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ABSTRACT

The Ratio of Solid Angles (ROSA) computer code was developed as
part of the Crosbyton Solar Power Project (CSPP) for calculation
of optical power concentrations due to reflection from a
‘spherical segment mirror. It was developed primarily in support
of Department of Energy Contracts DE-AC04-76ET20255 and
DE-ACO4-83AL21557. This report provides technical information
about the ROSA code.

The CSPP is concerned with the development of a technology for
producing electric power from steam generated by reflection of
the sun’'s rays from a fixed-mirror solar bowl onto a tracking
receiver. In this system, the receiver is cantilevered and
pivots about the center of curvature of the mirror. The ROSA
code gives optical power concentration ratio profiles at points

along the receiver surface.

The ROSA code is written for a spherical segment mirror and the
rim angle of the mirror is an input variable. Orientation of the
axis of symmetry of the bowl is specified in terms of a
vertical—-east—north coordinate system. Location of the sun
relative to this coordinate éystem is also an input variable.
Shading and rim cutoff effects are automatically included in the

computation.

The code permits any convex surface of revolution as a receiver.
Normally a cylinder or a cone would be used. For optimum energy
capture, the axis of the receivef should lie along the from the
center -of the sun through the center of the bowl._ However,
tracking errors can cause misalignement of the reciever axis with

this line. The code handles such misalignment in terms of

misalignment angle input parameters.




This report consists of two parts, a technical reference manual
and a user’s guide. The reference manual provides the background
material and derivations necessary for the implementation of the
code. Computer listings for ROSA are also included in the

reference manual.

The user ‘s guide contains an explanation of the input data for
the program, specialvuser supplied subroutine requirements, a
discussion of the output data, sample output and graphs of sample
concentration profiles?l Sample BOILER subroutines are given for
a right circular cone and a right circular cylinder boiler. A

sample RIM subroutine is given for an alternate rim shape.
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ROSA TECHNICAL DESCRIPTION

Introduction

' The Ratio of Solid Angles (ROSA) computer code was developed as
part of the Crosbyton Solar Power Praject (CSPP) for calculation
of obtical power concentrations due to reflection from a
spherical segment mirror. It was developed primarily in support
of Department of Enerqy Contracts DE-AC04—-76ET20255 and
DE-AC04-83AL21557. This report provides technical information
about the ROSA code.

This report consists of two parts, a technical reference manual
and a user ‘s guide. The reference manual provides the background
material and derivations necessary for the implementation of the
code. Computer listings ROSA for the code are also included in
the reference manual. The user’'s guide contains an explanation
of the input data for the program, requirements for BOILER and
RIM subroutines, a discussion of the output data and sample
output. Sample BOILER subroutines are given for a right circular
cone and a right circular cylinder boiler. A sample RIM

subroutine is given for an alternate rim shape.

In the CSPP éolar bowl concept, incident solar energy is focused
onto a tracking receiver by the spherical segment mirror. The
solar focél region of a spherical segment receiver is the
frustrum of a cone. The vertex of the cone is at the center of
curvature of the mirror. The axis of the cone lies along the
line through the center of curvature of the mirror and center of
the sun. The vertex angle of the cone is equal to the angular
diameter of the sun. The frustrum is one-half the sphere radius
in lenjth, extending from the mirror surface half way to the cone

vertex.




The tracking receiver is cantilevered and pivots about the center
of curvature of the mirror. It is perfectly aligned when its
symmetry axis points directly toward the center of the solar
disk. For a perfect spherical mirror, the optimal receiver shape
would be the frustrum of a cone, with vertex angle equal to the
angular diameter of the sun. However, for imperfect mirrors, a
cylindrical receiver is nearly as effective and is cheaper to
manufacture. Maximum solar energy is captured at noon and,
because the mirror is fixed, the power entering the bowl aperture
decreases according to the cosine of the inclination angle of the
sun (angle between the sun and the bowl symmetry axis) at other

times during the day.

In order to fully describe the optical power concentration
profile along a receiver, it is necessary to consider several
geometrical and physical factors. The size of the bowl aperture
determines the maximum amount of incident energy available to the
system. However, as the inclination angle of the sun increases,
shading and vignetting effects are seen on the receiver. 1In
addition, misalignment of the receiver effects the optical power
profile. Finally, the shape of the receiver itself must be
considered. All of the above complications are effectively

handled in the ROSA computer code.

The Ratio of Solid Angles formulation yields an analytical
formula for the solar concentration ratio at a field point, @, on
a receiver surface. The result is in the form of a sum of
integrals, where the region of integration for each integral is
described by a solid angle. Rays strike the receiver after
reflecting one or more times from a mirror surface, and the
integration regions can be described as the collection of all
directions from which reflected rays strike the receiver at Q.
This formulation is applicable to concentration éalculations for

general reflecting surfaces and general receiver shapes.
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However, for the solar bowl technology associated with the CSPP,
it is sufficient to consider a spherical segment reflecting
surface and a receiver/boiler that is a convex surface of

revolution. The ROSA code is implemented for such shapes.

The technical reference manual portion of this report consists of
several chapters. The first chapter gives a derivation of the
model. The results are due to Reichert and Brock [1,2] and yield
an integral expression for the concentration ratio at a receiver
point due to reflection from an arbitrary reflecting surface.
Chapter 2 is devoted to deriving the necessary formulas for
evaluation of this concentration ratio integral for the case
where the reflecting surface is a segment of a sphere. Multiple
reflections, rim cutoff and rim shadowing effects are also
accounted for in these derivations. Several coordinate systems
are introduced in Chapter 3 in order to account for the
geometrical relationships between the sun, collector, and
receiver. Chapter 4 discusses the numerical solution of a family
of "structure relations” that must be soclved in order to evaluate
the concentration integral. A description of the ROSA code is

presented in Chapter 5 and a complete listing of the code is

given in Appendix A. Alternate rim shapes are discussed in

Chapter 6.




1. THE RATIO OF SOLID ANGLES FORMULATION

Introduction

The original formulation of the Ratio of Solid Angles Method was

due to Reichert [1l. A very complete discussion of the model was
given by Brock in his disertation [2]1. The material appearing in
this chapter follows his presentation very closely and is

included in this report for the sake of compl eteness.

The Solar Model

When viewed from earth, the sun appears as a disc with some
distribution of light across its face. The effects of its
spherical geometry can be lumped into the intensity distribution
over the apparent flat disc. In describing the light from the
solar disc, it is useful to take advantage of some of the
terminology and concepts of the metrologies of photometry and

radiometry. Terms will be defined as used.

Consider a spherical source viewed from a point O as illustrated
in Figure I-1. The radiant exitance, M (emitted power per unit

area) of the source will be considered to be uniform,

M= — (I-1)

where Py is the total power emitted from the source and AT is
the total surface area of the source. The radiance vector, C,

(radiance is power per unit area per steradian), is

- -
L =M B(Q,0_,Y )N (1-2)

where B(Q,6.,Y.) is the radiant brightness distribution which in

general depends of the position (6.,Yg) on the sun and the solid

4




angle {}. The usual radiance that occurs in radiometry is

+
L = L'eQE (I-3)

where EhE is the unit vector in the direction of the observer.
1§ the solid angle emission characteristic is uniform everywhere

on the source (isotropic) then

Pr
L = ———— B(Q) cos & . (1-4)
At

The radiant brightness distribution, B(Q), is normalized so that

J I B({})) cos x dff = 1 . , (I-3)

1f the radiant brightness B({) is constant for all {, then
B(Q) = 1/7 (1-6)

and the source is a Lambertian radiator. The radiance L is then
proportional to the cosine of the angle, &, between the direction
to the observer and the surface normal to the source surface.
This is known as Lambert’s Law (cosine law) and the source is

said to have uniform brightness.

