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1. Introduction 

The Blast/Thermal Effects (BTE) Branch in the U.S. Army Research Laboratory 
( ARL), formerly a branch in the U.S. Army Ballistic Research Laboratory ( BRL), is 
involved in the design and construction of a Large Blast/Thermal Simulator (LB/TS) as a 
consultant to the Defense Nuclear Agency (DNA). A LB/TS is an experimental facility 
for the simulation of decaying blast waves such as are encountered in nuclear explosions. 
Blast and thermal effects can be simulated in this laboratory environment without gen­
erating nuclear radiation. The facility will be equipped with nine blast generator tubes 
which discharge high-pressure, high-temperature nitrogen into a large tunnel. The 
expanding gas generates the decaying blast wave. A Rarefaction Wave Eliminator 
(RWE) located at the open end of the tunnel will prevent wave reflections of the exiting 
flow which would travel back into the tunnel destroying the flow simulation. This is 
effected by opening and closing, in a prescribed fashion, a large array of louvers which 
controls the exit flow area. 

It is necessary to obtain an accurate prediction of the experimental blast wave, in 
order to calculate an opening and closing function which can be fed to the RWE con­
troller during the test preparation phase. For this purpose, various hydrodynamic com­
puter codes are being investigated and evaluated for their applicability to the present 
problem. One of these codes is the Unified Solution Algorithm for Real Gas in Two 
Dimensions (USA-RG2) code developed at the Rockwell International Science Center 
(RISC). This code was made available to the BTE branch in ARL under a consultative 
agreement for solving particular problems, one of which is reported here, and involves the 
flow simulation in an axisymmetric shock tunnel. Various flow computations, inviscid and 
viscous, using three different turbulence models, and based on several grid variations are 
executed. The results are presented and compared with experimental data. 

2. The U.S. LB/ TS Development 

For simulating ideal blast waves, the U.S. Army and DNA have proposed the con­
struction of a test facility large enough to test full-sized military equipment in order to 
meet the growing need for blast and thermal survivability testing and to conduct research 
into nuclear blast phenomenology. In 1982, BRL was chosen as the lead laboratory for 
the research and development effort of this project, and has developed a concept of such a 
LB/TS facility over the past ten years (Mark et al. 1983; Pearson et al. 1985,1987; 
Opalka and Pearson 1988,1989). The proposed U.S. LB/TS is suitable to simulate both 
thermal and blast effects of nuclear explosions over a wide variety of shock overpressures 
(2- 35 psi) and weapon yields ( 1 - 600 kT) without generating nuclear radiation effects. 

In 1988, ON A assumed responsibility for the design of this facility (Figure la), and 
its construction is to be executed by the Corps of Engineers. The White Sands Missile 
Range, New Mexico, was chosen for its location. The BTE branch of ARL was retained 
by DNA as consultant for this project. 



An LB/TS is basically a shock tunnel with a variable cross-sectional area along its 
length. It serves to simulate decaying blast waves such as are encountered in nuclear 
explosions, by releasing compressed, heated gas from a number of bottle-shaped, high­
pressure steel driver tubes, also called blast generators. Each blast generator is equipped 
with a double-diaphragm system in the bottle neck through which the gas exits into a 
large expansion tunnel. By judiciously choosing the initial driver conditions of volume, 
pressure, temperature and throat area, a blast wave of desired shock overpressure and 
weapon yield can be simulated. The concept of an LB/TS is illustrated in Figure lb. 

The planned U.S. LB/TS will have nine blast generators ( 1). They are anchored in 
the ground by a massive concrete reaction pier (2). Each of these blast generators will 
have an inside diameter of 1.83 m and a maximum length of 41 m. The upstream end of 
each tube is closed by a hydroplug which may be moved back and forth along the inside 
of the driver tube in order to adjust the driver volume. At the downstream end, the 
cylindrical driver tubes are equipped with a convergent nozzle (3) and a throat section of 
0.914m in diameter which houses the double-diaphragm system. The flow cross section in 
the throat can be reduced by installing a baffle plate in the upstream diaphragm location 
to further retard the outflow of the gas and obtain longer flow durations at low shock pres­
sures. Nitrogen is used as driver gas. It is stored in liquid form ( 15) and, prior to a test, 
forced by cryogenic pumps ( 17) through four pebble-bed super heaters ( 16) ( Osofski, 
Mason, and Tanaka 1991) into the driver tubes. 

