Software Used with the
 Flux Mapper at the Solar Parabolic Dish Test Site

C. Miyazono

September 15, 1984

Prepared for
U.S. Department of Energy

Through an Agreement with
National Aeronautics and Space Administration
by
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California
JPL Publication 84-76

Software Used with the Flux Mapper at the Solar Parabolic Dish Test Site

C. Miyazono

Prepared by the Jet Propulsion Laboratory, California Institute of Technology, for the U.S. Department of Energy through an agreement with the National Aeronautics and Space Administration.

The JPL Solar Thermal Power Systems Project is sponsored by the U.S. Department of Energy and is part of the Solar Thermal Program to develop lowcost solar thermal and electric power plants.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Abstract

Software for data archiving and data display was developed for use on a Digital Equipment Corporation (DEC) PDP-11/34A minicomputer for use with the JPL-designed flux mapper. The flux mapper is a two-dimensional, high radiant energy scanning device designed to measure radiant flux energies expected at the focal point of solar parabolic dish concentrators. Interfacing to the DEC equipment was accomplished by standard RS-232C serial lines. The design of the software was dictated by design constraints of the flux-mapper controller. Early attempts at data acquisition from the flux-mapper controller were not without difficulty. Time and personnel limitations resulted in an alternative method of data recording at the test site with subsequent analysis accomplished at a data evaluation location at some later time. Software for plotting was also written to better visualize the flux patterns. Recommendations for future or alternative development are discussed. A listing of the programs used in the analysis is included in an appendix.

ACKNOWLEDGMENT

The work described herein was conducted by the Jet Propulsion Laboratory, California Institute of Technology, for the U.S. Department of Energy through an agreement with the National Aeronautics and Space Administration (NASA Task RE-152, Amendment 327; DOE/ALO/NASA Interagency Agreement No. DE-AMO4-80AL13137).

CONTENTS

I. INTRODUCTION 1-1
A. OVERALL DESIGN PHILOSOPHY 1-1
B. DATA-ACQUISITION HARDWARE 1-2
C. GENERAL PRACTICAL RESTRICTIONS 1-2
II. INITIAL DATA-LOGGING ATTEMPTS 2-1
A. DESIGN PHILOSOPHY 2-1
B. AVAILABLE HARDWARE 2-1
C. SOFTWARE WRITTEN 2-1
D. PROBLEMS ENCOUNTERED 2-4
III. LOGGING METHOD USED 3-1
A. DESIGN PHILOSOPHY 3-1
B. AVAILABLE HARDWARE 3-1
C. SOFTWARE WRITTEN 3-1
D. PROBLEMS ENCOUNTERED 3-2
E. SOFTWARE UPDATES 3-2
IV. DISPLAY SOFTWARE 4-1
A. DESIGN PHILOSOPHY 4-1
B. AVAILABLE HARDWARE 4-1
C. SOFTWARE WRITTEN 4-1
V. RECOMMENDATIONS AND CONCLUSIONS 5-1
A. SOFTWARE RECOMMENDATIONS 5-1
B. HARDWARE RECOMMENDATIONS 5-1
C. CONCLUSIONS 5-2
APPENDIXES
A. LIST OF COMPUTER PROGRAMS A-1
B. TYPICAL PLOTS OF FLUX-MAPPER DATA. B-1
Table

1. Data File Structure 2-2

SECTION I

INTRODUCTION

A. OVERALL DESIGN PHILOSOPHY

The flux mapper is a three-dimensional scanning system to measure the high radiant flux levels expected at the focal point of a solar parabolic dish system. The scanning, measurement, and initial storage of the data are handled by the flux-mapper controller. Software was written to enable a Digital Equipment Corporation (DEC) PDP-11/34A minicomputer to archive the data for long-term storage and to display the data collected from the flux-mapper controller in different formats.

The overriding system requirement for the software was compatibility with the output of the flux-mapper controller. The design, fabrication, and software control of the flux mapper were carried out by JPL personnel. The flux-mapper controller is a microprocessor-based system using read-only memory (ROM) to store the acquisition and output routines. Consequently, changes in the software routines from the flux-mapper controller are more difficult to achieve. It was decided that the requirement for compatibility would rest with the PDP-11/34A because the programming was to be done using standard Fortran IV language and compiler. Therefore, changes in gathering of the data from the controller could be made quickly.

Another important design requirement was ease of use in the field. The flux mapper was to be used at the Parabolic Dish Test Site (PDTS) located at the JPL Edwards Test Station (ETS) in the high desert, 120 km northeast of JPL (in Pasadena). The personnel at the PDTS were not extensively trained in minicomputer programming. Also, the small size of the staff precluded the availability of an individual dedicated to the minicomputer system. Therefore, the staff at the PDTS did not have the time nor the expertise to perform significant minicomputer tasks.

Finally, it was felt that error checking of the incoming data from the flux-mapper controller should be included. Incorrect characters would obviously be detrimental to output displays and listings as well as to the archived data. Because the PDP-11/34A minicomputer would receive data from the flux-mapper controller, error checking could only be done as the data were received. This precludes the use of standard methods such as checksums; therefore, a different approach had to be used.

The three above-mentioned overall design requirements were the basis by which all software was designed. These initial decisions were made during the end of 1979 when discussions were first taking place regarding the flux mapper and its interface with the data-acquisition minicomputer system at the PDTS.

B. DATA-ACQUISITION HARDWARE

The data-acquisition hardware available at the PDTS consisted of a Digital Equipment Corporation PDP-11/34A minicomputer with two removable RK05 disk drives and 256 kilobytes of internal memory. The system also had as supporting peripherals a Kennedy Model 9100 magnetic tape drive, a Versatec Model 1100 printer/plotter, and a Control Data Corporation Model 9766 removable disk drive. In addition, there were interfaces for the various terminals used as well as additional serial ports for access by other devices such as the data loggers. The entire minicomputer system was housed in a mobile trailer located adjacent to the PDTS control room at the test site. All connections between the minicomputer, the terminals, and data loggers (with the exception of the console terminal) were by RS-232C standard serial interfaces. The console terminal communicated by the standard 20 -milliamp current loop.

C. GENERAL PRACTICAL RESTRICTIONS

A significant restriction that was not expected occurred as a result of the operating system used. The multi-user system supplied by Digital Equipment Corporation (DEC) called RSX-11M was used during the entire period of development. Unlike the DEC single-user system, the RT-11, their multi-user system would not permit the use of a ring buffer to store input data. During each cycle, the operating system polls all input devices to determine if a task has been initiated. During this polling procedure, inputs to other ports are not placed into ring buffers for temporary storage until they are polled in turn. This resulted in the possibility of losing input characters from a device while the operating system was polling other devices.

With this problem in mind, it became clear that during transfer of data from the flux-mapper controller to the PDP-11/34A the possibility of data loss would be great if this polling mechanism were left intact. This could cause a significant restriction of implementation of the data-acquisition and archiving software.

INITIAL DATA-LOGGING ATTEMPTS

A. DESIGN PHILOSOPHY

During the initial phases of the development of the necessary software, the same general design criteria stated previously were used. Compatibility, ease of use, and error checking were of foremost importance in the design of the software.

During software development, accessibility of the flux mapper for testing was limited. Therefore, much of the development of the software had to be done without access to the actual hardware. This necessitated the inclusion of ease of hardware interfacing as a design criterion. And finally, because the equipment was to be used at the PDTS, where the personnel did not have minicomputer or microprocessor expertise, minimal interfacing in terms of training and operator instructions was a desirable criterion.

B. AVAILABLE HARDWARE

The available hardware was discussed previously. The flux-mapper controller output, basically an RS-232C serial interface line, was connected to one of the serial inputs of the minicomputer.

C. SOFTWARE WRITTEN

The initial software written consisted of a data-acquisition program and a data-output program. Both were written in Fortran IV for the DEC PDP-11/34A minicomputer using the RSX-llM operating system.

The data-acquisition software was written to read the seven-bit ASCII characters that are transmitted from the flux-mapper controller. The format for the data from the flux-mapper controller consists of three types of records: a header record, a set of data records, and an end record.

Each record was identified by a one-character ASCII identifier, followed by the data in a fixed structure. The structures of each type of record are given in Table 1. Note that there was only one header record and only one end record, but there could be many data records.

Each data record represented one traverse of the radiometer probe across the flux mapper. At the end of the traverse, the probe incremented in the perpendicular direction by a preset amount and continued its traverse in the opposite direction. This boustrophedonic motion is evident in the data records as alternating signs on the X spacing entry.

Table 1. Data File Structure

Header Record, Once/Scan	
Header Record Code "H"	A1
Metric/English "M" or "E"	A1
Probe Calibration	A6
Module ID	A2
Test Number	I4
Run ID	I2
Scan ID Number	I3
Software Update Number	14
Hour	I2
Minute	I2
Second	I2
Month	I2
Day	I2
Year	I2
Probe Type	I1
Scan Type "1" = Rectilinear	I1
Channel 0 Amp Ratio Code	I. 1
Channel 1 Amp Ratio Code	I1
Channel 2 Amp Ratio Code	11
Channel 3 Amp Ratio Code	Il
Scale Factor Code	I1
Number of Raster Repeats	I2
Spacing X	F6. 2
Raster X Delta	F6. 2
Raster Y Delta	F6. 2
Initial X Position	F6. 2
Initial Y Position	F6. 2
Initial Z Position	F6. 2
Zero X Position	F6. 2
Zero Y Position	F6. 2
Zero 2 Position	F6. 2

Table 1. Data File Structure (Cont'd)

Header Record, Once/Scan

End Record, Once/Scan

End of Scan Code "E"	Al
Reference Intensity	F6.2
Check Sum of Absolute Value of	
\quad All Data Points	F12.2
Summation Value (Negative = Overflow)	I9
Points Surmed	I 4
Number of Lines	I 3
End Hour	I 2
End Minute	I 2
End Second	I 2
End of Scan Character "!"	Al

All entries in all the types of records were separated by a comma. All numerical entries were ASCII characters, with or without a leading positive or negative sign. All floating point numbers required a decimal point in the entry while integers did not. The only character that was not from the above list was the last character of the scan. This character was an "!", ASCII code octal number 41.

The acquisition software accessed the data port and verified the character type and structure of each record. If both were correct, then the information was decoded from ASCII to binary numbers when appropriate and stored on magnetic tape in a binary data file. This procedure was to be accomplished at the end of each complete raster of the flux mapper. At that time, the flux-mapper memory would be initialized and the next raster would be taken.

The initial version of the data-output program was designed to read the binary data file on magnetic tape and print out the numbers as they were gathered from the flux mapper. No initial processing other than formatting of the data was to take place.

D. PROBLEMS ENCOUNTERED

Several immediate problems were encountered using these initial versions of the software, including polling with the operating system and transmission. The latter problem was never solved.

As mentioned previously, the polling problem with the operating system placed a severe restriction on data acquisition. During the polling of all serial inputs, the operating system stores characters in a buffer for only the serial input being polled. The other inputs are ignored. The flux-mapper controller transmitted data to the serial port at a regular pattern regardless of the status lines in the RS-232C cable. This regular transmission pattern occasionally overlapped with the operating system's polling of the other ports. The result was that the character transmitted at that time was lost. To overcome this problem, the priority of the data acquisition task was altered.

The RSX-1lM operating system features a series of priority levels at which tasks can be assigned. All tasks with the same priority are polled in a round-robin fashion, and all of the users with the same priority level are given an equal opportunity to use the resources of the central processor unit (CPU). Normally, tasks are given a priority level of 50 out of a maximum of 250. Some tasks that require more of the CPU's resources are assigned higher priorities. An example of this is the text editor. It is normally installed at a priority of 65 because its interactive nature requires more of the CPU's resources.

The data-acquisition program required all of the CPU's resources for recording transmitted data from the flux-mapper controller. The acquisition program was installed at a high priority, 249, prior to execution. At execution, this task occupied virtually all of the CPU's resources and,
therefore, gathered all the data without difficulty. However, monopolizing all of the resources essentially rendered the multi-user system a single-user system.

During initial use of the acquisition software, it was found that decode errors were occurring in the data string. These errors occurred randomly in the string, but in each occurrence the program would abnormally exit and abnormally close the binary data file on magnetic tape as a file of zero length. This was particularly annoying when the program would fail and all but the last few scans had been transmitted. In addition, this zero-length file on magnetic tape presented problems of playback of subsequently recorded data and also used a file name for null data.

It was suggested that perhaps the flux-mapper controller had transmitted the incorrect character, causing the program to fail. This was checked by recording the output of the flux-mapper controller onto a digital data cassette tape unit. When several runs of the same set of data were recorded onto the cassette, a direct playback showed that these errors did not occur in every run nor at the same location of the run in which they occurred.

It was decided that, to minimize the procedure for the personnel at the PDTS, the option of the analysis and printout imnediately after a test was abandoned. Instead, the acquisition of the data was ensured in a simple way. The method used was the digital data cassette recorder mentioned above. At the end of each raster scan, the PDTS personnel transmitted the data from the flux-mapper controller to the digital data cassette three times. The cassette was then sent to JPL for archiving and printout. The three runs ensured that at least one complete and correct run had been stored.

The digital data cassette recorder presented its own set of problems. In the record mode, the cassette fills a buffer and then transfers the data to tape in a single block. If the recorder was switched from the record mode, the data in a partially filled buffer was not transferred to tape; it was lost. Therefore, the recorder, once set to record mode, was left in record mode until all rasters of all the tests had been recorded for that particular day. The recorder presented a problem when tapes were recorded on one side and then reversed. Data on the first side appeared to be erased. The staff at the PDTS was instructed not to reverse the tapes. With these instructions, the data was archived and printed at JPL at a later time.

Finally, the use of the digital data cassette recorder allowed the PDP-11/34A to be used to acquire data from the Acurex Autodata-Nine data logger during the flux-mapper runs. The data-acquisition program monitored the data for various warnings, such as low cooling water flow, and displayed this information on monitor. The data-acquisition program for the data loggers and for the flux-mapper controller are mutually exclusive tasks because of the nature of the operating system. It was felt that the warning alarms were an additional bonus.

SECTION III

LOGGING METHOD USED

A. DESIGN PHILOSOPHY

The software was designed with three general design criteria in mind: compatibility with the flux-mapper controller, ease of use in the field, and error-checking capability. A large trade-off resulted for the criterion of ease-of-field use; thus, processing the data was made much more difficult.

