	CATEGORY C USED FOR STARTUP ONLY
		STARTUP CONPONENTS	L				
SOLAR-B	SH550171	HAIN STH SV 51 Inadvert opening Leakage PID-3-1B-SR	ANARICIATED IN Control Room	FAILURE OF High press	HAIN STEAH	STEAH AND Pid-3-1(A-B)-SR	***SINGLE FAILURE*** Category a
SOLAR-B	SH5501 8 1	HAIN STH SV 52 INADVERT GPENING LEAKAGE PID-3-1B-SR	ANRUNCIATED IN CONTROL ROOM	FAILURE OF HIGH PRESS	HAIN : Steam	STEAH AND PID-3-1(A-B)-SR	***SINGLE FAILURE*** Category A
SULAR-B	SJISS0191	HAIN STH SV 35 INADVERT OPENING LEAKAGE PID-3-1B-SR	ANNUNCIATED IN Control Roch	FAILURE OF HIGH PRESS	HAIN : Steah	STEAH AND PID-3-1(A-B)-SR	***SINGLE FAIL;JRE*** Category a
SOLAR-B	SH550201	HAIH STH SV 36 INADVERT OPENING LEANAGE PID-3-1B-SR	ARRUNCIATED IN CONTROL ROOM	FAILURE OF HIGH PRESS	HAIN : Stean	STEAH AID PID-3-1(A-B)-SR	***SINGLE FAILURE*** Category a
							_

0

n

FTSK	COMPONENT IDENTIFIER	COMPONENT AND FAILURE MODE	HETHOD OF FAILURE DETECTION	EFFECT ON SYSTEM	OTHER REMARKS
***	*****	*****	अग्रे अस्स्रेस्स्रेस्स्रेस्स्रेस्स्रेस्स्	***	<u> </u>
SOLAR-D	SH5S0212	HAIN STEAN HOV 34 Hotor Failure PID-3-18-Sr	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF MAIN STEAH AND High press Steam Pid-3-1(A-B)-SR	***SINGLE FAILURE*** Category a
SOLAR-D	5/1550226	HAIN STH NOV 34 Fails to rehain Open or leaks Pid-3-18-Sr	PERIODIC INSPECTION	FAILURE OF HAIN STEAH AND High press steam pid-3-1(A-B)-SR	***SINGLE FAILURE*** Category a Valve Norhally Open
SOLAR-D	SH\$50232	HAIN STEAH HOV 34 MCS FAILURE PID-3-18-SR	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF MAIN STEAH AND High press steam pid-3-1(A-B)-SR	***SINGLE FAILURE*** Category A
SOLAR-E	SH550242	MAIN STEAN HOV 45 Motor Failure Pid-3-1B-Sr	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF HAIN STEAN AND High press steam pid-3-1(A-B)-SR	CATEGORY C
SOLAR-E	S H350256	HAIN STH HOV 45 Fails to rehain Closed or leaks PID-3-1B-SR	PERIODIC INSPECTION	FAILURE OF HAIN STEAM AND High press stean pid-3-1(A-B)-sr	CATEGORY A-B
SOLAR-E	SH550262	HAIN STEAH HOV 45 HCS FAILURE PID-3-1B-SR	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF HAIN STEAH AND High press steam pid-3-1(A-B)-SR	***SINGLE FAILURE*** Category A-B-C
SOLAR-E	SH550272	HAIN STH SOV 46 Sclengid Failure Pid-3-18-Sr	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF HAIN STEAH AND High press steam pid-3-1(A-B)-sr	CATEGORY C
SOLAR-E	511550286	HAIN STEAH SOV 46 Fails to rehain Closed or leaks Pid-3-18-SR	PERIODIC INSPECTION	FAILURE OF MAIN STEAN AND HIGH PRESS STEAN PID-3-1(A-B)-SR	CATEGORY A-B
SOLAR-E	511550292	MAIN STEAH SOV 46 MCS FAILURE PID-3-1B-SR	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF MAIN STEAH AND High press steam pid-3-1(A-B)-sr	***SINGLE FAILURE*** Category A-B-C

D.2 SOLAR MAIN STEAM AND HIGH PRESSURE STEAM SYSTEM (CONT)

*TREBIL FAULT TREE BUILDING PROGRAM - TREBIL.V6L1 *

EL PASO SOLAR REPOWERING NEWHAN UNIT 1: HAIN STEAM AND HIGH PRESSURE STEAM * OPERATING MODE ENDOPH * RATES

CONFONENT INDICES, NAMES, AND FAILURE RATES (PER HOUR) -

TREE	INDEX	COMPONENT NAME	LAHBDA(FAILURE INTENSITY/HR.)	TAU
	1	SHSS0272	6.0000D-06	7.000000+00
	2	SH550266	1.000000-05	9.000000+00
	3	SH550292	2.0000D-06	6.0000D+00
	4	SHSS0242	1.500000-05	1.50000D+01
	5	SHS50256	1.000000-05	9.000000+00
	6	\$11550262	2.00000-06	6.0000D+00
	7	514550212	2.50000D-05	2.000000+01
	8	SH5S0226	1.000000-05	9.000000+00
	9	SMSS0232	2.00000-06	6.00000+00
	10	SH3S0191	2.50000D-05	8.000000+00
	- 11	SHSS0201	2.50000D-05	8.00000D+00
	12	SH550171	2.50000D-05	8.000000+00
	13	SH550181	2.500000-05	8.00000D+00
	14	SM550122	2.000000-06	8.000000+00
	15	SMSS0132	2.00000D-06	4.00000D+00
	16	SMSS0142	3.000000-06	1.00000D+01
	17	SNS50082	1.500000-05	1.50000D+01
	18	SM550096	1.000000-05	9.00000+00
	19	SH550102	2.000000-06	6.0000D+06
	20	SHS50062	2.0000D-06	8.00000D+00
	21	SMS50072	3.000000-06	1.00000D+01
	22	SHSS0042	2.000000-06	8.0000D+00
	23	SIISS0052	3.000000-06	1.00000D+01
	24	SH5S0151	1.500000-05	4.800000+01
	25	SM550162	9.00000-06	6.000000+00
	26	541550111	9.00000-05	2.000000+00
	27	SH550021	2.100000-04	1.50000D+01
	28	SH550031	9.000000-05	2.00000D+00
	29	SH550011	9.00000-06	2.00000D+01

D.2 SOLAR MAIN STEAM AND HIGH PRESSURE STEAM SYSTEM (CONT)

DIFFERENTIAL CHARACTERISTICS-UPPER BOUNDS

T (HOURS)	Q	н	r
0.0	0.0	6.490000000-04	6.490000000.0A
7.30000000+02	6.781367030-03	6.482517170-04	\$.52\$777\$En_04
1.460000000+03	6.781367030-03	6.482517170-04	6.52477745D-04
2.19000000D+03	6.781367030-03	6.482517170-04	A. 524777450-04
2.92000000+03	6.78136703D-03	6.482517170-04	\$ 52\$777\$ED00
3.65000000+03	6.78136703D-03	6.482517170-04	6 5967774ED 00
4.38000000+0 3	6.781367030-03	6.482517170-04	\$ 52\$7774ED 04
5.110000000+ 03	6.78136703D-03	6.482517170-04	\$ 5267774ED 00
5.84000000D+03	6.78136703D03	6,482517170-04	6 526777650-04 6 526777450.00
6.570000000+03	6.781367030-03	6.482517170-04	A E247774ED 04
7.300000000+03	6.78136703D-03	6.482517170-04	
8.030000000+03	6.78136703D-03	6,482517170-04	4.20777050~04 4.594777450 00
8.76000000+03	6.78136703D-03	6.48251717D-04	6.526777650-04

INTEGRAL CHARACTERISTICS-UPPER BOUNDS

T (HOURS)	WSUM	FSIM
7.300000000+02	4.734968770-01	3.78184830D-01
1.460000000+03	9.467206300-01	\$ 13844580D-01
2.190000000+03	1,419944380+00	7 602100000000000000000000000000000000000
2.9200000D+03	1.893168140+00	A 510004540 A1
3.650000000+03	2.366391890+00	9.31077430U~U1 9.777755000 01
4.380000000+03	2.839615640+00	7.0/333307U-UI
5.110000000+03	3.31283900.00	7.42501356U-U1
5.84000000+03	3 386043150.00	9.84344112D-UI
6.570000000+03	A 25030403D-00	9.778583710-01
7 300000000000	4.439200710400	9.862504690-01
8 830000000.03	4.732510600+00	9.914618020-01
8 340000000.07	5.205/34410+00	9.94697941D-01
0.10000000+03	5.678958170+00	9.967075220-01

*****CONCLUSION OF OUTPUT FROM KITT-1*****

****	***	***	***	****	똜첏똜쓝 쭏 똜똜똜븮횱홂큟놂슻븮놂놂놂놂닅닅닅닅
FTSK	COMPONENT IDENTIFIER	COHPONENT AND FAILURE MODE	HETHOD OF FAILURE DETECTION	EFFECT ON SYSTEM	OTHER REMARKS
*******	*****	****	*****	######################################	*********
SOLAR-A	55R50011	FV 22 FAILS TO REHAIN OPEN OR OPERATE LEAKS PID-3-2-SR	ANNUNCIATED IN Control Room	FAILURE OF COLD AND HOT Reheat System PID-3-2-Sr	***SINGLE FAILURE*** Category a
SOLAR-A	SSRS0021	RHT FLOH CONTROL FAILS TO OPERATE FALSE OUTPUT PID-3-2-SR	ANTRINCIATED IN Control Room	FAILURE OF COLD AND HOT Reheat System PID-3-2-SR	CATEGORY C Increases probability of system failure
SOLAR-D	SSRS0031	PRESSURE RV 26 INADVERT OPENING LEAKAGE PID-3-2-SR	ANNUNCIATED IN Control Room	FAILURE OF COLD AND HOT Reheat System Pid-3-2-Sr	***SINGLE FAILURE*** Category A-B
SOLAR-D	SSR50041	RHT HT EXCH MS-E1 Fails or leaks Blockage Pid-3-2-sr	ANNUNCIATED IN Control Room	FAILURE OF COLD AND HOT Reheat System Pid-3-2-SR	***SINGLE FAILURE#** Category A
SOLAR-B	SSR50051	REHEAT SYSTEH PIPING Connon Mode Failure	ARRUNCIATED IN Control Rooh	FAILURE OF COLD AND HOT Reheat System PID-3-2-5R	***SINGLE FAILURE*** Category A-B-C
SOLAR-B	SSRS0061	REHEAT SYSTEM Operator Error Comion Node Failure	ANNUHCIATED IN Control Room	FAILURE OF COLD AND HOT Reheat System PlD-3-2-Sr	***SINGLE FAILURE*** Category A-8-C
Solar-a	SSR50072	MOTOR FAILURE Spurious Signal Mov 20A PID-3-2-Sr	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF HOVS LTEMP RHT LINE A PID-3-2-SR	CATEGORY B 2-50% CAPACITY LINES (NOV 20A NORMALLY OPEN)
SOLAR-A	53R50086	HOV 20A Fails to Remain Open or Operate Leaks Pid-3-2-SR	PERIODIC INSPECTION	FAILURE OF HOVS LTEMP RHT LINE A PID-3-2-SR	CATEGORY B 2-50% Capacity Lines
SOLAR-A	SSRS0092	NOTOR FAILURE Spurious Signal Hov 20b Pid-3-2-SR	INDICATING LIGHT IN CONTROL ROOM	FAILURE OF HOVS LTEHP RHT LINE B PID-3-2-SR	CATEGORY B 2-50% CAPACITY LINES (MOV 20B NORMALLY OPEN)
SOLAR-A	SSR50106	NOV 20B [°] Fails to remain Open or operate Leaks Pid-3-2-S R	PERIODIC INSPECTION	FAILURE OF HOVS LTEMP RHT LINE B PID-3-2-SR	CATEGORY B 2-50% CAPACITY LINES

					FAILU	RE	HODES	AND	EFF	ECTS	AHA	LYSI	5
			·		 COLD	Atl	D HOT	REHI	EAT	SYSTE	H		Ĩ
4	3	 2		1									Í
		Ŀ.		L				.FME/	1-SC	LARSE	15	SH .	1

D.3 SOLAR COLD AND HOT REHEAT SYSTEM (CONT)

******** FTSK	COMPONENT IDENTIFIER	CONPONENT AND FAILURE MODE	**************************************	ixxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	OTHER REHARKS
*******	*******	*****	********		*****
SOLAR-A	SSR5011 <u>6</u>	STARTUP HOV 32A Fails to Remain Closed or Leaks PID-3-2-SR	PERIODIC INSPECTION	FAILURE OF HOVS LTEMP RHT LINE A PID-3-2-SR	CATEGORY C Valve USED For Startup-Warhup Only
SOLAR-A	SSRS0126	STARTUP HOV 32B Fails to Remain Closed or Leaks Pid-3-2-sr	PERIODIC INSPECTION	FAILURE OF MOVS LTEMP RHT LINE B PID-3-2-SR	CATEGORY C VALVE USED FOR STARTUP-WARHUP ONLY
SOLAR-C	SSR50132	Hotor Failure Spurious Signal Nov 21A Pid-3-2-Sr	INDICATING LIGHT In Control Room	FAILURE OF HOV 21A HTEMP RHT LINE A PID-3-2-SR	CATEGORY B 2–50% Capacity Lines (Mov 21A Norhally Open)
SOLAR-C	SSRS0146	NOV 21A Fails to rehain Open or operate Leaks Pid-3-2-sr	PERIODIC INSPECTION	FAILURE OF HOV 21A HTEHP RHT LINE A PID-3-2-SR	CATEGORY B 2-50% CAPACITY LINES
SOLAR-C	SSRS0152	MOTOR FAILURE Spurious Signal Mov 218 PID-3-2-SR	INDICATING LIGHT In Control Room	FAILURE OF HOV 218 HTEMP RHT LINE B PID-3-2-SR	CATEGORY B 2-50% Capacity Lines (Hov 21B Nornally Open)
SOLAR-C	SSRS0166	NOV 21B FAILS TO REMAIN OPEN OR OPERATE LEAKS PID-3-2-SR	PERIODIC INSPECTION	FAILURE OF NOV 218 HTEMP RHT LINE B PID-3-2-SR	CATEGORY B 2-50% CAPACITY LINES

				FAILUR	e M	DDES	DITA	EFF	ECTS	ANAL	YSIS	-
I	I			COLD	AND	HOT	REHE	AT	SYSTE	EM		Į
[4]]	311	2	1									ĺ
				 L			FHE	-50	LARSP	?s :	5H 2	

D.3 SOLAR COLD AND HOT REHEAT SYSTEM (CONT)

EL PASO SOLAR REPOWERING NEWHAN UNIT 1: COLD AND HOT REHEAT SYSTEM * OPERATING HODE ENDOPM * RATES

COMPONENT INDICES, NAMES, AND FAILURE RATES (PER HOUR) -

TREE	INDEX	COMPONENT NAME	LANBDA(FAILURE INTENSITY/HR.)	TAU
	1	SSR\$0152	2.50000-05	7.00000D+00
	2	55RS0166	1.00000-05	9.000000+00
	3	SSRS0132	2.50000D-05	2.0000D+01
	4	SSRS0146	1.000000-05	9.000000+00
	5	55R50092	2.500000-05	2.00000D+01
	6	55RS0106	1.000000-05	9.000000+00
	7	S5R50126	1.000000-06	1.000000-01
	8	SSRS0072	2.500000-05	2.00000D+01
	9	SSRS0086	1.000000-05	9.000000+00
	10	S5RS0116	1.00000-06	1.000000-01
	11	SSR50051	9.0000D-06	2.00000D+01
	12	55R50061	9.000000-05	2.000000+00
	13	SSRS0031	1.500000-05	1.00000D+01
	14	SSR90041	1.000000-04	9.000000+00
	15	SSRS0011	1.500000-05	4.300000+01
	16	SSR50021	7.0000D-04	8.000000+00

D.3 SOLAR COLD AND HOT REHEAT SYSTEM (CONT)

DIFFERENTIAL CHARACTERISTICS-UPPER BOUNDS

t (Hours)	q	М	L
0.0	0.0	2.360000000-04	2.360000000-04
7.3000000D+02	2.108620010-03	2.359523150-04	2.36450900D-04
1.4600000D+03	2.108620010-03	2.359523150-04	2.36450900D-04
2.190000000+03	2.108620010-03	2.359523150-04	2.364509000-04
2.920000000+03	2.10862001D-03	2.359523150-04	2.364509000-04
3.650000000+03	2.108620010-03	2.359523150-04	2.36450900D-04
4.38000000+03	2.108620010-03	2.359523150-04	2.36450900D-04
5.11000000D+03	2.108620010-03	2.359523150-04	2.364509000-04
5.840000000+03	2.108620010-03	2.359523150-04	2.36450900D-04
6.570000000+03	2.108620010-03	2.359523150-04	2.344509000-04
7.30000000+03	2.108620010-03	2.359523150-04	2.36450900D-04
8.030000000+03	2.108620010-03	2.359523150-04	2.364509000-04
8.76000000+03	2.108620010-03	2.359523150-04	2.36450900D-04

INTEGRAL CHARACTERISTICS-UPPER BOUNDS

T (HOURS)	NSUM	FSUM
7.3000000D+02	1.722625950-01	1.583950690-01
1.460000000+03	3.44507784D-01	2.918177020-01
2.190000000+03	5.167529740-01	4.040883680-01
2.9200000D+03	6.88998164D-01	4.98560365D-01
3.650000000+03	8.61243353D-01	5,780553800-01
4.380000000+03	1.033488540+00	6.44947766D-01
5.11000000D+03	1.205733730+00	7.01235463D-01
5.840000000+03	1.377978920+00	7.485996710-01
6.57000000D+03	1.550224110+00	7.884550620-01
7.300000000+03	1.722469300+00	8.219920360-01
8.03000000+03	1.894714490+00	8.502122740-01
8.760000000+03	2.06695968D+00	8.73958656D-01

*****CONCLUSION OF OUTPUT FROM KITT-1*****

•

FTSK	COMPOHENT IDENTIFIER	COHPONENT AND FAILURE HODE	HETHOD OF	EFFECT ON SYSTEM	other Remarks
****	***	教育关系教育教育教育教育教育	AMANNANNANNANNANNANNANNAN AMAROKE DEIEDIEDI	****	刘 桥为关关关系关关关系并并并并并并并并并并并并并并并并
HEL.IO-A	SEP\$0011	ELECTRIC SYSTEM Cable Open circuit Shgrt circuit	ANRUNCIATED IN Control Room	LOSS OF POWER TO HELIOSTAT FIELD	***SINGLE FAILURE*** Category A-B-C Possible plant failure
HELIO-A	SEP50021	ELECTRIC SYSTEM Colrion Hode Operator Error	ANNUNCIATED IN Control Room	LOSS OF POHER TO HELIOSTAT FIELD	***SINGLE FAILURE*** Category A-B-C Possible plant failure
HEL10-A	SEPS21	LOSS OF SOLAR 115-2.4 KV Power Line		LOSS OF POHER TO HELIOSTAT FIELD	****SINGLE FAILURE**** Category a Review appropriate fnea
HELIO-A	SEP522	LOSS OF SOLAR 2400V BUSES A AND B		LOSS OF PONER TO HELIOSTAT FIELD	***SINGLE FAILURE *** Category A Review appropriate fhea
HELIO-A	SEP\$5111	LOSS OF HELIOSTAT LOOP 2 BUS A	ANNUNCIATED IN Control Room	NONE	CATEGORY B REDURDANCY PROVIDED BY BUS B-LOOP 1
HELIO-A	SEPS5121	LOSS OF HELIOSTAT LOOP 1 BUS B	ANNUNCIATED IN Control Room	NONE	CATEGORY B Redundancy provided by BUS A-Loop 2
HELIO-A	SEP55131	LOSS OF HELIOSTAT LOOP 1 BUS A	ANNURICIATED IN CONTROL ROOM	NONE	CATEGORY B Reduridancy provided by BUS B-Loop 2
HELIO-A	SEPS5141	LOSS OF HELIOSTAT LOOP 2 BUS B	ANIUNCIATED IN CONTROL ROOM	NONE	CATEGORY B RedutDancy provided By BUS A-Loop 1

-

D.4 POWER SUPPLY TO THE HELIOSTAT FIELD (CONT)

.

EL PASO SOLAR REPOHERING NEWMAN UNIT 1: LOSS OF POHER TO HELIOSTAT FIELD * OPERATING HODE ENDOPH

* RATES

COMPONENT INDICES, NAMES, AND FAILURE RATES (PER HOUR) -

TREE	INDEX	COMPONENT NAME	LAHBDA(FAILURE INTENSITY/HR.)	UAT
	1	SEPS5131	1.000000-07	1.130000+01
	2	SEPS5141	1.000000-07	1.13000D+01
	3	SEP55111	1.000000-07	1.13000D+01
	4	SEPS5121	1.000000-07	1.130000+01
	5	SEPS0011	1.500000-05	2.00000D+00
	6	SEPS0021	1.20000D-05	8.000000+00
	7	SEPS21	1.83000D~05	4.10000D+00
	8	SEPS22	2.34000D-05	1.21000D+01

D.4 POWER SUPPLY TO THE HELIOSTAT FIELD (CONT)

DIFFERENTIAL CHARACTERISTICS-UPPER BOURDS

T (HOURS)	Q	н	L
0.0	0.0	6.8700000D-05	6.87000000-05
7.3000000D+02	4.840048850-04	6.869040200-05	6.872366460-05
1.440000000+03	4.840048850-04	6.86904020D-05	6.87236646D-05
2.19000000+03	4.840048850-04	6.869040200-05	6.87236646D-05
2.920000000+03	4.840048850-04	6.869040200-05	6.87236646D-05
3.450000000+03	4.840048850-04	6.869040200-05	6-872366460-05
4.380000000+03	4.84004885D-04	6.869040200-05	6.87236646D-05
5.110000000+03	4.840048850-04	6.86904020D~05	6.872366460-05
5-840000000+03	4.8 4004885D-04	6.869040200-05	6.872366460-05
6.570000000+03	4.84004885D-04	6.869040200-05	6.87236646D-05
7.300000000+03	4.840048850-04	6.86904020D-05	6.87236646D-05
8.030000000+03	4.84004885D-04	6.869040200-05	6.872366460-05
8.76000000+03	4.84004885D-04	6.869040200-05	6.87236646D-05

INTEGRAL CHARACTERISTICS-UPPER BOUNDS

T (HOURS)	NSUM	FSUM
7.300000000+02	5.014749670-02	4.89224153D-02
1.4600000D+03	1.002914900-01	9.545924110-02
2.1900000D+03	1.504354840-01	1.397189910-01
2.9200000D+03	2.005794770-01	1.818130830-01
3.6500000D+03	2.507234710-01	2.21847484D-01
4.380000000+03	3.008674640-01	2.599229770-01
5.1100000D+03	3.51011458D-01	2.961354120-01
5.8400000D+03	4.011554510-01	3.305759500-01
6.57000000D+03	4.512994450-01	3.633312910-01
7.300000000+03	5.01443438D-01	3.944838920-01
8.030000000+03	5-515874320-01	4.241121770-01
8.760000000+03	6.017314250-01	4.52290731D-01

*****CONCLUSION OF OUTPUT FROM KITT-1*****

D.5 POWER SUPPLY TO THE HELIOSTAT LOOPS

꺢걧킜섋좾붲퓙ᇼ흹놂놰놰놰닅윢됫쒼윩녻뙨셵슻놰븮놰놰놰놰놰놰놰놰놰놰놰놰놰놰놰놰놰놰놰놰놰놰놰놰놰놰놰놰놰놰놰놰놰놰놰					
FTSK	COMPONENT IDENTIFIER	COMPONENT AND FAILURE HODE	HETHOD OF FAILURE DETECTION	EFFECT ON SYSTEM	OTHER REMARKS
****	***	***	****	刘刘 州刘刘刘刘刘刘刘刘刘刘刘刘刘刘刘刘刘刘刘刘刘刘刘刘刘刘	教装试研究法教式关系的关系的关系的关系的
LOOP-A	SEPS0161	LOOP SECTION 1 TRANSFORMER FAILS	AND RECIATED IN CONTROL ROOM	FAILURE OF LOOP SECTION 1 TRANSFORMER OR SHITCHES	CATEGORY B 1 OF 4 XFHRS IN LOOP
LOOP-A	SEPS0171	LOOP SECTION 1 1 OF 2 SHITCHES FAILS	ANERINCIATED IN Control Room	FAILURE OF LOOP SECTION 1 Transformer or shitches	CATEGORY B 1 OF 4 SECTIONS IN LOOP
LOOP-A	SEPS0181	LOOP SECTION 2 TRANSFORMER FAILS	ANNUNCIATED IN CONTROL ROOM	FAILURE OF LOOP SECTION 2 Transformer or shitches	CATEGORY B 1 OF 4 XFHRS IN LOOP
Loop-a	SEP50191	LOOP SECTION 2 1 OF 2 SHITCHES FAILS	ANRANCIATED IN Control Rooh	FAILURE OF LOOP SECTION 2 TRANSFORMER OR SHITCHES	CATEGORY B 1 of 4 Sections in Loop
L00P-A	SEPS0201	LOOP SECTION 3 TRANSFORMER FAILS	ANNARCIATED IN CONTROL ROOM	FAILURE OF LOOP SECTION 3 TRANSFORMER OR SNITCHES	CATEGORY B 1 OF 4 XFHRS IN LOOP
LDOP-A	SEPS0211	LOOP SECTION 3 1 OF 2 SWITCHES FAILS	AIBARICIATED IN Control Room	FAILURE OF LOOP SECTION 3 TRANSFORMER OR SWITCHES	CATEGORY B 1 OF 4 SECTIONS IN LOOP
LOOP-A	SEP50221	LOOP SECTION 4 TRANSFORMER FAILS	AIPARICIATED IN Control Room	FAILURE OF LOOP SECTION & TRANSFORMER OR SHITCHES	CATEGORY B 1 OF 4 XFHRS IN LOOP
loop-a	SEPS0231	LOOP SECTION & 1 of 2 smitches Fails	Anerinciated in Control. Room	FAILURE OF LOOP SECTION & TRANSFORMER OR SHITCHES	CATEGORY B 1 OF 4 SECTIONS IN LOOP

D.5 POWER SUPPLY TO THE HELIOSTAT LOOPS (CONT)

EL PASO SOLAR NEHHAN UNIT 1:FAILURE OF HELIOSTAT FIELD LOOP * OPERATING HODE ENDOPH * RATES

COMPONENT INDICES, NAMES, AND FAILURE RATES (PER HOUR) -

TREE	INDEX	COMPONENT NAME	LAHBDA(FAILURE INTENSITY/HR.)	TAU
	1	SEPS0221	1.000000-05	6.0000D+01
	2	SEPS0231	4.00000D-06	8.000000+00
	3	SEPS0201	1.00000D-05	6.00000D+01
	4	SEP50211	4.000000-06	8,000000+00
	5	SEPSO181	1.00000-05	6.00000D+01
	6	SEPS0191	4.00000-06	8.000000+00
	7	SEPS0161	1.000000-05	6.00000D+01
	8	SEPS0171	4.000000-06	8.00000D+00

D.5 POWER SUPPLY TO THE HELIOSTAT LOOPS (CONT) DIFFERENTIAL CHARACTERISTICS-UPPER BOUNDS

T (HOURS)	Q	н	L
0.0	0.0	0.0	0.0
7.300000000+02	1.590949590-13	1.41060431D-14	1,410604310-14
1.460000000+03	1.590949590-13	1.410604310-14	1.410604310-14
2.1900000D+03	1,590949590-13	1.41060431D-14	1.410604310-14
2.920000000+03	1.590949590-13	1.41060431D-14	1.410604310-14
3.6500000D+03	1.590949590-13	1.410604310-14	1.410604310-14
4.3800000D+03	1.590949590-13	1.41060431D-14	1.410604310-14
5.11000000D+03	1.59094959D-13	1.410604310-14	1.41060431D-14
5.840000000+03	1.59094959D-13	1.410604310-14	1.410604310-14
6.57000000D+03	1.59094959D-13	1.410604310-14	1.410604310-14
7.300000000+03	1.590949590-13	1.410604310-14	1.410604310-14
8.0300000D+03	1.590949590-13	` 1.41060431D-14	1.410604310-14
8.760000000+03	1.590949590-13	1.41060431D-14	1.410604310-14

INTEGRAL CHARACTERISTICS-UPPER BOUNDS

T (HOURS)	NSUM	FSUM
7.300000000+02	5.148705750-12	5.148705750-12
1.460000000+03	1.544611720-11	1.54461172D-11
2.1900000D+03	2.574352870-11	2.57435287D-11
2.920000000+ 0%	3.60409402D-11	3.604094020-11
3.6500000D+03	4.63383517D-11	4.633835170-11
4.3800000D+03	5.66357632D-11	5.66357632D-11
5.110000000+03	6.693317470-11	6.693317470-11
5.840000000+03	7.72305862D-11	7.72305862D-11
6.570000000+03	8.75279977D-11	8.75279977D-11
7.3000000D+03	9.78254092D-11	9.782540920-11
8.03000000+03	1.081228210-10	1.081228160-10
8.760000000+03	1.184202320-10	1.184202320-10

*****CONCLUSION OF OUTPUT FROM KITT-1*****

.

