# ACUREX INNOVATIVE POINT FOCUS SOLAR CONCENTRATOR <br> OPERATION, SERVICE, MAINTENANCE, AND REPAIR MANUAL 

March 1987

Acurex Project 7749<br>Contract No. DE-FCO4-85AL23711

For<br>Department of Energy Albuquerque Operations Office P.0. Box 5400<br>Albuquerque, NM 87115

By

Acurex Corporation
Environmental Systems Division
485 Clyde Avenue
P.0. Box 7044

Mountain View, California 94039

Environmental Systems Division

# ACUREX INNOVATIVE POINT FOCUS SOLAR CONCENTRATOR <br> OPERATION, SERVICE, MAINTENANCE, AND REPAIR MANUAL 

March 1987
Acurex Project 7749
Contract No. DE-FCO4-85AL23711
For
Department of Energy
Albuquerque Operations OfficeP.0. Box 5400
Albuquerque, NM 87115
By
Acurex Corporation
Environmental Systems Division
485 Clyde Avenue
P.0. Box 7044
Mountain View, California ..... 94039
1 INTRODUCTION ..... 1-1
2 INNOVATIVE SOLAR CONCENTRATOR SYSTEM DESCRIPTION ..... 2-1
2.1 ACUREX INNOVATIVE SOLAR CONCENTRATOR INSTALLATION, ALBUQUERQUE, NEW MEXICO ..... 2-2
2.1.1 IC General Arrangement ..... 2-1
2.1.2 Control System Overview ..... 2-3
2.1.3 IC Design Features ..... 2-3
2.1.4 IC Interfaces ..... 2-3
2.2 CONCENTRATOR SYSTEM DESCRIPTION ..... 2-6
2.2.1 Central Control System ..... 2-6
2.2.2 On-Dish Systems ..... 2-9
3 INNOVATIVE SOLAR CONCENTRATOR OPERATION ..... 3-1
3.1 INTRODUCTION ..... 3-1
3.2 SAFETY AND SAFETY PROCEDURES ..... 3-1
3.3 CONTROL SYSTEM \& OPERATING MODES ..... 3-3
3.3.1 General ..... 3-3
3.3.2 Control Operating Modes ..... 3-4
3.3.3 Manual Control ..... 3-6
3.3.4 Central Control Computer Program ..... 3-7
3.3.5 PLC-1 and PLC-2 Programs ..... 3-7
3.4 FAILURE MODES ..... 3-8
4 SERVICE, MAINTENANCE, AND REPAIR ..... 4-1
4.1 SERVICE AND MAINTENANCE ..... 4-1
4.1.1 General ..... 4-1
4.1.2 Service and Maintenance Schedule ..... 4-1
4.1.3 Service and Maintenance Procedures ..... 4-1
4.1.4 Cleaning and Care of Reflective Surface ..... 4-1
4.1.5 Location of Bearings ..... 4-3
4.1.6 Inspection of Cylinders ..... 4-3
4.1.7 Inspection and Service of Hydraulic Power Unit ..... 4-3

TABLE OF CONTENTS (Continued)
Section ..... Page
4 4.1.8 Cleaning and Adjustment of Sensors ..... 4-4
4.1.9 Inspection and Adjustment of Limit Switch and Encoder Assemblies ..... 4-4
4.1.10 Inspection and Service of Batteries and Battery Chargers ..... 4-5
4.1.11 Visual Inspection of IC ..... 4-6
4.1.12 Corrosion Protection ..... 4-7
4.2 TROUBLESHOOTING ..... 4-7
4.2.1 General ..... 4-7
4.2.2 Faults and Remedies ..... 4-8
4.3 REMOVAL AND INSTALLATION OF COMPONENTS ..... 4-8
4.3.1 General ..... 4-8
4.3.2 Removal and Installation of Major Structural Components ..... 4-8
4.3.3 Removal and Installation of Batteries ..... 4-8
4.3.4 Removal and Installation of Circuit Switches ..... 4-10
4.3.5 Removal and Installation of Encoder Assemblies ..... 4-10
4.3.6 Removal and Installation of Solar Sensors and Electronics ..... 4-11
4.3.7 Removal and Installation of Hydraulic Components ..... 4-11
4.3.8 Removal and Installation of Electronic Components ..... 4-12
4.4 FUNCTIONAL TEST ..... 4-13
4.4.1 General ..... 4-13
4.4.2 Ampacity Tests ..... 4-13
4.4.3 Travel Circuit Adjustments and Testing ..... 4-13
4.4.4 Encoder Alignment, Zero Adjustment and Testing ..... 4-14
4.4.5 Solar Sensor Adjustment and Testing ..... 4-16
4.4.6 Hydraulic Power Unit Tests ..... 4-18
4.4.7 Electronic Control Unit Tests ..... 4-19

## SECTION 1

INTRODUCTION

This document provides descriptions and operating instructions for the Acurex Innovative Point-Focus Solar Concentrator (IC) installation at Sandia National Laboratories in Albuquerque, New Mexico. The IC was designed and built by Acurex Corporation under a Cooperative Agreement with the United States Department of Energy (DOE).

This document is divided into three main parts: Section 2 provides a system installation description, Section 3 provides operating instructions and Section 4 provides service, maintenance and repair instructions.

Care, regular service, and maintenance are recommended to provide fault free operation.

This manual alerts operators, service and maintenance personnel to points of particular importance, regarding safety and proper practices. These points are identified with notes stating:

- Warning
- Caution
- Attention, and
- Note

Safety warnings must be strictly observed to prevent injury to personnel and damage to equipment.

The terms "Warning" and "Caution" are used if incorrect observance or nonobservance of operating instructions, job instructions, specified procedures and the like may result in an injury or a serious accident.

SECTION 2
INNOVATIVE POINT FOCUS SOLAR CONCENTRATOR SYSTEM DESCRIPTION
2.1 ACCUREX INNOVATIVE SOLAR CONCENTRATOR INSTALLATION, ALBUQUERQUE, NEW MEXICO.

Site specific aspects of the design of this particular IC were tailored to conditions at Sandia National Laboratories (SNL) Distributed Receiver Test Facility (DRTF) at Kirtland AFB, Albuquerque New Mexico. Figure 2-1 shows the IC site.

Foundation design is site specific. The IC foundation design for DRTF is based on soil samples and information provided by SNL.

Another feature particular to this installation is the method of resetting the control system. Pressing a keylocked button on the side of the drive control unit (DCU) forces inspection of the concentrator after system lockout. Forced inspection promotes safe operation and encourages developing a thourough understaning of the workings of this concentrator in an experimental setting. For a mature system in an operating field of many modules, the design would use a different reset method. For information on the specific interfaces of this system, see Section 2.1.4, IC Interfaces. 2.1.1 IC General Arrangement

Figure 2-2 shows a scale model of the Innovative Concentrator. The DCU, Hydraulic Power Unit (HPU), and Battery Enclosure, which are not shown in Figure 2-2, are mounted to the Drive Support Unit. Figure 2-3 shows a layout of the system interfaces.


Figure 2-1. Acurex Innovative Concentrator Location

### 2.1.2 Control System Overview

Drawings 77491400 and 1401 are block diagrams of the power and control systems, respectively. The central control computer in the control room provides operator interface and ephemeris calculations. The manual control station provides manual control of the concentrator when enabled by the computer. Programmable Logic Controllers, PLC-1 and PLC-2, and control logic and electronics in the DCU implement the control algorithm. Hydraulic cylinders move the concentrator as directed by the control system.

### 2.1.3 IC Design Features

The most important and innovative feature of the Innovative Concentrator, in terms of cost reduction, is the structural integration of stamped sheet-metal reflective panels with the panel support (dish) structure. The reflective panels are designed to help carry wind and weight loads, thus minimizing redundant load-bearing structure.

Other key features of the concentrator are:

- 15 m dish diameter
- Microprocessor-based on-dish controls and hydraulic drive system using standard industrial grade products
- PCA support structure isolated from the panel support structure -- transmits the high PCA-induced moments directly to the drive support structure
- Tilted azimuth bearing (tilted $10^{\circ}$ to the north) -- allows continuous tracking in subtropical regions, such as Hawaii, when the sun is north of zenith


### 2.1.4 IC Interfaces

Figure 2-3 shows the IC Interface layout. Figure 2-4 depicts the IC System AC power interface Disc-1. Cables $C-1$ and $C-2$ of Appendix $M$ show the

Figure 2-2. Major Subsystems and Components of Innovative Concentrator

power connections to the system via Disc-1. Refer to Drawing 7749E304, Cable and Conduit Block Diagram, for cable description.

Figure 2-5 depicts the IC control wiring interface JB-1. Cables C-3 and $\mathrm{C}-4$ of Appendix M show the control connections.

For a description of the foundation and other aspectes of the system and its interface to the particular site, see Sections 2.1 and 2.2.2.7. 2.2 CONCENTRATOR SYSTEM DESCRIPTION

### 2.2.1 Central Control System

The essential elements of the IC are the central control computer, the control system alarm indicator, and the central control interfaces.

### 2.2.1.1 Central Control Computer

The central control computer is an IBM-PC with two floppy disk drives and 64 K-bytes of storage. The monitor is an Amdek 310A, featuring amber display for decreased eye fatigue. The printer is an Epson FX85 parallel printer. The control computer system is located in the control building.

The IBM-PC is augmented by a parallel communications card for RS-232 communications and an AST I/O plus minicard battery-backed clock card. 2.2.1.2 Central Control Alarm Indicator

The central control alarm indicator (IL-412) is located in the control building near the central control computer. It indicates alarm conditions including the following: AC power loss, high wind conditions and control system failure.

### 2.2.1.3 Central Control Interfaces

Central control interfaces include keyboard/screen operator interface and current-loop interface to the concentrator DCU.

Figure 2-6 shows a sample display of the operator interface to the central control computer. The screen shows the date, present mode, and time


Figure 2-4. IC System AC Power Interface


Figure 2-5. IC Control Wiring Interface

## ACUREX INNOUATIVE SOLAR CONCENTRATOR

$$
01-14-1986
$$

CUFRENTLY SELECTED MODE: 8 - TRACK/OPTICAL MODE SELECTED AT 12:20:29 MST

FRESS FUNCTION KEYS FOR MODE SELECTION AS FOLLOWS:
MODE 2 - MANUAL MODE
MODE 3 - EXERCISE \& SETUF MODE
MODE 4 - STOW
MODE 5 - DESTEER/EFHEMERIS
MODE 6 - DESTEERIOPTICAL
MODE 8 - TRACK/OPTICAL
STANDAFD TIME AND CALCULATED SOLAR EFHEMERIS FOSITIDNS: (REFERENCED TO 1ODEG TILTED PLANE)
12:20: 36 MST AZIMUTH $=$ 181.311
ELEVATION $=23.473$


Figure 2-6. IBM-PC Sample Display
the present mode was selected. It displays continuously updated time and solar position information, and lists the operator-selectable modes. The operator selects modes by pressing the function key corresponding to the desired mode.

The current-loop interface to the DCU uses a Black Box 101-4Q CL410 adapter to convert the IBM PCs RS-232 output to a 20 mA current loop. (See Appendix A). This current loop carries status and ephemeris information from the IBM PC in the control room to the Siemens-Allis Automation MC-8 programmable logic controller (PLC-1) in the DCU.

### 2.2.2 On-Dish Systems

### 2.2.2.1 Reflective Panels

The reflector of the Acurex Innovative Concentrator is comprised of 40 outer panels and 20 inner panels. Each panel consists of silvered polymer film laminated to the fron panel sheet which is bonded to a stamped hat-section back panel. In order to ensure long life for the prototype, the surface to which the silvered film is laminated is prepared with an acrylic paint. The fron and back panesl are made from aluminized deep draw-quality, aluminum-killed cold-rolled steel. The adhesive used to bond the fron and back panels is Pliogrip 6000 series, a 2-part urethane produced by Ashland Chemical.

Figure 2-7 illustrates the method by which the reflective panels are joined to each other and to the ribs of the panel support structure. All mounting holes are accurately drilled or punched at the factory, using drill fixtures or numerical machining methods, prior to assembly. This includes the panel support structure ribs.

Panels are fastened to each other with a lap joint between adjoining panels. An offset is provided on one edge of each back panel in order to


Figure 2-7. Inter-Panel and Rib Interfaces
achieve a continuous, even reflective surface. A similar joint is provided between inner and outer panels, the offset being provided at the outer edge of the inner back panel. Rivet holes are provided at 6-in. intervals along the interpanel joint to provide, when assembled, an integrated dish.

Attachment to the panel support structure rib is through a "weak" flange that will not transmit small deflections or inaccuracies in the structure to the reflector. This flange is through-bolted or rivetted to the radial rib. Both the offset and flange are formed with the back panel ribs during stamping.

### 2.2.2.2 Support Structure

The Innovative Concentrator support structure consists of the following four subassemblies:

- PCA Support
- Panel Support
- Drive Support
- Tripod and Support

These are shown in Figure 2-2.

### 2.2.2.2.1 PCA or Receiver Support Structure

The PCA support consists of two tubular truss weldments (legs) which are joined at the central hub of the panel support. The truss consists primarily of 3 -in. square tubing.

Rails to which the PCA can be clamped are provided at the PCA-end of each leg. The rails will accommodate PCA's 4 to 5 feet in diameter and will allow longitudinal adjustment for proper location of the receiver aperture at the concentrator focal plane.

### 2.2.2.2.2 Dish Support Structure

The primary elements of the panel support are the ribs, central hub and rings. The 20 repeating rib truss weldments radiate from the central hub and resist back-wind loads. In addition there are 20 short ribs which, along with the 20 main rib truss members, support the outer panels. Front loads are resisted by the integrated panel assembly, once installed on the panel support.

The central hub is a 30-in. O.D. tube and is the central connection member for the PCA support, the 20 main rib truss members and the elevation pivot.

Two inner rings and one outer ring tie the panel support ribs together. Circumferential adjustment of the ribs is provided by bolts which attach the ribs to the rings.

### 2.2.2.2.3 Drive Support Structure

The drive support is the interface between the articulated portion of the dish and the base structure. The drive support, tilted at $10^{\circ}$, rotates on the azimuth axis. It is to be an open structure consisting of plates, angles and gussets, as shown in Figure 2-2.

### 2.2.2.2.4 Support Leg Structure

The tripod and base support is a stationary tripod structure and is the interface between the azimuth bearing and the foundation. The portion which supports the bearing directly is a plate weldment. The tripod legs and braces are tubular members. Double-nut adjustment and subsequent grouting is provided at the foundation.

### 2.2.2.3 Drive System

The Innovative Concentrator drive system utilizes hydraulic cylinders and a medium pressure ( 3000 psi) hydraulic system to position the dish in both
azimuth and elevation coordinates. The hydraulic components incorporated in the design are standard, existing, mass-produced components, assembled into a design which is unique in the control strategy employed.

### 2.2.2.3.1 System Configuration

Although the hydraulic components specified for the Acurex Innovative Concentrator design are standard, the overall concept and control strategy is unique. The hydraulic circuits are presented in schematic form in Figures 2-8 and 2-9. Note in Figure 2-8 that azimuth rotation is accomplished by placing two hydraulic cylinders at $90^{\circ}$ to one another, such that they work on a common crank arm.

The control system concept requires the dish to move about each axis in response to commands from either the optical trackers or a control computer, in an "on-off" mode of operation. The hydraulic system responds by turning the required hydraulic pump motor on only when movement is required, with the directional control valve momentarily pulsed and latched in the correct position. Therefore, no pump "dead-heading" occurs and no parasitic system pressure drops are present. In essence, the hydraulic cylinders are direct-coupled to the pump outputs, and thus act as a hydrostatic transmission for converting the high-speed output of the electric drive motor to the high-torque (high force) output of the hydraulic cylinders.

Focus and defocus slew movement is provided in the elevation axis by Pumps P3 and P4 (in the event that either pump fails, the remaining pump serves alone as a half-capacity backup). The control strategy requires a brief slew speed movement into and out of focus to limit the dwell time of the sun spot on the receiver aperture lip. The drive system therefore must provide a much higher than average speed for a short duration to accomplish the slew maneuver; the hydraulic system accomplishes short-term accelerated


Figure 2-8. Azimuth Hydraulic System Schematic


Figure 2-9. Elevation Hydraulic SYstem Schmatic
movement by increased fluid flowrate, requiring no change in sizing pressure rating the system's components. Pumps P1 and P2 have dual speed capability and provide tracking in azimuth and elevation, as well as slew to stow capability.

### 2.2.2.3.2 Main Bearings

The main azimuth bearing is a large diameter, slow speed, intermittent rotation, gearless turntable bearing, manufactured by Rotek, according to Acurex Specification 774903SP Rev. 3. It is described in Appendix N.

The main elevation bearings are Morse Sealmaster ERCI-307 with contact seal. They are described in Appendix 0.

### 2.2.2.3.3 Hydraulic Cylinders

The prime movers for both the elevation and azimuth axes are Prince Mfg. double-acting hydraulic cylinders. Table 2-1 summarizes the characteristics of the cylinders, which are described in Appendix R. Acurex Specification 7749-06SP describes the hydraulic cylinders in greater detail. Appendix $P$ describes tracking pumps P1 and P2, which are Oildyne 634-746, Model 3SP-*W-NVSN. Appendix $Q$ describes slew pumps P3 and P4, which are Oildyne 634-765, Model 4SP69-*W-NVSN.

### 2.2.2.3.4 Hydraulic Power Unit

The two tracking speed pumps and two slew speed pumps (four pumps total) are mounted on a common baseplate and sump. The control valves and pressure relief valves are mounted on the same baseplate, forming a complete hydraulic power package referred to as the HPU. The primary power requirement for the HPU is 220 VAC, single phase, 20 amperes.

Table 2-1. Hydraulic Cylinder Specifications

|  | Maximum <br> Operating Force <br> (1b) | Maximum <br> Holding Force <br> (1b) | Cylinder Size <br> (in.) | Bore Size <br> (in.) |
| :--- | :---: | :---: | :---: | :---: |
| Azimuth (2) | 65,000 | 85,000 | 6 | 3 |
| Elevation | 105,000 | 93,000 | 7 | 5 |

### 2.2.2.4 Concentrator Electrical, Instrumentation, and Control System

### 2.2.2.4.1 General

The electrical, instrumentation, and control system consists of optical trackers, limit switches, position encoders, batteries, DCU, and associated equipment. Acurex drawings 7749 I 400 and 7749 I 401 show block diagrams of the power and control systems, respectively.

### 2.2.2.4.2 Trackers and Electronics

The optical trackers and tracker electronics consist of two Mann-Russell ST-1 Dual Axis Tracking Kits, with the electronics custom-mounted in the weather resistant tracker electronics enclosure. The tracking hardware is further described in Appendix B.

### 2.2.2.4.3 Limit Switch Assemblies

The limit switches are Allen Bradley 802M limit switches with Allen Bradley 802MC-WIA roller levers. They are described in Appendix C.

### 2.2.2.4.4 Position Encoders

The position encoders are Astrosystems Durapot wiperless potentiometer HDC-1000A-1 with a heavy-duty NEMA 12 transducer HST26A and separate electronics with 0 to 1OVDC output and clockwise shaft rotation. They are described in Appendix D. The separate electronics are mounted in the DCU.

### 2.2.2.4.5 Battery Power Supply and Enclosure

The batteries are Marathon 12-PMF-50 and 12-PMF-100 lead acid batteries. They are described in Appendix E. They are enclosed in a Hoffman A36H3012GQRLP fiberglass enclosure with louvers.

The batteries provide 12 V power to the control system and slew pumps and 36 V power to the tracking pumps. Drawing 7749 I 400 shows a block diagram of the power system.

### 2.2.2.4.6 DCU

The DCU contains the logic and control electronics for operating the IC. It also contains the battery chargers which charge the batteries described above. The control system block diagram 77491401 shows an overview of the DCU and other control equipment interactions.

The programmable logic controller, PLC-1, is the brains of the IC control system. It is a Siemens-Allis Automation MC-8, described in Appendix F. It coordinates inputs from field sensors, commands from the manual control station, and ephemeris and command mode information from the central computer, to control the concentrator hardware via relay logic.

The programmable logic controller, PLC-2, is a Siemens-Allis automation $I^{2}$ R, described in Appendix G. It serves as a watchdog to verify PLC-1 functionality and to stow the concentrator in case PLC-1 fails.

The battery chargers are Stored Energy Systems 12 V battery charger $F C-12-6(B C-1, B C-2$, and $B C-3)$ and $36 V$ battery charger $F C-36-3(B C-4)$. They are described in Appendix $H$.

The relays and logic are fully detailed in drawing 7749E305. The relay logic is designed to provide consistent and safe system operation under a wide variety of conditions including $A C$ power failure and component failure. The
relays are Potter and Brumfield R10-E1-P-4-V185 and R10-E1-P4-115V and Crydom D1D40 and 01240.

The circuit breakers are Allen Bradley rail mounted 1492-G050 and 1492-G150.

### 2.2.2.4.7 Manual Control Station

The pendant-hung Manual Control System is located at the back of the concentrator drive support. It provides control mode selection and display as well as manual control of the concentrator position.

Operation of the manual control station is described in Section 3.3.3

### 2.2.2.4.8 Cable Track

The cable track is Gortite Gortrac Model L-200. It is described in Appendix I. The Gortac provides a pathway for cables between the fixed tripod and the moving drive support structure.

### 2.2.2.4.9 Fused Disconnect Switch

The disconnect switch (DISC-1) is an ITE model NRH-321 two-pole, two-fuse 240 VAC 30A heavy-duty outdoor NEMA3R safety switch. It contains two 20A fuses, Bussman FRNR or equivalent. It also contains two GE model V275ME250 metal oxide varistors (MOVs) to protect the control system from power line transients.
2.2.2.4.10 Grounding

Ground connections are tied to the Sandia DRTF grounding grid (see Drawing 7749E304, conduit and cable block diagram). The ground connection for the transformer and control system electronics is provided via the disconnect enclosure DISC-1 and cables $\mathrm{C}-2$ and $\mathrm{C}-21$. The structure is grounded separately by cables C-21 and C-22.

### 2.2.2.5 Electrical and Control Interfaces

The conduit and cable block diagram, drawing 7749E304, shows an overview of the electrical and control interfaces between the IC and Sandia's power and control systems.

Grounding interfaces to the DRTF grounding grid are described in Section 2.2.2.5.10.

Power connections to the DCU for $1 \phi, 240 \mathrm{~V}, 60 \mathrm{~Hz}, 15 \mathrm{~A}$ service are made via fused disconnect DISC-1 by cables $\mathrm{C}-1$ and $\mathrm{C}-2$.

Control connections to the DCU are made through cables $\mathrm{C}-3$ an $\mathrm{C}-4$, which contain eight shielded pairs with an overall shield. Control connections are listed in Table 2-2.

### 2.2.2.6 Foundation

The Innovative Concentrator foundation consists of three poured-in-place concrete piers, each 2 ft in diameter and 20 ft deep. The design, specific to the DRTF site, is based upon soils data from the report prepared for the site entitled "Geotechnical Investigation Report, Solar Dish Installation, Kirtland, AFB, Albuquerque, New Mexico; SHB Job No. E83-1179," by Sergent Hauskins and Beckwith, submitted to Sandia on December 7, 1983.

The foundation is designed to satisfy the requirements of the soils conditions at Sandia's DRTF, satisfy the load conditions of the concentrator system (including PCA), and permit rapid alignment of the tripod legs.

Table 2-2. Control Connections

| Conductor | Conductor No. | Function |
| :---: | :---: | :---: |
| 1 red | 157 | Current loop (RED + ) |
| 1 blk | 158 | Current loop (RXB+) |
| 2 red | 165 | Wind signal N.C. |
| 2 blk | 37 | Wind signal COM |
| 3 red | 412 | IL \& HS COM |
| 3 blk | 40 | IL-412 |
| 4 red | 195 | HS-195 |
| 4 blk | 197 | HS-197 |
| 5 red | -- | Spare |
| 5 blk | -- | Spare |
| 6 red | -- | Spare |
| 6 blk | -- | Spare |
| 7 red | -- | Spare |
| 7 blk | -- | Spare |
| 8 red | -- | Spare |
| 8 blk | -- | Spare |

## SECTION 3

INNOVATIVE SOLAR CONCENTRATOR OPERATION

### 3.1 INTRODUCTION

The IC operator interfaces are the central control computer, manual switches in the control room, and the pendant manual control station, located at the rear of the drive support of the concentrator. In addition, the central control computer, PLC-1, and PLC-2 are all continuously monitoring various parameters to assure safe operation of the concentrator.

### 3.2 SAFETY AND SAFETY PROCEDURES

Follow all safety precautions in this and referenced documents, in addition to standard safety practices and common sense. Refer to and follow the established safety procedures detailed in the DRTF Safe Operating Procedures: SOP for the Distributed Receiver Test Facility and for the Test Bed Concentrators," and to "Addendum to DRTF Safe Operating Procedures for Acurex Innovatve Point Focus Solar Concentrator."

Take proper precautions for safety according to location, such as wearing a hard hat in the concentrator field and using a safety belt at elevated locations on the concentrator. Any work around batteries involves particular electrical, chemical, and fire precautions outlined in the battery instructions listed in Appendix E.

For maintenance requiring personnel to be on the concentrator structure, lock out the control system power when use of the controls is not needed. To do this, insert the key in the locking pushbutton on the side of the $D C U$, depress the red pushbutton, and lock the pushbutton in the off (depressed) position. Remove the key to insure lockout. Remember that the batteries are the main supply of electrical power; therefore, shutting off the AC power does NOT remove power to the system. Any work inside electrical enclosures requires disconnecting battery power where necessary to remove power to the enclosure, if removal of power is required. In such case, use adequate rubber gloves or other protection when handling live circuits, and do not leave disconnected live leads unprotected. See Appendix E for particular precautions around the batteries.

When work on the concentrator requires the control computer to be in a particlar mode for safety (e.g., Mode 2, manual control), cover the keyboard with an appropriate sign, such as, "CONCENTRATOR IN MANUAL MODE. DO NOT OPERATE KEYBOARD." Do not leave the concentrator in manual mode (central control computer keyboard, Mode 2) unattended.

Work on the hydraulic system must be performed only with the concentrator in the maintenance stow ("Stow North") position and the batteries disconnected.

The concentrator reflects and concentrates intense sunlight. This is true especially when it is focussed on the sun, but also in all modes of operation or stow. Wear sunglases, do not look directly at bright spots, and take all due precautions to prevent eye injury and burning of personnel, equipment, or structures.

### 3.3.1 General

The IBM PC central control computer in the control room is the main operator interface for central control. In addition, there are manual switches for maintenance stow and desteer, located above the control computer.

Local control is provided by the manual control station, which hangs as a pendant from the back of the concentrator drive structure.

The MC-8, PLC-1, coordinates field sensor inputs and operator interfaces to control the workings of the concentrator via relay logic. PLC-2 acts as a watchdog to stow the system in case of PLC-1 failure. The relay logic defaults to manual control in case of relay failure.

Two of the control system's operating modes are alarm modes. The alarm modes are not user selectable. Mode 0 is the watchdog stow mode, indicating that either PLC-1 or PLC-2 has failed. Mode 1 is the AC power loss or high wind stow alarm. Either alarm mode causes the concentrator to stow facing upwards.

To reset the control system, go outside and inspect the concentrator for damage or problems (see Section 4.1.11, Visual Inspection of IC). When ready to proceed, unlock the keyed pushbutton on the side of the DCU and press the pushbutton to turnoff power to the control system. Then, release the pushbutton to turn on control system power, and lock the pushbutton in the released (power on) position. Return the key to its authorized storage location.

The purpose of this procedure is to insure at least a visual inspection of the concentrator before resetting the control system.

### 3.3.2 Control Operating Modes

The operator can choose from six user-selectable operating modes, as shown in the sample computer display in Figure 2-1. To select a mode, press the special function key corresponding to the desired mode number (Modes 0 and 1 are alarms, which are not user-selectable. See Section 3.3.1).

Mode 2, the manual mode, transfers control to the manual control station. Manual control is discussed in Section 3.3.3.

Mode 3 , the exercise setup mode, exercises the concentrator's hydraulic systems. Selection of the mode first puts the system in vertical stow, facing upwards. Then the concentrator moves in a boxlike path of up, clockwise, down, and counterclockwise, with each side of the "box" being $4.5^{\circ}$.

Mode 4 is maintenance, stow. Selection of this mode stows the concentrator facing.

The solar tracking, Modes 5 through 8, interact as described below the descriptions of the modes themselves.

Mode 5 is the desteer/ephemeris mode. "Desteer" is defined here as following the sun's azimuth at an elevation $5^{\circ}$ higher than the sun's elevation. In Mode 5, the concentrator follows the ephemeris coordinates computed by the central control computer but $5^{\circ}$ in elevation above the calculated sun position.

Mode 6 is the desteer/optical mode. Selection of this mode causes the concentrator to follow the desteer optical tracker, which is aligned to orient the concentrator $5^{\circ}$ in elevation above the actual sun position.

Mode 7, the track/ephemeris mode, is not user-selectable. In Mode 7 the concentrator follows the calculated ephemeris coordinates as an intermediate step toward optical solar tracking.

Mode 8 is the track/optical mode. In Mode 8, the concentrator follows the focus optical tracker, aligned to focus the concentrator on the sun.

The tracking modes interact as follows. From any of the nontracking Modes (2, 3, and 4), entering a selected tracking mode proceeds in numerical order of the tracking mode number. For example, if the operator selects Mode 8 from Mode 3, first the concentrator enters Mode 5 until it acquires the desteer/ephemeris position. Then it enters Mode 6 for a trial period in desteer/optical mode.

If after 10 seconds the position from optical tracking is not within tolerance of the ephemeris calculation, the concentrator is reset to Mode 5 to start the procedure again. Otherwise, it slews into focus and enters Mode 7, track/ephemeris. This mode serves to "fine tune" the concentrator position according to the calculated ephemeris position.

Once the concentrator is properly oriented for focus according to the ephemeris calculations, it enters Mode 8, track/optical. It tracks optically from then on, unless the actual position comes out of tolerance with the calculated ephemeris position (which is constantly updated). In such a case, control goes back to Mode 7, track/ephemeris, to position the concentrator at the calculated ephemeris position, at which point control re-enters Mode 8, track/optical. If this fallback process happens more than three times within 100 program loops (approximately 60 to 100 seconds), the concentrator is locked out of focus and goes to desteer/optical.

Leaving focus (like entering focus) is always accomplished by slewing between focus and desteer positions. The focus lockout is reset when the operator selects a nonfocus mode (Mode 6 or less). After selecting a nonfocus mode to reset a focus lockout, the operator may select Mode 8 again to focus the concentrator. In all of the nontracking modes, PLC-1 monitors the
concentrator position, compares it to the ephemeris position, and slews the concentrator up if it enters a region in or beneath a $4.5^{\circ}$ "box" around the sun. This feature protects against damage from inadvertent focusing or near-focusing of the concentrator.

Note that the screen displays the currently selected mode. In situations such as focus-lockout (actual mode $=6$, selected mode $=8$ ) or manual control (actual mode is selected by manual control station, selected mode $=2$ to enable manual control station), the displayed (selected) mode is not the actual mode chosen by PLC-1 in the DCU, which controls the concentrator. Also, after the calculated sun elevation falls below $10^{\circ}$, above the $10^{\circ}$, tilted plane of the concentrator, only Modes 2,3 , and 4 may be selected, and higher modes fall back to Mode 4 (stow).

In addition to the selected mode and mode menu, the central control computer screen displays the standard time (i.e. not daylight savings time) and calculated solar azimuth and elevation referenced to the $10^{\circ}$ tilted plane of the concentrator drive bearing (a plane with an angle of $10^{\circ}$ to the horizontal, facing due South).

### 3.3.3 Manual Control

The main method of manual control of the IC is via the manual control station. In addition to the normal operating modes selectable on the manual control system, manual switches are provided for maintenance stow and desteer.

Select Mode 2 on the central control computer to activate the manual control station.

When the manual control station is first activated, it is in Mode 2, manual control. In this mode, the manual switches for CW/CCW and UP/DOWN are active. The operator can use them to position the concentrator in any allowed
position (PLC-1 does not allow positioning of the concentrator in or beneath a zone of within $4.5^{\circ}$ of the sun).

In addition to manual positioning of the concentrator, the operator may specify any of the user-selectable modes (described in Section 3.3.2) from the manual station. Simply position the mode select switches according to the binary pattern described on the side panel of the manual control station, and push the "enter mode" button. Hold the button until the mode display indicators update to reflect the new mode.

Read the indicators in the same manner as the mode select switches, using the binary pattern on the side of the manual control station. Note that the mode display indicators on the manual control station display the actual operating mode in use by PLC-1, while the central computer displays the mode selected by the computer keyboard, which PLC-1 may override. To deactivate the manual control pendant, simply select a mode other than Mode 2 (manual control) from the central computer.

### 3.3.4 Central Control Computer Program

The central control computer program is listed in Appendix $J$.
The central control computer, an IBM-PC, serves two main functions. First it serves as a keyboard interface for operators in the control room, and it generates continually updated solar ephemeris calculations. Second, it sends operating mode and ephemeris information to PLC-1 via current loop. It sends one word per second, alternating between mode, azimuth, and elevation.

### 3.3.5 PLC-1 and PLC-2 Programs

The PLC-1 program is listed in Appendix K. PLC-1 is a Siemens-Allis Automation MC-8 programmed in SYBIL 6, which is similar to BASIC with analog and digital $\mathrm{I} / 0$ statements.

PLC-1 monitors the current loop communications from the central control computer, the manual control station, alarms for high wind and AC power loss, and concentrator position feedback. It selects a mode of operation based on these inputs and displays this mode on the manual station. PLC-1 controls the position of the concentrator either directly (via digital outputs to relay logic and hydraulics) or by enabling manual or optical tracker control. In all cases it monitors and compares actual concentrator position and calculated solar position to avoid inadvertent focus or near-focus of the concentrator.

The PLC-2 program is listed in Appendix L. PLC-2 is a Siemens-Allis Automation $I^{2} R$, programmed in SYBIL 5.

PLC-2 serves as a watchdog for PLC-1. Once in each PLC-1 program cycle, there is a handshake with PLC-2. If PLC-1 fails to handshake within 60 seconds, PLC-2 turns on the alarm indicator and puts the concentrator in alarm stow, facing up.
3.4 FAILURE MODES

Interaction of IC components was designed to minimize problems resulting from single component failure.

Failure of the central control computer or its current loop communication system would interrupt execution of PLC-1's code, which would cause PLC-2 to stow the concentrator after 60 seconds. Failure of the PLC-1 processor would have the same result. Failure of PLC-2 would cause PLC-1 to stow the concentrator immediately.

Position encoder failure would cause false positioning of the concentrator with the concentrator in focus, false positioning would cause disagreement between the position feedback and the ephemeris calculations, which would cause PLC-1 to attempt correction of position and then force the system to the desteer mode. Tracker failure would cause similar results.

Failure of the limit switch (LS-1 or LS-2) would cause wrong choices of solenoid valve position by the azimuth quadrant selection relay logic, which would disrupt azimuth drive functions. Failure of LS-3, 4, 5, or 6 would have no effect as single failures, but removes end-of-travel feedback to PLC-2 (which acts on PLC-1 failure) and to the control logic, where it is a backup against position feedback/PLC-1 control loop failure.

Failure of a solenoid valve (or of a solid state relay controlling a solenoid valve) would cause a drive cylinder to operate only in one direction regardless of control system commands to change direction, which would disrupt tracking and drive functions.

Hydraulic pump/motor failure would cause disruption of tracking and drive functions. If the concentrator were in focus at the time of disruption of drive functions, disagreement between position feedback and ephemeris calculations would cause PLC-1 to attempt correction of position and then force the system to the desteer mode. Leaving focus under such circumstances involves slewing elevation up out of focus using redundant slew pumps.

Manual control station failure would affect only the manual mode, which is enabled/disabled via the central control computer keyboard failure of battery charger 1 or 2, or their corresponding batteries would diminish performance of concentrator slewing and eliminate 12 V operation of azimuth or elevation drives, respectively. Failure of battery charger 4 or battery 4 would eliminate 36 V tracking. Failure of batter charger 3 or battery 3 would cause control system power to come from battery charger 2, which is wired with diodes as a backup.

## SECTION 4

## SERVICE, MAINTENANCE, AND REPAIR

### 4.1 SERVICE AND MAINTENANCE

### 4.1.1 General

The Innovative Solar Concentrator is designed to provide reliable operation with scheduled maintenance. The system has been designed to use commercially available, nationally serviceable parts from major equipment suppliers.

### 4.1.2 Service and Maintenance Schedule

Table 4-1 provides an inspection and preventative maintenance schedule. A maintenance $\log$ should be kept to document both scheduled and unscheduled maintenance.

### 4.1.3 Service and Maintenance Procedures

Use standard procedures and observe all applicable safety precautions (see Section 3.2) in performing service and maintenance work.

Refer to appropriate parts of Section 4 for procedures on service and maintenance of most equipment. Inspect any remaining equipment for obvious damage and verify that it functions properly.

### 4.1.4 Cleaning and Care of Reflective Surface

The reflective surface should be inspected as often as necessary, at least once per quarter. Particularly look for delamination and corosion, especially at film edges.

Table 4-1. Inspection, Service, and Maintenance Schedule

| Item | Monthly | Quarterly | Annual | Biannual |
| :---: | :---: | :---: | :---: | :---: |
| IBM control computer and peripherals DISC-1 <br> Circuit breakers in DCU <br> Fuses in DCU <br> Locking handswitch on DCU <br> Batteries <br> Battery chargers <br> PLC-1, PLC-2, relay logic, and manual control station <br> $D C-1$ and $D C-2$ <br> Limit switches <br> Position encoders <br> Optical trackers <br> Stow alarms <br> P1 and P2 <br> P3 and P4 <br> Solenoid valves <br> Hydraulic cylinders <br> Gortrac cable tray <br> Structure | See | manufactur <br> $X$ <br> $x$ <br> $x$ <br> X <br> $X$ | ' liter $x$ <br> X | \% |

If delamination is found, cut out the delaminated section of film with an $X$-acto knife and use $1 / 2$ inch FEK tape to stop further delamination and cover the effected area. Be sure the tape covers the edges of the remaining film.

### 4.1.5 Greasing of Bearings

Proper lubrication of bearings is essential to smooth operation and long bearing life. Greasing of the azimuth and elevation bearings is described in Appendices N and 0 , respectively.

### 4.1.6 Inspection of Cylinders

Inspect the cylinders as often as necessary, at least once per quarter. Particularly look for galling on cylinder rods, leaks and loose fittings, and severe corrosion. Appendix $R$ describes their maintenance.

### 4.1.7 Inspection and Service of Hydraulic Power Unit

Daily inspection of readily visible hydraulic components for obvious leaks is recommended prior to operation of the concentrator, at least during the initial months of operation.

Remove the HPU cover and thoroughty inspect the HPU as often as necessary, at least once per quarter (but weekly at first). Particularly look for hydraulic fluid level and condition, leaks and loose fittings, loose electrical connections, and severe corrosion. The most important problem to look for is leakage of internal components and seals.

Fix any leaks or other problems immediately. Appendix $P$ describes the maintenance of pumps P1 and P2. Appenix $Q$ describes the maintenance of pumps P3 and P4.

### 4.1.8 Cleaning and Adjustment of Solar Sensors

Proper adjustment and periodic cleaning of the optical sensors are essential to proper operation of the concentrator in the track/optical and desteer/optical modes.

Installation and cleaning instructions are listed in Appendix $B$ (sheet B-163). The focus tracker head should be adjusted to align the concentrator in focus on the sun. The desteer tracker head should be adjusted such that the concentrator tracks the sun's azimuth, but at an elevation of $5^{\circ}$ above the sun's elevation.

### 4.1.9 Inspection and Adjustment of Limit Switch and Position Encoder Assemblies

The limit switch and position encoder assemblies should be inspected as needed, not less than once per year.