The quantity of interest is actually the power per unit area per
unit solid angle (irradiance per steradian) that passes. through
an element of area on the earth. This element of area is

oriented so that its normal lies along the direction to the sun,

35 . An element of area on the sun dA illuminates an element of
area dA at the earth which subtends the solid angle
1'2 s 05 1'2 "

.dhen viewed from the sun along direction 395 as illustratédd in




dA dan

Solar
Sphere

Sr

sino=d/L

Figure 'I-1. Element of Area dA on Sun Illuminates Element of Area dA on the earth.




Figure 1-1. The power received at dA is

4 =
dP, = L “epg diig dA (1-8)
Pr dA
= (———— B({))cosx) (——— cosYy)dA
AT 'elz

The area on the sun dA subtends a solid angle

df 4 A e (1I-9)
= ~———n ‘e -
= ——— c0s

when viewed from the earth. The power passing through

dA becomes

P

T ~ dA
dPD = (———— B({)) cos¥) (——— cosX)dA (I—-10)
At 402
- -
= Lgeg dnA dA
where
-» -+ > 3

is the received radiance vector at the earth. The irradiance at

dA from solid angle dp is
dpP

- 3 . ,
—Q- = ."e_d . (1-12)
dA E ES nA .

The total irradiance from thekentire sun is

. S o ’
Ip = J I Lg-eg dip (I-13)
Qs




S o (27 Py :
= J J' ———— B(w,¥) cosY siny duw dy¥
0 JoO '

For an isotropic Lambertian source, B(f}]) = 1/7 and
I, = —=— sinZc (1-14)

The incident radiance I (irradiance per solid angle) can be

1written'as

1 = ——=Q—— cpos ¥ (I-13)

where
O<Y¥ <o .

The radiance of the source in this case is

I .
L= —8Q—— cos « (I-16)

ﬂsinzo

It is interesting to note that when the source is Lambertian
(follows the cosine law) it produces an incident radiance vector
CE which produces an incident radiance that follows a cosine

law at the point of incidence. ' Emission and reception afe

isotropic in the same sense.

Few sources are truly Lambertian and the sun is no exception. At
optical ‘wavelengths, the sun appears slightly less bright at the
limbs, an effect called limb-darkening. (It is interesting to
note that at much longer wavelengths, this effect is reversed and
limb-brightening occurs.) In such a case, the incident

radiance I becomes

IDB(Y) cosyYy

I = - (I-17)
21 Io B(Y¥) cosY siny d¥




since B({)) depends only on ; for limb-darkening effects.
However, the limb-darkening effects are slight, so considering
the sun to be a Lambertian source is a useful model. Since the

sun is so far away, o is small (¢ = 0.2679) so that

cosy = 1 — 5 sin“y > 1 - E oc = 1 (1-18)

In this case, the incident radiance can be modeled as

I

I = ——0-_— (1I-19)
05
where
Q JU’ F'n .~ d d-\-
= s
s o Jo iny dw dv¥
= 41 sin?(c/2) (I-20)

Eq. I-19 is the constant irradiance for solid angle model for the

SUune.

The solar model for the radiance given by Eq. (I-19) will now be
used to obtain the general expression for the optical power
concentration. However, it is only used for convenience and it
will be shown how it can be replaced by the general model of Eq.
(1-17). The results displayed in Chapter Il are based on the

model of Eq. (I-19) simply because the limb-darkening effects are

so small.




Generalized Optical Power Concentration

) The optical power concentration, C, at a point on a receiver in a
collector system is defined to be the ratio of the total optical
power per unit area (irradiance) received at that point to the
direct irradiance at that point. The direct irradiance is that
optical power per unit area (normal to the earth-sun line)
received by the collector aperture. If an area sAp at a receiver
point is illuminated by the area aAp in the aperture plane then

the total power received at aRR is

I1,4R,

where I, is the direct irradiance in the aperture plane. The

total irradiance at the receiver point is

ID AAA/ AAR v

so that the concentration is

IOAAA/AAR AAA
C = = eme—m——— (I-21)

The concentration is simply é ratio of areas, but aAR depends not
only on 4Ry and the location of the receiver point, but also on
the shape of the collector mirror. To carry this method of
analysis further requires specification of the collector shape,
but this approach serves to illustrate the definition of

concentration.

Consider an element dA of receiver area with local "outward”
surface normal, B, located at 3 in the neighborhood of a

mirror surface as indicated in Fig. I-2. Light from the sun
reflected to dA through the differential of solid angle df§ may
be cbnsidered to come from a patch of area dS in a plane tangent

to the mirror. The image of the entire sun in the same tangent .

plane subtends the solid angle }g parametrized above . The

differential of irradiance at dA through d{ is, therefore,

10




SUN

Unit
Surface
Normal

ORIGIN

o

Convenient

Axis aft = v sinp dBES

Figure 1I-2 Section of Generalized Rirror

Illuminates Field Point.

11




Io -

_’
dI = I di*b = ——— dQ°b (1-22)
with the requirement that dfI*B > O for illumination only on
the outward side of dA. The differential of optical
concentration. at dA is the differential irradiance divided by the

input solar intensity, Ip ¢

dc ., = ———= | (1-23)

The optical concentratipn,‘thén,iat dA is

23 1 > - -
C(q,b) = —— I I b-df , for b*d > O only, (I-24)
g
M

where (4 is the apparent solid angle of the entire sun as viewed

in the mirror. For a concentrating mirror, one finds Iq 2 Qg-

Light in a differential of solid angle will always consider the
reflector to be locally flat; i.e., will reflect repeatedly as if
from the local tangent planes. Thus the expression Eq. I-24 may
be used in the presence of multiple reflections in the mirror by
separating and adding the contributions from light that has
reflected n times:

> > 9 -
C(q,b) = g R C,(q,b) = — 3 RV J b-dfiy (1-25)

The solid angle Qv is the apparent size of the sun as viewed in
the mirror with radiation that has reflected n times. A
reflection coefficient R has been included in Eq. I-25 to account
for reflective losses. The factor R must be kept inside the
integral if one wishes to include angle of incidence effects.

Similarly, if the wavelength dependence of the reflectivity is o

interest, one must add an integral over W())d)\ to the form shown

in Eq. I-25, where W()) is a spectral density weight.

12




I1f one wishes to use an effective sun size o, that depends upon

the number of reflections, then (g should be expressed:

fan an sin?(o,,/2) , (1-26)

and included inside the summation shown in Eq. I-25. Policies

for selecting o, are discussed in [2].

n
The next few chapters of this report will be devoted to
evaluation of the concentration ratio integral given in Eq. I-25.

The discussion will be limited to spherical collectors and

receivers which can be described as surfaces of revolution.




2. OPTICAL POWER CONCENTRAT]JON FOR_SPHERICAL SEGMENT MIRRORS

Introduction

The optical power concentration, C, at a point on a receiver is
defined to be the total normally directed optical power per unit
area received at that point. In the ROSA code, C is normalized by
dividing by the direct normal insolation incident upon the
receiver. The resulting dimensionless quantity becomes a

concentration ratio expressed as "number of suns."

The ROSA method deals directly with a finite sun. The sun’‘s size
is expressed in terms of an angular radius, o. Direct sunlight
received at a point is viewed as a collection of rays lying
inside a right circular cone with vertex at the receiver point Q@

and vertex angle 2¢.

The ROSA formula for the concentration ratio, C, at a receiver

point, @, due to réflection from a mirror surface is given by the

integral
2 3 g S 9 <+ 9
C(q,b) = 3 B I j b*d}, for b-dgQ > O, (II-1)
Mn
where,
q = the vector locating a field point @ on the receiver with

respect to a convenient coordinate system;

ol
n

the unit outward normal to the receiver at Q;

n = the number of times a ray has been reflected on the
mirror before striking the receiver at Q;

14




= 47 sinz(on/2), the effective solid angle of the sun as
viewed directly from the field point @Q;

o = the effective angular radius of the sun to be used for
light which reflects n times on the mirror (for a

perfect mirror o_ = o);

n

Mo = the apparent solid angle of the sun as viewed in the
mirror from the field point @ from light which has
reflected exactly n times;

R = the reflection coefficient of the mirror surface;
0 {R K 1; ’
and,
-’
dQ) = differential solid angle directed toward the apparent

position of the sun as viewed in the mirror; i. e.,the
oriented element of surface area on the unit sphere,
with unit outward normal.