4

D.6 POWER SUPPLY TO THE 1500 HP FEED PUMP MOTORS

******	***	**	******	*****	******
FTSK	COMPONENT	COMPONENT AND	NETHOD OF	EFFECT ON SYSTEM	OTHER REMARKS
	IDENTIFIER	FAILURE HODE	FAILURE DETECTION		
****	******	****	₩ ¥¥₩₩¥₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	*****	*** *****************
SOL48-A	SEPS0011	ELECTRIC SYSTEM Cable Open Circuit Short Circuit	ANNUNCIATED IN Control Room	LOSS OF POWER TO 2400V BUSES AND 1500HP MOTORS	***SINGLE FAILURE*** Category A-B-C Possible plant failure
SOL48-A	SEPS0021	ELECTRIC SYSTEM Common Mode Operator Error	ANNUNCIATED IN Control Room	LOSS OF POWER TO 2400V BUSES AND 1500HP MOTORS	***SINGLE FAILURE*** Category A-B-C Possible plant failure
SOL48-A	SEPS21	LOSS OF SOLAR 115-2.4 KV Power Line		LOSS OF POHER TO 2400V BUSES AND 1500HP MOTORS	***SINGLE FAILURE*** Category A Review appropriate fnea
SOL48-A	SEPS22	LOSS OF SOLAR 2400V BUSES A AND B		LOSS OF POWER TO 2400V BUSES AND 1500HP MOTORS	***SINGLE FAILURE*** Category A Review Appropriate FMEA

1		FAILURE MODES AND EFFECTS ANALYSIS
	· / /	POWER TO SOLAR 2400V BUSES
4 3	2 11	1
1 <u>_1</u>		FlieA-SOL480V SH 1

.

D.6 POWER SUPPLY TO THE 1500 HP FEED PUMP MOTORS (CONT)

EL PASO SOLAR REPOWERING NEWHAN UNIT 1: LOSS OF POWER TO SOLAR FDPUMP MOTORS

* OPERATING MODE

ENDOPH

* RATES

COMPONENT INDICES, NAMES, AND FAILURE RATES (PER HOUR) -

TREE	INDEX	COMPONENT NAME	LAMBDA(FAILURE INTENSITY/HR.)	TAU
	1	SEPS0011	1.50000D-05	2.0000D+00
	2	SEPS0021	5.50000D-06	8.000000+00
	3	SEPS21	1.830000-05	4.10000D+00
	4	SEPS22	2.070000-05	1.21000D+01

D.6 POWER SUPPLY TO THE 1500 HP FEED PUMP MOTORS (CONT)

DIFFERENTIAL CHARACTERISTICS-UPPER BOUNDS

T (HOURS)	Q	M.	
0.0	0.0	5,950000000-05	5 95000000 05
7.300000000+02	3.993846300-04	5,949275160-05	5 95145214D 05
1.460000000+03	3.993846300-04	5.949275160-05	5 951652160-05
2.1900000D+03	3.99384630D-04	5.949275160-05	5.951652160-05
2.92000000+03	3.99384630D-04	5.94927516D-05	5.951652160-05
3.650000000+0 3	3.99384630D-04	5.949275160-05	5.951652160-05
4.38000000+03	3.99384630D-04	5.949275160-05	5.951652160-05
5.11000000+03	3.99384630D-04	5.94927516D-05	5.951652160-05
5.840000001103	3.993846300-04	5.94927516D-05	5.95165216D-05
3 3000000000000	3.99384630D-04	5.949275160-05	5.95165216D-05
A 02000000000000	3.99384630D-04	5.94927516D-05	5.951652160-05
8 74000000.07	3.99384630D-04	5.949275160-05	5.951652160-05
a. /adduddb+03	3.993846300-04	5.94927516D-05	5.951652160-05

INTEGRAL CHARACTERISTICS-UPPER BOUNDS

T (HOURS)	WSUM	ESIM
7.300000000+02	4.343235440-02	4.251098480_02
1.4600000D+03	8.686206310-02	A. 322070400-02
2.1900000D+03	1.302917720-01	1 221000100
2.9200000D+03	1.737214800-01	1 595200740 01
3.650000000+03	2.171511890-01	1 952545500 01
4.38000000D+03	2.605808980-01	2 204407970 01
5.110000000+03	3.040106070-01	2 499701740 01
5.840000000+03	3,474403150-01	2 075033500 03
6.57000000D+03	3.908700240-01	2.7359//56U-UL
7.300000000+03	4.342997330_01	3.230310920-01
8.030000000+03	4 777994410-01	3.523886800-01
8.760000000+03	5 211E01E00 01	3.799230140-01
	0.CTT021000+01	4.00286678D-01

*****CONCLUSION OF OUTPUT FROM KITT-1*****

FTSK	COMPOHENT	COMPONENT AND FAILURE MODE	HETHOD OF FAILURE DETECTION	EFFECT ON SYSTEM	OTHER REMARKS
******	******	******	****	*********	******************
50L48-A	SEP S 0011	ELECTRIC SYSTEH Cable Open circuit Short circuit	ANNUNCIATED IN Control Room	LOSS OF SOLAR 460V POHER	***SINGLE FAILURE*** Category A-B-C Possible plant failure
SOL 48-A	SEPS0021	ELECTRIC SYSTEM Connon Node Operator Error	ANNUNCIATED IN Control Room	LOSS OF SOLAR 480V POHER	***SINGLE FAILURE*** Category A-B-C Possible plant failure
SOL 48-8	SEP90251	BUS A 480V L.C. Disconnector Fails to Rehain Closed	ANNUNCIATED IN Control Roch	LOSS OF 480V L.C. INCOMING LINE FROM BUS A	CATEGORY C Redundancy provided by BUS B incoming line
SOL48~B	SEPS0261	BUS A 480V L.C. Transformer fails	ANNUNCIATED IN Control Room	LOSS OF 480V L.C. INCOMING LINE FROM BUS A	CATEGORY C REDUNDANCY PROVIDED BY BUS B INCOHING LINE
SOL48-B	SEPS0271	BUS A 480V L.C. Circuit Breaker Fails Open or Relays Fail	ANNUNCIATED IN Control Room	LOSS OF 480V L.C. INCOHING LINE From Bus A	CATEGORY C Redundan(cy provided by BUS B Incoming Line
Sol48-B	SEP50291	BUS B 480V L.C. Disconnector Fails to Remain closed	ANNUNCIATED IN Control Room	LOSS OF 480V L.C. INCOMING LINE FROM BUS B	CATEGORY C Redundancy provided by BUS B Incoming Line
SOL46-B	SEPS0301	BUS B 480V L.C. Transformer fails	ANNUNCIATED IN Control Room	LOSS OF 480V L.C. INCOHING LINE FROM BUS B	CATEGORY C Redundancy provided by BUS B Incohing Line
SOL48-B	SEP50311	BUS B 480V L.C. Circuit Breaker Fails open or Relays Fail	ANNUNCIATED IN Control Room	LOSS OF 480V L.C. INCOHING LINE From BUS B	CATEGORY C REDUNDANCY PROVIDED BY BUS B INCOMING LINE
Sol48-C	SEP50341	RECIR DR PUHP CB Fails to open on fault or Relays fail	ANNUNCIATED IN Control Room	LOSS OF SOLAR 480V POHER	***SINGLE FAILURE*** Category A Loss of 480V Poher
SOL48-C	SEPS0351	SOLAR DR PUMP CB FAILS TO OPEN ON FAULT OR Relays fail	ANNUNCIATED IN Control Room	LOSS OF SOLAR 480V PONER	***SINGLE FAILURE*** Category A Loss of 480V Poher

Ĺ	1			FAILURE MODES AND EFFECTS ANALYSIS
Ĩ	· · · · · · · · · · · · · · · · · · ·			POHER TO SOLAR 480V BUS
ł	4 3	2]	I	I FMEA-SOLABOV SH 1

D.7 POWER SUPPLY TO SOLAR 480V BUS (CONT)

****	*****	*****************	******	****	*****
FTSK	COHPONENT	CONPONENT AND	HETHOD OF	EFFECT ON SYSTEM	OTHER REHARKS
	IDENTIFIER	FAILURE HODE	FAILURE DETECTION		
*******	*****	********	뤣쵌첒똜쓝쓹炎炎쓹궑쓌쓌 쓹 쓌슻슻슻슻슻슻	***************************************	*********************
SOL48-C ,	SEP50361	NCC TOHER CB FAILS TO OPEN ON FAULT OR BEI AYS FATI	ANNUNCIATED IN Control Room	LOSS OF SOLAR 480V POHER	***SINGLE FAILURE*** Category A Loss of 480V Pomer
50L48-C	SEP50371	NCC PUNP HOSE CB FAILS TO OPEN ON FAULT OR Relays Fail	ANNUNCIATED IN Control Room	LOSS OF SOLAR 480V POWER	***SINGLE FAILURE*** Category A Loss of 480V Poner
SQL48-C	SEPS0381	FIRE PUHP CB FAILS TO OPEN ON FAULT OR RELAYS FAIL	ANNUNCIATED IN CONTROL ROOM	LOSS OF SOLAR 480V POHER	***SINGLE FAILURE*** Category A Loss of 480V Power
SOL48-A	SEPS21	LOSS OF SOLAR 115-2.4 KV Poher Line		LOSS OF SOLAR 480V POWER	***SINGLE FAILURE*** Category A Revieh Appropriate Fhea
SOL48-A	SEP522	LOSS OF SOLAR 2400V BUSES A AND B		LOSS OF SOLAR 480V POWER	***SINGLE FAILURE*** Category A Review Appropriate FMEA

É						FAILURE HODES AND EFFECTS ANALYSIS
Ï					!	PONER TO SOLAR 480V BUS
ľ	۹ ۲	3	 2	 1	[FMEA-SQL480V SH 2

.

Ň

*TREBIL FAULT TREE BUILDING PROGRAM - TREBIL.V6L1 ×

EL PASO SOLAR REPOWERING NEHMAN UNIT 1: LOSS OF SOLAR 480V POWER * OPERATING HODE

ENDOPH

* RATES

COMPONENT INDICES, NAMES, AND FAILURE RATES (PER HOUR) -

TREE	INDEX	COMPONENT NAME	LANBDA(FAILURE INTENSITY/HR.)	TAU
	1	SEPS0291	1.00000-05	8.0000D+00
	2	SEPS0301	1.000000-05	6.00000D+01
	3	SEPS0311	5.20000D-06	9.00000+00
	4	SEP\$0251	1.0000D-05	8.00000D+00
	5	SEPS0261	1.00000-05	6.00000D+01
	6	SEP50271	5.20000D-06	9.000000+00
	7	SEP\$0341	2.50000-04	6.000000+00
	8	SEP50351	2.500000-06	6.000000+00
	9	SEPS0361	2.500000-06	6.0000D+00
	10	SEPS0371	2.50000D-06	6.0000D+00
	11	SEPS0381	2.50000D-06	6.000000+00
	12	SEP50011	1.500000-05	2.000000+00
	13	SEP50021	8.000000-06	8.00000D+00
	14	SEPS21	1.83000D-05	4.100000+00
	15	SEP522	2.07000D-05	1.21000D+01

D.7 LOSS OF POWER TO SOLAR 480V BUS DIFFERENTIAL CHARACTERISTICS-UPPER BOUNDS

T (HOURS)	Q	н	L
0.0	0.0	7.4500000D-05	7.4500000D-05
7.3000000D+02	4.948679780-04	7.45288961D-05	7.45657963D-05
1.4600000D+03	4.948679780-04	7.45288961D-05	7.45657963D-05
2.1900000D+03	4.948679780-04	7.45288961D-05	7.45657963D-05
2.920000000+03	4.948679780-04	7.452889610-05	7.456579630-05
3.6500000D+03	4.948679780-04	7.452889610-05	7.45657963D-05
4.38000000D+03	4.948679780-04	7.452889610-05	7.45657963D-05
5.110000000+03	4.948679780-04	7.452889610-05	7.45657963D-05
5.840000000+03	4.948679780-04	7.452889610-05	7.456579630-05
6.5700000D+03	4.94867976D-04	7.452889610-05	7.45657963D-05
7.300000000+03	4.948679780-04	7.452889610-05	7.45657963D-05
8.0300000D+03	4.948679780-04	7.45288961D-05	7.45657963D-05
8.7600000D+03	4.94867978D-04	7.452889610-05	7.456579630-05

INTEGRAL CHARACTERISTICS-UPPER BOUNDS

T (HOURS)	WSUN	FSUM
7.300000000+02	5.439554710-02	5.29553288D-02
1.460000000+03	1.088016410-01	1.031279300-01
2.1900000D+03	1.632077350-01	1.506424 8 4D-01
2.9200000D+03	2.176138300-01	1.95639808D-01
3.65000000D+03	2.720199240-01	2.38253260D-01
4.38000000D+03	3.264260180-01	2.78609134D-01
5.11000000D+03	3.808321120-01	3.16827032D-01
5.840000000+03	4.352382060-01	3.530202190-01
4.57000000D+03	4.896443000-01	3.872959600-01
7.300000000+03	5.440503940-01	4.197558390-01
8.0300000D+03	5.984564890-01	4.504960570-01
8.740000000+03	6.52862583D-01	4.79607716D-01

*****CONCLUSION OF OUTPUT FROM KITT-1*****

•

D.8 POWER SOLAR 2400V BUSES

******	**********	********	********	****	픚픚 쓹녻끹굦꾞슻뙨슻윩겄쑫슻흕슻슻슻슻슻슻슻슻슻
FTSK	COLIPOHENT IDENTIFIER	COMPONENT AND FAILURE HODE	HETHOD OF FAILURE DETECTION	EFFECT ON SYSTEM	OTHER REMARKS
******	*******	**********	***	****	***
SEPS2-B	SEP S 0071	BUS A Short Circuit	ANNUNCIATED IN Control Room	LOSS OF BUS A-HALF FIELD AND AUXILIARIES	CATEGORY B TIE BREAKER OPENS 562 POWER FROM BUS B
SEPS2-B	SEPS0081	BUS A-1500HP LC CB FAILS TO OPEN ON FAULT OR Relays Fail	ANNUNCIATED IN Control Roon	LOSS OF BUS A-HALF FIELD And Auxiliaries	CATEGORY B TIE BREAKER OPENS Loss of Gne 1500hp Punp
SEPS2-A	SEP500 91	BUS B Short circuit	ANHUNCIATED IN Control Room	LOSS OF SOLAR 2400 V BUSES	***SINGLE FAILURE*** Category A Solar Plant Shutdown
SEPS2-A	SEPS0101	BUS B 1500HP LC CB FAILS TO OPEN ON FAULT OR Relays Fail	ANNUNCIATED IN Control Room	LOSS OF SOLAR 2400 V BUSES	***SINGLE FAILURE*** Category a Solar plant Shutdown
SEPS2-B	SEP90111	BUS TIE BREAKER Fails to open On dehand	ANNUNCIATED IN Control Room	FAILURE OF BUS TIE	CATEGORY C If Fault on Bus A Solar Plant Shutdown
SEPS2-B	SEPS0121	BUS A-LOOP 1 CB FAILS TO OPEN ON FAULT OR RELAYS FAIL	ANNURICIATED IN Control Room	LOSS OF BUS A-HALF FIELD And Auxiliaries	CATEGORY B TIE BREAKER OPENS BUS B SUPPLY TO FIELD
SEPS2-A	SEPS0131	BUS B-LOOP 2 CB FAILS TO OPEN ON FAULT OR Relays Fail	ANNUNCIATED IN Control Room	LOSS OF SOLAR 2400 V BUSES	***SINGLE FAILURE*** Category a Solar plant shutdown
SEPS2-B	SEPS0141	BUS A-LOOP 2 CB FAILS TO OPEN ON FAULT OR Relays Fail	ANNUNCIATED IN Control Room	LOSS OF BUS A-HALF FIELD And Auxiliaries	CATEGORY B TIE BREAKER OPENS BUS B SUPPLY TO FIELD
SEPS2-A	SEP50151	BUS B-LOOP 1 CB FAILS TO OPEN ON FAULT OR Relays Fail	ANNUNCIATED IN Control Room	LOSS OF SOLAR 2400 V BUSES	***SINGLE FAILURE*** Category a Solar plant shutdown
SEPS2-B	SEP30241	BUS A-480V LC CB FAILS TO OPEN On Fault or Relays Fail	ANNUNCIATED IN Control Room	LOSS OF BUS A-HALF FIELD And Auxiliaries	CATEGORY B TIE BREAKER OPENS 50% POHER FROM BUS B

I					FAILURE	HODES	AND E	FFECTS	ANALYSI	
1	!	!	! !		LOSS O	F SOLAR	2400	V BUSES		İ
	41	3	2	11	!					
		L			L		FHEA-	SEPS22	<u>SH</u>	1

D.8 POWER SOLAR 2400V BUSES (CONT)

""
--

FTSK	COMPONENT IDENTIFIER	COMPONENT AND FAILURE MODE	HETHOD OF FAILURE DETECTION	EFFECT ON SYSTEM	OTHER REMARKS
******	******	****	*******	*****	*********
SEPS2-A	SEPS0281	BUS B-480V LC CB FAILS TO OPEN ON FAULT OR Relays Fail	ANNUHCIATED IN Control Room	LOSS OF SOLAR 2400 V BUSES	***SINGLE FAILURE*** Category A Solar Plant Shutdown
SEPS2-B	SEPS0331	BUS TIE BREAKER Relays fail	ANNUNCIATED IN CONTROL ROOM	FAILURE OF BUS TIE	CATEGORY C IF FAULT ON BUS A Solar plant shutdohn

Ĺ					ľ	 FAILURE	MODES	AND	EFFECTS	ANAL YSI	IS I
ļ			!	1		 LOSS 0	F SOLAF	24(OV BUSES	;	
ľ	4 	[*]_	{	21				FME/	-SEPS22	SH	2

1

D.8 POWER SOLAR 2400V BUSES (CONT)

EL PASO SOLAR REPOWERTING NEWMAN UNIT 1: LOSS OF SOLAR 2400V BUSES * OPERATING HODE * OPERATING HODE ENDOPH * RATES

COMPONENT INDICES, NAMES, AND FAILURE RATES (PER HOUR) -

TREE	INDEX	COMPONENT NAME	LAMBDA(FAILURE INTENSITY/HR.)	TAU
	1	SEP50121	2.50000D-06	6.000000+00
	2	SEPS0141	2.60000D-06	6.000000+00
	3	SEPS0131	2.50000-06	6.0000D+00
	4	SEPS0151	2.500000-06	6.000000+00
	5	SEPS0331	4.20000D-06	4.0000D+00
	6	SEPS0111	1.000000-06	8.000000+00
	7	SEPS0071	1.300000-05	2.00000D+01
	8	SEPS0081	5.20000D-66	9.000000+00
	9	SEPS0241	2.50000D-06	6.000000+00
	10	SEPS0091	8.000000-06	2.00000D+01
	11	SEPS0101	5.20000D-06	9.0000D+00
	12	SEP\$0281	2.500000-06	6.00000D+00

*Case A: Loss of solar 480 V bus or 1500 hp motors

٩

D.8 POWER SOLAR 2400V BUSES (CONT)

4

EL PASO SOLAR REPONERING NEWHAN UNIT 1: LOSS OF SOLAR 2400V BUSES * OPERATING HODE ENDOPH * RATES

COMPONENT INDICES, NAMES, AND FAILURE RATES (PER HOUR) -

TREE	INDEX	COMPONENT NAME	LANDDA(FAILURE INTENSITY/HR.)	TAU
	1	SEPS0121	5.20000D-06	9.0000D+00
	2	SEP50141	5.20000-06	9.000000+00
	3	SEPS0131	5.20000-04	9.0000D+00
	4	SEPS0151	5.20000D-06	9.0000D+00
	5	SEP50331	4.200000-06	4.000000+00
	6	SEPS0111	1.000000-06	8.00000D+00
	7	SEPS0071	1.30000D-05	2.00000D+01
	8	SEP50081	2.500000-06	6.0000D+00
	9	SEPS0241	2.500000-06	6.00000D+00
	10	SEPS0091	8.000000-06	2.00000D+01
	11	SEPS0101	2.500000-06	6.0000D+00
	12	SEP50281	2.50000D-06	6.00000D+00

* Case B: Loss of power to heliostat field

D.8 LOSS OF SOLAR 2400V BUSES

DIFFERENTIAL CHARACTERISTICS-UPPER BOUNDS

T (HOURS)	Q	н	L
0.0	0.0	2.070000000-05	2.07000000-05
7.300000000+02	2.517628090-04	2.07008362D-05	2.07060492 D-05
1.460000000+03	2.517628090-04	2.070083620-05	2.0706049 2D-05
2.19000000D+03	2.517628090-04	2.070083620-05	2.070604920-05
2.920000000+03	2.517628090-04	2.070083620-05	2.070604920-05
3.650000000+03	2.517628090-04	2.07008362D-05	2.070604920-05
4.380000000+03	2.51762809D-04	2.070083620-05	2.070604920-05
5.11000000D+03	2.517628090-04	2.070083620-05	2.070404920-05
5.840000000+03	2.517628090-04	2.070083620-05	2.07060492D-05
6.570000000+03	2.51762809D-04	2.070083620-05	2.070604920-05
7.300000000+03	2.517628090-04	2.070083620-05	2.070604920-05
0.030000000+03	2.517628090-04	2.070083620-05	2.070604920-05
8.760000000+03	2.517628090-04	2.0700B342D-05	2.070604920-05

INTEGRAL CHARACTERISTICS-UPPER BOUNDS

T (HOURS)	HSUN	FSUH
7.300000000+02	1.511130520-02	1.49995766D-02
1.460000000+03	3.02229156D-02	2.97763081D-02
2.1900000D+03	4.53345260D-02	4.433136280-02
2.920000000+03	6.04461364D-02	5.86680661D-02
3.650000000+03	7.555774690-02	7.27896938D-02
4.380000000+03	9.046935730-02	8.669947230-02
5.110000000+03	1.05780968D-01	1.004005800-01
5.840000000+05	1.208925780-01	1.138961470-01
6.5700000D+03	1.360041890-01	1.271892560-01
7.300000000+03	1.511157990-01	1.402829460-01
8.030000000+03	1.66227409D-01	1.53180208D-01
8.760000000+03	1.81339020D-01	1.65883988D-01

*****CONCLUSION OF OUTPUT FROM KITT-IN****

*Case A: Loss of solar 480 V bus or 1500 hp motors

SYSTEM INFORMATION-UPPER BOUNDS D.8 LOSS OF SOLAR 2400V BUSES (CONT) DIFFERENTIAL CHARACTERISTICS-UPPER BOUNDS

T (HOURS)	Q	н	L
0.0	0.0	2.34000000-05	2.340000000-05
7.300000000+02	2.83554088D-04	2.340085700-05	2.340749430-05
1.4600000D+03	2.83554088D-04	2.340085700-05	2.340749430-05
2.190000000+03	2.835540880-04	2.340085700-05	2.340749430-05
2.920000000+03	2.035540880-04	2.340085700-05	2.34074943D-05
3.650000000+03	2.835540880-04	2.340085700-05	2.340749430-05
4.3800000D+03	2.83554088D-04	2.340085700-05	2.340749430-05
5.110000000+03	2.835540880-04	2.340085700-05	2.340749430-05
5.840000000+ 03	2.83554088D-04	2.340085700-05	2.340749430-05
6.57000000D+03	2.835540880-04	2.340085700-05	2.340749430-05
7.300000000+03	2.835540880-04	2.340085700-05	2.34074943D-05
8.030000000+03	2.835540860~04	2.340085700-05	2.340749430-05
8.76000000D+03	2.835540880-04	2.34008570D-05	2.340749430-05