To verify limit switch operation, put the central control computer in Mode 2, manual control. Attach a notice to the computer, covering the keyboard, stating "Concentrator Maintenance in Progress. Do Not Operate keyboard." While standing on the drive platform with manual control station in hand, move the concentrator manually in each of the four directions, one at a time, and manually operate the corresponding limit switch to verify that the concentrator stops moving.

## CAUTION

## take all due care and precautions when standing on <br> THE DRIVE PLATFORM, ESPECIALLY UHEN THE CONCENTRATOR IS MOVING. HARD HAT AND SAFETY BELT ARE REQUIRED.

Refer to Appendix D for manufacturer's information on the position encoders. To verify position encoder operation, first move the concentrator to azimuth and elevation coordinates ( 0,0 ), i.e., facing due North and $10^{\circ}$
below the horizon. Check the azimuth and elevation output voltages in the DCU, component block D (Azimuth terminals 310, common 345; Elevation 330, common 345).

## WARNING

IN ADDITION TO PRECAUTIONS DUE TO HEIGHT, INCLUDING hard hats and safety belts, take all due electrical PRECAUTIONS WHENEVER THE DCU IS OPEN. BECAUSE THE CONTROL SYSTEM IS BATTERY-PONERED, TURNING OFF AC POWER TO THE DCU HILL NOT TURN OFF POWER TO ALL COMPONENTS. (SEE SECTION 3.2.)

Verify that both output voltages equal zero (+0.01V,-0.00V). See Section 4.4.4 if encoder zeroing is required.

Verify output similarly at the extremes of position, with output voltage $=(3600 / 4096) \times 10 V \times($ position in degrees $/ 360))$. If it is necessary to adjust span, adjust potentiometers R312 and R333 (of CB-D of the DCU) for azimuth and elevation, respectively, to obtain the proper output voltages at component block D, azimuth terminals 311, common 345; elevation 331, common 345. Secure any adjusted potentiometer(s) with silicone seal to maintain its proper position.
4.1.10 Inspection and Service of Batteries and Battery Chargers

Inspection of the batteries and battery chargers at least every 3 months is strongly recommended. For inspection and service of batteries, follow procedures and safety precautions listed in Appendix E. For inspection and service of battery chargers, follow procedures and safety precautions listed in Appendix $H$.

### 4.1.11 Visual Inspection of IC

The Innovative Concentrator is a newly developed prototype piece of equipment. Special care with any such equipment is necessary to limit the consequences of unanticipated events or failures. Since the reliability of the equipment has not been proven, it is recommended that special precautions be taken to detect possible failure modes as early as possible by initially increasing the number of inspections from those expected once the system can be judged mature.

It is recommended that the following inspections be carried out prior to operation of the concentrator, at least on a daily basis, until the confidence level has increased to warrant the reduction in the number of inspections.

- Walk-around inspection of the concentrator to detect:
-- Leaks in the hydraulic system
-- Loose hardware
-- Open cabinet or electrical enclosure doors; moisture intrusion
-- Frayed hoses or kinked electrical conductors
-- Evidence of binding of the structure during movement
-- Broken retaining rings or loose shafts
-- Discoloration of paint or structural members due to heating
-- Undue wear
-- Any unusual item
Any one of the above observations may lead, if not corrected, to significant operation or safety problems. Some problems could lead to more serious problems than others. The most serious problem would occur when the concentrator is tracking the sun in the on-sun condition and suddenly fails leaving the concentrator stationary. Redundancies have been built into the
system to prevent such an occurrance provided some obvious precautions are not ignored. An example of a possible failure mode is a low oil level in the oil reservoir which supplies oil to all pumps. A low oil level may starve all pumps and cause the concentrator to be "frozen" in the stationary mode. An alarm is provided to alert the operator to this condition well ahead of this occurrence; however, a small oil leak detected by visual inspection may be the first indication that repair prior to operation is needed aside from other environmental considerations. The oil reservoir holds a minimum of 30 gallons. The level alarm is given at 15 gallons. Pump starvation may occur starting at the 10-gallon level.


### 4.1.12 Corrosion Protection

If any inspection discloses corrosion, take steps to correct it and to limit its growth. Apply touch-up paint to painted areas, oil any areas in need of oil, and care for the reflective surface according to Section 4.1.4.

Metal parts associated with the battery enclosure are particularly susceptable to corrosion. Treat them in accordance with Appendix E and observe safety precautions listed in Section 3.2.
4.2 TROUBLESHOOTING

### 4.2.1 General

Section 4.2.2 describes particular faults and remedies for the IC. The operator should also use the following sources for troubleshooting.

Item
Control system Individual equipment

Software
Electrical connection of equipment

Reference Source
Acurex drawing package E series drawings Vendor literature provided in Appendices A through I Code listings provided in Appendices J through L Connection diagrams provided in Appendix M

## WARNING

CONDUCT ALL TROUBLESHOOTING ACTIVITIES WITH ALL DUE SAFETY PRECAUTIONS. REFER TO SECTION 3.2.

### 4.2.2 Faults and Remedies

Table 4-2 is a troubleshooting guide for the IC.
4.3 REMOVAL AND INSTALLATION OF COMPONENTS

### 4.3.1 General

Use all due precaution in removing and installing components. See
Section 3.2 for safety procedures.

### 4.3.2 Removal and Installation of Major Structural Components

Removal and installation of major structural components requires major disassembly of the concentrator, including removal of the dish before removing any other major structural components. This requires a 100 -ton crane with 40 ft . boom extension.

## WARNING

OBSERVE ALL STANDARD SAFETY PROCEDURES FOR MOVING HEAVY EQUIPMENT, IN ADDITION TO SAFETY PROCEDURES OUTLINED IN SECTION 3.2. MOVEMENT OF THE DISH IN HIGH WIND IS EXTREMELY DANGEROUS. BE CERTAIN TO SUFFICIENTLY SECURE THE DISH AND OTHER LARGE COMPONENTS DURING LIFTING AND WHEN THEY ARE NOT ATTACHED TO THE STRUCTURE/FOUNDATION.

### 4.3.3 Removal and Installation of Batteries

The batteries are located in the battery enclosure. Their layout and electrical connections inside the enclosure are depicted in drawing \#7749E307. Electrical connections to the battery enclosure are shown in Appendix $M$, sheets 8 and 9.

## WARNING

handling batteries requires special safety precautions. CONSULT SECTION 3.2 AND APPENDIX E.

Table 4-2. Innovative Solar Concentrator Troubleshooting Guide

| Problem | Cause | Corrective Action |
| :---: | :---: | :---: |
| Trouble light IL-412 is on | PLC failure | Check PLC-1 and PLC-2 |
|  | HPU oil level low | Check HPU oil level |
|  | PLC-1 hung up by communications loop | ```Check central control computer and communications loop``` |
|  | PLC-1 otherwise occupied in control function and PLC-2 alarmed | Check position encoders and slew movement |
| No power to a particular component | Blown fuse | Replace fuse. All fuses in DCU are 1A, 250V (AGCI) except FU-38, -44, -46 , and -48, which are 3A. |
| System will not start or collector is stowed | Alarm lockout | Remedy alarm condition Reset control system (see Section 3.3.1.) |
|  | Control computer off | Check control computer Reset control system |
|  | Control system malfunction | Check fuses, PLC-1, PLC-2, and associated equipment in DCU |
|  | Battery (ies) is/are dead | Check batteries, connections chargers, fuses to chargers (see Appendices E and H). |
|  | Maintenance stow switch is selected | Turn off switch in control room |
| Collector is erratic or cannot track sun | Tracker failure | Verify operation of alignment of trackers (see Section 4.1.8). |
|  | Position encoder failure (secondary problem in optical modes, primary problem in other modes) | Check position encoders (see Section 4.1.9). |
|  | Desteer switch is selected | Turn off switch in control room |
|  | Other control/ drive system problem | Check relay logic, HPU and drive system. |
| Manual control <br> station does not work | Control computer mode | Select Mode 2, manual control, on computer keyboard |
|  | Other | See heading "Collector Will Not Start" |

To remove the batteries, carefully disconnect each connection, taking care to avoid electrical shock or short circuiting batteries. If battery acid has leaked, neutralize it with an appropriate mild alkali such as baking soda and rinse the affected area with clean water. Remove the batteries, taking care to avoid contact with battery acid or the electrical terminals. Store them in a safe area according to Appendix E. To install the batteries, be sure that the battery enclosure is clean and dry inside. Install the batteries and connect them according to drawing \#7749E307, Appendix M, sheets 8 and 9, and Appendix E.

### 4.3.4 Removal and Installation of Limit Switches

To facilitate the removal and installation of limit switches, position the concentrator such that none of the limit switches are operated. (If this is not possible, take care to hold the limit switches securely when removing or installing them.) Remove them by unbolting them from their brackets. When disconnecting the wiring from the DCU, take all due precautions (such as locking out control power -- see Section 3.2). Wiring at the limit switch is permanent, factory-sealed epoxy.

To install limit switches, mount them in place and wire them as their predecessors were wired (see cable connection diagrams C-10 through c-15, Appendix M). Verify operation as described in Section 4.1.9.

### 4.3.5 Removal and Installation of Position Encoder Assemblies

To remove a position encoder, first release it from the bellows which attaches to its shaft. Then unbolt its enclosure from its mounting bracket. Simply disconnect the cannon connector to disconnect it electrically. For manufacturer's information see Appendix D. Follow all appropriate safety practices (see Section 3.2).

To install a position encoder, connect the cannon connector and bolt the encoder enclosurer to its mounting bracket (see Drawing \#7749E302). Following the procedure in Section 4.4.4, carefully set the mechanical zero of the encoder to read 0 volts when the concentrator's azimuth or elevation (as appropriate) is zero. (Azimuth $0=$ due North; elevation $0=10^{\circ}$ below horizon when azimuth is North).

## HARNING <br> PROPER MECHANICAL ZEROING OF THE POSITION ENCODER IS ESSENTIAL TO SAFE AND RELIABLE OPERATION OF CONCENTRATOR

### 4.3.6 Removal and Installation of Solar Sensors and Electronics

To remove the solar tracker heads from their mounting brackets, unscrew their mounting bolts . Do not attempt to remove the factory-installed cable from the tracker head. Disconnect the cable ( $\mathrm{C}-16$ or $\mathrm{C}-17$ ) at the tracker electronics enclosure instead. See Appendix B for manufacturer's information. See Section 3.2 for safety information. To remove the tracker electronics enclosure, disconnect its cable $\mathrm{C}-18$ at the DCU . Then unbolt the tracker electronics enclosure from the dish support on which it is mounted.

To install the tracker electronics enclosure, mount it to its support on the dish and wire it according to connection diagram C-18. Mount the tracker heads on their brackets and connect their cables according to connection diagrams $C-16$ and $C-17$, Appendix M. See Section 4.1.8 for adjustment of the sensors.

### 4.3.7 Removal and Installation of Hydraulic Components

Removal of cylinders is a major operation (see Section 4.3.2).
Removing or installing the elevation cylinder requires a 100 ton crane with 40 ft boom extension to hold the dish, while another crane removes or installs
the cylinder. Removing/installing the azimuth cylinder(s) requires securing the dish so that it is not free to rotate.

The counter balance valves are part of the cylinders themselves. They cannot be removed from the cylinders unless the concentrator is in a stable position.

## WARNING

DO NOT ATTEMPT TO REMOVE/INSTALL/SERVICE THE COUNTERBALANCE Valves without adequately positioning and securing the CONCENTRATOR FOR STABILITY

To remove/install counterbalance valves in the elevation cylinder, the concentrator should be facing down; for those in the azimuth cylinders, the azimuth cylinders, the concentrator should be facing north (because of the $10^{\circ}$ tilted plane of the concentrator).

Because the cylinders contain counterbalance valves and thus are self-locking, it is acceptable to simply remove hydraulic components other than the cylinders and counterbalance vlaves. Before removing such components, put the concentrator in an appropriate position for the maintenance work to be done.

### 4.3.8 Removal and Installation of Electronic Components

Remove and install electronic components in accordance with drawings \#7749E300, - E301, -E305, and Appendix M, cable connection diagrams. Observe all applicable safety procedures, especially removal of power to the DCU (see Section 3.2) before working on the DCU or any electronic components.

## MARNING

FAILURE TO FOLLOW SAFETY PROCEDURES OUTLINED IN SECTION 3.2 MAY RESULT IN PERSONNEL INJURY OR EQUIPMENT DAMAGE

Be certain that all power to a component is off, before removing or installing it. Do not leave loose wires hanging in the DCU with bare ends.

### 4.4 FUNCTIONAL TEST

4.4.1 General

Functional tests are important as part of periodic inspection, maintenance and repair (see Section 4.0). In addition, functional tests should be conducted to verify equipment performance at any time malfunction or substandard performance is suspected for a given component.

Observe all due safety precautions as outlined in Section 3.2.

### 4.4.2 Ampacity Tests

Refer to Appendix E (especially page 12) for ampacity test procedure.k Follow all safety precautions in Section 2.3 and Appendix E.

### 4.4.3 Travel Circuit Adjustment and Testing

The travel limit adjustment is built into the concentrator. The adjustment of the limits during startup should not require further adjustment. However, should adjustment be required, change the threaded locknut adjustment of the clevis (azimuth) or red end (evaluation) on the drive cylinders. This offsets the start/stop positions, but does not change the travel distance. This adjustment requires several men and/or special equipment.

To test the travel limits, use the track speed motors (P1 and P2) to run the concentrator against its mechanical travel limits. This will require removal and re-installation of the corresponding limit switch (see Section 4.3.4). The limit switches stop movement of the concentrator before it reaches the mechanical stops.

## HARNING

DO NOT USE THE SLEH PUMPS (P3 AND P4) TO RUN THE CONCENTRATOR AGAINST THE STOPS. CONCENTRATOR DAMAGE AND DANGER TO PERSONNEL MAY RESULT.

When testing the azimuth travel limits, the 3000 psi cutoff will build up gradually and stop the system. When testing the elevation travel limits, the stops inside the cylinder stop motion.
4.4.4 Encoder Alignment, Zero Adjustment and Testing

Position encoders hould be installed according to Section 4.3.5. Refer to Appendix D for manufacturers information on the position encoders.
to align the encoder shafts, first move the concentrator to its zero azimuth and elevation coordinates, i.e., facing due North and $10^{\circ}$ below the horizon. It is essential that the concentrator be positioned accurately (to within $0.1^{\circ}$ or better) during mechanical zeroing, to insure safe and reliable operation of the concentrator in subsequent operation.

Connect a digital voltmeter to the appropriate terminals in the $D C U$, component block D (Azimuth terminals 310, common 345; Elevation 330, common 345), to read the encoder output voltage.

## HARNING

SEE SECTION 3.2 FOR SAFETY PROCEDURE. TURNING OFF CONTROL SYSTEM AC PONER DOES NOT DISABLE BATTERY POWER TO DCU COMPONENTS

Carefully turn the encoder shaft until the output voltage reading at the corrsponding terminals equals zero (+0.01V, - 0.00V). If this is impossible by hand, it may be necessary to connect the encoder shaft to the concentrator (via its bellows), move the concentrator until the encoder output voltage equals zero, carefully loosen the encoder shaft connection to the concentrator, reposition the concentrator to its zero position, and tighten the encoder shaft connection to the concentrator, yielding zero output voltage at the concentrator's zero position. An alternate method is to adjust the encoder shaft to a small positive tenth of a degree error (e.g. +0.10V, $+0.20 \mathrm{~V},+0.30 \mathrm{~V}$ etc) with the concentrator at its exact zero position, tighten
the encoder shaft connection to the concentrator; and modify the PLC-1 code to subtract out this error each time it reads the particular transducer. (This requires a software development system including EPROM burner and is beyond the scope of this manual).

Once the encoders are accuretly zeroed mechanically, the span adjustment can be made. Attach a digital voltmeter to the appropriate terminals in the $D C U$, component block D (Azimuth terminals 311, common 345, Elevation 331, common 345), to read the span voltage.

Position the concentrator to its limits of travel, approximately $100^{\circ}$ of travel in elevation and $310^{\circ}$ azimuth. It is essential either to move the concentrator to these travel limits exactly ( $\pm 0.01^{\circ}$ ) or to accurately determine its position and use the co-ordinates in the following formula to determine span voltage:
$\begin{aligned} \text { Span Voltage } & =(3600 / 4096) \times \text { lovx (position in degrees } / 360) \\ & =0.02441 \times \text { position in degrees }\end{aligned}$
For $100.0^{\circ}$ elevation travel, span voltage $=2.44 \mathrm{~V}$.
For $310.0^{\circ}$ azimuth rotation, span voltage $=7.57 \mathrm{~V}$.
With the concentrator positioned accurately at its limits of travel, adjust potentiometers R312 and R333 (of CB-D of the DCU) for azimuth and elevation spans respectively. Once each potentionmeter is accurately spanned, secure it with silicone seal to maintain its proper position.

To test the position encoders, accurately position the concentrator in its zero positions and verify that the voltages equal zero (+0.01v, - 0.00 V ) at DCU component block D, Azimuth terminals 331, common 345. Then move the concentrator to its limits of travel and verify that the span voltage is correct according to the procedure above.

### 4.4.5 Solar Sensor Adjustment and Testing

To adjust the solar sensors, first be sure that the tracker heads are paralle to their respective mounting bases. Then fine-adjust the corresponding cards in the tracker electronics enclosure, using a manlift and taking all due safety precautions.

The potentiometers and LED's across the top of each Mann-Russell tracker electronics card have the following functions, from left to right (facing the card, with the pots and LED at the top):

Night return adjustment
Night return indicator
Synthetic track cloud cover adjustment
Synthetic track indicator
Synthetic track movement adjustment
Elevation window adjustment
Elevation balance adjustment
Down indicator
Up indicator
Left indicator
Right indicator
Azimuth balance adjustment
Azimuth balance adjustment
The potentiometer in the middle of the board controls the synthetic tracking base time, which is factory set for 4 minutes and should not be adjusted.

For azimuth (or elevation) adjustment, the window adjustment determines the deadband between left and right (or up and down) movement. The balance adjustment balances the cell levels, to fine-tune the pointing direction of the concentrator. (The other potentiometers, which should not require a re-adjustment after startup, are described later in this section).

To adjust the desteer sensors, select sensors, mode 2 , manual control, on the central control computer, and use the manual station to select mode 6 desteer/optical. Adjust the desteer electronics card in the tracker electronics enclosure using a manlift.

## WARNING

## IT IS DANGEROUS TO BRING THE CONCENTRATOR SIGNIFICANTLY CLOSER TO FOCUS THAN TH $5^{\circ}$ OFFSET DESTEER POSITION WITHOUT ACTUALLY FOCUSING IT. TAKE ALL DUE PRECAUTIONS FOR EQUIPMENT AND PERSONNEL.

Adjusting the focus sensors is much more critical than adjusting desteer, both in need for accurate adjustment and in importance of safe procedure. Adjust the focus sensors after adjusting the desteer sensors. Using the manual control station, select mode 8, focus/optical. The concentrator will first focus on the calculated ephemeris position, and then will move to its optical focal point.

Observe the positioning error, if any, and immediately de-focus the concentrator before trying an adjustment to the focus electronics card.

WARNING
THE CONCENTRATOR REFLECTS INTENSE CONCENTRATED SUNLIGHT. WEAR SUNGLASSES, DO NOT LOOK DIRECTLY AT BRIGHT SPOTS, AND TAKE ALL DUE PRECAUTIONS TO PREVENT EYE INJURY AND BURNING OF PERSONNEL, EQUIPMENT, OR STRUCTURE

Continue this iterative adjustment process until the concentrator is tuned to optimum optical focus.

Syntehtic Track parameters are set during startup and should not require further adjustment. Should they require adjustment, proceed as follows. Before positioning the concentrator near the sun, cover the nylon lenses of the tracking heads with black electrical tape to shade them. Select manual mode (mode 2 ) on the control computer and on the manual control station. In the DCU, jumper conductor 231 to conductor 37 (common) at PLC-1 module DO2(12). to activate tracker control.

## WARNING

TAKE ALL DUE PRECAUTIONS WORKING INSIDE THE DCU TO AVOID PERSONNEL INJURY OR EQUIPMENT DAMAGE. BATTERY POWER IS ON WHETHER OR NOT AC IS ON.

To adjust the desteer synthetic track movement adjustment, jumper DCU conductor 227 to 37 at PLC-1 module D02(12) to power the desteer electronics. Adjust the synthetic track movement adjustment potentiometer on the desteer electronics card in the tracker electronics enclosure such that the concentrator moves $1^{\circ}$ clockwise in azimuth every 4 minutes. To adjust the focus synthetic track movement adjustment, remove the jumper in the DCU from 227 to 37 , jumper 228 to 37 , and adjust the focus electronics card similary.

## WARNING

JUMPERING CONNECTIONS IN THE DCU OVERRIDES BUILT-IN SAFETY FUNCTIONS AND SHOULD BE DONE ONLY BY QUALIFIED PERSONNEL UNDER FAVORABLE CONDITIONS. AVOID BRINGING THE CONCENTRATOR NEAR FOCUS WHEN JUMPERS ARE USED. REMOVE ALL JUMPERS FROM DCU AND MASKS FROM THE TRACKER HEADS BEFORE PROCEEDING.

The synthetic track cloud cover adjustment is also set at startup and should require no further adjustment. It controls the light threshold at which the synthetic track mode takes over. It can be adjusted simply under conditions of varying light, using their synthetic track indicator to determine when the synthetic track mode is in effect.

The night return adjustment is redundant in this system and should be left at its least sensitive setting.
4.4.6 Hydraulic Power Unit Tests

The hydraulic system is designed to be able to generate and control 3000 psi pressure. To verify this capability, run the concentrator against its mechanical limits of travel. See Section 4.4 .3 for procedure and safety
information (in addition to Section 2.3 safety procedure). Test the system against all four stops: azimuth, clockwise and counterclockwise; and elevation, up and down. Verify that the hydraulic pressure reaches approximately 3000 psi.

If the pressure does not reach 3000 psi, there are two likely causes. (1) If the relief valve setting is wrong, simply adjust it to 3000 psi.
(2) If not, the pump is probably worn and should be repaired or replaced.

### 4.4.7 Electronic Control Unit Tests

When testing electrical and electronic equipment, take all due safety precautions (see Section 3.2).

## HARNING

TURNING OFF AC POWER DIES NOT TURN OFF BATTERY PONER TO THE DCU AND DC COMPONENTS

Test the battery chargers in accordance with Appendix H. Functionality of the chargers is critical to system functionality.

Testing the central control computer is not necessary, almost all of the computer's failure modes would stop keyboard interaction immediately and initiate system stow within 60 seconds, illuminating indicator IL-4/2.

Test the wind stow by initiating a wind stow contact opeining. This can be easily done by disconnecting (and later re-connecting) the red wire of the red/blue pair on the IC field connection board in the control room behind the red wire of the red/blue pair on the IC field connection board in the control room behind the computer cabinets. This should cause IL-412 to light and the concentrator to stow. Reset the system as described in Section 3.3.1.

Test the $A C$ power loss stow by turning off $A C$ power to the concentrator at DISC-1. This should have the same effect as the wind stow test described above.

To test the rest of the control electronics, select mode 2 manual control, at the central computer keyboard. Select each user-selectable mode to exercise the various control functions of the concentrator. Focus only when safety and other pertinent factors permit. Do not leave the concentrator in manual mode (central control computer mode 2) unattended.

## APPENDIX A

BLACKBOX RS-232 TO CURRENT LOOP CONVERTER

## EIA/CURRENT LOOP INTERFACE

## (101-4Q)



* Small, interface powered EIA RS-232/20mA current loop converter unit for installations with limited space
* DCE/DTE switch for simple configuration
* Optically isolated for RS-232 signal protection
* Separate current loop power supply available


## SPECIFICATIONS:

Power - Unit Operating Power; provided by EIA interface: Pin 6 when configured for connection to DCE, Pin 20 when configured for connection to DTE
Current Loop Power - provided external ( $20 \mathrm{~mA}, 24$ VDC max.) ; or use BLACK BOX PS150 power supply
Size-2.1" W x 1.8" L x .6" H Weight - 302.
Enclosure - Black, plastic
Interface - RS-232C/V.24, DCE or DTE (switchable); 20mA current loop
Connectors - RS-232: (1) DB25P (male);
Current Loop: (1) four position screw terminal strip
Mode of Line Operation - Passive, 20mA current loop

CUSTOMER
SUPPOAT INFORMATION

Call our technical support specialist to discuss your application. We have a 30 day money-back guarantee.
For technical support call: (412) 746-5565 8:30 a.m. to 6:00 p.m. (Eastern)
To order call: (412) 746-5530 8:00 a.m. 10 8:00 p.m. (Eastern)
Mail Order: BLACK BOX Corporation, Mayview Road at Park Drive, Box 12800, Pittsburgh, PA 15241

The BLACK BOX ${ }^{m}$ EIA $\langle->$ Current Loop adapter ( $101-4 Q$ ) is intended for use in interfacing terminals with RS-232C ports to neutral current loops. The $101-4 Q$ allows data transmission by current flow rather than by voltage level as defined by EIA - RS-232. Current flowing (closed loop) represents a MARK signal and no current flowing represents a SPACE signal. The $101-4 \mathrm{Q}$ functions as a passive device in neutral current loop environments operating at a maximum current of 20 mA and a maximum loop voltage of 24 VDC. Operating power for the $101-4 \mathrm{Q}$ is derived from pin 6 when the DCE/DTE switch is in the DCE position, and derived from pin 20 when the DCE/DTE switch is set on DTE. A power supply is available from BLACK BOX (PS150) that is capable of providing loop power to up to 40 current loops.

Figure 1A 101-4Q Application
(101-4Q configured for attachment to DCE device; External Power Supply)


* Power may come from an active device in loop in which case power supply is not necessary, as shown below.

Figure 1B 101-4Q Application
(101-4Q configured for attachment to DTE device; active current loop device in loop)


The $101-4 Q$ is easily installed by completing the current loop between the adapter, power supply, and other devices in the loop. Each loop, transmit and receive, must be independently connected for full duplex operation, and must be connected in a complete circuit observing polarity markings on adapter and power supply.

Use figure 2a when using an external power supply. Reference figure $2 b$ when an active device is in the loop. NOTE: The 101-4Q terminals are labeled on the case as follows:

> TXA - Transmit Negative
> TXB - Transmit Positive
> RXA - Receive Negative
> RXB - Receive Positive

Figure 2-1 101-4Q Installation
2A Installation with External Power Supply


Note: The above drawing shows the $101-4 Q$ used in conjunction with the BLACK BOX PS150 power supply and a barrier strip. The barrier strip must isolate + and - pairs for proper operation of more than one loop per power supply. The PS150 provides unregulated 12 VDC at 1 A ; sufficient to power 40 current loops.

2B Installation with Active Device in Loop


The 101-4Q has a male RS-232C connector configurable for attachment to either DCE or DTE devices. When the switch on the top of the 101-4Q is set to "DCE", the unit is configured for attachment to a DCE device (modem or multiplexor); the "DTE" setting configures the 101-4Q for attachment to a terminal or CPU.

RS-232 INTERFACE


Current Loop Reverse Polarity Protection
Transmit: A diode is incorporated across the transmit current loop pair so that if they are inadvertently reversed, current will flow in the circuit but the transmit switch is protected.

Receive: A diode is incorporated across the receive current loop pair so that inadvertent reversal will cause loop current to flow, but the receiver will not detect current and will indicate a continuous "spacing" condition to the attached device.


SCHEMATIC OF EIA/CURRENT LOOP INTERFACE 101-4Q

## DUAL AXES TRACKING SYSTEM

The MARK IV ST-2 DUAL AXES TRACKING SYSTEM is composed of three components:

1. Sensor
2. Electronic Module
3. Manual-Automatic Pendant

The Dual Axes Tracker may be employed by those who wish to track in whichever mode (Axis or Elevation) they need by just leaving inoperative the operating leads rormally conrected in the circuitry to the unused mode. The factory can be of help in this regard.

Under most circumstances the Dual Axes Tracker can be customer-installed but operating in some atmospheres and particularly if the gear train is sloppy careful adjustment must be adhered to in order to insure accurate and repetitive tracking. A factory man will assist you if you find it necessary, at very reasonable rates.

The Sensor is a shadow-band device utilizing photo conductive cells as the sensors. A fifth cell is located on the moulded head as the "Light Meter" to measure the incident light. Through logic circuitry it will switch to a syrthetic track mode in cloud cover conditions. Synthetic Track Logic incorporates a timed circuit causing movements of $1 / 4^{\circ}$ per minute - the approximate movement (Azimuth) of the Sur. The Sensor also supplies the signal to initiate rotation of the carriage to its Surrise position at Sunset.

The electroric cortrol circuitry includes the input power supply, the CMOS Logic Circuit and a drive motor interface. It is housed in an oil-tight JIC enclosure. The unit is designed for 110VAC input which is transformed to 24VAC that supplies power through the reversing interface to the motors. (Not supplied.) The 24VAC also feeds the regulated 12VDC Logic Supply. The interface will haridle a total of 2 A continuous and 4 A intermittent at 24VAC. At this voltage Class II Wiring can be used reducirg potertial voltage hazard on the collector. Various voltages car. be hardled by selection of a different transformer. The board can be "jumpered" to supply 110VAC through the interface to 110VAC motors or contactors if this is required. Fifty Hertz is not a problem to the operation.

The circuit will accept several energency-type serisors, for example, one in the closed loop circulation system, for over-temperature, and one in the storage tank, etc. If the sensor is activated it will cause the collector to reverse (Azimuth) track approximately four seconds to defocus the collector. It will hold this position until the condition normalizes. The Manual-Automatic Pendant allows manual override of the system.

Tracking accuracy of $1 / 10$ of one degree has been obtained with drive motor speeds producing movement of $8^{\circ}-9^{\circ}$ per minute, and a reasonably tight gear train.


MANN-RUSEELL ELECTRONCS, INC.
1401 Thorne Road Tacoma, Washington 98421


ST-3 SENSOR HEAD

The Sensor Head contains five photocells in a complete molded sealed assembly with 16 -feet of 6 conductor shielded cable. Three 10-24 X 1" flat head stainless steel screws with nuts and lock washers are supplied for mounting.

INSTALLATION: The Sensor Head should be mounted on the array so the flat base is on the same plane as the array and the arrow indexes to the earth true north axis.

Care should be taken when tightening the screws to prevent any distortion to the head.
The loose end of the cable will attach to the terminal strip at the top of the ST-2 Card $\cdots$ th terminal identification and wire colors as follows:

ST-2 TERMINAL

| ST | (Synthetic Track) |
| :---: | :--- |
| 10V | (10V Positive) |
| T | (Top Cell for Elevation)* |
| B | (Bottom Cell for Elevation) |
| R | (Right Cell for Azimuth)* |
| L | (Left Cell for Azimuth) |
| - | (Supply Ground, Shield) |
| DT | (De - Track) |

## SENSOR WIRE COLOR

| $=$ | White |  |
| :--- | :--- | :--- |
| $=$ | Red |  |
| $=$ | Green Physical Position of |  |
| $=$ | Brown $\quad$ the cells standing be- |  |
| $=$ | Blue $\quad$ hind the Head facing |  |
| $=$ | Black $\quad$ the Sun. |  |
| $=$ | Yellow SH |  |
| $=$ | Any number of normally open heat sensors <br>  <br>  <br>  <br>  <br>  <br> can be connected between this terminal |  |

.CLEANING: Cleaning requirements may vary depending on the type of environment in which these units are used. Use water and a mild detergent to clean the four photocells and the white nylon lens. A build-up of dirt could result in a loss of tracking accuracy. If the white nylon lens gets dirty, the unit could go into the Synthetic Track (ST) or Night Return (NR) mode earlier than normal.

```
MANN-RUSSELL ELECTRONICS, INC.
```


## WARRANTY ${ }^{-}$

Mann-Russell Electronics, Inc., warrants the Electronic Sun Tracking Control System and/or Sub-components of their manufacture against original defects of parts, material or workmanship for a period of three (3) months from date on installation, which date will establish successful operation.

Any defective component will be replaced or repaired within the warranty period with final determination as to whether the part or material thereof is actually defective rests with Mann-Russell Electronics, Inc. Said warranty covers parts, material and if required, repairs performed at MannRussell's plant only with all shipping charges to be paid by the Buyer.

Any component found to be damaged as a result of improper maintenance, abuse, incorrect operational procedures, acts of God and unauthorized mechanical or electrical changes will void this warranty.

No warranty of end product is made and liability of seller is limited to repair or replacement of the component and DOES NOT EXTEND to consequential damages including personal injuries.

No other warranty expressed or implied shall exist between Buyer and Seller.

## *PRE-WIRED FACTORY SEALED LIMIT SWITCHES



DESCRIPTION - The Bulletin 802M compact pre-wired limit switch is factory sealed to meet the demanding requirements for NEMA Types 1, 4, 6P and 13 enclosures. Outstanding features designed into the switch make it easy to install and economical to use.
APPLICATIONS - The Bulletin 802M is designed for dry and wet applications. The superior sealing system has been developed to protect the switch from dust, dirt and fluids normally found in industrial environments. The device has been subjected to and passed harsh environmental testing such as alternately drenching with a liquid and exposing to dust and abrasive grit with the switch operating 250 times per minute.
The switch is often used in applications subject to washdowns, streams of coolant, or occasionally submerged in fluids commonly found on machines or in industrial processes. This limit switch is being used successfully in High Water Content Fluid (HWCF) applications. Refer to the nearest district sales office for applications where potentially corrosive fluids are of a particular concern.
SEALING SYSTEM - The cable entrance and wire strands are epoxy sealed to prevent against liquids entering or wicking into the switch. The interface between the operating head and base is sealed with a VITON ${ }^{n 4}$ quad ring. The operating shaft for lever type switches is sealed with a patented 3 -way seal made of VITON. Push type switches have a VITON boot that prevents against oil and other foreign material from entering the mechanism. A flexible diaphragm seal between the operating head and the switch body isolates the switch against the entrance of contaminants. After prewiring, the cover is factory installed and epoxy sealed.

CONSTRUCTION - The body and operating head of the Bulletin 802 M prewired limit switch are constructed from a glass filled DIALLYL PHTHALATE (DAP). This material is characterized by excellent dimensional stability and is resistant to moisture and numerous chemicals.
The Bulletin 802 M switch also capitalizes on the corrosion-resistant properties of the operating shaft, operating rod, and roller pin which are made of Type 303 stainless steel. The operating head mounting screws and adaptor mounting foot are made of steel. They are plated and have a chromate finish to resist corrosion.
The basic switching mechanism has double-throw, double-break, snap action contacts with minimum contact bounce. The switch is pre-wired and factory sealed with STOT cable. An optional Brad-Harrison connector can also be supplied. Refer to modifications on Page 271.

INSTALLATION - Although physically smaller, the Bulletin 802 M switch can be interchanged with a Bulletin 802T front mounted lever operated switch by using the mounting foot adaptor included. Cam tracking characteristics from the top mounting hole of the Bulletin 802M switch are identical to the Bulletin 802T non-plug-in rotary operated switch line.
Time saving factory pre-wiring makes the switch economical to use. Internal wiring by the installer is eliminated. No separate cable grip or cable to purchase. Merely connect the STOE cable to a junction box.

LEVER TYPE SWITCHES - These switches are operated by means of a lever which is clamped to a knurled shaft extending from the operating head. These devices can be easily field converted to clockwise, counterclockwise, or both directions of operation without any loose parts. Total travel is $90^{\circ}$ in either direction. Operating heads are interchangeable and can be mounted in any of four positions $90^{\circ}$ apart for maximum flexibility. The head is interlocked with the base unit to resist accidental shearing.
Lever type switches can be equipped with a variety of operating levers: roller lever, adjustable roller lever, micrometer adjustment roller lever, rod lever, oneway rod or roller lever and fork lever. These can be used interchangeably on all lever type switches.
PUSH TYPE SWITCHES - These switches are actuated by means of a rod or plunger located on the top or side of the operating unit. Pushing the plunger into the head causes the contacts to operate. Two types of plungers are available: rod and roller. Push type switches are supplied in spring return construction.
TEMPERATURE RANGE - $0^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $\left.+180^{\circ} \mathrm{F}\right)$. Minimum temperature based on the absence of freezing moisture or water.

- STO is a common identification of this cable. The more complete identification of the cable used on the Bulletin 802M is STOOW-A which incorporates an oil resistant jacket and conductor insulation, for indoor and outdoor use

CONTACT RATINGS - All units have double-break fine silver contacts rated for control circuit as follows:

| 2-CIRCUIT DEVICES |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Maximum AC Contact Rating Per Poie 50 or 60 Hz |  |  |  |  |  |  |
| $\begin{gathered} \text { NEMA } \\ \text { Resting } \\ \text { Designation } \end{gathered}$ | Maximum Voltage | Amperes |  | Continuous Carying Current (Amperes) | Votamperes |  |
|  |  | Make | Break |  | Make | Break |
| $\begin{aligned} & \text { A600 A300 } \\ & \text { A600 A300 } \\ & \text { A600 - } \\ & \text { A600 } \end{aligned}$ | $\begin{aligned} & 120 \\ & 240 \\ & 480 \\ & 600 \end{aligned}$ | $\begin{aligned} & 60 \\ & 30 \\ & 15 \\ & 12 \end{aligned}$ | $\begin{aligned} & 6.00 \\ & 3.00 \\ & 1.50 \\ & 1.20 \end{aligned}$ | $\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$ | $\begin{aligned} & 7200 \\ & 7200 \\ & 7200 \\ & 7200 \\ & \hline \end{aligned}$ | $\begin{aligned} & 720 \\ & 720 \\ & 720 \\ & 720 \\ & \hline \end{aligned}$ |
| Maximum DC Contact Rating Per Pote |  |  |  |  |  |  |
| P150 | $\begin{aligned} & 125 \\ & 250 \end{aligned}$ |  |  | 5.0 |  |  |


| 4-CIRCUIT DEVICES |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Maximum AC Contact Rating Per Pote 50 or 60 Hz |  |  |  |  |  |  |
| NEMA Rating Designation | Maximum Voltage | Amperes |  |  | Voltamperes |  |
|  |  | Make | Break |  | Make | Break |
| B300 | $\begin{aligned} & 120 \\ & 240 \end{aligned}$ | $\begin{aligned} & 30 \\ & 15 \end{aligned}$ | $\begin{aligned} & 3.00 \\ & 1.50 \end{aligned}$ | $\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3600 \\ & 3600 \end{aligned}$ | $\begin{aligned} & 360 \\ & 360 \end{aligned}$ |

## ${ }^{m}$ DuPont Trademark

PRE-WRED FACTORYSEALED LIMIT SWITCHES

WIRING DIAGRAMS SHOWING CONTACT CONFIGURATION AND TERMINAL WIRE COLOR CODE

STANDARD
LIMIT SWITCH

STANDARD LIMIT SWITCH WITH
NEON INDICATING LIGHT OPTION

## 2 CIRCUIT CONTACT BLOCK




Wired to N.O. (White) Wire


LEVER TYPE - SPRING RETURN


See modifications on Page 271 tor lactory installed pre-wired type STO cable in 8,12 and 16 foot cable lengths.
LEVERS - See Page 301 for a complete listing of operating levers.