The 171-m-long expansion tunnel (5) is formed of pre-stressed concrete and has a 

semi-circular cross section of 162m2• This size is deemed necessary to avoid blocking of 
the flow about the largest target (Ethridge et al. 1984). The test section for the targets 
( 11) is 18 ~ deep and centered at about 107 m downstream from the exit of the driver 
nozzles into the expansion tunnel. The thermal radiation effect associated with a nuclear 
explosion will be e:ff ected through the combustion of a mixture of aluminum powder and 
oxygen near the target (6). Four thermal radiation sources (TRS) will be mounted in the 
tunnel floor (7) forward of the test section, and the combustion products will be evacuated 
through exhaust fans, called ejectors (8), mounted in the tunnel roof (Guest 1989; Haasz 
and Gottlieb' 1987). · 

An active RWE will be mounted at the open end of the expansion tunnel (14) to 
prevent the formation of reflecting shocks or rarefaction waves (Guice, Butz, and Gottlieb 
1991). These reflections travelling upstream into the expansion tunnel would destroy the 
shape of the simulated blast wave once they reach the test section. The RWE is called 
active because its rotating vanes continuously adjust the available exit flow area in a con­
trolled manner during the entire duration of the test. The motion of the vanes is con­
trolled computationally, and the control function has to be known before the test. The 
control function, however, depends on the size and shape of the blast wave which is to be 
simulated and can only be generated once the experimental blast wave is known. Since 
this information becomes available only after the test, an accurate computational predic­
tion of the expected experimental blast wave is needed from which the control function for 
the RWE is determined and empirically improved later on as experimental data become 
available. 
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(b) The BRL LB/TS Concept 

Figure 1: The U.S. Large Blast/Thermal Simulator (LB/TS) Design Concept. 
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3. Experimental Blast Simulator Studies 

Initially, the U.S. design was based on the Large Blast Simulator (LBS) at the Cen­
tre d'Etudes de Gramat (CEO), France (Cadet and Monzac 1981). However, it soon 
became clear that a much larger facility was needed in order to accommodate the full 
range of anticipated targets without blocking the flow about the targets (Ethridge et al. 
1984). Also, a broader range of shock overpressures and weapon yields was needed to 
cover the test conditions specified by the U. S Army. Since experimental model facilities 
of the planned LB/TS were not readily available, BRL relied on a fairly simple, quasi­
one-dimensional computational model (BRL-QlD) to develop the conceptual design of the 
LB/TS (Mark and Opalka 1986). The results of the computational studies with the 
BRL-QlD code by this author (Opalka 1987/89) showed that the full-scale LB/TS facil­
ity must employ driver gas heating, an active RWE, and should use divergent nozzles and 
computer-controlled throat valves to optimize control and operation of the facility. How­
ever, for reasons of cost, the divergent nozzles were eliminated from the design, and the 
valve concept was abandoned by ON A in favor of the proven diaphragm technique. 

Experimental efforts were initiated at the onset of the research project in 1982, but 
test results became available only much later because the construction of the model facil­
ity required a long time. To date, small-scale experiments with cold and heated driver 
gas, as well as an active RWE model, have been completed and the results have been used 
to validate computational predictions (Hisley et al. 1985; Coulter 1987; Gion 1989; 
Schram! and Pearson 1990). A throat-valve model has been built and initial tests were 
performed for the validation of the design concept and of the computational predictions 
(Stacey 1992). Also, a 1/6-scale LB/TS using a double diaphragm and an active RWE is 
under construction at ARL and will be used for validating the design concepts, for 
phenomenological research and for wlnerability testing of small items of military equip­
ment once the characterization of the facility is completed. 