INTEGRAL CHARACTERISTICS-UPPER BOUNDS

T (HOUR\$)	HSUM	FSUN
7.300000000+02	1.708231280-02	1.693961890-02
1.460000000+03	3.416493850-02	3.359493070-02
2.1900000D+03	5.124756410-02	4.996806310-02
2.920000000+03	6.833018970-02	6.606379680-02
3.650000000+03	8.541281540-02	8.188683160-02
4.38000000+03	1.024954410-01	9.744178770-02
5.110000000+03	1.195780670-01	1.127332070-01
5.84000000+03	1.366606920-01	1.277655540-01
6.57000000D+03	1.537433160-01	1.425432190-01
7.300000000+03	1.708259440-01	1.570705160-01
8.030000000+03	1.879085690-01	1.713516870-01
8.760000000+03	2.049911950-01	1.853909020-01

*****CONCLUSION OF OUTPUT FROM KITT-1*****

*Case B: Loss of power to heliostat field

D.9 POWER SOLAR 115-2.4KJ POWER LINE

	ACM 14 14 14 14 14 14 14 14 17 14				
FTSK	CONPONENT IDENTIFIER	COMPONENT AND FAILURE NODE	NETHOD OF Failure Detection		

SEPS2-B	EPS10011	LOSS OF GRID FEED To Hain XFHR No. 1	ANNUNCIATED IN Control Room	LOSS OF POWER SOURCE 1	CATEGORY C Redundancy provided by backup source 2
SEPS2-C	EPS20011	LOSS OF GRID FEED TO RES. STA. SERV. XFNR	ANNUNCIATED IN Control Room	LOSS OF BACKUP PONER SOURCE 2	CATEGORY C Backup Poner Supply
SEP52-A	EP S3 0011	LOSS OF Power Supply To Solar Plant From Grid	ANNUNCIATED IN Control Room	LOSS OF SOLAR 115-2.4 KV POHER LINE	***SINGLE FAILURE*** Category A Solar Plant Shutdoh
SEP32-B	EP510021	115–2.4 KV Hain XFHR ND. 1 Fails	ANNUNCIATED IN Control Room	LOSS OF POHER SOURCE 1	CATEGORY C FAST TRANSFER TO Power Source 2
SEPS2-C	EP520021	115–2.4 KV Res. Sta. Serv. Xfir Fails	ANNUNCIATED IN Control Room	LOSS OF BACKUP POWER SOURCE 2	CATEGORY C Backup Power Supply
SEP52-D	EPS10031	INCOMING LINE 1 Disconnector Fails open	ANNUNCIATED IN Control Room	LOSS OF PONER SOURCE 1	CATEGORY C Fast transfer to Power source 2
SEPS2-C	EPS20031	RES. STA. SERV. XFHR DISCONNECTOR FAILS OPEN	ANNUNCIATED IN Control Room	LOSS OF BACKUP POHER SOURCE 2	CATEGORY C Backup Poher Supply
SEPS2-D	EPS10041	SOLAR Aux Xfhr No. 1 Fails	ANNUNCIATED IN Control Room	LOSS OF POHER SOURCE 1	CATEGORY C FAST TRANSFER TO Poner Source 2
SEPS2-C	EP520041	INCOMING LINE 2 Discommector Fails Open	ANNUNCIATED IN Control Room	LOSS OF BACKUP POHER SOURCE 2	CATEGORY C Backup Poher Supply
SEPS2-D	EPS10051	INCOMING LINE 1 Circuit Breaker Fails to Remain closed	ANNUNCIATED IN Control Rodh	LOSS OF POWER SOURCE 1	CATEGORY C Fast transfer to Poher Source 2
SEPSZ-C	EPS20051	INCOMING LINE 2 Circuit Breaker Fails to Close On Demand	ANNUNCIATED IN Control Room	LOSS OF BACKUP POWER SOURCE 2	CATEGORY C Required if power Source 1 Unavailable

I	Γ		 FAILURE HODES AND EFFECTS ANALYSIS
			 SOLAR 115-2.4 KV POHER LINE
[4]	2	 1	
	1		FHEA-SEPS21 SH

D.9 POWER SOLAR 115-2.4KJ POWER LINE (CONT)

******	********	****	******		
FTSK	COMPONENT IDENTIFIER	COMPONENT AND FAILURE MODE	HETHOD OF FAILURE DETECTION	EFFECT ON SYSTEM	OTHER REHARKS
******	******	****	******	*****	******
SEP52-B	EPS10061	UNIT 1 GENERATOR Fails	ANNUNCIATED IN Control Room	LOSS OF POHER SOURCE 1	CATEGORY C FAST TRAHSFER TO Poher Source 2
SEPS2-C	EPS20061	INCOHING LINE 2 Breaker Relays Fail	ANNUNCIATED IN Control Room	LOSS OF BACKUP POHER SOURCE 2	CATEGORY C REQUIRED IF POHER Source 1 Unavailable
SEPS2-D	EP510071	INCOHING LINE 1 Breaker Relays Fail	ANNUNCIATED IN Control Room	LOSS OF POHER SOURCE 1	CATEGORY C FAST TRANSFER TO Power Source 2
SEPS2-B	EPS10061	NORH. STA. SERV XFMR DISCONNECTOR FAILS OPEN	ANNUNCIATED IN Control Room	LOSS OF POWER SOURCE 1	CATEGORY C Fast transfer to Poher source 2
SEPS2-B	EPS100 91	NORH. STA. Serv. XFMR FAILS	ANNUNCIATED IN Control Room	LOSS OF POHER SOURCE 1	CATEGORY C Fast transfer to Power Source 2
SEP S2-B	EPS10101	UNIT 1 2400V BUS Short circuit	ANNUNCIATED IN Control Room	LOSS OF POWER SOURCE 1	CATEGORY C Fast transfer to Pomer source 2
SEPS2-B	EPS10111	HORM. STA. Serv. XFHR Breaker open Or relays fail	ANNUNCIATED IN Control Room	Loss of Poher Source 1	CATEGORY C Fast transfer to Power source 2

the second
1	1	J	1	FAILURE HODES AND EFFECTS ANALYSIS	-1
	! !	! !		SOLAR 115-2.4 KV POHER LINE	ļ
4	3	21	1		

D.9 POWER SOLAR 115-2.4KJ POWER LINE (CONT)

EL PASO SOLAR REPONERING NEHMAN UNIT 1: LOSS OF SOLAR 115-2.4 KV PONER LINE * OPERATING NODE ENDOPH * RATES

COMPONENT INDICES, NAMES, AND FAILURE RATES (PER HOUR) -

TREE INDEX	COMPONENT NAME	LAHBOA(FAILURE INTENSITY/HR.)	TAU
1	EPS20021	1.000000-05	6.0000D+01
2	EPS20031	1.000000-05	8.000000+00
3	EPS20051	1.000000-06	8.000000+00
4	EPS20061	4.200000-06	4.00000D+00
5	EPS10031	1.00000D-05	8.00000D+00
6	EPS10041	1.000000-05	6.00000D+01
7	EP510051	1.000000-06	8.000000+00
ė	EPS10071	4.200000-06	4.008000+00
9	EP510081	1.00000-05	8.000000+00
10	EPS10091	1.000000-05	6.00000D+01
11	EPS10101	1.300000-05	2.00000D+01
12	EPS10111	5.200000-06	9.008000+60
13	EP520011	3.50000-05	8.0000D+00
14	EPS20041	1.000000-05	8.0000D+00
15	EP\$10011	3.500000-05	8.00000D+00
16	EPS10021	1.00000-05	6.000000+01
17	EPS10061	2.850000-05	5.800000+01
18	EFS30011	1.790000-05	4.000000+00
SYSTEM INFORMATION-UPPER BOUNDS

D.9 LOSS OF 115-2.4KJ POWER LINE

DIFFERENTIAL CHARACTERISTICS-UPPER BOUNDS

T (HOURS)	Q	н	L
0.0	0.0	1.790000000-05	1.7900000D-05
7.30000000+02	7.584485850-05	1.832461150-05	1.83260014D-05
1.460000000+03	7.584485850-05	1.832461150-05	1.83260014D-05
2.1900000D+03	7.584465850-05	1.83246115D-05	1.832600140-05
2.9200000D+03	7.584485850-05	1.832461150-05	1.832600140-05
3.65000000+03	7.584485850-05	1,832461150-05	1.83260014D-05
4.380000000+03	7.584485850-05	1.83246115D-05	1.83260014D-05
5.1100000D+03	7.584485850-05	1.832461150-05	1.83260014D-05
5.840000000+03	7.584485850-05	1.832461150-05	1.83260014D-05
6.57000000D+03	7.584485850-05	1.832461150-05	1.832600140-05
7.3000000D+03	7.584485850-05	1.832461150-05	1.83260014D-05
8.030000000+03	7.584485850-05	1.83246115D-05	1.83260014D-05
8.7600000D+03	7.58448585D-05	1.832461150-05	1.83260014D-05

INTEGRAL CHARACTERISTICS-UPPER BOUNDS

T (HOURS)	HSUM	FSUH
7.300000000+02	1.322198320-02	1.31354574D-02
1.460000000+03	2.659894960-02	2.62497953D-02
2.1900000D+03	3.99759160D-02	3.91898581D-02
2.920000000+03	5.33528824D-02	5.195796190-02
3.65000000D+03	6.67298488D-02	6.45563916D-02
4.380000000+03	8.010681520-02	7.69874022D-02
5.110000000+03	9.348378160-02	8.92532184D-02
5.840000000+03	1.068607480-01	1.013560350-01
6.570000000+03	1.202377140-01	1.13298019D-01
7.300000000+03	1.336146810-01	1.25081308D-01
8.030000000+03	1.469916470-01	1.36708009D-01
8.760000000+03	1.603686140-01	1.48180204D-01

*****CONCLUSION OF OUTPUT FROM KITT-1*****

APPENDIX E

DETAILS OF FOSSIL AND SOLAR SIMULATION MODELS

E.1 OBJECTIVE

The objectives of this report are to describe the fossil and solar simulation models and to present the detailed results from these simulation models.

E.2 OVERVIEW

This report documents the support information and data for the Solar/Fossil System Transient Analysis described in Section 4.5.2 of the report. A summary of results is presented in Section 4.5.2.3. Section E.3 presents a description of the fossil simulation model and the comparisons of model predictions and test data. Section E.4 presents a description of the solar simulation model and a graphic representation of the predictions.

All of the simulation models were programmed in the ACSL language, a FORTRAN-based simulation language (Reference 1). The programs were run on an IBM 4341 in the interactive mode (VM-CMS operating system). The run times for the models are as follows:

- 1. Fossil system model, approximately 4 simulated seconds per CPU second.
- 2. Solar system model approximately 2 simulated seconds per CPU second.

E.3 FOSSIL SYSTEM SIMULATION

E.3.1 Fossil Simulation Model

The fossil system simulation was derived from a previous simulation model of a bark burning boiler system performed by SWEC.

The fossil system simulation includes models of the fossil boiler, feed pump system, and attemporation system. The component models included in the fossil system representation are the following:

- Combustion model
- Superheater
- Radiant evaporator
- Economizer
- Air preheater
- Steam drum
- Downcomer
- Riser

- Feed pump system
- Controls

A block diagram of the fossil boiler air/gas path is presented in Figure E.3-1. The models used in the feedwater system, boiler water/steam path, and reheater are illustrated in block diagram form in Figures E.3-2 through E.3-4. These component models had been fully developed by SWEC for prior simulation activities with exception of the radiant evaporator.

A brief description of each of the component models is presented as follows:

- 1. Combustion Model This is an algebraic model utilizing fuel and air inlet flow and temperature to determine the theoretical combustion temperature and oxygen level of the exhaust gas.
- 2. Superheater The steam and flue gas temperatures leaving the superheater are evaluated in this model. The rate of change of steam outlet temperature is related to the exhaust gas flow and inlet temperature, steam flow and inlet temperature, overall heat transfer coefficient, and surface area.
- 3. Radiant Evaporator This is a one-dimensional nodal model which divides the radiant evaporator length into small sections. The heat transfer to each section is determined sequentially using the gas inlet temperature, section surface area, and radiant heat transfer coefficient. The effect of changing the burner pattern is modeled by changing the length of the radiant evaporator. This length is currently determined by the weighted mean distance from the operating burners to the superheater.
- 4. Economizer This model is basically structured in the same manner as the superheater model. The outputs are water and flue gas outlet temperatures.
- 5. Air Preheater Outlet air and flue gas temperatures are determined differentially. Heat transfer is governed by air and gas flows raised to the 0.6 power.
- 6. Steam Drum Model The steam drum model is the center of the steam/water side representation. This model evaluates the drum pressure and the corresponding saturation properties, drum level, drum water subcooling, primary superheater outlet pressure, and total steam production rate. This model feeds data to the downcomer and riser models to evaluate circulation flow and quality.

In the first sequence of calculations, the heat input to steam generation is evaluated accounting for feedwater and drum subcooling and steam condensation within the drum. Based on the heat input to steam generation and the steam outflow from the boiler, the boiler drum pressure and superheater outlet pressure are evaluated.

The subcooling level (liquid enthalpy) of the steam drum is calculated based on an energy balance of the water within the drum. Flashing of drum water is predicted, if drum pressure falls while the drum water is at saturation. The drum water subcooling is input to the downcomer model to evaluate flashing in the downcomer and the overall natural circulation flow of the drum/ downcomer/riser circuit.

Level of water in the steam drum is the final calculation. The level is determined from the mass of water in the drum and the liquid density. A constant is used to represent volume per unit level change, and this is fairly representative over the level control range in the boiler. Drum level swell due to steam flashing within the steam drum is neglected, since its impact is typically very minor. Flashing and steaming in the risers have the largest impact on drum level swell.

- Downcomer The downcomer model was developed to predict 7. the impact on natural and forced circulation of flashing Using the DELAY routine the downcomer water. of (Reference 1, ACSL), the enthalpy of drum water is transported through the downcomer. The pressure is evaluated at the base of the downcomer accounting for The steam quality and elevation head and friction. density of the fluid at the base of the downcomer is then determined from the enthalpy and pressure. The average downcomer density is determined as the average of the inlet and base downcomer densities.
- 8. Riser The riser model makes use of the continuity of mass, energy, and momentum equations to determine the inlet and outlet mass flow rates and outlet steam quality. The rate of change of inlet flow is calculated based on the momentum equation, and the outlet flow is determined from the continuity of mass and energy equations.

One aspect of the riser model is the use of the homogeneous two-phase flow equations for friction calculations. To verify this approach, it was compared with the Martinelli-Nelson correlation. Due to the favorable comparison and the simplicity of the approach, it is used in the riser section.

E-3

The model is configured to accept a pump by inputting a pump head flow function. This allows the model to handle both natural and forced circulation and, thereby, makes it more general.

- 9. Feedpump System Feedwater flow is determined based on the manufacturer's pump map and the calculated pressure rise across the pump. A deaerator pressure model, pump suction line, pump discharge line, and control valve models are included to determine pressures and flows in the feedwater line. Pressures at the superheat and reheat attemperator feed lines are predicted. The flows through the attemperator lines are evaluated based on the pressure drop across the lines, the line resistances, and valve positions.
- Controls There are four control loops represented in 10. the simulation model: the combustion control, feedwater control, superheat temperature control, and reheat temperature control. The combustion control is based on turbine inlet pressure with a feed forward from steam flow and regulates fuel and air flow. Feedwater is regulated by a 3-element control (steam flow, feedwater flow, and drum level). Superheat temperature control has superheat outlet temperature as its primary input with forward signals from the superheat feed attemperator outlet temperature and air flow. Reheat temperature control is based reheat outlet on temperature with a feed forward from steam flow.

The Newman Unit 1 has symmetrical "north/south" primary and secondary superheaters and reheaters. Since the heat flux loadings to the north and south sides appear to be equivalent for symmetric burner patterns, the fossil simulation model represents a single primary superheater, secondary superheater, and reheater representing the total heat transfer area of the north and south sides. It is noteworthy that during transient testing and observed normal operation, EPE operators maintained symmetric burner patterns with the exception of the burner sequence test, where burner patterns were intentionally varied.

E.3.2 Fossil Simulation Comparisons with Test Data

A series of transient tests were conducted on Newman Unit 1 and are described in Section E.5. To test the validity of the fossil simulation model, comparisons were made with a step change test, Test 1B, a step change of 15 percent to half load. Initially the comparisons were not favorable. Upon further investigation the model was found to be deficient in certain areas and the following changes were made:

1. A steam flow feed forward to the combustion control had been retrofitted to the unit and was added to the model.

- 2. A manual fuel/air ratio bias control was added to the model and calibrated according to the plant circular day chart recordings of oxygen level.
- 3. The capacitance effect for the large mass of metal associated with the evaporator was included in the model.
- 4. The plant drum pressure reading which was indicating a very large superheater pressure drop was reduced to more closely reflect expected values.

With these changes the model was again compared to the test data. Steam flow test data was the driving function for the simulation model. The resulting comparisons are highly favorable and are illustrated in Figures E.3-5 through E.3-12.

The first figure (E.3-5) illustrates the driving function (steam flow) and the comparisons between drum level and feedwater flow predictions and data. Since drum level upsets are primarily determined by transient two-phase flow variations in the riser section, this close agreement is a strong verification of the downcomer, riser, and drum circuit models.

Turbine inlet pressure along with fuel and air flow are illustrated in Figure E.3-6. To obtain reasonable agreement with the superheat and reheat temperature data, it was crucial to properly predict the turbine inlet pressure profile. The relatively small variation in turbine inlet pressure for such a large change in steam flow was a key in determining that the drum pressure data was about 50 psi high.

The slow recovery of turbine inlet pressure is an indication of the slow response of the combustion controls. This slow response apparently results in superheater temperature transients presented in Figure E.3-7. At approximately 60 seconds, steam flow is rapidly reduced. However, fuel and air flow decrease at a much slower rate. The short-term effect is to have more energy available to the superheater than the steam flow can remove, resulting in an increase in superheat steam temperature. Then fuel and air flow undershoot the steady state value, causing steam temperatures to drop. On the fuel/air upswing, temperatures rise. This case illustrates the tight coupling between superheat temperatures and the combustion control.

The predictions of superheat temperature and attemperator valve position were initialized according to the average of east and west side conditions and agree very well with the time average data.

Figure E.3-8 presents the comparisons of reheat temperature predictions and data. The reheat attemperator block valves were closed so reheat attemperator temperature reflects cold reheat

temperature. Note how this temperature drops. This drop is associated with the throttling action of the governor valves. This temperature profile was input to the fossil simulation model for lack of a turbine stage temperature model.

The air preheater flue and air gas temperature comparisons are illustrated in the next figure (Figure E.3-9). It appears the plant temperature measurement has a much longer time constant than the data.

To make comparisons with the predicted primary superheater outlet temperature, the metal temperature data from the primary to secondary superheater cross-over was used. The variations in temperature are significantly larger than the predictions; however, the attemperator outlet temperatures are very close. It may be possible that the cross-over temperature dropped more due to the reduction in steam to wall heat transfer and high heat losses.

The percentage of oxygen in the flue gas is illustrated in the next figure, E.3-11. The oxygen sensor data acquired during testing was not sufficiently amplified to obtain good resolution. To obtain a comparison, oxygen data was taken form the 24-hour circular day chart. Time resolution was difficult, but the interpreted data is presented. The manual excess air control bias input to the model was based on an average value over the 2-day test period. The difference may be a result of operator adjustments. Such adjustments were often observed during the test period.

The last figure, E.3-12, illustrates pump suction and discharge pressure comparisons. In the fossil simulation model, both pumps are assumed to perform identically. During the test the measured discharge pressure of Pump A was considerably less than B (200 psi). Pump A performance limited testing at full load.

The overall agreement of the model with the test data is very good. However, further comparisons with other tests should be conducted to ensure validity over the entire operating range.

E.4 SOLAR SYSTEM SIMULATION

E.4.1 Solar Simulation Model

The solar system simulation program was developed to stand alone, i.e., without the fossil program. With this approach the programs have been structured for smooth integration when the two models are required for a total solar/fossil plant simulation. Wherever possible, the programs share the same component models.

The solar system simulation model includes models of the solar receiver, attemperation system, bias valve system, external reheater, turbine, piping, and controls. The component models

included in the solar system simulation program are briefly described as follows:

- 1. Solar superheater A differential model which evaluates outlet steam temperature and average metal surface temperature based on input flux (total flux less reflected). Radiant and convective heat losses are based on the calculated average metal surface temperature.
- Solar evaporator An algebraic model determining net heat input by subtracting calculated radiant and convective losses from the input flux.
- Solar economizer It is the same as the superheater model evaluating water outlet temperature and average metal surface temperature.
- 4. Reheater This model is the same as the air preheater model (fossil system).
- 5. Steam drum, downcomer, and riser models are the same models used in the fossil system.
- 6. Biasing valve flow The biasing valve was modeled as an orifice with linearly variable area. The steam flow was calculated according to the perfect gas relationship for orifice flow. This model effectively represents the dynamic characteristics of biasing valve flow control.
- 7. Attemperator flow Since attemperator valve data and solar feedwater hydraulic data were not available, attemperator flow was modeled to linearly vary with control valve position.
- 8. Turbine The turbine governor valve was represented by a variable orifice model similar to the biasing valves. Turbine power was determined from inlet steam properties assuming constant efficiency.
- 9. Feedwater flow For lack of feedwater system hydraulic data, feedwater flow was assumed to vary linearly with valve position.
- 10. The controls for the receiver subsystem are described in detail in Section 5.3.

An overview of the solar system simulation is illustrated in block diagram form in Figure E.4-1. The solar simulation model of the receiver represents both east and west sides, which are symmetrical. Each panel type on a given side of the boiler is represented by one component model. The correspondence between component models and number of panels of this type on a given side is as follows:

- 1. One economizer two economizer panels
- One evaporator seven pairs of evaporator sections (one per superheater panel)
- 3. One PS1 (primary superheater 1) two PS1 panels
- 4. One PS2 one PS2 panel
- 5. One PS3 one PS3 panel
- 6. One FS1 (final superheater 1) two FS1 panels
- 7. One FS2 one FS2 panel

This lumping was required to maintain a more manageable program. Even with these simplifications, 4 Mbytes of storage were required to compile the solar simulation model.

The lumping of the economizer and evaporator panels appears to provide adequate representation of these sections, based on prior modeling experience. The lumping of the PSI panels and FSI panels removes four biasing valves from the representation. However, four biasing valves are left in the model (vs eight in the actual receiver). It is felt that the biasing valve control logic can be adequately tested with the four biasing valves represented. The predominant east/west division is maintained in the model.

The detailed structure of the solar model is illustrated in block diagram form in Figures E.4-2 through E.4-6. These illustrate the economizer and evaporator paths, the primary superheat thermal and hydraulic representations including biasing valves and attemperators, and the final superheat thermal and hydraulic models.

The control logic for the attemperators, drum level, and turbine throttle valve are illustrated in Figures E.4-7 through E.4-9. The biasing valve control logic is presented in Section 5.3.

E.4.2 Solar Simulation Results

The results from three case studies are presented here. Case 1 and 1A represent the response to a fast rectangular cloud (20 m/sec), 4800 meters wide, covering the heliostat field from west to east and uncovering the field 4 minutes later. The primary difference in the cases is the change in biasing valve control. In Case 1 the biasing valves are held closed by the biasing valve temperature control function even after solar flux is reinitiated. This resulted in a rapid rise in superheater outlet panel temperatures and the model terminated (see Figures E.4-10 through E.4-21).

In Case 1A the biasing valve temperature control function was removed by setting the gain to zero. The simulation continued to its normal termination. These results are illustrated in Figures E.4-22 through E.4-33.

The first two graphs (Figures E.4-22 and E.4-23) illustrate primary and final superheater outlet temperature for each stage on the east and west sides. In the initial stages of the transient these temperatures cool at a rate of 0.5° to 1°C/sec (1° to 2°F/sec). At 4 minutes, when the cloud begins to uncover the field, panel outlet steam temperatures rise at a rate of approximately 3°C/sec (5°F/sec) as the cloud clears. Peak temperatures are effectively controlled by the attemperator system and do not exceed setpoints by more than 28°C (50°F). The fast temperature rise may be the limiting aspect of this transient for the superheater panels. (Note that the final superheat panels are designated "SS" as opposed to "FS" in the graphs).

Figure E.4-24 illustrates reheat and main steam temperatures at the turbine. The large thermal capacity of the piping has tempered the drop in steam temperatures at the receiver. Main steam temperature drops about $22^{\circ}C$ ($40^{\circ}F$) and reheat temperature about $14^{\circ}C$ ($25^{\circ}F$).

The effect of biasing valve regulation of steam drum pressure is displayed in Figure E.4-25. The turbine is operating in sliding pressure and its inlet pressure drops to about 0.7 kPa (100 psia). Drum pressure rises rapidly approximately 0.06 kPa/sec (8 psi/sec), when the cloud clears, which may exceed manufacturer's recommendations.

Turbine power level and system steam flows are illustrated in Figure E.4-26. Note that turbine power is maintained above 2 MW.

The attemperator flows for the primary and final superheaters are illustrated in Figures E.4-27 and E.4-28. At the beginning of the transient, attemperator flow increases to the east side as available steam flow is dropping and eastern solar flux is still at a maximum. Both first and second-stage attemperation are required to hold steam outlet temperature when the cloud initially clears. These high attemperation rates are required because steam flow has not yet reached its initial value.

Biasing valve action is illustrated in Figure E.4-29. The primary superheater biasing valves close down to regulate steam drum depressurization. The upward valve position spikes are caused by high superheater outlet temperature override logic. Recall the normal temperature control gain was set to zero to allow the biasing valves to reopen when flux was reapplied.

E-9

Drum level variations are illustrated in Figure E.4-30. A high drum level condition develops when heat flux is increased rapidly. This is followed by a rapid decrease in level as the steam drum pressurizes.

The evaporator circuit flows and qualities are illustrated in Figure E.4-31. The prediction of flashing at the pump suction for approximately a 60-second duration is also illustrated.

The last two figures, E.4-32 and E.4-33, illustrate the average panel metal temperatures used in the convection and radiation heat loss circulations.

Case 2 represents the predicted response to a round cloud travelling west to east a 6 m/sec. The cloud area is equal to half the area of the collector field and moves tangent to the southern edge of the field.

The predicted parameters are illustrated in Figures E.4-34 through E.4-45. These results illustrate the biasing and attemperator systems adequately control temperature. Some valve cycling is predicted. Drum level control appears adequate as well. Refer to the graphical data for more detail.