## MODIFICATIONS

## neon indicating light -



Bulletin 802M pre-wired limit switches can be supplied with a neon indicating light. $A C 208 / 240 \mathrm{~V}, 50-60 \mathrm{~Hz}$ or 120 V . $50-60 \mathrm{~Hz}$, wired to one side of either the N.O. or N.C. contact with the second lead available as a 5 th conductor for wiring flexibility. See Page 266 for Wiring Diagram.
To order, add the appropriate suffix listed in the table to the catalog number listed in the price tables on Pages 266 to 270.
Add $\mathbf{\$ 1 2}$ list to the list price. Example: Catalog Number 802M-AY5 with a 120 volt indicating light wired across the N.O. contact would be Catalog Number 802MAY5NF at $\$ 90$ list.

| AC-Voltage | Wired Totm | Catalog Number Suttix |
| :---: | :---: | :---: |
| $\begin{gathered} 120 \\ 50 / 60 \mathrm{~Hz} \end{gathered}$ | No. Contact | NF |
|  | N.C. Contact | NC |
| $\begin{aligned} & 240 \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$ | NO. Conlact | N5F |
|  | N.C. Contact | N5C |

CABLE LENGTH - The factory installed pre-wired, type STO cable is normally supplied in 5 -foot lengths. To order other lengths of STO cable, replace the suffix "Y5" in the catalog number listed in the price tables on Pages 266 to 270 with the listed modification catalog number suffix and add the price addition to the list price. Example: to order a lever type spring return switch with 8 -feet of STO cable the catalog number would be 802M-AY8 list price $\$ 84$.

| Modification | Catalog Number <br> Sutfix | List Price <br> Addition |
| :---: | :---: | :---: |
| 8-foot cable | Y | $\mathbf{6}$ |
| 12-foot cable | Y 12 | 14 |
| 16-foot cable | Y 16 | 22 |



5 PIN PLUG-IN RECEPTACLE R - 2 CIRCUIT CONTACT BLOCK - TO order a Bulletin 802M pre-wired limit switch with a receptacle in place of the 5 -feet of STO cable, replace the letter "Y5" in the catalog number with the suffix " J 1 " and add $\$ 15$ to the list price. Maximum voltage rating for this receptacle is 250 Volt AC.
 unoperated state. if the indicating light is wired across the normally closed contacts, the light will be oft with the limit switch in its unoperated state

- STO is a common identification of this cable. The more complete identification of the cable used on the Bulletin 802M is STOOW-A which incorporates an oil resistant jacket and conductor insulation, for indoor and outdoor use.
I A 5 pin plug-in receptacle is supplied to facilitate retrofitting existing installations. The normal ground wire pin is not required and is not connected inside the switch
A 9 pin plug-in receptacie is supplied to facilitate retrofitting existing installations. The normal ground wire pin is not required and is not connected inside the switch.


## APPROXIMATE DIMENSIONS AND SHIPPING WEIGHTS

Note - Dimensions shown in parentheses are in millimeters.

2-Circuit

and Neon Indicating Light Options


Shipping Weight $1 \mathrm{Lb} .3 \mathbf{O z}$ ( .53 Kg )

4-Circuit and Neutral Position


Approx. Shipping Weight: 2 Lbs. (. 9 Kg )

- BIMII

NIBGNUTEFAIDWGLEVEMS


For Corrosion-Resistant Pre-Wired Limit Switches

| ROLLER LEVER |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Type | Material | Roller |  | Crwolg | Price |
|  |  | Diameter | Width |  |  |
|  | Type 316 stainless steel roller, roller pin and clamp pin. <br> One-piece cast aluminum arm is protected with TUFRAM@l | $3 / 4^{n}$ | $1 / 4^{\prime \prime}$ | JO2MC-W1A | \$ 9 |
| Adjustable 13/76"-3" radius | Type 316 stainless steel roller, roller pin, clamp pin and ad, lever arm. <br> Block is cast aluminum protecled with TUFRAMO | $3 / 4$ " | $1 / 4{ }^{\prime \prime}$ | © 802 NC -w2B | 15 |


| ROD LEVER |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Type | Material | Diameter | $\begin{gathered} \text { Catalog } \\ \text { Mumber } \end{gathered}$ | Price |
|  | Type 316 stainless steel Rod 5" Long <br> Block is cast auminum protected with TUFRAM© | $1 / 8{ }^{\prime \prime}$ | 802MC-W3 | \$15 |
|  | Type 316 <br> stainless steel Rod $111 / 2^{n}$ Long <br> Block is cast aluminum prolected with TUFRAME | 5/64" | 802MC-W3A | 15 |
|  | Nylon Rod $12^{\prime \prime} \text { Long }$ <br> Block is cast aluminum protected with TUFRAM@ | $1 / 4^{\prime \prime}$ | B802MC-W3C | 20 |

TUFRAM is a synergestic coating which combines the advantages of anodizing with a controlted infusion of Teflon for
added corrosion-resistance.

## APPENDIX D

ASTROSYSTEMS DURAPOT POSITION ENCODERS

# estrosystems, inc. TECHNICAL MANUAL 

DURAPOT MODEL DC1000 SERIES

## CERTIFICATION

Astrosystems certifies that its from the factory. The accuracy of all products are thoroughly tested and inspected and meet applicable published specifications when shipped
test equipment is traceable to the National Bureau of Standards.

## VARRANTY

Astrosystems uses only the highest quality materials and workmanship in manufacturing. All products are guaranteed against defects in materials and workmanship for a period of ninety days from the invoice date. This warranty does not extend
to any of our products which have been subjected to misuse, neglect, accident or improper installation or application, nor shall it extend to products which have been repaired or altered outside the factory without factory consent.

## REPAIR POLICY

Technical Manuals are included to provide hook-up, interface and routine maintainance information.

Factory repair service is provided at rates which reflect parts and labor actually supplied. For service
under warranty, please advise the factory of all pertinent details. The unit must be returned to the factory prepaid. We endeavor to repair and return all units in a timely manner from the date of receipt at the factory.

## APPLICATION ASSISTANCE

Astrosystems maintains a staff of application engineers to assist customers in the use and application of
its equipment. Please contact the factory for assistance.

TABLE OF CONTENTS
Paragraph Page
SECTION 1INTRODUCTION
1-1. Scope ..... 1-1
1-2. Purpose of Equipment ..... 1-1
1-3. Principle of Operation ..... 1-1
1-4. Model Differences ..... 1-2
1-5. Enclosures ..... 1-2
1-6. Electronics ..... 1-2
1-7. DC Output Voltage Ranges ..... 1-2
1-8. Shaft Rotation ..... 1-2
1-9. Equipment Specifications ..... 1-4
SECTION 2
INSTALLATION AND OPERATION
2-1. Installation ..... 2-1
2-2. Durapot ..... 2-1
2-3. Durapot/Transducer Mounting ..... 2-1
2-4. Durapot/Transducer Alignment ..... 2-1
2-5. Durapot/External Solid-State Electronics ..... 2-3
2-6. Durapot Cabling Instructions ..... 2-4
SECTION 3
REPLACEABLE PARTS LIST
3-1. Replaceable Parts ..... 3-1

## LIST OF ILLUSTRATIONS

Figure Page
1-1. Model Identification and Selection ..... 1-3
2-1. Durapot/Transducer Outline Dimensions and Mounting Facilities ..... 2-2
2-2. Durapot External Solid-State Electronics Outline Dimensions and Mounting Facilities ..... 2-3
2-3. DC1000 Interconnection Wiring Diagram ..... 2-4
2-4. DC1000A Interconnection Wiring Diagram ..... 2-5
2-5. HDC1000 Interconnection Wiring Diagram ..... 2-5
2-6. HDC1000A Interconnection Wiring Diagram ..... 2-6
LIST OF TABLES
Table Page
1-1. Durapot Options ..... 1-3
1-2. Durapot Specifications ..... 1-4
3-1. Replaceable Parts List ..... 3-1


Durapot Model DC1000 Series

SECTION 1
INTRODUCTION

1-1. SCOPE
This manual provides information regarding the operation and installation of the Astrosystems Durapot (wiperless angular to d-c potentiometer), Model DC1000 Series. The Durapot is designed and manufactured by Astrosystems, Inc., 6 Nevada Drive, Lake Success, New York 11042.

1-2. PURPOSE OF EQUIPMENT
The Durapot is designed to measure mechanical motion and generate a linear analog direct-current voltage signal directly proportional to the angular displacement of the Durapot shaft. The Durapot unit is absolute; i.e., shaft angle position is continuously measured and available to the user. Primary power interruptions, regardless of duration, will not require re-start or re-zeroing of the unit in order to obtain valid data. Valid shaft angle data will automatically be available upon restoration of primary power. The Durapot is available with a wide range of options permitting utilization in many applications. Refer to Table $1-1$ for options available. The basic Durapot consists of a NEMA-1 enclosure, integral electronics, a choice of DC outputs, and a choice of shaft rotation.

## 1-3. PRINCIPLE OF OPERATION

The Durapot consists of an electromagnetic single-turn rotary transducer to sense mechanical movement and solid-state electronics to provide excitation of the transducer windings and output signal conditioning. The solidstate electronics generates sine and cosine signals to excite the stator windings of the transducer to create a magnetic field. The magnetic field induces quadrature voltages in the transducer rotor windings which varies with the angular displacement of the rotor shaft. The induced voltages in the rotor windings are compared with the internal reference voltage of +10 VDC generated by the solid-state electronics or an external reference voltage of no less than +5VDC nor greater than +12VDC. The solid-state electronics produces a $D C$ voltage signal proportional to the angular displacement of the transducer shaft and the internal/external reference voltage. The equation, $V_{\text {out }}=$ $\left(\theta / 360^{\circ}\right) \times V_{r e f}$, is utilized to determine the $D C$ voltage output signal. value ( $V_{\text {out }}$ ) for a given shaft angle displacement $(\theta)$ by dividing the shaft angle
displacement in degrees ( $\theta$ ) by $360^{\circ}$ and multiplying the resultant by the $D C$ reference voltage ( $V_{r e f}$ ):

Examples -

$$
\text { If } V_{r e f}=+10 \mathrm{~V}
$$

(1) When $\theta=45^{\circ}$,
then $V_{\text {out }}=45^{\circ} / 360^{\circ} \times 10 \mathrm{~V}=1.25 \mathrm{VDC}$.
(2) When $\theta=135^{\circ}$,
then $V_{\text {out }}=135^{\circ} / 360^{\circ} \times 10 \mathrm{~V}=3.75 \mathrm{VDC}$.

## 1-4. MODEL DIFFERENCES

The Durapot, Astrosystems Model DC1000 series, is available in NEMA-1, NEMA-12, or NEMA-13 enclosures; and may be obtained with a choice of integral (built-in) or separate (remote) electronics; four different DC output voltage ranges; and the desired direction of shaft rotation. See Figure 1-1 for the model identification and selection chart.

1-5. ENCLOSURES. The Durapot is available in three enclosure type configurations: NEMA-1, a general purpose indoor type; NEMA-12 (HST-26 and HST34), a heavy-duty, dust-tight and driptight indoor type; and NEMA-13 (HST-26U and HST-34U), a heavy-duty, oiltight and dust-tight indoor type.

1-6. ELECTRONICS. The Durapot is available with the solid-state electronics Integral to the transducer in every type of enclosure with the exception of the NEMA-12 (HST-34) and NEMA-13 (HST-34) configuration. The separate solid-state electronics, remote from the transducer, is available with all model variations.

1-7. DC OUTPUT VOLTAGE RANGES. The Durapot is available in four different DC output voltage ranges: 0 VDC to +10 VDC , 0 VDC to $-10 \mathrm{VDC},-5 \mathrm{VDC}$ to +5 VDC , or -10 VDC to +10 VDC .

1-8. SHAFT ROTATION. The Durapot is available in clockwise or counterclockwise rotation, as viewed from the shaft end.


Figure i-1. Model Identification and Selection

TABLE 1-1
DURAPOT OPTIONS

| Enclosure | NEMA-1 (ST-11) |  | NEMA-12 * -13(HST-26) |  | NEMA-12 \& -13(HST-34) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Model | DC1000 | DC1000A | HDC1000 | HDC1000A | HDC1000A |
| Electronics | Internal | External | Internal | External | External |
| DC Output | . OV TO +10V, OV T0-10V, -5 V T0 +5V, OR -10V TO +10V |  |  |  |  |
| Shaft <br> Rotation | Clockwise(CW) or Counterclockwise (CCW) |  |  |  |  |

Durapot

## 1-9. EQUIPMENT SPECIFICATIONS

The basic specifications for the Durapot are listed in Table 1-2.

TABLE 1-2
DURAPOT SPECIFICATIONS

| Item | Specification |
| :---: | :---: |
| ROTATION | $0^{\circ}$ T0 $359.99^{\circ}$ |
| ACCURACY/LINEARITY | 0.05\% |
| OUTPUT VOLTAGE |  |
| Internal Reference | 0 VDC T0 + 10 VDC |
| External Reference (Customer Supplied) | +5 VDC $<V_{\text {ref }}<+12 \mathrm{VDC}$ |
| OUTPUT LOAD |  |
| Signal Output | 2K ohms max. |
| Internal Reference | lOK ohms max. |
| INPUT IMPEDANCE (External Reference) | 5K ohms |
| POWER REQUIREMENTS | $\pm 15 \mathrm{VDC}$ at 50 mA , regulation $+5 \%$ |
| ENVIRONMENTAL |  |
| Operating Temperature Range | $0^{\circ} \mathrm{C}$ T0 $70^{\circ} \mathrm{C}$ |
| Shock | 50 gs for 11 msec |
| Vibration | 15 gs TO 500 Hz |

SECTION 2
INSTALLATION AND OPERATION

## 2-1. INSTALLATION

This section contains specific installation instructions for the Durapot being used. Under no circumstances, should an attempt be made to install or interconnect the Durapot components without factory authorized instructions.

2-2. DURAPOT. The Durapot may consist of a transducer with an integral (built-in) solid-state electronics or a separate transducer and a separate (external/remote) solid-state electronics package. Where the solid-state electronics are built-in, only the transducer mounting instructions are required. The type of enclosure of the transducer will determine the environment in which it may be installed.

2-3. DURAPOT/TRANSDUCER MOUNTING. It is the customer's responsibility to interface the transducer to the device whose motion is to be monitored. The overall dimensions and mounting facilities of the transducers are shown in figure 2-1. The following recommendations, however, should be considered in order to facilitate installation and alignment of the transducer and to obtain to the maximum degree, the accuracy inherent within the Durapot system.

The transducer mounting bracket, plate, etc., should be substantially designed so as to minimize the detrimental effects of shock and vibration. Avoid the use of light gauge metals and long cantilevered mountings and to make sure that the mount is securely fastened to the frame of the machine.

The transducer shaft may be coupled to the shaft being monitored using any of the various flexible shaft couplings available, or by gear coupling, belt coupling, etc. In every case, avoid the introduction of backlash (lost motion) and utilize a coupling system that is compatible with the overall Durapot accuracy.

2-4. DURAPOT/TRANSDUCER ALIGNMENT. The Durapot/Transducer shaft and enclosure are scribed to indicate electrical zero.

NOTE

The coupling scheme must allow for initial mechanical zeroing to ensure precise transducer-machine shaft alignment.

## Durapot

NEMA 1 ST-11
DC1000
STANDARD


DC1000A


NEMA 12 and NEMA 13 HST-26


NEMA 12 and NEMA 13 HST-34
RECOMMENDED KEYWAY FOR HDC1000A


Figure 2-1. Durapot/Transducer Outline Dimensions and Mounting Facilities

It is imperative that the Durapot "zero" and the device coupling system "zero" be aligned accurately to ensure proper operation.

2-5. DURAPOT EXTERNAL SOLID-STATE ELECTRONICS. The external solid-state electronics is supplied, when applicable, with the Durapot system aid is enclosed in a lightweight aluminum case. The case has been designed to facilitate mounting in any convenient location and in any physical orientation. The overall dimensions and mounting hole locations are shown in Figure 2-2.

Install the electronics:

1. Where there is adequate space on either end for the mating connectors and their cables.
2. Where the air:
a. Is dry.
b. Is as free as possible of corrosive gases, coolant and other kinds of spray, flying chips, dust, and other foreign matter.
c. Has an ambient temperature within the range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
d. Has a relative humidity of less than 95 percent.


Figure 2-2. Durapot External Solid-State Electronics Outline Dimensions and Mounting Facilities

2-6. DURAPOT CABLING INSTRUCTIONS. The Durapot does not come equipped with interconnecting cables. However, the Durapot components are supplied with mating connectors, hood, and retaining hardware (where required), as standard equipment. It is the customer's responsibility to fabricate the interconnecting cables. The customer has the option, when fabricating the interconnection wiring, to use an externally generated $D C$ reference voltage instead of the internally generated reference voltage. The internal reference voltage ( +10 VDC ) is obtained by connecting pins 1 and 5 or $B$ and $J$ (as applicable). The external reference voltage (not less than +5 VDC , and not greater than +12 VDC ) may be used instead by connecting to pin 1 or $J$ (as applicable).

Reference should be made to the applicable interconnecting wiring diagram, Figures 2-3 through 2-6.


Note:

* For internally generated reference voltage (+10VDC), connect pins $1 \& 5$.

Figure 2-3. DC 1000 Interconnection Wiring Diagram


Note:

* For internally generated reference voltage (+10VDC), connect pins $1 \& 5$.

Figure 2-4. DC 10004 Interconnection Wiring Diagram


- For Internally generated reference voltage ( +1 OVDC), connect plns $\mathrm{B} \boldsymbol{\mathrm { A }} \mathrm{J}$.
*Supplled with "UK" (MEMA 13) Series Iransducer.
Figure 2-5. HDC1000 Interconnection Wiring Diagram


Figure 2-6. HDC 10004 Interconnection Wiring Diagram

SECTION 3
replaceable parts list

3-1. REPLACEABLE PARTS.

Replaceable parts for the Durapot are listed in Table 3-1. The parts list contains the part numbers of the replaceable transducers and electronics of the Durapot models using separate components only.

Table 3-1
REPLACEABLE PARTS LIST

| Model | $\therefore$ Transducer | Electronics |
| :---: | :---: | :---: |
| DC 1000A-1 |  | 100-3698-1 |
| DC 1000A-2 | 100-3557-1 | 100-3698-2 |
| DC 1000A-3 |  | 100-3898-3 |
| DC 1000A-5 |  | 100-3698-5 |
| , |  |  |
| HDC 1000A-1 |  | 100-3698-1 |
| HDC 1000A-2 | 100-3473(HST-26) | 100-3698-2 |
| HDC 1000A-3 | 100-4990(HST-34) | 100-3698-3 |
| HDC 1000A-5 |  | 100-3698-5 |
| HDC 1000A-1-UK |  | 100-3698-1 |
| HDC 1000A-2-UK | 100-5148(HST-26) | 100-3698-2 |
| HDC 1000A-3-UK | 100-5145(HST-34) | 100-3698-3 |
| HDC 1000A-5-UK |  | 100-3698-5 |

## OPERATING INSTRUCTIONS

FOR

## LEAD ACID BATTERIES

## SAFETY PRECAUTIONS

## READ BEFORE INSTALLATION

Observe the following precautions at all times. Batteries are no more dangerous than any other equipment when handled correctly.

* Keep batteries upright.
* Acid is corrosive - wear protective clothing, rubber gloves and goggles when handing batteries and electrolyte.
* Do not allow metal objects to rest on the battery or fall across the terminals. Never wear rings or metal wrist bands when working on batteries.
* Do not smoke or permit open flames near batteries or do anything to cause sparks.
* Do not spill acid on the skin or clothing. If acid is spilled on the skin, wash immediately with copious amounts of clean water, then cover with dry gauze.

If acid comes into contact with the eyes, flush with plenty of clean water.

In all cases obtain immediate medical attention.

IMPORTANT NOTE!

CELLS SUPPLIED FILLED WITH ACID MUST BE PLACED
ON FLOAT CHARGE OR GIVEN AN EQUALIZING OR FRESHENING CHARGE WITHIN 90 DAYS FROM THE DATE OF SHIPMENT. FAILURE TO OBSERVE TEIS REQUIREMENT COULD RESULT IN PERMANENT DAMAGE TO TEE CELLS.

## INDEX

SECTION ..... PAGE
1 Unpacking and Inspection ..... 1
2 Storage ..... 1
3 Filling Dry Charged Cells ..... 2
4 Battery Room Requirements ..... 4
5 Installation ..... 5
6 Charging ..... 7
7 Specific Gravity Readings ..... 9
8 Battery Care ..... 10
9 Maintenance Records ..... 12
10 Cell Data ..... 13
Appendix Further Information ..... 15

## 1. UNPACKING AND INSPECTION

Upon receiving a shipment of battery cells, it is advisable to open the shipping containers and carefully check the cells and hardware against the packing list.

The contents of each consignment are carefully inspected by MARATHON before shipment. Any damage should be reported immediately to the carrier and the damaged items retained for inspection by the carrier's representative.

For cells supplied filled and charged, check that the acid level in all cells is at the "MAX" line. Any spillage should be replaced with pure dilute sulfuric acid with the correct specific gravity (see Section 3).

It is essential that filled and charged cells be placed on charge within 90 days from the date of shipment. This is to prevent irreversible sulfation of the plates and permanent loss of battery capacity.

## 2. STORAGE

If the battery cannot be immediately installed, the cells should be stored in a clean, cool, dry room.

Cells supplied filled and charged should ideally be placed on float or trickle charge until required (see Section 6 for charging details). This charging should be carried out with the shipping containers open, or the cells unpacked, and with adequate ventilation to disperse the gases formed on charging.

If continuous charging is not possible, the battery should be given a freshening or equalize charge (see Section 6) at least every 90 days and when distilled water is added (see Section $8)$.

Cells supplied dry charged may be stored for an indefinite period, provided that they are adequately protected against condensation and the effects of high humidity.

## 3. FILLING DRY CRARGED CELLS

### 3.1 ACID.

The following table gives specific gravity data at $77^{\circ} \mathrm{F}$ for fully charged cells with the electrolyte at the maximum level:

| $\begin{aligned} & \text { Nominal } \\ & \text { Sp. Gr. } \end{aligned}$ | Specific Gravity Range | Sp. Gr. for Filling Dry Charged Cells | $\begin{aligned} & \text { Cell } \\ & \text { Type } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 1.210 | 1.205-1.215 | 1.205 | $\begin{aligned} & \text { SGL } \\ & \text { SGH } \end{aligned}$ |
| 1.240 | 1.235-1.250 | 1.235 | $\begin{aligned} & \text { SD } \\ & \text { SDH } \\ & \text { PMF } \end{aligned}$ |
| 1.270 | 1.260-1.280 | 1.265 | SPF |
| 1.300 | $1.290-1.310$ | 1.295 | * |

*For special applications only.
Pure sulfuric acid diluted with distilled or deionized water to the correct specific gravity (see chart) is required for filling dry charged cells. If the acid has been provided by MARATHON, store it in a safe place until required. If acid is purchased locally, it should conform to Federal Specification os-801C.

If concentrated acid has been obtained, it is essential for it to be diluted with distilled or deionized water before being put into the cells. Plastic mixing tanks are ideal for this purpose; if glass is used, care must be taken to limit temperature rises due to the heat produced in the mixing process. Do not use metallic mixing tanks.

### 3.1 ACID (Continued)

CAUTION: When mixing acid, always observe the following safety measures:

* Wear protective clothing, gloves and goggles whenever acid is handled.
* Make sure the mixing tank is perfectly clean before use.
* Put the water into the mixing tank first.
* THEN add the acid, slowly and cautiously, stirring continuously.
* NEVER ADD WATER TO ACID OR IT WILL SPLASH DANGEROUSLY.
* Allow the mixture to cool to room temperature before pouring it into the cells.

Concentrated acid is normally available with a specific gravity of 1.835 or 1.400 at $77^{\circ} \mathrm{F}$. DO NOT PUT CONCENTRATED ACID INTO THE CELLS OR THEY WILL BE RUINED.

When mixing by volume, use the table below to determine the approximate number of parts of water to mix with one part of acid.

## Initial

Sp. Gr.
1.835 1.400

Final Sp. Gr.

| 1.205 | 1.235 | 1.265 | 1.295 |
| :---: | :---: | :---: | :---: |
| 4.2 | 3.6 | 3.1 | 2.7 |
| 1.1 | 0.8 | 0.6 | 0.4 |

Always check the specific gravity of the acid before filling the cells. Minor adjustments may be made by adding water to lower the specific gravity or by adding acid to raise the specific gravity.

### 3.2 PILLING TEE CELLS

Use glass or plastic jugs and funnels for filling the cells. DO NOT use metallic vessels. Fill the cells to the "MAX" level line on the cell and leave to allow the acid to soak into the separators and plates.

### 3.2 FILLING THE CELLS (Continued)

After approximately 3 hours, top up with acid to the "MAX" level line.

The quantity of dilute acid required to fill each cell is given in Section 10.
When acid is obtained locally, we recommend that an additional $10 \%$ be purchased to allow for losses and spillage when mixing and filling.

It is recommended that the cells be filled with acid before installation on battery racks.

NOTE: Cells which have been filled on site must be given an initial charge as soon as possible, preferably within 24 hours of filling (see Section 6.1).

## 4. BATTERY ROOM REQUIREMENTS

The battery room should be dry, well ventilated and have its temperature as moderate as the climate will allow, preferably between $50^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right)$ and $80^{\circ} \mathrm{F}\left(27^{\circ} \mathrm{C}\right)$.

DO NOT permit smoking or the use of open flames in the battery room.

Adequate ventilation is essential to prevent an accumulation of the gases given off during charge.

The battery will give the best results when working in a room temperature of $50^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right)$ to $80^{\circ} \mathrm{F}\left(27^{\circ} \mathrm{C}\right)$, but will function satisfactorily when operating in temperatures between about $0^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right)$ and $125^{\circ} \mathrm{F}\left(52^{\circ} \mathrm{C}\right)$. High temperatures increase the performance, but decrease the life of the cells; low temperatures reduce the performance.

Do not allow direct sunlight to fall on any part of the battery.
4. BATTERY ROOM REQUIREMENTS (Continued)

If a rack is not supplied with the battery, suitable racks or shelves should be provided to support the cells. These should be arranged to provide easy access to each cell for inspection, watering and general servicing.

Suitable racks or shelves may be of wood or metal with a coating of acid resistant paint. If metal racks are used, they must be fitted with rubber, plastic or wooden insulators to prevent the cells coming into contact with the metal.

## 5. INSTALLATION

Make sure that all cell jars and covers are thoroughly clean and dry.

Clean the flat contact-making surfaces of the terminal posts with a soft clean rag. If there is evidence of acid having been spilled, the whole length of the posts should be wiped down with a rag which has been dipped into a non-caustic alkali solution, preferably dilute ammonia or baking soda. This will neutralize any acid on these parts. Do not allow any of this solution to get into the cells. Wipe the posts dry.

Lightly abrade the contact surfaces of the terminal posts, using a Scotchbrite pad or fine grit abrasive paper, to remove any surface oxidation. Wipe off any loose particles and cover the whole length of the post down to the cover with a thin coating of "NO-Ox-Id" grease.

Batteries with cells or blocks weighing 75 lbs. or more are supplied with lifting straps. Separate instructions for the use of these items are supplied with each lifting kit.

[^0]5. INSTALLATION (Continued)

Place the cells or blocks in position on the rack at the correct spacing which will accommodate the intercell connectors supplied. Most batteries have cells connected in a simple series arrangement, so the cells should be arranged to preserve the sequence: positive, negative, positive, negative throughout the whole battery.

For batteries on multiple section, double tier racks, start by placing cells or blocks on the lower tier on either side of the upright where the rack sections meet. Any unused rack space should be on the upper tier.

For batteries on stepped racks, leave any unused rack space on the back (top) step.

Prepare the connectors by lightly abrading the contact surfaces with a Scotchbrite pad or fine grit abrasive paper. DO NOT use a wire brush and be especially careful not to break through the lead plating.

Apply a light coating of "No-Ox-Id" grease to the contactmaking areas of each connector. This is best done by carefully melting the grease and dipping connector ends (it is unnecessary to coat the central part of the connector).

Fasten the intercell and intertier connectors in place using the bolts, nuts and washers supplied. Before assembly, lightly smear "No-Ox-Id" grease on the surfaces of all hardware. Use the insulated wrenches supplied to tighten the parts firmly together. Care must be taken to avoid short circuiting the cells with any of the battery hardware.
When all the cells have been placed on the rack, fasten the intercell and intertier connectors in place using the bolts, nuts and washers supplied.

Apply an even coating of "No-Ox-Id" grease to all hardware before and after assembly. Use the insulated wrenches supplied to tighten the parts firmly together. Care must be taken to avoid short circuiting the cells with any of the battery hardware.

The recommended torque values for the connector bolts are as follows:

## 5. INSTALLATION (Continued)

$$
\begin{array}{ll}
\text { SPR, PMF, SGL types - } & 50 \text { inch pounds } \\
\text { SD, SGH types } & -100 \text { inch pounds } \\
& 100 \text { inch pounds for terminals with } \\
& \\
\text { single connectors }
\end{array}
$$

Make sure that the positive terminal of one cell is connected to the negative terminal of the next throughout the battery, leaving the main positive and negative terminals of the battery free for connection to the charging source. Take particular care to preserve the positive to negative sequence when using flexible intertier or interstep connectors between rows of cells.

Connect the positive terminal of the battery to the positive terminal of the charger and the battery negative to the charger negative.

Affix the cell number labels to the cell jars and covers making sure that the surfaces are dry and clean. It is usual to number the cells beginning with \#1 at the positive end of the battery, numbering consecutively in the same order as the cells are connected electrically, through to the negative end of the battery.

## 6. CBARGING

### 6.1 INITIAL CHARGE

An initial or freshening charge must be given to all batteries before being put into service. This is particularly important for batteries which have been filled on site (see Section 3).

The preferred method, using constant voltage charges, is to charge the cells at a constant potential of 2.70 volts per cell.

After the cells have started to gas, the charge current should not be allowed to exceed the finishing rate shown in Section 10. Monitor the cell temperatures carefully and discontinue the charge if they exceed $110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$. Allow to stand on open circuit until the temperature falls to $100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)$, at which point the charging process may be resumed.

## 6. INITIAL CHARGE (Continued)

The duration of the initial charge under the above conditions will be approximately 24 hours. For batteries which have been supplied in a filled and charged condition, a lower charge voltage (down to a minimum of 2.33 volts per cell) may be used, but this will extend the duration of the initial charge to as much as 100 hours.

The initial charge may be terminated when the specific gravity readings of all cells have remained constant for at least 2 hours.

### 6.2 CHARGING IN SERVICE

Most standby power batteries are charged by "float" or modified constant voltage chargers. The information in these instructions is based on this charging method. Details of battery operation from other charging sources may be obtained from marathon power technologies, STANDBy Battery products.

Floating battery systems are those where the charger, the battery and the load are connected in parallel. The charger output voltage is set to a particular value and under normal conditions the applied charging voltage is maintained within very close limits.

Most float chargers have two adjustable charge voltages: the "equalize" setting (also known as "boost", "high rate" or "recharge") will restore the battery to a fully charged state within a relatively short period; the "float" setting will maintain the battery in a high state of charge with minimal water consumption.

The float voltage may be set between 2.15 and 2.25 volts per cell. The recommended setting is 2.23 volts per cell, which will maintain the battery in a fully charged state without the need for periodic equalize charges.

For float voltages between 2.23 volts per cell, periodic equalize charges should be given in accordance with the following table:

Float Voltage
(per cell)
2.23
2.20
2.17
2.15

Equalizing Required
At these Intervals
Never
Every 6 Months Every 3 Months Every Month

### 6.2 CHARGING IN SERVICE (Continued)

Equalizing is generally required when the total voltage spread between the cells is greater than 0.05 V under float charging conditions.

Charging at the equalize setting is necessary for fast recharging after an emergency discharge. A short equalize charge is also required after addition of distilled water to make sure the acid and water are well mixed (see Section 8).

Equalizing may be carried out at voltage settings above 2.30 volts per cell. The maximum equalize voltage is generally determined by the maximum voltage which the system can tolerate. Normal values of equalize voltage are around 2.33-2.35 volts per cell.

The battery should not be subjected to a final charge current, during the gassing stage, of greater than the finishing rate shown in Section 10 . This current corresponds to a charge voltage of approximately 2.7 volts per cell.

The length of equalize charging required will depend on the degree of discharge, temperature and float voltage level. The best guideline is to continue equalizing until the specific gravity of the acid in the pilot cell (see Section 8) has been constant for at least 2 hours.

## 7. <br> SPECIFIC GRAVITY READINGS

When taking specific gravity readings, care must be taken to make sure that the electrolyte level in the cell to be measured is at the "MAX" line and that any distilled water added recently has been properly mixed in by equalizing for about 30 minutes.

The specific gravity of the electrolyte varies with temperature; consequently, hydrometer readings should be corrected as follows:
7. SPECIFIC GRAVITY READINGS (Continued)

For every $3^{\circ} \mathrm{F}$ above $77^{\circ} \mathrm{F}$ add 1 point ( 0.001 specific gravity) to the hydrometer reading.

For every $3^{\circ} \mathrm{F}$ below $77^{\circ} \mathrm{F}$ subtract 1 point ( 0.001 specific gravity) from the hydrometer reading.

When using a centigrade (degrees Celsius) thermometer, the equivalent correction is 1 point for every $1-1 / 2^{\circ} \mathrm{C}$.
The specific gravity of the electrolyte in new cells should be as listed in Section 3.1. During the course of years there may be a slight fall in the maximum specific gravity values obtainable at the end of charge.

NEVER ADD ACID TO INCREASE SPECIFIC GRAVITY READINGS.

## 8. BATTERY CARE

### 8.1 GENERAL

Check the electrolyte levels in all cells regularly and if necessary top up with distilled or deionized water. Never allow the electrolyte level to fall below the "MIN" line. Do not overfill the cells. When water has been added, set the charger to "equalize" for about 30 minutes to help mix the electrolyte.

Keep the battery and surroundings clean and dry. Wipe the cells with a clean soft cloth dampened with clean water. If necessary, a small amount of mild detergent may be added to the cleaning water to re:ofve any greasy film. Do not use scouring powders or solvents for cleaning plastic cells, as scratching or damage to the plastic could occur.
Make sure bolted connections are tight. Keep connectors, posts and bolted connections covered with "No-Ox-Id" grease for protection against corrosion.

### 8.1 GENERAL (Continued)

Should any corrosion of the connections occur because of spilled acid, etc., carefully remove corrosion products, thoroughly clean and neutralize with dilute ammonia or baking soda.

Dry the parts before liberally coating them with "No-Ox-Id" grease to protect from further corrosion. Do not let the neutralizing solution enter the cell.

## GASES GIVEN OFF BY BATTERIES ON CHARGE ARE EXPLOSIVE!

## DO NOT SMORE OR PERMIT OPEN FLAMES NEAR BATTERIES OR DO ANYTHING TO CAUSE SPARKS.

Keep the battery at the proper charge voltage. Give the battery an equalize charge whenever necessary.

Whenever the battery is subjected to a discharge of more than 5 to 10 percent of its rate capacity, it should be recharged as soon as possible.

The room in which the battery is housed should be well ventilated and its temperature as moderate as the climate will allow. The temperature of the electrolyte should preferably never exceed $100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)$.

### 8.2 CELL APPEARANCE

Examine all cells occasionally.
Healthy cells, when fully charged, show a marked contrast between the dark brown positive and the light gray negative plates. For cells in transparent jars (SD, SDH, SGL, SGH), it can be useful to inspect the appearance of each cell in the battery at regular intervals.

Any cells not showing a healthy plate coloration, or having a specific gravity or voltage noticeably lower than the other cells, or in which the plates gas unevenly or not at all, should be regarded as suspect. Such cells should be carefully examined for internal short-circuits, such as may be caused by small pieces of scale bridging across the plates. Such shortcircuits should be removed or the cell may be ruined.

### 8.2 CELL APPEARANCE (Continued)

A period of charging will normally restore such cells to the condition of the remainder of the battery, but if it does not, expert advice should be obtained immediately from MARATHON POWER TECHNOLOGIES, STANDBY BATTERY PRODUCTS.

### 8.3 PILOT CELL

For regular monitoring of the battery condition, select one cell near the middle of the battery as a "pilot" cell (for batteries containing more than 60 cells, select one pilot cell for every 60 cells).

The electrolyte specific gravity of the pilot cell(s) will be indicative of the state of charge of the whole battery.

## 9. MAINTENANCE RECORDS

Written records should be kept of battery maintenance, so that long-term changes in battery condition may be monitored.

The following inspection procedures are recommended:
WEEKLY - Check and record the overall float voltage at the battery terminals (not at the charger!), and measure the pilot cell voltage.

MONTHLY - Record the battery voltage and the voltage, specific gravity and temperature of the pilot cell(s).

QUARTERLY - Record the voltage, specific gravity and temperature of all cells.

A sample maintenance record sheet is shown in the Appendix. Battery maintenance log books are available from MARATHON POWER TECHNOLOGIES, STANDBY BATTERY PRODUCTS.