B. AVAILABLE HARDWARE

The digital data cassette recorders, originally purchased as a backup unit for the data loggers, proved to be the important link between the flux-mapper controller and the PDP-11/34A. Two recorders, one at the test site for the recording of data and one at JPL for playback of data, were available. The one at the test site was set to the output characteristics of the flux mapper. The unit at JPL for data replay was set to an available port. The tapes used were cassette tapes of digital computer quality that contained archived as well as processed data.

C. SOFTWARE WRITTEN

The use of the digital data cassette recorders altered the original software tasks. The software tasks were subsequently divided into three parts: (1) software to read the data from cassette tape and write onto a disk storage medium, (2) software to read from the disk storage medium and transfer to a nine-track magnetic tape for archiving, and (3) software to print out the results from magnetic tape.

The program to read the data from cassette tape and place it onto disk storage media was called CASTAP. FTN. This program had to be an installed task with logical unit number 3 reassigned to the input port. This task also required a high priority to bypass the polling option. (See the RSX-11M V.3.1 operator's manual for details.)

The program CASTAP transferred a given raster scan from the data cassette to a file on disk. The actual ASCII characters were transferred -no conversion of any type was made on the data elements. The program allowed the entry of the disk file name and allowed the selection of the scan to be stored on disk. The scan numbering system started with the present scan and incremented each time that the end of scan character, the "!", was found. At the conclusion of the data transfer to disk, the cassette recorder was turned off by the program.

The next step was to visually check the data file for incorrect characters. This was a rather poor method of error checking, but considering the limits of time and personnel available, it was the only one possible. The most common extraneous characters found in a record were lower-case characters and carriage returns embedded in data records. On finding errors, one of two options was available. The entire scan could be rerecorded, using one of the other three scans recorded; or a visual inspection of the data cassette rasters, using the data cassette recorder playing back directly into a terminal, would display the data from one of the other scans. The data in the disk file could then be changed to the correct value by using the text editor. To ensure that the file was examined, a comma, ",", had to be added to the end of the disk data file following the end of raster character, the "!". If this comma were not added, then the file was deemed incomplete, and the archiving program would abort abnormally.

The program to transfer the data from disk to a binary file on nine-track magnetic tape was called FMPCAS. FTN. This program read the ASCII file on disk, checked the record structure, decoded the ASCII to binary, and stored the binary in a nine-track magnetic tape to be initialized, if new, and be software-mounted. The magnetic tape file was opened as a Fortran logical unit and interfaced with the operating system.

Once the program had been transferred to magnetic tape, the data could be printed out onto the line printer using the program FMPRINT. FTN. This program required the input of the data file name as well as requiring that the magnetic tape be mounted. Each file had to be called separately for printing; however, several copies could be produced with each call of this program.

D. PROBLEMS ENCOUNTERED

The problems with the software were quite evident. The delay between acquisition at the PDTS and the final printout, the slowness of the acquisition itself, and the tedious data scanning using the editor were all problems that would have been attacked, had there been time and personnel available. Twice a year, perhaps, rasters were taken over the course of a two-week period. This operation, therefore, was relatively infrequent and not commanding priority of time and personnel.

E. SOFTWARE UPDATES

From this version of the acquisition software, a major alteration to the data format was executed by the flux-mapper-controller programming group. Engineers analyzing the flux-mapper data requested time information for each scan. Because a typical complete raster would normally take from one-half hour to one-and-one-half hours, it was felt that these data would be very important in correlating the flux-mapper intensities to weather data such as insolation. The programmers added time information at the beginning of each data record. In addition, the output order was changed to its present boustrophedonic form. Both these changes occurred in June 1981. The software used for data acquisition included these changes. The plotting software (see below) included both formats.

DISPLAY SOFTWARE

A. DESIGN PHILOSOPHY

It was decided that a three-dimensional plot of the flux-mapper information would be the best way to represent the data for quick review. (See Appendix B.) It was felt that the plots should be easily understandable. Flexibility in plotting was also considered an important criterion. Viewing the flux map from various angles would greatly aid in understanding the resulting patterns. The plots were designed to provide the data in a uniform manner to allow easy comparison between rasters of different distances from the focal plane.

B. AVAILABLE HARDWARE

The same basic minicomputer hardware was available. For printing and plotting, a Versatec Model 1100 electrostatic printer/plotter was used. The associated software to interact with the plotter portion of the device was purchased also from Versatec specifically for RSX-11M version 3.1.

C. SOFTWARE WRITTEN

The display software was a set of programs to input, reformat, calculate, and plot the flux-mapper raster data into a three-dimensional plot viewed from any location. The software was modeled after a plotting package in use on the Univac 1100 computer at the time of this development. Because of the size of the task involved, three separate major programs were written, along with several other minor programs.

The first minor program, TPDK. FTN, read the data from the nine-track magnetic tape and transferred it to a general file on disk in the appropriate format. The same general file name on disk was used each time the program was called. Because the program accessed the tape file as a Fortran logical unit, the magnetic tape had to be software-mounted.

The first major program, GPLOT1D.FTN, read the data from the disk file and reformatted it for use by the other plotting routines. This routine also determined the type of plot desired, such as which view and the presence of contour lines.

The second major program, GPLOT2D.FTN, performed the actual three-dimensional calculations, including the hidden line algorithm. The results were then placed in a file for final plotting in the last phase.

The third major program, PLOTERD. FTN, took the output from the previous file and created the Versatec plotter file. In this program, all of the interfacing to the Versatec software was included. A short, 30-character title was also requested as well as changes in scale factor. The resulting files, VECTRI.BIN and PARM.BIN, contain the plotting instructions for the Versatec plotter.

The last step was to invoke the plotter, using the Versatec-supplied program, RASM.TSK. This program accessed VECTRI.BIN and PARM.BIN to produce the actual plots.

A set of modified versions of the major plotting programs was created for use at the PDTS. The number of optional features, such as viewing location, were fixed. These were denoted as FPLOTl.FTN, FPLOT2.FTN, and PLOTER. FTN.

A second set of modified versions was created to view the plot from directly overhead, namely, a contour plot showing isointensity lines of solar radiation. The same general steps were followed in this set of programs, named CPLOT.FTN, CDRIVE.FTN, and SUMRAD.FTN.

These plots, combined with the data printouts, provided a complete picture of the solar irradiation.

SECTION V

RECOMMENDATIONS AND CONCLUSIONS

A. SOFTWARE RECOMMENDATIONS

The software recommendations discussed here would have been implemented, given sufficient time and personnel. Because of the software's infrequent use, most of the changes and modifications were made either just prior to or immediately after its use, when its priority was high.

The plots and data printouts were analyzed and used by JPL personnel. The filing system that was used did not match the one used by the dataacquisition software. Much of the correlation of older data has been from descriptive information included on the plots and printouts. It would have been very useful to provide more space for descriptive information on both the plots and printouts.

The operating system and the problem with the system polling may have required some system programming modification. At the time, no available personnel had the expertise to examine the problem. Also, the operating system was an older, unsupported version. The newer versions may, in fact, alleviate or mitigate this buffer/polling problem.

The tedius work of going through the disk file after transfer from the digital data cassette using the text editor might have been alleviated by a program that would scan the ASCII data for inappropriate characters. Time did not permit the writing of this program.

Finally, with the correct type of hardware, it should be possible to reproduce the three-dimensional flux-mapper plots on a video terminal equipped for graphics output. With interactive features, this would allow for easier interpretation of data plots.

B. HARDWARE RECOMMENDATIONS

During the initial checkout of the software, the unavailability of the flux-mapper hardware made correction and modification difficult. It would have been helpful if a hardware simulator had been available. An alternative would have been to perform all of the development work, both hardware and software, in one location.

The Versatec printer/plotter was an older model, no longer in production. It normally required several minutes to produce a plot. A faster plotter would have been useful.

C. CONCLUSIONS

The flux-mapper software, as the flux mapper itself, was a laboratory tool. Although the use of the software was cumbersome at times, it consistently provided useful plots and printouts to evaluate the performance of point-focusing parabolic dishes.

APPENDIX A

LIST OF COMPUTER PROGRAMS

This Appendix contains one of the representative sets of programs used to analyze and plot the flux-mapper data. The set included herein is the standard set used for analysis of most flux-mapper runs. This software was available to the PDTS staff; analysis of data contained on digital cassettes was usually performed at the main JPL facility.

The programs included in this representative set of software are

FMTPDK. FTN	Flux-mapper mag tape to disk program
FPLOT1.FTN	First stage of the field three-dimen
SET32.FTN	Subroutine for three-space to two-space transformation
CLSET.FTN	Subroutine to calculate contour values
FPLOT2.FTN	Second stage of the field three-dimensional plot system
SEG.FTN	Subroutine to write plotting data into a file
CTCELL. FTN	Subroutine to compute contour lines
DRAW.FTN	Subroutine to draw visible part of a line between two points
PLOTER. FTN	Third stage of the field three-dimensional plot system
f the software generated for the flux-mapper task is not included space constraints. Copies of this software were transferred to onal Laboratories-Albuquerque (SNLA) and are available through that	

Major software packages developed for the flux mapper but not listed in this Appendix include the following:

CPLOT.CMD	Command file to run contour plot software system
CPLOT.FTN	First stage of contour plot system
CPLOTO.FTN	First stage of contour plot system for old flux-mapper
	files
CDRIVE.FTN	Second stage of contour plot system
GPLOT.CMD	Command file to run generalized plot software system
GPLOTlD. FTN	First stage of generalized three-dimensional plot system
GPLOT2D.FTN	Second stage of generalized three-dimensional plot
	system
PLOTERD.FTN	Third stage of generalized three-dimensional plot system
SUMEVN.FTN	Superimposes two flux-mapper files of unequal size
SUMPRT. FTN	Prints flux-mapper data to printer
SUMRAD. FTN	Integrates flux over a user-defined area
SUMRADO.FTN	Integrates flux over a user-defined area for old
	flux-mapper files
SUMUP. FTN	Adds the contents of two flux-maper files together

C
C
FMTPDK.Onl and other uses.

* NE

REAL LIV
DATA YY/'Y'/
*'A','T'/
ITAPE $=4$

TYPE 903, FILE
REWIND ITAPE
NO = 1

READ (ITAPE)
READ (ITAPE)
READ (ITAPE)
READ (ITAPE)

READ (ITAPE)IH
TYPE 905, IH
GO TO 50
*LIV
*LIV
READ (ITAPE)ID

Flux mapper tape to disk program.
This program is designed to
dump the contents of the flux mapper tape onto disk for plotting

JPL PFDRT. Written by Stephen Ritchie
. OO1 15-SEP-80 INITIAL VERSION
LINK: Uses standard libraries

LOGICAL*1 IY, YY, ICD, FILE(14), BK(14),IN,
DIMENSION DTA(64), ISCOM(41), RDTA(64)
INTEGER TM (3) , Z, Y, HDR (9) , STYPE, DAY, YEAR, RID, TPROBE, PCAL (3) , SID,
*END, SUNO, CSF (4), SFC, TNO

DATA FILE/'M','T','O',':','F','M','O','O','O','O','.','
DATA IHR/'FH'/,IDR/'FD'/,ITR/'FE'/
TYPE *,' Enter Flux mapper file name in XXXX.YYY fomat'
ACCEPPI 902,(FILE(I),I=5,14)
CALL ASSIGN (ITAPE,FILE,14)

OPEN (UNIT $=1$, NAME=' TTMP. DAP', TYPE='NEW' ,FORM='UNFORMATTED',
*ACCESS='DIRECT' , ASSOCIATEVARIABLE=NO, RECORDSIZE=100, DISP='SAVE')

READ (ITAPE) (ISCOM(I), $I=1,10)$
WRITE (1 'NO) (ISCO (I$), \mathrm{I}=1,10$)
IF (IH.EC. IHR) GO TO 20

READ (ITAPE)METRIC, PCAL, MODID, TNO, RID, SID, SUNO, TM, MONTH, DAY,
*YEAR, TPROBE, STYPE, CSF, SFC,NRR, SX, DX, DY, XI, YI, ZI, ZX,ZY, ZZ, ZDV, RIV,
WRITE (1 'NO) IH, METRIC, PCAL, MODID, TNO, RID, SID, SUNO, TM, MONTH, DAY,
*YEAR, TPROBE, STYPE, CSF, SFC, NRR, SX, DX, DY, XI, YI, ZI, ZX, ZY, ZZ, ZDV, RIV,

IF (ID.EO.IDR) GO TO 25
IF (ID.EQ.ITR) GO TO 29
TYPE 910,ID

C RE-ORDERING INPUT DATA
DO $26 \mathrm{I}=5$,N
$J J=65-\mathrm{I}$
$\operatorname{RDTA}(J J)=\operatorname{DTA}(I)$
CONTINUE
WRITE(1'NO) ID,N, dta(1), dta(2), $\operatorname{dta}(3), \operatorname{dta}(4),(\operatorname{RDTA}(I), I=J J, 60)$ GO TO 28
WRITE(1 'NO) ID,N, (DTA(I), I=1,N) CONTINUE GO TO 23
CONTINUE
RFAD (ITAPE)RIN, SCS, SV, NPS, MLINES, IER, IIM, IES
WPITE, (I 'NO) ID, RIN, SCS, SV,NPS,NLINES, IER, IER, IER
CLOSE: (UNIT=1)
CALL CLOSE (ITAPE)