E.5 TRANSIENT TEST DATA

Test data was taken during the week of June 13, 1983. The following seven individual plant transient tests were run:

- A step up in power of greater than 10 percent from 40 MW followed by a step down back to 40 MW
- 2. A burner sequence test at 40 MW changing the burner pattern at constant load
- 3. A ramp from 40 MW to 80 MW in 10 minutes
- 4. A rapid unloading of greater than 10 percent from 80 MW followed by a loading back up to 80 MW
- 5. A ramp down from 80 MW to 40 MW in 10 minutes
- 6. A ramp from 25 MW (minimum load) to 65 MW in 20 minutes followed by a ramp down from 65 MW to 25 MW in 20 minutes
- 7. A step down from 36 MW to 25 MW and back up to 36 MW

A detailed description of test procedures and data analysis has been prepared and issued separately, due to its very detailed nature.

E-10

REFERENCE

1. "Advanced Continuous Simulation Language (ACSC)," Mitchell and Gauthier, Assoc, Inc., 1981, Version 7.

FIGURE E.3-1

NEWMAN I FOSSIL BOILER GAS PATH SIMULATION BLOCK DIAGRAM

> 0EL 1/19/83

κ.

SCANS 1-400

STONE AND WEBSTER ENGINEERING CORPORATION

STONE AND WEBSTER ENGINEERING CORPORATION

SCANS 1-400

STONE AND WEBSTER ENGINEERING CORPORATION

FIGURE E.4-2

NEWMAN I TRANSIENT SIMULATION

SOLAR STEAM GENERATION MODEL

.

FIGURE E.4-5

NEWMAN I TRANSIENT SIMULATION

SECONDARY SUPERHEAT MODEL

SECONDARY SUPERHEATER HYDRAULIC MODEL

FIGURE E.4-7

DRUM LEVEL CONTROL

FIGURE E.4-8

THROTTLE VALVE CONTROL

FIGURE E,4-9

JOB CMS 23 SEP 1983

STONE AND WEBSTER ENGINEERING CORPORATION

I

JØB

JOB CMS 23 SEP 1983

STONE AND WEBSTER ENGINEERING CORPORATION

JOB CMS 23 SEP 1983 STONE AND WEBSTER ENGINEERING CORPORATION

JOB CMS 23 SEP 1983

STONE AND WEBSTER ENGINEERING CORPORATION

APPENDIX F

RECEIVER SUPERHEATER HOT TUBE ANALYSIS REPORT

.
IIE/10/14/1761/13/P OCTOBER 1983

TRANSIENT ANALYSIS OF A SOLAR RECEIVER SUPERHEATER TUBE.

na nateration Participation Participation

INSTITUTO DE INVESTIGACIONES ELECTRICAS DIVISION FUENTES DE ENERGIA DEPTO, FUENTES NO CONVENCIONALES DE ENERGIA

TRANSIENT ANALYSIS OF A SOLAR RECEIVER SUPERHEATER TUBE

DR. EDUARDO GLEASON GARCIA ING. CARLOS RAMOS BERUMEN

APARTADO POSTAL 475 CUERNAVACA; ESTADO DE MORELOS MEXICO 62000.

TABLE OF CONTENTS

	Abstrac	t.						化学物	NU T
I.	Introdu	etion							1
II.	Mathema	cical Modelin	ns of	ວ ′Sur∘	erheate	r Tube			3
	II.1. F	roblem Descr:	iption	'n					3
	II.2. M	delins Requi	remer	nts					3
	II.3. M	deling Appro	sch						4
	II.4. M	del Descript	ion						7
	I	.4.1. Model	Equat	ions					8
		II.4.1	•1• F	lypoth	eses				8
		II.4.1		Contin	uity Ea	ustion			10
		II.4.1	.3. E	nerdy	Conser	vation	Equat	ion	11
		II.4.1	.4. I)ynami	c Equat	ion fo	r Meta	1	12
			E	inerdy	Storas	e			
		II.4.1	.5. M	iomerit	um Equa	tion			12
		II.4.1	.6. M	iodel	Şimrlif	icatio	n		14
		II.1.1	+7• H	leat T	ransfer	Mecha	nismes	i i	15
		II.4.1	.8. 5	team	Propert	ies Re	latior	IS	19
III.	Comput	r Simulation	3						22
	III.1.	Steady State	Srec	ifica	tion				22
		III.1.1. Non	inal	Condi	tions				22
	III.2.	Steady State	Ferf	orman	C 8				25
	III.3.	Transient An	alysi	5					30
		111.3.1. Ald	orith	m Desi	criptio	F1			30
		III.3.2. Tra	nsien	it Res	ponse t	o a Sti	ep in	Mass	30

		Flow Rate	
	111.3.3.	Transient Response to a Step	PIVESTEGACIONES FLECTRICAS
		in Solar Heat Flux	ಲ್ಲಿ ಕಾಂಕ್ ೧೯೧೯ / ಇನ್ನ ನಿರಾಮಕ್ ಕ
	III.3.4.	Transient Response to a Cloud	46
		Passade	
IV,	Conclusions		73
	References		74

ii

.

.

F

1

	LIST OF FIGURES	
isure No.	Title	PREPrinto DE
1	Squematic Representation of the SH Tube	SALASSICATIONES HATTORES
2	Heat Transfer Mechanismes	16
3	Solar Flux Density Profile	24
4	Transient Simulation Flow Diagram	31
5	Temperature Profile Alons Tube Axis	33
	+50%,-50% Ster in W	
6	Pressure Profile Along Tube Axis	34
	+50%,-50% Step in W	
7	Enthalpy Profile Alons Tube Axis	35
	+50%,-50% Step in W	
8	Metal Temperature Profile Alons Tube Axis	36
	+50%,-50% Step in ₩	
9	Temperature Transient Response,Steps in W	37
10	Pressure Transient Response/Steps in W	38
11	Enthalpy Transient Response,Steps in W	39
12	Metal Temperature Transient Response,	40
	Sters in W	
13	Temperature Transient Response,Steps in W	41
14	Pressure Transient Response,Steps in W	42
15	Enthales Transient Reseonse,Stees in W	43
16	Metal Temperature Transient Response,Steps	44
	in ₩	
17	Temperature Profile Along Tube Axis +50%,	47
	-50% Step in Solar Heat Flux	

iii

	۴a	ste
18	Enthalpy Profile Alons Tube Axis +50%,-50%	5 48 UTO DE
	Ster in Solar Heat Flux INVES	FIGACIONES FIECTRICAS
19	Notal Temperature Profile +50%,-50% Step in	49
	Solar Heat Flux	
20	Temperature Transient Response,Steps in Solar	50
	Heat Flux	
21	Enthalpy Transient Response;Steps in Solar	51
	Hest Flux	
22	Metal Temperature Transient Response,Steps in	52
	Solar Heat Flux	
23	Temperature Transient Response,Steps in Solar	53
	Heat Flux	
24	Enthalpy Transient Response,Steps in Solar	54
	Heat Flux	
25	Metal Temperature Transient Response,Steps in	55
	Solar Heat Flux	
26	Pressure Profile Alons Tube Axis, Cloud From	58
	West-East	
27	Enthalpy Profile Along Tube Axis,Cloud From	59
	West-East	
28	Temperature Profile, Cloud From West-East	60
29	Metal Temperature Profile, Cloud From West-East	61
30	Inlet Mass Flow Rate, Cloud From West-East	62
31	Inlet Temperature, Cloud From West-East	63
32	Inlet Pressure, Cloud From West-East	64

iv

Pase

33	Solar Heat Flux Profile;Cloud From West-East	. 65
34	Outlet Pressure: Cloud From West-East	66
35	Oulet Enthalry, Cloud From West-East	67
36	Outlet Temperture, Cloud From West-East	68
37	Outlet Metal Temperature, Cloud From	69
	West-East	
38	Outlet Tempearture, Cloud From West-East	71

LIST OF TABLES

	LIST OF TABLES		
Table No.	Title	Page	र्म (<u>१९</u> (उम्में क्षेत्र)
I	Simulation conditions	23	
II	Nominal values of B & W	27	•
III.e.	B & W Steady State Performance	28	
III.b.	IIE Steady State Performance	29	

위한

ABSTRACT

NICTITI INVESTIGACIONES

This report presents the work performed by the Instituto^{REG} de^{RICAS} Investigaciones Eléctricas (México), and it represents the contribution to NEWMAN UNIT 1 SOLAR REPOWERING, EL PASO ELECTRIC COMPANY PRELIMINARY DESIGN, in collaboration with Stone & Webster Eng. Corp., responsible of architect/ensineer services. El Paso Electric Co. is the prime contractor to the Departament of Energy of the United States of America.

A dynamic mathematical model is developed to analyse time-space performance of superheater panels or tubes of a water/steam external solar receiver.

Model implementation in a disital computer is described and simulation results are presented for typical transient situations. Model output is compared, under steady and transient states, in cases where data are available from other participants (Stone & Webster ,Babcock & Wilcox), Results obtsined provide detailed information of time-space characteristics rerformance that comrlements input-output dynamic data of Stone & Webster. As a consequence of this results control aspects and control stratedies are suggested for future developments.

I.INTRODUCTION

In a central receiver solar thormal rower plant, the receiver over component can be considered as the boiler of a conventional fossil plant from the point of view of conversion from primary energy to thermal energy. However, the analysis of heat transfer in a solar receiver requires more detailed methods and mathematical models to predict the performances than in a conventional boiler (1).

Under normal operating conditions only in short periods of time the receiver will be in a steady state, most of the time it will be in a transient state. Three kinds of transient conditions may be identified, first, is the one corresponding to intrinsic evolution of solar radiation, second, is the random cloud passages affecting incident solar power and third, the daily startup and shutdown of operation.

Mathematical modeling of these transient states is very usefull for the preliminary and detailed ensineering design of solar receivers. Design requirements of reliability and longevity and operating conditions make the receiver one of the most critical components of solar power plants (2). Industry standards must be complemented by analytical tools to investigate potential operational and control problems (1,3).

The objective of this study is to develop a mathematical model of a superheater ranel or tube of a water/steam external solar

- 1 -

receiver, such that time-space performance may be evaluated

Charter II contains a description of the problem, a **discussion** of modeling and the set of equations obtained. **Computer** implementation of this model is presented in charter III and also the results obtained by disital simulation for specific transient state situations. II.MATHEMATICAL MODELING OF A SUPERHEATER TUBE.

INSTITUTO DE INVESTIGACIONES ELECTRICAS

II.1.PROBLEM DESCRIPTION.

The external water/steam solar receiver is integrated by 18 panels arranged in a partial arc facing North. There are 4 economizer panels and 14 interlaced boiler/superheater panels and they are simetrically located around receiver periphery. There are three primary superheater passes and two high pressure final superheater passes.

Any transient i.e. in solar flux density, in steam mass flow rate etc. leads to different time-space characteristics of absorbing panels. The evaluation of this change must be accomplished at least for the hottest panels of the receiver and for our case this corresponds to the superheater sections.

Mathematical modeling and simulation of these phenomena may prevent catastrophic situations and may be used to design more performant control strategies.

II.2.MODELING REQUIREMENTS.

The mathematical model will be used to predict time-space characteristics of a superheater tube or a panel, disital computer simulations will be accomplished.

The thermophysical properties of the superheater tube or panel are given as input data (diameters, length; metal density,

- 3 -

thermal conductivity, etc.).

Simulation conditions must be specified i.e. time history stores the inlet (pressure, temperature, steam flow rate, etc.), Efficiences the time-space distribution of incident solar heat flux at tube or panel surface.

The model must be able to analyse any transient condition at one or more of the inputs. Only open-loop responses are considered, no extra control actions are included.

II.3.MODELING APPROACH.

Given that the purpose of the model is not to describe microscopic details ocurring at the superheater, but more to evaluate the overall performance of this component i.e. to detect by simulation catastrophic situations or to redesign the controllers of temperature, some assumptions can be made. Fluid flow and heat transfer phenomena are, in their most seneral form, doverned by a system of time-space partial differential equations (4). In general it is a formidable task and, may be impossible, to find a closed solution for this system. Still numerical solutions for time varying three dimensional case involve computer time and cost that would be prohibitive. In general the two principal methodologies of analysis i.e. distributed and lumped parameters models (3) with different degrees of complexity are the most commonly

- 4 -

used.

In lumped parameters models, the system to analyse is investigationes in a finite number of sections, the number of which dependents on the required accuracy. The space dependency is represented by this sections, and therefore the model is simplified to a set of ordinary non linear differential equations with time as independet variable and with the order defined by the number of sections.

Distributed parameters models involve the solution of time-space partial differential equations using well-known approaches over the space dependency i.e. finite difference methods (5), time integration is accomplished after this.

Given that the model will be built to predict the performance of a single superheater tube, some simplifications are possible setting still a good accuracy. Tube dimensions range: external diameter of 1.125 inch, wall thickness in the order of 0.237 inch, gives the possibility of considering the radial and circumferential temperatures effects in a single average temperature. In other words for a specific section of the tube it can be assumed that the differences between temperatures along the radial and circumferential directions are not considerable.

It has been shown that the hypothese of considering the performance of a single tube as representative of the whole

- 5 -

Panel, depends on the uniformity of the lateral heat flux distribution (6). In our case this is not a restriction infituto de is possible to specify the solar flux distribution ELECTRICAS

Most of Published dynamic models for fossil boilers or solar receivers only consider one dimensional case with time as independent variable. Heat transfer studies made for Barstow's solar one receiver component utilize a model with the following principal characteristics: Lumped parameter approach, a tube as representative of the performance of the whole panel, three sections of analysis (subcooled, saturated an superheated sections), one point at each section reflecting the average performance (1,6,7).

A sodium cooled receiver for Almeria Pilot Plant, has also been analysed with time-axial distribution of temperatures along the sodium pipes, seemingly using a distributed parameter methodology. Heat transfer between nodes due to radiation, convection, conduction and mass flow has been evaluated with a computer program which solves the heat conduction equation for steady state and transient conditions (8).

For the French solar thermal pilot power plant the simulation studies for the receiver were made with a lumped parameter methodology, the receiver is divided in zones. Modeling includes calculation of metal mean temperature and molten salt temperature at the output of each zone and also a more accurate

- 6 -

evaluation of the performance at two points, the more expected and the hottest, output at this points are: external STATUS DE internal metal temperatures, and molten salt temperature (NVESTIGACIONES ELECTRICAS

There are many dynamic analysis reported for conventional boiler systems, we have mentionned only those concerning solar receivers. From the above discussions we may conclude the following.

- A dynamic model for the one dimensional case (axial distribution), furnishes desired information about the performance of the superheater tube.
- For this case a lumped parameter approach gives more versatility. If only the output of the superheater tube or panel is of interest this can be easily implemented and this is not possible to do with the distributed parameter methodology.
- A detailed axial distribution dynamic evaluation of properties along the tube can also be done (that is our objetive). The same level of accuracy than distributed parameters approach can be obtained by varying the number of sections to analyse.

II.4.MODEL DESCRIPTION.

- 7 -

Development of the model is based on the follow considerations:

- INSTITUTO DE INVESTIGACIONES FLECTRICAS
- The superheater(SH) tube is divided in N volumes (Figure
 1), along the axis there is an incident solar flux density
 profile, its distribution is time dependent.
- Tubes are jointed by a web to form a panel, incident power along the tube is obtained from solar power density multiplied by the projected area of the tube plus the exposed area of the web. In this way conduction heat transfer between the tube and web will be approximated. No conduction model of this components will be included.

II.4.1.MODEL EQUATIONS.

II.4.1.1.HYPOTHESES.

In addition to a lumred parameter methodology the following assumptions are made: (1,10,11,12).

- Fluid properties at any given cross section are uniform.
- Axial and lateral conduction along the tube is not considered.

outlet tions

1VOl-m

INSTITUTO DE INVESTIGACIONES FLECTRICAS

12(2,2)

NOTET

,

INLET OF

VOLES

- Uniform metal properties (thermal conductivity, density, etc.).
 STITUTO DE
- Thermodynamic equations and simplified steam table^{BICAS} properties fits will be used to obtain the thermodynamic properties required.

故心知道你不知道

- Radiative interchanse between adjacent tubes is not included.
- Las time associated to mass transport is negligible compared to state variables time constant.
- Internal energy is approximated by the enthalpy, the contribution of the term pressure multiplied by specific volume is neglected. In this way, energy equation complexity is reduced without significative loss of accuracy.
- Pressure drop includes only friction and gravity losses,
 momentum losses are neglected.

II.4.1.2.CONTINUITY EQUATION.

Mass conservation principle sives:

ERATE OF CHANGE OF STORED MASS3 = ERATE OF MASS INFLUX3 - ERATE OF MASS EFFLUX3 For a fluid flow through a lumped component, the equation is reduced to the form: INSTITUTO DE

(1) ELECTRICAS

Vdpa∕dt=Wi-Wo

Where:

V = Fluid volume Wi = Inlet mass flow Wo = Outlet mass flow pa = Average density

II.4.1.3.ENERGY CONSERVATION EQUATION.

ERATE OF CHANGE OF STORED ENERGY] = ERATE OF ENERGY INFLUX] - ERATE OF ENERGY EFFLUX] + ERATE OF HEAT INPUT] - ERATE OF WORK OUPUT]

For a lumped component:

V d(paha)/dt=Wihi - Woho + Q - W (2)

Where:

hi = Inlet enthalpy

ho = Outlet enthalsy

ha = Average enthalpy

Q = Heat input

W = Work done, zero in our case

II.4.1.4.DYNAMIC EQUATION FOR METAL ENERGY STORAGE

CRATE OF CHANGE OF STORED ENERGY] = CRATE OF ENERGY INPUT] - CRATE OF ENERGY OUTPUT]

VmCrmpm dTma/dt≕ Qi - Qo (3)

INSTITUTO DE

ELECTRICAS

INVESTIGACIONES

Where:

Vm = Metal volume

Comm Metal specific heat

ρm = Metal density

Tma= Metal average temperature

Qi = Heat rate absorbed by the metal

Qo = Convective heat transfer rate to cooling fluid

II.4.1.5.MOMENTUM EQUATION.

Momentum conservation is expressed in terms of the following relationship:

ERATE OF CHANGE OF STORED MOMENTUMD- ERATE OF MOMENTUM INFLUXA - ERATE OF MOMENTUM EFFSHXDTO DE + ENET FORCE APPLIEDJ TIGAGIONES ELECTRICAS

For a fluid flow, neglecting inertia terms, we have:

Pi - Po=
$$KFW^2$$
 /pa + Lpas (4a)
 $KF=f$ riL/2soAi (4b)

Where:

Fi = Inlet pressure
Fo = Outlet pressure
ri = Internal radius
Ai = Internal area
so = 32.161bm/1bf ft/sec
f = Friction factor
W = Mass flow rate
L = Tube length

s = Acceleration due to sravity

Friction factor is obtained from seometry, material properties and manufacturers data (15); for fully turbulent flow the following simplified relation may be used:

Where:

Re=Reynolds Number

II.4.1.6. MODEL SIMPLIFICATION.

Certain authors have proposed simplifications to the above equations. Masses of metal and fluid may be lumped in an equivalent effective mass, in this way Eq (3) can be avoided, instead an algebraic relation for an equivalent metal steam temperature may be used (11). In our case we will not do this assumption, because accuracy requirements over metal temperature profile along the tube.

Assuming steam flow is incompressible inside the superheater tube; inlet and outlet mass flow rate will have the same value (1), then differential equation (1) is eliminated, and the density along the tube will be equal to its inlet value (inlet conditions are time varying). Our early simulations have shown the validity of this assumption and it is included in the final version of our model. Some numerical integration problems may araise due to very fast transient responses of enthalry, this is a characteristic of stiff type differential eaustion reference (1) proposes to eliminate the derivative systems, term of equation (2) obtaining an algebraic solution for in this way a closed form solution for fluid internal energy, temperature may obtained. We be have avoided this

simplifications by using a numerical integration routine specially conceived for solving stiff differential systems and a equations.

In short, the only significant simplification to the model will be elimination of differential equation (1), the consequences will be discussed latter.

II.4.1.7.HEAT TRANSFER MECHANISMES.

Heat transfer at the metal surface involves the evaluation of the following phenomena, Figure (2).

A fraction of receiver incident solar radiation commins from heliostat field is reflected by the absorbing surfaces, reflectivity of metal takes account of this loss:

$$Qref = \beta Qinc \tag{6}$$

where:

```
Qref = Reflected Fower
```

 β = Reflectivity

Qinc = Incident power

Reflectivity is considered a constant.

Radiative losses at the receiver are modeled considering Steffan-Boltzmann law:

INSTAUTO DE

A FOIRCES

REAL PROPERTY OF REAL

$$Qr = \tau \epsilon Ar (Tma^{4} - Ta^{4})$$
where:

$$Qr = Radiative heat loss$$

$$T = Steffan-Botzmann constant$$

$$\epsilon = Metal emissivity$$

$$Ar = Radiation area$$

$$Tma = Absolute average metal temperature$$

$$To = Absolute air temperature$$

$$Convective heat losses are obtained from (13):$$

$$Qc = Achc (Tma - To)$$
(8)

where:

Qc = Convective heat losses Ac = Convective area hc = Convective heat transfer coefficient Tma = Average metal temperature To = Air temperature.

Conduction heat losses are neslected (6). From equations (6), (7), (8), metal heat absorption is:

Heat transfer from external tube surface to fluid is dug TTEP of radial conduction through tube wall and forced convection from ECECTRICAS

$$Qf = Hmf (Tma - Tfa)$$
(10)

where:

Qf = Heat transfer rate to fluid

Tfa = Average fluid temperature

Hmf = Overall heat transfer coefficient

Evaluation of Hmf is made with metal resistance and inside convective film heat transfer coefficient:

1/Hmf =E1/AiHi3+Eln(ro/ri)/2πLkm3 (11)

where:

Ai = Inner heat transfer area

Hi = Inside film convection coefficient

ro = External radius

ri = Internal radius

L = Tube length

Km = Thermal conductivity of metal

INVESTIGACIONES

Inside film convection coefficient is determined by using Dittus and Boelter correlation (14):

Nu	Ξ	0.023 Re ^{0 8} Pr ^{0 4}	(12)
Re	E	Di W/µ	(13)
Pr	H	Cr µ∕k	(14)
Hi.	=	Nu k/Di	(15)

Where:

Nu = Nusselt Number Re = Reynolds number Pr = Prandtl number Di = Internal diameter W = Mass flow rate µ = Fluid viscosity Cr = Fluid specific heat k = Fluid thermal conductivity

II.4.1.8.STEAM PROPERTIES RELATIONS.

With the aid of model equations, pressure and enthalpy of superheater steam are defined. Other thermodynamic properties of as temperature, density, thermal conductivity, etc. Stephes evaluated by functional relationships involving these two independent intensive properties. Use of steam tables is not adequate to dynamic computer simulations.

Steam temperature relation was obtained by non linear least squares minimisation of the following expression (16).

T= C1 + C2P + C3h + C4Ph (16) Range of validity is:

> Τε [740, 1090] Ρε [360, 2100] hε [1274.6, 1572.2]

where:

h = Steam enthalpy (Btu/lbm)
P = Steam pressure (psia)
T = Steam temperature (F)
C1 = -2046.96

C2 = 0.422947

- 20 -

C3 = 1.990311

INSTITUTO DE INSTITUTO DE INVESTICACIONES ELECTRICAS

C4 = -0.000274

With this relation the residual standard deviation has a value of 4.6 deg. F, i.e. values of temperature are predicted with a high accuracy.

Thermal conductivity and viscosity are calculated with relations given by reference (12), pages 144-146.

Prandtl number was calculated by means of a similar expression to that employed to predict temperature:

Pr=0.457505+0.000467T+0.001286P-0.00001PT (17) Finally given that tube inlet properties are time varying, with pressure and temperature other properties needed by the model are obtained (enthalpy, density, etc), with a general formulation in a very accurate way for any thermodynamic state. Formulation is from (12) and was implemented in a digital program(19).

- 21 -

III.COMPUTER SIMULATION.

III.1.STEADY STATE SPECIFICATION.

INSTITUTO DE INVESTIGACIONES ELECTRICAS

Steady state performance for nominal conditions has been supplied by Babcock & Wilcox (B & W), designer of the solar receiver under analysis (17). Available are two computer printouts, one for nominal operating conditions and the other for upset and unbalanced conditions. On this latter case nominal incident heat flux on each zone is enhanced by a given factor, also mass flow rate is diminished i.e. this corresponds to a critical case.

III.1.1.NOMINAL CONDITIONS.

B & W divides tube or ranel in twelve zones along the height, the lower and upper zones are almost half the lenght of the other zones. For each zone fluid outlet conditions and tube metal average temperature are specified for the nominal operating point. Following is a list of principal simulation conditions (Table I).

- 22 -

Table I

-Site specification: INSTITUTO 1 2 2 Location: El Paso Texas, Newman Unit 1, El Paso Electric Cours Time: 12 Noon, winter solstice ELECTRICAS Wind velocity: 18.04 (ft/s) Air temperature:(57 F) -Superheater sanel specifications: Material; Incolog 800H Number of tubes: 26 or 29 Exposed heigth: 85 ft Tube internal diameter: 0.888 inch. Tube external dismeter: 1.125 inch. Web width: 0.273 inch. Web thickness: 0.187 inch. Metal specific heat: 0.11 Btu/lbm F Metal density: 353.33 lbm/cu ft Metal thermal conductivity: 0.00333 Btu/s ft F Emissivity of tube: 0.9 Reflectivity: 0.05 -Fluid inlet conditions: Five sets depending on type of superheater to be analysed, i.e., primary superheater 3 (PSH3); Number of tubes: 29 Pressure: 1969.53 psia Enthalpy: 1391.36 Btu/1bm Temperature: 873.06 F Mass flow rate: 136429.1 lb/h -Solar flux density profile:

Five profiles depending on location of superheater, i.e. For PSH3, see Fig.(3)

III.2.STEADY STATE PERFORMANCE.

NSHIH 014 WVEETIGACKOMES

Babcock & Wilcox had sent us printouts for nominal conditions only, for the purpose of dynamic simulation the need of several steady states is evident. Because this, we had developed and implemented a steady state model from dynamic equations.

A short description of the algorithm follows:

- From equation (3) equal zero, heat absorbed by the metal and fluid are the same, and using the expressions (9), (10), it is obtained a quartic rolynome in metal temperature.
- From Pressure drop, equation (4), and given that average density equals inlet value, the pressure at the outlet of each volume is evaluated.
- System solution is obtained by iteration, first, average temperature is approximated to its inlet value, then solution of quartic equation gives the average metal temperature, with this value, heat losses are evaluated, eqs (6,7,8), and so heat transfer to metal, eq.(9). After this, outlet enthalpy is obtained from equation (2) and with outlet pressure, temperature is determined. This fluid average temperature is substituted in quartic equation and process is repeated until the new value of

- 25 -

temperature compared to the old one, is less than or equal to a fixed value (10^{-7}) .