It is good practice to give the battery a full discharge test at 5 year intervals until signs of degradation are observed or until the battery has reached 85 percent of its original capacity. Once this stage has been reached, yearly capacity tests should be conducted until the battery reaches the end of its useful life. See IEEE Standard 450-1980 for recommendations concerning test procedures and battery replacenent criteria.

```
10. CELL DATA
```

10.1 PLANTE

| Cell <br> Type | $\begin{gathered} \text { Finishing } \\ \text { Rate } \\ \text { (amps) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Nominal } \\ \text { Capacity } \\ \text { (amp hrs.) } \\ \hline \end{gathered}$ | ELECTROLYTE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Weight |  | Volume |  |
|  |  |  | (lb) | $(\mathrm{kg})$ | (gal) | (lit) |
| SGL7 | 3.3 | 84 | 15 | 6.8 | 1.5 | 5.6 |
| SGL9 | 4.4 | 112 | 14 | 6.3 | 1.4 | 5.2 |
| SGL13 | 6.6 | 168 | 13 | 5.9 | 1.3 | 4.9 |
| SGL17 | 8.7 | 224 | 21 | 9.5 | 2.1 | 7.9 |
| SGL21 | 11 | 280 | 20 | 9.1 | 2.0 | 7.5 |
| SGL29 | 15 | 392 | 30 | 14 | 3.1 | 12 |
| SGL33 | 17 | 448 | 29 | 13 | 2.9 | 11 |
| SGL25 | 13 | 336 | 32 | 14 | 3.2 | 12 |
| SGH 11 | 23 | 577 | 77 | 35 | 7.7 | 29 |
| SGH13 | 27 | 692 | 73 | 33 | 7.1 | 27 |
| SGH15 | 31 | 807 | 71 | 32 | 7.0 | 26 |
| SGH17 | 36 | 923 | 68 | 31 | 6.8 | 26 |
| SGH19 | 40 | 1038 | 66 | 30 | 6.6 | 25 |
| SGH2 1 | 45 | 1153 | 90 | 41 | 9.0 | 34 |
| SGH23 | 49 | 1269 | 88 | 40 | 8.7 | 33 |
| SGH25 | 54 | 1384 | 86 | 39 | 8.5 | 32 |
| SGH27 | 59 | 1500 | 115 | 52 | 11.4 | 43 |
| SGH29 | 63 | 1615 | 113 | 52 | 11.1 | 42 |
| SGH31 | 67 | 1730 | 110 | 50 | 10.8 | 41 |
| SGH33 | 72 | 1845 | 108 | 49 | 10.6 | 40 |
| SGH35 | 76 | 1960 | 137 | 62 | 13.5 | 51 |
| SGH37 | 81 | 2077 | 135 | 61 | 13.3 | 50 |
| SGH39 | 85 | 2192 | 132 | 60 | 13.1 | 50 |
| SGH4 1 | 90 | 2307 | 130 | 59 | 12.9 | 49 |
| SGH43 | 94 | 2421 | 143 | 65 | 14.3 | 54 |
| SGH45 | 99 | 2537 | 141 | 64 | 14.0 | 53 |

### 10.2 LEAD SELENIUM (SD/SDH)

| $\begin{aligned} & \text { Cell } \\ & \text { Type } \\ & \hline \end{aligned}$ | ```Finishing Rate (amps)``` | $\begin{gathered} \text { Nominal } \\ \text { Capacity } \\ \text { (amp hrs.) } \end{gathered}$ | ELECTROLYTE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Weight |  | Volume |  |
|  |  |  | (1b) | ( kg ) | (gal) | (lit) |
| SD5 | 4 | 80 | 12 | 5.3 | 1.1 | 4.3 |
| SD7 | 6 | 120 | 11 | 5.0 | 1.1 | 4.0 |
| SD9 | 8 | 160 | 14 | 6.2 | 1.3 | 4.9 |
| SD1 1 | 10 | 200 | 13 | 6.0 | 1.3 | 4.8 |
| SD13 | 12 | 240 | 17 | 7.5 | 1.6 | 6.0 |
| SD15 | 14 | 280 | 16 | 7.3 | 1.5 | 5.9 |
| SD17 | 16 | 320 | 22 | 10.0 | 2.1 | 8.0 |
| SD19 | 18 | 360 | 22 | 9.8 | 2.1 | 7.9 |
| SD2 1 | 20 | 400 | 21 | 9.8 | 2.1 | 7.9 |
| SD23 | 22 | 440 | 20 | 9.2 | 1.9 | 7.3 |
| SDH13 | 24 | 480 | 30 | 14 | 2.9 | 11.0 |
| SDH15 | 28 | 560 | 30 | 14 | 2.9 | 10.8 |
| SDH 17 | 32 | 640 | 42 | 19 | 4.0 | 15.2 |
| SDH19 | 36 | 720 | 41 | 18 | 3.9 | 14.7 |
| SDH21 | 40 | 800 | 39 | 18 | 3.8 | 14.2 |
| SDH23 | 44 | 880 | 50 | 23 | 4.8 | 18.1 |
| SDH25 | 48 | 960 | 48 | 22 | 4.6 | 17.6 |
| SDH27 | 52 | 1040 | 47 | 21 | 4.5 | 17.1 |
| SDH29 | 56 | 1120 | 58 | 26 | 5.5 | 20.9 |
| SDH31 | 60 | 1200 | 56 | 26 | 5.4 | 20.5 |
| SDH33 | 64 | 1280 | 55 | 25 | 5.3 | 20.0 |
| SDH35 | 68 | 1360 | 54 | 24 | 5.2 | 19.6 |
| SDH37 | 72 | 1440 | 92 | 42 | 8.9 | 33.6 |
| SDH39 | 76 | 1520 | 91 | 41 | 8.7 | 33.1 |
| SDH41 | 80 | 1600 | 90 | 41 | 8.6 | 32.6 |
| SDH4 3 | 84 | 1680 | 88 | 40 | 8.5 | 32.1 |
| SDH45 | 88 | 1760 | 87 | 39 | 8.3 | 31.6 |
| SDH47 | 92 | 1840 | 86 | 39 | 8.2 | 31.1 |
| SDH49 | 96 | 1920 | 84 | 38 | 8.1 | 30.6 |

10.3 UPS SERIES

| $\begin{aligned} & \text { Cell } \\ & \text { Type } \\ & \hline \end{aligned}$ | Finishing Rate (amps) | Nominal Capacity (amp hrs.) | ELECTROLYTE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Weight |  | Volume |  |
|  |  |  | (lb) | $(\mathrm{kg})$ | (gal) | (lit) |
| SPR2 | 6 | 136 | 15 | 6.9 | 1.4 | 5.4 |
| SPR3 | 9 | 204 | 13 | 5.8 | 1.2 | 4.6 |
| SPR4 | 12 | 272 | 11 | 4.8 | 1.0 | 3.8 |
| SPR5 | 15 | 340 | 18 | 8.0 | 1.7 | 6.3 |
| SPR6 | 18 | 408 | 15 | 7.0 | 1.5 | 5.5 |
| SPR7 | 21 | 476 | 23 | 10.5 | 2.2 | 8.3 |
| SPR8 | 24 | 544 | 21 | 9.5 | 2.0 | 7.5 |
| SPR9 | 27 | 612 | 19 | 8.5 | 1.8 | 6.7 |
| SPR10 | 30 | 680 | 29 | 13.2 | 2.8 | 10.4 |
| SPR11 | 33 | 748 | 28 | 12.6 | 2.6 | 9.9 |
| SPR12 | 36 | 816 | 25 | 11.4 | 2.4 | 9.0 |
| SPR1 3 | 39 | 884 | 26 | 12.4 | 2.6 | 9.8 |

### 10.4 TUBULAR PLATE MONOBLOCS

| $\begin{aligned} & \text { Cell } \\ & \text { Type } \end{aligned}$ | ```Finishing Rate (amps)``` | $\begin{gathered} \text { Nominal } \\ \text { Capacity } \\ \text { (amp hrs.) } \\ \hline \end{gathered}$ | ELECTROLYTE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Weight |  | Volume |  |
|  |  |  | (lb) | $(\mathrm{kg})$ | (gal) | (lit) |
| 12 PMF 25 | 1.3 | 25 | 15 | 7.0 | 1.5 | 5.6 |
| 12 PMF 50 | 2.5 | 50 | 14 | 6.5 | 1.4 | 5.2 |
| 12 PMF 75 | 3.8 | 75 | 26 | 12.0 | 2.6 | 9.7 |
| 12 PMF 100 | 5.0 | 100 | 26 | 12.0 | 2.6 | 9.7 |
| 12 PMF 125 | 6.3 | 125 | 32 | 14.5 | 3.1 | 11.7 |
| 12 PMF 150 | 7.5 | 14\% | 31 | 14.0 | 3.0 | 11.3 |
| 6 PMF 200 | 8.8 | 192 | 35 | 16.0 | 3.4 | 12.9 |
| 6 PMF 250 | 10.0 | 240 | 35 | 16.0 | 3.4 | 12.9 |
| 6 PMF 300 | 11.3 | 288 | 31 | 14.0 | 3.0 | 11.3 |

Further information on lead acid batteries (Plante, lead selenium, low antimony and tubular types), nickel cadmium batteries and battery chargers may be obtained from:

## MARATHON POWER TECHNOLOGIES <br> STANDBY BATTERY PRODUCTS 8301 Imperial Drive Waco, Texas 76710

Phone: (817) 776-0650
TWX: 910-894-5203
Fax: (817) 776-6558

#  

## QUARTERLY BATTERY MAINTENANCE REPORT

Period:
to $\qquad$ , 19

Battery Location:
Battery Type: $\qquad$ cells, type $\qquad$
Are gravity readings temperature corrected? YES/NO

| Weekly/Monthly Readings |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Date | Batt. <br> Volts | Pilot Cell |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

NOTE: Equalize battery for 30 min . after water addition. Do not take readings until battery has
stabilized on float charge.
Water Added: Date $\qquad$ , Qty Qty $\qquad$
Battery Discharged:
Date $\qquad$ , Duration , Duration Date $\qquad$

## Battery Equalized:

Date $\qquad$ , Duration Date $\qquad$ , Duration $\qquad$
Remarks: $\qquad$
$\qquad$

Readings taken by:

| Individual Cell Readings (to be recorded quarterly) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Date: $\qquad$ , 19 $\qquad$ <br> Time: $\qquad$ A.M./P.M. <br> Battery Voltage: $\qquad$ V <br> Charge Current: $\qquad$ A |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Cell | Sp.Gr. | Volts | Cell | Sp.Gr. | Volts |
| 1 |  |  | 31 |  |  |
| 2 |  |  | 32 |  |  |
| 3 |  |  | 33 |  |  |
| 4 |  |  | 34 |  |  |
| 5 |  |  | 35 |  |  |
| 6 |  |  | 36 |  |  |
| 7 |  |  | 37 |  |  |
| 8 |  |  | 38 |  |  |
| 9 |  |  | 39 |  |  |
| 10 |  |  | 40 |  |  |
| 11 |  |  | 41 |  |  |
| 12 |  |  | 42 |  |  |
| 13 |  |  | 43 |  |  |
| 14 |  |  | 44 |  |  |
| 15 |  |  | 45 |  |  |
| 16 |  |  | 46 |  |  |
| 17 |  |  | 47 |  |  |
| 18 |  |  | 48 |  |  |
| 19 |  |  | 49 |  |  |
| 20 |  |  | 50 |  |  |
| 21 |  |  | 51 |  |  |
| 22 |  |  | 52 |  |  |
| 23 |  |  | 53 |  |  |
| 24 |  |  | 54 |  |  |
| 25 |  |  | 55 |  |  |
| 26 |  |  | 56 |  |  |
| 27 |  |  | 57 |  |  |
| 28 |  |  | 58 |  |  |
| 29 |  |  | 59 |  |  |
| 30 |  |  | 60 |  |  |
|  |  |  |  |  |  |

## APPENDIX F

## MC-8 PROGRAMMABLE LOGIC CONTROLLER PLC-1

### 1.1 MECA SYSTBH

The MECA System is comprised of components specitied for industrial applications and environments and has FCC Class A approval.

| PM-1 | Power Module |
| :--- | :--- |
| MB-1 | Motherboard |
| MB-2 | Motherboard |
| $C B-1$ | Computer base |
| $C B-2$ | Computer base |
| MC-2 | Microcomputer |
| MC-4 | Microcomputer |
| $M C-8$ | Microcomputer |
| $M X$ | Multiplexer |
| $M X-1$ | Multiplexer |
| $M X-2$ | Multiplexer |


| AI-4 | Analog Input |
| :--- | :--- |
| LI-1 | Logic Input |
| SC-1 | Switch Closure Input |
| SC-3 | SwitchClosure Input |
| DI-1 | Digital Input |
| DO-1 | Digitaloutput |
| DO-2 | Digitaloutput |
| LD-1 | Load Driver Output |
| AO-1 | Analog Output |
| LO-1 | Logic Output |



FIGURE 1-1: MECA SYSTEM

### 1.1.2 HOTHERBOARDS (MB-1 and ML-2)

The MB-1 Motherboard interfaces with tne CB-1 or CB-2 computer base and Input/Output modules. It has terminals marked $A, B$ and $C$ for the power connections from the PM-1 MECA power module using the WH-3 cable. The MB-l provides 15 module recepatcles numbered 1 through 15 . Ten Input/Output modules may be used in any combination or motherboard position. Positions 2, 5, 8, 11 and 14 on the $M B-1$ are mounted oft-center and are reserved for use by the multiplex modules. The other positions are for use by the Input/Output modules.

An MB-2 motherboard can be provided for system expansion. The MB-2 includes a prewired communication cable and connector tnat can be attached to the MB-1. Connection of the MB-2 is accomplished by removing two screws (located at each end of one side of an empty $M B-1$ ) and sliding the rail and bardboard to one side. Place the connector cable onto the cable cutout on the end of the $M B-1$ motherboard and plug the connector onto the PC card. Replace the side rail and hardboard and secure in place using the two screws.

BOTE: ATTACBMEAT OF CONNBCTOR WITH EEY IHSERTED IA KEYWAY UILL $\triangle$ SSORE PROPER CONHECTION.


FIGURE 1-4: UNOCCUPIED MUTHERBOARD

## MB-1 and MB-2

SPECIPICATIOAS
Cepacity:

* MB-1:

1 Computer Base
1 Microcomputer
5 Multiplex Modules
10 Input/Output Modules

* MB-2:

7 Multiplex Modules
14 Input/Output Modules
Electrical (MB-1/MB-2):

* FCC Class A Approval
* 3 connections ( $A, B$ and $C$ ) for $P M-124$ VAl center-tapped power supply
* MB-2 includes interface cable to $M B-1$

Environmental:

* Ambient Temperature (operation): $\begin{gathered}-20{ }^{\circ} \mathrm{C} \quad \text { to }+70{ }^{\circ} \mathrm{C} \\ \left(-4{ }^{\circ} \mathrm{F} \text { to }+158{ }^{\circ} \mathrm{F}\right)\end{gathered}$
* Ambient Temperature (storage): $\quad-20{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
* Humidity: $20 \%$ to $90 \%$ non-condensing

Approximate Dimensions and Weight:

(19.9cm x $2.5 \mathrm{~cm} \quad x \quad 43.8 \mathrm{~cm}$ )

* Mounting Hole Diameter: 0.218 inches
* 1.92 kilograms (4.23 pounds)


## Mounting:

The side rails of the $M B-1 / M B-2$ motherboards are specitically designed for maximum heat transfer. To ensure proper heat transfer, it is recommended that all mounting hole positions be utilized. The mounting holes accept \#lo screws. See Application Note E 001 .


FIGURE 1-6: MECA MOUNTING DIMENSIONS

### 1.1.2 MOTHERBOARDS (MB-1 and MB-2) (COMT'D)

All of the modules which plug into the motherboard, except for the multiplex modules, are keyed; there is a keying slotin the printed circuit board connector between contacts. Each type of module has a different keying slot position. In addition, there is provision for putting a keying plug into a keyway of the motherboard connector -- this will make it possible to restrict a motherboard position for use by only one type of module. Refer to table 1-1. Keys (KE-15 for MB-1; KE-2l for MB-2) are supplied with each motherboard.

TABLE 1-1
I/O Module Key Positions
MODOLE EEY POSITIOA

| MB-2 | $16-17$ (Connector) |
| :--- | :--- |
| MX | No Key Required |
| MX-1 | No Key Required |
| MX-2 | No Key Required |
| AI-4 | $6-7$ |
| LI-1 | $4-5$ |
| SC-1 | $1-2,5-6$ |
| SC-3 | $5-6$ |
| DI-1 | $9-10$ |
| DO-1 | $8-9$ |
| DO-2 | $1-2,10-11$ |
| LD-1 | $7-8$ |
| AO-1 | $1-2,12-13$ |
| LO-1 | $1-2,13-14$ |



FIGURE 1-5: RECEPTACLE KEY

There are two types of Colputer Base Modules available; the CB-l and the CB-2.

The CB-1 Computer Base is the original CB designand is the the mounting receptacle for the Microcomputer (MC-2 or MC-4) and has a fixed position on the MB-1 Motherboard. There are four (4) screws provided to mount the $C B-1$ securely to the motherboard heat sink frame.

The CB-2 Computer Base is an improved design with more current handing capability and MoST be used with the MC-8 Microcomputer nodule. The MC-2 and the MC-4 can be used with the CB-2 and will operate cooler because of the increased heat sink capability of the CB-2.

Both the $C B-1$ and the $C B-2$ provide terminals for the 20 milliamp curreat loop and battery backup. A l2-volt battery maybe used to retain the RAM memory within the MECA system. Reter to application notes E 002 and E 003.

The 20 mA current loop cable (WH-1) must be connected with care to ensure that the red wire of the red/black pair is connected to the $T+$ (transmitter) terminal and the black wire to tne $T$ terminal. The white wire of the white/black pair is attached to the $R+$ (receiver) terminal and the black wire to the R-terminal. T+ and $T$ - are the top pair of terminals on both CBmodules. The 20 mA current loop communication port is passive and requires an external current source to operate.


FIGURE 1-7: CB-2 COMPUTER BASE

## CB-1/CB-2 SPECIPICATIONS

## Communication:

* 20 mA Current Loop (Current Source must be provided)
* Transmitter: $40 \mathrm{~V}, 300 \mathrm{~mA}$ maximum at $25^{\circ} \mathrm{C}, 1.5 \mathrm{~V}$ maximum voltage drop
* Receiver: $3.5 \mathrm{~V}, 85 \mathrm{~mA}$ maximum at $25^{\circ} \mathrm{C}$

Electrical:
CB-1 CB-2

* Conforms to NemA Noise
* Same Test, (NemA \#ICS2-230)
* FCC Class A approval * SAME
* Battery Back-up: 12VDC 200 mA Nominal, 400 mA Max.
* Battery Back-up: 12 VDC

Optical Isolation, 2500 V 400 mA Nominal, 625 mA Max. * same

## Environmental:

* Ambient Temperature (operation): $\begin{aligned}-20{ }^{\circ} \mathrm{C} \text { to }+70{ }^{\circ} \mathrm{C} \\ \left(-4{ }^{\circ} \mathrm{F} \text { to }+158{ }^{\circ} \mathrm{F}\right)\end{aligned}$
* Ambient Temperature \{storage): $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $\left(-4{ }^{\circ}{ }_{F}\right.$ to $\left.+185{ }^{\circ} \mathrm{F}\right)$
* Humidity: $20 \%$ to $90 \%$ non-condensing

Wiring:

> * Quick disconnect blades for terminal connections $0.187^{\prime \prime} x 0.031^{\prime \prime}$

## Appropriate Dimensions and Weight:

```
6-3/4" x 2-7/8" x 4-1/2" (W x H x D) CB-1: 1.01 lb. (.458 kg)
(17.1cm x 7.1cm x 11.4cm) CB-2: 1.15 lb. (.524 Xg)
```


## Mounting:

This module is designed for mounting on the MB-l Mother Board using four \#8 screws. The screws should be tightened securely to ensure good thermal transfer.

### 1.1.4.1 MICROCOMPOTER MODOLE (MC-8)

The MC-8 Microcomputer Module consumes the same volume and space as its forerunners, the MC-2 and MC-4, but offers many additional features and product improvements:

- Improved performance
- Faster execution speed
- More user memory ( 8 k bytes)
o Up to 249 Single Byte variables, in 8031 RAM memory, for use as: Array Elements, A(1) - A(255)

Single Byte Variables or
Double Byte Variable (WORD)
Variable designations are A-Z, A0-A9 thru ZO-Z9
o Added high level language features
$0 \quad 16$ independent concurrent timers, timing in milliseconds, running independent of control program

- Supports AO-1 and LO-1 I/O modules
- Concurrent Input and Output communication during program execution
o Switch Select: MX, MX-1, or MX-2
- Switch Select: Baud Rate (1200 or 9600 bps)
o Switch Select: Full Duplex or Half Duplex Communication


FIGURE 1-9A: MC-8 MICROCOMPUTER MODULE

The Central Processing Unit (CPU) is an Intel* Series MCS-51(R), type 8031; a control-oriented CPU with RAM and I/O. It's enhanced architecture offers:


FIGURE 1-9B: MC-8 BLOCK D 1 AGRAM

* Intel series $\operatorname{MCS}-51(R)$ is a trade mark of Intel Corporation.

The MC-8 contains the SYBIL Executive Library on a non-volatile EPROM, Type 2764 (Erasable Programmable Read Only Memory) and two User BPROMS, Type 27324 , offering up to an mimon-volatile Memory ( 8192 bytes). It is programmed in SIBIL (SYlvania Basic Industrial Language); a high-level programming language that allows development of control programs in an easy to understand, English-like language.

The Library EPROM, Type 2764, with its larger memory will allow control of additional $1 / 0$ module types (i.e., LO-1, AO-1, etc.).

Two deer EPROMs, Type 27324 , offer atotal of 8 k non-volatile memory space and are programmed in SYBIL using the PG-2E Desk-Top Computer Programming System or the PPS-1 Portable Programming System.

Both computer systems are controlled by the popular CP/MR (Control Progran for Microcomputers) operating system, which requires 64 K RAM memory. SiBIL Verioion 5.0 and 6.0 are CP/M compatible, program development software support packages that allow the user to enter, edit, compile and debug control applications in an efficient maner.

```
MC-8 DIP SWITCH SETTIMGS
    OPF ON
SW1 MX OR MX-1 MX-2
SW2 1200 BAUD 9600 BAUD
SW3 FULL DUPLEX HALF DUPLEX
SW4 NOT USED NOT USED
```

Communication with the $M C-8$, via the 20 mA current loop requires the following data format:

| BAUD RATE | SELECTABLE |
| :--- | :--- |
| PARITY | ODD |
| START BIT | 1 |
| DATA BITS | 7 |
| STOP BITS | 1 |
| COMMUNICATION | SELECTABLE |

## MC-8 SPECIFICATIOIS

## General:

```
* Intel 8031 CPU
* Intel 2764-8K Byte Executive Library
* Intel 2732A - Two 4K Byte User EPROM's
* 11 MHz Processor Clock
* Switch selectable baud rate of 20 mA communication port
* Switch Selectable Multiplexers
* Switch Selectable Communication
* Real-Time Clock
```

Blectrical:

* FCC Class A approval
* Noise Test, NEMA part \#ICS2-230
* Status Indicator LEDs for Power and Reset
* Switch Selectable Multiplexers (MX, MX-1 or MX-2)
* Switch Selectable Baud Rate (1,200 or 9,600 bps)
* Switch Selectable Communication (Full or Half Duplex)
* To be used with CB-2 only

Environeental:

> * Ambient Temperature (operating): $\quad 0{ }^{\circ} \mathrm{C}$ to $60{ }^{\circ} \mathrm{C}$ $32^{\circ} \mathrm{F}$ to $140{ }^{\circ} \mathrm{F}$
> * Ambient Temperature (storage): $\begin{aligned} & -20{ }^{\circ} \mathrm{C} \text { to } 85{ }^{\circ} \mathrm{C} \\ & -4{ }^{\circ} \mathrm{F} \text { to } 185{ }^{\circ} \mathrm{F}\end{aligned}$

* Humidity: $20 \%$ to $90 \%$, non-condensing

Approzinate Dimensions and Height:

```
* 4-15/16"'x < " x 4-1/2" (W x H x D)
    (12.5cm x 2.54cm x 11.4cm)
    * . 43 pounds (.195 kg)
```

Mounting:

```
    * 2 captive screws. Placed on top of CB-2 module.
```


### 1.1.5 Multiplex Modules (MX, HX-1, KX-2)

One Multiplex module is required for each pair of Input/Output modules. It provides control for elght (8) I/O points (2 I/O modules). The motherboard receptacle for the multiplex module is off-center to prevent accidental insertion. A multiplex module is necessary if an Input/Output module is plugged into an adjacent Input/Gutput receptacle. No wiring is required for the MX module.

There are three (3) multiplex modules available:

- MX Module was the original multiplex design which will not reset automatically at a power failure or brownout. The power to the MECA System must be turned OFF for a moment to reset the total system.
- MI-1 Module is an improved MX module which provides automatic power reset, besides all other MX design features. It can be used on MECA Systems with the MC-2, MC-4 or MC-8 تifrocomputers if the MX selector switch on the MC-8 is set properly.
- MX-2 Module is a banked multiplexer design which operates at twice the speed of the $M X-1$ and has automatic power reset. It mest be used ONLY on MC-8-driven systems.

NOTE: OHLY ONE TYPE OF MULTIPLEX MODOLE CAN BE DSED PER SYSTEM. DO MOT MIX MULTIPLEX MODOLES.


FIGURE 1-10: MULTIPLEX MODULES

```
MX, MX-1, MX-2
```


## SPECITICATIOMS

Electrical:

* FCC Class A approval
* Noise Test: NeMA part ICS2-230

Environmental:

* Ambient Temperature (operating):
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-4 \mathrm{O}_{\mathrm{F}} \mathrm{to}+158 \mathrm{OF}_{\mathrm{F}}\right)$
* Ambient Temperature (storage):
$-20{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+185{ }^{\circ} \mathrm{F}\right)$
* Humidity: $20 \%$ to $90 \%$ non-condensing

Approximate Dimensions and Weight:

$$
\begin{aligned}
& (16.5 \mathrm{~cm} \times 8.3 \mathrm{~cm} \times 1.9 \mathrm{~cm}) \\
& \text { * . } 137 \mathrm{kilograms} \text { (. } 30 \text { pounds) }
\end{aligned}
$$

## Mounting:

This module is designed for mounting on the MB-1 and MB-2. A card edge on the bottom of the module provides the electrical connections. Two \#8 captive screws secure the module to the MB-1 and MB-2. The screws should be tightened securely to ensure good thermal transfer.

```
* AI-4 Analog Input (0 to +5 VDC)
* LI-1 Logic Input (TTL compatible)
* SC-1 Switch Closure Input (24 VAC)
* SC-3 Switch Closure Input (120 VAC)
* DI-1 Digital Input (5 to 30 VDC)
```

A variety of input modules are described below. These input modules can be placed in any $/$ /O receptacleonerther themb-1 or MB-2 motherboard. In order to avoid improper operation, it is important to connect the input modules correctly to the operating equipment. It is good practice to keep the wire harness of all inputs separated from high-current-carrying power lune installations.


FIGURE 1-11: INPUT MUDULES

Siemens-Allis Automation, Inc.
P.O. Box 9128

Waltham, MA 02254
(617) 466-3430

Models $\operatorname{AI-1/\Delta I-2~}$

## General

The $A I-1$ and $A I-2$ are analog input modules with two 12 bit input channels, each. They are designed for precise measurement of analog signals from transducers or other voltage or current sources.

## Features

- Full 12 bit resolution
- High speed ( <200usec A/D hardware conversion time)
- 0.1\% absolute accuracy
- User selectable current/ voltage ranges:
$\begin{array}{rlll}\Delta I-1: & 0 & \text { to } & 20 \mathrm{~mA} \\ 0 & \text { to } & 5 \mathrm{valts} \\ 0 & \text { to } & 10 \text { volts }\end{array}$
AI-2: 4 to 20mA 1 to 5 volts
- Two channels per module for optimum utilization.
- Optically isolated inputs


## Description

The top of the $\Delta I-1(\Delta I-2)$ module has an LED to indicate external power, and three potentionetera for calibration. $\triangle$ DA-15 connector on the side is used to interface the analog input signals, the exterminal power supplies and the range mode select jumpers.

## PRODUCT EOLLETIM P-38

12 BIT AYALOG IMP OT MODULES


TIGDEE 1:
12 BIT ANALOG INPUT MODULES


TIGURE 2:
AI-1/AI-2 BLOCK DIAGRAM

## SPBCIPICATIONS

## 12 BIT ANALOG IEPDT MODOLBS

$\Delta I-1 / \Delta I-2$

## General

012 bit resolution, 4096 increments (0-4095).

- Two input channels/module (single-ended).
o Refer to ECO Application Manual for installation, calibration, programming, etc.


## Blectrical

- Input ranges (each channel can be programmed independently except 0 to 10 V ):

$$
\begin{array}{llll}
A I-1: & 0 & \text { to } & 20 \mathrm{~mA} \\
& 0 & \text { to } & 5 \mathrm{~V} \\
& 0 \text { to } 10 \mathrm{~V} \text { (both chan- } \\
& & & \\
\mathrm{AI}-2: & 4 \text { to } 20 \mathrm{~mA} \\
& 1 \text { to } & 5 \mathrm{~V}
\end{array}
$$

o Input impedance: >100 megohms (voltage mode) 250 ohms (current mode)
o Overvoltage protection: $\pm 35 \mathrm{VDC}$ (power ON) $\pm 25$ VDC (power OFF)
o Overcurrent protection: $\pm 28 \mathrm{~mA}$

- Conversion time: <200uSecl chanael
- Drift $\left(0^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ : $\pm 45 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Absolute accuracy at $25^{\circ} \mathrm{C}$ $\pm 0.1 \% \mathrm{FS} \pm 1 / 2 \mathrm{LSB}$ (Including linearity, gain, and offset ertors)
- Optical isolation:

1500 R RMS

- External power supplies: $+15 V D C \pm 3 \%$ © 70 mA $-15 \mathrm{VDC} \pm 3 \%$ @ 70 mA Ripple < 3 mจ pp.


## EEVIEOMMBHTAL

o Operating temp. (ambient): $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ $\left(32^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
o Storage temp. (ambient):

$$
-20^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}
$$

$$
\left(-4^{\circ} \mathrm{F} \text { to } 185^{\circ} \mathrm{F}\right)
$$

- Humidity: $5 \%$ to $95 \%$, noncondensing


## APPROLIMATE DIMERSIORS AED URIGRT:

```
0 6-1/2 x 3-1/4 x 3/4in (WxHxD)
    (16.5 < 8.3 < 1.9 cm)
0 0.371b (0.171.g)
```


## MOUATIMG

This module is designed for mounting on all ECO Motber Boards. A card edge on the bottom of the module provides the electrical connections. Two slots in the card edge allow keying for module position assignment. (Slots are located between terminals as follows: AI-1 2,3 and 11,12

$$
\text { AI-2 } 2,3 \text { and } 12,13
$$

Two \#8 screws secure the module to the Mother Boards. The screws should be tightened securely to ensure good thermal transfer.

*"6-SUPPLY COMMON" OD AI-2
PIGURE 3:
DA-15 CONNECTOR PINOUT

|  | CBNLI | $/$ | CENL2 | J2-1 to J2-2 | J2-11 to J2-12 | J2-6 to 32-7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AI-1 | $8-10 \mathrm{~V}$ | 1 | 8-10V | OPEN | OPEN | OPEN |
| AI-1 | $0-5 v$ | 1 | O-5V | OPEN | OPEN | SHORT |
| AI-2 | 1-5v | 1 | 1-5v | OPEN | OPEN | SHORT |
| AI-1 | 0-5v | 1 | D-20mA | OPEN | SHORT | SHORT |
| AI-2 | 1-5v | 1 | 4-20mA | OPEN | SHORT | SHORT |
| AI-1 | $0-20 \mathrm{~mA}$ | 1 | e-5v | SHORT | OPEN | SHORT |
| AI-2 | 4-20mA | 1 | 1-5V | SHORT | OPEN | SHORT |
| AI-1 | D-20mA | 1 | 0-29mA | SHORT | SHORT | SHORT |
| AI-2 | 4-20.as | 1 | 4-20mA | SHORT | SHORT | SHORT |

Figure 3
Range/Mode Select Jumpers

| 2 CHNL 12 BIT ADC | $A T-1$ | Vin oto 10V/0 TO 5V I in $\quad 0$ TO 20 mA |
| :---: | :---: | :---: |
| 15-SUPPLY $(+15 \mathrm{VDC})$ | $15 \because 8^{8}$ | 8-SUPPLY(-15 VDC) |
|  |  | 7-SUPPLYICOMMONI |
| 14TEST POINT 3 |  | 6-RANGE SEL |
| 13-TEST POINT 2 |  | 5-TEST POINT 1 |
| 12-CH 2 MODE SEL B |  | C-CH2 RETURN |
| 11-CH. 2 MODE SEL A |  | 3 3-CH2 INPUT |
| 10-CH. 1 INPUT |  | 2-CH. 1 MODE SEL $A$ |
| 9-CH. 1 RETURN |  | 1-CH 1 MODE SEL B |

Pigure 4
AI-1 Connector Pinout

| 2 CHNL 12 BIT ADC | $A L-2$ | V in 1 TO 5 V <br> I IN 4 TO 20 mA |
| :---: | :---: | :---: |
| 15-SUPPLY( +15 VDC ) |  | 8-SUPPLY(-15 VDC) |
|  |  | 7-SUPPLY(COMMON) |
| 14-TEST POINT 3 | $\bullet:{ }^{\circ}$ | 6-SUPPLY(COMMON) |
| 13-TEST POINT' 2 | $\bigcirc$ | 5-TEST POINT 1 |
| 12-CH 2 MODE SEL B |  | $4-\mathrm{CH} 2$ RETURN |
| 11-CH 2 MODE SEL A | : | 3 3-CH 2 INPUT |
| 10-CH 1 INPUT | ) | 2-CH 1 MODE SEL A |
| 9-CH 1 RETURN |  | 1-CH 1 MODE SEL B |

Figure 5
AI-2 Connector Pinout

### 1.1.6.2 LOGIC IRPDT MODOLE (LI-1)

The LI-1 Logic Input module is a general-purpose, 8-bit logic input module that monitors one $8-b i t$ word. The word is interpreted as two 4-bit $B C D$ codes, representing a number from 0 to 99.

By attaching the $B C D / B I N$ terminal to the $C O M$ terminal, the word is interpreted as one binary code representing a number from 0 to 255. Leaving the $\operatorname{BCD} / B I N$ terminal open, defaults the module to the $B C D$ mode. This module accepts inputs in the form of open collectors (or switch closures) referenced to the Com terminal with an open state representing a logic ZERO. By attaching the PHASE terminal to the COM terminal, an open state on the input represents logic ONE.


FIGURE 1-14: LI-1 LOGICAL INPUT MODULE

Wiring of LI-1:
This module has 0.187" $\quad 0.031^{\prime \prime}$ quick-disconnect blades for terminal connections. The recommended wiring procedure is to first connect to the bottom terminal, then proceed up towards the top terminal. Typical switch closure wiring diagrams for inputs on both binary and BCD form are shown in Figure 1-15.

CAOTION: TEE COMMOM OH TEIS MODOLE IS AI IMTEPRAL COMMOR OHLY. WHEA COMAECTIMG AHY EXTERMAL COMMOI AMD/OR CHASSIS COMMOX TO TERMIEALS IC AHD 4C, COHSULT APP hote e 001.


BCD WIRING


BINARY WIRING
FIGURE 1-15: WIRING DIAGRAM LI-1 MODULE

LI-1

## SPBCIFICATIONS

Electrical:

* Negative True Logic, TTL Compatible
* Open Collector or Switch Input
* FCC Class A approval

Environmental:

* Ambient Temperature (operating):

$$
-20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \quad\left(-4^{\circ} \mathrm{F} \mathrm{to}+158^{\circ} \mathrm{F}\right)
$$

* Ambient Temperature (storage):

$$
-20^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F} t 0+185^{\circ} \mathrm{F}\right)
$$

* Humidity: $20 \%$ to $90 \%$ non-condensing

Approximate Dimensions and Weight:


* . 150 ki lograms (. 33 pounds)


## Mounting:

This module is designed for mounting on the mb-1 or MB-2 motherboards. A cardedge on the bottom of the module provides the electrical connections. A slot in the cardedge allows keying for module position assignment. Two \#8 captive screws secure the module to the $M B-1$ or $M B-2$ motherboards. The screws should be tightened securely to ensure good thermal transfer.

The DI-1 Digital Input Nodule has top-mounted LED status indicators and contains two independent pairs of optically isolated input circuits for sensing DC voltage. The input threshold voltage is two-thirds of the applied source during the low-to-high transition, and one-third of the applied source from the high-to-low transition.

This module sends a digital signal to the microcomputer with an irput value of 0, indicating an "OPEN" switch; or a value of 1 indicating a "CLOSED" switch.

NOTE: AN EXTERNAL DC POHER SUPPLY OF 5 TO 30 VDC MOST BE PROVIDED TO OPERATE THIS MODULE. THE TERMINALS B+ AND B- (LOCATED ON EACH SIDE OF TEB MODOLE) ARE ISOLATBD, ALLOUING THE DSE OF THO POWER SUPPLIES AT DIPFERERT VOLTAGE POTENTIALS.


FIGURE 1-18: DIGITAL INPUT MODULE DI-1

```
Wiring of DI-1:
```

Two types of wiring connections may be made to this module. One type is a quarter-inch (. $25^{\prime \prime}$ ) quick-disconnect blade. The other is a self-rising screw terminal pressure plate that will accept up to two $\ddagger 14$ AWG copper wires. The recommended wiring procedure when using the screw terminals is to first connect to the bottom terminal, then proceed up towards the top terminal. Each side of the DI-l module is isolated and will allow independent voltage sources.

$R_{p}=$ Pull-up Resistor, which should be 10 k-ohms

FIGURE 1-19: WIRING DIAGRAM FOR DI-1 MODULE

## DI-1

## SPRCIFICATIOAS

DI-1 Input:

* 5 to 30 VDC
* 100 k-ohms input impedance
* 100 wicroseconds "ON" delay (maximum)
* 500 microseconds "OFF" delay (maximum)

Electrical:

* External DC supply, 5-30 VDC
* Optical Isolation, 2500 volts
* FCC Class A approval
* Noise Test, NEMA part ICS2-230

Environmental:

* Ambient Temperature (operating):

$$
-20^{\circ} \mathrm{C} t o+70{ }^{\circ} \mathrm{C} \quad\left(-4{ }^{\circ} \mathrm{F} t 0+158 \mathrm{O}_{\mathrm{F}}\right)
$$

* Ambient Temperature (storage):

$$
-20^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \quad\left(-4^{\circ} \mathrm{F} t 0+185^{\circ} \mathrm{F}\right)
$$

* Humidity: $20 \%$ to $90 \%$ non-condensing

Approximate Dimensions and Weight:

$$
\begin{aligned}
& \text { ( } 16.5 \mathrm{~cm} \quad \mathrm{x} \quad 8.3 \mathrm{~cm} \quad \mathrm{~cm} \quad 1.9 \mathrm{~cm} \text { ) } \\
& \text { * } .205 \mathrm{ki} \operatorname{lograms} \text { (.45 pounds) }
\end{aligned}
$$

## Mounting:

This module is designed for mounting on the $M B-1$ or MB-2 motherboards. A card edge on the bottom of the module provides the electrical connections. A slot in the card edge allows keying for module position and assignment. Two \#8 screws secure the module to the $M B-1$ or $M B-2$ motherboards. The screws should be tightened securely to ensure good thermal transfer.

```
* DO-1 Digital Output (5 to 30 VDC)
* DO-2 Digital Output (10 to 50 VDC)
* LD-1 Load Driver Output (18 to 132 VAC)
* AO-1 Analog Output (0 to 5 VDC and 4-20 mA)
* LO-1 Logic Output Nodule (TTl compatible)
```

The DC and AC modules described in this section may be placed in any receptacle on the $M B-1$ or MB-2 Motherboards. It is good practice to keep the wire harness separated from high current power lanes of the operating equipment.


FIGURE 1-20: OUTPUT MODULES

The Do-2 output Module contains four independent, optically isolated, high power DC, solid-state switches. It has four topmounted LED status indicators, one per switch. Contacts are normally open. Typical uses are switching DC or full-wave rectified $A C$ for inductive or resistive loads.

NOTE: An external DC power source of 10 to 50 volts DC must be provided to operate this module. The four circuits are isolated fromeach other, allowing the use of power sources at different potentials.


## DO-2 DIGITAL OUTPUT MODULE



FIGURE 1-23: DO-2 DIGITAL OUTPUT MODULE

Wiring of DO-2:
Two types of wiring connections can be made to this module. One type is a quarter inch, quick-disconnect blade; the other is a self-rising screw terminal pressure plate that will accept up to two \#14 AWG copper wires. The recommended wiring procedure when using the screw terminals is to first connect to the bottom terminal, then proceed upward to the top terminal.

SOL


TABLE I


NOTES: Be sure to observe polarity of voltage source: Contacts 1A, 2A, $3 A$ and $4 A$ require positive ( + ) polarity. Contacts $1 B, 2 B, 3 B$ and $4 B$ require common ( - ) polarity.

## SPECIPICATIONS

## General:

* 10 to 50 volts $D C$-or- 50 volts peak pulsating $D C$ maximum off voltage
* $\quad$ lamp per switch maximum, $-0 r-2$ amps per side maximum, steady state current. See Table I.
* 2 volts at 2 amps, maximum, $O N$ voltage
* 10 microamps, maximum, $0 f f$ state leakage
* Zener diode transient protection up to 150 watts of peak pulse power
* 100 watts per switch, DC operation
* 2.5 uSec ON Delay (maximum)
* 350 usec OFF Delay (maximum)

Electrical:

* 10 to 50 voits $D C$, external DC source
* Optical Isolation: 2500 volts
* FCC Class A approval

Environmental:

* Ambient Temperature (operational): - $20{ }^{\circ} \mathrm{C}$ to $70{ }^{\circ} \mathrm{C}$
* Ambient Temperature (storage): - $20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
* Humidity: $20 \%$ to $90 \%$, non-condensing

Approximate Dimensions and Weight:

* $6-1 / 2^{\prime \prime} \times 3-1 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}($ ( $\mathbf{~} \times$ н $\times$ D) $(16.5 \mathrm{~cm} \times 8.3 \mathrm{~cm} \times 1.9 \mathrm{~cm}$ )
* . 205 Kilograms (. 45 pounds)


## Mounting:

This module is designed for mounting on the MB-1 and MB-2 motherboards. A cardedge on the bottom of the module provides the electrical connections. A slot in the card edge allows keying for module position assignment. Two $\# 8$ pan head captive screws secure the module to the MB-1 or MB-2 motherboards. The screws should be tightened to ensure good thermal transfer.

### 1.1.7.4 ANALOG OUTPUT MODOLE (AO-1)

The AO-1 Analog Output Module is an optically isolated, single channel, dual output module with Foll 8 bit capabilities. It is designed to handle many tasks in control applications at $0.39 \%$ resolution and $\pm 0.2 \%$ accuracy. It can simultaneously supply a 0 to +5 VDC output signal and a 4 to 20 mA signal when an operating voltage of 15 to 30 VDC* is applied.