In order to apply Eq. 11-1, a convenient parameterization of the
solid angle is required. Thus, the receiver and mirror shapes
must be specified. As illustrated in Fig. 11-1, the mirror to be
studied is a concave hemispherical segment of radius Rg and rim
angle 6p. The center vacdrvature of the mirror is at C and the

axis of symmetry of the spherical segment is along the direction

2 >
A. The unit vector A is directed from C away from the mirror.

-5
The rim angle 6 is the zenith angle (measured from the —-A
direction) of the circular aperture rim of the mirror. The
aperture radius is Ry = Rg sin 6, in units of Rg- In the
discussion to follow, it is convenient to normalize all units by

dividing by the radius of the spherical segment mirror. Thus, the

mirror will always be taken to have unit radius of curvature.

15




Figure I1-1 Mirror and Receiver Shape
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Ihe receiver to be studied is assumed to be a convex surface of

revolution. The symmetry axis of the receiver lies along the unit

) - :
vector zr. The vector q, locating a field point @ on the
receiver surface, has origgn at C. The unit outward normal to

the surface is denoted by v and originates at Q. The receiver

is suspended from C and hangs down into the mirror surface. The

mirror-receiver geometry is illustrated in Fig. 11-2.

A parameterization for the integral given by Eq. 1I-1 is obtained
by introducing a local x, y, z Eoordinate system with origin ét
the field point Q. As shown in Fig. II-2, the z axis lies along
the line segment CQ and the positive z direction is directed
downward. The directions of x and y will be specified later. The
integration is to be carried out over the solid angle (. Using
spherical coordinates, Eq. II-1 can_be,parameterized in terms of
a zenith angle B measured from thg'bésitivé'z axis and an azimuth
w measured from the pbsitive‘k axiS, so that, 0 < B < T and 0 w
< 27. Then | |

- N > o
d = v dQ = v sin B dB duw.

Thus, Eq. II-1 can be written

3+ - gD I T 5
Ci{qyb) = 3 -B— J J (b"v) sin B dB duw, b*v > 0 . (I1-2)
n
sn Q
Mn
-5
The unit vector v designates the direction of a ray which

=Y
reaches Q after n reflections from the mirror. The vector v can

be expressed in terms of its components in the xyz coordinate

system as

-2
v = (sin B cos w, sin B sin w, cos B).

17
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Figure II-2 The Solid Angle Parameters 8 and w
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.fhe unit surface normal to the receiver will have components of

the form

-
b = (by, b,, by,)

Y’
so that

Y
v

=
b v = (bxcos W +bysin w)sin B + b,cos B . (I11I-3)

Substitution of Eq. II-3 into the integral in Eq. II-2 allows the
integral to be expressed as an iterated integral. From a
computational standpoint, it is convenient to carry out the
integration by first integrating on B, followed by integration on
w. The concentration formula then becomes

< 4 RN 4 9
Ctq,b) = 3 -B—— ¢ _(q,m ,
nsn

where,

Cn(a,g) = J J {(bxcosw+bysinm)5in28+bzcosBSinB}dBdm - (I11-4)
w B(w)
The above integral gives a very simple formula for the
concentration ratio at a receiver point. The difficult part of
the integration arises in determining the regioh of integration,
i.e. describing the solid angle consisting of all directions from
which reflected light reaches the field point @ from the mirror.

The complications for a given order of light (fixed n) arise from

-+ -
(1) the limitations on B and w necessary to insure that b v > 03

(2) the finite size of the sun;

(3) aperture cut—off effects: vignetting and shading.

The next several sections of this report will be devoted to

handling these difficulties.
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9 9
JYHE CONDITION b v > O,

L]
In this section we derive the conditions on w and B that insure

-+
b°v > 0. Using Eq. 1I-3, this condition can be written as

(bxcos w +b. sin w)sin B + bzcos 8 > O. (11-5)

b4
There are three cases that must be considered.

Case 1 = bz = 0.

In this case, the tangent plane to the surface at the field point
2 contains the z axis of the local coordinate system. Eq. I1-5

then can be written in the form
cos{w — ) > O, (I1-6)

where cos &« = b, and sin &« = b and w € [0, 2T7].

Y’
Case 2 : 0< Iby| < 1.

It is convenient to set bfy = bf + bs. Then

bx cos w + by sin w = bxy cos(w — o)

where, & is defined by the conditions that b, = bxy cos «, and

by = bxy sin . Eq. II-5 then becomes

bxy cos{w — X)sin B + b, cos B > O,
or,

D(w) cos(B — €) > O, (I11I-7)
where,

D2(w) = b, 2 cos?(w - @ + b,2, w € [0, 2m, @

Y
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‘ and, £ is defined by the conditions

D(w) cos € = b D(w) sin € = bx cos(w — ).

z Yy

Case 3 : b, | = 21.

Eq. 1I-5 becomes b, cos B > 0. If b, = 1, then this condition
requires that 0 < B { 7/2, while if b, = -1, then W2 < B £ 7. If
we set € = O when b, = 1 and € = 7 when b, = -1, then Eq II-7

still applies provided we set « = . 0.
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The Structure Relations

The location of the sun is determined

ds ,

by a unit vector,

pointing from C to the geometrical center of the sun. Because

the sun is very far away, light from a region on the solar disk

very near the center may be considered to come to the dish

aperture as a uniform distribution of
_85 -

specified by a family of unit vectors

direction, Other locations on

toward the solar disk, as illustrated

of “sun directions" forms a cone with

angle, o, equal to the angular radius

rays moving in the
the solar disk may be
[4
8S
in Fig.

s pointing from C
I11-3. This family
vertex at C with semivertex

of the sun.

The extension of these directions through toward the mirror

defines a cone called the "sun cone."

of directions locating distant
3S

the x’ and y'’ axes shown

input power. The direction

cone. in the
and y, respectively, but pass through
These axes will be of use later.

For any one of the directions 35' in

The sun cone is a family

differential sources of solar

is called the axis of the sun

figure are parallel to x

C as origin instead of Q.

the sun cone, the angle, B,

of the light received at @ may be determined as a function of the

angles ¥ and 6 illustrated in Fig.

the ray plane for light that can reach 8 from sun direction

I11-4.

This figure illustrates
3.’ ;
S 3

i.e. C, @, and the differential source on the sun located by

35' are coplanar and the ray lies in the plane determined by

these three points.

The angle 6 is called the "impact zenith" of a ray that first

strikes the mirror at a point of impact P and eventually

reaches

the receiver surface at Q. Note that 6 is measured from é’s' and ‘

that both the value of and the orientation of the ray plane
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Figure II-3 The Sun Cone
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Figure II1-4 The Geometrical Dependence of
g on ¢y and 6, shown for n = 2
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‘ depend upon the orientation of 35' in the sun cone.