INSTITUTO DE INVESTIGACIONES ELECTRICAS

Babcock & Wilcox suggested the analysis of superheated tube under worst case operating conditions, i.e. the hottest panel of the receiver under upset and unbalanced conditions. This corresponds to the outlet panel of the primary superheater (PSH3) and it is located 45 to 56.25 degrees from north.

Simulation conditions are those of table I except for the mass flow rate and solar flux density, the first is multiplied by 0.943 and for each tube:

$W = 4436.2979 \, 1bm/hr$

For solar flux, table II shows: the nominal values given by B & W, the flux multiplier for each zone and the values we have obtained from the nominal for our own zone division.

Steady state performance is given by Table III a and b.

Table II

anst quitte de anglisticastemes Activitases

	B & W		IIE	• •
X(ft)	Q(Btu/h sa.ft)	FQ	X(ft)	Q.FQ
4.00	9829.32	1.251	7.08	20000.00
16.70	34561+16	1.250	14.17	61250.00
19.40	76415.06	1.218	21.25	97000.00
27.10	92902.94	1.206	28.33	108500.00
34.80	84659.00	1.195	35.42	100750.00
42.50	78000.37	1.182	42.50	92000.00
50.20	69439.37	1.212	49.58	85500,00
57.90	69756.50	1.171	56.67	81250.00
65.60	64683.28	1.151	63.75	76000.00
73.30	53268.61	1.181	70.83	65000.00
81.00	26951.36	1.141	77.92	44250.00
85.00	8561.02	1.211	85.00	15500.00

Table III.a.

B & W Steady State Performance.

X	P'	T	h	Τn	Usm*
(ft)	(rsia)	(F)	(Btu/lbm)	(F)	(Btu/h se.ft F)
4.00	1965.4	873.20	1396.70	877.50	1067.01
11.70	1960.4	882.00	1398.00	926.80	1003.90
19.40	1955.1	904.70	1413.70	1015.10	995.79
27.10	1949.7	933.20	1432.90	1068.50	985.78
34.80	1944.1	959.20	1450.00	1080.10	978.20
42.50	1938.4	983.00	1465.40	1091.90	973.45
50.20	1932.5	1004.50	1479.20	1102.00	970.59
57,90	1926.5	1025.60	1492.50	1119.90	958.97
65+60	1920.4	1044.60	1504.50	1129.40	968.24
73.30	1914.20	1060.20	1514.20	1128.90	968.09
81.00	1908.00	1066.00	1517,90	1092.60	968.03
85.00	1900.80	1065.50	1517.80	1063.90	967.64

*Apparently Usm represents an overall steam-metal transfer coefficient.

Table III.b.*

IIE Steady State Performance.

PISTIUMO DE NUMENDIGACIONES SUM TRACAS

X	P	Т	h	Tni	Hi**
(ft)	(psia)	(F)	(Btu/lbm)	(f)	(Btu/h sa.ft F)
7.08	1964.31	878.21	1392.82	893.41	1115.63
14.17	1959.10	891.06	1401.54	967.63	1110.35
21.25	1953.88	912.98	1416.23	1042.53	1101.99
28.33	1948.67	937.71	1432.74	1083.99	1092+89
35.42	1943.45	960.31	1447.82	1094,53	1084.66
42.50	1938.23	980.55	1461.32	1101.15	1077.28
49.58	1933.02	999.00	1473.63	1109.34	1070.52
56,67	1927.80	1016.26	1485.16	1119,70	1064.15
63,75	1922.59	1032.07	1495.67	1127.09	1058.25
70.83	1917.37	1044.97	1504.28	1122.88	1053.39
77.92	1912.15	1052.50	1509.36	1098.52	1050.55
85.00	1906.94	1052.63	1509.59	1054.68	1050.51

*Friction factor may be calculated by program, however, this results correspond to a fixed value of 4.3×10^{-3} , obtained from B & W data pressures. Fluid density has a fixed value of 2.87 lbm/cu ft.

**Represents inside film convection coefficient.

As can be seen a close adreement between steady states is obtained

INSTITUTO DE INVESTIGACIONES ELECTRICAS

III.3. TRANSIENT ANALYSIS.

. III.3.1.ALGORITHM DESCRIPTION.

Model equations given in charter II were implemented in a Fortran computer code. Fig.(4), shows a flow diagram.

III.3.2. TRANSIENT RESPONSE TO A STEP IN MASS FLOW RATE.

Two cases are analysed, for upset and unbalanced steady state conditions (III.2), nominal mass flow rate (W) has been varied +50%, -50%.

Simulation conditions were:

- Fixed inlet conditions except W
 - T = 873.06 F
 - P = 1969.53 psia
 - h = 1391.08 Btu/1bm
 - $\rho = 2.87$ lbm/cu ft
- Steady state

As siven by tables II and III.b.

- Transient

From:

FIG. 4 TRANSIENT SIMULATION FLOW DIAGRAM

0-50 sec; steady state is maintained

50-300 sec; step in W is introduced (+50% or -50%). INSTITUTO DE 300-550 sec; return to nominal value of W ELECTRICAS Time step integration fixed by library subroutine

Program evaluates pressure, temperature, enthalpy, inside film convection coefficient, Reynolds number, metal temperature, heat transfered to metal and fluid, radiation and convection losses. Figs.(5,6,7,8), show time evolution of T,P,h,Tm, for selected instants of time. Time history for tube outlet characteristics are shown in Figs.(9 through 16).

Axial characteristics shown correspond to steady states attained when forcing function W is up or down from nominal value. A non-linear performance is evident for the same absolute variation of W. Metal temperature profiles (Fis.8), show a maximum around 60 ft. heisth and the axial evolution tends to follow that of solar heat flux. This result shows the need of evaluation of axial metal temperature distribution for design purposes, tube or panel mean temperature would not reflect realistic thermal stresses, variations from this value are 25%, Also it is important to define the heisth where the maximum occurs for a siven solar flux profile.

Figures (9 through 12) correspond to a negative step in W and return to nominal value and figures (13 through 16) to a positive step and return to nominal value. It is observed the different settling times for the same variable, this

- 32 -

- 35 -

•

- 42 -

- 44 -

non-linearity must be taken in account when designing linear controllers. Pressure response is directly proportions into des mass flow rate dynamics, and in our case is a stepwise, Super GACIONES ELECTRICAS modeling assumptions. Enthalpy transient responses are faster than fluid and metal temperature. In all cases characteristics shown are outlet conditions excert Figs.(12,16) showing maximum metal temperature transient responses at a tube height of 60 ft.

III.3.3.TRANSIENT RESPONSE TO A STEP IN SOLAR HEAT FLUX.

- Solar flux (Q) has been set to a fixed value along the tube axis. A steady state was obtained and starting from this conditions a transient analysis was made for step variations of solar flux around the nominal value. All other inlet characteristics were maintained to their steady state value.
 - Inlet conditions were:
 - T = 873.06 F
 - F = 1969.53 psia
 - h = 1391.08 Btu/1bm
 - $\rho = 2.87$ lbm/cu ft

- Transient

From: 0 - 50 sec. Q = Qn = 48020.69 Btu/h 50 - 300 sec. Q = Qn + 50%.-50%300 - 550 sec. Q = Qn

- 45 -

Figures (17-19), show tube axis profiles for T,h,Tm. Pressure profile is not shown, it remains the same for any Q. Non linearities are less intensive than those associated to W changes.

Time history for tube outlet characteristics are shown in figures (20-22) and (23-25), the first group correspond to a positive step in Q and then return to nominal value and the second to a negative step.

Settling times for this cases are near to 100 sec., with this information and given that settling times for mass flow rate as varging input (III.3.2) are similar to this value it follows that two control strategies may be of interest, first a proportional control involving a relation between Q and W and second the same but using a feedforward control scheme.

III.3.4.TRANSIENT RESPONSE TO A CLOUD PASSAGE.

Stone & Webster sent us a computer printout (18) corresponding to a simulation of superheaters performance when a cloud from west to east travels over heliostat field. These data contain time history of inlet and outlet characteristics of all superheater panels. Our simulation will complement this information by means of evaluation of time-space evolution, under this conditions, of metal temperature and thermodynamical properties.

We will present results corresponding to the hottest

- 46 -

- 54 -

- 55 -

superheater panel as suggested by Rabcock & Wilcox (17), see

(III.1.1).

INSTITUTO DE NVETIGACE INAS ELECTRICAS

Simulation conditions were:

- Cloud;

Infinitely long wide: 4800m speed: 20 m/s direction: West to East

- Steady state inlet conditions;

```
P = 2028.9 psia
```

T = 877.07 F

h = 1391.18 Btu/1bm

 $\rho = 2.96 \, lbm/cu.ft$

Qn = 160.09 Btu/s/tube

W = 5029.32 lbm/h/tube

- Transient conditions from Stone & Webster

Time varying inputs

Transient solar heat flux as given in fig.(33)

Steady state profiles were obtained for this specific conditions. Friction factor was obtained from pressure drop data sent by Stone & Webster, this drop is several times less than that specified in table III. This difference is a consequence of program run time optimization for Stone & Webster simulation (18). Fisures (26 through 29) show P,h,T,Tm profiles for selected instants of time. It can be observed that the initial appropriate final steady states are not the same, this is due to different ELECTRICAS inlet conditions for both cases.

Time varying inlet characteristics are shown in fig.(30-32) and transient solar heat flux in figure (33).

We have maintained the steady state conditions for 50 sec., as can be seen in fiss. (30-33). It is shown a closed agreement between steady state outlet characteristics at time 0 sec. (Data from Stone & Webster) and the values obtained from our model for time greather than cero until 50 sec. (Figs.34-37).

The inlet characteristics are controlled variables, control action W can be considered as preliminary i.e. if outlet steam temperature is diminishing in time there is not reason to increase W under this conditions, this can be observed in figures (30,36).

Inlet and outlet pressure evolutions are very similar, Figs.(32-34), sensitivity of outlet pressure to variations of control action W is very low, this is due to the friction factor used.

Average metal temperature is shown for a tube height of 81.46 ft. figure (37), for this special case of a constant value profile of solar flux, the maximum metal temperature coincides at this tube location. It has been shown that for a more

- 57 -

- 58 -

- 60 -

- 61 -

- 62 -

- 64 -

- 65 -

- 68 -

realistic solar flux profile this maximum occurs in a lower heisth (III.3.2). Given that the control action is conceived of to resulate superheater steam outlet temperature and also a flux profile (NVESTIGACIONE to shown that for a more realistic solar flux profile (III.3.2), this temperature is maximum at the outlet and metal temperature maximum value is not located at this position, there is a risk of up setting metal maximum design temperature. This possibility is observed in fig.(37) for a time around 100 sec.

With the Purpose of comparing the outlet characteristics evaluated by our model and those furnished by Stone & Webster, fis.(38), shows time evolution of outlet steam temperatures. is observed a difference around 1% for the first and last It 150 sec. and a maximum difference of 19% in 325 sec. i.e. when solar heat flux starts to increase (fis(33). We believe that this difference is acceptable for preliminary results and comparisons, it can be explained because significant differences between the values of tube inside heat transfer coeffiecient. Stone & Webster used a fixed value for their simulation (18) and in our case this coefficient is evaluated at each time for the siven set of thermodynamic properties, i.e. for:

t	=	50 sec.	Hi	Η	1190
t	F.	326 sec.	Hi	=	64
t	2	550 sec.	Hi	=	1110

- 70 -

Time space modeling of a superheater tube or ranel has been implemented in a digital computer.

We have obtained a close asreement for steady state conditions between our model output and that specified by Babcock & Wilcox and Stone & Webster. For dynamic conditions the performance predicted by our model has been also compared to that furnished by Stone & Webster, the preliminary results obtained show differences in the range of 1% to 19% in steam temperature predictions, seemingly due to values of inside heat transfer coefficients.

The link between our dynamic superheater model and that of Stone & Webster has been established. With the inputs specified by Stone & Webster we can furnish more detailed information of phenomena ocurring along the superheater panels or tubes. We have shown the possibility of using this information to synthesize improved control actions with the purpose of governing and protecting the superheater in a better way.

REFERENCES

1. Asok Ray

Non-Linear Dynamic Model of a Solar Steam Generator. Solar Energy Vol.26.pp.297-306 1981.

2. K.W. Battleson

Solar Power Tower Design Guide: Solar Thermal Central Receiver Power Systems. Source of Electricity and/or Process Heat.

SAND81-8085 April 1981.

3. J.H. Daniels et.al.

Dynamic Representation of a Large Boiler Turbine Unit.

An ASME Publication, Paper Number 61-SA-69

4. Holman J.P.

Heat Transfer

Mc Graw Hill (1972).

5. Faires M.V.

Thermodynamics

Macmillar Co. (1970).

6. K. L. Zondervan et.al.

Comparison of Test Results with a Non-Linear Dynamic Model of a Solar-Powered Once-Through Boiler,

The Aerospace Corporation, El Sesundo, California.

7. Transient Simulation of the MDAC Receiver Test Panel in its STTF Test Configuration.

- 74 -

Aerospace Report ATR-78(7695,02)+02

15 June 1978

8. F.K. Boese, A. Merkel, and et.al. A Consideration of Possible Receiver Designs for Solar Tower Plants. Solar Energy Vol.26. pp 1-7, (1981)

INSTITUTO

9. Carmant C. Hennebica J.P. Description du Modele Hybride Fluxsel Simulant le Comportement Dynamique du Recepteur Solaire de la Centrale THEMIS. Rapport HP-40/78/278, E.D.F., D.E.R. (1978).

10. Adams J. et.al.

Mathematical Modelins of Once-Throush Boiler

Dynamics.

IEEE Trans. Power App. A. systems 84, Feb.1965.

11. Usoro P.B.

Modeling and Simulation of a Drum Boiler Turbine Power Plant under Emergency State Control. M. of Sc. Thesis Mass, Inst. of Tech. (May 1977).

12. Tablas de Vapor. Translation of Steam Tables. The Electrical Research Association. Representaciones y Servicios de Indeniería S.A., México (1970).

13. Wolf.S et al.

Performance Analysis for the MDAC Rocketdyne Pilot and Commercial Plant Solar receivers. DOE Rep, SAND 78-8183, (1978).

14. Handbook of Heat Transfer Mc Graw-Hill (1973).

15. Mc Adams W.H.

Heat Transmission. Mc Graw-Hill (1954).

- 16. W. J. Dixon st. sl. BMDP Statistical Software University of California Fress (1981)
- 17. Personnal Communication with Mr. R.W. Hedins and M.Wiener. Babcock & Wilcox (June 1983).
- 18. Personnal Communication with Mr. D.E. Labbe. Stone & Webster Ens. Corp. (August 24, 1983).
- 19. Nieva D., Santoyo E.

Prosrama TERPROP

Division Fuentes de Enersia, Derto, Geotermia,

Instituto de Investisaciones Eléctricas

- 76 -

APPENDIX G RECEIVER DESIGN AND PERFORMANCE DETAILS

G.1 Summary

Appendix G includes the following sections:

- Receiver Design Drawings G.2
- G.3 Receiver Thermohydraulic Performance G.4 Receiver Mechanical Design
- G.5 Creep-Fatigue Analysis of the Tube Panel
- G.6 Creep Fatigue Analysis of Tube Panel (Reference Analysis)
- G.7 Startup Stress Analysis

APPENDIX G.2

LIST OF DRAWINGS

		Page
5334J-0	Arrgt. solar receiver sectional side view.	G.2-3
5336J-0	layout riser tubes solar receiver sectional side view and plan section B-B.	G.2-4
5337J-0	Layout supply tubes solar receiver plan section D-D.	G.2-5
268084E-0	Arrgt. solar receiver plan sections A-A and C-C.	G.2-6
268087E-0	Layout interlaced 26 tube superheater panel.	G.2-7
268088E-0	Layout enlgd. views and sections for interlaced panel.	G.2-8
268090E-0	Arrg't of modular internals 54 in. I.D. drum	G.2-9
268091E-0	Arrg't of modular internals 54 in. I.D. drum	G.2-10
268096E-0	Layout riser tubes solar receiver sections B1, B2, B3, B4, and B5.	G.2-11
268097E-0	Arrg't solar receiver sections and views	G.2-12
407 031E-0	Arrg't solar receiver sections and views	G.2-13
407 032E-0	Arrg't of drum conns and mountings 54 in. I.D. drum	G.2-14
407 033E-0	Data and notes for arrg't of drum conns and mountings.	G.2-15
412200E-0	Arrg't solar receiver sections and views	G.2-16
412201E-0	Layout valve station above top steel	G.2-17
405394E-0	Interlaced 29 Tube Superheater Panel	G.2-18
405395E-0	Economizer 46 Tube Panel	G.2-19
405396 <u>e</u> -0	Economizer Panel Details	G.2-20
405397E-0	Superheater Panel Details	G.2-21
405398E-0	Interlaced 26 Tube Superheater Panel	G.2-22
9063J	El Paso Solar Receiver Structural Steel Plan Views	G.2-23
9064J	El Paso Solar Receiver Structural Steel Proj. Elev. View and Roof Steel	G.2-24

G.2-1

APPENDIX G.2 (CONT'D)

	LIST OF DRAWINGS	Page
9065J	El Paso Solar Receiver Structural Steel Sectional View	G.2-25
907 3J	El Paso Solar Receiver Structural Steel Details and Base Plates	G.2-26
286788E	El Paso Solar Receiver Structural Steel General Notes, Pier Loads, Dwg Ref.	G.2-27
164094D-0	Drains and Vents Piping and Instrument Diagram	G.2-28
1640950-0	Water Drum Piping and Instrument Diagram	G.2-29
164096D-0	Steam Piping and Instrument Diagram	G.2-30
1640970-0	Steam Piping and Instrument Diagram	G.2-31
280100E-5	Process and Instrumentation Diagram Symbols	G.2-32
891 -1104-7 B-0	Pri SH Bias Control Flow Diagram	G.2-33
891 -1104-8 B-0	Final SH Bias Control Flow Diagram	G.2-34
891 -1104-5 B-0	Pri SH Bias Valve Control Analog Logic Diagram	G.2-35
891 -1104-6 B-0	Final SH Bias Valve Control Analog Logic Diagram	G.2-36
891 -1104-4 B-0	Pri SH Spray Attemp Control Flow Diagram	G.2-37
891 -1104-3 B-0	Final SH Spray Attemp Control Flow Diagram	G.2-38
891 -1104-1 B-0	Pri SH Control Analog Logic Diagram	G.2-39
891 -1104-2 B-0	Final SH Control Analog Logic Diagram	G.2-40
891 -1104-10 A-0	Drum Level Control Flow Diagram	G.2-41
891 -1104-11 A-0	Drum Level Analog Logic Diagram	G.2-42
891 -1104-12 A-0	Dump Valve Control	G.2-43
891-1104-9 A-0	Motor Operated Open/Close Valve Control Typical	G.2-44
894-1104-13 A-0	Ventilation Control	G.2-45
188886 B-0	One Line Diagram 480V Sheet 1	G.2-46
188867 B-0	One Line Diagram 480V Sheet 2	G.2-47
188888 B-0	One Line Diagram 480V Sheet 3	G.2-48

G.2-48

<u> </u>	1
REVISIONS	
	•
	-
	•
	c
	-
	•
NOTES	-
NUTED- I FOR SECTION C-C SEE DWG 268090E.	
2 FOR SO SEE PAGES 20 THRU LATAL 3 MATCH MARK CYCLONE STEAM SEPARATORS AND CONN. BOXES AS INDICATED	ľ
4 FOR ASSEMBLY AND FITTING OF TF SCRUBBER SEE DWG LLALA 1 FOR ASSEMBLY AND FITTING OF MODULAR BAFFLE	
6 4-22 FEED PIPES WITH 10-36 DIA HOLES EACH PIPE FOR ASSEMBLY SEE DWG. LADA WE D SUBPRETS MENTERS INDICATED TO BAFFLE PLATE	-
7 1/2" CONT. BLOWDOWN PIPE WITH 16-4" DIA HOLES ON TOP & AND 1-4" DIA HOLE ON BOTTOM 4 SEE DNG GOA WELD SUPPORTS MK-45 AS INDICATED TO BAFFLE PLATE.	
8 CHEMICAL FEED PIPE WITH 4-12 DIA HOLES ON TOP & AND 1-12 DIA HOLE ON BOTTOM & SEE DWG LOUA WELD SUPPORTS MK-55 AS INDICATED TO BAFFLE PLATE	
9 INTERNALS TO BE INSTALLED AND SHIPPED COMPLETE IN DRUM 10 ESTIMATED WEIGHT OF DRUM (DRY) = 48,000 # (FULL OF WATER) = 63,830 #	_
(NORMAL WATER LEVEL) = 55,540 #	
	0
	-
	н
	-
DWIK, BL R. HENTER. DWIK, BL	1
ALLECANDER MODULAR INTERNALS	['

	355	20104	ł		3	l	4	l	5		6				8		9		01
			1	AL	VE &	MOUN	TING IN	FORMAT	ION			-			PIPE	FITTINGS			
	ITEN	DESCRIPTION	SU	PLY	0111	SIZE	MAKE	TYPE	MARK NO.	CUST. NO.	REMARK	5	MK NO	BL8	DESCR	PTION			
	 1	SAFETY VALVE	nom X	UTHEN		2"	DRESSER	1729 W(1	BW-5V-01		SET PHESS.	PSI	1191	3	CPLG S	/₩ 1/2 6	5000 · S	A105	
	2		x		 I	2"	DRESSER	1729 WB	BW+SV+02		SET PRESS.	PSI	1304	┝━┼━┤	ELB 5/	W 45D 3/	4 6000	• 5A105	
	3												1316	+ + + + + + + + + + + + + + + + + + +	INCR C	WINY	3/4 60	00+ 5AI	15
	4												1500		TEE S	W I 1/2 X	1 1/2 X	1 6000+	5A105
	5	· · · · · · · · · · · · · · · · · · ·											1601	4	CPLO S	/W I IN. 6	000+ S	A105	
	6			 		<u>_</u>							1709	2	TEE 5/	W I IN. 60	000 · SA	105	
		·											1794	7	CAP S/	W 1 1/2 60	00+ SA	105	
	9											· · · ·	1812	<u>!</u>	ELB S	W 45D I I.	/2 6000	• 5A105	
в	10												1905		INCH S	/W /2]	1/2 CO	000 5/	5
	11	STEAM GAUGE	x		1	12"	ASHCROFT	1010D			RANGE 0-500	0 PSI	2850		ELB SC	RD SOD I	/2 6000	• 5AI05	<u> </u>
	12	STM GAUGE S.O. VLV.	<u>×</u>		1	<u> </u> *	ROCKWELL	36124	8W-P-05		W/LOCK-OPE	N	2853	1	UNION	SCRD 1/2	6000 · 9	5A105	· · ·
_		STN GAUGE TEST VI V					ROCKWELL	36124	BW-P-37				3287	4	CROSS	5/₩11/2	6000+	SAI05	
	15	STM GAUGE DRAIN VLV.	×		2	1/2"	ROCKWELL	36124	BW-D-110		THE VEV AT OPE	A FLOOR	3293	3	TEE S/	W 3/4 60	00# 5AI	05	
	16	PRESS. TRANS.	<u> </u>	×	3					·			1314	6	ELB 5/	W 900 3/	4 6000	SA105	
	17						·				·		1724		CPLG S	/W 1/2)	X I [N. 6	5000+ SA	105
C	18			I			0.0.0.0.0.0	20124					1907	1	TEE S	W 1/2 600	OF SAI	05	
	19	PRESS. TRANS. TEST VLV.	×		6		ROCKWELL	J6124	BW-P-40				L	·					
	20	l		i															
-	22	SYPHON	×			1/2"	ASHCROFT	1098CD			WZ ITEM II								
	23	SYPHON	- <u></u>	×	3	1/2"	11	n			W/ ITEM IG								
	24	STM SAMPLING VLV.	x		2	3/4"	ROCKWELL	36124	BW-5-06										
	25	VENT VLV.	×		2	!"	ROCKWELL	36124	8w.v.09		MOTORIZED	OPERATOR							
U	26						ROCKWELL	35124			MOTORIZED	OPERATOR							
	28	NIROUEN VLV.	<u>×</u>				HOCKICLL		BM·N·OI		MUTUNILLU					-1			L
	29	WATER GAUGE	×		z	15"	DIAMOND	DP3000			W/ TV VIE	WING EQUIPT							
	20	WATER GAUGE INORMI VLV.	x	·	2	1 1/2"	ROCKWELL	3624	BW+L+01		MOTORIZED	OPERATOR			୍ୟ		85.48		0
	31														ړ				HK .
	32	WATER GAUGE (HIGHI VLV.	<u>×</u>		2	1/2"	ROCKWELL	3624	8W-L-17		MOTORIZED	OPERATOR				¥			\downarrow
F	1 <u>33</u>	WATER GAUGE DRAIN VLV.	<u>×</u>		5	3/4"	HULKWELL	35129	8M-D-115						- <u>+</u>	1 (·
-	35	ORUM LEVEL CONTROL		<u>↓</u>			BAILEY												
	36	DRUM LEVEL CONTROL VLV.	×		6	 "	ROCKWELL	3624	BW.L.09		MOTORIZED	OPERATOR							
	37																FRONT		
	38	DRUM DUMP VLV.	X		2	3*					MOTORIZED	OPERATOR							
	39			<u> </u>												P	LAN VIEW	r	
	40	· · · · · · · · · · · · · · · · · · ·													<u>. SA</u>	FETY V	ALVE	MOTIO	DNS
F	42		<u> </u>								·								
	43														s	UPPORT INF	ORMATIC	N ISEE NO	TE 201
	44												MK HO	LOAD TO STL	ARAGT DWG	STL CLEY	ROD HE RO	REMARKS	i <u></u>
	45	TRANSMITTER INSTRU. VLV.		×	3	1/2"			BW.L.05		WZ.ITEH 35		51		 			·	
_	16	TRANSMITTER DRAIN VLV.		. <u>×</u>		1/2"			BW-D-115				52			· [·[
	48	CUNT, BLOWDOWN VIV	×.			1 1/2"	ROCKWELL	36124	BW-M-04		MOTORIZED	OPERATOR	54				-		· · · · · · ·
	19	CONT. BLOWDOWN S.O. VLV.	x	1	2	1"	ROCKWELL	36124	BW-M-05		"	•	55			1			
G	50	WATER SAMPLING VLY.	x		1	3/4"	ROCKWELL	36124	Bw-5-04		19		56						
	51	WATER SAMPLING VLV.	×			3/4"	ROCKWELL	36124	Bw-5-05			#	57			·		·	
	52	CHEMICAL FEED VLV.	<u>×</u>	· [_ <u>-</u>	3/4"	ROCKWELL	36124	BW-M-01			u	58					·}	
		CHEMICAL FEED VLV. S.U.	1 ×			1/4"	1.000000000		1011-14-02					!	I		1	I	
		r RED					ALAHM	INDICATIO	IN NOTES:			MUCH THE INC							
	1							I. THE AS REQUI	ME SECTION RES THAT THE	LOWEST PER	1.1 #15518LE	BOILER OPERA	TION INCLU	DIAL IS	ALARMS TO BE				
J		7-1		T				WATER	LEVEL BE MARKED WHEN REMOTE WARKED PER FIGURE B.										
		NAN AN		NON				REPLACE WATER GAUGES FOR BOILER A. THE WORDS ALARM, TRIP, AND N DPERATION. TO BE MARKED ON THE INDICAT 2. THE BABCOCK AND WILCOX COMPANY HAS DIAL TO INDICATE THESE LEVEL SET ALANM AND TRIP POINTS FOR BOTH HIGH AND LOW LEVELS FOR SAFE BOILER DEYAND THE WATER GAUGE VISI						NDICATO	R S.				
			<u></u>				NTED RE							0					
			А (Ш			w								ON.	1				
- OF I OF																			
		5		Ω ~	L AL	ARM		A. THI LEY	E LETTERS NY	NL INORMAL V	THE								
ı					ba	TRIP		DIA	L WITH A LINI /EL.	E TO INDICAT	ETHIS								
							1	8. TH 851	E DIAL 15 TO I	BE PAINTED R	IED SIGN.								
				c		ג													
	1			- C		-										1			

з

.