A 1:57-Scale LBS model without thermal radiation capability has been used quite 
extensively at BRL to study flow phenomena in an LB/ TS-type shock tunnel ( Coulter 
1987). The axisymmetric configuration was chosen for reasons of simplicity in construc­
tion and operation and in view of the availability of numerical data from one- and two­
dimensional axisymmetric Computational Fluid Dynamics (CFO) codes. The simulator 
model consists of a number of interchangeable cylindrical driver tubes of 101.6 mm inner 
diameter and various lengths, a converging nozzle section, a throat section with diaphragm 
holder, and a very long (17,142mm), open-ended expansion section. Strip heating ele­
ments are wrapped around the 2,546-mm-length driver so that the high-pressure driver 
gas can be heated. The purpose of Coulter's ( 1987) experiments was to demonstrate the 
effect of driver gas heating on the shape of decaying blast waves simulated in shock tun­
nels. His results have since been used to evaluate one- and two-dimensional axisymmetric 
CFO codes (Coulter 1987; Hisley 1990; Schram! 1991) and to validate computational per­
formance predictions for the US-LB/TS. From Coulter's experiments, a test case was 
selected for evaluating and validating the USA-RG2 code results. The initial test condi­
tions in the 1:57-Scale LBS model for the selected test case are listed in Table 1. The 
geometry of the 1:57-Scale LBS inodel used in the numerical formulation of the problem 
is defined in Figure 2. 
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driver pressure 
ambient pressure 

Table 1. Initial Test Conditions 
= 15,032.5 kPa driver temperature 
= 102.5 kPa ambient temperature 

= 570.15 K 
= 296.15 K 

The available experimental data are the stagnation pressure and the static pressure 
versus time. For measuring these data, two pressure probes were located at 442.5 cm from 
the beginning of the expansion tunnel in the downstream axial direction. At this location, 
the static pressure probe was mounted flush with the wall of the expansion tunnel, 12.7 cm 
in the radial direction from the axis of symmetry, and the stagnation pressure probe was 
mounted at the half radius, 6.35 cm from the axis of symmetry pointing in the upstream 
axial direction. This latter position is called Gage-8. 

The data were recorded using an analog to digital conversion program installed in a 
Zenith model 248 microcomputer which permits sampling at a maximum rate of 60,000 
samples per second per channel. Up to 16 data channels may be recorded simultaneously 
with this setup. The time and voltage samples are written to a 12-bit binary disc file and 
later converted to ASCII format. A data reduction program was then used to convert vol­
tages into pressures. 

From the two measurements of stagnation pressure, p O , and the static pressure, p , 

the Mach number, M, and the dynamic pressure, q, can be computed (Liepmann and 
Roshkow 1957, pp 148-149). The Mach number has to be determined first because the 
dynamic pressure depends on it. 

(3-1) 

For subsonic flow, the well-known isentropic relation between the static pressure and the 
Mach number may be used, 

[ l 
y/(y-1) 

P;1 = l+ y;l M2 (3-2) 

where the pitot pressure, p 01 , equals the stagnation pressure. 

For supersonic flow, Rayleigh's supersonic pitot formula must be used because the 
indicated pitot pressure, p 02 , is the stagnation pressure behind the normal shock standing 
in front of the pitot probe. 