The angle Vv is a zenith angle for —35' as measured from the z
axis through Q. The zenith of the sun cone. axis, the angle
between z and (—33 )y is designated Yo- The value of ¥ in the
ray plane depends upon the orientation of 35' in the sun cone.
The parameters ¥ and € are the mechanism for describing the shape
of the receiver and the shape of the mirror. The values of ¥ at
various q determine the shape and location of the receiver
surface. The corresponding values of 6 are essential to the
-description of the mirror shape and location. The relationship
between these shape parameters and B is given by the "structure

relations”:

B=2n6 - ¥ — (n-1) (I11-8a)
and

sin® = q sin B . (I11-8b)

The structure relations are easily deduced from Fig. 1I-4, drawn
for n = 2. They are obtained by considering the triangle CQOP,.
Eq. II-Ba is the measure of the angle at the vertex C for this
triangle and Eq. 1I-8b follows from an application of the law of
sines to this triangle. As a convention, if, for any reason,
and the point of ray impact P lie on opposite sides of the axis
35 s then the angle ¥ from g to (—35' ) is assigned a negative
sign. One may easily verify that € and B remain positive and that

Eqs. I1I1-8 are still valid in this situation.

The impact zenith can be eliminated from Eqs. I11-8 to produce

8 = 2n Sin"1(q sinB) - ¥ - (n-1)7 . (11-9)

This equation plays a central role in determining the limits of
integration in the integral appearing in Eq. II-4. A detailed
. discussion of the solutions of this equation will be given in a

later section. Graphs of ¥ versus B8 for various values of q will
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also be given. It will be shown that for given values of n and v,
Eq. I1I-9 may have more than one solution, B. With some ray
tracing, one finds that, typically, there-are two values of @
(and, hence, two values of B) that contribute light at Q when Vv >
O, but only one value of ¢ (and, hence, one value of B) that
contributes when ¥ < O. A subscript i = 1, 2 will be attached to
B to distinguish the various solutions of Eq. 11-9 for given
values of ¥ and n. Thus, if there are two solutions, By will

denote the smaller and B, will denote the larger.
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Effects of Finite Sun Size.

1t should be clear from the discussion above that contributions
at @ come from a range of values of 6 and V¥ produced by moving
the vector 35' throughout the sun cone. Due to this effect, for
each w in Eq. 11-4, one may find a range of values of ¥ locating
sun axes, 35' s lying in the plane of constant w. Such a range
of values for ¥, when used in Eq. 1I1-9 determines ranges of
values for the B. The set union of these ranges of values of the
B; is, for the specified w, the range of B integration required
in Eq. I1I-4 to account for finite sun size. As will be described
later, this-range of integrationvmay be reduced because of "rim

effects."”

The range of values of ¥ mentioned above is, of course,
non-existent if the constant w plane does not intersect the sun
cone. If it does intersect, then the algebraically smallest and
largest values of permitted ¥ are designated v_ and Yoo
respectively. Fig. II-5 illustrates a case in which @ lies
inside the sun cone. As may be seen in Fig. II-2, by definition,
the points C and Q lie on the plane of constant w (because w is
measured about the CQ line, i.e., about the z axis). Thus, the
dashed lines marked by ¥_ and ¥, are coplanar with CQ and a ray
plane is defined whose contributions will be received at @ as it
is located (as in Fig. II-4) by a range of values of ¥ from y_ to

¥ye

Y, are always measured from the z axis. The positive direction is
taken to be opposite that of J. Thus, in Fig. II-53, y_ < O and
¥, > 0. This will always be the case when the field point @ lies
inside the sun cone. If the field point @ lies outside the sun
cone and the v plane intersects the sun cone, ¥, and Y_ will have
the same sign. In particular, if ¥ is directed away from the sun
cone, then both will be positive, while if V is directed towards

the sun cone, both will be negative.
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constant w plane

Figure 11-5 The Intersection of a Constant « Plane .
with the Sun Cone
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The formulas for ¥, and Y. can be obtained from a detailed
consideration of the geometry for the w plane-sun cone
intersection. The analysis is carried out using spherical
trigonometry. The appropfiate spherical triangle is shown in Fig.

I11-6. The law of cosines for spherical triangles gives

cos 0, = €cos Yg cos Y, + sin ¥g sin Y, cos w. (II-10)
Setting
v
D = cos? Yo+ sinzvo coszw ’

Eq. I1I-10 can be rewritten as

cos(y, + W) = * [cos o,1/D
where,

n = Tan ~l¢tan Yo COS wl}, n € [- %, al.

These results are to be used for all cases with w for which

+ 2
(b-v) > O.

For any w, once the range Y_{(w) to ¥, (w) has been determined,

then the corresponding ranges of B; may be determined from Eq.
I11-9, as mentioned earlier. The nature of the ranges in B8; is
illustrated in Fig. 1I-7. For the positive values illustrated

for Y_ and ¥,, two ranges are indicated:

range for 81: [Blo(v_), 811(Y+)]
(11-11)

range for Bp: [Bpo(Y,), B9(VY.)1 .

Two additional quantities are illustrated in the figure: and

’ Brin
Bpax- These are constraints on the range of B integration imposed

by mirror rim effects to be discussed later.
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Figure II-6 Spherical Triangle Geometry
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Figure 1I1-7 The Ranges in g; Determined by Range in ¢
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1¥ one defines the quantities:

.= Max ( (w) col¥Y4dd
BLI Bmin w '310 vi (11-12)

Bui= Min {Bmax(w)'ail(\llt)}

where the top subscript on V¥ is intended for i = 1 and the lower
is intended when i = 2, then Eq. I1I-4 can be brought to the form:
Bui

4 o 1’ 1
Chtq, b) = Ejfl(bxcosw + b, sinw) (B~ EsinZB) + bzsinzB] dw

B i
(I11-13)

where the ith term is to be kept only if B,y; > B ;-

The problem has now been reduced to the numerical work required
to evaluate the quantities B ; and B,; and, subsequently, to
evaluate the integral over w. Further progress requires

determination of the range of w integration.

1f the field point Q lies inside the sun cone; i.e., 0 2 Yqo, then
there is no restriction on v in addition to that shown in Eq.
I1-13. On thevother hand, if o < Y5, the field point @ lies
outside the sun cone and the w plane may not intersect the sun
cone. Since contributions to Cn(a, B) in Eq. I1-13 only arise
if the o plane intersects the sun cone, it is possible to limit
the required range of w even more. If @ is outside the sun cone,
intersection with the sun cone is possible if and only if

D 2 cos Tns where D is defined above. Solving this equation for w
yields

coszcn— coszvo ’
cos2w = . (I1-14)

Sinz\l’o .

This relation determines regions in w for which the intersection
occurs. The set intersection of the set union of these regions
with the region defined in Eq. 1I-12 is the required region of

intergration.
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Rim Angle Effects.

The effect of the dish rim will now be considered. 1t determines
the availability of the mirror support for contributions at the
field point Q. This support may be missing due to either cut-off
or shading. The constant w plane, containing the incoming ray J ’
cuts the rim of the dish as shown in Fig. II-B. The dish rim
angle in the w plane can best be expressed as the front-side rim
angle, 6,
are zeniths from the z axis, measured positive in the direction

of ¥ . wWhen 6,* < 0, the dish is not seen in the ¥ direction

*, and the back-side rim angle, 6,”. Both 6,* and 6,”

and, thus, there is no contribution.

When 0O £ Oz+ + ¥ £ /2 there is a rim cut-off; part of the mirror
support is not present. As shown in Fig. II1-9, the effective rim
angle, 6,
The angle ¥ shown in Fig. II1-9 is measured negative in the

Jeff? describes the "illuminated"” region of the dish.

direction of ¥ s SO ez+ + ¥ is less than 92+ « This is the edge
of the region from which light of order n reflects for the last
time and leaves the mirror to strike Q. From the geometry in the
figure, it is clear that the effective rim angle for rim cut—off
is
+ +

ez,eff = 6, — (n—1)(1-26,-2Y) . (I1I-13)
For a finite sun, the incoming rays arrive in a band between
Y. £ ¥ £ ¥,. There is a portion of the dish that will be
partially cut—-off as illustrated in Fig. II-9. This partially
cut—-off region is small enough that ¥ can be approximated as

(Y, + ¥.)/2 and Eq. 11-135 becomes
+ -+
6; ., eff = € — (N-1) (726, — v, — Y_). (11-16)

When /2 < 6, + ¥ £ T, a portion of the mirror is shaded. This

effect is called rim shadowing. As shown in Fig. II-10, 6,,a55¢
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Figure I1-8 The Intersection of a Constant w Plane with
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describes the "illuminated" region. Again, there is a portion of
the dish that will be partially shaded as illustrated in Fig.
11-10. With the same approximation, the effective rim angle for

rim shadowing is

+ +
0, eff = 6 + n(T-26, — ¥, — ¥.) . (I11-17)

The front-side rim effgct comes from either the cut—off or the
shadowing. Always, the smaller of the values determined by Eqs.