. 7

3001082 -31

DISTRIBUTED CONTROL INTERCONNECTING LODIC Controller with Binary or Sequential Logic Function. Not normally accessible to openator.

DISTRIBUTED CONTROL INTERCONNECTING LOGIC CONTROLLER WITH BINARY OR SEQUENTIAL LOGIC FUNCTIOR. NORMALLY ACCESSIBLE TO OPERATOR.

ALARM

LEVEL

SWITCH

VALVE

INSTRUMENT SYMBOL IDENTIFICATION LEGEND

SUCCEEDING LETTERS					
EADOUT OR PASSIVE	OUTPUT FUNCTION	WODIFIER			
AL, AR N	ALARIE	ALARN			
CONTROLLER	CONTROLLER	CLOSED/STOPPED			
		DEAICE			
		ELEMENT			
FLOW					
		GAUGE			
		MIGH			
		INDICATOR			
		CONTROL STATION			
LIGHT		LOW			
		WETER			
		OPEN/RUNNING			
TEST POINT					
		INTEGRATE			
RECORDER	RECORDER	RECORDER			
SWITCH		SWITCH			
TEMPERATURE		TRANSMITTER			
		AUTO			
VALVE	VALVE	VALVE			
		COMPUTER			
		SIGNAL			

	REVISIONS							
		849	annana, 4	ī				
•	REY'D INTERLOCK SYMDOL LJO		LOR II	•				
8	ACTO INSTR. SYNDOL LESEND TO ADREE WITH ISA.	1 4 41)	LORI	•				
2	ADED CW TO ADDREVIATIONS & CRUSHER TO HISC SYMBOLS. ALVOID TO COL TO COL TO OR SYMBOL LEDERD.	M.43	SA. TEREST	•				
•	ADDED DISTRIBUTED CONTROL TYST AL STANDOG & STOT AS, MOVED TYST AL STANDOG & STOT AS, MOVED TYST CONTROL & TYST TYST CONTROL & TYST CONTROL & TYST CONTROL & TYST CONTROL & TYST STOT	14243	LOR II					
	A EVO DISTRIBUTED CONTROL SVSTEN NOTES.	4/13	29 Aug	Q				

THE IS A CAD DRAWING DO NOT REVISE MANUALLY		1000 FMRT 2414 271-012-307-01-301488-0
0mm. bv L. J. OWENS CHO. BV L.D. RANK, INDE 13 0x000, BV L.D. RANK, INDE 13 0x000, BV J.C. WALING 100, BV L.D. RANK, INDE 13 0x000, BV J.C. WALING 11, 10, 10, 10, 10, 10, 10, 10, 10, 10,	PROCESS AND Instrumentation Diagram Symbols	
Rife start - on manages Star	LE HUNE	28010045
	G.2-32	

		THE	BABCOCK &	WILCOX CO	OMPANY P			
			REVISIONS		MICROFI	LM		
	DASH NO.	DATE	DESCI	RIPTION	ORIGINAL			
				<u> </u>				
			,					
		1				t j		
	PRESSURE 							
NOTE: 1. AUTO / MANUAL STATION BY CUSTOMER TRANSMITTED VIA COMMUNICATION BUS. 2. TYPICAL FOR EAST & WEST SIDE MULTIPLY by 2.								
V	ALVE	Ca	NTROL	SCALE		007		
<u></u>	DIAG	RAM		891-1104.	- 5 B =	o		

G.2-35

FORM BOM 1087 8-4

THIS DRAWING IS THE PROPERTY OF THE BABCOCK & WILCOX COMPANY AND IS LOANED UPON CONDITION THAT IT IS NOT TO BE REPRODUCED OR COPIED, IN WHOLE OR IN PART, OF JUED FOR FURNISHING INFORMATION TO OTHERS. OR FOR ANY OTHER PURPOSE DETRIMENTAL TO THE INTERESTS OF THE BABCOCK & WILCOX COMPANY, AND IS TO BE RETURNED UPON REQUEST. OG NOT SCALE_USE DIMENSIONS ONLY.

IS NOT TO BE REPRODUCED OR DWN. BY SET CHK'D FINUAL CH EIAS VALVE CO MENTAL TO THE INTERESTS OF DATE 8/32/33 APP'D AUHLOG LOGIC DIAGRAM

THE BABCOCK & WILCOX COMPANY POWER GENERATION GROUP

REVISIONS			MICROFI	LM
DASH NO.	DATE	DESCRIPTION	ORIGINAL	
		· · · · · · · · · · · · · · ·		Г
				Г

NINIE	,
14016 .	,

I AUTO IMANUAL STATION BY CUSTOMER TRANSMITTED VIA COMMUNICATION BUS

Z TYPICAL FOR EAST & UJEST SIDE MULTIPLY by Z.

FINAL CH EIAS VALVE CONTROL ANALOG LOGIC DIAGRAM SCALE INCHES = 1 POOT BIALOG LOGIC DIAGRAM BOA 1087 B-0 G.2-36 FORN BOM 1087 B-4

THIS BRAWING IN THE PROPERTY OF THE BABCOCK & WILCOX COMPANY AND IS LOANED UPON CONDITION THAT IT IS NOT TO BE REPRODUCED OR DWN. BY ACF CHK'D FINAL TO THE BABCOCK & WILCOX COMPANY. AND IS TO BE RETURNED UPON REQUEST. BO NOT BCALE_USE DIMENSIONS DNLY.

THE BABCOCK & WILCOX COMPANY POWER GENERATION GROUP

REVISIONS			MICROFILM	
DASH NO.	DATE	DESCRIPTION	ORIGINAL	

34	SPRAY	ATTEMP	CONTROL	SCALE	INCHES = 1 FOOT
Di	AGRAM			891-11	04-4 B- 0
				G.2-37	PORM BDN 1067 8-4

THE BABCOCK & WILCOX COMPANY POWER GENERATION GROUP

REVISIONS		MICROFILM	M	
DASH NO.	DATE	DESCRIPTION	OFIGINAL	
		······	~	

NOTE 1 All operator's stations by CUSTOMER

ATTEND CONTENT	SCALE	INCHES = 1 7007
AM	891-110	04-3 B- 0
	G.2-38	PORH BDM 1087 \$-4

THE BABCOCK & WILCOX COMPANY POWER GENERATION GROUP							
			.				
		REVISIONS	MICROFIL	M			
DASH NO.	DATE	DESCRIPTION	ORIGINAL				

ONTROL GRAM	Analoc	SCALE	INC	IES = 1 FOOT
	MINE OG	891-1104	1-2	B- 0
	· · · · · · · · · · · · · · · · · · ·	G.2-40	FOR	N 20M 1087 2-4

FORM BDM 1007 A-4

PORM BON 1087 A-4

G.2-43

PORIS BOM 1007 A-4

ORM BON 1087 A-4

FORM BOM 1987 A-4

2004 Γ 1. 460/ 120 00 R 00 00 R 00 1 00 1 00 37 00 <u>00</u> 00 00 -N MER 460V, 60 НЕ, ЗРНАЅЕ ВУ СИSTON PRI SH #3 FINAL SH #2 JU COMMON DRAIN PRI SH #3 PRI SH #3 PRI SH #2 COMMON DRAIN PRI SH # 2 EAST DrAIN PRI SH #1 FEEDWATER PRI SH # 2 WEST DRAIN (HP) FINAL SH #2 FINAL SH #2 Misc. Control Power FEEDWATER DRAIN 尒 谷口 个 [... -1 460/120 m ZKVA 00 -00 R 00 18 2010 00 00-18 00 00 <u>00</u> 00 00 8 00 8 00 1 VENT ((ip) (if p) VENT, (HP) (HP) (FP) (jp) PUMP DRAIN Ð Ð PUMP DRAIN 🐑 (HP) Morde Smerter. Control Vulthee FEEDWATER EVAPORATOR DRAIN VENT EVAPORATOR DRAIN SH #3 VENT #3 PRI SH #1 VENT PRI SH #1 DRHIN NITROGEN VALVE Drun Drun S PRI PRI S WEST PRI ONE LINE D THIS DRAWING IS THE PROPERTY OF THE BABCOCK & WILCOX COMPANY AND IS LOANED UPON CONDITION THAT IT IS NOT TO BE REPRODUCED OR COPIED, IN WHOLE OR IN PART, OR USED FOR FURNISHING INFORMATION TO OTHERS. OR FOR ANY OTHER PURPOSE BETRIMENTAL TO THE INTERESTS OF THE BABCOCK & WILCOX COMPANY, AND IS TO BE RETURNED UPON REQUEST. DO NOT SCALE_USE DIMENSIONS ONLY. CHK'D SEF DWN. BY SEF DATE 7/25/83 SHI APP'D

18-12B

		THE	BABCO Powi	ck 8 R gen	IERAT	LCOX ION G	COROUP	MPAN	Ŷ
			REV	ISIONS				MICRO	FILM
	DASH								
	80.	DATE		DESC		<u> </u>		ORIGINAL	
					···· ·			<u>^</u>	
						-		······	
	,	. N Heater Full Lo	No Egend Bre STZE CLASS AD MOTOR CONTRO	eaker R aker TriseTring >> CC DD / E F DD / E F DD / E F DD / E F DD / E F DD / E F DD / E F	ATING IP ISFORME tinue		- ENDICA STAR	BREAKET ATES REVE TER TIC START	R FRSWG FR
			2. A At	IN J K Re Val	ems .Ves	india	ATED		
IA G	RAM		480V		SCAL	1888	386		
				•	G.2	-46		FORM SOM 1	087 8-4

19-125

G.2-48

FORH BDM 1087 8-4

APPENDIX G.3

G.3 RECEIVER THERMOHYDRAULIC PERFORMANCE

This section provides detailed computer printouts of the thermohydraulic performance analysis summarized in Section 5.3.3. Figure G.3-1 through G.3-5 present performance parameters for the receiver panels. For each panel, these printouts qive information on heat absorption, efficiency flow rates, mass velocity, pressure drop, steam conditions, maximum tube OD temperature and the minimum safety margin at normal operating conditions and also at upset, unbalanced conditions. The superheater first pass flow control valves are assumed to be biased to keep the first pass outlet temperature the same in each The safety margin is defined as the ratio of the maximum panel. allowable heat flux to the actual expected heat flux. The "upset and unbalanced condition" in the computer printout refers to the highest possible steam temperature and highest metal temperatures of the most exposed "hot" tube in the panel, caused by extreme flow unbalance or heat upsets due to a combination of the following reasons:

- Tube manufacturing tolerances
- Header maldistribution
- Flux gradient on panel
- Heat flux peaks resulting from heliostat misalignment
- Insolation peaks on very clear days

The total flux upset factor (Fq) varies in both vertical and horizontal directions along the receiver. However, the flow unbalance factor (Fu) only changes from panel to panel and remains constant along the tube. It is estimated that the maximum heat flux upset factor including the gradiant is about 1.5 (+50 percent); the minimum flow unbalanced factor is about 0.83 (+17 percent) at the design point.

PAREL	9			10	7	,	1	2	4		15		5		34		8		u	3	5	10	i
TTPE I	BUF-	9H 1	BLR-	- 5H 1	BLR-	5H 1	BUR-	5H 1 (SLIV-	SM E E	LII-	511 2 1	5U7-	5H 3 1	BLR- SM	3 84	R- 811		- 818	BLR-			81.0
00	1.94	1.13	1.34	1.13	1.34	1.13	1.50	1.13	1.34	1.13 1		1.13	L.5V	1.13	1.50 1.	13 8.0	1.5		1.50		1.50	1.1	1.50
SPACE 1	2.03	1.49	5.03	1.40	2.03	1.40	2.03	1.48 1	2.03	1.40 1	2.03	1.40	2.03	1.40 :	2.03 1.	40 0.) <u>2</u> .0	3 8.8	2.83		2.03	1.1	2.03
ND. OF TUBES	16	26	14	26	16	26	16	26	14	29	14	29	14	29	14	29	• 1	6 (9 36	•	16	•	16
									- PAN	EL ABS		ION (I	HE HEN	ANE) (187U/10)							-
	170	65368	. 168	73712	. 161	61678.	153	36605.	1058	5516.	1373	1912.	1371	2416.	146934	69. 1	583651	1. 15	D35388.	. 50	72305.	873	9228.
		*	*****						- PAN	EL ABS	ORPT	10N []	SCREE	IN) (B1	IU/HR J								-
	152	71876	. 151	ee 386	. 144	63172.	137	24888.	743	1432.	964	0316.	962	26627.	103153	62.	I	.		•	۹.		₽.
1947									- PAN	EL PRE	35 U	RUF (PS1 }		*	~~~~~							
	16	.68	16	.28	15	.20	14	. 89	44.	30	73.	04	67.	31	77.29	I		1		•		۶.	•
	*****								- PAN	EL FLO	m R a	TES (L INN/ N	W)									
	624	175 .2	61	793.2	54	185.8	54	164.3	1156	32.9	1500	00.1	1262	29.7	137403		19686.	7 6'	1886.9	67	886.7	6 70	86.9
		*****							- PAN	EL MAS	is ve	10011	7 (LM	M/MR/!	9.77)								
	358	582.7	552	694.8	529	286.6	502	266.9	92 71	68.1 1	2026	53.0	LØ281	.04.8 1	101659	.0 5!	51537.3	3 55	1537.3	551	537.3	5515	37.3
									- PAN	FL au	L FT	CONDIT	FT (1)49										
					74				• •														
F (F31	~		93	2437.	,	2930.9		2037.00		702.70		· • • • •	• 1	0/1./	> 190	1.81	2035	.54	2055.]		2433.3		055.54
H(BTU/	(8)	1487	.49	1407	.49	1407.	50	1407.!	50	1385.5	57	1385.	56	1492.0	52 14	72.63	84	7.33	836	.14	693.	27	745.76
т (р)	•	909.5	9	908.6	1	900.71		980.77	8	65.69	8	63.78	10	23.19	1022	.61	639.	78	639.7		639.70	6	39.70
					*****	*****			- MIN	. SAF1	Y HA	RGIN											
MR -		• •=							-		-		-		. -	•							
713 *				1.17				/	1	.03	1	.52	1	. 36	1.2	•			U.B			•	.0

FIGURE G.3-1 Performance Summary Computer Printout

100 = 1	035,13	1825.92	1014.72	1006.41	928.64	942.96	1104.30	1896.68	731.57	723.56	668.97	788.96
PBET AN	D UNBALA	NICED CONDI	TIONS -									
					PANEL OUTL	ET CONDIT	10NS					
(PSIA)	2037.24	2037.49	2038.51	2039.84	1968.68	1758.42	1877.16	1866.46		0.0	8.8	•.
BTU/LE	1 1444.8	99 1441.8	5 1452.0	6 1452.63	1423.11	1405.8	7 1521.0	4 1513.16	•.•		0.0	•
(F)	755.28	951,87	967.60	968.55	920.72	893.33	1069.71	1056.31	9.0			0.0
	********	w			HIN. SAFTI	MARGIN	*******	والمحاد المحاد بالم				
	1.083	1.089	1.161	1.099	1.249	1.184	1.206	1.151				•.•
	8.969	8.973	8.969	9.963	8.902	0.955	8,943	0.958	•.•		0,8	
1 =	1.00	1.84	1,82	1.04	1.42	1.26	1.10	1.02	•.•	•.•		
					IAX. MEMBRI	WE OD TEM	P.(?)					
1 =	1.083	1.113	1.096	1.159	1.305	1.135	1.151	1.168			9.8	
	8.969	8.973	8.969	0.963	8.982	0.955	0.943	0.758	1.1			8.8
			1007 44							••	••	• •

5

14

1

11 3

16

10 7 12 4 15

PANEL

9

Figure G.3-2 Performance Summary Computer Printout

PANEL	1	6		13	1	2	1	17		1		18	1	l	:	n	3	1		16		6	13	1
TYPE	BLR-	BL	BLR-	- 9LR	BLR-	ECON	BLR-	ECON	BLR-	ECON	-	- ECON	8LR-	IN 1	BLR-	IM 1	BLR-	RH 1	BLR-	- IM 1		- 199 2	BLR-	2 MR
00		1.50		1.30	8.8	1.99	₽.8	1.00		1.00	•.•	1.00	0.0	1.13		1.13		1.13		1.13		1.13	•.•	1.13
SPACE	•.•	2.83		2.03	9.0	1.50	•.•	1.50		1.50	0.0	1.30	0.9	1.40	0.0	1.40	0.0	1.40	0.0	1.40		1.40		1.40
NO. OF TUBES	•	14		14		• •6	•	46	•	• 46		1 46	•	26	•	26	٦	26		26) E1	•	29
	122	 82178	. 119	1995 72	. 42	99218	. 97	56119	P/ . I	WEL A 171879	890Fi	PTION (. 168	RANE) 54728	(87U . 160	/WF) 42748	. 53	75963	. 91	:41 55 2	. 154	570190.	1545	- 9777.
									7/	WEL A	890W	PTION	(SCRE	EN) ((BTU/N	R)								-
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	●.		●.
									11	WEL P	#255	OROP 1	(251)	****							*****			
	•	.0			32	. 26	31	.92	33	1.03	3	2.60	34	. 27	33	.81	17	.13	10	9.49	10	0.93	۴.	03
									P/	INEL P	LON	RATES	(1,000)/	HR } -										
	61	151.0	61	1151.0	51	989.6	54	909.6	59	1909.6	5	9989.6	82	781.9	82	781.9	61	186.7	61	1186.7	14	6038.2	1423	12.9
*****									19/	WEL N	A33 1	VELOCI	11 11	BH/HR	/39.7	T) -								
	551	537.3	551	1537.3	480	433.9	488	433.9	48	7433.9	48	0433.7	740	302.1	740	302.1	347	180.4	547	7189.4	117	0888.9	11414	19.0
) (an an ait an a	******					14	WEL O	UTLE	t cond:	ITION	s										
P (PSI	AJ	2035.	54	2053.	54	2055.	50	2056.	75	2034.	74	2055.	16	1670.	73	1671.	19 :	1687.	87	1686.	51	1571.4	1 1	576.31
R(BTU/	18)	821	. 56	816	. 95	446	. 54	537	. 96	384	.57	420	. 32	1423	. 76	1413	. 94	1387	. 98	1371	.22	1492.	35	1492.32
T (F)		639.7	10	639.7	u.	464.1	6	542.4	•	406.9	7	449.1	7	902.1	7	887.0		741.0	1	824.3	• :	1007.49) 16	87.69
									N	IN. 54	FTY (MADE TN												
HS =		•.•										A . A		1.16		1.17		1 19		1 47		1 14		
		~••						~		~.•		4.4				a.17	·	J. JO		4.0J		A.10	1	

Figure G.3-3 Performance Summary Computer Printout PANEL 5 13 2 17 1 18 8 11 3 15 6 13 TYPE BLR- BLR BLR- ECON BLR- ECON BLR- ECON BLR- RH 1 BLR- R

TOD • 721.89 713.87 473.88 544.29 411.30 448.76 1024.18 997.47 706.05 896.99 1092.38 1091.75

	ب ا ما بر مر ف اه ا				PANEL OUTLI	ET CONDIT	IONS	***********				
P (PSIA)	0.0		8.8				1671.56	1672.06	1671.44	1687.97	1576.51	1500.31
N(BTU/LB)	0.8	0.0		0.0		0.8	1452.3	6 1443.64	1379.1	5 1434.5	1 1512.5	1 1510.15
T (P)	9.8		0.0	9.0	1.1		947.49	933.58	836.37	920.06	1041.46	1037.69
					HIN. SAFTY	MARGIN						
PQ =	0.0	0.0	0.0	0.0	0.0	0.0	1.089	1.089	1.567	1.289	1.112	1.111
FU =		0.0	0.0		0.0	9.8	0.969	0.968	9.839	0.914	9.963	8.969
HS =		0.0	0.0	0.0	0.0	0.0	1.03	1.05	1.94	1.29	1.65	1.00
(* * * * * * * * * * * * * * *				M	IAX. MEMBRA	NE OD TEM	P. (F)					
FQ =			0.0		●.●		1.089	1.123	1.533	1.259	1.147	1.130
PU =	1.1	8.8			8.8		8,969	8.968	0.830	0.914	0.963	8.969
T00 =				8.8	9.8		1076.47	1057.30	903.44	1012.97	1139.47	1128.85

HEAT ABSORBED BY COMPONENTS -

QECO	N		17\$38128.0	BTU/HR
GBLR			164558144.	BTU/HR
RSH	1		65437072.0	BTU/HR
QSH	2	•	24317360.0	BTU/HR
8 5H	3		26405824.0	BTU/HR
GBH	1		47514720.0	BTU/HR
qrx	2		31329904.0	BTU/HR

FIGURE G.3-4 Performance Summary Computer Printout DRUM PRESSURE = 2055.54 PSIA FEEDWATER PRESSURE = 2087.76 PSIA

EXIT CONDITIONS (TO TURBINE) -

FROM	SUPER	HEATER		FROM REHEATER							
PRESSURE	8	1825.49	PSIA	PRESSURE	8	1553.66	PSIA				
TEMPERATURE Enthalpy Steam Flow	= = = 2	102 0.79 1492.63 65633.06	F BTU/LBM LBM/HR	TEMPERATURE Enthalpy Steam Flow		1006.55 1492.33 288351.31	F BTU/LBM LBM/HR				

HEAT TOTALS -

	SH-BLR-ECON	REHEATER	SUM TOTAL
TOTAL INCIDENT	= 105.108 MW	28.297 MH	133.405 MW
TOTAL LOSSES -			
RADIATION CONVECTION CONDUCTION REFLECTION	6.219 MM 5.185 MM 0.526 MM 5.255 MM	2.231 MH 1.406 MH 0.141 MH 1.415 MH	8.450 MH 6.591 MH 0.667 MH 6.670 MH
TOTAL ABSORPTION	= 87.924 MH	23.103 MH	111.027 MM
THERMAL EFFICIENC	Y OF SH-BLR-ECON P	PANELS = 83.651 %	
THERMAL EFFICIENC	Y OF REHEATER PANE	LS = 81.647 %	
OVERALL THERMAL E	FFICIENCY OF RECEI	VER = 83.226 %	

Figure G.3-5 Performance Summary Computer Printout

G.4 RECEIVER MECHANICAL DESIGN

This section provides a detailed description of receiver panel assembly, including panel assembly, buckstay spacing, vortex shedding, insulation, and material selection.

G.4.1 Panel Assembly

The receiver panels incorporate a membrane wall construction. This type of panel construction is widely used in the power industry having several distinct advantages for solar application - structural integrity, increased absorption area, and light- and water-tightness.

panel design differs for each receiver section. The The evaporator portion of the receiver uses a 38.1-mm OD X 3.40-mm (1.5-in. OD X 0.134-in.) tube with a 12.7-mm (0.5 in.) web that is fabricated using standard B&W shop methods and equipment. The economizer panel, 25.4-mm OD X 3.40-mm (1.0-in. OD X 0.134-in.) tube and 12.7-mm (0.5-in.) web (width), is also shop fabricated according to B&W methods. The superheat panels use 28.6-mm OD X 3.0-mm (1 1/8-in. OD X 0.110-in.) tubes and 6.35-mm (0.25-in.) web, constructed of Incoloy 800H material and require a somewhat modified method of fabrication. Conventional membrane wall construction uses a larger bar to form the web which separates the water tubes. Weldment of the bar to the tube wall becomes increasingly difficult for smaller web sizes because of twisting and distortion that occurs. For the smaller web size of the superheat panel, a rod is used in place of the bar. Fillet welds are applied on both sides at the corners to achieve the desired geometry. These superheat panels will be shop fabricated using existing equipment. Approximately 17 months will be required for this fabrication since the process is much slower than for the normal panel geometries.

Three types of panel assemblies are used in this design - an economizer and a 26 or 29 superheat tube interlaced panel. Details of the geometry and material are given in Table G.4-1. The panel assembly is shop fabricated to minimize field work and includes a lateral restraint system and attached headers. The panels are shipped to the site, three panels per rail carrier, where they are completed. Ground work includes installation of insulation, casing, connections and vertical members. An erection rig orients the panel to a vertical position at which time the panel assembly is hoisted external to the tower to the receiver level. The panel assembly facilitates the erection process by reducing the amount of work performed in the field.

Each panel is supported from a cantilevered top support steel arrangement which is similar to the method employed by conventional fossil boiler designs. Downward thermal growth is permitted via roller connections that guide each panel independently in the vertical position. The receiver panels are

laterally restrained to remove wind and seismic loads, limit vibration, and maintain the vertical plane of the receiver, thereby offering a light-tight and weatherproof design. The The interlaced panel design combines the evaporator and superheat panel into a single assembly. The superheat panel is "sandwiched" between two evaporator panels on either side in the panel assembly. The evaporator discharge headers (at the top of the panel) extend across the full panel assembly width and support the entire weight of the panel assembly. Two support rods transfer this vertical load to top steel. The interlaced superheat panel is supported from the evaporator header by lug connections and links that allow for differential growth of the headers. Operating at higher temperatures, the superheat panel is permitted to thermally grow independently from the surrounding evaporator panel. Gaps are provided between the superheat panel and evaporator panels and between panel assemblies that allow for horizontal thermal growth. A stainless steel horizontal tee section or buckstay is attached to the superheat panel and transfers lateral loads to a vertical buckstay that is bolted to the main support structure. The weight of the vertical buckstays is then supported from the main steel structure at the trussed elevations.