50

901
902
903
904
905
910 FORMAT (' DATA RECORD DOES NOT MATCH', A2) END

```
    PROGRAM FPLOTl
    LOGICAL*1 YY,DILE(10),ODILE(8),TY,BELL
    DIMENSION X(33),Y(33) ,Z(1089) ,M(2178) ,
        S(6) ,DTA(40) ,Yl(33)
    DIMENSION MXS(2) ,MXF(2) ,MXJ(2) ,MYS(2) ,MYF(2) ,MYJ(
    COMMON /SRFBLK/ LIMU(1024),LIML(1024) ,CL(41) ,NCL ,
        LL ,FACT ,IROT ,NDRZ ,
        NUPPER ,VMIN NRSWT ,BIGD ,VMAX ,MMIN ,RZERO ;
        NOFFP ,NSPVAL ,SPV ,BIGEST
    COMMON /PWRZl/ XXMIN ,XXMAX ,YYMIN ,YYMAX
        ZZMIN ,ZZMAX ,DELCRT ,EYEX
        EYEY ,EYEZ
    COMMON /SET/CVAL(10) ,NCHAR ,IHEAD(10),XDIST,NON ,NVAL
    COMMON /SEIN/ NN
    DATA BELL/"7/
    DATA SPVAL,IOFFP/O.O,0/,YY/'Y'/
    DATA STEREO /O.0/
    DATA IFR,ISTP,IROTS, IDRX, IDRY, IDRZ,IUPPER, ISKIRT,NCLA/
    1, 0, 0, 1, 1, 0, 0, 0, 6/
    DATA THETA,HSKIRT,CHI,CLO,CINC/
* .02, 0., 0., 0., 0./
    DATA S/40.,10.,10.,0.,0.,0./MDZ,NX,NY,NCHAR/33,33,33,10/
    NRSWT = 0
    IEND = -9999
    ISPVAL = -999
    BIGEST = 1.E37
    END = -9999.
    NO =1
    TYPE *,' THIS PROGRAM PERFORMS A 3-D PLOT OF FLUX MAPPER DATA'
    OPEN(UNIT=4,NAME='TEMP.DAP',TYPE='OLD',FORM='UNFORMATTED',
    1ACCESS='DIRECT' ,ASSOCIATEVARIABLF=NO,RECORDSIZE=100)
    FORMAT (1OA1)
    FORMAT (8AL)
    CONTINUE
    TYPE *,' Enter number of X points in scan, INTEGER'
    ACCEPT 9ll,NX
    TYPE *,' Enter number of Y lines in scan, INTEGER'
    ACCEPT 91l,NY
FORMAT (I5)
FORMAT (1OA2)
TYPE *'' Do you want Front(1) or Side(2) view? Enter l or
2 INTEGER'
ACCEPT 911,NV
IF (NV.EQ.1) GO TO }30
S(1) = 10.
S(2) = 40.
CONTINUE
FORMAT (F7.2)
TYPE *, ' Do you want contours? Y(es) or N(o)'
ACCEPT 905,IY
IF (IY.GT.8288) IY = IY - 32
IF (IY.EQ.YY) IDRZ = I
READ (4'NO)
READ (4 'NO)IH,MM,M1,M2,M3,M4,M5,M6,M7,M8,M9,N,N1,N2,N3,N4,N5,N6,
```

```
    * N7,NE,NO,I1,I2,I3,DDX,X1,X2,X(1),X3,X4,X5,X6,X7,X8,X9,X1O
    IF (I2.EQ.0) AIJ =.0125
    IF (I2.EQ.1) AIJ = .5
    IF (I2.EQ.2) AIJ = 1.
    IF (I2.EQ.3) AIJ = 2.
    IF (I2.FQ.4) AIJ = 5.
    IF (I2.EQ.5) AIJ = 10.
    IF (I2.EQ.6) AIJ = 20.
    IF (I2.EQ.7) AIJ = 50.
    IF (I2.EQ.&) AIJ = 100.
    IF (I2.EQ.9) AIJ = 200.
    DO 3l I=2,NX
    X(I) = X(I-1) + DCX
    CONTINUE
    XlG = X(1)
    X2G = X(NX)
    KSWT = 0
    KFLG = 0
    TYPE *,' IS DATA FRE-JUNE 1981? (Y/N)'
    ACCEPT 905,IY
    IF (IY.GT.9E) IY = IY -32
    IF (IY.NE.YY) KFLG = I
    DO 38 K=l,NY
    READ (4'NO)IC,N,(DTA(I),I=l,N)
    Yl(K) = DTA(4)
    IF (N.EQ.NX+4) GO TO 32
    KCK = N
    N = NX + 4
    TYPE *,' ***** WARNING, NOT ENOUGH X VALUES
    JKX = KCK - 4
    TYPE 917,JKX
9 1 7 ~ F O R M A T ~ ( ' ~ O N L Y ' , I 3 , ' ~ V A L U E S ~ F O R ~ X ' ) ,
    TYPE 918,BELL
    TYPE 918,BELL
    918 FORMAT (1H Al)
32 CONTINUE
    IF (KFLG.EQ.1) GO TO 34
    DO 33 J=5,N
    Z(J-4+NX* (K-1)) = DTA(J)
    ZCMAX = AMAXI (ZCMAX, DTA(J))
    CONTINUE
    GO TO 38
    IF (KSWT.NE.O) GO TO 36
    DO 35 J=5,N
    Z(J-4+NX* (K-1)) = DTA(J)
    ZCMAX = AMAX1(ZCM\X,DTA(J))
    CONTINUE
    KSWT = 1
    GO TO 38
    DO 37 J=5,N
    Z(J-4+NX* (K-1)) = DTA (N+5-J)
    ZCMAX = AMAX1 (ZCMAX,DTA (N+5-J))
    CONTINUE
    KSWT = 0
    CONTINUE
```

```
    IF (KFLG.E\Omega.]) GO TO 40
    DC }39\textrm{J}=1,\textrm{NY
    Y(J) = Yl (NY-J+l)
    CONTINUE
    CO TO 42
    DO 41 J=1,NY
    Y(J) = Y1 (J)
    conTinue
    canTINUE
    CLOSE (UNIT=4)
    PRINI 901,X,Y,Z
    YlG = Y(1)
    Y2G = Y(NY)
    ZCMAX = ZCMAX*AIJ
    FORMAT (1H 9E14.7)
    NON = 1
    MMXX = MDZ
    NNXX = NX
    NNYY = NY
    STER = STEREO
    NXP1 = NNXXX + 1
    NYP1 =NNYY + 1
    NLA = NCLA
    NSPVAL = ISPVAL
    NOFFP = IOFFP
    SPV = SPVAL
    NDRZ = IDRZ
    IF (IDRZ.NE.C)
    * CALL CLSET(Z,MMXX,NNXX, NNYY,CHI,CLO, CINC,NLA,40, CL,, NCL,
                                    ICNST, NFFFP, SPV, EIGEST)
    IF (IDRZ.NE.O) NDRZ = 1 - ICNST
    STHETA = SIN(STER*THETP.)
    CTHETA = COS(STER*THETA)
    RX = S(1) - S(4)
    RY =S(2) - S(5)
    RZ =S(3)-S(6)
    Dl = SQRT (RX*RX+RY*RY+RZ*RZ)
    D2 = SCRT'(RX*RX+RY*RY)
    DX = 0.
    DY = 0.
    IF (STEREO.ES.O.) GO TO 102
    Dl = Dl*STEREO*THETA
    IF (D2.GT.O.) GO TO 101
    DX = Dl
    GO TO 102
101 AGL = ATAN(RX/-RY)
    DX = Dl*OCS (ACL)
    DY = Dl*SIN(ACL)
    IROT = IROTS
    NPIC = 1
    IF (STER.NE.O.) NPIC = 2
    FACT = 1.
    IF (NRSWT.NE.0) FACT = RZERO/Dl
    IF (ISTP.EQ.O.AND.STER.NE.O.) IROT = 1
    XDIST = .5*((1024./102.)-.18*FLOAT(NCHAR))
```

IPIC $=1$
NUPPER = IUPPER
SIGN1 $=$ IPIC* $^{2}-3$
EYEX $=\mathrm{S}(\mathrm{l})+$ SIGN1*DX
POIX $=S(4)+$ SIGN1*DX
EYEY $=S(2)+$ SIGN1*DX
POIY $=S(5)+$ SIGN1*DX
$E Y E Z=S(3)$
POIZ $=S(6)$
$\mathrm{L}=0$
CALL SETT32(POIX, POIY, POIZ, EYEX, EYEY, EYEZ,1)
$\mathrm{LL}=$ IPIC +2 *ISTP +3
IF (STER.EO.C.) IL $=1$
IF (NRSWT.NE.O) GO TO 107
$\mathrm{XXMIN}=\mathrm{X}(\mathrm{l})$
XXMAX $=\mathrm{X}(\mathrm{NNXX})$
$\mathrm{YM} 1 \mathrm{IN}=\mathrm{Y}(\mathrm{l})$
YYMAX $=Y($ NNYY $)$
UMIN = BIGEST
VMIN = BICEST
ZZMIN $=$ BIGEST
UMAX $=-$ UMIN
VMAX $=-\operatorname{VMIN}$
ZZMAX $=-$ ZZMIN
C PRINT 901, UMIN, UMAX, VMIN, VMAX, ZZMIN, ZZMAX
DO $104 \mathrm{~J}=1$, NNYY
DO $103 \mathrm{I}=1, \mathrm{NNXX}$
$\mathrm{ZZ}=\mathrm{Z}\left(\mathrm{I}+\mathrm{NX} X^{*}(\mathrm{~J}-\mathrm{l})\right)$
IF (NOFFP.EQ.1.AND.ZZ.FQ.SPV) GO TO 103
ZZMAX $=$ AMAXI (ZZMAX, ZZ $)$
ZZMIN $=$ AMINl (ZZMIN, ZZ $)$
CALL SET32 (X (I), Y(J), Z (I+NX* (J-1)) ,UT,VT,DU,2)
UMAX $=$ AMAXI (UMAX,UT)
UMIN $=$ AMINL (UMIN, UT)
VMAX $=\operatorname{AMAXI}($ VMAX, VT$)$
VMIN $=\operatorname{AMIN} 1(\mathrm{VMJN}, \mathrm{VI})$
CONTINUE
CONTINUE

OnI , UMIN, LMAX, VMIN, VMAX, ZZMIN, ZZMAX
WIDTH = UMAX-UMIN
HIGHT $=$ VNAX-VMIN
DIF $=.5^{*}($ WIDTH-fIIGHT $)$
PRINT 901,WIDTH, HIGHT, DIF
IF (DIF) 105,107,106
UMIN $=$ UMIN + DIF
UMAX = UMAX - DIF
GOTO 107
VMIN $=$ VMIN - DIF
VMAX = VIAX + DIF
CALL SET32 (POIX, POIY, POIZ, EYEX, EYEY, EYEZ, 1)
TYPE $900, \mathbb{N} N X X, N N Y Y$
FORMAT (1H 13010)
Do $109 \mathrm{~J}=1, \mathrm{NNYY}$
DO $108 \mathrm{I}=1, \mathrm{NNXX}$
CALL SET32 (X(I),Y(J),Z(I+NNXX*(J-1)),UT,VT,DU, 2)

```
                                    M(2*I-1+2*NNXX*(J-1)) = UT
                                    M(2*I+2*NNXX* (J-1)) = VT
```

```
PRTNT 910,I,J,M(1,I,J),I,J,M(2,I,J)
FORMAT (1H 2(2I3,2X,I5,7X))
    PRINT 9OO,M(1,I,J),M(2,I,J)
    PRINT OO1,UT,VT'
                        CONTINUE
        CONTINUE
        DO 110 K=1,1024
        LIMU(K) = 0
        LIML(K) = 1024
        CONTINUE
        NXPASS =1
        IF (S(1).GE.X(NNXX)) GO TO 113
        IF (S(1).LE.X(1)) GO TO 114
        DO 111 I=2,NNXX
        LX = I
        IF (S(1).LE.X(I)) GO TO 112
    CONTINUE
    MXS(1) = LX-1
    MXJ (1) = -1
    MXF(1) = 1
    MXS (2) = LX
    MXJ(2) = 1
    MXF(2) = NNXX
    NXPASS = 2
    GO TO 115
    MXS(1) = NNXXX
    MXJ (1) = -1
    MXF(1) = 1
    GO TO 115
    MXS(1) = 1
    MXJ(1) = 1
    MXF(1) = NNXXX
    NYPASS = 1
    IF (S(2).GE.Y(NNYY)) GO TO 118
    IF (S(2).LE.Y(1)) GO TO lla
    DO lle J=2,NNYY
        LY = J
        IF (S(2).LE.(Y(J)+.02)) GO TO 117
    CONTINUE
    MYS(1) = LY - I
    MYJ(1) = -1
    MYF(1) = 1
    |YS(2) = LY
    MYJ(2) = 1
    MYF (2) = NNYY
    NYPASS = 2
    GO TO 120
    MYS(1) = NNYYY
    MYJ(1) = -1
    MYF(l) = l
    GO TO 120
    MYS(1) = 1
    MYJ(1) = 1
```

MYF (1) $=$ NNYY

C PRINT 901,RX,RY, HSKIRT, XDIST, CVAL,S,CL
C PRINI' 900,NXPASS, NYPASS, MXS,MXF,NXJ,MYS,MYF,MYJ, IDAY, NCHAR
C PRINT 900, NON, NTAL
WRITE (3 'NN) NXPASS, NYPASS,MXS,MXF,MXJ,MYS,MYF,MYJ, RX, RY, IDAY, * HSKIRT, NDRZ, XDIST, CVAL, NCHAR, NON, NVAL, S, NNXX, NNYY, MMXX, ISKI

SUBROUTINE SET32 (X,Y,Z,XT,YT,ZT, KFLAG)
C $\mathrm{C} \quad$ line of sight and the image plane. This point can be C thought of as the point looked at.
C XT, YT, ZT Are the 3-space coordinates of the eye position.
C
C KFLAG $=2$ arguments
C

C $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$
c
C XT, Y「
C ZT
C
C

This routine implements the 3 -space to 2 -space transformation by Kuber, Szabo, and Giulieri, The Perspective Representation of Functions of Two VAriables, J. ACM 15, 2 193-204, 1968

C

If $L($ in COMMON $)=0$, XT and $Y T$ are in the same scale and $X, Y \quad Z$.
The variable KFLAG has two possible variables l-compute intersection of 1 ine of sight 2-transform from 3-space to 2 -spac?