I11-16 and 17 must be used. The overall front-side effective rim

angle is
+ . + +
ez,eff =Min [ 6, - (n-1)K, 6, + K 1 (I11I-18)
+
where K=1%-268, - ¥, - Y- =«

The back-side rim angle effect is simpler. If -7 < 6,7 £ 0, the
back-side rim» angle does not affect the contribution, because
light from this region cannot reach Q. If 0 < 6,7 < /2, the
receiver field point @ is outside the dish and some of the
reflected rays will be lost. I1f ez‘ £ -7, a portion of the dish
will be shaded, as shown in Fig. II-11. The overall result for

the back-side becomes

6, eff = MaxL 0, 6, ,=6, — W+ ¥, - ¥.]. (11-19)

The front-side and back—-side rim angle effects place restrictions
<+ - .

on the values of B. If 6, ,effs 6, Joff 9 there is no

limits

of B must satisfy

- +
. sin(Bpax — 92, eff!
sin(m - Bmax) = (11-20)
q
and
‘ . sin(Bpin ~ eg,eff)
sin(T - Bpin) = . (11-21)
q
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Figure 11-11 The Effective Rein Angle for the Back-side Rein
Effects
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Solving Eqgs. 11-20 and 21 for g, one obtains:

+
-1 J sin Oz eff
Bpax (@) = Tan l < = (11-22)
cos 6; eff ~ 9
and
-1 J sin €; eff
Bnin(w) = Tan l - . (11-23)
cos 8, eff - q

These are the quantities required in Eq. 1I1-12 to determine the
limits of the B integral, B ; and B yij - These complete the
constraints on the B and w in Eq. 1I-13 and the power

concentration is obtained by evaluating the integral.
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3. THE SUN-RECEIVER-COLLECTOR GEOMETRY

Introduction

The previous sections developed formulas for finding the limits
of integration for the ROSA integral given by Eq. II-4. The
integration is accomplished by introducing a local xyz coordinate
system at the field point @ and using spherical coordinates in
this system. The limits of integration are then found by
intersecting planes w = constant with the sun cone which
correspnnds‘to light of order n (light which has reflected n

times before striking the field point).

The location of the sun cone relative to the point @ depends upon
several factors. These include the position of the sun, the size
and orientation of the collector, and the shape and position of
the receiver. It is therefore necessary to define additional
coordinate systems in order to describe the geometrical

relationship between these factors.

The next few sections will be used to define appropriate
coordinate systems for describing the sun-collector-receiver
éeometry. The location of a field point, @, on the receiver can
be described in terms of these coordinate systems. In this way,
the concentration calculations can be associated with specified

locations on a receiver surface.
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The Earth—-fixed Coordinate System

This coordinate system is a South—-East-Vertical coordinate
system. The axes are called s, E, and V, respectively. The origin
of this coordinate system is taken to be at C, the center of

curvature of the spherical segment mirror.

The Bowl Symmetry Coordinate sttém

This collector fixed coordinate system has origin at C, and the
axes are called D, M, and A. The standard collector is taken to
be a segment of a sphere, and the A axis is the symmetry axis of
the éollector, pointing away from the bowl (see Fig. II-2). D is
oriented such that the lowest point (with respect to the
vertical) on the rim of the mirror lies in the VD plane and has
positive D component. If A coincides with the V axis, then D is
taken to lie along S. The M axis is chosen so that the DMA system

forms a right hand coordinate system.

The paramaters y (the tilt angle) and ¢4 (the dip_azimuth) serve
to define this system with respect to the SEV coordinate system
as shown in Fig. III-1. The M axis lies in the SE plane. The

transition matrix from the SEV system to the DMA system is given

by =
caos Y cos %y cos Y sin °d - sin ¥
Cplpma = - sin ¢4 cos %4 o Cpigpy (IXII-1)
sin Y cos Od sin Y sin °d cos Y

The DMA and SEV coordinate systems are identical when Y = 0 and
¢3 = 0 (The above matrix reduces to the identity.)

This coordinate system will also be used in describing alternate
rim shapes. The standard bowl of unit radius is defined as the
segment of the unit sphere lying below the plane A = — sin 6R,

where 6g is the rim angle of the bowl.
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The Sun Tracking Coordinate System

The sun tracking coordinate system also has its origin at C. Its
axes are denoted by F, 6} and e;. The positive e, axis points to
the center of the sun. The F axis lies in the plane determined by
V and eg. The positive F axis is chosen so that the projection of
the positive V axis onto the F axis is negative (if the V and eg
axis coincide, then F and S are taken to be coincident). G lies
in the SE plane. Fig III-2 shows the relationship between these
systems in terms of the solar elevation E_ and the solar azimuth
A . The alternate azimuth AL = T — Ag is also used on

occasion. The transition matrix between the two systems is given

bys:
sin Eg cos Ag sin E_ sin A -~ cos Eg (111-2)
[p]FGeS= - sin Ag cos Ag o Cplgey
cos Eg cos Ag cos Eg sin Ag sin E_ ',
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Figure III-1 The Relationship Between the SEV and DMA
Coordinate Systems

‘ Figure IIT-2 The Relationship Between the SEV and l“Ges
Coordinate Systems
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Receiver Location and Orientation

In order to locate a field point Q on the surface of the receiver

and determine the limits Bnin

discuss the alignment of the receiver. An XRYRZR coordinate

(w) and B, {w), it is necessary to

system is fixed in the receiver, and locations on the surface of
the receiver are determined by zg and an azimuth %Ry measured
about the zp axis, positive from XR toward Yr- The azimuth bp = O
locates the xg axis and, for a perfectly aligned receiver, XR

is chosen to coincide with the F axis of the FGeg coordinate
system and the zp axis coincides with the eg axis direction. For
a perfectly aligned receiver, the receiver surface generator at
% = 0 is the one closest to the -V direction, the negative
vertical, so that oy =‘0'denotes the bottom (or lowest) side of

the receiver. This is only true for perfectly aligned receivers.

Receiver misalignment is described by the rotation angles a¢ and
a¥. The rotation is described‘by a rotation through an angle a¢
about the e; axis, followed by a rotation through an angle ay
about the new yp axis. The relationship between the FGe_ énd
XRYRZR coordinate systems is shown in Fig. I1I1I-3. The transition

matrix between the two systems is given by:

cosa¥Y cosa¢® cosa¥Y sina¢ — sinay
: (III-3)
[p]xRYRZR = - sina¢ - cosad o [p]FGEs
sinay cosa¢d sinay sina¢ cosay

The coordinates of a point @ on the receiver can be found in the
sun tracking coordinate system by application of the above
transition matrices. 1In ordef to re1ate these coordinates to the
local xyz coordinate system, it is convenient to introduce two
additional parameters ¢, and ¥, . The éngle ¢y is the azimuth of

a (the vector locating Q@ from C) measured positive from F ‘
toward 6. The angle Yo is the angle between 3 and the negative

eg; axis. The relationship between the xyz and F6eg coordinate
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Figure III-3 The Relationship Between the FGes and
xpYpZg Coordinate systems

€s

Figure ITI-4 The Relationship Retween the FGe_ and X~-y-2
coordinate systems s
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coordinate systems is shown in Fig. [111-4. The transition matrix

between the two systems is given by

cosy, casd, cosy, sindy sinygy (111-4)
[p]xyz = sind, - cosd, (o) [pJFGeS
siny, cosd, siny, sinég - cosY,
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roation of Field Point in the Sun Tracking System .