The evaporator panels located on either side of the superheat panel are supported from a carbon steel horizontal tee section or buckstay and guided by the same vertical buckstays independent of the superheat panel. This scheme is shown in the sketch of Figure G.4-1. The centerline of each panel assembly is a line of zero thermal growth. This limits the maximum panel movement that occurs. In cold position, a clearance that allows for thermal expansion is provided between the roller flange and the vertical buckstay. In the hot position, the flanges of the roller assemblies make contact with the vertical buckstay maintaining vertical alignment of the superheat panel. This alignment is necessary to eliminate the potential for sliding surfaces between the panels which can lead to excessive wear patterns. Since all of the evaporator panels operate at approximately the same temperatures, the differential downward growth is negligible, and therefore some contact between adjacent panel assemblies is permissible.

The roller assembly consists of four flat tread trolley wheels bolted to a stem that is rigidly attached to the horizontal panel buckstay (Figure G.4-1). The use of four wheels permits the vertical growth of the panels and prevents rotation of the support, which significantly reduces lateral displacement due to thermal bowing. Limiting panel deflection is an important design consideration to reduce the possibility of gap formations between panel sections and to prevent contact of overlapping panels. The tapered flanges of the trolley wheels serve to guide the individual panel sections vertically without any possibility for hangup or binding against the vertical buckstay. A lateral support system using linkage was investigated that posed numerous

G.4-2

design problems associated with wearing surfaces. A system of roller supports was selected as an alternative which lessened the complexity involved, eliminated the design uncertainties, and proved to be comparable in cost without sacrificing structural integrity.

The centerline of the superheat panel is maintained by a bumper tie located on the top and bottom of each horizontal buckstay. This tie, which also removes lateral load occurring in the plane of a receiver panel, consists of a square lug and filler bar welded to the panel and is guided vertically by small bars welded to the buckstay. Lateral restraint normal to the panel is accomplished using stainless steel tube clips welded to the backside of the panel and allows for lateral thermal growth by sliding on the buckstay. Lateral movement is limited to the thermal growth of half of the width of a superheat panel for which the possibility for binding or excessive wear is nonexistent.

The evaporator panel operates at lower temperatures; therefore the use of tube clips here is not necessary. The panel is welded directly to the bottom of the buckstay. Vertical alignment of the evaporator panel section is also maintained by flanged roller assemblies mounted to the horizontal buckstay and roll along the flanges of the vertical buckstays.

The use of filler bars and tube clips to anchor the panels to the buckstays is not new and is justified by their use in the fossil power industry. Experience indicates that the tube clip is the best method for tieing back membrane walls. Concentrated stresses that develop in the tube wall at the attachment have been determined to be insignificant. This is reasonable since temperatures are much lower on the tube backside and thermal gradients are small.

Return lines are anchored to the vertical buckstays near the top of the panel assembly using bolted clamp connections which totally constrain these pipe ends. The supply lines are also anchored to the vertical buckstays but utilize roller supports to permit downward growth. The roller supports are designed to provide constraint for the remaining five degrees of freedom. Some vertical piping deadweight is absorbed by the panel assembly, but the amount is negligible.

G.4.2 Buckstay Spacing

The panel design is established on the basis of internal pressure, deadweight, frequency of vibration, wind, seismic, thermal loads, and geometric requirements. The lateral restraint spacing has been set at 1.83 m (6 ft) to satisfy stress and deflection requirements. This spacing assures straightness of the superheat portion of the panel during maximum thermal loading. To verify the selected spacing, the membrane panels are

G.4-3

assumed to act as beams having fixed end supports (the lateral restraints do not permit rotation).

The controlling load is wind and the resulting moment is therefore:

 $M_{\rm x} = \frac{{\rm w} {\rm k}^2}{12}$ = 150 cm-kg (130 in.-1b)

and the corresponding longitudinal stress is:

$$S = \frac{M_x}{S_x}$$

= 108 kg/cm² (1530 psi)

Where:

Due to the presence of insulation and to prevent cracking of paint on the absorption surface, maximum lateral deflection is limited to:

Max. =
$$\frac{l}{360}$$

= 0.51 cm (0.20 in.)
actual = $\frac{w l^4}{384 \text{ EI}}$

= 0.051 cm (0.020 in.)

Where: l = span length = 183 cm (72 in.) E = modulus of elasticity = 160 X 10⁴ kg/cm² (22.7 X 10⁶ psi) I = moment of inertia of 1 tube = 2.08 cm⁴ (0.050 in.⁴)

and 0.051<0.51 cm.

5

Therefore deflection limit is satisfied.

The membrane panels are designed to exceed a natural frequency of vibration of 5 hertz to prevent development of resonance. For fully restrained ends, and neglecting the beneficial effects of tension (deadweight), the natural frequency for a 1.83 m (6 ft) span of the superheat panel is:
$$f = \frac{[(2i + \ell) \pi/2]^2}{2\pi \ell^2} = \frac{EI}{m}^{0.5}$$

Where:

- i = 1 for first mode shape
- 1 = span length
- E = modulus of elasticity
- I = moment of inertia
- m = mass = weight per unit length divided by
 gravitational acceleration

The panel frequency was determined to be 35 hertz, which is acceptable.

Deflection due to thermal bowing is insignificant and does not control the lateral restraint spacing. For a 1.83m(6 ft) span, the applied heat flux can be considered constant at any point along the span and the resultant fixed-end moment is defined by:

$$M = \frac{\alpha \ \Delta T \ EI}{d}$$

Where,

a = Coefficient of thermal expansion

- AT = through-wall temperature differential (for a linear gradient)
 - E = modulus of elasticity
 - I = moment of inertia
 - d = depth of wall

and deflection is zero for this condition. The above equation shows the thermal moment is not a function of span length but is linearly proportional to T/d. The resulting longitudinal stress is accounted for in the elastic thermal tube analysis by assuming a generalized plane strain condition.

the superheater and evaporator panels The joint between represents an important design consideration for buckstay spacing In hot position, the membrane extension of the requirements. evaporator panel overlaps the membrane edge of the superheater panel to prevent shinethrough. Although lateral displacements caused by elastic thermal stresses are negligible, inelastic action may present some bowing or "warpage" of the superheater To minimize the possibility for contact between the panel. different panels, supports are designed to prevent panel rotation and buckstay spacing is limited to a 1.83 \overline{m} (6 ft-0) spacing, which provides a sufficient margin above the mechanical design requirements of the panel. Necessary adjustments are possible during shop assembly to ensure design clearance between the individual panels is maintained. Upon final assembly of one shipping unit, the superheater panel is "locked" into place between the evaporator panel sections, and the complete assembly may be shipped without any concern for readjustments. The use of the web extension of the evaporator panel is common in the boiler

G.4-5

industry and has proven successful; therefore, its use is justifiable and any thermal stress analysis deemed unnecessary.

G.4.3 Vortex Shedding

The phenomenon of vortex shedding was investigated to ensure resonance would not occur for this receiver design. In vortex shedding, naturally occurring turbulences are shed alternately from the sides of the receiver/tower structure. If the frequency of vortex shedding (induced by a steady wind) occurs at one of the harmonic frequencies of the structure, then transverse oscillations will develop. The frequency at which vortices are shed is given by the following equation for tublar structure:

 $f = 0.20 V/D (1 - 20/N_R)$

Where,

V = wind velocity D = structure diameter N_p = Reynold's number

Because of the large diameter of the receiver structure, the Reynold's number is very large and the equation can be simplified:

f = 0.20 V/D

which offers a good approximation. Maximum wind velocity at the receiver level is determined by increasing ground wind velocity exponentially according to the following equation:

 $V_{Z} = V_{O} (Z/V_{O})^{1/7}$ = 70 mph ((650 ft/sec)/70 mph)¹/⁷ = 96 mph (43 m/s)

Where, Z = height V = basic ground wind speed

 $f = 0.20 \times \frac{43 \text{ m/s}}{18.3 \text{ m}} = 0.47 \text{ hz}$

and

To check the resistance of the receiver/tower structure to wind induced vibration, the following criteria have been proposed. (Eduardo P. Zorrilla, "Predicting Aerodynamic Behavior of Stacks," The Oil and Gas Journal, November 1, 1971.)

G.4-6

 $\frac{W}{LD_R^2} = 25$ $= \frac{30 \times 10^6}{650 (40)^2}$ = 29 > 25

Where: W = weight of structure, lb L = height of structure, ft D_R= average diameter, ft

The receiver/tower structure is therefore adequately designed to resist wind-induced vibration. Drag and lift forces were calculated for the receiver and do not exceed the component forces of design wind pressure.

G.4.4 Insulation

The panel assembly also includes 7.6 cm (3 in.) of medium temperature block insulation (CL 5), 10.2 cm (4 in.) of intermediate temperature block insulation (CL 3), stainless steel and aluminum. The insulation consists of 61 cm x 91 cm (2 ft x 3 ft) squares sandwiched between a stainless steel casing and aluminum-ribbed lagging and are held in place by pin studs which connect the casing to the lagging. The insulation is assembled on the ground prior to the panel being lifted in place on the tower. The 16-gage stainless steel casing separates insulation from the panel tubes and is supported by the the evaporator bottom horizontal buckstays. This casing serves three functions: permits differential thermal expansion between the evaporator and superheat panels, protects the insulation against the environment, and provides an effective method of supporting All insulation and lagging are supported from the insulation. the evaporator buckstays. Pin studs welded to these buckstays support subgirts attached to the aluminum lagging. Expansion joints allow for differential thermal expansion that exists between the various components of the panel assembly. Expansion slots of variable sizes are provided at each point where the superheat panel supports penetrate the insulation and lagging. Maximum expansion of the superheat panels is approximately 230 mm Insulation is also installed on the superheat panel (9 in.). support, behind the panel insulation sandwich, to cover the slots.

Blanket insulation (Kaowool 2600) surrounds the headers at either end of the panel and is held in place by stainless steel casing. The exposed casing above and below the heated surface is painted with a highly reflective white pyrolitic paint. The header insulation, casing and shroud are installed in place to effectively weatherproof the design.

G.4.5 Materials

The receiver components are designed for the mechanical loads given in Section 5.3.4 and loads defined by the thermal hydraulic analysis. These loads include thermal upset conditions, design pressures and temperatures. Incoloys and stainless steels are used for the pressure boundary part that see high operating temperatures. Carbon steels commonly used in the boiler industry are used for lower temperature applications. The allowable stress properties shown in Figure G.4-2 describe the strengths of various materials used. In addition to the strength requirement of materials, other considerations for material selection include material availability, fabricability, maintainability and cost. To summarize the material selection for tubes, headers, and piping, the following materials apply in general up to the given temperatures:

Material

Limit

SA-210C	То	510°C	(950°F)
SA-213-T11 (Cr-1-1/4)		566°C	(1050°F)
SA-213-T22 (Cr-2-1/4)		607°C	(1125°F)
SA-407 (Alloy 800 and 800H)		816°C	(1500°F)

The material breakdowns for all receiver components are given in Tables G.4-1 and G.4-2.

G.4.6 Sizing and Geometry

The pressure boundary parts are sized in accordance with the ASME Codes as applicable. Tube and header sizes were established in the thermal hydraulic analysis as given in Table G.4-1. Sizing is based on pressure, elastic thermal stresses and corrosion allowance. Tube thickness is determined by the following equation of ASME Section I "Power Boilers":

 $t_{req'd} = \frac{PD}{25+P} + 0.005D$

= 2.62 mm (0.103 in.)

tactual = 2.79 mm (0.110 in.)

Where, $P = design pressure 162 kg/cm^2$ (2300 psi)

- D = tube outside diameter, 2.86 cm (1.125 in.)
- S = allowable stress = 858 kg/cm^2 (12,200 psi) for Incoloy 800H a 610°C (1130°F)

Tube-to-header junctions use the typical socket weld shown in Figure G.4-3. The panel tube attachments to the header are non-radial entry connections which reduce axial tube bending stress concentrations due to deadweight. The larger diameter inlet and

outlet tube lines require radial entry connections to the headers. Offset tube entries are required at the header ends. Flat end closures are used for all headers. Header design is based on internal design pressure and considers thermal transients events such as upset condition and cloud transient.

G.4.7 Piping

Piping components include return lines, downcomers, saturation connections, attemperator piping, vent and drain piping. A11 piping is designed, fabricated, and constructed to ANSI B31.1 rules (Power Piping Code). Pipe routings are determined from flexibility analyses and geometric requirements to facilitate the use of piping bundles. Material savings involving insulation, lagging and supports are realized when piping of the same temperature is bundled together instead of insulating individually. All piping, attemperator lines and collectors are adequately sloped for drainage. Solid rod hangers support the return lines and downcomers transferring deadweight to top support steel. Supply lines are supported from el 142 m (466 ft, 4 in.) using constant load spring hangers to permit thermal growth of the receiver panels and downcomers and miminize load transferal to fixed portions of the piping. The term "downcomers" figuratively describes all vertical piping such as the feedwater line. Intermediate steel elevations are provided to laterally support the downcomers. The lower elevation of piping represents one of the most difficult areas to design. The flexibility analysis of the superheat supply lines accounts for a 25.4-cm (10-in.) vertical movement between anchor points (panel and downcomer) that can occur during startup when the dry superheat panel is heated and the downcomer is cold. To arrive at an acceptable piping layout, many arrangements have been investigated proposed and involving numerous flexibility These analyses consider the combined conditions of analyses. pipe expansion and differential movement between anchor points. Due to the various pipe sizes and materials, each piping layout becomes unique. Positioning all of the necessary expansion loops is a difficult task given the highly restrictive receiver geometry. Piping sizes and materials are given in Table G.4-3.

G.4.8 Steam Drum

The steam drum configuration conforms to steam drum standards used for industrial and utility fossil type boilers. The pressure boundary complies with the requirements of the ASME Section I, Rules of Construction for Power Boilers. The internals design and arrangement have been proven to be very efficient for the intended purpose, namely to supply dry steam to the superheater. The structural adequacy under cyclic loads has been found to be acceptable in "peaking" type operation where daily shutdown is required. The significant concern of the steam drum is the ability to handle the large through-thickness thermal

gradient that occurs in the shell wall during rapid startup and during severe cloud transients.

This problem is minimized by using an oversized steam drum, increasing the water inventory, and by careful control of the unit during startup and cloud transients. Materials and sizes are given in Table G.4-2.

G.4.9 Codes

The receiver design is consistent with the following Codes:

- ASME Section I "Power Boilers"
- ANSI/ASME B31.1 "Power Piping Code
- Uniform Building Code (UBC), 1979 edition
- American Institute of Steel Construction (AISC), 8th edition (1980)
- American Welding Society Specifications
- Miscellaneous:
 - OSHA
 Local Codes
 Utility Co. Specs
 NEMA
 ANSI A-58.1
 B-16.5
 ASME Section VIII Div. I
 ASME Section III Div. I, CCN-47

In addition to the above Codes, the B&W Fossil Boiler Standards were used extensively for design, sizing, analysis, drawing preparations, and manufacturing purposes.

TABLE G.4-1

RECEIVER TUBES AND HEADERS

Tubes

	<u>Tube Size</u>	Web Size	Material	Tubes/Panel
Econ	1.0" OD x 0.134	1/2" x 3/16"	210 Al	46
Evap	1.5" OD x 0.134	1/2" x 3/16"	210 Al	14/16
PS1	1-1/8" OD x 0.110	1/4" x 3/16"	1800H	26
PS2	1-1/8" OD x 0.110	1/4" x 3/16"	1800H	29
PS3	1-1/8" OD x 0.110	1/4" x 3/16"	1800H	29
FSl	1-1/8" OD x 0.110	1/4" x 3/16"	I800H	26
FS2	1-1/8" OD x 0.110	1/4" x 3/16"	1800H	29

<u>Headers</u>

	OD x Thk	Material	Design Pressure
Econ	6-5/8" OD x 1"	SA-106C	2400 psi
Evap	6-5/8" OD x 1"	SA-106C	2320 psi
PS1	5" OD x 0.75"	1800	2300 psi
PS2	5" OD x 0.75"	1800	2300 psi
PS3	5" OD x 0.75"	1800	2300 psi
FS1	5" OD x 0.75"	1800	2300 psi
FS2	5" OD x 0.75"	I800	2300 psi

TABLE G.4-2

PRESSURE BOUNDARY MATERIALS AND SIZES

<u>Return Lines</u>	<u>#</u>	<u>OD</u> <u>THK</u>	<u>Material</u>	
	PS-1 8 - PS-2 8 - PS-3 8 - FS-1 8 - FS-2 8 - Econ 4 - Evap 22	- 3.5 x 0.320 - 4.0 x 0.480 - 8.5 x 0.320 - 4.0 x 0.480 - 3.5 x 0.320 - 4.0 x 0.260 4.0 x 0.260	CR 2-1/4 CR 2-1/4 I-800 CR 2-1/4 I-800 210 C 210-C	
Supplies				
	PS-1 8 - PS-2 8 - PS-3 8 - FS-1 8 - FS-2 8 - Econ 4 - Evap 14	- 3.5 x 0.230 - 3.5 x 0.320 - 4.0 x 0.480 - 3.5 x 0.320 - 4.0 x 0.480 - 4.0 x 0.260 4.0 x 0.260	210-C CR 2-1/4 CR 2-1/4 CR 2-1/4 CR 2-1/4 210 C 210-C	
Downcomers				
	(1A)2 - Drum - : (2)2 - (3)2 -	8-5/8 x 0.75 12-3/4 x 1.00 8-5/8 x 0.875 8-5/8 x 0.875	CR 1-1/4 SA-106C CR 2-1/4 CR 2-1/4	
<u>Steam Drum</u>				
	61-1/2" (Hemisphe	3-3/4" erical Heads 3-1/2" Thk)	SA302B	
Saturation Connections				
	5" OD	0.3"	210 C	

.

TABLE G.4-3

SUMMARY OF RESULTS

	Reference Study	El Paso Loc. l	El Paso Loc. 2	El Paso Loc. 3
Tube Size (OD x thickness)	38.1 mm x 1 (1.5" x 0.6	L.65 mm 55")	28.6 mm x 2 (1 1/8" x 0	.79 mm .110")
Material*	Alloy 800	Alloy 800H	Alloy 800H	Alloy 800H
Maximum Metal Temperature (OD crown)	633°C (1,172°F)	622°C (1,152°F)	628°C (1,163°F)	642°C (l,187°F)
Max. Load & Disposal Controlled Stress Intensity (Elastic) kg/cm² (psi)	-2,390 (-34,000)	-2,390 (-34,000)	-1,968 (-28,000)	-1,195 (-17,000)
Operating Cyles	60,000	60,000	60,000	60,000
Operating Time (hrs)	100,000	100,000	100,000	100,000
Initial Strain (%)	0.142	0.142	0.142	0.142
Final Strain Range (%)	0.131	0.131	0.108	0.066
Creep Damage (T/T) D	0.6	0.27	0.41	0.57
Fatigue Damage (n/N) D	0.6	0.60	0.08	0.06

* The reference study uses the material properties of Incoloy 800H.

G.5 CREEP-FATIGUE AND STARTUP STRESS ANALYSIS OF THE TUBE PANEL

This section describes the tube panel creep-fatigue analysis, startup stress analysis, and resulting materials selection.

G.5.1 Creep-Fatigue Analysis

A creep-fatigue analysis of the superheat (Incoloy 800H) panels has been performed to verify a superheat tube will not fail in fatigue, or result in excessive distortion, or rupture as the result of creep. Analysis of an evaporator tube is not needed because the boiler portion of the receiver operates at lower temperatures. The evaporator tube is sized in the thermohydraulic design (Section 5.3.2). Two methods are employed to evaluate the membrane wall superheat tube - a simplified elastic technique proposed by the B&W internal report, "Supplemental Elevated Temperature Rules For ASME Section VIII - Division I," and an inelastic analysis that conforms to the requirements of Code Case N-47. The inelastic results were derived using data from the creep-fatigue evaluation presented in Section G.6-G.7.

Three locations representing the worse-case conditions were evaluated. Figure G.5-1 depicts these locations in relation to the allowable absorbed heat flux map. Location 1 is subjected to the highest heat flux level and lowest fluid temperature. Location 2 experiences a combination of high heat flux and metal temperature. Location 3, which is in a region of high fluid temperature, exhibits the highest metal temperature. All three locations see the same number of thermal cycles.

Location 1 is, therefore, most susceptible to fatigue damage, with Location 3 being most susceptible to creep damage. Location 2 represents a combination of the fatigue damage and creep damage.

The maximum loading condition for each of the locations in given in Table G.5-1. Deadweight, wind, and seismic stresses are small comparison to the pressure and thermal stresses and are in The thermal stresses listed in excluded from the analysis. Table G.5-1 are compressive and occur at the tube crown. These stresses were obtained using the B&W membrane wall program and include a 10 percent increase to account for cloud transients during maximum operating conditions. The 10 percent increase is approximation of the transient and would be refined in a an subsequent design stage. The B&W membrane wall program is a finite difference program, used extensively in the design of conventional fossil boiler walls. Given a specific tube-wall configuration, a thermal load, and film coefficient, the program calculates thermal gradients and elastic thermal stresses. The program conservatively assumes a general plane strain condition in the calculation of stresses.

The thermal loading is approximated by a cosine distribution across the tube surface with maximum heating assumed at the tube crown and face of the web (Figure G.5-2). The assumed thermal load is based on direct incident heating. The skewed heating is negligible for this receiver design and, therefore, was not considered in the analysis (see Section 5.3.3).

The temperature profile for Location 1 at maximum operating condition is shown in Figure G.5-3. The temperatures listed are metal temperatures minus fluid temperature. The maximum delta-T is 107°C (224°F) at the tube crown. During a cloud transient, metal temperatures are assumed to increase by 10 percent, resulting in the following maximum temperature at the crown:

$$T_{cl} = 1.10 (T_{oper} = T_{f}) + T_{f}$$

 $T_{c1} = 1.10$ (610-486) + 486 = 622°C (1152°F)

Where, T_{cl} = tube crown temperature for a cloud transient T_{oper} = steady-state tube crown temperature during maximum operation conditions T_{f} = fluid temperature at maximum operating conditions

The temperature contours show two types of thermal gradients to be present - a nearly linear through-wall gradient and a circumferential gradient. These produce a combination of through-wall and circumferential gradient at points away from the tube apex (Figure G.5-4). The longitudinal (axial) stress that develops as a result of these gradients is the most significant of the component stresses. The effective stress is slightly larger than the longitudinal stress. It is also maximum at the tube crown and is compressive in nature (Figure G.5-5).

The approach to be used in performing an inelastic analysis which conforms to the rules of Code Case N-47 follows:

- 1. Define the load histogram.
- 2. Determine maximum metal temperatures and elastic stresses.
- 3. Obtain the results of a previous inelastic analysis which has an identical load histogram and nearly identical temperature and stresses.
- 4. Adjust the inelastic strains using a ratio of elastic stresses (except for initial strain which is not elastic) and account for different maximum metal temperatures when entering the stress-to-rupture and cycles-to-failure curves in accordance to N-47.
- 5. Calculate creep-fatigue damage.

An inelastic analysis was performed on a 38.1-mm OD x 1.65-mm (1.5-in. OD x 0.065-in.) tube which is summarized in Table G.5-2. Details of this analysis are given in Section G.6. The results were applied to the three locations investigated for the El Paso study. The comparison of Location 1 to a reference tube describes the close similarity of the load conditions (Table G.5-2). By adjusting the results to account for different stress and metal temperature, each location was evaluated.

The load histogram used for the inelastic analysis is shown in Figure G.5-5. A total of seven load steps was analyzed with different hold times to fully assess the creep damage. A simplified inelastic evaluation, using the ANSYS Computer Program, was performed where a pure strain-controlled condition is assumed neglecting the beneficial effect of strain redistribution in the tube. The model consisted of a single cube element which is reasonable to use since the major stress is longitudinal. For this type of analysis, a difference of tube sizes does not impact the solution, and the results of the APS study are satisfactory for this case.

The total number of operating cycles used in the inelastic analysis is 60,000, which includes 50,000 cycles of cloud transient and 10,000 cycles of startup/shutdown. The total operating time used is 100,000 hours, which is representative of a 3-year operating plant lifetime.

The elastic rules of Code Case N-47 are followed for determining the elastic strain ranges. The program CREEPF is used for this purpose. The fatigue damage is based on two partial strain ranges. The maximum value occurs initially and consists of elastic and plastic strains. This strain is E = 0.142 percent. Following elastic shakedown (approximately 4 cycles), the strain range becomes elastic, and a ratio of the stresses is then used to determine the strain ranges for each of the three locations.

For creep damage calculation, the hold time stresses of the reference analysis are conservatively used for Locations 1 and 2 but were reduced for Location 3. This reduction of hold time stress is based on the relaxation curve that corresponds to the higher temperature and lower stress for Location 3. The results of the inelastic analysis (Table G.5-2) contain an overall conservatism since the maximum metal temperature and stress include a 10 percent increase to account for the severe conditions of a cloud transient. The results of the inelastic analysis are given in Table G.5-2 and also in Figure G.5-5.

An elastic analysis was also performed. The analysis considers 50,000 cycles of operation, and the load histogram is shown in Figure G.5-6. This histogram also considers a 10 percent increase of temperature and stress for cloud transient. The total operating time used is 100,000 hours. The results are shown in Figure G.5-7.

The difference between load histograms reflects the difference between an elastic and inelastic analysis. Events 2 and 3 of the elastic load histogram (Figure G.5-6) are included to improve the accuracy of the creep damage calculation. For the fatigue damage calculation, Events 1 through 4 represent one load cycle, which is the same used for the inelastic load histogram (Figure G.5-5).

To satisfy the limits of Code Case N-47, the total creep fatigue damage must be less than or equal to 1.0:

$$\sum (T/T_d) + \sum (n/N_d) \leq 1.0$$

Comparing the results of each method of analysis (inelastic and elastic), a high degree of similarity is noted, with the inelastic results satisfying the limits and the elastic results exceeding the limits. This comparison illustrates that a high degree of conservatism exists in the elastic approach.