The Led status indicator, mounted on the top of the Analog Output module, will emit light at various levels, depending on signal voltage (5VDC = high output) or 4 to 20 mA current levels ( $4 \mathrm{~mA}=10 \mathrm{w}$ light output) if the 15 to 30 VDC source is active.

* See $R_{L}$ vs. $V_{B}$ curve

HOTE: REQUIRES TEE MC-8 MICROCOMPUTER ARD MX-2 MULTIPLEX MODOLE NOT COMPATIBLE WITE THE MC-2 OR MC-4 MICROCOMPOTERS


FIGURE 1-25A: ANALOG OUTPUT MUDULE (AO-1)


AO-1 BLOCR DIAGRAM


VB
4-20 a LOAD LIMITATIOR


## AO-1 WIRIEG DIAGRAM

See App. Note $I / 0006$ for field calibration procedure of $A U-1$.

SPBCIPICATIONS
General:

* 0 to 4.98 V DC at $10 \mathrm{~mA}-\mathrm{Battery}$ Voltage $V_{B}=10$ to 30 VDC , 50 mA , maximum. Load $R_{L}$, minimum $=5000 H M S$
* 4 to 20 mA Operation -- Battery Voltage $\mathrm{V}_{\mathrm{B}}=15$ to 30 VDC Load: 250 OHMS at $15 V D C$ to 1000 OHMS at 30 VDC $R_{L}$ Max. $=50 / v\left(V_{B}-10\right)$
* Resolution: Full 8 bits $(0.39 \%) \pm 1 / 2$ LSB at $25^{\circ} \mathrm{C}$
* Accuracy: $\pm 0.2 \%$ @ $25^{\circ} \mathrm{C}$
* Temp Stability $\left(0-60^{\circ} \mathrm{C}\right)$ Voltage Output $\pm 0.2 \%$ Current Output $\pm 0.5 \%$
* Slew Rate Output: $\leq 10 u \operatorname{Sec}(0.5 \mathrm{~V} / \mathrm{uSec}, 1.6 \mathrm{~mA} / \mathrm{uSec})$


## Blectrical:

* Internal Power Supply: 24VAC center-tapped at 35 mA, max.
* External Power Supply: 15 to 30 V DC at 50 mA , max.
* Power ON Reset
* Optical Isolation: 2,500 volts
* FCC Class A approval


## Bnvironmental:

* Ambient Temperature (operating): $\quad-20{ }^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$ - $4^{\circ} \mathrm{F}$ to $158{ }^{\circ} \mathrm{F}$
* Ambient Temperature (storage): $-20{ }^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$ $-4^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$
* Humidity: $20 \%$ to $90 \%$, non-condensing

Approximate Dimensions and Weight:

* 6-1/2" $\times 3-1 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}$ (W $\times 4 \times$ D)
* .33 pounds (. 150 kg )

Mounting:
This module is designed for mounting on the $M B-1$ or $M B-2$ motherboards. A cardedge on the bottomof themodule provides the electrical connections. A slot in the card edge allows keying for module position assignment. Two \#8 screws secure the module to the MB-1 or MB-2 motherboards. The screws should be tightened securely to ensure good thermal transfer.

The Lo-1 Logic Output Module is an optically isolated, 8 bit data control module which compliments the existing logic Input Module, LI-1. The Lo-l is an ideal module to directly communicate data to peripheral devices such as an led display or dry contact relays. Up to four (4) BCD digits can be multiplexed and controlled with one (1) LO-1 module.

The Lo-1 is capable of providing a Binary output value from 0 to 255. The Lo-l Module requires an external power supply between 10-30 volts DC. Connection to the lo-l Module is via a DA-15 connector.

MOTE: REQUIRES TEE MC-8 MICROCOMPUTER AND MX-2 MOLTIPLEX MODOLE NOT COMPATIBLE WITE THE MC-2 OE MC-4 MICROCOMPUTERS

figure l-25B: logic output mudule lu-1


FIGURE 1-25C: LO-1 BLOCK DIAGRAM


## DA-15 COIIECTOR



LO-1 UIRIMG

L0-1
SPECIPICATIONS

## General:

* Negative True Logic, TTL-compatible
* 8-bit Resolution
* Optically Isolated


## Electrical:

* Open collector output, 5 to 50 VDC
* Sink Current, 100 mA , maximum
* On-State Voltage, 0.4VDC, maximum
* Conversion Time, 100 uSec
* Address Time, 100 usec
* External Power Supply, 10 to 30 VDC, at 100 mA , maximum
* Output Voltage Surge Protected
* Oper Collector
* DA-15 Connector
* FCC Class A approval
* 2500 Volts Optical Isolation


## Environmental:

* Ambient Temperature (operating): - $20{ }^{\circ} \mathrm{C}$ to $70{ }^{\circ} \mathrm{C}$
$-4{ }^{\circ} \mathrm{F}$ to $158{ }^{\circ} \mathrm{F}$
* Ambient Temperature (storage): - $20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ - $4^{\circ} \mathrm{F}$ to $185^{\circ} \mathrm{F}$
* Humidity: $20 \%$ to $90 \%$, non-condensing

Approximate Dimensions and Weight:

```
* 6-1/2" x 3-1/4" x 3/4" (W x H x D)
    (16.5cm x 8.3cm x 1.9 cm)
* . 33 pounds (.150 kg)
```


## Mounting:

This module is designed for mounting on the mb-l or MB-2 motherboards. A card edge on the bottom of the module provides the electrical connections. A slot in the card edge allows keying for module position assignment. Two $\neq 8$ screws secure the module to the MB-1 or MB-2 motherboards. The screws should be tightened securely to ensure good thermal transfer.

## APPENDIX G

$I^{2}$ R PROGRAMMABLE LOGIC CONTROLLER PLC-2

GTE Products Corporation
Electronic Control Operation
100 First Avenue
Waltham, MA 02254

## Model 1220

## General

The 12R Stand-Alone (Model 1220 ) is a microprocessor based intelligent logic controller with 8 inputs and 4 outputs utilizing fast response circuitry.

## Features

- 8 independent, optically isolated, low-voltage DC inputs
- 4 independent, optically isolated, low-voltage, highcurrent DC outputs
- 4 ten position BCD rotary switches
- 2 kilobyte user EPROM memory
- 4 field replaceable output transistors
- Slotted mounting holes for mounting on a standard tool relay rail
- Rugged industrial package


## Description

The I2R Stand-Alone (Model 1220) functions as a Stand-Alone controller with 8 optically isolated, low-voltage DC inputs and 4 optically isolated, lowvoltage, high current DC outputs. Also included, are 2 sets of 2 BCD rotary switches capable of providing any number from 0 to 9999 as a logic input. If I/O expansion is desired, the $I^{2 R}$ Master should be considered.


| P1 | INPUTS | Di $(4,1)$ |
| :---: | :---: | :---: |
| P2 |  | DI (4,2) |
| P3 |  | DI $(4,3)$ |
| P4 |  | DI $(4,4)$ |
| P5 |  | DI (6,1) |
| P6 |  | DI (6,2) |
| P7 |  | DI( 6,3 ) |
| P8 |  | DI $(6,4)$ |



S1
S2
S3
S4

OUTPUTS
DO $(7,1)$
DO $(7,2)$
DO $(7,3)$
DO $(7,4)$


Fig. 1 I/O EQUIVALENTS

# SPECIFICATIONS <br> $I^{2}$ R Model 1220 

TERMINAL DESIGNATIONS

| TOP |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TERMINAL DESIGNATION |  |  |  |  |  |  |  | TERMINAL DESIGNATION |  |
|  |  |  |  | FUNCTION |  |  |  |  | FUNCTION |
| S1-A, S1-B |  | 8 Pai |  | DC Output |  |  |  | A | 24 VAC Powe |
| S2-A, S2-B Pair |  |  |  | DC Output |  |  |  | B | 24 VAC Cent |
|  |  |  |  |  |  |  |  |  | Tap |
| S3-A, S3-B Pair S4-A, S4-8 Pair |  |  |  | DC Output DC Output |  |  |  | C | 24 VAC Powe |
|  |  |  |  | G | Chassis Groun |  |
| S1 S2 83 |  |  |  |  |  |  |  |  |  |
|  | B | B | 8 |  |  |  |  | B | B | B | G | *NOTE: |  |
|  | B+ | A | A | A | A | c | A | FOR BEST NOISE |  |
| FACEPLATE |  |  |  |  |  |  |  | POWER TERMINAL TO GROUND TERMINAL "G" AS SHOWN. |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A | A | A | A | A | A | A | A |  |  |
| B | B | B | B | B | $B$ | B | B |  |  |
| P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 |  |  |
|  |  |  |  | BOTTOM |  |  |  |  |  |
| TERMINALDESIGNATION |  |  |  |  |  |  |  | TERMINAL |  |
|  |  |  |  | DESIGNATION | FUNCTION |  |  |
| P1-A, P1-B Pair |  |  |  |  |  |  |  | FUNCTIONDC Input |  |  |  | P5-A, P5-B Pair | DC Input |
| P2-A, P2-B Pair |  |  |  | DC Input |  |  |  | P6-A, P6-B Pair | DC Input |
| P3-A, P3-B Pair |  |  |  | DC Input |  |  |  | P7-A, P7-B Pair | DC input |
| P4-A, P4-B Pair |  |  |  | DC Input |  |  |  | P8-A, P8-B Pair | DC Input |

CAUTION: CONNECT + EXTERNAL SUPPLY TO TERMINALS "A"
CONNECT - EXTERNAL SUPPLY TO TERMINALS "B"

PHYSICAL DIMENSIONS


POWER SUPPLY SPECIFICATIONS

AC Input Voltage
DC Input Voltage
MEMORY
Type
Size
Language

## INPUTS

| Number | - 8 Independent |
| :--- | :--- |
| Input Voltage | - $10-30$ VDC |
| Input Current | - $9 \mathrm{~mA} @ 24 \mathrm{VDC}$ |
| Turn ON Current | - $>3 \mathrm{~mA} \mathrm{DC}$ |
| Turn OFF Current | - 1.5 mA DC |
| Turn ON/OFF Time | - 500 uS typ, 700 uS max. |
| Input Resistance | - $30 \mathrm{~K} \mathrm{ohm} \mathrm{min} @ 30 V$. |
| (Which will not cause |  |
| turn ON) |  |
| Isolation | Optical, 1500V RMS |

## OUTPUTS

| Number | - 4 independent |
| :--- | :--- |
| Output Voltage | - $10-50$ VDC |
| Output Current | - 2 AMPS per Output |
| Inrush Current | - 10 A for 10 mS |
| ON-State Voltage | - 1.5 VDC max. |
| OFF-State Leakage | - 10 uA max. |
| Turn ON Time | - $2.5 \mathrm{uS} @ 24 \mathrm{~V}$ typ. |
| Turn OFF Time | - 350 uS @ 24 V typ. |
| Type | Darlington Transistor |
| Isolation | - Optical, 500 V RMS |
| Transient Protection | - Zener Diode |

ENVIRONMENTAL AND PHYSICAL

Weight
Dimensions
(In)
(Cm)

Operating Temp.
Storage Temp.
Humidity
Vibration
Shock
Safety
Noise
EMI/RFI
FCC
Isolation
Factory Burn-In
Warranty

- Less than 3.5 lbs .
- $3.7 \mathrm{H} \times 4.5 \mathrm{~W} \times 6.0 \mathrm{D}$
- $9.4 \mathrm{H} \times 11.4 \mathrm{~W} \times 15.3 \mathrm{D}$
- $-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ Ambient
- $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Ambient
- $5 \%$ to $95 \%$ Non-Condensing
- Vibrated at 60 HZ , up to 5.5 G 's in all 3 Axis to up to 1 Min.
- MIL STD 810C-Procedure 1
- Designed to UL508
- Designed to NEMA ICS2-230
- Shielded on 5 sides and die-cast aluminum base
- Class A Approval
- Designed to NEMA ICS1-109.21
- Each Unit Operating for 8 hours at $60^{\circ} \mathrm{C}$ ambient temp.
- 12 months

Electrical
Equipment

# WTELLIGENT NDUSTRIAL REAAY 

## The rugged, low-cost controller that's small like a relay but smart like a computer.



Intelligent Industrial Relay SYLVANIA GTE

ELECTPONIC OONTROLS OPEPATION WNLTHAN. MA CRISA


Rugged, die-cast aluminum alloy base ensures secure mounting and reliable operation over temperature extremes.

Up to two \#12 wire connections per screw terminal provide secure power, I/O, battery backup and ground connections. resistant steel case, fully shielded against harsh EMI and RFI.

Ample storage of user programs in a 2K EPROM.

Removable cover plate for field replacement of output triacs.

Four slotted holes for mounting directly to most industrystandard control relay rails.

LED status indicators on all input/output circuits.

# THE ${ }^{2}{ }^{2}{ }^{m}$ CONTROLLER PUTS PROGRAMMABLE POWER TO WORK IN THE RELAY ENVIRONMENT. 

## INTELLIGENT CONTROL.

The $\mathrm{I}^{2} \mathrm{R}^{\text {m }}$ (Intelligent Industrial Relay) Controller may look like a simple relay, but its high degree of built-in intelligence and programmable logic power distinguish it from ordinary relay systems. The $I^{2} R$ unit is a compact yet very powerful controller ready to work alone as a complete logic control system on a variety of small applications; or, in multiples to configure more complex control systems; or, as a dedicated, intelligent front-end processor to assist a larger host machine, such as GTE's MECA ${ }^{\text {T }}$ System.

The $1^{2}$ R Controller's solid-state microprocessor logic offers you full 16 -bit math and 2K of user memory, all programmed in SYBIL, a high-level yet easily understood programming language. Never before has this kind of programming power been available in such a conveniently small industrial package.

## COMPACT SIZE.

The $\mathrm{I}^{2} \mathrm{R}$ Controller is comparable in size and shape to two standard machine tool control relays, yet it provides total system performance. The basic unit's 12 I/O's ( 8 in, 4 out) with optically isolated circuitry. up to 26 counters and timers, 2 K user memory and four function-select switches are contained in a package with a footprint of less than 17 square inches. Its unique space-saving design mounts directly on your standard relay rail among the existing control hardware, enabling you to conveniently configure your total control system package.

## LOW COST.

In addition to the $I^{2}$ R Controller's attractively low price, its compact design and powerful intelligence will help you realize important savings in several areas.

First, its small size requires less of your costly panel space and reduces your overall wining costs. External wires now become internal program statements.

Secondly, increased EMI and RFI shielding means the $I^{2} R$ Controller can work exactly where it's needed without extra protection, eliminating added wiring and extended cabling. In addition, the 2K user memory allows you to write several applications in one EPROM and select the one you need, using the four-element switch array. This cuts your inventory costs and reduces re-programming time.

Most importantly, the $1^{2}$ R Controller's logic power will allow your operation to be more effective, more efficient and, thus, more productive.

## INDUSTRIAL QUALITY.

The $I^{2} R$ Controller is designed to operate in severe industrial environments. The fully-enclosed steel housing minimizes contamination from dust that can degrade the performance of electronic circuitry. Radiated and conducted EMI and RFI are controlled by extensive shielding and internal filtering techniques. The thermal properties of the device have been carefully engineered to operate well over the full industrial range of $0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$.

## FLEXIBLE APPLICATIONS.

Applications for this powerful controller are as limitless as your imagination. For maximum flexibility, each $I^{2}$ R Controller has four 10 -position mini-rotary switches which let you select up to 10,000 unique control programs, including independent operating modes, diagnostics and troubleshooting-all selected by simply turning a screwdriver. This flexibility makes the unit ideal for a variety of applications, from sensor monitoring, to small machine control, to dedicated system control-hundreds of control jobs, large and small.

## SIMPLE OPERATION.

You don't need a degree in computer programming to customize the $I^{2} R$ Controller. Because it is compatible with the MECA", it utilizes Sylvania's Basic Industrial Language (SYBIL), an English-like programming language that is easily understood and rapidly applied. You can quickly change .programs with a few simple keystrokes, or easily configure an entirely new application. Simplicity of operation means the $I^{2} R$ unit significantly reduces development and maintenance time.

A quick glance at the $I^{2} R$ Controller's features will show you why this compact powerhouse is rapidly changing the way industry thinks about control. Industrial I/O Basic unit incorporates 8 opticallyisolated switch closure inputs and 4 load-driving outputs.
Compact Size Requires less than 17 square inches of panel space.
Convenient Easy to install with 4 screws on a standard machine tool relay rail.
Economical Cost competitive with EM relays on small applications. Basic unit costs less than 4 installed relays.
Rugged Employs a unique, fully-shielded steel enclosure.
Independent A fully contained programmable logic controller capable of being the complete stand-alone system.
Easy to Use Programmed in an English-like language (SYBIL).
Expandable Designed to interface its own "Adder" for I/O expansion.
Reliable Fully solid-state design provides proven reliability and performance.
Easily Serviced Simply replace the unit, replace its EPROM, or utilize programmable switches to initiate diagnostics.
Fully Supported Product and service available nationally from a network of authorized GTE SYLVANIA Control Distributors.

## General

The $1^{2} R$ Controller may be used as a stand-alone control system; be combined with electro-magnetic industrial relays to offer a hybrid approach; or, be the smart front-end processor for a large computerbased controller or PC. It is one of the most powerful system building blocks available.

## Small Machine Control

As a total control system for small machine applications, the unit can monitor a number of position sensors-proximity switches, photo detectors, etc.and activate outputs such as motor starters, clutches and brakes.

## Industrial Press Control

The controller can conveniently monitor the press slide to determine what sequence of operations is permissive at any portion of the cycle. Operator safety concerns would be implemented as program interlocks and sequence safeguards.

## Smart Sensor Applications

Programmed to monitor up to 8 inputs, the controller will determine if an assembly (such as a package on a conveyor belt) is correctly positioned to meet a set of conditions.

## Motor, Pump or Compressor Control

The controller can monitor start and stop sequences of a motor or pump system, along with temperature and pressure, to determine if certain conditions are met. Total motor control based on proper operating conditions, diagnostics and failure reporting can be supplied to an operator.

## Annunciation

By monitoring the input and internal status sources, the $I^{2} R$ unit can activate lamps and other indicators to provide real-time operator information.

## DETAILED FEATURES

- "Logic heavy" with 2K non-volatile user memory.
- Up to 26 counters and timers.
- Up to 26 16-bit registers.
- A broad range of timers driven by a real-time clock; $20 \mathrm{~ms}, \mathrm{sec} ., \mathrm{min}$., hours, and days intervals, eliminates the need to cascade timers.
- LED indicators on all I/O circuits.
- 16-bit arithmetic (add, subtract, multiply, divide, relational operators) and 16 -bit counters.
- Immediate I/O control.
- User-defined programmable switches for up to 10,000 settings.
- Capable of being fully operated from battery backup.
- Inexpensive and reliable direct wiring.


## Manufacturing/Material Handling Systems

The unit can manage the individual segments of a discrete parts assembly line. With a single controller at each station, part positioning can be controlled along with a subsequent sequence of pick and place operations. Limit switches, photo cells and other interlock detectors signal the arrival of the part. The ${ }^{2}$ ² unit can then activate pneumatic solenoids, brakes, clutches, etc. Local operator annunciation can be via LED indicators or other industrial grade lamps. Operator pushbuttons would signal requests. The program select switches would make each controller interchangeable.

Included in the $I^{2} R$ Controller's package are a microcomputer with real-time clock, power conditioner, internal memory for both user and operating system programs, input signal conditioning and four solid-state relay outputs.

The microcomputer controls the unit's functions. The user customizes it with his own applications program stored in the user memory.

The 2K bytes of operating system provide the user with common software routines necessary for the high-level user program. Input signals are transformed into computer-compatible signals and transmitted via internal bus structure to the microcomputer.

## Relay Replacement

Because of its unique size, the $I^{2} R$ unit can directly replace industrial control relays. Panel space may be drastically reduced by building timers, counters and other logical control sequences into the $I^{2} R$ Controller. Up to 26 timers and counters may be replaced by a single ${ }^{2}$ R unit.

## Wherever Panel Space is Limited

If panel space is a premium (such as when explosion-proof enclosures must be used), the savings in reduced panel costs often more than offsets the cost of an I'R unit.

## Machine Diagnostics

The $I^{2} R$ unit will monitor the state of inputs and provide alarming, annunciation end diagnostics for a machine, process or other application.


The microcomputer's user program determines the overall sequence of operation. The program may activate any or all of the solid-state relay outputs based upon the state of inputs, internal program status, results of computations or progression of time.

The user's program may read the input switch settings of the four function-select switches at any user-defined point of the sequence. A switch setting ranging from 0 to 9,999 may result in the microcomputer implementing an entirely different program or control algorithm.

Also provided through the bus structure is an interface to the $I^{2}$ R Adder for expanded input and output capability.

The power conditioner accepts either 24 v ac or a 12 v dc battery backup to operate the entire unit.


The MECA Programmable Control System is GTE SYLVANIA's larger electronic controller with up to 96 input and output circuits, including switch closure inputs, load-driver outputs, analog inputs and other standard industrial I/O modules.
Like the $1^{2}$ R Controller, the MECA utilizes SYBIL programming language for use by those unfamiliar with computer languages. An interactive CRT terminal with a standard typewriter keyboard is employed for direct access to the microcomputer's memory. Programs are typed and reviewed on the screen and then sent to the microcomputer for processing.

The MECA system allows the user to simulate and test a sequence before configuring the final program. The small, general purpose computer simulates and stores programs for future retrieval and modification. A programmable interface is used to burn-in a pre-tested program into the EPROM.


## I²R CONTROLLER

## PROGRAM DEVELOPMENT

The program development technique is simple: configure the MECA System; develop the program using a standard MECA Development System; then, directly transfer the EPROM to the $I^{2} R$ unit for longterm application and field use. The MECA controller with standard modules is used as the development system and simulator for the $I^{2}$ R Controller.

Once configured to emulate the $I^{2} R$ unit, the MECA program is then interactively developed to create the final version of the user PROM using the CRT, computer programming system and programmable interface. When the EPROM is transferred to the easily accessible I ${ }^{2}$ R memory socket, the controller will perform identically to the MECA Development System.

## SPECIFICATIONS

## $I^{2}$ R BASIC UNIT-

## ELECTRICAL SPECIFICATIONS

AC Input Voltage
AC Input Current
DC Input Voltage DC Input Current User Memory Size
Memory Type

## INPUTS

Number •8

Voltage Range $\quad 18$ to 30 Vac or 10 to 30 Vdc
Input Current

Turnon Time - 10 Msec typ., 15 Msec Max.
Input Resistance which will not cause turnon
Input Isolation

## OUTPUTS

| Number | - 4 |
| :---: | :---: |
| Voltage Range | - 18 to 132 VAC |
| Output Current | - Total 2A S1 and S4 only; sum |
| Inrush Current | -15A for 32 ms . |
| On State |  |
| Voltage Drop | -1.5 Vac max. |
| Off State Leakage | - 5 mA max. |
| Turnon Time | - $60 \mathrm{~Hz}, 8 \mathrm{~ms}$. |
|  | - $50 \mathrm{~Hz}, 10 \mathrm{~ms}$. |
| Turnoff Time | - $60 \mathrm{~Hz}, 8 \mathrm{~ms}$. |
|  | - $50 \mathrm{~Hz}, 10 \mathrm{~ms}$. |
| Type | - Zero crossing Triac output |
| Output Isolation | - 2500 VRMS |

## ${ }^{1}$ ²R BASIC UNIT-

## ENVIRONMENTAL AND PHYSICAL

Weight
Dimensions
(in.)
(Cm.)
-3.7W x 4.5L x6.0H
-9.4W x $11.4 \mathrm{~L} \times 15.3 \mathrm{H}$
Operating Temp.
Storage Temp.
Humidity
Vibration
Shock
Factory Burn-In
Warranty
Safety
Noise
EMI/RFI

- $10 \mathrm{~mA} \pm 10 \%$ at 24 Vac
$-5 \mathrm{~mA} \pm 10 \%$ at 12 Vdc
- $10 \mathrm{~mA} \pm 10 \%$ at 24 Vdc for $A c$ and Dc inputs
- 18 to $28 \mathrm{Vac}, 47$ to 63 Hz
- 0.4 A max.
- 10-14 Vdc, 12 Vdc nominal
- 0.3 A max.
- 2048 8-bit bytes
- UV-EPROM (Intel 2716 or equivalent)
- 30 K Ohm min. at 32 Vac
- 2500 VRMS


## ELECTRICAL EQUIPMENT CONTROL PRODUCTS

There are hundreds of other Sylvania control products with proven reliability, and compact economical design to meet your most exacting industrial need.

## Starters \& Contactors

A complete line of NEMA size starters 00 through 6 in open, enclosed and combination types supported by an impressive array of accessories and kits.

Also a new horsepowerrated starter type HP design for specific applications.

Industrial Control Relays
Three Distinct designs:
Type P6, 600 volt convertible cartridge relay for machine tools.

Type PM, 600 volt changeable contact for heavy-duty industrial control.

Type SM, 300 volt very small precision type control relay.

## Heavy-Duty Pushbuttons

Type 100T-A rugged, reliable, 600 volt oil-tight line designed to perform in the most severe industrial applications.

Type 100M-The most complete and attractive 300 volt, 10 amp . pushbutton line available.

## ELECTRICAL EQUIPMENT GROUP SALES OFFICES

## Alabama

Trussville, AL 35173 201 Morrow Avenue
(205) 655-8814

## Arizona

Phoenix, AZ 85016
4647 N. 16 th Street
(602) 277-2649

California
Fresno, CA 93703
2515 E. Lamona Avenue
(209) 237-2093

Los Angeles, CA 90012
729 E. Temple Street
(213) 625-8971

Orange, CA 92667
303 W. Katella Street, Suite 304 (714) 771-4110

Riverside, CA 92507
1180 Central Avenue \#3
(714) 684-1525

Sacramento, CA 95826
2950 Ramona Avenue
(916) 452-7621

San Diego, CA 92108
7801 Mission Center Court
Suite 410
(714) 297-1082

San Leandro. CA 94578
14895 E. 14th Street (415) 352-3450

Santa Clara, CA 95050
400 Reed Street, Sule 106
(408) 727-4512

Santa Rosa. CA 95406
3559 Airway Drive
(707) 528-9000

## Colorado

Denver, CO 80223
730 S. Jason Street
Unit 23
(303) 777-8285

## Florida

Hollywood FL 33020
2741 NW 29th Avenue, Suite 200B
(305) 921-2611

Jacksonville, FL 32216
2121 Corporate Square Boulevard
Suite 171
(904) 725-1191

Orlando, FL 32809
7492 Chancellor Drive
(305) 859-6220

Tampa, FL 33607
4023 N. Armenia Avenue
Suite 102
(813) 876 -9616

## Georgia

Atianta, GA 30344
2115 Sylvan Road
(404) 762-1781

Illinois
Eik Grove Village, IL 60007
800 Devon Avenue
(312) 593-3400

## Indiana

Merrillville, IN 46410
8300 Broadway Avenue
(219) 887-5645

## Kansas

Kansas City, KS 66115
450 Funston Road
913) 371-3773

## Louisiana

New Orieans, LA 70123
5510 Jefferson Highway
(504) 733-6970

Maryland
Columbia, MD 21044
10632 Patuxent Parkway
Suite 121
(301) 995-0222

## Massachusetts

Waltham, MA 02154
100 First Avenue
(617) 890-9200

## Michigan

Dearborn, MI 48126
1080 Ford Road
(313) 582-8754

Grand Rapids, MI 49505
2828 Leelanau Drive NE
1616) 363-8778

Lapeer, MI 48446
3519 Crestwood Drive
(313) 667-0970

## Minnesota

Fridey, MN 55421
5330 Industrial Boulevard, NE
(612) 571-9400

Hastings. MN 55033
1122 Wainut Street
(612) 437-5763

## Mississippi

Jackson. MS 39204
855 South Plaza Drive, Suite 205

## (601) 373-9421

## Missouri

Hazelwood, MO 63042
5656 Campus Parkway
(314) 731-5515

## New Jersey

Teterboro, NJ 07608
1000 Huyler Street
(201) 288-9484

## New York

Buffalo, NY 14224
25 Dewberry Lane
(716) 668-6136

## North Carolina

Charlotte, NC 28224
8227 H Arrowridge Boulevard
(704) 527-5862

Raleigh, NC 27606
4904 Waters Edge Drive, Suite 220
(919) 851-8130

## Ohio

Cincinnati OH 45242
5480 Creek Road
(513) 793-6440

Cleveland. OH 44110
1146 E. 152 nd Street
(216) 851-2200

Columbus, OH 43214
700 Morse Road
(614) $888-3428$

Toledo, OH 43612
6517 Telegraph Road
(313) 847-1219

## Oklahoma

Oklahoma City, OK 73106
1941 NW 17th Street
(405) 524-3641

Tulsa, OK 74114
3010 South Harvard
(918) 749-6776

## Oregon

Portland, OR 97219
10151 SW Barbor Blvd. 206D
(503) 245-5508

## Pennsylvania

Lionville, PA 19353
219 Welsh Pool Road
(215) 363-0490

Pittsburgh, PA 15234
250 M1. Lebanon Boulevard
(412) 341 -5777

## South Carolina

Mt. Pleasant, SC 29664
303 Ventura Road, SNEE Farm
(803) 881 -3565

## Tennessee

Nashville, TN 37217
Two International Plaza
Suite 303

## (615) 361-4474

## Texas

Dallas, TX 75207
2619 Farrington Street
(214) 631-8080

Houston, TX 77008
1440 Greengrass Drive
(713) 869-8671

## Utah

Sandy, UT 84070
1270 E. 8600 South, Sulte \# 14
(801) 561-7332

## Washington

Kennewick, WA 99336
2545 West Falls Avenue, Sulte A
(509) 735-2502

Seattle, WA 98108
750 South Michigan Street
(206) 763-2660

## West Virginia

Huntington, WV 25705
80 Sycamore Street
(304) 529-2036

## Wisconsin

Milwaukee, WI 53223
5600 West Brown Deer Road
(414) 355-1270

## Puerto Rico

Canovanas PR 00629
PO. BoxAF
(809) 751-2929

## Headquarters

Electrical Equipment
GTE Products Corporation
100 Endicott Street
Danvers, MA 01923
(617) 777-1900

## APPENDIX H

BATTERY CHARGERS

## (1) SENS <br> STORED ENERGY SYSTEMS

## FC BATITERY CHARGER

Introduction: The SENS FC battery charger is a sophisticated battery charger. It features fully automatic operation including "Soft Start".

Upon Delivery: The package should be inspected for damage in transit. Any damage should be reported immediately to the carrier. ive are not responsible for damage en route.

Installation: AWG \#12 wire should be used for connection to the battery and AWG \#14 should be used for connection to the AC line. This should be done by a qualified installer.

As soon as the battery is connected, the voltmeter should indicate battery voltage.

The charger should be located such that there is at least 6" ( 15 cm ) of free air space above and below it. If this simple precaution is not folloved it could adversely affect the charger's reliability.

Operation: The front panel of a typical SENS FC charger is shown in figure 1. The front panel contains the $A C$ and $D C$ fuses, volt and ammeters and (optional) timed BOOST switch.

When power is applied to the charger it will be in the AUTOBOOST mode (for operation with a BOOST timer see section on MODELS WITH TIED BOOST). Output current will be indicated on the ammeter.

AUIOBOOST... When the charger is tumed on, it will be in the BOOST mode (see section on timed BOOST for definitions of FLOAT and BOOST). It will stay in the BOOST mode until the battery reaches the BOOST voltage setting. The charger will then AUTOMATICALUY switch to the FIOAT mode. It will hold the battery at the proper FIOAT voltage until the charger has a load on it that exceeds approximately $1 / 2$ of the charger's rated output (this would occur when the battery is used to start an engine). It will then switch to the BOOST mode until it reaches the BOOST setting at which time it will again switch to the FLOAT mode. This eliminates the need to periodically BOOST the batteries to keep the cells at equal potential (see BOOST below).
****MODEIS WITH TIMED BOOST****
When the timer is turned clockwise, the charger is in the BOOST mode. It will remain in the BOOST mode for the time indicated on the timer. It will then revert to the FLOAT mode.

FLOAT..........Holds the battery at "Float Voltage". This is the normal fully charged voltage of the battery.

## HIII STORED ENERGY SYSTEMS

EOOGT......... Charges the tattery to the "Boost "vilage" setting. Thiss voltage is slaghtly higher than the FLDAT vlotage. Continued operation in the Monst mode is not reccomended as jt tende to boil away the electrolyte in the batteries. Feriodic operation in this mode is however reccomerided since it equalizes the the voltages of the various cells in the battery.

THEOFY OF OFEFATIDN

All SENS FC chargers utilize phase-controlled firing of silicon controlled rectifiers (SCF's) to ottain complete control over the charging voltage and current.

The circuit consists of ten circuit bloct:s.

Eight of these are on the printed circuit board. They are the ac supply, firing angle, strobe, voltage coritrol. boost, current limit, soft start, and switching circuits.

AC supply......The power for the control circuit, which is ottairied through TES (pins 1 and 2) is rectified by diodes D1, D2. D1 $\mathrm{S}^{2}$ and D11. It is filtered by C1.

Firing angle.. The $A C$ control voltage is also used as sync for the firing circuitry for the SCF's. A sawtooth is produced by discharging $C 2$ through D4 and $\mathrm{F} 1 . \quad \mathrm{C}$. is charged by smooth DC obtained from $R 2$ and is discharged at the end of each tialf cycle (ie. 120 times a second). This positive going sawtooth wave is coupled through $C \Xi$ and $F i \leq$ to pin 11 of ICl (which is a quad-comparator). This quarter of the IC provides the actual drive for the SCK" 5 . The other input of the IC (pin 10) is a changing DC voltage, thus if the DC voltage applied to pin 10 of the IC goes up, the output will switch states at a later time. This is due to the fact that the pin 10 input is compared to the sawtooth input at pin 11. Conversely, if the DC voltage present at pin 10 were to fall, then the output state change would occur at a sooner time in the $A C$ cycle. Cb is used to store the potential at the input to the comparator at pins 10,11 and 13.

Strobe....... One of the comparators (at pins 2,4, and 5s senses current and acts as a strobe to the voltage limit circuitry. This comparator's pin 5 is held at a constant low voltage and pin 4 is connected to the negative side of R47 (the shunt). Whenever there is a potantial accross R47, this comparator switches and prevents the voltage control compariators from having an effect. This means that the voltage control circuitry only operates when there is no current flow (between firings of the SCR's). Therefore the voltage control circuitry is not effected by the voltage drop that occurs between the battery charger and the batteries. The voltage control circuitry is only connected to the batteries when there is no current flow.
'Jeltage cortrol. . The comparator at pine 1,6 , and 7 ie the heart of the voltane control circuit. Fin 6 is connected to the FLOfit fot
 and Kzó. Fin $\bar{\prime}$ is held at a voltage controlled by the [icici circuitry. The FLDAT voltage is the basic normal operataria voltage of the battery charger. and under most circumstances. the potential at piri 7 is rield steady. This will provide the tattery with enough current to maintain FLOAT voltage.

Ioost..........The comparator at fins 8,9, arid 14 is the EOOST comparator. Fin $B$ is held at a poteritial determined by $\quad$ b and DB. When a high current is demanded from the charger (btien starting a moter) piri 2 of IC1 will go tigot arid full uF fin 9 through Fis4 and Fido. This puaces the urit in LOUST. The output of this comparator (pin 14) will alsogo high and Full uf the wjper of Fist. This je the EODST valtage adjustment foot. It will pull up the voltage coritrol comparator at pin $7 . \quad$ Thus it chanqes the reference for the: voltage control circuit. charging the battery to a higher voltage setting.

Current Jimit.. Current limit for the charger is obtained by lisjrig the voltage dropped accrose R47 to charge C6 through R19 arid Fiad. The current limit is set by R42. Fis3. R44 and Fi4s whicti discharge Cも.

Soft start....On initial turn on. "Soft Start" or a slow-start is the result of a network consisting of C4, R4 and DE. It pulls pin 10 up to a level which prevente the comparator from providirig firing signals. As C4 charges, the voltage at piri 10 falls to the level on Cb.

Switching..... The output of the comparator at pins 10, 11, and 13 is connected to SCR's 1 and 2 's gates. Only one of these will gate at a time however, depending on which half of the sirie wave the input is in. Current is allowed to flow through these SCR's and is 1 imited by R6 and R7. This provides the gate current required by the power SCR's (SCFE and SCFA). The other half of the fullwave bridge is formed by diodes D12 and D13. The positive line is fed through R47 and brought off the board through TEI.

The other two circuit blocks are off the board. The are the $A C$ input and DC output circuitry.

AC input......The AC input circuitry is fused by Fi (FJ is also included in 220 and 440 volt models) and the $A C$ potential reduced by transformer Tl. Tl has two secondaries. Dne of these provides power to the control circuitry and is connected to it through connector TES. The other secondary goes to the power circuitry on the FCE. It is connected through TE1.

DC output..... The DC output has two metere to monitor the charger"s output. The ammeter is wired in series with the positive output lead and the voltmeter is wired in parallel with the output. Fuse $F 2$ protects the charger in case of malfunction.

## FC CHARGER ADJUSTING PROCEDURE

Th FC unit is factory adjusted. Field adjustments are normally unecessary. In the event that it is necessary to make voltage adjustments, they are made as follow: (Due to the time required for the battery to respond to changes in voltage settings, adjustments should be made in small increments)
The FC charger is an automatic two rate (Auto Boost) charger, therefore the boost or high rate must be turned off before the float or low rate can adjusted:

1) Remove paper stickers from Potentioneters R-30 (float) and R-34 (boost)
2) Turn Boost "pot" fully counter clockwise

Now adjust the Float voltage:
3) Adjust Float "pot" in small increments until the battery reaches the desired voltage and the charger ammeter reads between 1 and 2 amps. The low rate is now set

Now adjust the Boost voltage:
4) Turn Boost "pot" fully clockwise
5) Remove $A C$ power from the charger for a minute and then restore it (the changer will now be in the Boost or high rate mode)
6) Allow the batteries to charge until the desired boost voltage is reached.
7) Slowly turn the Boost "pot" counter clockwise until the charger Ammeter drops suddenly to zero.

The SENS FC charger is completely automatic, thus will boost charge the battery at high rate until the battery is charged. Then it will decrease the charging voltage and current to a level adequate to maintain the battery in a fully charged state.

DO NOT ASSUME THAT THE CHARGER HAS FAILED IF THE OUTPUT CURRENT (AMPS) READS O: During the transition from BOOST mode to FLOAT mode, the battery voltage is higher than the charger voltage so that no charging current will flow during this time. Once the battery voltage has fallen to the FLOAT level, the charger will put out a small amount of current.

HOW TO TET工 IF THE CHARGER IS WORKING PROPERLY:

1. If the output amps are about the same as the rating of the unit, ie., 6 amps for an FC-12-6 or FC-24-6, and the battery voltage is slowly rising, the charger is in the autamatic BOOST mode.
2. If the output amps are from 0 to 1 or 2 amps and the battery voltage is about 13.5 volts (for a 12 volt charger), 27 volts (for a 24 volt charger) or 36 volts (for a 32 volt charger), the charger is in the FLOAT mode.
3. If the output amps are 0 and the battery voltage is less than in (2), the charger or the AC input has failed.
4. If the output amps are at the rated output and stay at this level for several days, the charger may have failed or there may be a shorted cell in the battery.