It is useful to obtain expressions for v, and ¢, in terms of the
azimuth, 9, of the field point Q@ and the misalignment parameters
a¥ and a¢. It is simple to write down the components of @ in

the FGeg system and in the xyz system:

-5
[qJFBes = q(sin ¥, cos ¢,, sin Y, sin ¢,, — cos V¥,),

(LII-5)

-
[quRYRzR = q(sin Yp sin ¢, sin ¥R sin oz, — cos YR).

The coordinate transformation between these systems, given by Eq.
111-3, may be applied to obtain a second representation of a
in the FGeg coordinate system and the two may then be compared.

One obtains:
Yo = (.Tcu.'-'.—1 {cosVR cos aA¥Y + sin Yr cos °R sin aAY)

and (I11-6)
sin Yo sin 00 =

sinyYg cosdp cosay sinad® + sinyYg sindg cosa® — cosYg sinay sinad,

sin Yo COS 00 =
sinYR cosGR cosa¥Y cosad - sinYR sin®R sina¢ — cCosYRr sinayY cosa¢

If sin ¥, = 0 in the above formula, then ¢_ is assigned the value

o
0. Otherwise, ¢, and Y, are uniquely determined by Eqs. 1III-6.
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cal Coordinates of the Unjt Surface Normal .

The components of the unit surface normal, B, in the xyz
coordinate system are obtained by manipulations similar to those
of the previous section. Writing B = ( By, B>, B3) in the xpypzg
coordinate system, and using the rotation matrices given by Eq.
I11-3 and 111-4, we find that:

b, = Bl [cos Yo €OS aY cos (Oo - ad) - sin Yo Sin avl
+ 82 cos AY sin (00 - ad)

+ Bx [cos Y, sin aY cos (9, — ad) + sin Y, cos avd,

by = 81 cos aAY sin (o, — ad®) - 82 cos (¢° - a®)
+ B3 sin aY sin (¢,—-a®), (I11-7)
bz = B1 Csin Yo COs aY cos (OQ - a%) + cos Yo sin ay 1

+ 82 sin AY sin (OQ - a%)

+ B3 [sin Yo sin AY cos (00 - ad®) - cos Yo €COSs av¥Y]l .

In order to obtain expressions for the components of B in the
XRYRZR coordinate system, we use the assumption that the receiver
surface is described as a surface of revolution, with the zg axis
being the axis of symmetry of the receiver. The surface is then
described by an expression of the form

r = f(zp), zp £ O,
where r denotes the perpendicular distance from the zg axis to
the receiver surface. A straightforward calculation then gives

the formula

-
Brxpygzpl = (€05 % €os £, sin oz cosg, -sin 3), (111-8)

where, ‘
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tan z = £’ (zR) z € (-1/2,1/21,

and ¢p denotes the azimuthal angle of the field point in the

receiver coordinate system.
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4. SOLUTION OF THE STRUCTURE RELATIONS

Introduction

The structure relations arise in determining the B-limits on the
solar concentration integrals. The structure relations were
derived in Chapter 11 and are given by Eq.1I-Ba and II-8b and in
combined form by Eq. I1I-9. They are applied to the integral
given by Eq.II-13.

The structure relation has the form
¥ = 2nsin"1(gsin®) - B - (n-1), (1V-1)

where B € [0,T), 0 < q £ 1, and n is a positive integer. Fig.
IV—-1 through IV-3 illustrate the relationship between v, B, and q
for n =1, 2, and 4. The curves show V¥ plotted against B for

various values of q.

In the application of the structure relation Iv-1, q, n, and two
values of ¥, ¥4+, are given, where -7 < v_ < v, < 7. The problem

is to find B~intervals on [0,7) such that the inequality
Y. < ¥(B) < v, (IV-2)

is satisfied. A case where two B-intervals exist is illustrated
in Fig. IV-4. The number of solution intervals depends upon the
values of v_ and v,. It should be clear from Fig. IV—-4

that the possibility exists for no solution to Eq. IV-2, one
solution, or two solutions. The remainder of this chapter is

devoted to describing a method for finding these limits

numerically. .
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‘ Properties of the ¥ _vs B curve

In this section we show analytically that the graphs shown in
Figs. 1V-1 through IV-3 are representative of the ¥ vs B curves
given by Eq. IV-1. Differentiation of Eq. IV-1 with respect to B
yields '

d¥ _ 2nqcosy

-— = - 1. (IV-3)
9B NZinZe
1-g“sin“g

We note that at B = 0, dv/dB = 2nq — 1, and hence is positive
provided q > 1/2n, while dy¥/dB < O for B > /2. Thus, for

qQ > 1/2n, ¥ must attain a maximum on the interval [0,T/2].
Moreover, dy¥/dB vanishes only once on the interval [0,7/2] and
hence Y(B) has exactly one maximum and no minimum on this
interval. The value of B where this maximum occurs will be
denoted by Bpeak and is given by the formula

-n—l{ 4n2q2 — 1 ]1/2

= si (IV—-43)
“peak (4n2-1) q2

where q must satisfy 1/2n { q { 1. The corresponding maximum
value of V¥ is denoted by vpeak and is obtained by substituting

Bpeak into Eq. IV-1.
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he Solutio trate .

In this section we briefly describe the logic involved in solving
the inequality given by Eq. IV-2. We assume that y_ and v, are
given and that Vpeak has been calculated from Eq. IV-4.

Reference to Fig. IV-4 will be helpful in understanding the
various cases. The case when n = 1 differs slightly from the
case n > 1, and will be treated separately (compare Fig. IV-1 and

Fig. IV-2).

1. Solutions for n = 1.
a. If v_ 2 vpeak' then no solution interval exists.
b. I1f 0 £ v_ < Ypeak £ Y44 then a solution interval of
of the form [B , Byl exists, where B and By are the

two solutions to the transcendental equation
2sin"l(qsing) - B = v_ . (IV-5)

c. If yv. £ 0 < Ypeak £ ¥,, then the solution interval has
the form [O0,B8,1, where B, is the positive solution to
Eq. IV-5.

d. If 0 £ v_ < v, . < Ypeak? then two solution intervals exist

of the form (B {,B,y13, [B 2,By23, where B ; and B,; are
the smaller and larger of the solutions to

2sin~1(qgsing) - B = v_ (IV-6)

and BL2 and B, are the smaller and larger of the

solutions to
2sin"l(gsing) - B = v, . (IV-7)

e. If v_ < 0 < v, < Vpeak’ two solution intevals exist of
the form [O,B;;] and [B 5,B21- Byo is obtained as the ‘
positive solution to Eq. IV-6, while By, and B , are the

smaller and larger solutions to Eq. IV-7.
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I¥f v_ < v, < 0, then a single solution interval exists of

the form [B_,Byl, where B satisfies
2sin"l¢qsing) - B = v, (1V-8)
and By satisfies

2sin"l(gsing) - B = v_ . (IV-9)

Solutions for n > 1.

Q.

b.

If yv_ 2 Ypeak' then no solution interval exists.
If v_ < vpeak £ ¥,y then a solution interval of the
form-[B_,Byl exists, where B and B, are the smaller

and larger solutions to

2nsin~l(qsinB) — B - (n-1)T = y_. (IV-10)
If v_ < v, < Ypeak then two solution intervals exist of
the form [B 4,811 and [B 5, H71. B 1 and By, are the
smaller and larger of the two solutions to the eguation

2nsin l(gsinB) - B - (n-1)T = vy_ (IV-11)

while BU2 and B 4, are the smaller and larger of the two

solutions to

2nsin~l(gsing) - B - (n-1)T = v, . (IV-12)



Numerical solutions of the structure equations .