NOTE!!!!!!!!!!!!
The KFLAG=3,4 are special debugging flags and are not part of the plot package.

picture corner coordinates for $L=1$
DATA $\operatorname{NLU}(1), \operatorname{NRU}(1), \operatorname{NBV}(1), N T V(1) / 10,1014,10,1014 /$
picture corner coordinates for $\mathrm{LL}=2$
DATA NLU(2), NRU(2), NBV(2), NIV(2)/10, 924,50, 964/
picture corner coordinates for $\mathrm{L}=3$
DATA NLU(3), NRU(3), NBV(3),NIV(3)/100,1014,50,964/
picture corner coordinates for $L=4$
DATA NLU(4), NRU(4), NBV(4),NTV(4)/10,1014, 10, 1014/

$$
\mathrm{A}-11
$$

```
C
    picture corner coordinates for }\textrm{LL}=
    DATA NLU(5),NRU(5),NBV(5),NIV(5)/10,1014,10,1014/
    picture corner coordinates for LL=6
    DATA NLU(6),NRU(6),NBV(6),NTV}(6)/10, 512,256,758/\
C picture corner coordinates for LL=7
C
        DATA NLU(7),NRU(7),NBV(7),NTV(7)/512,1014,256,758/
        GO TO (1,2,3,4) KFLAG
        JUMP3 = 104
        IF (NOFFP.EQ.1) JUMP3 = 103
        AX = X
        AY = Y
        AZ = Z
        EX = XT
        EY = YT
        EZ = Z'T
C
C As much computation as possible is done during execution of
C SET32 since the transformation is called many times for each
C
C
        DX = AX - EX
        DY = AY - EY
        DZ = AZ - EZ
C
C A more careful computation of direction Cosines.
C
        D = 0.
        T = AMAXI (ABS (DX),ABS (DY), ABS(DZ))
C PRINT 901,AX,AY,AZ,EX,EY,EZ,DX,DY,DZ,T
C PRINT 900,NOFFP
    OOO FORMAT (1H 120010)
    901 FORMAT (1H 9E14.7)
        IF (T.EQ.O.0) GO TO 30
        Rl = DX/T
    R2 = DY/T
    R3 = DZ/T
    D = SQRT(R1*Rl + R2*R2 + R3*R3)
C
C If D isn't zERO......
C
    COSiL = Rl/D
    COSBE = R2/D
    COSGA = R3/D
    D = D*T
    GO TO 40
C
C If D is ZERO, ray has no direction: assign direction down
C
X-axis.
```

$$
\mathrm{C}
$$

CONTINUE
$\operatorname{Cos} A L=1$.
$\cos B E=0$.
$\operatorname{cosc} A=0$.
CONTINUE
$A L=A \operatorname{COS}(\operatorname{COSAL})$
$\mathrm{BE}=\mathrm{ACOS}(\operatorname{COSBE})$
$\mathrm{GA}=\mathrm{A} \operatorname{Cos}(\operatorname{COSGA})$
SINGA $=\operatorname{SIN}(G A)$
C PRINT 901, R1, R2,R3, D, COSAL, COSBE, COSGA, AL, BE, GA, SINGA
C PRINT 900,IL
JMMP2 = 110
IF (LL.EQ.O) GO TO 101
$\pi \mathrm{MP} 2=108$
DELCRT $=\operatorname{NRU}(L L)-\mathrm{NLU}(L L)$
$\mathrm{UO}=\mathrm{UMIN}$
$\mathrm{VO}=\mathrm{VMIN}$
$\mathrm{Ul}=\mathrm{NLU}(\mathrm{LL})$
$\mathrm{Vl}=\operatorname{NBV}(L L)$
$\mathrm{U} 2=\mathrm{NRU}(\mathrm{LL})-\mathrm{NLU}(\mathrm{LL})$
$\mathrm{V} 2=\operatorname{NTV}(\mathrm{LL})-\operatorname{NBV}(\mathrm{LL})$
IF (UMAX-UMIN) 52,51,52
$51 \quad \mathrm{U} 3=0$.
GO TO 53
$52 \mathrm{U} 3=\mathrm{U} 2 /(\mathrm{UMAX}-\mathrm{UM}$ IN $)$
53 CONTINUE
IF (VMAX-VMIN) 55,54,55
$54 \mathrm{~V} 3=0$.
GO TO 55
$55 \quad \mathrm{~V} 3=\mathrm{V} 2 /(\mathrm{VMAX}-\mathrm{VMIN})$
56 CONTJNUE
$\mathrm{U} 4=\operatorname{NRU}(\mathrm{LL})$
$\mathrm{V} 4=\mathrm{NTV}(\mathrm{LL})$
C PRINT 901, UO,VO,U1,V1, U2,V2, U3,V3,U4,V4, LMAX, VMAX
C PRINT 900,NRSWT
IF (NRSWT. FQ.0) GO TO 101
$\mathrm{UO}=-$ BIGD
$\mathrm{VO}=-\mathrm{BIGD}$
$\mathrm{U} 3=\mathrm{U} 2 /(2 . *$ BIGD $)$
$\mathrm{V} 3=\mathrm{V} 2 . /(2 . *$ BIGD $)$
C
C The 3-space point looked at is transformed inot (0,0) of the 2 -space. The 3 -space Z axis is transformed into the 2 -space Y
C axis. If the line of sight is close to parallel to the 3 -space
$C \quad Z$ axis, the 3 -space Y axis is chosen (instead of the 3 -space
$\mathrm{C} \quad \mathrm{Z}$ axis) to be transformed into the 2-space Y axix.
C
IF (SINGA.LT.C.0001) GO TO 102
$\mathrm{R}=1 . /$ SINGA
JUMP $=105$
C PRINT 900, JUMP, JUMP2, JUMP3
RETURN
102
$\operatorname{SINBE}=\operatorname{SIN}(E E)$
$R=1 . /$ SINBE

```
    JUMP = 106
C PRINT OOO,JUMP,JUMP3,JUMP2
    RETUPN
C
C Transfommation entry point
C
    2. XX = X
        YY = Y
        ZZ = Z
C PRINT 901,XX,YY,ZZ
C PRINT 900,JUMP3
    IF (JUMP3.EQ.104) GO TO 104
    IF (ZZ.EQ.SPV) GO TO 109
    DENOM = (XX-EX)*COSAL + (YY-EY)*COSBE + (ZZ-EZ)*COSGA
        IF (DENOM.NE.O.0) GO TO 1111
        O = 1.
        GO TO 50
    1111 Q = D/DENOM
    50 CONTINUE
C PRINT 901,DENOM,O
C PRINT 900,JUMP
    IF (JUMP.FQ.106) GO TO 106
    105 XX = ((EX+Q* (XX-EX)-AX)*COSBE-(EY+Q* (YY-EY)-AY)*COSAL)*R
        YY = (EZ+Q*(ZZ-EZ)-AZ)*R
        GO TO 107
        XX = ((EZ+Q* (ZZ-EZ)-AZ)*CCSAL- (EX+Q* (XX-EXX)-AX)*COSGA )*R
        YY = (EY+Q* (YY-EY)-AY)*R
    107 IF (JUMP2.EQ.110) GO TO 110
    108 XX = AMIN1 (U4, AMAXI (Ul,Ul+U3*(FACT*XX-UO)))
        YY = AMINl(V4,AMNXI (Vl,Vl+V3*(FAC\Gamma*YY-VO)))
        GO TO 1]O
        XX = NSPVAL
        YY = NSPVIN,
        GO TO 110
    110 XT = XX
        YT = YY
C PRINT' 901,XT,YT
        RETUFN
        CONTINUE
        WRITE (3 'NN )JUMP, JUMP2, JUMP3, EX, EY, EZ, COSAL, COSBE, COSGA, D,
    * AX,AY,AZ,R,UO,U1,U2,U3,U4,VO,V1,V2,V3,V4
        PRINT 900,JUMP,JUMP2,JUMP3
C PRINTY 900, PRINT 901,EX,EY,EZ, COSAL, COSBE, COSGA,D,AX,AY,AZ,R
C PRINT 901,U0,U1,U2,U3,U4,VO,V1,V2,V3,V4
        RETURN
    conTinue
        READ (4 'NN )JUMP, JUMP2, JMMP3, EX, EY, EZ, COSAL, COSBE, COSGA,D,
    * AX,AY,AZ,R,UO,U1,U2,U3,U4,VO,V1,V2,V3,V4
C PRINT 900,JUMP,JUMP2,JUMP3
C PRINT 901,EX,EY,EZ,COSAL,COSBE,COSGA,D,AX,AY,AZ,R
C PRINT 901,U0,U1,U2,U3,U4,VO,V1,V2,V3,V4
    RETURN
    END
```

SUBROUTINE CLSET (Z, MDZ, NX, NY, CHI, CLO, CINC, NLA, NLM, CL, NCL,
*ICNST, NOFFP, SPV, BIGEST)
COMMON /SET/CVAL (10), NCHAR, IHFAD (10), XDIST, NON, NVAL
DIMENSION Z(1089),CL(41)
LOGICAL*I GCODZ
C Check HA and GLO to make sure they fall within the range of Z
IF (GLO.LT.ZMIN) CLO = ZMIN
C PRINT OO1,HA, GLO, FANC, ZMIN, ZMAX
901 PRINT OO1,HA,GLO,F)
C
C If contour increment has not been set, compute a 'NICE' value
C for it.
C
CLSET CCMPUTES THE VALUES OF THE CONTOUR LFVELS
AND PUTS THEM IN
CL
GOODZ $=$.FALSE.
$\mathrm{ICNST}=0$
$\mathrm{CLO}=\mathrm{CLO}$
$\mathrm{HA}=\mathrm{CHI}$
EANC $=$ CINC
CRAT $=$ FLOAT (NLA $)$
$\mathrm{NCL}=0$
IF (HA-GLO) 110,120,130
$\mathrm{GLO}=\mathrm{HA}$
$H A=C L O$
GO TO 130
If $H A$ and GLO are not set, set them to the values of PIGEST
and -EIGEST respectively
GLO $=-$ BIGEST
$\mathrm{HA}=-$ GLO
GO TO 140
IF (FANC.EQ.O.) FANC $=($ HA-GLO $) /($ CRAT -1$)$
CONTINUE
DO $150 \mathrm{~J}=1, \mathrm{NY}$
DO $145 \mathrm{I}=1, \mathrm{NX}$
IF (NOFFP.EO.1.AND.Z(I+NX*(J-1)).EC.SPV) GO TO 145
IF (GOODZ) GO TO 146
ZMIN $=\mathrm{Z}\left(\mathrm{I}+\mathrm{NX} \mathrm{X}^{*}(\mathrm{~J}-1)\right)$
ZMAX $=Z\left(I+N X^{\star}(J-1)\right)$
GOODZ $=$.TRUE.
GO TO 145
ZMIN $=$ AMINI $(\mathrm{Z}(\mathrm{I}+\mathrm{NX} *(\mathrm{~J}-1)), \mathrm{ZMIN})$
$\mathrm{ZMAX}=\operatorname{AMAXI}(\mathrm{Z}(\mathrm{I}+\mathrm{NX} *(\mathrm{~J}-1)), \mathrm{ZMAX})$
continue
CONTINUE
values being plotted; if not, set $\mathrm{HA}=\mathrm{ZMAX}$ and/or GLO=ZMIN.
IF (FANC) 160,170,190

```
    160 CRAT = -FANC
    170 FANC = (HA-GLO)/(CRAT-1)
    IF (FANC) 220,220,180
    120 P = 10.**(IFIX(NLCG10(FANC)+500.)-500)
    FANC = AINT (FANC/P)*P
C
C Recompute 'NICE' values of HA and GLO.
C
    GLO = AINT(GLO/FANC)*FANC
    HA = AINT (HA/FANC)*FANC
C
C Compute contour levels array.
C
    190 DO 200 K=1,NLM
    CC = GLO + FLOAT(K-1)*FANC
    KK = K
    IF (CC.GT.HA) GO TO 210
    CL}(\textrm{K})=C
    200 CONTINUE
    210 NCL = KK - 1
C
C Shave away contour values not strictly between ZMIN and ZMAX.
C
    CONTINUE
    IF (NCL.LE.O) GO TO }24
    IF (CL(1).GT.ZMIN) GO TO 270
    IF (NCL.LE.l) GO TO 260
        DO 250 I=2,NCL
        250
    NCL = NCL - 1
        GO TO 230
    270 CONTINE
    IF (CL(NCL).GE.ZMAX) GO TO 260
    CONTINUE
    NVAL = 10
    IF (NCL.LT.10) NVAL = NCL
    DO 241 I=l,NVAL
    J = NCL - I + I
    CVAL(I) = CL(J)
    241 CONTINUE
    REIURN
    ICNST = 1
    NVAL = 10
    IF (NCL.IT.10) NVAL = NCL
    DO 22l I=1,NVAL,
    J = NCL - I + l
    CVAL(I) = CL(J)
    221 CONTINUE
    REIURN
C
    END
```

PROGRAM FPLOT2
DIMENSION $\mathrm{X}(33), \mathrm{Y}(33), \mathrm{Z}(1089), \mathrm{M}(2178)$,

* $S(6)$, TTA (40)
DIMENSION MXS (2) ,MXF (2) ,MXJ (2) ,MYS(2) ,MYF(2) ,MYJ(

* , XIG, X2G,YIG,Y2G, ZCIMAX, $\subseteq, N Y, A I J, N X$

COMMON /SETN/ NN
DATA SPVAL, IOFFP/O.0,0/
DATA STEREO /O.O/
DATA IFR, ISTP, IROTS, IDRX, IDRY, IDRZ, IUPPER, ISKIRT, NCLA/

* $1,0,0,1,1,1, \quad 0, \quad 0,6 /$

DATA THETA, HSKIRT, CHI, CIO, CINC/

* .02, 0., 0., 0., 0./

DATA $S /-30 ., 0,3 ., 0,0,0 . / \mathrm{MDZ}, \mathrm{NX}, \mathrm{NY}, \mathrm{NCHAR} / 33,33,33,10 /$
$\mathrm{NN}=1$
OPEN (UNIT $=4$, NAME $=$ 'SCRT. DAT' , TYPE $=$ 'OLD', FORM $=$ 'UNFORMATTED' ,

* ACCESS='DIRECT' ,ASSOCIATEVARIABLE=NN, RECORDSIZE=1090)