..J!_ = ...:£L M 2 _ .Y=...!.. • .1±.!.. M 2 
[ 

2 1 ] l/(y-1) [ 1 i-y/(y-1) 

Po2 y+l y+l 2 
(3-3) 

Since Equation (3-3) has no solution by quadratures, Newton's iterative method is used to 
determine the Mach number. The dynamic pressure is then obtained from the static pres­
sure and the Mach number using Equation (3-1). 
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4. Blast-Wave Simulatiom With the USA-RG2 Code 

The Unified Solution Algorithm (USA) codes were developed at the Rockwell Inter­
national Science Center (RISC) !}nder the leadership of Dr. Sukumar Chakravarthy 
(1986,1988). The USA codes are a series of hydrodynamic codes capable of solving 
numerically a large variety of fluid dynamic problems. Either the Euler equations or the 
N avier-Stokes equations in their Reynolds-averaged form may be solved in two ( Cartesian 
and axisymmetric) or three dimensions. Implicit solution algorithms using the approxi­
mate factorization method or the Gauss-Seidel relaxation method are coded. The explicit, 
multistage Runge-Kutta method may be used to solve the governing equations in either 
space-marching or in time-dependent mode. The USA codes can treat calorically and 
thermally perfect gases, equilibrium-chemistry gases, and finite-rate reacting gases (Palan­
iswamy, Chakravarthy, and Ota 1989), and the user may define an arbitrary number of 
species and types of chemical reactions. 

The governing equations are cast into finite-volume difference form for the conserva­
tion of flux, using an upwind Total Variation Diminishing (TVD) formulation for their 
convective terms (Chakravarthy et al. 1985). This discretization assures up to third-order 
accuracy in space and first-order accuracy _in time. The TVD formulation guarantees 
solutions free of oscillations and keeps the numerical dissipation to a minimum. Roe's 
approximate Rieman solver is favored among several available Riemann solvers for 
defining fluxes at all cell faces. Turbulence may be modeled in various ways, including a 
zero-equation, modified Baldwin-Lomax model; a one-equation, k- L model; and a two­
equation, k- E model. All turbulence models are augmented by a separation model that 
has the capability to treat the recirculating flow in regions of flow separation. A multi­
zone structured grid facilitates the treatment of complex, three-dimensional geometries 
( Szema, et al. 1988). Boundaries may be specified from point to point in the grid using 
either templates or user-supplied subroutines. 

The computational grid for the 1:57-Scale LBS model is made up of five or six 
zones. The zones are indicated in Figure 2 which defines the geometry of the problem. 
The cylindrical driver tube forms the first zone. The nozzle region is subdivided into three 
zones: Zone 2 lies upstream of the diaphragm, Zone 3 is the baffle area next to the 
diaphragm, and Zone 4 lies downstream of the throat baffle. The expansion tunnel is 
divided into two zones, in order to conserve disc storage space and computing time. Zone 
5, which contains the pressure probe locations 1 thru 9, is fully gridded in x- and y­
direction. Zone 6 is a long region with few exponentially expanding grid points in the x­
direction. The only purpose of Zone 6 is to move the transmissive end boundary far 
downstream from Zone 5 and the pressure probe locations. 

An analytical grid generator, allowing clustering of the grid points near the boun­
daries in axial and radial directions, was supplied by RISC. The clustering function 
spaces the grid points in an exponentially expanding series with clustering either on one or 
on both ends of the zone. The first and last cell dimensions in each zone next to a boun­
dary, dXmin and d Y min, are written into the subroutine as user-defined constants. The 
dimensions used in the present case are dXmin, 1 = 0.1, dXmin,2 = 0.01, d Y min, 1 = 0.1 for 
the inviscid solution, and d Y min,! = 0.001 for the viscous solutions. dXmin,2 is used with 
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Zone 3 on both ends, and ~Xmin,I is used with the remaining zones on both ends except 
the last zone. For the last zone, either Zone 5 or Zone 6, as the case may be, the grid 
points are clustered in axial direction-using ~Xmin,I at the upstream boundary only. 