Trouble
－－ーーーー

No Dutput

AC Flise
Only Ellowe
$A C$ and $D C$

Fossible Cause

AC．Fuse Elown
DC Fuse Elown
No AC Fower
Defective Transformer
Defective Control Cireuit
Defective Ammeter

Defective Control Cireuit Defective Transformer

Defective Coritrol Circuit

Test
－－－－

Chect：Fuse
Chect：Fuse
Chect：Voltage
Test \＃1
Text \＃$^{2}$
Check：Ammeter

Test \＃2
Test \＃1

Test \＃2

Test \＃2

Test \＃2

Fiepair Precedure
－－－－－－－－－－－－－－－－－－

Replace Same
Replace Same
Restore Fower
Replace Same
Feplace Same
Replace Same
Fieplace Same
Fieplace Sàme

Feplace Same

Feplare Same

Feplace Same

Improper
Defective Control Circuit
Fiegulation
Test Number 1.
With tansformer leads disconnected，energiae the transformer with the normal $A C$ supply voltage．Measure power eecondary voltage．It should be $1 / 2$ or 2 times the normal battery voltage． Measure control secondary voltage．It should be approimately 1 ov．

Test Number 2
Due to the modest cost of the control circuit，it is recommended that the entire unit replaced rather than attempting to repair it．If the troubleshooting guide has not revealed ariy defective components，the Control Circuit should be replaced as a unit．

ac fuse


DC FUSE


VOLTMETER


VOLTMETER

| Fi |  | 470 |  |  | F－4412 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fi2 |  | ここ0に |  |  | F－4427 |
| RE |  | 220 |  |  | F－4409 |
| F4 |  | 1 F |  |  | F－4413 |
| RE |  | $2.21 \%$ |  |  | P－4415 |
| Fi6 |  | 102 |  |  | F－4618 |
| Fi7 |  | 10 2W |  |  | F－4618 |
| FE |  | 1F： |  |  | P－4413 |
| R9 |  | 16： |  |  | F－441こ |
| た10 |  | 10 |  |  | F－44O1 |
| F11 |  | 10 |  |  | F－4401 |
| Fil2 |  | 2.26 |  |  | F－4415 |
| F13 |  | 2.26 |  |  | F－4415 |
| F14 |  | 47E |  |  | F－442ご |
| Fi5 |  | 1 M |  |  | F－443 1 |
| R16 |  | Not L | Used |  |  |
| F17 |  | 470 |  |  | F－4412 |
| F1日 |  | 15： |  |  | $F-4413$ |
| F19 |  | 2.26 |  |  | F－4415 |
| F20 |  | 100 |  |  | F－4425 |
| R21 |  | 1506 |  |  | F－4426 |
| F22 |  | 1 OOF |  |  | F－4425 |
| F2S |  | 4．7k |  |  | F－4417 |
| F24 |  | 2．2M |  |  | F－44E |
| F25 | 126 | 200k | 1／8WMF | 1\％ | F－4376 |
|  | 24V | 200\％： | $1 / 8 W M F$ | $1 \%$ | F－4376 |
|  | ここV | 2704 |  |  | F－4こ8 |

All Values $1 / 4 W 5 \%$ unless otherwise stated．
Umit Fis4 on models with timed EOOST．

| F26 | $\begin{aligned} & 12 v \\ & 24 v \\ & 52 v \end{aligned}$ | $200 \% 1 / 8 W$ $20041 / 8 W$ $270 \%$ | $\begin{aligned} & \text { MF } \\ & M F \end{aligned}$ | $\begin{aligned} & 1 \% \\ & 1 \% \end{aligned}$ | $\begin{aligned} & F-4=76 \\ & F-4376 \\ & F-4 \Xi 8= \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F27 |  | Not Used |  |  |  |
| R28 |  | E． $6 \%$ |  |  | F－4－81 |
| F29 |  | 1．82K $1 / 8 W$ | W MF | $1 \%$ | \％F－44t1 |
| FiSO |  | $10 \%$ Fot |  |  | F－4E0̇ |
| FE1 |  | 1 M |  |  | $F-4421$ |
| Fこ2 |  | E． |  |  | F－4J85 |
| FES |  | 226 |  |  | F－4421 |
| Fic． 4 |  | 10F Fot |  |  | F－450． |
| F：35 |  | 4．7K゙ |  |  | F－4417 |
| RE6 |  | 270 |  |  | F－4こ65 |
| R37 |  | 1 k |  |  | F－4413 |
| FSS |  | E．Sk |  |  | F－4こ39 |
| F39 |  | 1004 |  |  | F－4425 |
| F40 |  | 10ヶ， |  |  | F－4419 |
| F41 |  | Not Used |  |  |  |
| R42 |  | 470ト： |  |  | F－44こ？ |
| F43 |  | 7504： |  |  | $F \cdot 4-46$ |
| F44 |  | 1 M |  |  | $F-44 \pm 1$ |
| Fi45 |  | $2.2 M$ |  |  | F－44E |
| R46 |  | Not Used |  |  |  |
| F47 |  | Shunt |  |  |  |
| F48 | 12V | 200F6 1／8W | MF | 1\％ | F－4こ76 |
|  | $24 V$ | OMIT |  |  |  |
|  | ここV | CMIT |  |  |  |
| R49 | 12V | 200¢ 1／8W | MF | $1 \%$ | F－4ごも |
|  | 24V | OMI T |  |  |  |
|  | 32V | OMIT |  |  |  |
| R64 |  | 10 |  |  | $F-4401$ |

        20 \(1 / 8 W\) MF \(1 \%\) F-43:
    $\begin{array}{lll}\text { F27 } & \text { Not Used } & \\ \text { R2G } & 5.6 K & \text { F-4E81 }\end{array}$
F29 1.82K 1/8W MF 1\%F-44も1
FiSo 104 Fot F.4EOS
FiE1 IM F-44E1

FiJ4 10 Fot F-450.
Fi=゙ 4.7K F-4417
Rこ6 270 F-4こ65
Fご $1 \mathrm{k} \quad$ F-4413
RES E.SK F-4こ39
Fi.9 100れ F-4425
F40 10K F-4419
$\begin{array}{lll}\text { Fi41 Not Used } & \text { F70: } & \text { F-442? }\end{array}$
F43 750H F-4346
Fi44 1M F-44ミ1
F-44?
$12 \cup$ 20OF $1 / 8 W$ MF $1 \%$ F-4
24V OMIT
12V 200ヶ $1 / 8 W$ MF $1 \%$ F-4ミフも
24V OMIT
R64 10
F-4401

## Capacitors

| C1 |  | 100LIF／25v | P－525 | C9 |  | $1004 F / 25 v$ | F－525． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c2 |  | ． 15 SuF Mylar | F－5097 | C10 |  | ．1／100v Mylar | F－50ci4 |
| CS |  | ．022uF Mylar | P－5045 | C11 |  | Not Used |  |
| C4 |  | 10 LF／25v | F－5235 | C12 |  | ．OO47uF djsk | F－5084 |
| C5 |  | ．027uF Mylar | F－E108 | C13 |  | Not Used |  |
| C6 |  | 10 UF／2Sv | P－5235 | C14 |  | ．022uF Mylar | F－5i4 |
| C7 |  | ． 01 UF disk． | P－5079 | C15 | $12 V$ | ．0047LIF | F－E130 |
| CB | $12 v$ | －ن047ur Mydar | F－51こ6 |  | $24 v$ | OMIT |  |
|  | $24 v$ | －0047uF Mylar | F－5136 |  | $32 v$ | OMIT |  |
|  | $32 v$ | ．OOS9uF Mylar | F－5135 |  |  |  |  |


| D1 | 1154004 | F－306 |
| :---: | :---: | :---: |
| D2 | 1 NAOM | F－T006 |
| DE | 1 NAOOA | $F-\mathrm{FOO}$ |
| D4 | 1N414E） | F－S08 |
| D5 | 1N4148 | F－S08 |
| D6 | 1N4148 | F－S08S |
| D7 | SETECIED | P－3152 |

Semicoriductors
－ーーーーーーー

| IC1 | MCJ̇O2F | F－E525 |
| :---: | :---: | :---: |
| SCR1 | C10EF | F－ $\mathrm{F}^{195}$ |
| SCFI2 | C10．EE | F－3195 |

Misc．
－－－ー－

TE1 4 Fin Fillaa
TE2 $\quad$ Not Used

Transformer

FC－12－6
F－6こ9
FC－12－10
F－6こ94
FC－24－6
FC－24－10
FC－32－6
FC－ご2－10
F－6こ95
F－6591
F－6．396
F－6592

TET

Volt Meter
$20 \vee F-7290$
20v F－7290
$40 \vee F-7291$
$40 \mathrm{~V} F-7291$
40w F－7291
40v F－7291

Armeter

| $10 A$ | $F-7280$ | $M D X-3$ | $M D L-10$ |
| :--- | :--- | :--- | :--- |
| $15 A$ | $F-7281$ | $M D X-3.2$ | $M D L-20$ |
| $10 A$ | $F-7280$ | $M D X-5$ | $M D L-10$ |
| $15 A$ | $F-72 B 1$ | $M D A-B$ | $M D L-20$ |
| $10 A$ | $F-7280$ | $M D X-5$ | $M D A-10$ |
| $15 A$ | $F-7281$ | $M D A-8$ | $M D A-20$ |

PRINTED CIRCUIT ASSEMBLIES
STANDARD
FC－12－6
P－2810
FC－12－10
P－2815
FC－24－6
P－2820
FC－24－10
P－2825
FC－32－6
P－2830
FC－32－10
P－2835

WITH TIMER（EQUALIZE TIMER ON FRONT OF UNIT） P－2811

P－2816
P－2821
P－2826
P－2831
P－2836

$$
\begin{aligned}
& F-3199 \\
& F-=199
\end{aligned}
$$

P－3152
$\mathrm{P}-3152$
F－－ت004
F－
F－-178
SELABCTED
Selected
1ト4004
1N4004
D2015L
D2015L

## SCRE SIOISL

S1015L

|  | $\frac{\text { STANDARD }}{}$ | WITH TIMER（EQUALIZE TIMER ON FRONT OF UNIT） |
| :--- | :--- | :---: |
| FC－12－6 | P－2810 | $P-2811$ |
| FC－12－10 | $P-2815$ | $P-2816$ |
| $F C-24-6$ | $P-2820$ | $P-2821$ |
| FC－24－10 | $P-2825$ | $P-2826$ |
| $F C-32-6$ | $P-2830$ | $P-2831$ |
| $F C-32-10$ | $P-2835$ |  |



## GORTRAC Cable And Hose Carrier Systems

 EQUIPMENT, STEEL MILL MACHINERY

- No pinchpoints
- Available in 5 sizes, 17 radii
- Eliminates hazards to operators
- Travels and widths to fit your requirements

A and A Manufacturing Co. Inc.

## GORTHE

## - GORTRAC WELDED LINK DESIGN



SB SERIES

| MODEL NO. | H <br> HGT. | R <br> RADIUS | K <br> EXT. | CURVE <br> LENGTH |
| :---: | :---: | :---: | :---: | :---: |
| SB 55 | 5.50 | 2.062 | 4.75 | 10.50 |



## SC SERIES

| MODEL NO. | H <br> HGT. | R <br> RADIUS | K <br> EXT. | CURVE <br> LENGTH |
| :---: | :---: | :---: | :---: | :---: |
| SC75 | 7.50 | 2.75 | 6.75 | 14.50 |
| SC115 | 11.50 | 4.75 | 8.75 | 21.0 |
| SC1325 | 13.25 | 5.625 | 9.625 | 24.0 |

BAR CARRIER


## MOUNTING BRACKET



| MOUNTING DIMENSIONS |  | SC |
| :--- | :---: | :---: |
| Carrier Width | A | - |
| Overall Track Width | C | A +.50 |
| Mounting Holes, Brackets <br> Outward | $\mathrm{D}_{1}$ | $\mathrm{~A}+1.0$ |
| Overall Width of Mounting <br> Brackets | $\mathrm{E}_{1}$ | $\mathrm{~A}+2.0$ |
| Mounting Holes, Brackets <br> Inward | $\mathrm{D}_{2}$ | $\mathrm{~A}-1.0$ |
| Distance Between Mounting <br> Brackets | $\mathrm{E}_{2}$ | $\mathrm{~A}-2.0$ |

## AVAILABLE MOUNTING BRACKET ARRANGEMENTS

## HOW TO ORDER OR FOR QUOTATION

(1) Determine diameter of largest cable or hose to be carried. Carrier hole size should be $1 / 8^{\prime \prime}$ larger than cable or hose diameter.
(2) Pick track radius best suited for your application. Bending radius of $8 \times$ diameter of largest hose or cable is recommended.
(3) Allow $1 / 4^{\prime \prime}$ between edges of adjacent holes and $3 / 8^{\prime \prime}$ clearance at the ends of the carriers. If carrier width exceeds $12^{\prime \prime}$, allow $1 / 2^{\prime \prime}$ wide space in center of the carrier for fastener screw. With bar carriers, allow $1 / s^{\prime \prime}$ between adjacent cables and $1 / 8^{\prime \prime}$ between cables and links.

Track Radius Preferred $\qquad$ In.

Gortrac Model No. $\qquad$ Sgl. Link $\qquad$ Dbl. Link $\qquad$
Max. Machine Travel Speed $\qquad$ In/Min.

Total Machine Travel $\qquad$ In.

Gortrac Length
(1/2 Travel + Curve Length)
Type of Carriers Preferred:
( ) Machined ( ) Bar ( ) Alternate Bar \& Machined
Sketch of Hole Sizes \& Locations enclosed $\qquad$ Yes $\qquad$ No
Carrier Width ("A" Dimension) $\qquad$ In.

Cable/hose Load $\qquad$ Lbs/Ft.
Mounting Brackets $\qquad$ Inward $\qquad$ Outward (2 Pair Supplied)

Mounting Bracket Arrangement 1 $\qquad$ 2 $\qquad$ 3 $\qquad$ 4

## ACCESSORY ITEMS

Fixed Roller Supports $\qquad$ (Quantity Required)
Carriage Support System $\qquad$ Single System $\qquad$ Double System Manifold Length $\qquad$ In.
Chip Guards $\qquad$ Top $\qquad$ Bottom

Date $\qquad$ For Quotation Only $\qquad$
Quantity Required $\qquad$
Date Required $\qquad$
Order Number $\qquad$
Company Name $\qquad$
Address $\qquad$
City $\qquad$
State Zip $\qquad$
Attention $\qquad$
Phone $\qquad$

## GORTRAC DOUBLE LINK DESIGN



| MODEL <br> NO. | H <br> HGT. | R <br> RADIUS | K <br> EXT. | CURVE <br> LENGTH |
| :---: | :---: | :---: | :---: | :---: |
| S-135 | 13.5 | 5.375 | 10.75 | 24.00 |
| S-170 | 17 | 7.125 | 12.5 | 30.00 |
| S-200 | 20 | 8.625 | 14 | 36.00 |
| S-245 | 24.5 | 10.875 | 16.25 | 42.00 |
| S-275 | 27.5 | 12.375 | 17.75 | 48.00 |

## S SERIES

BAR CARRIER


## MACHINED CARRIER



## MOUNTING BRACKET



| MOUNTING DIMENSIONS |  | S |
| :--- | :--- | :---: |
| Carrier Width | A | - |
| Overall Track Width | C | $\mathrm{A}+1.0$ |
| Mounting Holes. Brackets Inward | $\mathrm{D}_{2}$ | $\mathrm{~A}-0.50$ |
| Distance Between Mounting Brackets | $\mathrm{E}_{2}$ | $\mathrm{~A}-1.75$ |
| Mounting Holes, Brackets Outward | $\mathrm{D}_{1}$ | $\mathrm{~A}+1.0$ |
| Overall Width of Mounting Brackets | $\mathrm{E}_{1}$ | $\mathrm{~A}+2.0$ |



XL SERIES
BAR CARRIER


## MOUNTING BRACKET



| MOUNTING DIMENSIONS |  | XL |
| :--- | :--- | :---: |
| Carrier Width | A | - |
| Overall Track Width | C | $\mathrm{A}+1.0$ |
| Mounting Holes, Brackets Outward | $\mathrm{D}_{1}$ | $A+2.25$ |
| Overall Width of Mounting Brackets | $\mathrm{E}_{1}$ | $\mathrm{~A}+3.188$ |
| Mounting Holes, Brackets Inward | $\mathrm{D}_{2}$ | $A-1.77$ |
| Distance Between Mounting Brackets | $\mathrm{E}_{2}$ | $\mathrm{~A}-\mathbf{2 . 6 2 5}$ |

## UNSUPPORTED SPAN VS. LOAD




> E- - L-SERIES-DOUBLE LINK S-SERIES-DOUBLE LINK SC WELDED TRACK

FOA BHGLE LINK AS BEMBLY USE 3 THE WEIGHT LSTED FOE
DOUELE LINK ASSEM. DOLYBLE LINK ASSEM.

## SUPPORT ROLLERS

Stationary support rollers are available for unsupported spans that exceed the maximum lengths shown on graph below. One support roller provides maximum travel 3 times the recommended unsupported lengths and 2 support rollers provide maximum travel 4 times the recommended unsup. ported lengths. Moveable support carriages are available for larger travels and higher speeds

## wore "C" OMENENOM: OVEMAL



## CARRIAGE SUPPORT SYSTEM

A rolling carriage support system is available for high speed applications or when the cable/hose load and travel exceed the limits available with fixed roller supports.

Unique Carriage Support System consists of major rollers and intermediate conveyor supports between the major rollers, which support the cable carrier for the complete length of travel. The entire system rolls on channels on the floor (or the crane bridge) and the system can be operated at any speed or load that is required.

```
C = Overall Track Width
D = Total Travel
E = Manifold Length (18" Min. Recommended)
F = Overall Length of Carrier System
(D/2 + E + H + 2L)
H = Height of Carrier
\(H=\) Height of Carrier
```


$(D+E+H+2 L)$
2 Required $6^{\prime \prime} \times 8.2 \mathrm{lb}$., Channel Supplied by
Customer
$\mathrm{L}=$ Length Adjustment ( $7^{1 / 2} \mathbf{2}^{*}$ Max.)
$K=$ Length of Support Channels
$(\mathrm{D}+\mathrm{E}+\mathrm{H}+2 \mathrm{~L})$
2 Required $6^{\prime \prime} \times 8.2 \mathrm{lb}$., Channel Supplied by
$\mathrm{L}=$ Length Adjustment ( $7^{1 / 22^{*}}$ Max.)
$-4^{\circ}-6^{\circ}-$



Gortube" conduit type cable and hose carriers are available for applications requiring fully enclosed cable and hose protection with limited unsupported spans and cable/ hose loads. Available in standard galvanized or black oxide finish. Request Bulletin GT-100.

## GORTRAC ${ }^{\text {® }}$ CABLE AND HOSE CARRIER

Unique link and pin system has no pinch points to pick up dirt or chips and eliminates all hazards to operating personnel. (Links are joined with large hardened stee! pins which provide the bearing and lock point for exceptional strength and durability.)

Cables are supported with either machined carriers or bar carriers with virtually no relative motion between the support points and the cable hose to assure long life.

Carrier systems can be operated at speeds up to $60^{\prime} \mathrm{min}$, for machinery or machine tool applications and up to $450^{\prime} \mathrm{min}$. for overhead crane applications with the optional support carriage.

## CHIP COVERS

For applications where heavy chip loads. coolant or abrasive material are in contact with the cables hoses. Gortrac Cable Carriers can be supplied with chip guards for the top and bottom of the track.

The chip guard consists of a .020 SS strip and clips bolted to the side of the track to hold the covers in place.

New Welded Series Gortrac features allwelded construction. Because of its strength and light weight it is well-suited for mobile equipment and high-speed machinery application.


Nylatube cable and hose carriers are con-
structed of fiberglas reinforced nylon mate-
rial, fully enclosed for protection in harsh
environments on machine tools, industrial
robots, mobile equipment and machinery
operating at speeds up to 200 ft min. Re-
Nylatube cable and hose carriers are con-
structed of fiberglas reinforced nylon mate-
rial, fully enclosed for protection in harsh
environments on machine tools, industrial
robots, mobile equipment and machinery
operating at speeds up to 200 ft min. Re-
Nylatube cable and hose carriers are con-
structed of fiberglas reinforced nylon mate-
rial, fully enclosed for protection in harsh
environments on machine tools, industrial
robots, mobile equipment and machinery
operating at speeds up to 200 ft min. Re-
Nylatube cable and hose carriers are con-
structed of fiberglas reinforced nylon mate-
rial, fully enclosed for protection in harsh
environments on machine tools, industrial
robots, mobile equipment and machinery
operating at speeds up to 200 ft min. Re-
Nylatube cable and hose carriers are con-
structed of fiberglas reinforced nylon mate-
rial, fully enclosed for protection in harsh
environments on machine tools, industrial
robots, mobile equipment and machinery
operating at speeds up to 200 ft min. Re-
Nylatube cable and hose carriers are con-
structed of fiberglas reinforced nylon mate-
rial, fully enclosed for protection in harsh
environments on machine tools, industrial
robots, mobile equipment and machinery
operating at speeds up to 200 ft min. Request Bulletin NT-100.

APPENDIX J
CENTRAL CONTROL COMPUTER PROGRAM

10 REM ICCNTRL INNOVATIVE SOLAR CONCENTRATOR CONTROL FROGRAM
EO REM REV 1． 1 14NOVEG LES DOSS ACUREX／ESD
30 REM COMFILE USING COMFILEE VE．$E 10 / 01 / B J$ OR LATER VERSION
100 DECLARE $53, A, A 1, A E, A 3, E, E 1, E \exists, E \Xi, T 8, D Э=W O R D$
$1 G 1$ REM EOMACLWORD，AZ／EL ACT／IEM／DEL／CFL，DEST／DFT TIMER，EFH TRACK TCLERANCE
$1105=4$ ：REM STAT
1この S1＝4：SE＝E：S3＝4：S4＝0：SE＝E ：REM STAT IEM／MAN／GOAL／OLD／MFNELFF
$130 \mathrm{~F}=0$ ：$F 1=0$ ：REM ACLOSSFLAG，WINDFLAG
$131 F 4=0$ ：REM FLAG FGR FRECISION TRACKING（VS．INITIAL TRAVEL INTO DESTEER）
$13 \Xi F 5=0$ ：REM DESTEERFLAG FOR TRACKING FAILURE．SELECT MODE 〈E TO RESET．
133 FE＝O ：REM FLAG TO EYFASS SSEC TIMER AFTER DEST／OFT HAS BEEN ACRUIFED
$134 H 4=0$ ：REM HDWE MAINT STOW FLAG．FWR OFF／ON TO RESET
1ЗE HE＝O ：REM HDUE DESTEER FLAG．SELECT NEW COMMAND $\langle 7$ TO RESET
$140 C 1=1$ ：$C=O$ ：REM FGM LOOF COUNTER \＆OF＇T／EFH FALLEACK COUNTER
$150 A=A I \perp(E, 1): A 1=A: E=A I 1(E, E): E 1=E$
190 GOSUB EOOO
19 GOSUB EOOO
EOO GOSUE EOOO ：REM EOMACL DECODE $\quad * *$ LODFTOF $\rightarrow *$

E10 IF DI1（1，4）＝1 S＝0：GOTO GOO ：REM I ER WATCHDOG
EOG DOE（10， 4 ）＝1 ：WAIT NIE＝1
E30 IF DII（1，4）＝0 5：＝0 ：GOTO 900
240 DロE $(10,4)=0$

EGO IF EЗ〉10OO $\mathrm{C}=1$

EGS IF $A \Xi \Xi E O Q \quad C=C+4$

E70 DOE（З）＝C ：REM CAL REF
こGO IF 5 （E GOTO SOO ：REM ALARITI LATCH
EGE IF H4＝1 GOTO 5OO ：REM HDWE MATNT STOW

304 F1＝0：$: \quad \operatorname{FF} \operatorname{DI}(1,1)=1 \quad F 1=1$
310 IF $F=1$ IF DII（1，E）＝1 $5=1$ ：GQTO $\because O 0$ ：REM $A C$
$3 E O F=0$ ：IF Dl1（1， O$)=1 \mathrm{~F}=1$

$3 E O$ IF DII $(1,3)=05 E=L I(4)$ ：REM MANUAL MODESELECT
Зもこ IF DIJ（1，3）＝0 IF SE〉1 IF SE〈G IF SE〈〉7 SE＝SE
370 SJ＝5Е
ЭGG IF DI $\operatorname{I}(7,1)=0 \mathrm{HE}=\mathrm{B}$ ：REM HDWE DESTEER FLAG
＊＊＊FlagS／STATEGH $\rightarrow+*$
$3 Э 0$ IF $S 3<7 \mathrm{HE}=\mathrm{O}$ ：REM HDWE DESTEER ONLY FROM FOCUS
$3 Э 1$ IF $H E=1$ S $3=E$ ：REM FORCE DESTEER FROM HDWE DESTEER FLAG
393 IF E1《150 IF S3） $53=5$ ：REM FORCE DESTEER／EFH FOR LOW SUN
394 IF $S \Xi$（ $E$ F $5=0$ ：REM RESET DESTEERFLAG IF MODE（E SELECTED
395 IF FS＝1 SЗ＝5 ：REM DESTEERFLAG FOR TRACKING FAILURE：
39E IF DI $1(7, E)=0 \quad H 4=1$ ：REM HDWE MAINT STOW FLAG
$3 \ni 7$ IF $H 4=1 \quad S 3=4$ ：REM FORCE MAINT STOW FROM HDWE MAINT STOW FLAE
400 IF $53=54$ GOTO 500 ：REM＊＊＊CHECK FOR NEW STATUS＊＊＊
$41055=5: 54=53: 5=53$
418 IF S $5=3$ S： 4 ：REM STOW EEFORE EEGINNING EXERCISE／SETUF．
419 IF 55 S IF SJ＞S $5=55$ ：REM GRADUAL FOCUSING SEGUENCE
$4 E O$ IF 55 （E IF $S 3\rangle 5=5$ ：REM GRADUAL FOCUSING SEQUENCE
4EE IF S〈S F4＝0：DOE（ヨ，1．）＝0 ：REM FLAG FOR COARSE TRACK，ZEU TRGiN

```
    4ЗO GOSUE EEOO : REM STATDISFLAFY
    44% DOE(10)=0: DOE(1E)=1 : DOE(13)=0
    4EO IF S5=8 IF SJ《> GOTO 1000 :REM UNFOCLS
    470 IF S5=7 IF S3《8 GOTO 1800
    50G IF S>E GOTO EOO :REM *** CHECK FOR INADUERTENT FOCUS ***
    5OS IF A1=O GOTO EOO :REM NIGHT
    510 AE=AI1(E,1)-A1 : IF AE<0 AE== AE
    5EO EE=Al1(E,E)-E1 : IF EE<G EE=O
    5JO IF AE: <4E IF EE<45 GOTO 1BOO
    EOO IF S《E GOTO 9EO :REM ** SELECT CODE UEING STATLIS S ***
    E1O A=A1 : E=E1.
    EOO IF S=5 E=E+50 : GOTO 1EOO : REM DESTEER/EFH
    E3O IF S=7 GOTO 1EOO :REM TRACK/EFH
    E40 IF S=E E=E+50 : DOE (1\Xi)=13 : GOTO 1400 : REM DESTEER/OFT
    ESO IF 5=8 DOE(1E)=11 : GOTO 145O :REM TRACK/OFT
    GEO IF S=E DOE (1E)=0: GOTO ZOO : REM MANUAL/LOCAL CONTRGL
    ETO IF S=3 GOTO 10OO :REM EXERCISE/SETUF
    BOO REM S-4 FAI.LS THROUGH HERE: *** MIAINT STIME *+*
    810 D=0
    BEO IF AII(E,E)〉O IF AII(E,E)〈З550 D=E :REM ELDN
    8\XiO IF AI1(E,1))O IF AI1(E,1) (3550 D=D+B :REM AZCCW
    B50 DOE(1こ)=D
    E7O IF SЗ=3 IF D=G D=1 : S=3 : GOSUB EOOO : REM FOF STOW BEFORE EXERCISE,SETUF
    BBO GOTO EOO :REM NORMAL STOW
    ЭOO GOSLIE EOOG :REM STATDISFLAY *** ALARMSTOW INTT ***
    9O5 DOE(1\Xi)=1 : REM NO MANUAL CONTROL & NO TRFACKERS
    GO7 DOE(Э)=\Xi :REM כEV TRACH, IL-41E ON
    910 GOTO EOO
    ЭこO D=O : REM
    Э\XiO IF AI1(E,\Xi) (847 D=1 :REM ELUF TO GO FROM HORIZON
    935 IF AII(E,E)>853 D=E :REM EL DN TO GO
    340 IF AI1(E,1)>1日OS D=D+8 :REM ARCCW TO 1BO (SOUTH)
    745 IF AII(E,1) <1777 D==D+4 :REM AZCW TO 180
    950 DOE(13)=D
    Э5巨 IF AII(E,\Xi) <B\XiO DOE(10)=E :REM EL SLEW UF
    ЭEG IF AII(G,E)>=8こ0 DOE(10)=0
    ЭGO GOTG EOO
1000 IF D=1 IF AII (E,E) >45O IF AII (E,E) <כSSO D:=4 :REM *** EXERCISE/SETUF ***
1OEO IF D=4 IF AII(E,1)>450 IF AII(E,I) 人35G D=E
1040 IF D=E IF AII (E,E) (S D==8
1045 IF D=E IF AII(G,E)) З5GO D##
10EO IF D:=日 IF AII(E,1)<5 D:=1
10ES IF D=8 IF AI1(E,1)) 3550 D=1
108O DOE(13)=D
1090 GOTO EOO
11日O CE=Cこ+1 : IF CE\J FE=1 :REM
118E IF CE=1 C1=O
1190 GOTO EOO
1EOO DOE(1E)=1 : REM TRACKER DFF
1ご40 DG=0 : IF F4:=0 DF=5 :REM +/- ACO/TRACK TOLERANCES
1ESO D=0 : AE=AI1(E,1)-A : EE=AI1(E,E)-E
1EEO IF AE)DG D=B :REM DRIVE AZ CCW
1E70 IF AE<-DG D=4 :REM DFIVE AZ CW
1EBO IF EE\DG D=D+E :REM DRIVE EL DN
1\XiЭO IF EE<-DG D=D+1 :REM DRIVE EL UF'
```

```
    1300DDG(13)=0
    1310 IF F4=1 IF D<>O GOTO 1\XiGO : REM FRECISION TRACKING LOOF
    131E IF D=0 F4=1: DOE (F, 1)=1 : FREM DESTEER FOSITION ACDUIRED
    13EO IF D=O IF S<SZ S=S+1 : GOTG 1JEO :REM GRADLAL STAT INCR
    1530 GOTO EOO
OSO GOSUE EGOO : REM STATDISFLAY
13GO IF S=E TY=SEC : FE=O :REM DESTEER TIMER
    1370 GOTO EOO
    1400 IF FE=1 GOTO 145O :REM (TIMER & EYFASS - DESTEER ONLY) *** OFTICFIL ***
    1410 TB=SEC-TG : IF T8<O TB=T8+EO
    14EO IF TB<3 GOTO EOO : REM TIMEF FOR DESTEER/OFTICAL TO FOCUS MUDE
    144O FE=1 : REM EYFASS TIMER UNTIL COMING UF THROUGH DEST/EFH AGAIN
    1450 AE=AII (E, 1) -A : IF AE (O AE:=-AE : REM (CODE FOF BOTH TRACK & DESTEER)
    14EO EE=AI1(E,E)-E : IF EE〈O EE=-EE
    1470 IF AE\E S=S-1 : GOTO 11BO : REM CHANGE TO EFH MODE IF NOT FOCUSED
    14B0 IF EE\E S=S-1 : GOTO 1180
    1500 IF Sコ>G IF S=E GOTG 1GOO : REM GOTO FOCUS CODE FOR DEST/FOC TRANSITIGN
    1510 GOTO EOO
    1EOO S=7 : GOSUE EEOO :REM * FOCUS ***
    1GOS DOE (1E)=1. : REM TRACKER OFF
    1E1O DOE(13)=E : DOE(1O)=E :REM SLEW EL DOWN TO FOCUS
    1GEO EE=AI1(E,\Xi゙)-E1 : IF EE(O EE=-EE
    IEJO IF EE<E DOE(IO)=O : DOE(1\Xi)=0 : GOTO EOO :REM STOF WHEN EL JN TGLEFANUE
    1E4O GOTO 1GEO
    18OO DCE(IE)=1 : REM TRACKER OFF * UNFOCUS
    1.GOO DOE(13)=1 : DOE(1O)=E :REM SLEWW EL UF
    18ЗO EE=AI1(E,E)-EI
    1840 IF EE<4E GOTO 18EO :REM SLEW UNTIL LINFOCUSED
    1.850 DOE(10)=0 : DOE(1J)=0
    1EEO IF 5=4 DOE(I\Xi)=8 :REM AZCCW FOFX MAINT STCN
    1日ES IF S<E DOE(13)=1 :REM ELUF FOR ALARM STOW
    1870 GOTO EOO
```



```
    EOEO IF SЭ<O RETURN : REM EAD STATUSWORD
    EOJO IF SG)500G RETURN
    EOG IF SG<10OO Ej=5G+5O : RETURN : REM EL RANGE O TO GOO DEG*IO, +5 MOFIZ
    ZOEO IF SG人SOOO A1=S9-1000 : RETURN : REM AZ+10OO RANGE 10OO TO 4EOO DEE*1O
    EO70 51=59-5000 : REM STFTIEM+5OOO RANGE 5OOE TO 5OOG
    EOgO IF SI=G S1=4 :T.NIE=0:T.SEC=O:T.MIN=O:T.HRS=O: IF DAY`ES4 T. DFY=O
    EOGO RETURN
    EOO DOE (15)=0 : REM F *** SUEROLITINE: STATUS DIGFLAY ***
    E10 DOE(10,1)=1 : WAIT NIB=1 : DOE (10,1)=0 : REM CLR
    EEOO DOE(15)=S : WAIT NIE=1 :REM SET DISFLAY
    玉ころO DOE(10)=1 ; WAIT NIE=1 : DOE(10)=0
    \XiこSO RETURN
```


## APPENDIX K

PLC-1 PROGRAM
10 REM IC.EAS ACUREX/EED INNDVATIVE CONCENTRATGR CONTFOL FFOGFAM
EO REM REV 1.O EESEFGE LES DOSS ACUREX/ESD
36 REFI
100 REM iritialize coristarts
110 OFTIDN EASE O
115 LIFq=CHR舟 (30)

130 DIM MODE $\$(9)$ : REM descriptigris of modes for meriu arid printer
EOO MODEq $(0)=" S T O W: W A T C H D O G T I M E F ~ F A I L U R E "$
EOE MODE $(1)=$ "STOW: WIND OR AC LOSS ALARF "
EO4 MODES (E) = "MFNUAL MODE
EOE MODE末 (З) = "EXERCISE \& SETUF MODE "
EOB MODEF (4) = "STOW
E 10 MODF $(5)=$ "DESTEER/EFHEMERIS "
E1E MODE $\$(E)=" D E S T E E R / Q F T I C A L$ "
E14 MODE $+(7)=$ "TRACK EFYHENERIS "
EIE MODE $L_{\text {( }}(E)=$ "TRALK/OFTICAL "
E1日 MODE $2(\exists)=" S Y S T E M$ RESET AT MIDNIGHT "
EOC FOF I=E TO $Q$ : FEM set furictigri keys
こここ I\$=5ТRक (I)
Eت4 KEY I.I里
ESE NEXT I
EЗQ KEY 1." " : KEY 7," " KEY G," " : KEY 10," " : KEY ON
E4O CLINDEX\% = $=$ REM currert loup data iridex: begiri with static

490 REM

510 TEUF =TIMER : REM for $15 \in \mathrm{G}$ irtervals betweer EOMA commuricetiors:
SEO MOLEF = 4 : REM Eysteli watenp in mairteramce stem macte
53O GOSUE JOOO : REM daily az/el iritializatiari
5Зе GOSUR 3500 : REM compute EJ
534 GOGUE 4000 : REM compute az
540 GOSUE EOOO : REM diEplay mernu
EgB REM

750 GUSUE 45O\% : REM mode select
$760 \mathrm{CLDATA} \%(0)=\mathrm{MODE} \%+5000$
7ES IF TIMLR =TEUF+1 THEN TELFFTIMER ELSE IF TIMER〈TELF GOTO IOGQ ELSE EUTG YEE

790 FRINT LISING "

DEG
800 GOSUE S5OG : REMi Compute el.
810 CLIMTA\% (1) = INT (ELDEG * 10 )
BiE GOSUE 4500 : REM mode select
日IS IF TIMER〉=TEUF+1 THEN TEUF=TIMER ELSE IF TIMER〈TEUF GOTO IOOO ELSE EUTO EXW
日EO FRINT \#1, USING "\#\#\#\#\#";CLDATA\% (1) : REM Gutput ta MCB EOnA lGG口
840 FFFINT USING "
840 FFFINT UEING "

DEG
850 GGSLE 4000 : REM compute az
日GO CLDATA\% (E) = INT (AZDEE * $10+1000$ )
BEG GOSUE 4GOO : REM mode select


890 FRINT USINE "
\排讲势, \#\#\#】


DEG
990 GOTM 700

990 164

1005 MODE $\%=9$ ：GUSUE EOOO ：REM RESEt MCB clack
1010 CLDATAK（O）$=$ MODE $\%+5000$
10 OO IF TIMER＝TEUF＋ 1 THEN TEUF＝TIMEF ELSE GOTO 1OEQ
10 OOFFINT \＃1，LISING＂\＃\＃\＃\＃\＃＂；CLDATA\％（O）：FEM Gutput ta NCB EOMF lG口
1050 GOTG EOO
1995 REM
1979 REM
EoOO REM subroutirie：display merul
EO10 CLS
EOEO TSELक＝TINE ：REM time af mEde selectiarm
EOSO FRINT：FRINT TAE（Eこ）＂ACUREX INNOVATIVE SOLAR CONCENTRATDR＂
EO4O FRINT ：FRINT TAE（ 5 E$)$ DATE
EOSO FRINT ：FRINT TAE（E）＂CUFRENTLY SELECTED MODE：＂MODE\％＂－＂MODEQ（MOUE\％）
EOEO FRINT TAE（B）＂MODE SELEETED AT＂TSEL＊＂MST＂：FRINT
EOGO FRINT TAB（B）＂FRESS FUNCTIUN KEYS FOR MODE SELECTION AS FOLLOWS：＂：FRIMT
E10OFOR $X=E$ TO $G$
EiIO FRINT TAE（ 8 ）＂MGDE＂$x$＂－＂MODE $(x)$
EvEO NEXT

E140 FRINT
E14E FRINT TAE（E）＂ETANDFRD TIME AND EALCLLATED SOLAR EFHEMEFIE FOSITIGRG：＂
E14E FRINT TGE（B）＂（REFERENOED TO 1 ODEG TILTED FLGNE）＂
E147 FIRINT
EIEOFRINT USINE＂＇


## LDEE

EEOO RETURN
こヨЭ日 REM
3000 REM subroutiree daily iritializatigr for epheraris caloulatagrs
3010 DAY＝VAL（MIDS（DATE $\$$ ，4，E＇））

3OEO YEAR＝VFL（MTDS（DATE +7.4 ））
उO\＆O JDAY＝DAY ：REM JULIAN DAY

3OEO FOR M＝1 TO $1 \because$
3070 IF $M=$ MOTNTH THEN GOTO 3120
3080 0N M $60 T 03090,3110,3090,3100,3090,3100,3090,3030,3100,3090,310 \%, 5 \%$
$3090 \quad J D A Y=J D A Y+31: 60 T 031 E 0$
З10 JDAY＝JDAY＋30 ：GOTA $31 E O$
3110 JDAY $=$ JDAY $+F E E$
$31 E \mathrm{NEXT} \mathrm{M}$
3130 TWOFI＝E＊3．14159
3140 DEGRAD＝TWOFI／36G
3150 RADDEG＝3EO／TWOFI



LIST
Зここの LAT＝ $35+3 / 60+10$ ：REM Site latitude in degrees plus iodeg N tili

ЗETO SN＝1E－EOT＋（（LON－1OW）／15）：REM SGlar ruGri iri lacal std time
SЗOO SINLAT＝GIN（DEGRAD＊LAT）
ЗЗJO COSLAT＝COS（DEGRAD＊LAT）
ЗЗご SINDEL＝SIN（DELTA）
ころ30 COSDEL＝COS（DELTA）
3340 RETURN
3498 REM
ЗGOO REM subrautirie：compute iristaritarieaus salar elevatiori
35io Tq＝TIME ：REM time frem clock
$35 E O H R=V A L(M I D+(T \$, 1, E))$
3530 MIN＝VAL（MID\＄（T $\ddagger, 4, ~ \Xi)$ ）
3E40 SEC＝VAL（MIDs（T\＆，7，E））
35GOT＝HR＋MIN／EO＋SEC／ TEOO


BEEO COSEL =SOR(1-SINEL E)

- 3710 EL =ATN (EINEL/COSEL $)$

3730 ELDEG =EL FADDEG : REM EGIar elevatior ir degrees above horizur
3734 IF ELDEG(O THEN ELDEG=O
こ7こ૯ IF ELDEG' 90 THEN ELDEG=90
3740 RETURN

4000 REM subroutime: compute instantareats solar azimuth followint el asove:
400 E IF ELDEG=0 THEN AZDEG=0 : RETURN : REM sur belcw forizer
$4010 \operatorname{SINAZ}=-\operatorname{COSDEL} * S I N(H) / C O E E L$
$40 E 0 \operatorname{COSAZ}=\operatorname{SQR}(1-\operatorname{SINAZ} \mathrm{E})$
$4030 \mathrm{AZ}=\mathrm{ATN}(5 \operatorname{INAZ} / \cos \mathrm{AZ})$

4050 IF GZDEG 0 THEN AZDEEARADEG+3EO
4060 IF $A Z D E G=360$ THEN AZDEG=AZDEG-360
4070 RETURN
4490 REM -
4500 REM subroutire: accept rew operating mode from keytord
4540 INKEYBLF $=$ INKEY : IF TNKEYBUFF:="" EOTO 4590
4550 IF (INHEYBUF\#("E") OR (INFEYEiFs) "G") GOTO 45G0
455 E IF INKEYEUF\$:="7" GOTO 4590 : REM track/ept nat selectatide
4560 MODE $=$ VAL (INHEYEUF $\$$ )
4580 GOSUE EOOO : REM display meru

4700 RETURN

## APPENDIX L

## PLC-2 PROGRAM

```
    10 REM WDOGE I ER WATCHDOG FROGRAM
    EO RE!M ACUREX/EED INNOUATIVE SOLAR CONCENTRATOR
    3O REM REV 1.0 EGSEFISS LES DOSS
    50 DO(7,4)=1
100 IF DI (E,1)=1 DO(7,4)=0 : GOTO EOO
110 IF MIN>O GOTO SOO :REM ALARM
1EO GOTO iOO
EOO WAIT NIE=E
E10 IF DI (E,I)=0 TIME MIN=0 : TIME SEC=0 : GOTO 5O
EOO T=SEC+1O : TIME SEC=T
E30 IF MIN\O GOTO 500 : REM ALARM
EO GOTO 50
500 DO (7,E)=1 :REM INDICATOR ON --- ALARM CODE ---
510 IF DI (4,E)=1 IF DI (4,4)=1 GOTO 7OO :REM CHECK STOW
5EO DO(7,1)=1 :REM SLEW EL UF
53O DO(7,3)=1 :REM SLEW AZ CCW
700 DO(7,4)=0
BOO IF DI (4,4)=1 DO(7,1)=0 : REM EL. LIMIT
SOS IF DI (4,3)=1 DO(7,1)=0 :REM EL LIMIT
E1O IF DI (4,E)=1 DG(7,3)=0 :REM AZ LIMIT
815 IF DI (4,1)==1 DO(7,3)=0:REM AZ LIMIT
日GO GOTD 8OO
```


## APPENDIX M

CABLE CONNECTION DIAGRAMS


DOCUMENT TITLE CABLE C -1
SWITCHGEAR TO DISC-1


DOCUMENT TITLE
CABLE C-2
DISC-1 TO DCU

| SIZE | CODE IDENT NO. | DOCUMENT NO. | REV | SHEET |
| :---: | :---: | :---: | :---: | :--- |
| A | 50726 | 7749 E 308 | $A$ | $Z$ OF |



DOCUMENT TITLE
CABLE C-3
CONTROL ROOM TO JB-1

| SIZE | CODE IDENT NO. | DOCUMENT NO. | REV | SHEET |
| :---: | :---: | :---: | :---: | :---: |
| A | $\mathbf{5 0 7 2 6}$ | 7749 E 308 | $A$ | 3 OF |





Note:
Jumper HPU terminals 3 and 4 together and terminals 7 and 8 together.