READ (4 'NN) IHFAD, X, Y, XXMIN, XXMAX, YYMIN, YYMAX, ZZMIN, ZZMAX,

* DELCRT, EYEX, EYEY, EYEZ, NCL, LL, FACT, IROT, NDRZ, NUPPER, NRSWT,
* BIGD, UMIN, UMAX, VMIN, VMAX, RZERO, NOFFD, NSPVAL, SPV, BIGEST, CL
* , NX, NY, MDA, XIG, X2G, YlG, Y2G, ZCMAX, AIJ
$\operatorname{READ}\left(4{ }^{\prime} \mathrm{NJ}\right)(\operatorname{LIMU}(I), I=1,1024)$
READ (4'NN) (LTML (I) , I=1, 1024)
RFAD ($4^{\prime} \mathrm{NN}$) (M(I), $\left.I=1,2178\right)$
$\operatorname{RFAD}\left(4{ }^{\prime} N N\right)(Z(I), I=1,1089)$
READ (4 'NN) NXPASS,NYPASS,MXS,MXF,MXJ,MYS,MYF,MYJ, RX, RY, IDAY,
* HSKIRT, NDRZ, XDIST, CVAL, NCHAR, NON, NVAL, S, NNXX, NNYY, MMXX, ISKIRT CALL SETH2 (X (1), Y(1), Z(1),UT,VT,DU, 4)
CLOSE (UNIT=A)
FORMAT (1H OF14.7)
FORMAT (1H 13I10)
PRINT 901, X, Y
C PRINT 901, Z
C PRINT 901,XXMIN, XXMAX, YYMIN, YYMAX,ZZMIN, ZZMAX, DELCRT
C PRINT 9O1, EYFX, EYEY, EYEZ, FACT, BIGD,BIGEST, RZERO
C PRINT 901,UMIN, LMAX, WMIN, VMAX
C PRINT 900, IHFAD, NCL, IL, IROT, NDRZ, NUPPER, NESWT, NOFFP, NSPVAL

PRINT 900,LIMU

PRINT 900 , LIML
PRINT 001, RX, RY, HSKIRT, XDIST, CVAL, S, CL
PRINT 900, NXPASS, NYPASS,MXS,MXF,MXJ,MYS, MYF,MYJ, IDAY, NCHAR
PRINT 900, NON, NVAL, NNXX, NNYY, MMXX
GO TO 102
DO $51 \mathrm{I}=1, \mathrm{~N} \mathbb{N X X}$
DO $50 \mathrm{~J}=1,8$
$K=3+J$
$\mathrm{L}=16+\mathrm{J}$

```
C
C
\(\mathrm{MV}=\mathrm{VX}\)
CALU DRAW(MU,MV,M(2*I-1+2*NNXX* (JN-1)), M(2*I+2*NNXX* (JN-1)),1)
CONTINUE
CALL DRAN (IFIX(UN1), IFIX(VX1), IFIX (UX2), IFIX (VX2), 3)
IF (IDRY.NE.O) GO TO 123
DO \(122 \mathrm{I}=2\), NNXX
CALL DRAW(M(2*I-3+2*NNXX*(JN-1)), M(2*I-2+2*NNXX*(JN-1)),
* \(M(2 * I-1+2 * N N X X *(J N-1)), M(2 * I+2 * N N X X *(J N-1)), 3)\)

\section*{CONTINUE}
```

IF (NXPASS.NE.1) GO TO 126

CALL SET32 (X (IN) ,Y(1), HSKIRT, UY1, VY1, DUMMY, 2)
CALL SET32 (X (IN), Y(NNYY) ,HSKIRT,UY2, VY2, DUMMY, 2)
DO $124 \mathrm{~J}=1$, NNYY
CALL SET32 (X (IN) , Y (J) , HSKIRT, UY, VY, DUMMY, 2)
$M U=U Y$
$M V=V Y$
CALL DRAW(MU,MV,M(2*IN-1+2*NNXX* (J-1)) ,M(2*IN+2*NNXX*(J-1)),1)

* M(2*IN-1+2*NNXX* (J-1)) , M (2*IN+2*NNXX* (J-1)), 3)

CONTINUE
$L I=M X J(1)$
$M I=\operatorname{MXS}(1)-L I$
$\mathrm{NI}=\operatorname{IABS}(\mathrm{MI}-\mathrm{MXF}(1))$
$L_{N}=M Y J(1)$
$\mathrm{MJ}=\mathrm{MYS}(1)-\mathrm{LJ}$
$\mathrm{NJ}=\operatorname{IABS}(\mathrm{MJ}-\mathrm{MYF}(1))$
IF (ABS (RX).LE.ABS (RY)) GO TO 133
IF (ISKIRT.NE.O.OR.NYPASS.NE.1) GO TO 128
$\mathrm{I}=\mathrm{MXS}(1)$
DO $127 \mathrm{~J}=2$, NNYY
CALL DRAW(M(2*I-1+2*NNXX* (J-2)), M(2*I+2*NNXX*(J-2)),

* $\left.M\left(2^{\star} I-1+2^{\star} \mathbb{N N X X}^{\star}(J-1)\right), M\left(2^{\star} I+2^{\star} N_{N X X}(J-1)\right), 2\right)$

CONTINUE
128 DO 132 II $=1, \mathrm{NNXX}$
$I=M I+I I * L I$
IPLI $=\mathrm{I}+\mathrm{LI}$
IF (NYPASS.EQ.1) GO TO 129
$K=\operatorname{MYS}(1)$
$L=\operatorname{MYS}(2)$
C PRINT $900, N D R Z, I I, N I$
IF (IDRX.NE.O)

* CNLL $\operatorname{DRAN}(M(2 * I-1+2 * \operatorname{NXX} *(K-1)), M(2 * I+2 * N N X X *(K-1))$,

IF (NDRZ.NE.O.AND.II.NE.NI)
* CALL CTCELL (Z,MMXX,NNXX,NNYY,M,MTNO(I,I+LI), K)

129
DO 131 JPASS=1,NYPASS

$$
\begin{aligned}
& \mathrm{LJ}=\mathrm{MYJ}(J P A S S) \\
& \mathrm{MJ}=\text { MYS (JPASS })-\mathrm{LJ}
\end{aligned}
$$

$$
\mathrm{NJ}=\operatorname{IABS}(\mathrm{MJ}-\mathrm{MYF}(J P A S S))
$$

DO $130 \mathrm{JJ}=1, \mathrm{NJ}$
$J=M J+J J \star L J$
$J P L J=J+L J$
IF (IDRX.NE.O.AND.JJ.NE.NJ)

* CALL $\operatorname{DRAW}(M(2 * I-1+2 * N N X X *(J-1)), M(2 * I+2 * N N X X *(J-1))$,
* $\left.M\left(2 * I-1+2{ }^{\star} N N X X *(J P L J-1)\right), M(2 * I+2 * N N X X *(J P L J-1)), 3\right)$

IF (I.NE.MXF (1).AND.IDRY.NE.0)

* CALL DRAW(M(2*IPLI-1+2*NNXX* (J-1)),M(2*IPLI+2*NNXX* (J-1)),
* $\mathrm{M}\left(2{ }^{*} \mathrm{I}-1+2{ }^{\star} \mathrm{NNNXX}^{*}(\mathrm{~J}-1)\right), \mathrm{M}\left(2^{*} \mathrm{I}+2^{\star} \mathrm{NNXX}\right.$ * $\left.\left.(\mathrm{J}-1)\right), 3\right)$

C
PRINT 900,NDRZ, JJ, NJ,II,NNXX, I,J,LI,LJ
.NE.NNXX)
*
*

134
135

CALL CTCELL (Z,MMXX, NNXX, NNYY,M, MINO (I, I +LII), MINO (J, J+LJ)) CONTINUE

CONTINUE

CONTINUE
GO TO 140
IF (ISKIRT.NE.O.OR.NXPASS.NE.1) GO TO 135
$J=\operatorname{MYS}(1)$
DO $134 \mathrm{I}=2, \mathrm{NNXX}$
CALL $\operatorname{DRAN}(M(2 \star I-3+2 \star N N X X *(J-1)), M(2 * I-2+2 \star N N X X *(J-1))$,

* $\mathrm{M}\left(2{ }^{*} \mathrm{I}-1+2 \star \mathrm{NNXX}^{*}(\mathrm{~J}-1)\right), \mathrm{M}\left(2 \star \mathrm{I}+2{ }^{\star} \mathrm{NNXX}\right.$ (J-1)),2)
continue
DO $139 \mathrm{JJ}=1, \mathrm{NNYY}$
$J=M J+J J{ }^{\star} L J$
$\mathrm{JPLJ}=\mathrm{J}+\mathrm{LJ}$
IF (NXPASS.EO.I) GO TO 136
$K=\operatorname{MXS}(1)$
$\mathrm{L}=\mathrm{MXS}$ (2)
IF (IDRY.NE.0)
* CALL DRAN(M(2*K-1+2*NNXX*(J-1)), M(2*K+2*NNXX*(J-1)),
* $M(2 \star L-1+2 *$ NNXX* $(J-1)), M(2 * L+2 * N N X X *(J-1)), 2)$

IF (NDRZ.NE.C.AND.JJ.NE.NJ)

* CALL CTCELL(Z,MMXX,NNXX, NNYY,M,K,MINO(J,J+LJ))

DO 138 IPASS $=1$, NXPASS
$\mathrm{LI}=\mathrm{MXJ}$ (IPASS)
$M I=\operatorname{MXS}($ IPASS $)-\mathrm{LI}$
$\mathrm{NI}=\operatorname{IABS}(\mathrm{MI}-\mathrm{MXF}($ IPASS $))$
DC 137 II $=1$, NI $I=M I+I I{ }^{*} L I$ IPLI $=I+\mathrm{LI}$ IF (IDRY.NE.C.AND.II.NE.NI)

* CALL DRAN $\left(M\left(2 * I-1+2{ }^{*} \operatorname{NNXX}(J-1)\right), M(2 * I+2 *\right.$ NNXX* $(J-1))$,
 IF (J.NE.MYF (1).AND. IDRX.NE.0)
* CALL $\operatorname{DRNW}\left(\mathrm{n}\left(2{ }^{\star} \mathrm{I}-1+2 * \mathrm{NNXX}^{*}(\mathrm{JPLJ}-1)\right), \mathrm{M}\left(2 \star \mathrm{I}+2 \star \mathrm{NNXX}^{*}(\mathrm{JPLJ}-1)\right)\right.$,
* $\mathrm{M}\left(2^{\star} \mathrm{I}-1+2^{\star} \mathrm{M} \mathrm{NXX}^{\star}(\mathrm{J}-1)\right), \mathrm{M}\left(2^{\star} \mathrm{I}+2^{\star} \mathrm{NNXX}\right.$ ($\left.\left.\mathrm{J}-1\right)\right), 3$)

PRINT 900,NDRZ,II,NI,JJ, NNYY IF (NDRZ.NE.O.AND.II.NE.NI.AND.JJ.NE.NNYY)

* CALL CTCELL(Z,MMXX,NNXX, NNYY,M,
* $\operatorname{MIN} \cap(\mathrm{I}, \mathrm{I}+\mathrm{LI}), \mathrm{MINO}(\mathrm{J}, \mathrm{J}+\mathrm{L} \mathrm{J}))$

CONTINUE

CONTINUE
CONTINUE
IF (ISKIRT.EQ.0) GO TO 149
IF (IDRX.NE.0) GO TO 143
DO 142 IPASS $=1$, NXPASS
IF (NXPASS.EQ.2) IF=1+(IPASS-1)*(NNXX-1)
DO $141 \mathrm{~J}=2, \mathrm{NNYY}$
$\operatorname{CALL} \operatorname{DRAN}\left(M\left(2 \star \operatorname{IF}-1+2 \star{ }^{2} N X X *(J-2)\right), M(2 \star I F+2 \star \operatorname{NNXX} *(J-2))\right.$,

* $\left.M\left(2^{\star} 1 F-1+2^{\star} N N X X *(J-1)\right), M\left(2^{\star} I F+2^{\star} N N X X *(J-1)\right), 1\right)$

CONTINUF.

143 IF (IDRY.NE.O) GO TO 149
DO 145 JPASS=1, NYPASS

$$
\operatorname{IF}(\text { NYPASS.EQ.2) } \mathrm{JF}=1+(\mathrm{JPASS}-1) \star(\text { NNYY }-1)
$$

DO $144 \mathrm{I}=2, \mathrm{NNXX}$
CALL $\operatorname{DRAW}\left(M\left(2^{*} \mathrm{I}-3+2 * N N X X *(J F-1)\right), M(2 * I-2+2 * N N X X *(J F-1))\right.$,

* $\left.M\left(2 \star I-1+2^{*} N N X X *(J F-1)\right), M\left(2 * I+2^{\star} N N X X *(J F-1)\right), 1\right)$

CONTINUE
145 CONTINUE GO 10149
IF (NUPPER.GT.O.AND.S(3).IE.S(6)) GO TO 140
IF (NUPPER.LE.O.AND.S(3).GT.S(6)) GO TO 149
NUPPER $=1$
IF (S(3).LE.S(6)) NUPPER $=-1$
DO $148 \mathrm{I}=1, \mathrm{~N} \mathrm{NXX}$
DO $147 \mathrm{~J}=1, \mathrm{~N} N Y Y$
IF (IDRX.NE.C.AND.J.NE.NNYY)

* CALL DRAW(M(2*I-1+2*NNXX* (J-1)), M(2*I+2*NNXX* (J-1)),
* $\left.\mathrm{M}\left(2^{\star} \mathrm{I}-1+2{ }^{*} \mathrm{NNXX}^{*} \mathrm{~T}\right), \mathrm{M}\left(2^{*} \mathrm{I}+2^{\star} \mathrm{NNXX}^{*} \mathrm{~J}\right), I\right)$

IF (IDRY.NE.C.AND.I.NE.NNXX)

* CALI $\operatorname{DRAN}\left(M\left(2^{\star} I-1+2^{*} \operatorname{NNXX} *(J-1)\right), M\left(2^{*} I+2^{*} N N X X *(J-1)\right)\right.$,
* $\left.M\left(2^{\star} \mathrm{I}+1+2 * \mathrm{NNXX}^{*}(\mathrm{~J}-1)\right), \mathrm{M}\left(2 * \mathrm{I}+2+2^{*} \mathrm{NNXXX}^{*}(\mathrm{~J}-1)\right), 1\right)$

IF (IDRZ.NE.O.AND.I.NE.NNXX.AND.J.NE.NNYY)
CALL CTCELL (Z,MMXX,NNXX,NNYY,M,I, J)

CONTINUE

148 CONTINUE
149 IF (STER.EO.O.) GO TO 153
IF (ISTP) $151,150,152$
150 CONTINUE
151 CONTINUE GO TO 154
152 IF(IPIC.NE. 2) GO TO 154
153 CONTINUE
154 CONTINUE WRITE (3'NON) END, END, IEND CLOSE (UNIT=3)
RETUPN
FND