Four grid variations are used in this study identified as the 5-zone coarse, 6-zone 
coarse, 5-zone fine, and 6-zone fine grids. The grid sizes for Zones 1 thru 6 are defined in 
Table 2 with the total number of grid points ranging from 8,400 for the 5-zone coarse grid 
to 15,550 for the 6-zone fine grid. The 5-zone coarse grid is considered the base-line grid 
against which the results from other grids are compared. It is modified further by 
lengthening Zone 5 of the modeled expansion tunnel from 5.00 to 10.00 and 15.00 m and 
increasing the number of grid points in axial direction from 60 to 120. The fine grids are 
employed to compare the computational results to those obtained with the coarse grids 
and to study their effect on the flow solution. The refinement consists in increasing the 
number of grid points in radial direction by a multiplicative factor of 1.25 so that more 
grid points are placed near the walls inside the boundary-layer regions. The length of 
Zone 5 is 9.00 m in the 5-zone grid and 5.00 m in the 6-zone grid with 120 or 100 grid 
points in the axial direction. The 6-zone grids are employed versus the 5-zone grids to 
evaluate the influence of the transmissive end boundary on the numerical results. 

Table 2. Grid Sizes 

Zone Coarse Grids Fine Grids 

5 5.00m 10./15.m 5.00m 9.00m 

1 50x50 50x50 50x60 50x60 

2 30x40 30x40 30x50 30x50 

3 10x20 10x20 10x25 10x25 

4 30x30 30x30 30x40 30x40 

5 60x60 120x60 100x80 120x80 

6 20x60 0 20x80 0 

Total 9,600 12,000 15,550 15,550 

The objective of the present investigation is to evaluate the quality of the computa­
tional prediction by comparing the numerical results to the available experimental data. 
The approach taken is to proceed from the inviscid USA-RG2 solution to the more com­
plex viscous solutions. The inviscid Euler equations are solved first, then the viscous 
Na vier-Stokes equations for laminar flow are solved. After that,· the turbulence models 
are evaluated, ending with the most complex viscous solution invoking the k-£ turbulence 
model. In order to conserve computing time, the CFL number (Courant-Friedrichs-Lewy 
stability criterion) was ramped up from unity as quickly as possible until a maximum was 
found at which each solution would execute. Table 3 shows the various CFL ramps for 
the perusal of those readers who wish to reproduce the results of the present studies. The 
studies described below were performed using the test case selected from the 1 :57-Scale 
LBS model experiments (Table 1). 
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Table 3. CFL Ramps for 5-Zone and 6-Zone Grids 
Coarse Grids Fine Grids 

Inviscid Vise-Laminar V-Turbulent( 1) V-Turbulent( 2) All Viscous 
NT> CFL NT> CFL NT> CFL NT> CFL NT> CFL 

0 0.1 0 1 0 0.01 0 1 0 1 
10 1.0 10 0.1 
20 5.0 20 10 30 1.0 20 10 
50 10. 50 10. 100 10 100 20 

100 25. 90 25 90 25. 200 20 200 40 
150 50. 180 50 180 50. 300 30 300 60 

270 75 270 75. 
360 100 360 100 
450 150 450 150 1800 180 800 160 
540 200 550 200 1900 190 900 180 

2000 200 1000 200 
12000 150 9000 150 1500 250* 

*6-zone grid only! 

4.1 Influence of Grid Coarseness on Numerical Solution 

Three inviscid computations with varying grid coarseness in Zone 5 were executed. 
The grid in Zone 5 of the expansion tunnel, in which the pressure probes are located, is 
varied in axial direction from 5.00 m and 60 grid points to 10.00 m and 120 grid points, 
and from there to 15.00 m and 120 grid points keeping LlXmin unchanged. Because the 
grid points are clustered exponentially toward the boundaries in axial direction, the second 
grid is coarser in the interior of the zone than the base-line grid. Figure 3 shows the 
results of these computations compared to the available experimental data. The stagna­
tion pressure, static overpressure, and dynamic pressure are plotted versus time. Such 
flow representations are called pressure histories. 