!



ACUREX
Corporation
$\downarrow$


$1$



| DOCUMENT TITLE |  | $\begin{aligned} & \text { CABLE C-13 } \\ & \text { LS-4 TO DCU } \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { SIZE } \\ \text { A } \end{gathered}$ | $\begin{aligned} & \hline \text { CODE IDENT NO. } \\ & 50726 \end{aligned}$ | $\begin{aligned} & \text { DOCUMENT NO. } \\ & 7749 \mathrm{E} 308 \end{aligned}$ | $\begin{gathered} \text { REV } \\ A \end{gathered}$ | SHEET <br> =: OF |

$\downarrow$


$\downarrow$

$\downarrow$


$\downarrow$

$\downarrow$



A ACUREX
DOCUMENT TITLE CABLE C-21



- $\begin{aligned} & \text { ACUREX } \\ & \text { Corporation }\end{aligned}$

| DOCUMENT TITLE CABLE C-23 <br>   <br> STRUCTURE GROUND  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { SIZE } \\ \text { A } \end{gathered}$ | $\begin{aligned} & \text { CODE IDENT NO. } \\ & 50726 \end{aligned}$ | $\begin{aligned} & \text { DOCUMENT NO. } \\ & 7749 \mathrm{E} 308 \end{aligned}$ | REV | $\begin{gathered} \text { SHEET } \\ \therefore \quad \mathrm{OF} \end{gathered}$ |



A Acurex

## APPENDIX N

## ROTEK AZIMUTH BEARING

## Installation Manual 680



## 2.

## Installation Manual 680

## Introduction

Selecting a large-diameter bearing should be made in accordance with Rotek recommendations. Consult Rotek's most recent technical literature for selection procedures, or call Rotek and talk with an application specialist.
When selecting a bearing, double check the final machine design to see that the capacity of the bearing and fasteners has not been exceeded
The satisfactory performance and life of large-diameter bearings depend on the design of the mounting structure. proper installation and maintenance.
This installation manual is furnished by Rotek as a guide to machine designers and manufacturers. For lubrication recommendations, consult the "Bearing Storage, Installation and Lubrication" booklet provided with this manual.
Contents
Introduction ..... 2
Mounting Structure Requirements ..... 4
Initial Mounting Surface Errors ..... 5
Deflection of Mounting Structure Under Load ..... 5
Access Holes for Filler Plug and Accessibility of Grease Fittings ..... 6
Checking Gear Backlash ..... 6
Recommended Position for Filler Plug and/or Hardness Gap on Rotating Ring ..... 6
Mounting Surface ..... 6
Stress in Fastening Members ..... 7
Fastening Bearings with Bolts
Introduction ..... 8
Preloading Bolts ..... 8
Bolt Specification ..... 9
Nut Specification ..... 9
Coarse Threads vs. Fine Threads ..... 9
Applicable Nut and Bolt Standards ..... 9
Locking Devices and Washers ..... 9
Notes ..... 10
Installation Manual on Fastening Bearings by welding available on request.

There are no precise limitations in the out-of-flatness and rigidity of a bearing mounting surface that determine whether or not a particular bearing will function satisfactorily. The ideal mounting is infinitely rigid and perfectly flat. Although this ideal cannot be reached, there is no substitute for maximum uniform rigidity and optimum flatness. Localized concentration of stiff areas and extreme variations of stiffness over the circumference of the mounting structure should be avoided. For these reasons, we strongly recommend the use of a mounting ring, available from Rotek, as the mounting surface for the bearing.
The entire mounting surface for the mounting ring must be machined after all fabrication of the structure is completed. Distortion of this machined surface will result if structural members are welded-on after surface machining. Rotek's recommendations for mounting surface error are shown in Table 1.
Increased rigidity of the mounting structure and improved surface accuracy will tend to enhance smoothness of operation, reduce friction, and increase bearing life. In any bearing the requirement for increased rigidity and accuracy becomes more critical under the following conditions:

1. Increasing loads
2. Decreasing diameter
3. Thinner bearing section
4. Reduced internal clearance
5. Continuous or frequent rotation as opposed to intermittent rotation
6. Applications where drive power is limited or minimum frictional torque is required for other reasons
7. Applications where minimum run-out is necessary
8. Roller bearings generally require better mounting structures than ball bearings

Where a bearing is mounted on a surface which is not reasonably flat, increased operating friction or premature fatigue failure can be expected as a result of unusually high ball or roller loads in localized areas.

Full interface support of the bearing is necessary to achieve rated load capacity and a long service life as well as to fully utilize the mounting bolt capacity.


Full interface support


Partial interface support
Not recommended

## Initial Mounting Surface Errors [out-ot-flatness)

Table 1 provides maximum permissible values for out-ot-flatness of the mounting structure, including the mounting ring, in most applications for various bearing designs.

## Figure 1

The values for initial out-of-flatness given in Table 1 are the total of the errors measured in circumferential and radial directions (wavyness and tilt). The minimum arc over which the total error may occur is $90^{\circ}$. Furthermore, it must be approximately sinusoidal in form - there may be no abrupt irregularities in the mounting surfaces. Rotek wants to emphasize the tilt must be controlled because race geometry changes may cause premature bearing failure. This tilt should be limited to .001 inch/inch of bearing face width.

## Deflection of Mounting Structure and Mounting Flange Under Load

In addition to the initial out-of-flatness errors as outlined above, the maximum deflection values in Table 2 may be tolerated by all styles of bearings.
As in the case of mounting surface error, the deflection of the mounting structure, including mounting ring, must not be localized since this may cause the balls or rollers to jam in the raceways. Therefore, the restrictions outlined in Figure 1 also apply for the rate of deflection over the circumference. Very substantial frictional torque may be expected in bearings subjected to the maximum deflections and flatness errors tabulated above. It is impractical to estimate the expected torque level. Rotek advocates the use of lower values than those shown in Tables 1 and 2 whenever practical.

| Raceway <br> dlameter <br> (inches) | Table 1 <br> Initial Mounting Surface Error (inches) |  |  |
| :--- | :---: | :---: | :---: |
|  | Double-row <br> ball bearings | Single-row <br> ball bearings | Triple-row <br> roller bearings |
| Up to 40 | 0.008 | 0.006 | 0.004 |
| 40 to 60 | 0.010 | 0.0075 | 0.005 |
| 60 to 80 | 0.012 | 0.009 | 0.006 |
| 80 to 100 | 0.014 | 0.010 | 0.007 |
| 100 to 120 | 0.016 | 0.012 | 0.008 |
| 120 to 160 | 0.018 | 0.014 | 0.009 |
| 160 to 240 | 0.020 | 0.016 | 0.012 |



Mounting Surface Circumference Developed

Table 2

| Raceway <br> diameter <br> [inches] | Maximum deflections <br> Under peak <br> operating loads [Inches) |
| :---: | :---: |
| 40 | 0.024 |
| 60 | 0.030 |
| 80 | 0.040 |
| 100 | 0.052 |
| 120 | 0.064 |
| 140 | 0.080 |
| 160 | 0.100 |
| 180 | 0.120 |
| 200 | 0.144 |
| 220 | 0.168 |
| 240 | 0.192 |

## Figure 2

A quick way of measuring these out-offlatness errors is to set the bearing in place without fastening it and check any existing gap with a feeler gage. If the actual mounting surface errors exceed the values in Table 1, Rotek recommends remachining

## 6.

## Mounting Structure Requirements

## Access Holes for Filler Plug and Accessibility of Grease Fittings

Many styles of Rotek bearings are assembled by inserting the balls and spacers through a filler plug hole atter which a plug is installed and secured by means of a retaining pin. The machine designer should consider providing an access hole in both the upper and lower mounting flanges to facilitate removal of the pin and filler plug, should this become necessary. See Figure 6. The Rotek proposal drawing shows the location of the pin.
Users are cautioned that removal of the retaining pin and plug will void the product warranty, unless performed with the express permission of Rotek.
Extensions should be provided to facilitate relubrication through the bearing grease fittings. If the bearing can be rotated $720^{\circ}$, it is only necessary to lubricate the bearing through one grease fitting in each row of rolling elements. To ensure uniform distribution of grease throughout the bearing, the bearing should be rotated at least two complete revolutions while greasing. Extreme care must be taken when greasing and rotating any unit. Be sure that all personnel are clear of all moving parts of the machine during the rotating-greasing procedure. It is for this reason that we recommend installation of extension lines from the grease fitting locations to an area where the oiler will be safely clear of moving parts. For more information on the lubrication of Rotek bearings, see the copy of our "Bearing Storage, Installation, and Lubrication" booklet provided with this manual.

## Checking Gear Backlash

The machine designer controls the amount of gear backlash in fixed center distance designs by specitying the location of the swing pinion with regard to the bearing mounting holes.

If the position of the either the swing drive or the bearing is adjustable (by means of oversize mounting holes, slots, etc.), the relative position must be adjusted to provide proper backlash between gear and pinion. On certain types of Rotek bearings the point of minimum gear clearance is marked with green paint covering two or three gear teeth. When installing such units on adjustable center applications, centers should be adjusted to provide minimum required backlash with the pinion engaging gear at the painted area. If the gears are not marked, backlash may be set by determining point of minimum backlash with Feeler Stock Gages and Setting for Low Limit.
This procedure requires first bolting down the ungeared ring of the bearing to the structure carrying the pinion.


## Recommended Position for Filler Plug and/or Hardness Gap on Rotating Ring

Most bearings have a small unhardened area in the raceway. In plug loaded rings this area is located at the plug. In rings without a plug, this area is stamped on the outer surface with the letter " S " for soft. The plug or soft area should be positioned $90^{\circ}$ from the load axis when possible as indicated in Figure 3. In cranes or excavators this would put the plug or soft spot at the side of the machine on the ring which is connected to the upper structure.

Figure 3 Recommended position for
Figure 3 filler plug or soft area


## Mounting Surface

Prior to mounting the mounting flange and the bearing, the mounting surfaces must be free of dirt, loose scale, burrs, chips, etc. Surfaces must be relatively smooth ( 125 to 250 micro-inch) and flat. Gaps resulting from an out-of-flat condition (see table 1) can close under high operating loads. This would reduce the distance from nut to bolthead, reducing or eliminating pretension and result in loosening the fastener or in leading to fatigue failure.

## Stress In Fastening Members

The mounting bolts and mounting structures must be properly designed in order to transfer loads uniformly. Rotek strongly recommends supporting and fastening the bearing through the full $360^{\circ}$ with equally spaced bolt patterns in both the stationary and rotating rings.
Stress in individual bolts will vary from one area to another. A strong, rigid, welldesigned mounting structure and mounting flange will, however, help keep the stress variation to a minimum. A weak mounting structure will cause stress concentration which can result in fallure of the fasteners and also of the bearing. No bearing fastening method is secure if concentrated loading is tolerated.

There are many acceptable fabrication methods for developing a good, rigid structure. Box sections and well gusseted frames are the most common. Figures 4 and 5 show a comparison between adequate and weak flexible structures.
The use of high strength steels does NOT Increase rigidity. Strain gaging of all highly stressed areas including weld bands and bolts is urged.


## 8. Fastening Bearings with Bolts

## Introduction

Rotek will recommend the size, quantity and spacing of the bolts in cooperation with the machine designer using methods outtined in S.A.E. Technical Paper No. 790906. Special consideration may be necessary for bolted joints where:

1. The bearing loads are "hanging" (tensile) in nature - not recommended for Series 1000 bearings.
2. The bolts are not equally spaced. (Stress measurements are recommended. These applications should be avoided.)
3. Materials other than steel are used in the joints or fastener.
The designer must make sure that all bolt holes provided in the bearing can be used for fastening bolts.
When installing the bearing, never force bolts into bolt holes. Jamming bolts in this way may cause distortion of the bearing. To avoid this, bolt holes in the mounting structure and mounting flange should be slight!y enlarged if necessary.
Caution! Excessively large holes or extremely large chamfers make it difficult to maintain proper bolt preload.
Preload in the mounting bolts allows enough frictional force to develop between the surfaces to make sure that the bearing will not shift in a radial direction under maximum radial loads. If radial loads are exceptionally high, locating pilots or other means of positioning the bearing may be required.
Dowel Pins or tightly fitting bolts may be used for transmitting radial force if the holes in the bearing ring and mounting ring are line reamed at assembly.
Long fasteners are always more desirable than short ones. The minimum effective (between exposed thread to under boit head) length of a bearing mounting bolt should be at least tive times its diameter. Since long bolts enlongate more than short ones under the same


Tensila load
preload, a smaller fraction of the total preload will be lost due to the unavoidable settling of the head and seating of the threads.
Through bolts with nuts are recommended over capscrews threaded into tapped holes. A tubular bushing with proper cross section and heat treatment may be used in place of hardened steel washers to achieve a more desirable length/diameter ratio of the fastener.

## Preloading Bolts

A bolt must be properly prestressed if it is to function properly. It must be preloaded to a level which minimizes dynamic loading of the fastener. Loose or improperly preloaded bolts experience much higher fatigue stress levels than properly installed bolts and may fail in fatigue under dynamic loading. Rotek also recommends that the bolt preload be rechecked after the initial run-in period of the machine ( 50 operating hours) and periodically thereafter to ensure that proper prestress is maintained.
Regardless of the safety designed into the bolted joint by the engineer, the

proper preload can only be developed by the man with wrench. In preloading bolts with a torque wrench, most of the tightening torque for a bolt is required to overcome friction. Since friction is dependent upon lubrication, finish, cleanliness, etc., we hesitate to recommend a particular torque for a given size bolt. We strongly urge that the following simple test, using representative fasteners, be performed:

Using the torque wrench, slowly and steadily tighten a fastener. As it is tightened, the torque increases at a rather uniform rate. When the yield point of the fasteners is reached, torque will level off. Note this torque reading. This test should be performed on several fasteners to obtain a good average. The test bolts must be discarded.
The minimum tightening torque should be 70\% of the established average yield torque. Care must be taken to repeat the test if any change is made in fastener lubrication, finish, fit, etc.
Cautionl Loose or improperly preloaded mounting bolts is one of the major causes of bearing failures.

## Bolt Specification

Rotek bearings are normally designed to be used with high strength S.A.E. J429, Grade 8 (ASTM A490) alloy steel fasteners. Bolts with threads rolled after heat treating are preferred for their improved fatigue strength.

## Nut Specification

The best nut for this application is the "Heavy Semi-Finished" type. When tightened, a nut both compresses and dilates. Threads of the nut tend to pull away from the bolt thread creating the need for the "heavy" wall thickness in the nut.
Use S.A.E J995, Grade 8 (ASTM A563, Grade DH) nuts with S.A.E. J429, Grade 8 (ASTM A490) bolts. Be sure to use a nut that is long enough with enough threads and sufficient mechanical properties to withstand the ultimate tensile strength of the bolt. In other words, over-tightening should break the boll rather than strip the threads in the nut.
Note: Be sure to obtain fasteners from a reliable vendor. Make sure that he is aware that they are to be heavily loaded so that proper quality control is exercised.

## Coarse Threads vs. Fine Threads

In theory, fine threads will carry more load than coarse threads, all other things being equal. However, most authorities agree that coarse threads have greater resistance to stripping than fine threads and can be more heavily torqued. This is especially true of high strength bolts. Coarse threads require fewer revolutions to tighten and have less tendency to cross thread.
When a coarse thread fastener fails it will usually break and the mechanic will easily recognize it. However, in a fine thread nut, if torqued too tightly, a crack may develop in the first thread without being noticed. Under operating loads this crack may spiral up the thread and finally result in stripping the entire thread.
Rotek recommends the use of coarse thread fasteners.

| Applicable Nut and Bolt Standards |  |  |
| :---: | :---: | :---: |
| Bolt | Nut | Hardened <br> Washers |
| S.A.E. J429, <br> Grade 8 | S.A.E. J995 <br> Grade 8 <br> ASTM A490 | ASTM A563, F436 |
| Grade DH |  |  |$\quad$|  |
| :---: |

Caution Note: Because of variations in mounting structure rigidity, caution must be exercised to be sure that localized loading of mounting bolts does not exceed safe limits. We strongly recommend that bolt stresses be measured by strain gaging. If excessive stresses are encountered, the structure must be modified or additional fasteners utilized.

## Locking Devices and Washers

Probably the best device to prevent fasteners from loosening is the friction developed between the male and female thread by proper pretensioning. Hardened steel washers (ASTM F436) should be used under the bolthead and the nut for the following three reasons:

1. To provide a flat, smooth, hard surface against which to tighten the boithead or nut, thus giving uniform torque measurement.
2. To prevent embedding the hard bolthead or nut into the softer steel mounting or bearing.
3. To distribute the high bolt load over a wider area and prevent surface crushing of the connected material.
Spring lockwashers are of doubtful value. Once the screw has loosened to the point where the washer acts as a spring, it is too loose for safety. Rotek does not recommend this type of washer.
Rotek does not recommend other mechanical locking devices because they prevent the necessary periodic rechecking of the proper bolt preload.
The use of chemical type locking compounds between threads distorts subsequent bolt torque checking, therefore. these compounds should be used with caution.


## NOTE:

The Bearing Storage, Installation and Lubrication manual is primarily designed for personnel who are actually installing the bearings. Design engineers should request our Manual 680 for complete installation instructions.

## Rotek <br> The big bearing people

## LUBRICATION

Periodic lubrication is necessary to insure long life and proper performance. The required frequency of lubrication varies with the typs of equipment and amount of usage. Some recommendations for lubricants are given below.
Typical recommendations for greasing intervals vary according to operating conditions. Generally the following lubrication intervals are recommended:

| Ball bearings under light service | Every 100 operating hours |
| :--- | :--- |
| Ball bearings under heavy service <br> or for a production type of appllication <br> (e.g., excavaiors, grab cranes, magnet <br> cranes, etc.) or where a high degree of <br> reliability is required. |  |
| Roller bearings | Every 40 operating hours |

Use shorter intervals between greasings in tropical areas or where there is high humidity, dust, or wide ranges in temperature, or when there is continuous rotation.
Each Rotek bearing is equipped with one or more grease fittings. Models equipped with two or three rows of fittings should be greased in each row. To insure uniform distribution of grease throughout the bearing, the machine should be rotated at least two complete revolutions while greasing. When complete rotation is impractical, grease may be pumped into each fitting, rotating the device back and forth as far as possible as each fitting is greased. For bearings with integral gears, lubricate gear as recommended above and as necessary to prevent metal-to-metal contact.

## d CAUTION:

Extreme care must be taken when greasing and rotating any unit. Be sure that all personnel are clear of all parts of the machine during the rotating-greasing procedure. We recommend installation of an extension line from the grease filting location to an area where the oiler will be safely clear of moving parts. Following are three examples of suggested extension arrangement.



Extension fittings and lines are widely available from local distributors of lubrication equipment such as Alemite.

ALL EQUIPMENT SHOULD BE GREASED AT LEAST TWICE YEARLY REGARDLESS OF AMOUNT OF USAGE.

The bearing should be lubricated immediately after installation. Before storing a machine, new or used, thoroughly lubricate so that clean grease can be seen venting at the seals. This procedure should be repeated periodically at least twice a year or in line with climatic conditions. Uninstalled bearings stored outside, or in especially humid environments, require the same attention as bearIngs mounted upon machines.

Some recommended lubricants are shown below:

| RACE | SHELL | EXXON | TEXACO | MOBIL | UNION | SUN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ALVANIA <br> EP \#2 | RONEX <br> WB | MULTIFAK <br> EP \#2 | MOBILUX <br> EP \#2 | UNOBA <br> EP \#2 | PRESTIGE <br> 742 EP |
| GEAR | CARDIUM <br> EP Com- <br> pound $C$ | SURRETT <br> Fluid 30 | CRATER <br> 2x Fluld <br> $3 x$ | MOBILTAC <br> E | GEARITE <br> Hvy | GEAR <br> Compound <br> $\# 407$ |

Under extremely dusty or dirty conditions, sufficient grease should be added to flush out contaminated grease. Under less severe conditions, add grease until it appears al the seal. The metal nameplate illustrated below, which is affixed to many styles of bearings, provides lubrication instructions suitable to most applications. Extra plates are available on request for installation on equipment.


## INSTALLATION

## Equipment Mounting Surfaces

Be sure that the mounting surface is free of weld spatter, chips, and other contaminants. Unpainted surfaces are preferred. The bearing should be mounted on a machined, flat, rigid surface. The mounting hole locations must match those of the bearing or distortion will result. Excessive distortion caused by unflat mounting surfaces or insufficiently rigid structures will result in high friction and reduced bearing life. The installation may be checked by rotating the device. If friction increases as mounting bolts are tightened, the bearing should be removed and the mounting surface checked for proper flatness.

## caution:

FOR DETAILED INSTALLATION PROCEDURES TO AVOID ACCIDENTS, REFER TO ROTEK'S INSTALLATION MANUAL 680 WHICH is available upon request.

## CAUTION:

S.A.E GRADE 8 BOLTS AND NUTS ARE TO BE EMPLOYED.

## Mounting Bolis

Most Rotek models require the use of S.A.E. Grade 8 bolts and nuts. These may be identified by the six radial lines on the bolt heads. Although, with the exception of the head markings, these high strength bolts look very much like ordinary bolts, they are many times
 stronger. Installation personnel using unmarked, or improper grade bolts should check with the appropriate engineering personnel before proceeding with such an installation. Machines assembled with improper bolts present dangerous hazards.

## Mounting Bolt Torque

Mounting bolts must be tightened with sufficient torque to reach at least $70 \%$ of bolt yield strength. Installers should check with Engineering if a tightening torque value has not been established. Hardened steel flat washers are recommended. Lock washers are not recommended.

In most applications some seating of bolt threads and mounting surfaces will occur during initial hours of machine operation. Bolts
should be retightened after initial break-in period. Periodic checking and retightening of fasteners is urged regardless of any locking devices which might be used. Seating of threads may lead to loss of bolt tension even though the cap screw or the nut has not rotated. FAILURE TO KEEP BOLTS PROPERLY TIGHTENED MAY LEAD TO FATIGUE FAILURE OF BOLTS AND CONSEQUENT MACHINE DAMAGE.
(1) caution:
alwavs keep mounting bolts properly tightened.
A) caution:

WELD ONLY THOSE BEARINGS EQUIPPED WITH WELD BANDS. FOR PROPER INSTALLATION PROCEDURES TO AVOID ACCIDENTS, REFER TO ROTEK'S INSTALLATION MANUAL 680 WHICH IS AVAILABLE UPON REQUEST.
Recommended Position for Filler Plug and/or Hardness Gap on Rolating Race


Most bearings have a small unhardened area in the raceway. In plug loaded races this area is at the plug. In split race bearings, where there is no plug, the area is slamped with the letter " $S$ " for soft. The plug or soft area should be positioned $90^{\circ}$ from the load axis when possible as indicated in the above diagram. In cranes or excavators this would put the plug or soft spot at the side of the machine on the race which is connected to the upper structure.

## Checking Gear Backlash

Amount of gear backlash is controlled by the machine designer in fixed center distance designs by the specification of mounting holes and swing pinion position.
If the position of either the swing drive or the bearing is adjustable (by means of oversize mounting holes, slots, etc.) it is necessary to adjust the relative position in order to provide proper backlash between gear and pinion. On certain types of Rotek bearings the point of minimum gear clearance is marked with green paint covering two or three gear teeth. When installing such units on adjustable center applications, centers should be adjusted to provide minimum required backlash with the pinion engaging gear at the painted area. If the gears are not marked with paint, backlash may be set at any convenient point.


## STORAGE

Store horizontally in original package in a dry area until installation. Guard against excessive floor or rack loading. Rotek bearings are protected at the factory by internal lubricants and external surface protection.
During prolonged periods of time (one year or more) all lubricants tend to deteriorate. Bearing condition should be checked periodically. If corrosion is apparent, unpack, lubricate with fresh corrosionresistant grease and repack. Be sure to rotate bearing while lubricating.

## WARRANTY

Rotek Incorporated warrants each Rotek product to be free from defects in material and workmanship under normal use and service and to conform to any specification furnished by Rotek in writing. This Warranty extends only to the first purchaser from Rotek. NO OTHER WARRANTY, WHETHER EXPRESS, IMPLIED OR STATUTORY, OF MERCHANTABILITY, INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, OR OTHERWISE, SHALL EXIST IN CONNECTION WITH THE SALE OR USE OF ANY ROTEK PRODUCT. All claims under this Warranty must be made in writing and delivered to Rotek prior to the expiration of one year from the date of shipment of the product by Rotek or be barred. Upon receipt of a timely claim, Rotek shall have the option either to inspect the product while in Purchaser's possession or to request Purchaser to deliver the product to Rotek at its factory or olher designated site, at Purchaser's expense, for inspection by Rotek. Rotek shall repair, or at its option, replace, free of charge, any product which it reasonably determines to be in breach of this Warranty, and Rotek shall ship the repaired or replacement product to Purchaser f.o.b. point of shipment; provided, however, that if in Rotek's judgment circumstances are such as to preclude the remedying of a breach of this Warranty by repair or replacement, Rotek shall refund to purchaser, by issuance of credit or otherwise, any part of the purchase price of the product theretofore paid to Rotek.

Any installation, operation, use, maintenance or application of any Rotek product other than according to the capacities, conditions, loadings and instructions published by Rotek or approved in writing by Rotek's Engineering Department, or the substitution in or with any product of integral, reciprocating or related parts not approved in writing by Rotek, shall void the Warranty. Without limiting the generality of the foregoing, with respect to Rotek products having plug relaining screws and split race retaining screws which are sealed, removal of seal and/or removal of plug or separating of split races will void warranty unless performed with the express permission of Rotek.

It is expressly agreed that repair or replacement, or refund of purchase price, of products shall be the exclusive remedy for any breach of this Warranty or any other claim in respect of Rotek products, whether based upon contract, warranty or negligence. Without limiting the generality of the foregoing, Rotek shall not be liable for removal or installation costs, downtime, damage to other property, loss of business or profits or any similar or dissimilar incidental or consequential damages.
THIS WARRANTY MAY NOT BE MODIFIED OR CHANGED IN ANY WAY NOR MAY ANY OTHER WARRANTY BE GRANTED UNLESS SUCH CHANGE OR OTHER WARRANTY IS EVIDENCED IN WRITING SIGNED BY AN OFFICER OF ROTEK.

APPENDIX 0
MORSE SEALMASTER ELEVATION BEARINGS

Morse ${ }^{\circ}$
Power Transmission Products


Morse Industrial Products Division Transmission Components Group Borg-Wamer Corporation

## ERCI SERIES CYLINDRICAL CARTRIDGE INSERTS AND PILLOW BLOCK HOUSINGS




FELT SEAL. STANDARD. Positive sealing for low, medium, and high speed operation.


SINGLE LIP CONTACT SEAL. Avair. able on all sizes. Recommended where moisture conditions prevail.


F Designatios unite normelly avallable from stech with standard Fott seats For dedivery information on untes not destgnoided es normally avaitoble frem steck, contact nomest Morse Service Comter.

Installation alignment correction if $\pm 3$ degrees equal to $.052^{\prime \prime}$ per inch.

The ERCI series of steel cylindrical roller bearing cartridge units is designed for mounting in a cylindrical bore for a wide range of general machine applications. Units are equipped with Timken(®) roller bearings which are factory adjusted, grease lubricated, and sealed. They have full self-aligning capability.
When used as a "fixed" bearing, provision must be made for locating outer ring in housing to prevent lateral movement. Provision for lubrication is recommended utilizing holes in cartridge O.D. located $30^{\circ}$ on either side of the alignment pin. Recommended housing bore is nominal, +.002"', -.000'.
ERCI cylindrical cartridge units are replacement cartridges for ERPB expansion type pillow blocks. The centrifugal felt-lined flinger seal is standard while the shielded contact seal is optional without additional charge.


| HOUSING BORE DIMENSIONS to ACCOMODATE CARTRIDGE INSERTS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { Solt } \\ & \text { Bis. } \end{aligned}$ | $\begin{array}{r} \text { "1" } \operatorname{Dim}_{1} \\ +.002 /-\infty 00 \end{array}$ | $\begin{aligned} & { }^{4} \mathbf{B N}^{\prime \prime} \mathrm{Dimm}^{4.01 / .00} \end{aligned}$ | $\begin{aligned} & \text { }{ }^{C N} \mathrm{C}^{\mathrm{Dim}} \\ & +\operatorname{D1/-\infty } \end{aligned}$ | $\begin{gathered} 0^{n} \operatorname{Dim} . \\ \pm .01 \\ \hline \end{gathered}$ | $\begin{gathered} 7^{n \prime} 8 i m \\ \pm .01 \end{gathered}$ | $\begin{array}{r} 7 \operatorname{Dim}^{7.005} \\ \hline \end{array}$ |
| $\begin{aligned} & 21 / 1 \\ & 21 / 16 \\ & 2^{21 / 2} \end{aligned}$ | 4.782 | 5.01 | . 56 | 4.38 | 1.02 | . 56 |
| $\begin{aligned} & 2^{11 / 1 / 6} \\ & 23 / 4 \\ & 2^{15 / 6} \\ & 3 \end{aligned}$ | 5.376 | 5.50 | . 56 | 5.12 | 1.16 | . 56 |
| $\begin{aligned} & 33 / 6 \\ & 37 / 16 \\ & 31 / 2 \end{aligned}$ | 6.595 | 6.89 | . 75 | 6.00 | . 1.28 | . 65 |
| ${ }_{4}^{315 / 6}$ | 7.189 | 7.46 | . 75 | 6.62 | 1.75 | . 72 |
| $\frac{4}{5}$ | 9.063 | 9.34 | . 75 | 8.50 | 2.06 | . 75 |

TYPICAL HOUSING INSTALLATIONS


Cortridge Fixed Between Shoulder \& Snap Ring


Cartridge Set For Expansion And Held Between Snap Rings


Cartridge Fixed Between Two Types of Collars

## BORE AND SHAFT TOLERANCES 2

All Morse Sealmaster roller bearing races have bore diameters for a sliding or snug fit over the shaft. They are easily and symmetrically locked to the shaft by means of locking collars with double' cup point setscrews. Bearing bore and shaft tolerances are shown in Table 1.

TABLE 1

| RECOMMENDED SHAFT TOLERANCES |  |  |
| :--- | :---: | :---: |
| Shaft <br> (Inches) | Diameters <br> Bearing Tolerance | Recommended <br> Shaft Tolerance |
| $1-3 / 16-1-7 / 16$ | $+.0010-.0000$ | $+.0000-.0005$ |
| $1-1 / 2-3$ | $+.0010-.0000$ | $+.0000-.0010$ |
| $3-3-15 / 16$ | $+.0020-.0000$ | $+.0000-.0010$ |
| $4-4-15 / 16$ | $+.0020-.0000$ | $+.0000-.0015$ |

The life of the bearing will be improved by fitting the bearing with a light press fit on the shaft.

## MOUNTING INSTRUCTIONS

Prior to securing the unit to the shaft, make certain that shafting is free of burrs. Slide the unit onto the shaft to the point desired for mounting and bolt the unit to the supporting base. To prevent bearing damage avoid hammering on the ends of the inner race. After bolting the unit to the support, tighten the self-locking setscrews securely onto the shaft. Recommended torques for tightening the setscrews are shown in Table 2.

| TABLE 2 | Shaft Size (Inches) | Tightening Torque |  |
| :---: | :---: | :---: | :---: |
|  |  | (Inch:Pounds) | (Foot Pounds) |
|  | 1-3/16-1-11/16 | 108 | 9 |
|  | 1-3/4-2-1/2 | 180 | 15 |
|  | 2-11/16-3-1/2 | 408 | 34 |
|  | 3-15/16-4 | 876 | 73 |
|  | 4-7/16-4-15/16 | 1440 | 120 |

## CARTRIDGE INSERT

General: This cartridge is for use in Morse housing or in Morse approved OEM applications only. No other use is authorized. This part is covered by one or more of the following U.S. patents:

$$
\begin{array}{rrrr}
3,773,397 & 3,829,182 & 3,891,286 & 3,937,538 \\
3,794,393 & 3,845,999 & 3,912,412 & 3,977,740 \\
3,807,819 & 3,850,485 & 3,918,776 & 3,981,550
\end{array}
$$

## Removal \& Replacement:

To remove the cartridge from the housing, remove the housing assembly cap bolts and lift off the top housing half so that the shaft plane can be adjusted to allow removal of the cartridge. When replacing the cartridge insert, first check to assure that the rubber grommet is properly seated in the lube hole. Then position the cartridge lock pin so that it lines up with the lock pin slot in the housing. BE SURE the lock pin is not put in the lube hole. The shaft can be returned to its normal position and the housing can then be reassembied by tightening the cap bolts. Cap bolt tightening torques are shown in Tables $3,4,5, \& 6$. Locking collars can be reaffixed to the shaft by tightening the setscrews to the torques shown above. (See Table 2.)

Form 9246-002 Effective March, 1983

## TORQUE VALUES FOR ASSEMBLING HOUSING HALVES

TABLE 3

| PILLOW BLOCK HOUSING |  |  |
| :---: | :---: | :---: |
| Shaft Size | Tightening Torque |  |
| (Inches) | (Lbs. Inches) (Lbs. Feet) |  |
| $1-3 / 16-1-1 / 4$ | 204 |  |
| 17 |  |  |
| $1-3 / 8-2-3 / 16$ | 372 |  |
| $2-1 / 4-3$ | 900 |  |
| $3-3 / 16-4-1 / 2$ | 3192 |  |
| $4-15 / 16-5$ | 4728 |  |

TABLE 5

| PILOTED FLANGE HOUSING |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Shaft Size <br> (Inches) | Outside Bolts |  | Inside Bolts |  |
|  | (Lb-Ins.) | (Lb-Ft.) | (Lb-Ins.) | (Lb-Ft.) |
| $1-3 / 16-2$ | 204 | 17 | 48 | 4 |
| $2-3 / 16-3$ | 588 | 49 | 96 | 8 |
| $3-3 / 16-4$ | 900 | 75 | 204 | 17 |
| $4-7 / 16-5$ | 1800 | 150 | 900 | 75 |

TABLE 4

| FLANGE BEARING HOUSING |  |  |
| :---: | :---: | :---: |
| Shaft Size <br> (Inches) | Tiahtening Torque |  |
|  | (Lbs.Inches) | (Lbs.Feet) |
| $1-3 / 16-2$ | 372 | 31 |
| $2-3 / 16-3$ | 900 | 75 |
| $3-7 / 16-3-15 / 16$ | 1800 | 150 |

TABLE 6

| EXPANSION PILLOW BLOCK HOUSING |  |  |  |
| :--- | :---: | :---: | :---: |
| Shaft Size |  | Tightening Torque |  |
| (Inches) | (Lb-Ins.) | (Lb-Ft.) |  |
| $1-3 / 4-2-3 / 16$ | 372 | 31 |  |
| $2-1 / 4-3$ | 900 | 75 |  |
| $3-3 / 16-3-1 / 2$ | 3192 | 266 |  |
| $3-15 / 16-4-1 / 2$ | 1800 | 150 |  |
| $4-15 / 16-5$ | 3192 | 266 |  |

## LUBRICATION

All Morse Sealmaster roller bearings are prelubricated at the factory with a lithium soap grease which is compatible with multi-purpose grease readily available from local suppliers. The factory lubrication conforms to NLGl grade 2 consistency and is suitable for an operating temperature range of $-20^{\circ} \mathrm{F}$. to $+250^{\circ} \mathrm{F}$.