SUBROUIINE SEG(IXI, IY1,IX2, IY2,KFLAG)

LOGICAL, 1 START, TITLE, CCNTUR
COMMON /SET/CVAL (10) ,NCHAR , IHEAD (10) ,XDIST

* ,NON ,NVAL, X1G, X2G, Y1G, Y2G, ZCMAX, S, NY, AIJ, NX

DATA START/. TRUE./,TITLE/.TRUE./,UPERIN/102./,XLAST/O./ DATA CONIUR/.TRUE./
INIEGER CHEAD (48)
DATA CHEAD/'UP',' T', 'O ','TH', 'E ','FI', 'RS','T ',' ',' ',

* ' ',' ','CO','NS','TA','NT',' Z',' (','HI', 'GH','ES','T ',
* ' ',' ','TO',' L','OW','ES','T)',' ','WA','TT','S/','CM',
* \quad **', ${ }^{\prime}$ '

DIMENSION CVALO(8),S(6)

IF (.NOT.START) GO TO 10
TYPE O99,NY,X1G,X2G,Y1G,Y2G,ZCMAX
FORMAT (1H I5,5F12.4)
XLAST $=0$.
IXTO $=0$
IYTO $=0$
IF (.NOT.CONTUR) GO TO 8
$\mathrm{HT}=8.0$
DO $6 \mathrm{I}=1,4$
$\mathrm{HT}=\mathrm{HT}-.5$
$I I=12 *(I-1)+1$
$I K=I I+12$
WRITE (3 'NON) HT, (CHEAD(J), J=II, IK),NVAL
6
CONTINUE
WRITE (3^{\prime} NON) XIG,X2G,Y1G, Y2G, ZOMAX
WRITE (3^{\prime} NON) S(1), S(2), S(3),NY,NX
$\mathrm{HT}=5.5$
DO $7 \mathrm{I}=1$, NVAL
$\mathrm{HT}=\mathrm{HT}-.5$
C TYPE 999, I, CVAL(I), AIJ
$\operatorname{CVAL}(I)=\operatorname{CVAL}(I) \star A I J$
ENCODE (12,77, CVALQ)CVAL(I)
C TYPE 998,CVALQ
998 FORMAT (1H RA2)
77 FORMAT(F12.1)
WRIIE ($3^{\text {'NON }}$)HT, CVALQ
7 CONTINUE
CONTUR $=$.FALSE.

8 CONTINUE
IF (.NOT.TITLE) GO TO 10 WRITE (3 'NCN)XDIST, IHEAD TITLE $=$.FALSE.
10 IF (IXI.EQ.IXTO.AND.IY1.EQ. TYTO) GO TO 20
$\mathrm{AX}=\mathrm{FLOAT}(\mathrm{IXI}) / \mathrm{UPERIN}$
$A Y=F L C A T(I Y 1) / U P E R I N$
IP3 $=+3$
WRITE (3 'NON) AX, AY, IP3
IF (KFLAG.GI.1) PRINT OOl, IPC, AX,AY
901
FORMAT (1H I10,2E14.7)
$20 \mathrm{BX}=\mathrm{FLOAT}(\mathrm{IX} 2) / \mathrm{UPERIN}$
$B Y=$ FLOAT (IY2)/UPERIN
$\mathrm{IP} 2=+2$
WRITE (3 'NON) BX, BY, IP2
IF (KFLAG.GT.1) PRINT 901, IP2, BX, BY IXIO $=$ IX2
IYTO $=$ IY2
START $=$.FALSE.
XLAST $=$ AMAXI (XLAST, AMAXO (IX1, IX2)) REITURN
END

SUBROUTINE SET32(X,Y,Z,XT,YT,ZT, KFLAG)

C
C KFLAG $=2$ arguments
C
$C X, Y, Z \quad$ Are the 3 -space coordinated of a point to be
C transformed.
C XI, YT The results of the 3 -space to 2 -space transformation.
C ZT Not used.
C
C If $L L$ (in $C(A M M O N)=0$, XT and $Y T$ are in the same scale and $X, Y \quad Z$.
C
C The variable KFLAG has two possible variables
l-compute intersection of line of sight
2-transform from 3-space to 2-space
NOTE! !!!!!!!!!!!
The KFLAG=3,4 are special debugging flags and are not
part of the plot package.

picture corner coordinates for $L=1$
DATA $\operatorname{NLU}(1), \operatorname{NRU}(1), \operatorname{NBV}(1), \operatorname{NTV}(1) / 10,1014,10,1014 /$
picture corner coordinates for $L J=2$
DATA $\operatorname{NLU}(2), \operatorname{NRU}(2), \operatorname{NBV}(2), \operatorname{NTV}(2) / 10,924,50,964 /$
picture corner coordinates for $L L=3$
DATA $\operatorname{NLU}(3), \operatorname{NRU}(3), \operatorname{NBV}(3), \operatorname{NIV}(3) / 100,1014,50,964 /$
picture corner coordinates for $L L=4$
DATA $\operatorname{NLU}(4), \operatorname{NRU}(4), \operatorname{NBV}(4), \operatorname{NTV}(4) / 10,1014,10,1014 /$

```
O
C picture corner coordinates for LL =5
C
    LATA NLU(5),NRU(5),NBV(5),NTV(5)/10,1014,10,1014/
    picture corner coordinates for }\textrm{L}=
    DATA NLU(6),NRU(6),NBV(6),NTV(6)/10, 512,256,758/
C picture corner coordinates for }\textrm{LL}=
C
        DATA NLU(7),NRU(7),NBV(7),NIV(7)/512,1014,256,758/
        GO TO (1,2,3,4) KFLAG
        JMP3 = 104
        IF (NOFFP.EQ.1) JUMP3 = 103
        AX = X
        AY = Y
        AZ = Z
        EX = XT
        EY = YT
        EZ = ZT
    C
    C As much computation as possible is done during execution of
    C SET32 since the transformation is called many times for each
    C
    C
        DX = AX - EX
        DY = AY - EY
        DZ = AZ - EZ
    C
    C A more careful computation of direction Cosines.
    C
        D = 0.
        T = AMAXI (ABS (DX), ABS (DY), ABS(DZ))
    C PRINT 901,AX,AY,AZ,EX,EY,EZ,DX,DY,DZ,T
    C PRINT 900,NOFFP
    900 FORMAT (1H 120010)
    901 FORMAT (1H 9E14.7)
        IF (T.EQ.O.0) GO TO 30
        Rl = DX/T
        R2 = DY/T
        R3 = DZ/T
        D = SQRT(Rl*Rl + R2*R2 + R3*R3)
            If D isn't ZERO......
C
        COSAL = Rl/D
        COSBE =R2/D
        COSGA = R3/D
        D = D*T
        GO TO 40
            If D is ZERO, ray has no direction: assign direction down
X-axis.

30 CONTINUE
\(\operatorname{COSAL}=1\).
\(\operatorname{COSBE}=0\).
\(\cos C A=0\).

SINGA \(=\operatorname{SIN}(G A)\)
C PRINT 901, R1, R2, R3, D, COSAL, COSBE, COSGA, AL, BE, GA, SINGA
C PRINT 900, LL
JUMP2 \(=110\)
IF (LL.EQ.0) GO TO 101
JUMP2 \(=108\)
DELCRT \(=\operatorname{NRU}(L L)-N L U(L L)\)
\(\mathrm{UO}=\mathrm{UMIN}\)
\(\mathrm{VO}=\mathrm{VMIN}\)
\(\mathrm{Ul}=\mathrm{NLU}(\mathrm{LL})\)
\(\mathrm{Vl}=\mathrm{NBV}(\mathrm{LL})\)
\(\mathrm{U} 2=\mathrm{NRU}(\mathrm{LL})-\mathrm{NLU}(L L)\)
\(\mathrm{V} 2=\operatorname{NTV}(L L)-\operatorname{NBV}(L L)\)
IF (UMAX-UMIN) 52,51,52
\(\mathrm{U} 3=0\).
GO TO 53
52 U3 \(=\) U2/(UMAX-UMIN)
53 CONTINUE
IF (VMAX-VMIN) 55,54,55
\(54 \quad \mathrm{~V} 3=0\).
60 TO 56
\(55 \quad \mathrm{~V} 3=\mathrm{V} 2 /(\mathrm{VMAX}-\mathrm{VMIN})\)
56 CONTINUE
\(\mathrm{U} 4=\mathrm{NRU}(\mathrm{LL})\)
\(\mathrm{V} 4=\mathrm{NTV}(\mathrm{LL})\)
C PRINT 901, U0, VO, U1,V1, U2,V2, U3,V3, U4, V4, UMAX, VMAX
C PRINT 900,NRSWT
IF (NRSWT.EQ.O) GO TO 101
\(\mathrm{UO}=-\mathrm{BIGD}\)
\(\mathrm{VO}=-\) BIGD
\(\mathrm{U} 3=\mathrm{U} 2 /(2 . * \mathrm{BIGD})\)
\(\mathrm{V} 3=\mathrm{V} 2 /(2 . *\) BIGD \()\) 2-space. The 3 -space \(Z\) axis is transformed into the 2 -space \(Y\) axis. If the line of sight is close to parallel to the 3 -space Z axis, the 3 -space Y axis is chosen (instead of the 3 -space \(Z\) axis) to be transformed into the 2 -space \(Y\) axix.
C
101 IF (SINGA.LT.0.0001) GO TO 102
\(\mathrm{R}=1 . / \mathrm{SINGA}\)
JUMP \(=105\)
C PRINT 900, JUMP, JUMP2, JUMP3
RETURN
SINBE \(=\operatorname{SIN}(B E)\)
\(\mathrm{R}=1 . / \mathrm{SINBE}\)
```

 JUMP = 106
 C PRINT' 900,JUMP,JUMP3,JUMP2
 REIIURN
 C
 C Transformation entry point
 C
 2 XX = X
 YY = Y
 ZZ = Z
 C PRINT 901,XX,YY,Z:Z
 C PRINT 900,JUMP3
 IF (JUMP3.EQ.104) GO TO 104
 103 IF (ZZ.EQ.SPV) GO TO 109
 104 DENOM = (XX-EX)*CCSAL + (YY-EY)*COSBE + (ZZ-EZ)*COSGA
 IF (DENOM.NE.O.O) GO TO 1111
 Q = 1.
 OO TO 50
 ll11 Q = D/DENOM
 50 CONTINUE
 C PRINT 901,DENOM,Q
 C PRINT 900,JUMP
 IF (JUMP.EQ.106) GO TO 106
 105 XX = ((EX+Q* (XX-EX)-AX)* COSBE-(EY+Q* (YY-EY)-AY)*COSAL)*R
 YY = (EZ+Q* (ZZ-EZ)-AZ)*R
 GO TO 107
 106 XX = ((EZ+Q* (ZZ-EZZ)-AZ)*COSAL-(EX+Q* (XX -EX)-AX)* COSCA)*R
 YY = (EY+Q** (YY-EY)-AY)*R
 107 IF (JUMP2.EQ.110) GO TO 110
 108 XX = AMIN1 (U4, AMAXI (Ul,Ul+U3*(FACT*XX-UO)))
 YY = AMIN1(V4, AMAXl (Vl,Vl+V3*(FACT*YY-VO)))
 GO TO 110
 109 XX = NSPVAL
 YY = NSPVAL
 GO TO 1lO
 110 XT = XX
 YT = YY
 C PRINT 901,XT,YT
C PRINT 900,JUMP2
RETURN
3 CONTINUE
WRITE (3 'NN)JUMP, JUMP2, JUMP3, EX, EY, EZ, COSAL, COSBE, COSGA, D,
* AX,AY,AZ,R,UO,U1,U2,U3,U4,VO,V1,V2,V3,V4
C PRINT 900,JUMP,JUMP2,JUMP3
C PRINT 901,FX,EY,EZ, COSAL, COSBE, COSGA,D,AX,AY,AZ,R
C PRINT 301,UO,U1,U2,U3,U4,VO,V1,V2,V3,V4
RETURN
4 CONTINUE
READ (4 'NN)JUMP, JUMP2,JUMP3, EX, EY, EZ, COSAL, COSDE, COSGA,D,
* AX,AY,AZ,R,UO,Ul,U2,U3,U4,VO,V1,V2,V3,V4
C PRINT 900,JUMP,JUMP2,JUMP3
C PRINT 901,EX,EY,EZ,COSAL,COSBE,COSGA,D,AX,AY,NZ,R
C PRINT 901,UO,Ul,U2,U3,U4,VO,V1,V2,V3,V4
RETURN
END
FUNCTION ACOS(X)

```
ACOS = 1./SORT(1.+ATAN (X)*ATAN(X))
```