Finding solutions to the structure equation involves solving the

transcendental equation
2nsin"1(qgsinB) - B - (n-DHW = v , (IV-13)

where q, n, and ¥ are given and B is to be determined. This
equation is readily solved by Newton’s method provided a

sufficiently accurate guess is made for the starting value of the

iteration procedure.

Because of the nature of the curve described by Eq. 1IV-13, a
parabolic approximation is used. The approximating parabola is

defined to have its vertex at (Bbeak’vpeak) and contain the point

(0, (n-1)M. The resulting equation for the parabola is
= ‘ - 2 -
¥ = Vpeak T(B—Bpeak) ’ (IV-14)

where

T

[n-107 + ¥y ]/ B3ea (IV-15)

The starting values for the iteration for finding the smaller and

larger solutions to Eq. IV-14 are then given by
= - 1/2 —
B = Bbeak Ly Vpeak)/T] (IV-16)

where the + sign is used for the larger solution and the - sign

is used for the smaller solution.
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S. ROSA_PROGRAM_STRUCTURE

Introduction

The ROSA code gives the normalized optical power concentration
ratio at user specified points on a reéeiver surface. The
calculated values are normalized to units of number of suns. The
code also uses normalized dimensions, with the radius of the
spherical segment bowl taken to be unity. Physical and
geometrical parameters for the program include the solar
inclination and size, position of the receiver, receiver
alignment, bowl rim angle, and the reflection coefficient the
bowl. The receiver shape must be a surface of revolution and
must be described in a subroutine named BOILER. Alternate rim

shapes can be introduced by providing a RIM subroutine.

Receiver points are specified in terms of a distance, zpy,
measured along the axis of symmetry of the receiver and an
azimuthal angle, ¢, measured about this axis. I+ the
concentration ratio is to bekcomputed for several (zR,oR) pairs
the compution is most efficient if the outer loop is on the on
variable. The program requires that loop parmeters be input for

each of these variables.

The program flow for the ROSA code is given in the next section,
together with a short table describing the ROSA subroutines. A

complete computer listing is given in Appendix A.
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ROSA Calculation Procedure

The calculation procedure which is used by ROSA can be divided
into three segments, an initialization segment, a computational
segment and an output segment. The procedure is listed below:

BEGIN INITIALIZATION SEGMENT

1. Read Input Variables
A. Boiler title: ITITLE
B. Boiler—sun alignment parameters: DPSID,DPHID

C. Sun parameters:
Sun cone hal f—-angle: SIGMAD
Sun position parameters: elevation (ED), azimuth (AD)

D. Dish parameters:
Dish half-angle: THTARD
Dish alignment parameters: GAMMAD,PHID

E. Reflection coefficient: REFC

F. ISTEPS——number of omega integration steps

G. STPHIR,SPPHIR,DPHIRD--initial and final values of the
receiver azimuthal angle PHIR, and the amount to be

incremented each time in the PHIR-1o0p.

H. NZRR-—number of reciever axis subintervals to be used. The
data in H. below will occur NZRR times.

I. NzZzZ, ZISTART,ZSTOP—the number of times Z will be incremented
in the @ loop, and the initial and final values of Z (this
line is read NZRR times).

2. Convert angles from degrees to radians
3. Calculate rim angle constants

4. Calculation rotation matrices

9. Initialization of PHIRD—azimuthal angle, and JSTOP——number
of times PHIR loop is to be repeated.

6. Echo print all input values.
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BEGIN COMPUTATIONAL SEGMENT
Begin PHIR loop
Begin NZRR loop

Initialize Z loop parameters (Z=ZSTART), NQSTOP (number of
times Z loop is repeated), and DZ (the Z increment)

Begin Z loop

CALL BOILER--BOILER subroutine gets 'Z and PHIR and
returns @, PSIR, and XR,YR,and ZR-—the components of the
outward normal to the receiver in the XR-YR-ZR coordinate

system.

Calculate PSI0D and PHIO--the rotation angles between the
F-G-ES and the X-Y-Z coordinate systems.

Calculate the components of the unit outward normal to
the receiver surface in the X-Y-Z coordinate system

Find OMEGAU and OMEGAL-—-the omega limits and NOMEGA-——the
number of omega-—intervals.

Begin OMEGA integration loop

CALL INTGRL — This subroutine computes the
concentration integral for the given qmega—interval.
END omega interval loop
END Z loop
END NZRR loop
BEGIN OUTPUT SEGMENT
Begin Z loop
Print Z
Begin NBOUNCE loop
Print contribution from n-th bounce
Add n-th bounce contribution the total concentration
END NBOUNCE loop
Print total concentration
END Z loop
END PHIRD loop
END PROGRAM
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Subroutine Purpose

BLIMIT

BOILER

INTGRL

RIM

SOLN

Jable 5.1: ROSA SUBROUTINE SUMMAR

—

Performs the logic for computing the beta integral

integration ranges.

A user supplied routine for computing distance and
angle to a point on a receiver surface and the

outward normal to the surface at the point.

Computes the solar concentration integral at a

point on the receiver surface.

An optional user supplied routine for handling

special rim shapes.

Computes a solution to the structure relation

equation by Newton's method.
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6. OPTICAL CONCENTRATION PROFILES

Introduction

In previous chapters, we have stressed the dependence of the
concentration ratio profiles on several geometrical and physical
parameters. This chapter gives a few representitive profiles, in
order to illustrate the nature of the results which are obtained

from the ROSA code.

Only a few parameters will be varied in these profiles.
Basically, only the solar inclination, position of the receiver,
and receiver alignment are varied. The mirror rim angle is set
at 6g = 60 degrees. The receiver éhape is taken to be a right
circular cylinder, of radius 0.0066 (this is the normalized
radius of the cylindrical receiver being used in the CSPP.) The
cylinder extends from Z = 0.5 to Z = 1.0. The reflectivity of
the mirror is set at 0.88, independent of angle of incidence or
wave length. Only power reflected by the mirror is counted,
direct radiation on the receiver is ignored. The effective sun

size is taken to be o = 0.5 degrees for all reflected rays.

Location of the center of the sun is accompished by using the
inclination angle, 1, of the sun relative to the axis of symmetry
of the mirror. The optical concentration profiles depend upon 1,
which, in turn, depends upon time, latitude, and the tilt of the
solar bowl with respect to the vertical. The tilt of the mirror
axis with respect to the vertical is desribed by the tilt
angle,y, and tilt azimuth ¢4. The location of the sun is
described in terms of an azimuth, A, and elevation, E. These

parameters are related to I by the formula

cos I = [cos ¥ sin E + sin ¥ cos E cos (A - ¢4) 1. (VI-1)
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Results for 1 = O

The case of a perfectly aligned receiver when the solar
inclination is zero is called the "symnetric case” because the
concentration profile is symmetircal about the axis of the ,
receiver. The concentration profile forr the symmetric case is
shown as a function of Z in Fig. VI-1. The large peak near the
top of the receiver isﬂthe paraxial peak resulting from rays at
small impact angle, 6, tending to focus midway between the mirror
surface and its center of curvature. The peak concentration is a
sensitive function of ¢ and tends to infinity as ¢ tends to zero
£31.

‘There are no multiple bounce contributions in the symmetric case
because they are cut off by the 60 degree rim angle. Multiple
reflections result from impact angles larger than 60 degrees and

the required mirror support is not present for I = O.

The legend printed in Fig. VI-1 and in subsquent figures may be

translated as follows:
PHIR = ¢p, the azimuth for locations on the receiversg
SOLAR ELEVATION = 90 degrees — 1
SIGMA = o, effective sun size
DPSI = a¥, the zenith misalignment angle
DPHI = a¢, the azimuthal misalighment angle
Concentration profiles are also presented for the case where the

receiver is the frustrum of a cone. The angular radius, vg, of

the cone(half the vertex angle) is set equal to the angul ar .

radius of the sun, i.e., Yg = 0.5.
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Concentration profiles on a misaligned receiver for 1 = 0 and A‘
= 0.5 degrees are shown in Figs. VI-2, 3, and 4. These figures
show the profiles along the three slices:

% = 0, 90, and 180 degrees, respectively.