G.5.2 Startup Stress Analysis

During startup and prior to the time when operating temperatures are reached, heat flux is applied to the entire receiver surface at a time when the superheat panels will be dry. The level of heat flux that a dry panel receives is governed by the maximum metal temperature and thermal stress limits of the tube. A twodimensional finite element analysis has been performed to verify that the startup operating mode did not impair structural adequacy. The finite element grid is shown in Figure G.5-8.

The heating distribution applied to the thermal model is identical to that assumed for normal operating conditions (See Section G.2). A film coefficient, defining convection and radiation losses, is applied to the exposed surface of the panel with the inside and backside surfaces insulated. To reduce the effects of thermal shock, the level of heat flux is applied gradually until a constant level of 20,000 Btu/hr-ft² is reached after 15 minutes (Figure G.5-9). This heat flux is used to conservatively account for any peaks that exist in the startup process. The results of the thermal analysis are shown in Figures G.5-9 and 5.3-10. Figure G.5-10 shows the change of metal temperature during heatup for a point at the tube crown and a point opposite the crown on the rear of the panel. The maximum metal temperature occurs approximately at 30 minutes and does not exceed 538°C (1,000°F). The temperature of the panel back lags the panel front by a temperature difference, as is seen by the plot in Figure 5.3-11.

A maximum delta-T of 46.7 °C (ll6°F) occurs at approximately 9 minutes. The delta-T then decreases to -1 °C (30°F) at about 30 minutes where steady state conditions prevail. The front-toback thermal gradient can be assumed to be linear, and maximum stress is calculated by the following:

$$\sigma_{c} = \frac{E \alpha \Delta T}{2(1-\nu)}$$

$$= \frac{(23.6 \times 10^{6})(9.4 \times 10^{-4})(116)}{2(1 - 0.37)}$$

۰.

 $= 20,400 \text{ psi} (1434 \text{ kg/cm}^2)$

Where,

 σ = maximum longitudinal compressive stress E^C = modules of elasticity, psi

- α = coefficient of thermal expansion, micro in./in. °F ΔT = front-to-back delta-T, °F
- v = Poisson's ratio

Since the resulting temperature and stress do not exceed the assumed conditions of the creep-fatigue analysis, then the loading scheme proposed by Figure G.5-9 is acceptable. The maximum allowable metal temperature has been set at 650°C (1.200°F) to prevent excessive creep damage; therefore, the heat flux limits of the startup condition can be further improved (see Figure G.5-10).

G.5.3 Material Selection

Incoloy 800H was selected over Incoloy 800, for the high temperature superheat panels, because of its excellent mechanical properties and higher allowable stresses that exist above 602°C (1,115°F). The new alloy, Modified 9Cr-1Mo, was considered as a substitute for 800H because of its low cost and comparable properties to many stainless steels. Also referred to as Croloy 9V, the alloy is characterized by a higher strength than other carbon steels and a high fatigue life, creep properties similar to TP304 stainless steel, excellent fabricability and weldability, and minimal stress corrosion in boiler application. Because of its lower coefficient of thermal expansion, post-weld heat treatment is required at a minimum temperature of 732°C (1,350°F).

For high temperature application, Croloy 9V does not exhibit the desirable creep properties that 800H offers. At 996°C (1050°F), stress allowables drop off readily; whereas, for 800H, the the significantly higher. In conclusion, allowables remain Incoloy 800H appears to be the preferred material where creep concerns are significant.

Location	1	2	3	
Panel	13	13	5	
Distance from	8.2	21.1	28.1	
bottom of panel, ft	(27)	(42)	(56)	
Dead weight	14.1 (200)	21.1 (300)	28.1 (400)	
Pressure				
(tangential)	436 (6200)	436 (6200)	520 (7400)	
(longitudinal)	176 (2500)	176 (2500)	176 (2900)	
Governing wind or seismic				
(longitudinal)	<u>+</u> 52.7 (<u>+</u> 750)	<u>+</u> 52.7 (<u>+</u> 750)	<u>+</u> 52.7 (<u>+</u> 750)	
Max. thermal	-2390	-1968	-1195	
(LONGICUULINGL)	(-34000)	(-28000)	(-17000)	

Table G.5-1 - Tube Stresses

Stress in units of kgf/cm^2 (psi)

FIGURE G.5-1 - Actual and Allowable Heat Flux Curves (typical)

FIGURE G.5-3 - Temperature Contours (Location])

FIGURE G.5-4 - Effective Stress Contours (Location])

FIGURE G.5-6 - LOAD HISTOGRAM FOR SIMPLIFIED ELASTIC METHOD

(DEL FATIGUE DAWAGE

FIGURE G.5-7 - Combined Creep-Fatigue Damage

FIGURE G.5-8 - Finite Element Grid

FIGURE G.5-9 - Thermal Loading for Dry Tube Startup

Appendix G.6

Creep - Fatigue Analysis of Tube Panel (Reference Analysis)

This appendix includes that portion of the report titled "Preliminary Design of a Solar Central Receiver for a Site Specific Repowering Application (Saguaro Power Plant)"Volume II dated September 1983 which was used to evaluate the creep-fatigue damage factors in the receiver tube analysis for this contract. Note that references made to other report sections do not apply to other volumes of this report or other sections of this Appendix.

G.6 <u>Creep-Fatigue Analysis of Tube Panel</u> - In the following absorber tube creep-fatigure analysis, a simplified inelastic analysis was performed using the ANSYS computer program and B&W finite element computer programs. This evaluation used the actual heat flux as the initial input based on the allowable flux envelope as shown in Figure G.6-1. In other words, this detailed analysis solves for the stresses and strains based on the input flux level. In the initial analysis allowable flux limits were established by essentially working the problem backwards. For the initial analysis method it was observed that the calculated stress range was greater than the allowable range, but only by 10%, and therefore, it was assumed that the limits on elastic action can be accepted as the limit for elastically calculated effective stresses. The purpose of the inelastic analysis was to determine if this assumption could be validated and to determine if shakedown to elastic action does occur. The slight differences in the results between the two methods is not considered significant. The variations can be attributed to the differences in the programs and also the higher initial strain for the inelastic analysis from which the relaxation is considered. Furthermore, there are some differences in the actual subdivision or integration of the creep relaxation. The creep damage summation for the inelastic analysis was not subdivided in the same manner as was used for the first approach. It is slightly more conservative.

Figure G.6-1 Creep-Fatigue Analysis Point Locations

G.6-2

Table G.6-1 Skewed Heating Effects

Panel	Tube	<u>c</u>	<u> </u>	Qmax	
8 10 10 11	First First Last First	0.1286 0.1798 0.1400 0.1480	7.33 10.193 13.495 8.419	1.009 1.016 1.029 1.011	
$\frac{Q}{Q_N} = \cos(\phi_0) + C \sin(\phi_0)$ Level = 6 m (20 ft) above centerline					

The points identified in the creep-fatigue damage envelope all exist at the tube crown region as the strain ranges for these locations are much greater than at the tube weld-clip region where a stress concentration factor for 4.0 is used.

The following results reveal the strain ranges for these locations.

	Max Strain Range	<u>Max Te</u>	mperature
Location	%	<u>°C</u>	<u>(°F)</u>
Pt A (Pass #10)	0.142	633	(1172)
Pt. A-1 (Pass #10)	0.098	60 2	(1115)
Pt. B (Pass #1)	0.175	443	(830)
Pass #10 - Weld-Clip Area	0.037	527	(980)
Pass #1 - Weld-Clip Area	0.032	277	(530)

The data for point A were obtained from a simplified inelastic analysis on ANSYS. All other strain calculations were based on the elastic stress rules of Code Case N-47 using B&W Computer Program CREEPF and increased by a factor of 5%. The value of 5% is the difference between the inelastic results from ANSYS and the results calculated in Program CREEPF (Fig. G.6-3).

<u>Thermal Analysis</u> - The finite element thermal analysis was performed using the thermal grid model as illustrated in Figure G.6-4. The geometry modeled is a planar view where the tube dimensions are 38 x 1.65 mm (1.5 OD x 0.065 in.). The input data consists of heat fluxes on the tube, salt temperature, and heat transfer coefficients. The distribution of the flux is input as a cosine function as shown in Figure G.6-5. The receiver tube thermal isotherms are presented in Figures G.6-6 and G.6-7.

<u>Stress Analysis</u> - Finite element elastic stresses were computed first for the thermal load cases, i.e., Pass 1 low temperature with high front-to-back delta-T's and also for Pass 10 where the front-to-back delta-T is smaller but is at maximum temperature conditions at the crown region. The finite element mesh is an 8-node plane strain model as illustrated in Figure G.6-8. The main point is that both methods show a reasonable comparison and the conclusion reached is that the design flux envelope as established is acceptable. The creep fatigue analysis results for the worst case tube panel locations are shown in Figures G.6-1 and -2. Three data points are shown in the creep-fatigue damage diagram, with points "A" and "A-1" having the same creep damage. The difference in fatigue damage is a result of the different flux levels used in the thermal analysis.

Figure G.6-2 Creep-Fatigue Damage Envelope

Point "A" is an overall enveloping worst case situation that falls somewhat outside the allowable damage envelope. The results here were obtained by an inelastic analysis performed on the ANSYS computer program using a simplified single tube element. The flux level corresponding to point "A" of Figure G.6-1 is shown as point "A" in Figure G.6-2. Point A is for the estimated worst condition with the salt temperature at 577°C (980°F).

The results for Point "A-1" are due to the normal expected flux levels and are approximately 30% lower than at Point A. The method of calculating the strain ranges only includes elastic stress finite element solutions. For Point "A-1", the creep damage is also assumed to be the same as that for Point "A", which is a conservative prediction. Even with this consideration there is ample margin for skewed heating effects which are only 3% more severe than the normal heating fluxes (see Table G.6-1).

The results at Point "B" are acceptable. This point represents the lower temperature extreme for the largest hot-to-cold delta-T condition, which occurs in Pass 1.

Figure G.6-3 Comparison of Inelastic and Elastic Strain Ranges for Point A

Figure G.6-4 Receiver Tube Finite Element Thermal Model Grid

Figure G.6-5. Thermal Boundary Heat Input

Figure G.6-6 Tube Temperature Contour Map

Figure G.6-7 Tube Temperature Contour Map for Panel 10

The elastic rules of Code Case N-47 are followed for determining the elastic strain ranges. This is performed through utilization of computer program CREEPF. For the tube and clip weld region, the hoop stresses are concentrated with a stress concentration factor of 4.0.

The stress analysis of point "A" showed the tube crown compressive stresses to be approximately -234.4 MPa (-34,000 psi) while for Point A-1 they are reduced to -165.4 MPa (-24,000 psi). For normal operating conditions (design point), the -165.4 MPa (-24,000 psi) stress level represents the most realistic condition for the tube at the crown region. However, in an attempt to analyze the most conservative situation for parametric evaluations, the stress level of -234.4MPa (-34,000 psi) at a maximum temperature level of 633°C (1172°F) is considered for a simplified inelastic evaluation on the ANSYS computer program. In this evaluation a pure strain-controlled condition is assumed neglecting the beneficial effect of strain redistribution in the tube. The model is simply a single element (i.e., STIF 42 out of ANSYS) which is a 1 in. -2-D isoparametric solid. A total of seven load cycles are analyzed as depicted in Figure G.6-9. The loading condition consists of displacements applied to the structure such that the calculated elastic stress of -234.4MPa (-34,000 psi) is applied in the load steps shown. Upon unloading, the structure returns to the overnight hot standby conditions. After the fourth load cycle, different hold times are imposed with each being progressively longer

to better understand the predicted behavior for the creep damage. The analysis considers the virgin yield stress throughout the loading. The material properties assumed are those for Incoloy 800H. The tube is constructed of Incoloy 800 and the substitution of Incoloy 800H properties from Code Case N-47 is justifiable based on current literature, which indicates similarities in the mechanical properties.

The results of the analysis are depicted in Figures G.6-10 through G.6-12 and Table G.6-2.

Figure G.6-10 Effective Stress vs Strain Hysteresis Loop Panel 10 (Inelastic)

Figure G.6-11 Inelastic Results for Receiver Tube Equivalent Strain

Table G.6-2 Inelastic Results for Receiver Tube

A METRIC UNITS

Input Values and Calculated Equivalent Strain										
Load	Load						Equiv	Stress, psi		
Step	R	Z	Т	RZ	ZT	TP	Strain	Eff	Eff/0.9	
1.	21.	1.	- 12.	0.	0.	0.	13.	3.806	4.228	
2.	-610.	1480.	- 669.	0.	0.	0.	1413.	117.104	130.116	
3.	-635.	1480.	- 711.	0.	0.	0.	1436.	75.727	84.142	
4.	- 48.	1.	- 136.	0.	0.	0.	80.	120.083	135.648	
5.	-613.	1480.	· 723.	0.	0.	0.	1433.	82.016	91.129	
6.	-622.	1481.	- 741.	0.	0.	0.	98.	66.192	73.547	
7.	- 28.	1.	- 158.	0.	0.	0.	1433.	122.896	136.552	
8.	-591.	1480.	- 741.	0.	0.	0.	1433.	84.546	93.941	
9.	.602.	1479.	- 760.	0.	0.	0.	116.	66.813	74.236	
10.	- 10.	0.	- 179.	0.	0.	0.	1435.	124.482	138.314	
11.	-572.	1480.	- 761.	0.	0.	0.	1445.	84.264	93.626	
12.	-581.	1481.	- 779.	0.	0.	0.	130.	67.923	74.470	
13.	- 9.	1.	- 199.	0.	0.	0.	1436.	125.586	139.540	
14.	-552,	1480.	- 778.	0.	0.	0.	1458.	86.52 5	96.139	
15.	-572.	1480.	- 821.	0.	0.	o .	1480.	47.631	52.923	
16.	-576.	1480.	- 874.	0.	0.	0.	1487.	13.328	14.808	
17.	-564.	1479.	- 900.	o.	0.	0.	210.	6.047	6.719	
18.	76.	1.	- 270.	0.	0.	0.	1432.	128.599	142.887	
19.	-469.	1479.	- 824.	0.	0.	0.	1470.	108.624	120.693	
20.	-504,	1480.	- 895.	0.	0.	0.	1470.	43.311	48.234	
21.	-507.	1479.	- 906.	0.	0.	o .	1475.	35.096	38.9 95	
22.	-508.	1480.	- 922.	0.	0.	0.	1483.	24.057	26.730	
23	-507.	1480.	- 935.	o.	O .	o .	1488.	16.913	18.793	
24.	121.	0,	- 320.	o.	0.	0.	263.	131.184	145.760	
25.	-423.	1480.	- 876.	0.	0.	0.	1444.	105.018	116.686	
26.	-425.	1480.	- 879,	o.	0.	0.	1445.	102.170	113.522	
27.	-448.	1480.	- 922.	0.	0.	О.	1469.	61.076	67.862	
28.	-458,	1480.	- 950,	0.	0.	o .	1483.	38.543	42.826	
29.	-459.	1480.	- 959.	0.	. 0.	o .	1488.	31,841	35.379	
30.	-460.	1480.	- 972.	о.	0.	o .	1494.	23.533	26.147	
31.	-459.	1480.	- 983.	O .	0.	О.	1498.	17.258	19.176	
32.	-458.	1480.	- 991.	0.	0.	o .	1502.	13.673	15.192	
33.	-457.	1480.	- 993.	0.	0.	o.	1502.	12.487	26.147	
34.	-455.	1481.	- 999.	o.	0.	0.	1505.	10.742	11.936	
35.	-453.	1480.	-1003.	о.	0.	0.	1506.	9,460	10.511	
36.	-451.	1480.	-1006.	o.	0.	0.	1507.	8.446	9,385	
37.	-449,	1481.	-1009.	0.	o.	o .	1508.	7.605	8,450	
38.	-448.	1480.	-1011.	0.	0.	o .	1508.	7.226	8.029	
39.	186.	1.	- 389.	0.	0.	Ο.	339.	134.004	148.894	
40.	-358.	1481.	- 941.	0.	0.	0.	1460.	105.204	116.893	
41.	358	1481	- 941.	0.	٥.	0.	1460.	104.452	116.058	
	1					· ·· ·				

Table G.6-2 Inelastic Results for Receiver Tube

(B) ENGLISH UNITS

Input Values and Calculated Equivalent Strain									
Load	Load						Equiv	Stress, MPa	
Step	R	Z	Т	RZ	ZT	ТР	Strain	Eff	Eff/0,9
1.	21.	1.	- 12.	0.	0.	0.	19.	552.	613.
2.	-610.	1480.	· 669.	0.	0.	0.	1413.	16894.	18871.
3.	-635.	1480.	- 711.	0.	0.	0.	1436.	10983.	12203.
4.	- 48.	1.	- 136.	0.	0.	0.	80.	17706.	19673.
5.	-613.	1480.	- 723.	0.	0.	0.	1433.	11895.	13217.
6.	-622.	1481.	- 741.	0.	0.	0.	1443.	9600.	10667.
7.	- 28.	1.	- 158.	0.	0.	0.	98.	17884.	19271.
8.	-591.	1480.	- 741.	0.	0.	0.	1433.	12262.	13624.
9.	-602.	1479.	- 760.	0.	0.	0.	1443.	9600.	10767.
10.	- 10.	0.	- 179.	0.	0.	0.	116.	18054.	20060.
11.	-572.	1480.	- 761.	0.	0.	0.	1425.	12221.	13579.
12.	-581.	1481.	- 779.	0.	0.	0.	1445.	9891.	10946.
13.	- 9,	1.	- 199.	0.	0.	0.	130.	18214.	20238.
14.	-552.	1480.	- 778.	0.	0.	0.	1436.	12549.	13943.
15.	-572.	1480.	- 821.	0.	0.	0.	1458.	6908.	7676.
16.	-576.	1480.	- 874.	0.	0.	0.	1480.	1933.	2148.
17.	-564.	1479.	- 90 0.	0.	0.	0.	1487.	877.	974.
18.	76.	1.	- 270.	0.	0.	0.	210.	18651.	20723.
19.	-469.	1479.	- 824.	0.	0.	0.	1432.	15754.	17504.
20.	-504.	1480.	- 89 5.	0.	0.	0.	1470.	6296.	6996.
21.	-507.	1479.	- 906.	0.	0.	0.	1475.	5090.	5656.
22.	-508.	1480.	- 922.	0.	0.	0.	1488.	3489.	3877.
23.	-507.	1480.	- 93 5.	0.	0.	0.	1488.	2453.	2726.
24.	121.	0.	- 320.	0.	0.	0.	263.	19026.	21140.
25.	-423.	1480.	- 876.	0.	0.	0.	1444.	15231.	16923.
26.	-425.	1480.	- 879	0.	0.	0.	1445.	14818.	16464.
27.	-448.	1480.	- 922.	0.	0.	0.	1469.	8858.	98 42.
28.	-458.	1480.	- 950.	0.	0.	0.	1483.	559 0.	6211.
29.	-459.	1480.	- 9 59.	0.	0.	0.	1488.	4618.	5131.
30.	-460.	1480.	- 972.	0.	0.	0.	1494.	3413.	3792.
31.	-459.	1480.	- 983.	0.	0.	0.	1498.	2503.	2781.
32.	-458	1480.	- 9 91.	0.	0.	0.	1502.	1983.	2203.
33.	-457	1480.	- 993.	0.	0.	0.	1502.	1811.	2012.
34.	-455.	1481.	- 999.	0.	0.	0.	1505.	1558.	1731.
35.	-453.	1480.	-1003,	0.	0.	0.	1506.	1372.	1524.
36.	-451.	1480.	-1006.	0.	0.	0.	1507.	1225.	1361.
37.	-449.	1481.	-1009.	0.	0.	0.	1508.	1103.	1226.
38.	-448.	1480.	-1011.	0.	0.	0.	1508.	1048.	1164.
39.	186.	1.	- 389.	0.	0.	0.	339.	1943 5.	21594.
40.	-358.	1481.	- 941.	0.	0.	0.	1460.	15258.	1 69 53.
41. 5	-358.	1481.	- 941.	0.	0.	0.	1460.	15149.	16832.

The fatigue damage is calculated based on two partitioned strain ranges. The maximum strain range occurs during the first loading cycle and is shown in Figure G.6-10. The maximum value is 0.142%. The strain range decreases in the subsequent cycles and based on this information it is reasonable to use this maximum value for the first four loading cycles. For the remaining cycles, a strain range value of 0.131% is used (Fig. G.6-3).

The fatigue damage is calculated by entering the continuous cycling curves from Code Case N-47, Figure G.6-13, at the maximum temperature of $633^{\circ}C$ (1172°F). The fatigue damage is as follows:

 $\epsilon_1 = 0.142\%$ n = 4 cycles N_d = 50,000 cycles D_{f1} = $\frac{4}{5,000} = 0.0$

For the remaining cycles (approximately 60,000) the strain range is 0.1317.

 $\begin{array}{rcl} n &=& 60,000 \ \text{cycles} \\ N_{d} &=& 100,000 \ \text{cycles} \\ D_{f2} &=& \frac{60,000}{100,000} = 0.6 \end{array}$

The total fatigue damage is therefore:

 $D_f = 0.0 + 0.6 = 0.6$

<u>Creep Damage</u> - The creep damage is predicted by use of the stress-to-rupture curves from code Case N-47 for Incoloy 800H (Figure G.6-14) and the calculated inelastic effective stresses determined by the ANSYS program. The total operating time is for 100,000 hours of life. The inelastic solution reveals a significant relaxation in stress for long periods of hold time.

For the first hold time segment of eight hours, a hold stress of 117.2 MPa (17,000 psi) is assumed based on the calculated stress value of 117.1 MPa (16,984 psi). No relaxation is considered here, but the benefit is taken into account by subdividing the time remaining into eight segments and evaluating the stress at each.

A plot of the effective stresses is presented in Figure G.6-12 for the complete histogram and the relaxation of the stress for the hold times is illustrated in Figure G.6-15.

Based on these results, Table G.6-3 gives the accumulated creep damage.

Figure G.6-13 Design Fatigue Curve (Continuous Cycling to 10^6 Cycles)

Figure G.6-14 Stress-to-Rupture Curves for Alloy 800H

Table G.6-3 Receiver Tube Creep Damage Re

Hold Time Stress,		Held Time Stress, 0.9		Operating Time, t, hr	Allowable Time, * T, hr	Creep Damage, <u>ti</u>
MPa	(psi)	MPa	(psi)	1	a	Td
117	17.000	130	18,900	8	5,000	0.0
86	12,500	96	13,900	10,000 -	70,000	0.143
81	11.700	90	13,000	10,000 -	100,000	0.100
76	11.000	84	12,200	1 0,0 00 ÷	100,000	0.05
71	10.300	79	11,400	10,000 -	$>3 \times 10^{3}$	0.0
86	12,500	96	13,900	15,000 *	70,000	0.21-
78	11.300	87	12,600	15,000 ¢	140,000	0.107
70	10,200	78	11,300	15,000 e	$>3 \times 10^{2}$	0.0
63	9,200	70	10,200	15,000 €	>3 x 10 ⁵	0.0
		•	· · · · · · · · · · · · · · · · · · ·		Total	0.614

*See Figure G.6-13 (Replotted from (N-47) *Based on 40,000 hr at 2-hr Cycles (Cloud Transients)

*Based on 60,000 hr at 8-hr Operating Cycles

Figure G.6-15 Plot of Effective Stresses for Hold Times Analyzed on ANSYS

G.7 Startup Stress Analysis

This section describes various receiver startup (warmup) cases in detail.

Figures G.7-1 through G.7-3 illustrate time profiles of the receiver parameters for this startup with the receiver and piping cold.

Figure G.7-4 shows the following time profiles:

- Average allowable heat flux to the receiver during the startup
- Pressure rise during the startup
- Rate of steam flow leaving the steam drum
- Rate of steam flow through the turbine by-pass valve

After 0.4 hours, steam starts to flow from the drum. Even though the superheater panels are experiencing solar input, heat absorption by the long piping runs results in a delay of 0.6 hours before a steam and water mixture reaches the by-pass valve.

Figure G.7-2 shows the time profiles of:

- Temperature rise rate experienced by average superheater panel prior to the attainment of steam flow.
- Temperature profiles of the fluid leaving economizer and evaporator panels.
- Profile of the quality of steam at turbine by-pass valve.

The average dry superheater panel reaches a temperature of about 404°C (760°F). 404°(760°F) is the equilibrium temperature for an uncooled panel tube subjected to 23.6 kw/m² (7,500 Btu/hr-ft²) heat flux. It has been assumed in this analysis that peak flux on the receiver will be about 2.5 times average flux. Thus, peak (18,750 Btu/hr-ft2), flux would be 59.1 km/m² for which temperature is about 650°C (1,200°F), and this equilibrium temperature level is assumed to be the peak temperature on receiver.) Economizer discharge (once boiling starts) remains in the two-phase region throughout the period of pressure rise, then becomes subcooled as steam flow takes a rapid increase. Initial superheat is attained at the turbine by-pass valve at about 1.9 hours, and the temperature required for steam admission to the hot turbine is attained in about 2.4 hours.

Figure G.7-3 shows steam temperature profiles achieved at the exits of each of the five successive superheater panels and at

the turbine by-pass valve. The magnitude of the heat sink capacity of the piping runs can be judged by the long delay in achieving superheat at the turbine throttle. The plot of the steam temperature leaving panel PS3 indicates that some attemperation flow may be required (although a study with actual flux maps would be required to substantiate this).

Solar Startup With Piping Hot

Figures G.7-5 through G.7-6 illustrate similar time profiles of the receiver parameters for startup with the piping hot from the previous day's operation. The plots graphically show the startup time reduction possible when the steam piping does not have to be heated. The thermal capacity of main steam piping heats the initial steam flow to 427°C (800°F) at the turbine by-pass valve. Figure G.7-6 shows that, for the average flux used in this analysis, steam temperature at the turbine throttle started to drop once desired pressure was attained. An increase in flux during the last 0.3 hours could be expected to restore the 427°C (800°F) steam temperature. The figure also indicates that starting the turbine at a lower throttle pressure could be considered to increase the power generation capabilities.

TIME, hr

FIGURE G.7-1

SOLAR WARMUP - RECEIVER & PIPES COLD

4

TIME, hr

SQLAR WARMUP - RECEIVER & PIPES COLD

TIME, hr

FIGURE G.7-3

SOLAR WARMUP - RECEIVER & PIPES COLD

TIME, hr

FIGURE G.7-4

SOLAR WARMUP - RECEIVER COLD & PIPES HOT

TIME, hr

FIGURE G.7-5

SOLAR WARMUP - RECEIVER COLD & PIPES HOT

.

TIME, hr

FIGURE G.7-6

SOLAR WARMUP - RECEIVER COLD & PIPES HOT