END
FUNCTION R(HO,HU)
C
C

C
900 FORMAT (1H 4(2X, El4.7))
RETURN
10 CONTINUE
IF (HO-CV.LT.0.0) $R=0.0$
IF (HO-CV.GE.O.O) $R=1.0$
RETURN
EIJD

SUBROUTINE CTCELL（Z，MDZ，NX，NY，M，IO，JO）
$\mathrm{K} 1=(\operatorname{IFIX}(\operatorname{SIGN}(1, \mathrm{Hl}-\mathrm{CV}))+1) / 2$
$K 2=(\operatorname{IFIX}(\operatorname{SIGN}(1 ., \mathrm{H} 2-\mathrm{CV}))+1) / 2$
$\mathrm{K} 3=(\operatorname{IFIX}(\operatorname{SIGN}(1 ., \mathrm{H} 3-\mathrm{CV}))+1) / 2$
$K 4=(\operatorname{IFIX}(\operatorname{SIGN}(1 ., \mathrm{H} 4-\mathrm{CV}))+1) / 2$
JUMP $=1+K 1+K 2 * 2+K 3 * 4+K 4 * 8$
C PRINT $900, \mathrm{~K} 1, \mathrm{~K} 2, \mathrm{~K} 3, \mathrm{~K} 4, \mathrm{JUMP}$
IFLG $=4$
IF (JUMP.EQ.1.OR.JUMP.EQ.16) GO TO 10
C PRINT 904,JUMP,Il,IlP1,J1,JIP1
C cell of the array Z for the SRFACE package．
Z ，NX，NY are the same as in SRFACE：．
By the time ctcell is first called，M contains $\mathrm{U}(\mathrm{Z}(\mathrm{I}, \mathrm{J}))=\mathrm{M}(\mathrm{I}, \mathrm{I}, \mathrm{J}), \mathrm{V}(\mathrm{Z}(\mathrm{I}, \mathrm{J}))=\mathrm{M}(2, I, J)$
IO，JO The cell $\mathrm{Z}(\mathrm{Il}, \mathrm{Jl})$ to $\mathrm{Z}(\mathrm{Il}+\mathrm{l}, \mathrm{Jl}+\mathrm{l})$ is the one to be contoured．
DIMENSION Z（1089），M（2178）
COMMON／SRFBLK／LIMU（1024），LIML（1024），CL（41），NCL ，
1
2
3
4
COMMON／CVAL／CV
II $=10$
$\mathrm{IlPl}=\mathrm{Il}+1$
$\mathrm{Jl}=\mathrm{JO}$
$\mathrm{Jlpl}=\mathrm{Jl}+1$
$\mathrm{Hl}=\mathrm{Z}\left(\mathrm{I} 1+\mathrm{NX}^{*}(\mathrm{Jl}-\mathrm{l})\right)$
$\mathrm{H} 2=\mathrm{Z}\left(\mathrm{Il}+\mathrm{NX} \mathrm{K}^{*}(\mathrm{~J} 1 \mathrm{Pl}-1)\right)$
$\mathrm{H} 3=\mathrm{Z}\left(\mathrm{I} 1 \mathrm{Pl}+\mathrm{NX} \mathrm{K}^{*}(\mathrm{JlPl}-\mathrm{I})\right)$
$\mathrm{H} 4=\mathrm{Z}(\mathrm{IlPl}+\mathrm{NX} *(\mathrm{Jl}-\mathrm{l}))$
PRINT 901，H1，H2，H3，H4
FORMAT（1H OE14．7）
IF（NOFFP．NE．1）GO TO 101 IF（AMIN1（H1， $\mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4$ ）．GT．CL（NCL））REIURN

For each contour level，decide which of the 16 basic siturations exists，then interpolate in two－space to find

DO $111 \mathrm{~K}=1$ ，NCL
$\mathrm{CV}=\mathrm{CL}(\mathrm{K})$
$\mathrm{Kl}=(\operatorname{IFIX}(\operatorname{SIGN}(1 ., \mathrm{Hl}-\mathrm{CV}))+1) / 2$
$\mathrm{K} 2=(\operatorname{IFIX}(\operatorname{SIGN}(1 ., \mathrm{H} 2-\operatorname{CV}))+1) / 2$
$\mathrm{K} 3=(\operatorname{IFIX}(\operatorname{SIGN}(1 ., \mathrm{H} 3-\mathrm{CV}))+1) / 2$
$\mathrm{K} 4=(\operatorname{IFIX}(\operatorname{SIGN}(1 ., \mathrm{H} 4-\mathrm{CV}))+1) / 2$
JUMP $=1+\mathrm{Kl}+\mathrm{K} 2 * 2+\mathrm{K} 3 * 4+\mathrm{K} 4 * 8$
C PRINT 900，Kl，K2，K3，K4，JUMP
IFLG $=4$
IF（JUMP．EQ．1．OR．JUMP．EQ．16）GO TO 10
C PRINT 904，JUMP，Il，IlP1，J1，J1P1
C PRINT 905，Kl，H1，K2，H2，K3，H3，K4，H4，CV
FORMAT（ 1 H 5 I 10 ）
FORMAT（1H 4（I3，2X，F5．2），2X，F5．2）
CONTINUE

CTCELL computes lines for constant Z （coutour lines）in one the two－space plotter location of each Z point．

IF（H1．EQ．SPV．OR．H2．EQ．SPV．OR．H3．EQ．SPV．OR．H4．EQ．SPV）RETURN the end points of the contour line segment within this cell．
$\mathrm{Al}=\operatorname{FLOAT}\left(\mathrm{M}\left(2 * \mathrm{Il}-\mathrm{l}+2 * \mathrm{NX}^{*}(\mathrm{Jl}-\mathrm{l})\right)\right)$
A2 $=\operatorname{FLOAT}\left(\mathrm{M}\left(2 \star \operatorname{Il}+2^{\star} \mathrm{NX}^{\star}(\mathrm{J} 1-1)\right)\right)$
A3 $=\operatorname{FLOAT}\left(M\left(2 * I 1-1+2 * N X^{*}(J l P l-1)\right)\right)$
A4 $=\operatorname{FLOAT}\left(M\left(2 * I 1+2 \star N X^{*}(J 1 P 1-1)\right)\right)$

```
    A5 = FLOAT(M(2*IIPl-1+2*NX*(Jl-1)))
    A6 = FLOAT(M(2*I1Pl +2*NX*(Jl-1)))
    A7 = FLOAT(M(2*IlP1-1+2*NX*(J1P1-1)))
    El = FLOAT(M(2*Il-1+2*NX*(JlPl-1))-M(2*Il-1+2*NX*(Jl-1)))
    B2 = FLOAT (M(2*Il +2*NX* (JlPl-1))-M(2*Il +2*NX*(Jl-1)))
    A\varepsilon = FLOAT(M(2*IlPl+2*NX*(JlPl-1)))
    B31 = FLOAT(M(2*IlP1-1+2*NX*(JlPl-1))-M(2*I1-1+2*NX*(JlPl-1)))
    B41 = FLOAT(M(2*ILP1+2*NX*(J1P1-1))-M(2*Il+2*NX*(J1P1-1)))
    B11 = FLOAT(M(2*IlP1-1+2*NX*(J1-1))-M(2*I1-1+2*NX*(J1-1)))
    B21 = FLOAT(M(2*I1Pl+2*NX*(Jl-1))-M(2*Il+2*NX*(Jl-1)))
    B3 = FLOAT(M(2*IIPl-1+2*NX*(J1-1))-M(2*IlPl-l+2*NX*(JlP1-1)))
    EA = FLOAT(M(2*IlPl +2*NX*(J1-1))-M(2*IlPl +2*NX*(JlPl-1)))
    IF (JUMP.EQ.1) GO TO 112
    IF (JUMP.EQ.2) GO TO 103
    IF (JUMP.EQ.3) GO TO 105
    IF (JUMP.EQ.4) GO TO 106
    IF (JUMP.EQ.5) GO TO 107
    IF (JUMP.EQ.6) GO TO 102
    IF (JUMP.EQ.7) GO TO 108
    IF (JUMP.EC.8) GO TO 109
    IF (JUMP.EQ.9) GO TO 109
    IF (JUMP.EQ.10) GO TO 108
    IF (JUMP.EQ.11) GO TO 104
    IF (JUMP.EQ.12) GO TO }10
    IF (JUMP.EQ.13) GO TO 106
    IF (JUMP.EQ.14) GO TO 105
    IF (JUMP.EQ.15) GO TO }10
    IF (JUMP.EQ.16) GO TO 111
102 IDUB = 1
103 RA = R(H1,H2)
    MUA = Al + RA*Bl
    MVA = A2 + RA*B2
    RB = R(Hl,H4)
    MUB = Al + RB*Bll
    MVB = A2 + RB*B21
    GO TO 110
    IDUB = -1
    RA = R(H2,H1)
    MUA = A3 - RA*Bl
    MVA = A4 - RA*B2
    RB = R(H2,H3)
    MUB = A3 + RB*B31
    MVB = A4 + RB*B41
    GO TO 110
106 RA = R(H2,H3)
    MUA = A3 + RA*B31
    MVA = A4 + RA*B41
    RB = R(H1,H4)
    MUB = Al + RB*Bll
    MVB = A2 + RE*B2I
    GO TO 1lO
107 RA = R(H3,H2)
    MUA = A7 - RA*B31
    MVA = A8 - RA*BA1
    RB = R(H3,H4)
```

 MUB = A 7 + RB*B3
 MVB = AR + RB*PA
 IDUB = 0
 GO TO 110
 RA = R(H2,H1)
 MUA = A3 - RA*Bl
 MVA = A4 - RA*B2
 RB}=\textrm{R}(\textrm{H}3,\textrm{H}4
 MUB = A7 + RB*E3
 MVB = A8 + RB*B4
 GO TC 110
 RA = R(H4,Hl)
 MUA = A5 - RA*B11
 MVA = A6 - RA*B21
 RB}=\textrm{R}(\textrm{H}4,\textrm{H}3
 MUB = A5 - RB* B3
 MVB = A6 - RB*BA
 IDUB = 0
 CONTINUE
 110
 C PRINT OOl,RA,RB
C PRINT OOO,MUA,MVA,MUB,MVB, IDUB, IFLG
CALL DRAW(MUA,MVA,MUB,MVB,1)
IFLG = 4
900 FORMAT (1H 13I10)
IF (IDUB) 109,111,107
lll CONTINUE
112 RETURN
END

```

SUBROUTINE DRAW(MX1,MY1,MX2,MY2, KFLAG)
\(C\)
\(C\)
\(C\)
\(C\)
\(C\)
\(C\)
\(C\)
\(C\)
This routine draws the visible part of the line connecting
\(C\) (MXI,MY1) and (MX2,MY2). The variable KFIAG is used to specify which mode the subroutine uses:
l-Draw visible part of line
2-MARKs the visibility arrays
3-Both marks and draws
LOGICAL*1 VIS1 ,VIS2
COM1ON /SRFELK/ LIMU(1024) ,LIML(1024) ,CL(41) ,NCL,
*
*
*
*


DATA STEEP/5./
ITFG \(=1\)
IF (KFLAG.IT.4) GO TO 55
ITFG \(=\) KFLAG
\(K F L A G=K F L A G-3\)
\(55 \mathrm{GO} \operatorname{TO}(1,2,3) \mathrm{KFLAG}\)
c
C DRAW
C
1. \(\quad\) IDRAW \(=1\)

IMARK \(=0\)
C PRTNT 900,MX1,MY1,MX2,MY2, KFLAG, IDRAW, IMARK
900 FORMAT(1HC 12I10)
GO 'TO 101
C
C MARK
C
2 IDRAW \(=0\)
IMARK \(=1\)
GO TO 101
C
C DRAW and MP,RK
C
3 IDRAI \(=1\)
IMARK \(=1\)
C
C MARK line left to right.
C
101 MMXI \(=\) MXI
MMY1 \(=\) MY1
\(M M X 2=M \times 2\)
\(M M Y 2=M Y 2\)
IF (MMX1.EQ.NSPVAL.OR.MMX2.EQ.NSPVAL) RETURN
LOGICAL*1 BAD
\(B A D=M X 1 . G T .1024\)
\(B A D=M Y 1 . G \Gamma \cdot 1024 . O R \cdot B A D\)
\(B A D=M X 2 . G T \cdot 1024 . O R \cdot B A D\)
\(B A D=M Y 2 \cdot G T \cdot 1024 . O R \cdot B A D\)
\(\mathrm{BAD}=\mathrm{MX1} . \mathrm{LT} .1\). OR.BAD
\(B A D=\) MYI.LT. 1 . OR. \(B A D\)
```