Two typical phenomena of inviscid shock tube flow solutions found in the pressure 
histories in Figure 3 are the sudden pressure drop behind the shock and the general 
underprediction of the static overpressure. These phenomena .have also been observed in 
the numerical results gained from other CFD codes (Opalka and Mark 1986; Risley 
1985,1988,1990; Schraml 1991). It is further learned, that the coarser grids generated by 
lengthening Zone 5 cause major deviations of the pressure histories from those for the 
base-line grid (zone 5 = 5.00 m). The increased grid coarseness in Zone 5 causes an 
unrealistic resurgence of the dynamic pressure between 12 and 22 ms, with the dynamic 
pressure rising to values 120 percent of the pressure at the shock front. The comparison 
shows that the coarser the grid, the the stronger the resurgence of the dynamic pressure 
will be. This· resurgence of the dynamic pressure, like the sudden pressure drop mentioned 
above, does not appear in the following viscous solutions and has to be attributed to the 
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inviscid modeling of the flow solution. The conclusion is in this case that the base-line 
grid is the coarsest possible to obtain a reasonable inviscid solution. 

The question presented itself whether or not a refined grid would improve the solu­
tion obtained with the base-line grid. This question was investigated choosing the 
laminar-viscous solution provided in the USA-RG2 code by solving the Na vier-Stokes 
equations without turbulence. Figure 4 shows the results of these computations comparing 
the pressure histories computed with the base-line 5-zone coarse grid to the pressure his­
tories obtained with the 5-zone and 6-zone fine grids. The most significant difference to 
the inviscid solution is the absence of the depression region behind the shock front. The 
static overpressure is less underpredicted by the laminar-viscous solution than by the invis­
cid solution. The refined grid offers the best simulation of the pressure histories, although 
a slight overprediction of the dynamic pressure, especially between 18 ms and 27 ms, 
exists. Overall, the laminar-viscous pressure predictions obtained with the 6-zone fine grid 
appear to follow the experimental data most closely. 

4.2 Comparison of Three Turbulence Models 

The USA-RG2 code contains three turbulence models known as zero-equation, one­
equation, and two-equation models referring to the number of partial differential equations 
(PDEs) they employ. They differ in the method of determining the eddy viscosity which 
is the turbulent contribution to the viscosity coefficient used in the viscous diffusion terms 
of the Na vier-Stokes equations. The eddy viscosity, v, is calculated in. all three models 
from 

Vr = V·L ( 4-1) 

where V is the velocity scale function and L is a length scale function. To model the tur­
bulence in detached flow regions, an algebraic backflow model (Ramakrishnan and Gold­
berg 1990) is built-in as a module with each of the three turbulence models. 

The zero-equation model (Goldberg 1986) is an algebraic, modified Baldwin-Lomax 
(MBL) formulation which uses two algebraic scaling functions for the mean velocity and 
location to determine the eddy viscosity distribution. A two-layer approach is used to 
treat turbulence-producing shear flow surfaces. The inner layer formulation is used near 
the shear flow surface and a damping function accounts for the attenuation of turbulence 
in the near-wall regions when the surface is solid. Farther away from the surface, the 
outer layer formulation is employed. 

The one-equation model (Goldberg and Chakravarthy 1990) uses the solution of one 
PDE for the kinetic energy of turbulence, k, to determine the velocity scale such that 

(4-2) 

and retains the algebraic form of a rather complicated length scaling function to deter­
mine the eddy viscosity distribution. It is also called the k-L model. 
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The two-equation model (Goldberg and ·ota 1991) uses the solutions to two PDEs to 
determine the velocity and length scales for the determination of the eddy viscosity distri­
bution. The first PDE for k is the same as in the one-equation model (Equation 4-2). 
The second PDE is for the isotropic part of the turbulence dissipation, e, such that the 
length scale is 

k 1.5 
L=-­

£ 

In this case, the eddy viscosity (Equation 4-1) becomes 

k 2xD 
E 

(4-3) 

(4-4) 

where the damping function D includes solid wall effects. The two-equation model is also 
called the k-e model. 

