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BIAXIAL CREEP-FATIGUE BEHAVIOR OF MATERIALS FOR 
SOLAR THERMAL SYSTEMS 

by 

S. Majumdar 

ABSTRACT 

Biaxial creep-fatigue data for Incoloy 800 and Type 
316H stainless steel at elevated temperature are presented. 
Tubular specimens were subjected to constant internal 
pressure and strain-controlled axial cycling with and with
out hold times in tension as well as in compression. The 
results show that the internal pressure affects diametral 
ratchetting and axial stress range significantly. However, 
the effect of a relatively small and steady hoop stress on 
the cyclic life of the materials is minimal. A 1-min com
pressive hold per cycle does not seriously reduce the 
fatigue life of either material; a tensile hold of equal 
duration causes a significant reduction in life for Type 
316H stainless steel, but none for Incoloy 800. Fracture 
surfaces of specimens made of both materials were studied 
by scanning electron microscopy to determine the reason for 
the difference in behavior. 

I. INTRODUCTION 

A general feature of solar thermal systems that is distinctly dif
ferent from the operating conditions associated with fossil and nuclear 
power plants is the highly cyclic nature of the thermal loading experienced 
by critical components. Solar thermal systems will undergo at least one 
major start-up and shutdown cycle per day, with additional cycles likely to 
be imposed by intermittent cloud cover and unscheduled maintenance and re
pair. Thus, critical components may be expected to accumulate of the order 
of tens of thousands of cycles over their design lifetime. In many cases, 
such as the solar central receiver, the temperatures and stresses will be 
sufficiently high to introduce creep-fatigue-environment interaction as a 
major life-limiting factor. A further complicating factor in many solar 
thermal systems is the highly asymmetric nature of the thermal load, which 
together with the pressure load often results in the creation of a multi
axial state of stress in critical components of a solar system. Unfortu
nately, virtually no multiaxial creep-fatigue data are currently available 
for any material. 
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The present program was initiated in order to address the problem 
of creep-fatigue under a biaxial state of stress. The materials chosen were 
Type 316H stainless steel and Incoloy 800, both of which are candidate 
materials for use in solar thermal systems. Tubular specimens were subjected 
to a constant internal pressure and strain-controlled axial cycling with and 
without hold time at elevated temperature. The data generated for Type 316H 
stainless steel have been published in detail in a previous report. 1 The 
present report summarizes the results obtained for Incoloy 800 and compares 
the observed behavior with that of Type 316H stainless steel. 

II. EXPERIMENTAL DETAILS 

Details of the specimen design and test equipment were described in 
Ref. 1. Specimens were fabricated from 1-in.-diameter seamless tubing 
supplied by Pacific Tube Company of Los Angeles, California; tube di
mensions were 1-in. OD x 0.109-in. (min) wall for Type 316H stainless steel 
and 1-in. OD x 0.125-in. wall for Incoloy 800. Chemical analysis of the 
Type 316H stainless steel was described in Ref. 1; similar data for Incoloy 
800 are given in Table I. The Incoloy 800 tubing was given an annealed and 
pickled finish by the vendor and satisfied ASME specification SB-163. All 
the specimens were tested in the as-received condition. Nominal room-temp
erature mechanical properties of both the materials, as supplied by the 
vendor, are given in Table II. Micrographs of the as-received materials, 
shown in Fig. 1, indicate that the grain structures are generally equiaxed 
with average ASTM grain sizes of 6.5 and 6.3 in transverse section and 6.4 
and 5.9 in longitudinal section for Type 316H stainless steel and Incoloy 
800, respectively. Note that the grain size for the Incoloy 800 material is 
rather large and consequently the present heat may not be representative of 
an average heat of Incoloy 800. 

The biaxial fatigue testing was carried out in a closed-loop servo
controlled MTS testing machine using constant internal pressure and axial 
strain control. The internal pressure was provided by commercially avail
able pressurized air bottles. Axial and diametral strains were measured by 
means of high-temperature extensometers and the axial load was measured by a 
40-kips load cell. The specimen was heated by a Lepel induction heater op
erating at a frequency of 455 kHz. The maximum temperature variation in the 
central 0.5-in. gauge length of the specimen was ±10°F. 

The test procedure consisted of first heating the specimen to the 
desired temperature with zero axial load, and holding the temperature steady 
until the whole system came to thermal equilibrium. The internal pressure, 
if any, was then applied and the specimen kept at the temperature for suffi
cient time to allow the new temAerature distribution to reach equilibrium. 
The specimen was then cycled axially under axial strain control. Hysteresis 
loops of axial stress versus axial strain and axial strain versus diametral 
strain were recorded on x-y plotters at regular intervals. Each individual 
signal was also plotted on a strip-chart recorder. For the internally pres
surized specimens, the test was shut down automatically when a crack pene
trated through the wall. For the unpressurized specimens, the test was shut 