 BAD = MX2.LT.l .OR.BAD
 BAD = MY2.LT.l .OR.BAD
 IF(BRD) RETURN
 IF (MMXI.GT.MMX2) GO TO 102
 NXI = MMXI
 NY1 = MMY1
 NX2 = MMX2
 NY2 = MMY2
 GO TO 103
 NX1 = MMX2
 NY1 = MMY2
 NX2 = MMX1
 NY2 = MMY1
 IF (NUPPER.LT.O) GO TO 119
 C
C Check upper visibjlity.
C
VISl = NYl.GE.(LIMU(NXI)-1)
VIS2 = NY2.GE.(LIMU(NX2)-1)
C PRINT 900,NX1,NY1,NX2,NY2,VIS1,VIS2,LIMU(NX1),LIMU(NX2)
C
C
VIS1 and VIS2 TRUE means visible.
IF (VISI.AND.VIS2) GO TO 113
C
C VISl or VIS2 false means invisible.
C
IF (.NOT.(VISl.OR.VIS2)) GO TO 119
C
C Find change point.
C
IF (NXl.EQ.NX2) GO TO 112
DY = FLOAT(NY2-NY1)/FLOAT(NX2-NX1)
NXlPl = NXI + l
FNYl = NYI
IF (VISl) GO TO }10
DO 104 K=NX1P1,NX2
MX = K
MY = FNYI + FLOAT(K-NXI)*DY
IF (MY.GT.IIMU(K)) GO TO 105
104 CONTINUE
105 IF (ABS (DY).GE.STEEP) GO TO 110
106 NXI = MX
NYl = MY
GO TO 113
107 DO 108 K=NNX1P1,NX2
MX = K
MY = FNYl + FLOAT(K-NXI)*DY
IF (MY.LT.L.IMU(K)) GO TO lO9
CONTINUE
109 IF (ABS (DY).GE.STEEP) GO TO 111
NX2 = MX
NY2 = MY
GO TO 113
1 1 0
IF (LIMU(MX).EQ.O) GO TO 106

```
    NXI = MX
    NY1 =LIMU(NXI)
    GO TO }11
    1ll NX2 = MX
        NY2 = LIMU(NX2)
        GO TO 113
    112 IF (VIS1) NY2=MINO(LIMU(NX1),LIMU(NX2))
    IF (VIS1) NYl=MINO(LIMU(NX1),LIMU(NX2))
    113 IF (IDRAN.EQ.O) GO TO 116
C
C Draw visible part of line.
C
    114 CALL SEG(NY1,1023-NX1,NY2,1023-NX2, ITFG)
    GO TO 116
    115 CALL SEG(NX1,NY1,NX2,NY2, TTFG)
    116 IF (IMARK.EQ.0) GO TO 119
    IF (NXl.EQ.NX2) GO TO ll8
    DY = FLOAT(NY2-NY1)/FLOAT(NX2-NXI)
    FNYl = NY1
    DO 117 K=NX1,NX2
            LIMU(K) = FNYI + FLOAT(K-NXI)*DY
    117 CONTINUE
        GO TO 119
    118 LIMU(NXI) = MAXO(NY1,NY2)
    119 IF (NUPPER) 120,120,138
C
C Same idea as above, but for lower side.
C
    120 IF (MMXI.GT.MMX2) GO TO 121
    NXI = MMXI
    NY1 = MMY1
    NX2 = MMX2
    NY2 = MMY2
    GO TO 122
    NXI = MMX2
        NY1 = MMY2
        NX2 = MMX1
        NY2 = MMY1
    122 VISl = NYl.LE.(LIML(NXI)+1)
        VIS2 = NY2.IE.(LIML(NX2)+1)
        IF (VIS1.AND. VIS2) GO TO }13
        IF (.NOT.(VISl.OR.VIS2)) GO TO 138
        IF (NXI.EQ.NX2) GO TO 131
        DY = FLOAT(NY2-NYI)/FLOAT(NX2-NXI)
        NXIPI = NXI + l
        FNYl = NYl
        IF (VISI) GO TO 126
        DO 123 K=NX1P1,NX2
        MX = K
        MY = FNYI + FLOAT(K-NXI)*DY
        IF (MY.LT.LIML(K)) GO TO 124
        CONTINUE
    124 IF (ABS(DY).GE.STEEP) GO TO }12
    125 NXI = MX
```

```
        NYl = MY
        GO TO 132
126 DO 127 K=NXlP1,NX2
        MX = K
        MY = FNYI + FLOAT(K-NXI )*DY
        IF (MY.GI.LIML(K)) GO TO 12%
    127 CONTINUE
    128 IF (ABS(DY).GE.STEEP) GO TO 130
        NX2 = MX
        NY2 = MY
        GO TO 132
    129 IF (LIML(MX).EQ.1024) GO TO 125
        NXI = MX
        NYI = LIML(NXI)
        GO TO 132
    130 NX2 = MX
        NY2 = LIML(NX2)
        GO TO 132
131 IF (VIS1) NY2 = MAXO(LIML(NX1),LIML(NX2))
        IF (VIS2) NYl = MAXO(LIML(NXI),LIML(NX2))
    132 IF (IDRAW.EQ.O) GO TO 135
        IF (IROT) 133,134,133
    133 CALL SEG(NY1,1023-NX1,NY2,1023-NX2, ITFG)
        GO TO 135
    134 CALL SEG(NX1,NY1,NX2,NY2,ITFG)
    135 IF (IMARK.EQ.O) GO TO 138
        IF (NXI.EQ.NX2) GO TO 137
        DY = FLOAT(NY2-NY1)/ELOAT(NX2-NXI)
        FNY1 = NY1
        DO 136 K=NX1,NX2
                            LTML(K) = FNY1 + FLOAT(K-NXI )*DY
136 CONTINUE
        REITRN
137 LIML(NX1) = MINO(NY1,NY2)
138 RETURN
    END
```

```
    PROGPAM PLOTER
    LOGICAL*l FIRST,YY,IY
    INTEGER XIGA(7),X2GA(7),YlGA(7),Y2GA(7),XNA(17),XBA(17),
    * XCA(17),XDA(17)
        INTEGER CHEAD (48), IHEAD (10),ALP, ACM, ARP
        DIMENSION CVAL\Omega(\Omega),S(3),JHEND(20)
        DATA YY/'Y'/
        DATA ALP/' ('/,ARP/') '/,ACM/' ,'/,FIRST/.TRUE./
        NC=0
        NNN = 0
        DLINE = 4.
        FMAG =. . 
        TYPE *,' THE CURRENT PLOT MAGNIFICATION IS . ह'
        TYPE *,' DC YOU WANT 'TC CLINNGE PICOT MAGNIFICATLON? (Y/N)'
        ACCEPT 9050, IY
    9050 FORMAT (Al)
    IF (IY.GT.98) IY = IY - 32
    IF (IY.NE.YY) GO TO 5
    TYPE *,' ENTER MACNIFICATION FACTOR-DECIMAL'
    ACCEPT COG,FMAG
    906 FORMAT (F12.7)
    5 CONTINUE
    CALL PLOTS (0,0,0)
    CALL PLOT (0.0.0.75,-3)
    HT = 8.0
    NO = 1
    OPEN(UNIT=4,NAME='PLOT.DAT',TYPE='OLD',FORM='UNFORMATTED',
    * ACCESS='DIRECT' ,ASSOCIATEVARIABLE=NO, RECORDSIZE=10)
    DO 6 K=1,4
    READ (4'NO) HT,(CHEAD(I),I=1,13),NVAL
C PRINT 9OO,NVAL
C PRINT 901,HT
    CALL SYMBOL (0.0,HT,.1,CHEND(1),0.0,24)
    6 CONTINUE
        READ (4'NO) XlG,X2G,Y1G,Y2G,ZCMAX
        READ (4'NO) S(1),S(2),S(3),NY,NX
        NY = NY - 1
        NX = NX - I
    6 6 ~ D O ~ 7 ~ I = 1 , N V A L ~
    READ (4'NO) HT,CVALQ
C PRINT 900,NVAL
C PRINT OO1,HT
    CALJ SYMBOL (O.O,HT,.1,CVALS,0.O,12)
    7 CONTINUE
    READ (4'NO) XDIST, IHEAD
    TYPE *,' ENTER 40 CHARAC'IER PLOT TITLE'
    ACCEPT 9055,JHEAD
9055 FORMAT (20A2)
C PRINT OO1,XDIST
    CALL SYMBOL (XDIST+1.,6.5,.1, JHEAD,0.0,40)
    10 CCNTINUE
    AXO = AX
    AYO = AY
    READ (4'NO) AX,AY,IPC
    AX = AX*FMAG + 1.
```

 AY = AY*FMAC - . }7
 IF (AXO.NE.O.0) GO TO }1
 XD = AX
 YD = AY
 11 YOMAX = YMAX
 YMAX = AMAXI (YOMAX, AY)
 IF (YOMAX.EQ.YMAX) GO TO 12
 XO = AX
 IF (NN.EQ.O.AND.FIRST) GO TO 18
 IF (ABS (AXO-AX).GT.DLINE) NN = NN + 1
 IF (NN.NE.O) GO TO 13
 XB}=\textrm{AX
 YB = AY
 IF (ABS(S(1)).LTT.ABS(S(2))) GO TO 131
 IF (NN.NE.NX) GO TO IR
 GO TO 132
 131 IF (NN.NE.NY) GO TO 18
 132 IF (NC.NE.O) GO TO 14
 XC = AX
 YC = AY
 NC = NC + 1
 14 CONTINUE
 XA = AXO
 YA = AYO
 18 FIRST = .FALSE.
 900 FORMAT (1H 13O10)
 C PRINT 903,AX, AY, JPC,NO,NC, AXO, AYO
O03 FORMAT (1H 2F12.4,3I7,2F12.4)
901 FORMAT (1H 9F12.4)
IF (IPC.EQ.0) GO TO 20
IF (AX.EQ.-9999.) GO TO 20
CALL PLOT (AX,AY,IPC)
GO TO 1O
902 FORMAT (F6.3)
20 CONTINUE
IF (XA.LT.XC) GO TO 21
XS = XC
XC = XA
XA = XS
YS = YC
YC = YA
YA = YS
21 CONTINUE
IF (XD.GT.XB) GO TO 22
xS = XB
XB}=X
XD = XS
YS = YB
YB = YD
YD = YS
CONTINUE
C TYPE ©Ol,XA,YA,XB,YB,XC,YC,XD,YD,XIG,X2G,Y1G,Y2G
ENCODE (6,902,XIGA)XIG
ENCODE (6,902,X2GA)X2G
ENCODE (6,902,YIGA)YlG

```
        ENCODE (6,902, Y2GA)Y2G
C TYPE 905,XIGA
C TYPE 905,X2GA
C TYPE 905,Y1GA
C TYPE 905,Y2GA
    905 FORMAT (1H 28A2)
        IF (ABS(S(1)).LT.ABS(S(2))) GO TO 200
        IF (S(1).LT'.O.0) GO TO 100
        XAA(1) = ALP
        DO 25 I=1,3
        XAA(I+1) = XlGA(I)
        XAA(5) = ACM
        DO 30 I=1,3
        XAA(I+5) = YlGA(I)
        XAA(9) = ARP
C TYPE 905, XAA
        XBA(1) = ALP
        DO }35\textrm{I}=1,
        XBA(I+1) = X2GA(I)
        XBA(5) = ACM
        DO 40 I=1,3
        XBA(I+5) = YlGA(I)
        XBA(9) = ARP
C TYPE 905, XBA
        XCA(1) = ALP
        DO 45 I=1,3
        XCA(I+1) = XlGA(I)
        XCA(5) = ACM
        DO 50 I=1,3
        XCA(I+5) = Y2GA(I)
        XCA(9) = ARP
C TYPE 905,XCA
        XDA(1) = ALP
        DO 55 I=1,3
    55 XDA(I+1) = X2GA(I)
        XDA(5) = ACM
        DO 60 I=1,3
    60 XDA(I+5) = Y2GA(I)
        XDA(9) = ARP
        GO TO 500
    100 XAA(1) = ALP
        DO 125 I=1,3
    125 XAA(I+1) = X2GA(I)
        XAA(5) = ACM
        DO 130 I=1,3
    130 XAA(I+5) = Y2GA(I)
        XAA(9) = ARP
        XBA(1) = ALP
        DO 135 I=1,3
    135 XBA(I+1) = X1GA(I)
        XBA(5) = ACM
        DO 140 I=1,3
    140 XBA(I+5) = Y2GA(I)
        XBA(9) = ARP
        XCA(1) = ALP
```

 DO \(145 \mathrm{I}=1,3\)
 \(145 \mathrm{XCA}(\mathrm{I}+1)=\mathrm{X} 2 \mathrm{GA}(\mathrm{I})\)
 \(X C A(5)=A C M\)
 DO \(150 \mathrm{I}=1,3\)
 $150 \mathrm{XCA}(I+5)=$ YlGA (I)
$\mathrm{XCA}(9)=\mathrm{ARP}$
$\mathrm{XDA}(1)=\mathrm{ALP}$
DO $155 I=1,3$
$155 \mathrm{XDA}(\mathrm{I}+1)=\mathrm{XlGA}(\mathrm{I})$
$\mathrm{XDA}(5)=\mathrm{ACM}$
DO $160 \mathrm{I}=1,3$
$160 \mathrm{XDA}(\mathrm{I}+5)=\mathrm{YlGA}(\mathrm{I})$
$\operatorname{XDA}(9)=A R P$
GO TO 500
200 IF (S(2).LT.O.0) GO TO 300
$\mathrm{XAA}(1)=\mathrm{ALP}$
DO $225 \mathrm{I}=1,3$
$225 \mathrm{XAA}(\mathrm{I}+1)=\mathrm{X} 2 \mathrm{GA}(\mathrm{I})$
$\mathrm{XAA}(5)=\mathrm{ACM}$
DO $230 \mathrm{I}=1,3$
$\mathrm{XAA}(\mathrm{I}+5)=\mathrm{YlGA}(\mathrm{I})$
$\operatorname{XAA}(9)=A R P$
$\operatorname{XBA}(1)=A L P$
DO $235 \mathrm{I}=1,3$
$\mathrm{XBA}(I+1)=\mathrm{X} 2 \mathrm{GA}(\mathrm{I})$
$\operatorname{XBA}(5)=A C M$
DO $240 \mathrm{I}=1,3$
$240 \quad \mathrm{XBA}(\mathrm{I}+5)=\mathrm{Y} 2 \mathrm{GA}(\mathrm{I})$
$\operatorname{XBA}(9)=\mathrm{ARP}$
$\mathrm{XCA}(1)=\mathrm{ALP}$
DO $245 \quad I=1,3$
$245 \mathrm{XCA}(\mathrm{I}+1)=\mathrm{XlGA}(\mathrm{I})$
$\mathrm{XCA}(5)=\mathrm{ACM}$
DO $250 \mathrm{I}=1,3$
$250 \mathrm{XCA}(\mathrm{I}+5)=\mathrm{YlGA}(\mathrm{I})$
$\mathrm{XCA}(9)=\mathrm{ARP}$
$\mathrm{XDA}(1)=\mathrm{ALP}$
DO $255 \mathrm{I}=1,3$
$255 \mathrm{XDA}(\mathrm{I}+1)=\mathrm{XlGA}(\mathrm{I})$
$\mathrm{XDA}(5)=\mathrm{ACM}$
DO $260 \mathrm{I}=1,3$
$260 \quad \mathrm{XDA}(\mathrm{I}+5)=\mathrm{Y} 2 \mathrm{GA}(\mathrm{I})$
$\mathrm{XDA}(9)=\mathrm{ARP}$
GO TO 500
300 XAA(1) $=$ ALP
DO $325 \mathrm{I}=1,3$
325 XAA $(I+1)=X 1 G A(I)$
$\mathrm{XAA}(5)=\mathrm{ACM}$
DO $330 \mathrm{I}=1,3$
$X A A(I+5)=Y 2 G A(I)$
$\mathrm{XAA}(9)=\mathrm{ARP}$
$\mathrm{XBA}(1)=\mathrm{ALP}$
DO $335 \mathrm{I}=1,3$
$\mathrm{XBA}(\mathrm{I}+1)=\mathrm{XlGA}(\mathrm{I})$
$X B A(5)=A C M$

```
```

 DO 340 I=1,3
    ```
```

 XBA(I+5) = YlGA(I)
 XBA(9) = ARP
 XCA(1) = ALP
 DO 34.5 I=1,3
 XCN(I+1)= X2GA(I)
 XCA(5) = ACM
 DO 350 I=1,3
 XCA(I+5) = YXGA(I)
 XCA(9) = ARP
 XDA(1) = NLP
 DO 355 I=1,3
 XDA(I+1) = X2GA(I)
 XDA(5) = ACM
 DO 360 I=1,3
 XDA(I+5) = YJ.CA(I)
 XDA(9) = ARP
    ```

```

 TYPE OO5,XDA
 CALJ SYMBOL (XB-.5,YB-.25,.075,XBA,O.0,17)
 CALL SYMBOL (XA-.75,YA+.25,.075,XAA,0.0,17)
 CALL SYMBOL (XC-.75,YC+.25,.075,XCA,0.0,17)
 CALI SYMBOL (XD-.75,YD-.25,.075,XDA,C.0,17)
 CALL NUMEER (XO,YMAX+.l,.l,ZCMAX,C.\cap,1)
 CALJ PLOT(0.,0.,+990)
 STOP
 END
    ```


Figure B-1. A Typical Flux Map Along a Concentrator Focal Plane


Figure B-2. A Typical Contour Map at a Concentrator Focal Plane (Contour software not listed in this report, but available from SNLA.)```