The turbulence models are invoked through user-defined constants located in the 
input. The desired model is chosen according to the number of PDE's it uses, i.e., 0, 1, or 
2. Additional constants permit the turning on or off of the viscous terms and the tur­
bulent diffusion terms in the governing flow equ~tions. The user can further set zonal 
input constants to identify turbulence-producing mechanisms like walls, wakes, etc.; invoke 
the separation model; define the transition point from laminar to turbulent flow; and select 
the separation viscosity, ~ep· For the turbulent cases, the turbulence-generator flags are 
turned on along all wall boundaries, except when invoking the k-E turbulence model. It 
seems that because there is a lot of initial boundary layer development in Zone 3, but 
inadequate grid resolution, the solution becomes unstable at moderate CFL numbers. In 
order to maintain stability of the solution with the k-e turbulence model at higher CFL 
(~ 200) numbers, the turbulence-generator flags in the axial direction are turned off in all 
zones except Zone 5, and the turbulence-generator flag in the radial direction is turned off 
in Zone 3. Also, the k- and &equation subroutines are modified to make the equations 
first-order accurate. 

The stagnation, static, and dynamic pressure histories resulting from the application 
of the three turbulence models to the viscous flow solution are shown in Figure 5. The 
base-line 5-zone coarse grid was used in these computations. All three models produce 
good predictions of the shown pressure histories for the selected test case. The stagnation 
pressure history appears best simulated with the k-L model, while the static overpressure 
history seems simulated best with the MBL model. For the stagnation pressure history, 
the solution with the MBL model underpredicts and the solution with the k-E model over­
predicts the experimental record. For the static overpressure, the solution with the k-L 
model slightly underpredicts and the solution with the k-e model slightly overpredicts the 
experimental record. The dynamic pressure is best simulated with the k-E model solution. 
The solution with the k-L model overpredicts and the solution with the MBL model 
underpredicts the dynamic pressure. Since the dynamic pressure is the most sensitive 
parameter for evaluating the response of military equipment to drag forces which may 
cause overturning, it is concluded that the k-E model is suited best for the computational 
prediction of the flow field in the 1 :57-Scale LBS model. 
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4.3 Influence of Transmissive Bolllldary on Solution 

A question about the sufficiency of the base-line 5-zone coarse grid arises because 
the fifth grid zone, which represents the expansion tunnel of the 1:57-Scale LBS model, 
was limited to 5.00 m length by our consultants at RISC, whereas the actual length of the 
expansion tunnel is 17.14m. The reasoning behind this shared decision is that the compu­
tation of the flow history in the expansion tunnel downstream from the pressure probe 
locations is not of interest to the observer. By not modeling this region of the expansion 
tunnel computing time and disk space can be saved. This approach is made possible by 
using a transmissive boundary at the end of the fifth zone which prevents any wave 
reflections back into the grid. To investigate the correctness of this procedure, a sixth 
zone is added to the base-line 5-zone grid which contains an equal number of grid points 
in radial direction as the fifth zone, but has only 20 grid points in axial direction ( see 
Table 2), and the Euler inviscid solution algorithm is exercised for this inquiry. 

When the pressure histories of the 5-zone versus the 6-zone coarse grids are com­
pared, differences in the computational results become apparent. Figure 6 shows the com­
parison of the static overpressure histories for the two grids at two pressure probe loca­
tions 101.6 cm apart. At Gage-8, which is located nearest ( 57 .5 cm) to the end boundary 
of the fifth grid zone, the two pressure histories differ one from another beginning after 
8ms of flow simulation (upper graph in Figure 6). At Gage 2, furthest (159.1 cm) from 
the end boundary of the fifth zone, the differences in the static overpressure histories begin 
only after 15 ms (lower graph in Figure 6). It is, therefore, concluded that the transmis­
sive end boundary is not totally transparent but causes small reflections influencing the 
quality of the computational flow simulation. 