For extremely dirty or wet applications with shaft speeds below 200 RPM, completely fill the bearing prior to running.

Proper relubrication is important to the life of the bearing. A general relubrication guide is shown in Table 8. The bearing should be relubricated while rotating, the grease pumped in slowly until a bead forms around the seals. If necessary to relubricate while idle, refer to relubrication Table 7 for maximum grease capacity for various size bearings.

TABLE 7

| LUBRICATION OF MORSE <br> ROLLER BEARINGS |  |
| :--- | :--- |
| Shaft | Recommended |
| Size | Relube Grease |
| (Ins.) | Charge (Ozs.) |
| $1-3 / 16-1-1 / 4$ | .10 |
| $1-3 / 8-1-7 / 16$ | .22 |
| $1-1 / 2-1-11 / 16$ | .32 |
| $1-3 / 4-2$ | .50 |
| $2-3 / 16$ | .55 |
| $2-1 / 4-2-1 / 2$ | .65 |
| $2-11 / 16-3$ | .85 |
| $3-3 / 16-3-1 / 2$ | 1.25 |
| $3-15 / 16-4$ | 2.50 |
| $4-7 / 16-4-1 / 2$ | 3.10 |
| $4-15 / 16$ | 4.75 |

TABLE 8

| RECOMMENDED RELUBRICATION FREQUENCY |  |  |  |
| :---: | :---: | :---: | :---: |
| Speed | Temperature | Cleanliness | Greasing Interval |
| 100 RPM | Up to $125^{\circ} \mathrm{F}$. | Clean | 6 months |
| 500 RPM | Up to $150^{\circ} \mathrm{F}$. : | Clean | 2 months |
| 1000 RPM | Up to $210^{\circ} \mathrm{F}$. | Clean | 2 weeks |
| 1500 RPM | Up to $210^{\circ} \mathrm{F}$. | Clean | Weekly |
| Any Speed | Up to $150^{\circ} \mathrm{F}$. | Dirty | 1 wk . to 1 mo. |
| Any Speed | Over $150^{\circ} \mathrm{F}$. | Dirty | Daily to 1 wk. |
| Any Speed | Any Temperature | Very Dirty | Daily to 1 wk. |
| Any Speed | Any Temperature | Extreme conditions | Daily to 1 wk. |




STANDARD SINGLE DIRECTION UNIT

STANDARD UNIT WITH 4-WAY
DIRECTIONAL CONTROL VALVE

REVERSIBLE UNIT WITH P.O. CHECK AND PRESSURE SWITCH


INTEGRAL DESIGN WITH BUILT-IN VALVING OR EXTERNAL 4-WAY VALVE EXTERNALLY ADJUSTABLE INTEGRAL RELIEF VALVES HEAVY DUTY DESIGN WITH LOW NOISE LEVEL COMPACT DESIGN - FITS IN AREAS AS SMALL AS $8^{\prime \prime} \times 8^{\prime \prime} \times 17^{\prime \prime}$ RESERVOIR SIZES FROM 1/2 GAL. TO 5 GAL.

4 PUMP SIZES - $1 / 4$ GPM TO 2 GPM MOTOR SELECTION TO 2 HP-AC-DC-AIR UNIQUE DESIGN BUT FLEXIBLE TO MEET CUSTOMER REQUIREMENTS

## 330 SINGLE DIRECTION POWER UNITS

This unit provides a conventional approach to hydraulic circuitry, producing a one-way source of hydraulic power.
Typical Applications:
(1) Accumulator charging
(2) One-way rotation hydraulic motors
(3) Servo valve operators
(4) Multiple function circuits with external directional or sequence valves
(5) One cylinder reciprocation where the number of reversals per minute requires external directional valving
(6) Pressurized lube systems

JIC SYMBOL


## 330 REVERSIBLE POWER UNITS

Hydraulic flow reversals automatically occur with rotation reversals of the pump and driving motor.
FORWARD ROTATION - Hydraulic fluid is sucked into the gear pump over the check valve on the lower left. as shown in the diagram. The right hand side is now the discharge (pressurel side and flow directions are as shown by the arrows. The check valve, at lower right, stops discharge flow from escaping to the reservoir.
In order for this discharge flow to enter the cylinder, the control spool is shifted to the left by pressure flow as shown. In this position, the cylinder port is connected to discharge flow (pressure) and the cylinder ram moves to the left as indicated. The pressure relief valve at the right limits the maximum pressure that can be applied in the forward direction circuit. At maximum selected pressure, the hydraulic fluid is bypasse $d$ to the reservoir by the return tube at the right.
Fluid from the rod end of the cylinder flows through the control spool directly back to the reservoir through the center return tube only.
REVERSE ROTATION - When pump rotation is reversed, the right side (diagram B) is now the suction side and the left side is now the discharge (pressure) side. The control spool is shifted to the right by pressure flow and discharge (pressure) flow enters the rod end of the cylinder to retract the cylinder ram as indicated. The pressure relief valve at the left limits the maximum pressure selected for the reverse circuit.
As the cylinder piston travels toward the blind end of the cylinder it is forcing more fluid out of the cylinder than is entering the cylinder at the rod end, due to different displacement areas (and volume) of the rod end vs. the blind end. The larger the piston rod is, the greater the area and volume difference will be.

The return flow from the cylinder passes through the control spool directly back to the reservoir through the center return tube only. Note that regardless of rotation and flow. the return flow does not enter the suction side of the pump. High volume return flows cannot "choke" the pump or cause system malfunction.

STANDARD UNIT SCHEMATIC


REVERSIBLE NON-LOCKING PLLOTED FLOW

## 330 REVERSIBLE LOCKING POWER UNITS

REVERSIBLE LOCKING UNITS - Reversible locking units operation is the same as standard reversible units, as shown at right, except these units have an integral dual pilot check valve as shown in the reversible locking circuits, in diagrams $C \& D$.

When the pump is stopped on these locking units, the cylinder is locked in position. This is due to the self centering of the piston in the P.O. check causing both checks to seat and to remair locked until the pump is re-started in forward or reverse rotation. Reverse rotation moves the piston unseating the ball check on the return side while the ball check on the pressure side reacts as a normal check allowing the flow to enter the cylinde:


REVEPSIBLE LOCKING - PLDTED FLOW

## HOW IT OPERATES

## STANDARD SINGLE DIRECTION UNIT

SINGLE DIRECTION UNIT WITH 4-WAY VALVE

With motor running, gears are rotated creating a partial vacum into which oil from the reservorr flows. This flow of oil then proceeds around the pump gears and is available to the system. The return line connection provides the means to return oil from the system.

This compact power package with the one pressure outlet port and one return to tank port also contains an internal relief valve which is externally adjustable. Many single hydraulic circuits require nothing more to accomplish the desired function.

Manifold mounting of single or multiple 4 -way valves to this standard unit increases the circuit capability to cover multiple functions. Pilot operated check valves and pressure switches can also be manifold mounted to the unit to provide "holding" circuit capability and automatic response to pressure settings.

## HOW IT OPERATES

FORWARD ROTATION
(A)


HOW IT OPERATES

FORWARD ROTATION

(C)


OILDYNE

## SPECIFICATIONS AND PERFORMANCE

FLOW - PRESSURE - RECOMMENDED MOTOR H.P.

| $\begin{aligned} & \text { PUMP } \\ & \text { SIZE } \end{aligned}$ | QUICK <br> INDEX | NOMINAL GPM | 3450 R.P.M. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & 500 \\ & \text { PSI } \end{aligned}$ | $\begin{aligned} & 750 \\ & \text { PSI } \\ & \hline \end{aligned}$ | $\begin{gathered} 1000 \\ \text { PSI } \end{gathered}$ | $\begin{gathered} 1250 \\ \text { PSI } \end{gathered}$ | $\begin{aligned} & 1500 \\ & \text { PSI } \end{aligned}$ | $\begin{aligned} & 1750 \\ & \text { PSI } \\ & \hline \end{aligned}$ | $\begin{gathered} 2000 \\ \text { PSI } \\ \hline \end{gathered}$ | $\begin{gathered} 2500 \\ \text { PSI } \end{gathered}$ | $\begin{gathered} 3000 \\ \text { PSI } \end{gathered}$ |  |
| . 270 | H.P. | $1 / 2$ | 1/4 | 1/3 | 1/2 | 1/2 | 3/4 | 3/4 | $1{ }^{\text {" }}$ | 1 | 1.5 |  |
|  | FLOW-CIPM |  | 129 | 128 | 127 | 126 | 125 | 124 | 123 | 122 | 120 |  |
| . 530 | H.P. | 1 | 1/3 | 1/2 | 3/4 | 1 | 1.5* | 1.5 | 1.5 | 2 |  |  |
|  | FLOW-CIPM |  | 253 | 252 | 250 | 249 | 247 | 246 | 244 | 242 |  |  |
| . 790 | H.P. | 11/2 | 3/4* | 1 | $1.5^{*}$ | 1.5 | $2 *$ | 2 |  |  |  |  |
|  | FLOW-CIPM |  | 376 | 373 | 371 | 368 | 367 | 365 |  |  |  |  |
| 1.000 | H.P. | 2 | 3/4* | $1.5^{*}$ | 1.5 | 2* | 2 |  |  |  |  |  |
|  | FLOW-CIPM |  | 483 | 480 | 476 | 473 | 470 |  |  |  |  |  |


| $\begin{aligned} & \text { PUMP } \\ & \text { SIZE } \end{aligned}$ | QUICK <br> INDEX | NOM- <br> INAL GPM | 1725.B.P.M. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & \hline 500 \\ & \text { PSI } \end{aligned}$ | $\begin{aligned} & 750 \\ & \text { PSI } \end{aligned}$ | $\begin{gathered} 1000 \\ \text { PSI } \end{gathered}$ | $\begin{gathered} 1250 \\ \text { PSI } \end{gathered}$ | $\begin{aligned} & 1500 \\ & \text { PSI } \end{aligned}$ | $\begin{gathered} 1750 \\ \text { PSI } \\ \hline \end{gathered}$ | $\begin{gathered} 2000 \\ \text { PSI } \end{gathered}$ | $\begin{gathered} 2500 \\ \text { PSI } \end{gathered}$ | $\begin{gathered} 3000 \\ \text { PSI } \end{gathered}$ |  |
| . 270 | H.P. | 1/4 | 1/6 | 1/4 | 1/4 | 1/4 | 1/3 | 1/3 | 1/2* | 1/2 | 3/4* |  |
|  | FLOW-CIPM |  | 65 | 64 | 63 | 63 | 62 | 61 | 60 | 58 | 57 |  |
| . 530 | H.P. | 1/2 | 1/4 | 1/3* | 1/2* | 1/2 | 3/4* | 3/4 | 3/4 | 1 | 1 |  |
|  | FLOW-CIPM |  | 126 | 125 | 125 | 124 | 123 | 122 | 121 | 119 | 118 |  |
| . 790 | H.P. | 3/4 | 1/3* | 1/2* | 3/4* | 3/4 | $1^{*}$ | 1 |  |  |  |  |
|  | FLOW-CIPM |  | 189 | 187 | 185 | 184 | 184 | 183 |  |  |  |  |
| 1.000 | H.P. | 1 | 1/2 | 3/4* | 3/4 | 1 | 1 |  |  |  |  |  |
|  | FLOW-CIPM |  | 241 | 239 | 237 | 236 | 235 |  |  |  |  |  |

## (* INDICATES NEXT LOWER H.P. CAN BE USED WITH 1.25 S.F.)

HOW TO ORDER
code

330 POWER UNIT

## MOTORS

INDUCTIVE TYPE - 60 CYCLE DUAL VOLTAGE 115:23016 - DUAL

| H.P. | RPM | PHASE | OPEN | TEFC |
| :---: | :---: | :---: | :---: | :---: |
| CODE | CODE |  |  |  |
| $1 / 3$ | 1725 | 1 | OA | TA |
| $1 / 3$ | 1725 | 3 | OB | TB |
| $1 / 3$ | 3450 | 1 | OG | TG |
| $1 / 3$ | 3450 | 3 | OH | TH |
| $1 / 2$ | 1725 | 1 | OC | TC |
| $1 / 2$ | 1725 | 3 | OD | TD |
| $1 / 2$ | 3450 | 1 | OM | TM |
| $1 / 2$ | 3450 | 3 | OT | TT |
| $3 / 4$ | 1725 | 1 | OE | TE |
| $3 / 4$ | 1725 | 3 | OF | TF |
| $3 / 4$ | 3450 | 1 | ON | TN |
| $3 / 4$ | 3450 | 3 | OU | TU |
| 1 | 1725 | 1 | OJ | TJ |
| 1 | 1725 | 3 | OK | TK |
| 1 | 3450 | 1 | OP | TP |
| 1 | 3450 | 3 | OW | TW |
| $11 / 2$ | 1725 | 1 | OL | TL |
| $11 / 2$ | 1725 | 3 | OO | TO |
| $11 / 2$ | 3450 | 1 | OQ | TQ |
| $11 / 2$ | 3450 | 3 | OX | TX |
| 2 | 1725 | 3 | OR | TR |
| 2 | 3450 | 1 | OS | TS |
| 2 | 3450 | 3 | OY | TY |
|  |  |  |  |  |

OC MOTORS - CONSULT FACTORY


GENERAL OUTLINE DIMENSIONS
1


280 CUBIC INCH ROUND RESERVOIR



## OUTLINE DRAWINGS FOR OPTIONAL FEATURES



REVERSIBLE WITH DUPLEX PRESSURE SWITCH (NON-MONITORING) $\$$ DUAL PILOT OPERATED CHECK


REVERSIBLE WITH DUPLEX PRESSURE SWITCH (MONITORING) © DUAL PILOT OPERATED CHECK

1. FILL UNIT WITH CORRECT HYDRAULIC FLUID.

ALL STANDARD UNITS CAN BE USED WITH:
OILDYNE NO. 15, 18 OR 31. HYDRAULIC TRANSMISSION FLUID TYPE (ATF). ANY HIGH QUALITY HYDRAULIC OIL WITH VISCOSITIES OF 150 SSU @ $100^{\circ} \mathrm{F}$ TO 350 SSU @ $100^{\circ}$ F THAT HAS PROPERTIES SIMILAR TO AMERICAN OIL COMPANY RYKON 15-25-OR-31.

NOTE: IF SPECIAL FLUIDS ARE REQUIRED, UNIT IS TAGGED WITH THIS INFORMATION. (THIS INFORMATION IS ALSO GIVEN ON PACKING PAPERS.)
2. MAKE CERTAIN THE MOTOR IS WIRED CORRECTLY. (MOTOR WIRING DATA IS ON THE MOTOR NAME PLATE OR IS INSIDE THE WIRING BOX COVER.)
3. WITH BOTH PUMP PORTS OPEN, (NOT CONNECTED TO FLUID LINES), MOMENTARILY JOG THE UNIT IN ONE DIRECTION. IF HYDRAUIIC FLUID DOES NOT FLOW FREELY FROM EITHER PORT, JOG THE UNIT IN THIE OPPOSITE DIRECTION. REPEAT THIS PROCESS UNTIL FLUID FLOWS FREELY FROM EEACH PORT ACCORDING TO ROTATION. UNIT IS NOW PROPERLY PRIMED AND CAN BE CONNECTED TO YOUR HYDRAULIC CIRCUIT.
4. WHEN CIRCU'IT COMPONENTS, (CYLINDERS, ETC.), ARE BEING FILLED FROM THE UNIT, MAKE CERTAIN THE OIL TANK ON THE UNIT IS NOT EMPTIED MORE THAN $1 / 2$ CAPACITY. REFILL TANK AS REQUIRED WHEN TANK IS LOW.
5. LOOKING AT THE UNIT WITH MOTOR ON TOP AND PORTS FACING YOU, THE RIGHT-HAND PORT PRESSURE IS CONTROLLED BY THE RIGHT-HAND RELIEF VALVE AND VICE-VERSA. IF THE RELIEF VALVE PRFSSURE SETTINGS SPECIFIED ARE NOT EQUAL, THE HIGH PRESSURE PORT IS AT THE RIGHT. THE RIGITT-HIAND PORT SHOULD BE CONNECTED TO THAT SIJE OF YOUR CIRCUIT REQUIRING THE HIGHEST PRESSURE.

# INSTRUCTION BULLETIN 330 SERIES 

## STANDARD SINGLE DIRECTION UNIT

STANDARD UNIT WITH 4-WAY
DIRECTIONAL CONTROL VALVE

REVERSIBLE UNIT WITH P.O. CHECK AND PRESSURE SWITCH


## INSTALLATION PROCEDURE

1. Mount the Unit securely in a vertical position with the motor up, unless specified for horizontal mounting as shown in the code description. (See Page 3). Horizontally mounted units have a filler/breather on the reservoir.
2. Fill the reservoir with Oildyne type 15, 18, or 31 hydraulic fluid, or any high-grade hydraulic oil with viscosities of $150 \mathrm{SSU}-350 \mathrm{SSU}$ at $100^{\circ} \mathrm{F}$.
3. Wire the power unit as shown on page 2.

## Specialists in Compact Fluid Power

## WIRING INSTRUCTIONS

Wire the motor according to the motor manufacturer's instructions. These are shown on the motor nameplate or inside the wiring box cover.

Single direction units have a rotation arrow on them. Be certain the motor rotates in the proper direction.

Examples are shown below:
SINGLE PHASE MOTORS
THREE-PHASE MOTORS

| BLUE | (T1) |  |
| :---: | :---: | :---: |
| BLACK | (T5) |  |
| GREEN | (T3) | HIGH |
| WHITE | (T2) | VOLTAGE LINE |
| RED | (J10) |  |
| YELLOW | (T4) |  |



1. Connect line leads to (1) (2)
2. To reverse rotation, interchange two-line leads.

Wiring diagrams shown for single direction and reversible pumps (R.H. port). For reversible pumps (L.H. port) interchange black (T5) and red ( J 10 ) leads. CAUTION: On single direction pumps, do not reverse motor or pump will be damaged.

## START UP PROCEDURE

NOTE: Before starting the power unit, make certain the reservoir is full of oil.

## SINGLE DIRECTION POWER UNIT (One externally adjustable relief valve)

1. Jog the motor and check its rotation with the rotation decal on the motor.
2. After the entire system has been filled, the reservoir should be at least half full of oil.
3. The relief valve and pressure switches (if so equipped) are factory set, but are externally adjustable.

## REVERSIBLE POWER UNIT (Two extemally adjustable relief valves)

1. With both pump ports open (not connected to fluid lines), momentarily jog the unit in one direction. If hydraulic fluid does not flow freely from either port, jog the unit in the opposite direction. Repeat this process until fluid flows freely from each port according to rotation. Unit is now properly primed and can be connected to your hydraulic circuit.
2. After the entire system has been filled, the reservoir should be at least half-full of oil.
3. The relief valves and pressure switches (if so equipped) are factory set. but are externally adjustable. To adjust the relief valves, look at the unit with the motor on top and the ports facing you. The right hand port pressure is adjusted by turning the adjusting screw on the right-hand relief valve, and vice-versa for the left-hand port. The right-hand port should be connected to the side of the circuit requiring the highest pressure.

## HELPFUL HINTS

- Don't operate the unit without the recommended fluid in the reservoir.
- Don't run the unit over $165^{\circ} \mathrm{F}$. A fluid temperature of $100^{\circ}$ to $120^{\circ} \mathrm{F}$. is ideal for the best operation of the unit. At higher operating temperatures, always have a minimum viscosity of 100 SSU.
- Set the relief valve at the lowest pressure required for system operation to minimize heat build-up and energy loss.
- To insure top performance, keep the reservoir, filter, and oil clean. Check at regular intervals and change oil in the system every 1,000 hours for normal usage ( $120^{\circ} \mathrm{F}$. operating temperature), and more frequently for higher operating temperatures.


## CODE DESCRIPTION



## DIMENSIONS

## OUTLINE DRAWINGS FOR OPTIONAL FEATURES



SINGLE DIRECTION UNIT WITH 4-WAY VALVE, SINGLE PRESSURE SWITCH AND DUAL PILOT OPERATED CHECK VALVE


REVERSIBLE UNIT WITH DOUBLE PRESSURE SWITCH AND DUAL PILOT OPERATED CHECK VALVE


RESERVOIR SIZES

| NO. | OIL <br> REQUIRED | DESCRIPTION OF TANK | DIAMETER | HEIGHT | WIDTH | DEPTH |
| :---: | :--- | :--- | :--- | :--- | :--- | :---: |
| 12 | $150 \mathrm{Cu} . \operatorname{In}$. | Cylindrical Drawn Aluminum | $5.75^{\prime \prime}$ | $6^{\prime \prime}$ | N.A. | N.A. |
| 13 | $280 \mathrm{Cu} . \operatorname{In.}$ | Cylindrical Drawn Aluminum | $5.75^{\prime \prime}$ | $11^{\prime \prime}$ | N.A. | N.A. |
| 8 | 3 Gal. | Rectangular Cast Aluminum | N.A. | $1014^{\prime \prime}$ | $9^{\prime \prime}$ | $9^{\prime \prime}$ |
| 14 | 5 Gal. | Rectangular Welded Steel | N.A. | $12.13^{\prime \prime}$ | $12.15^{\prime \prime}$ | $11.25^{\prime \prime}$ |



330 SERIES POWER UNITS STANDARD OR REVERSIBLE

| Hem No. | Part No. | Description $\begin{aligned} & \text { Oty. } \\ & \text { Req. }\end{aligned}$ | Item No. | Part <br> No. | Description | Oiy. Req. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | * | MOTOR_______1 | 14 | 405226 | O-RING (113-70) | 1 |
| 2 |  | ADAPTER 1 | 15 | 409071 | FILTER - | 1 |
| +3 | - | RELIEF VALVE ASSEMBLY | 16 | ** | BASIC PUMP | 1 |
| 4 | 359551 | SHUTTLE SPOOL (Reversible Only) _-_ 1 | 17 | 400787 | CAP SCREW, SOC. HD., 1/9-28×1IN. | 2 |
| 5 | 409221 | BOLT, HEX HD., $/ 6-16 \times 1 / \mathrm{IN}$. | 18 | 409051 | O-RING (010-90) | 2 |
| 6 | 409850 | GASKET 1 | 19 | 359673 | COUPLING |  |
| 7 | 360732 | HEX REDUCER BUSHING ___ 1 | 20 | 403395 | HEX NUT, NO. 10-32 | 4 |
| 8 | 410175 | SCREW, NO. $10-32 \times 11 / 4 \mathrm{IN}$. | 21 | 409892 | OIL SEAL | 1 |
| 9 | ** | RESERVOIR _ 1 | 22 | 410437 | SET SCREW, SOC. HD., 1/4-28 $\times 1 / 1 /$ IN. | 1 |
| 10 | 409875 | PIPE NIPPLE, \% $\% 8$ IN. | 23 | 359672 | SHAFT ADAPTER | 1 |
| 11 | 409867 | PIPE NIPPLE (Reversible Only) $1 / 6 \times 8$ IN. ___ 1 | 24 | 408569 | O-RING (198-70) | 1 |
| 12 | 409876 | PIPE NIPPLE, $1 / 2 \times 6 \mathrm{iN}$. 1 | 25 | 360239 | RETAINING RING | 1 |
| 13 | 360244 | SUCTION STRAINER ADAPTER___ 1 | 26 | 359656 | BREATHER PLUG (VERTICLE ONLY) | 1 |

[^1]
## PARTS ORDERING

Supply the following information when ordering parts or requesting information:

1. Complete Power Unit Code and Part Number as shown on Oildyne Nameplate.
2. Quantity, six-digit part number and description of parts as shown on Page 5.
3. Motor Nameplate information is required if a replacement motor is ordered.

## FACTORY REPAIR

Oildyne maintains a complete repair facility for your convenience. To have your unit factory repaired, return to the address on the front with a complete explanation of the problem.


## APPENDIX Q

OILDYNE PUMPS P3 AND P4

OILDYITE
SHEARING, INC.


## WITH MANUAL OPERATED RELEASE VALVE



WITH SOLENOID OPERATED RELEASE VALVE

ALSO AVAILABLE WITH 4-WAY VALVE OR INTEGRAL CHECK VALVE CIRCUIT.

- Designed for use on mobile equipment with a 12 volt electrical system.
- System ideal for applications in which a load is lifted and held such as tailgates, hay bale loaders, aerial ladders, fork lifts, etc.
- Wide selection of options - can be tailored to meet your system needs.
- Pressures to 3000 PSI.
- Vertical or horizontal mounting.
- Extra return port provided on most versions.


## SPECIFICATIONS

ELECTRICAL - 12 VDC series wound motor, grounded case, intermittent duty - supplied with motor starter.
Release solenoid is intermittent duty - $50 \%$ duty cycle, 11 min. max. on time.
PUMP - Spur gear, 5 sizes $1 / 2$ GPM to 3 GPM (see the performance curves)
FILTRATION - 100 mesh suction screen ( 149 micron)
RESERVOIR - $\quad 1 / 2$ gallon, 1 gallon $11 / 2$ gallon and $21 / 2$ gallon.
FLUID - Recommended: standard automatic transmission fluid or standard hydraulic fluid with viscosity ratings suitable to climatic conditions.

## VALVING -

| RELIEF VALVE - | An integral relief valve that is externally adjustable up to 3000 PSI is standard on all units. |
| :---: | :---: |
| Check valves - | Power units are available with or without a holding check for the discharge port. |
| Release valves - | Manual or solenoid release valves are available on units with holding checks. |
| MANUAL RELEASE | The manual release and the motor starter are operated by a common lever. Actuating the lever upward starts the motor causing the pump to deliver oil against a load. Releasing the lever shuts the motor off and allows the holding check to seat. Actuating the lever down, releases the load. The rate at which the load returns or the return flow rate, is controlled by the position of the lever. (See dimensional drawings). |
| SOLENOID | The solenoid release is a pilot operated valve with an integral flow control valve. The return flow control operates similar to a needle valve and must be preset. It is not adjustable during actuation. When the solenoid release is supplied the solenoid motor starter is also supplied. Minimum adjustable flow - 50 CIPM at 3000 PSI. |
| 4-WAY VALVE - | A four way valve can be manifold mounted on the power unit. Double solenoid 3 position and single solenoid 2 position valves are available. The 3 position spools that are available are shown on the dimensional drawing (open, closed, tandem, and float center). |

## FLOW (E.P.M.)



## HOW TO ORDER CODE




425 I2V DC ECWER UNIT WITH CHECK VALVE




## EXPLODED VIEW - SOLENOID OPERATED RELEASE VALVE UNIT exploded views of other circuits are shown in the 425 SERIES INSTRUCTION BULLETIN




## INSTALLATION PROCEDURE

## MOUNTING

The power unit should be mounted using the 4 mounting holes in the bracket or the two holes in the casting. The bracket is recommended where the unit is subject to shock and vibration loads. When the $1-1 / 2$ gallon reservoir is used additional support may be needed for the reservoir if vibration and shock loads are severe. Horizontal units should be mounted with the bracket down. For other horizontal positions, consult the factory. The unit should be mounted so that the relief valve, flow control valve (solenoid release) and filler breather are easily accessible and protected as much as possible from the weather.

## WIRING - GENERAL

The positive terminal of the battery should be connected to the starter switch on the unit by a minimum length of \#4 battery cable. Make other electrical connections per the dimensional drawings.

## MANUAL RELEASE UNIT

On power units with the manual release, the lever is optional or the customer can install his own linkage to activate the cam. (See dimensional drawings.) There is an adjustment on the release mechanism (Item 78 and 79 of the service parts list). Adjusting the screw will set the maximum return flow rate by limiting the travel of the plunger (80).

## SOLENOID RELEASE UNIT

A power unit with a solenoid release valve is designed to be operated with a 3 position SPDT Toggle Switch, minimum 4 amps. (Not supplied with the power unit.) Refer to Figure 1 for electrical connections.

The return flow control valve can only be adjusted when the system pressure is at zero. The valve should be set by turning the adjustment all the way in and backing out $1 / 4$ turn to try. Turning the adjustment in reduces flow rate and turning out increases flow rate. Caution should be used at high pressures, small changes in the setting can make a large change in the flow restriction.

## 4-WAY VALVE UNIT

The two cylinder ports are located on top of the valve and the electrical connections are made in the electrical box on the valve.

## ALL UNITS - GENERAL INSTRUCTIONS

After the hydraulic lines and electrical connections are made, fill the reservoir with automatic transmission fluid or a good quality hydraulic oil having a viscosity index that is suitable for the climatic conditions in which the unit will be operated.

Before tightening all of the fittings, bleed the air from the system by cycling the unit. Be sure to jog the motor until fluid is being discharged from the pump.

The relief valve is set at the factory to the pressure requested by the customer. It can be adjusted in the field. The maximum adjustable pressure is 3000 psig. (The relief valve should not be adjusted higher than 2000 psi if the .690 pump is used.)



| Reierence " | Part * | Demeription Ouan | Ouantity |
| :---: | :---: | :---: | :---: |
| Relernice " | 410591 | 1/4-20 $\times 3 / 8^{\prime \prime}$ SI. Pan Hd. Cs. |  |
| 1 | 400906 |  |  |
| 3 | 410585 | Solenoid (Not with Manual Release) |  |
| 4 | 410592 | Connector (Not with Manual Release) |  |
| 5 | 410563 | Motar |  |
| 6 | 410524 | Grommet |  |
| 7 | 410520 | Mounting Bracket <br> 3/8-16 $\times 3 / 4$ Hex Hd. Cap Sc | 1 |
| 8 | 400725 |  | 2 |
| 9 | 400907 | 3/8" Lockwasher |  |
| 10 | 361291 | Couphing |  |
| 11 | 410525 | Bearing |  |
| 12 | 205508 | Adapter |  |
| 13 | 490405 | 11/32" Steel Ball (Not with 4-way) Soring, Check Vaive (Not with 4-way) |  |
| 14 | 410554 |  | ${ }^{*}$ |
| 15 | 409275 | SAE ${ }^{*} 6$ Hex Piug | 1 |
| 16 | 410526 | O-Ring (252-70) (Res. Seal) | 2 |
| 17 | 409005 | O-Ring (011-90) | 1 |
| 18 | 490811 |  |  |
| 19A | 361504 | Return Pipe (with all Horiz units \& Vertical $\mathbf{1 / 2} \mathrm{Ga} /$ Res) |  |
| 198. | 361492 | Return Pipe (with Vertical 1 Gal Res) | $1 \cdot$ |
| 19 C | 361493 | Rerurn Pipe (with Vertical $1 / 2 \& 2 h$ Gal Res) Reservoir, $21 /$ Galion | 1 |
| 20 | 773748 | Reservoir, $21 / 2$ Gailon <br> *10-32 $\times 3 / 8$ Hex Hd Cap Sc. | 4 |
| 21 | 410559 |  | 4 |
| 22 | 410248 | *10-32 $\times$ Lockwasher |  |
| 23 | 410586 | Filler Breather | 1 |
| 24 | 410542 | Filter | 1 |
| 25 | 409976 | Hex Reducer BushingSuction Pipe (All Horiz Res. \& Vertical $1 / 2 \mathrm{Gal}$ Res) | 1 |
| 26 | 361491 |  | 1 |
| 26 | 361492 | Suction Pipe (Vertical 1 Gallon Reservoir) | 1 |
| 26 | 361493 | Suction Pipe (Vertical 1/2\& 21/2 Gal Res) |  |
| 27 | 631500 | Basic Pump 150 | , |
| 27 | 631501 | Basic Pump 278 |  |
| 27 | 631502 | Basic Pump 416 | , |
| 27 | 631503 | Basic Pump 555 | 1 |
| 27 | 631504 | Basic Pump 690 Oil Seal | 1 |
| 28 | 410694 |  | 1 |



NOTE: THESE VIEWS SHOW ONLY THE ADDITIONAL PARTS WHICH ARE USED IN PLACE OF THE SOLENOID RELEASE PARTS SHOWN ON THE PREVIOUS PAGE.

| Aeterence * | Part | Description | Ouantity |
| :---: | :---: | :---: | :---: |
| 65 | 410636 | Starter Swith | 1 |
| 66 | 410627 | Bracket. Switen Mounting | 1 |
| 67 | 410635 | Battery Cable | 1 |
| 68 | 361544 | Cam | 1 |
| 69 | 410634 | Knob | 1 |
| 70 | 361546 | Lever | 1 |
| 71 | 400863 | 5/16-18 $\times 1 / 4$ Set Screw | 1 |
| 72 | 361545 | Cam Snaft | 1 |
| 73 | 410628 | Spring | 1 |
| 74 | 410631 | Shaft Retainer | 2 |
| 75 | 410633 | Nylon Bearing | 2 |
| 76 | 410632 | Shaft Retainer | 2 |
| 77 | 361547 | Stop Snaft | 1 |
| 78 | 410559 | +10-32 x 3/8 Hex Hd. Sc | 1 |
| 79 | 403395 | -10-32 Hex Nut | 1 |
| 80 | 361543 | Release Vaive Plunger | 1 |
| 81 | 401273 | O-Ring (010-70) | 1 |
| 82 | 361542 | Retease Valve Booy | 1 |
| 83 | 490308 | O-Ring (018-70) | 1 |
| 84 | 407328 | O-Ping (012-90) | 1 |
| 85 | 401066 | 5/16 Dia Steel Ball | 1 |
| 86 | 410630 | Spring | 1 |
| 87 | 490817 | Roll Pin | 1 |
| 88 | 205539 | Adapter | 1 |
| 89 | 493127 | O-Ring (019-70) | 1 |
| 90 | 361549 | Plug | 1 |
| 91 | 205536 | Adapter | 3 |
| 92 | 407328 | O-Ring (012-90) | 3 |
| 93 | 361537 | Adapter Plate Soc Cap Sc | 1 |
| 94 | 410641 | 5/16-18 $\times 1 / 2^{*} \mathrm{Soc} . \mathrm{Hd}$ Cap Sc. | 2 |
| 95 | (Consult Factory) | 4-Way Valve | 1 |

[^2]
## CODE DESCRIPTION



## TROUBLE SHOOTING

| PROBLEM | CAUSE | SOLUTION |
| :---: | :---: | :---: |
| NO FLOW | - Pump not primed; air trapped in system <br> - Suction screen plugged <br> - Low oil level | - Loosen fitting and cycle unit to bleed air <br> - Remove reservoir, clean screen <br> - Fill reservoir |
| LOW FLOW | - Low voltage to motor <br> - Relief valve set too low <br> - Release valve leaking <br> - Pump worn | - Charge battery, clean electrical connections; use larger battery cable; improve motor ground <br> - Adjust relief valve setting <br> - Check adjusting screws; remove and clean <br> - Replace pump |
| CHECK VALVE DOES NOT HOLD | - Dirt <br> - Seal leakage (solenoid release) <br> - Leakage past poppet seat (solenoid release) | - Remove checks and clean (\#13, \#45, \#62) <br> - Replace spool seal \#48 <br> - Remove and clean solenoid release assembly (\#32) |
| MOTOR DOES NOT RUN | - Loose electrical connection <br> - Starter solenoid (\#3) burned out <br> - Manual starter (\#65) not making contact <br> - Poor ground of motor case <br> - Burned out motor | - Clean and tighten all electrical connections <br> - Replace solenoid starter <br> - Depress plunger with screw driver to test <br> - Clean mounting for good contact <br> - Replace motor |

## DISASSEMBLY INSTRUCTIONS

When disassembling be careful to keep dirt out of the system. Before disassembling be sure that all pressure has been bled from the hydraulic lines. (The solenoid release may be manually activated by removing the solenoid coil, 33 , and pulling on the solenoid core.)

It may be helpful to remove a hydraulic line and pump the reservoir dry before starting disassembly.
The cable from the battery should be disconnected before starting to eliminate the possibility of accidently shorting out the battery.

## MANUAL OPERATED RELEASE VALVE

1. Remove starter switch (65), lever (70) and set screw (71) (5/32 allen wrench).
2. Remove shaft retainers (74) (76) so that parts $68-77$ may be removed.
3. Use 1 " socket to remove the release valve body (82).
4. Clean and inspect parts before reassembly, checking to make sure that the area where the ball (85) seats on the release valve body (82) is clean and free of scratches.

## SOLENOID OPERATED RELEASE VALVE

After bleeding all pressure from the system:

## A. Flow Control and Check Assembly (45)

1. Remove cap screw (61) and adjusting screw \#46.
2. Remove spool (49) by threading $10-24 \times 2$ " long screw into the spool and pulling it from the bore.
3. Check the condition of seal (48) and seat (50) replace if worn or damaged. Clean orifice in spool insert and reassemble. (Dirt in the orifice will cause the valve to malfunction.)
B. Solenoid Release Assemble (32)
4. Remove the solenoid coil (33). The core is threaded into the poppet (39).
5. Using a large screwdriver, remove the poppet retainer (35). Parts 36-40 are an assembly, (do not disassemble unless damaged).
6. The poppet seat (43) may be removed with a magnet. Clean the seat orifice and check for seat and poppet damage or wear. (Poppet must seal on seat.)
C. Reassembly of Solenoid Release
7. Apply grease to O'ring (44) to make certain it stays in position and assemble seat (43) into bore.
8. Assemble poppet retainer assembly (35) and tighten against seat (43).
9. Assemble solenoid core into poppet and tighten.
10. Assemble the solenoid coil turning it until it "bottoms out" against the solenoid core. Then back the coil out 3/4 turns and lock in place with the lock nut (34).

Removing other assemblies can be done by following the service parts list. For information on the four way valve contact the factory, or Oildyne's TP Line Directional Control Valve literature.

## WARRANTY

Oildyne equipment is guaranteed against defects in materials and workmanship. All equipment manufactured and sold by this company, which is found to be defective in either materials or workmanship, will be repaired or replaced upon the manufacturer's option. Any equipment that has been misused, abused, altered, worn out, or used for any purpose other than that for which it was intended, will not be covered by this guarantee. Final determination of defects will be made at the factory.


APPENDIX R
PRINCE HYDRAULIC CYLINDERS


With the cylinder removed from machine, cleaned, retracted, and drained of oil, proceed as follows:

1. Secure cylinder in a vise or other method to prevent rotation. Insure immediate area is clean so parts can be layed out.
2. Loosen set screw in gland if applicable. Remove gland cap with spanner wrench or strap wrench by unthreading.
3. Remove the rod assembly from cylinder. Take care not to damage threads or rod.
4. To remove gland from rod assembly, either remove rod end fitting (clevis) or piston. Then slide gland off rod.
5. Remove all seals from piston and gland.
6. Inspect parts for damage (nicks, scratches, cracks and etc.) If you have questions contact Prince Engineering (712) 277-4061.

Before assembly install new seals on piston and gland. Insure all parts are free of contamination (dirt, etc.)

> GLAND CAP/DISASSEMBLY - ASSEMBLY PROCEDURE

1. Coat ID of gland with light grease and replace on rod. Replace piston if removed and secure.
2. Coat OD of piston and seal area on gland with light grease. Apply light coat of hydraulic oil to ID of tube. Insert rod assembly into tube taking care not to damage threads, rod or seals.
3. Replace gland cap. (If applicable replace nylon plugs.) Tighten with spanner wrench or strap wrench.
4. Test cylinder - cylinder is now ready for reassembly in machine. If you have any problem contact Prince Engineering (712) 277-4061.

[^0]:    WARNING: NEVER LIPT CELLS BY TEE TERMINAL POSTS. ALWAYS USE LIPTING STRAPS, WHEN PROVIDED, TOGETHER WITH SUITABLE MECHANICAL LIFTING DEVICES, TO PREVENT INJURY TO PERSONNEL OR DAMAGE TO TEE CELLS.

[^1]:    - When ordering spring, please specity relief valve selting or spring range.
    *- Please specify code description of the power unit when ordering these items.
    $\dagger$ One (1) each necessary lor single direction, two (2) each for reversible direction.

[^2]:    $\because$ Ouantity is (2) with Solenoid Release Units
    $\because$ Quantity is (4) with Solenoid Release Units

    - Quantity is (2) with 4 -Way Valve Units