To investigate the influence of the end boundary further, two special grids were con­
structed and applied to the viscous solution with the k-e turbulence model invoked for the 
1:57-Scale LBS model test case. The number of grid points was increased by a factor of 
1.25 in the radial direction in all zones. Both grids have identical first through fourth 
zones (see Table 2). The fifth and the sixth zones have 80 grid points in the radial direc­
tion. In the axial direction, the fifth zone of the 5-zone extended grid has 120 grid points 
distributed over a 9.00 m length, and the fifth zone of the 6-zone refined grid has 100 grid 
points distributed over a 5.00 m length. Zone 6 has 20 grid points expanding in an 
exponential series distributed over a 12.14m length. By comparing the solutions for the 
5-zone base-line grid, the 5-zone extended grid, and the 6-zone refined grid it is hoped to 
demonstrate that the solution can be improved and that the disturbance from the end 
boundary can be eliminated. 

The turbulent viscous solution was executed with each of the three grids, and the 
resultant histories of the stagnation, static and dynamic pressures are presented in Fig­
ure 7. All three grids yield satisfactory results. Within the same solution, in this case the 
viscous solution with k-e turbulence model, the differences are really small. The notice­
able differences exist between the pressure histories for the 5-zone base-line grid and the 
special, refined grids. The 5-zone extended grid and the 6-zone refined grid yield almost 
identical pressure histories. These results confirm that with the transmissive end boundary 
moved far downstream, similar grids yield nearly identical results. The 5-zone extended 
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grid improves the solution somewhat, and so does the 6-zone refined grid; but it remains 

doubtful whether or not the improved grid resolution warrants the additional effort in run 

time and cost for the larger, special grids. 
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Figure 6. Pressure Histories Obtained with 5-Zone and 6-Zone Coarse Grids. 

4.4 Comparison of the Inviscid Versus the Viscous Solutions. 

The more significant differences in the flow solutions exist between the inviscid,· the 

laminar viscous, and the turbulent viscous solutions and between the three turbulence 

models (Figure 5). The stagnation, static and dynamic pressure ];listories for the inviscid, 

laminar viscous, and turbulent viscous solutions are compared in Figure 8. In all cases, a 

6-zone grid was used in the computation. The Euler-Inviscid solution predicts the shock 

pressure at the front of the blast wave well but underpredicts the stagnation, static, and 

dynamic pressure historie~ and thereby the associated impulses which are represented by 
the area under the pressure history curve. Therefore, the inviscid solution predicts the 

pressure histories least accurately. 
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The laminar viscous solution yields a much improved prediction when compared to 
the inviscid solution, but underpredicts the static overpressure and the static-overpressure 
impulse, and overpredicts the dynamic pressure and the dynamic-pressure impulse. The 
turbulent viscous solution predicts the three pressure histories better than the inviscid or 
laminar viscous solutions. The best prediction is achieved with the k-e turbulence model 
although this solution slightly overpredicts the experimental records. 

5. Conclusions 

The USA-RG2 code was evaluated for its capability of predicting and simulating 
decaying blast waves generated in a shock tunnel. Coulter's 1:57-Scale LBS Model and 
experimental records served as benchmark results for the evaluation. The comparison of 
the experimental and computational results proves that the USA-RG2 code can success­
fully simulate the available experimental pressure histories for stagnation, static, and 
dynamic pressure. 

The USA codes are capable of modeling complex geometries by subdividing the 
geometry using a node-aligned multi-grid approach. It was found that the cell size in the 
grid can have a significant influence on the accuracy of the flow solution. By increasing 
the number of grid points by a factor of 1.25 in the radial direction, the solution could be 
improved. 

It was learned that the transmissive end boundary is not totally transmissive, but 
influences the flow solution with time. To keep reflections from the end boundary to a 
minimum, it is preferable to model the expansion section of the 1 :57-Scale LBS model 
with a 6-zone grid in its entire length rather than with a 5-zone grid for a short section, as 
was originally done in this project. 

The best simulation was obtained for the viscous solution with the two-equation, k-e 
turbulence model invoked, although this turbulence model slightly overpredicts the experi­
mental record. If it is desirable to bracket the prediction, the laminar-viscous solution 
which underpredicts the experimental record may be executed. 
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