Results for 1 = 15

Figs. VI-8 through VI-7 illustrate the features of the
concentration profile for nonzero inclination angles. Due to
loss of symmetry with respect to the aperture rim, there is no

azimuthal dependence in the concentration profiles.

For 1 = 15 degrees the mirror support is 75 deqrees at % = 0O,
and peaks due to second and third bounce rays are observed. At

®r = 1BO degrees, rim cutoff effects occur.
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7. ALTERNATE RIM SHAFES

Introduction
In all previous derivations, we have assummed that the solar
collector was a segment of a sphere. In this chapter, an
analysis is carried out to extend the ROSA code to more general
rim shapes. In this analysis, the rim is assumed to be expressed
in the form

e = f(9), (VII-1)

where @ is the zenith angle of a point on the rim and ¢ is the
azmuthal angle of the point on the rim. The angles are expressed
in the bowl centered D-M-A coordinate system, where A is
perpendicular to the aperture plane of the bowl and is directed
upward. The rim angle é is measured from the negative A axis and
¢ is measured from the D axis. As an example, 6 = 6 = 60

degrees at the Crosbyton site.

Integration for the calculation of the solar concentration is
carried out in the local x-y-z coordinate system and rim angles
must be calculatéd in this coordinate system in order to account
for rim cutoff and shading. The D-M-A and x-y-z systems are

related by a formula of the form
where [plpmp represents a point in the D-M—-A coordinate system,

[p]xyz
and A is a known rotation matrix (A is readily computed using the

represents the same point in the x-y-z coordinate system

transition matrices of Chapter III.) A depends upon the tilt
angle of the bowl, the position of the sun, the shape. and
orientation of the receiver, the location of a field point on the
receiver, and values of the variables of integration in the ROSA

code.
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Eq. VII-2 can be expressed in component form to vyield a system of

three equations,

sin Oz COs w = (Ll cos 0+L2 sin ¢) sin 66— L3cos e
sin Oz sin w = (Ml cos ¢ +M25in ¢ )sin 6- H3cos 6 (VII-3)
cos Gi = (Nlcas ¢ + stin ®) sin 6 - N3cos e .

In these equations, ¢ is the unknown rim angle in the local
Xx~y—-z coordinate system, ¢ is an unknown azimuthal angle in the
D-M—-A coordinate system and 6 = £(¢) according to Eq. VII-1. w
is an integration variable and Li» M, N; i=1,2,3) are direction
cosines relating the D-M-A and x-y-z coordinate systems.
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.ﬁSeca Rim_Shape
The above formulas will now be applied to the case where the

standard bowl shape is sliced by planes M = Mg (in the D-M-A

coordinate system). Eq. VII-1 then takes the form

@ = Arccos [1 - M, csc ¢1 y elsewhere, (VII—-4)
where, sin ¢g = Mg/sin ©0-
The equation w = constant defines a plane in the Xx-y—z coordinate
system with equation y = x tan w. In the D-M-A coordinate

system, this same plane has equation
MiD + MM + MzA = (L;D + LoM + L=A) tan w. (VII-S)
This plane will intersect the plane M = Mo along the line
(Mj-Ljtan W)D + (My-Lstan WMy + (Mx—L=ztan Q)A = 0. (VII=b)

1f this line intersects the unit sphere (using normalized units),

the additional condition
D? + M2 + A2 = 1, (VII=7)

must be satisfied. Simultaneous solution of Eqs. VII-6 and 7
gives

~tagazMg) * [(a;?+az?ra;2(1-My2)—(a;a,2,) 21172

‘ A = -« (VII—8)

(alz + 832)
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a; =M -L;tan v, i=1,2,3,

D is then calculated from Eq. VII-6.
There are three cases to consider.

1. If the quantity under the radical sign in Eq. VII-B is
negative, then the line of intersection of the w-plane and the
Plane M = My does not intersect the unit sphere and the rim angle

in the D-M-A system is given by 6 = 6o-

If A is real in Eq. VII-B8, then let 6, = Arccos A.
2. 1f 6 £ 65, then 6 = §,.

3. if 6 < 6y, then ¢ =96.

In each of the above cases, 6, can be computed from 6

z
using formulas that were developed previously for a dish with a

constant rim angle.

The formulas for the plane M = - Mp can be obtained from the

above formulas by simply replacfng My by —M.

Sample concentration profiles are given in Figs. VII-1 through
VII-3.
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AT A PCINT ON A RLCEIVER.
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PEAI SUN{1C0,5),00 (1C0)

REAI ZSTAFT(1C),7ST0P{10)

COMPON /RICCKA/ MOMEGA,ISTEPS,CMEGAL (2), CMEGAU(2),XYNBHL
*ALPEA,NZ,ZKR¥AL,PSIOS,PSIOC,SIGMAC,
*RIMCY, PIMCE,RIHCG THTARC, THTAW

CCMFCN /BLCCKBy PIHALF,PI,PSIP,PSIPK,PSI¥,BETAPK,Q,NEC
COXP¥CN /CUT/ THTAR,GAMMAC,LES,A,PHID,GAMMAS,EC,PHIOC,PHIOS
REAI OMEGAL,CMEGAU,XYNRML,ZNRFAL,PSIC,SIGMAC,
*RIMCYH, RINC5,RIMC6, THTARC, THTAW,PI,PS1IP,PSIPK,PSIN, BETAPK,C
INTIGER MCMFEGA,ISTEPS,NZ,NBC

INTEIGER NZZ (10),ITITLE (20)

COORDINITE SYSTEMS USED:

1. TEE S—-E-V COORDINATE SYSTEN
THIS IS THE SOUTH-EAST-VERIICAL CCCRDINATE SYSTEM
¥HICH IS ALIGNED WITH THE EAETH.
2. TEE F-G-ES COORDINATE SYSTEN
THIS CCORDINATE SYSTEM IS ALIGNED 50 THAT
THE ES AXIS POINTS TO THE CEXTER CF THE SUN.
TEE X-Y-7 CCCRCINATE SYSTEY
THIS CCORDINATE SYSTEMN IS ALIGNED SO THAT
THE 2 AYIS PASSES THROUGH TBE CENTER OF
TdE HEFISEHERE AKD THE PCIKT Q ON THE
RECEIVER AND THE SUN LIES IN THE XZ PLANE.
4. TEE XR-YR-ZR COORDINATE SYSTEM
THIS CCCELINATE SYSTEM IS ALIGNED SO THAT
THE ZR AXIS IS THE RECEIVER AXIS C‘ SYMMETRY.
5. TEE D-F-A CCCRDINATE SYSTEN
THIS CCCRUINATE SYSTEY IS ALIGNRED SC THAT
THAE A AXIS IS THE AXIS OF SYMMETKRY OF THE DISH.
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CONTINNE
INPUT VITIAELES

A. ROTITION ANGLE VAKIAELES
PHIFD, PSIRD = THE RCTATION ANGLES, IN DEGREES, BETWEEN THE
X=Y-Z AND XP~-YR-ZR COORLINATE SYSTEMS
PP51D, DPHILC = THE RCTATION ANGLES, IX DEGREES, PETWEEN THE
F-G—-ES AND XR-YR~ZE COORDINATE SYSTEMS
ED, AD = TEE ELEVATICN ARGLE AKD AZINXUTHAL ANGLE,
EETWEEN THE S-E-V ANL F-G-ES CCORDINATE SYSTEMS
GAMIEAD, PHIDD = THE ROTATION AKGIES, IN [CEGKEES,
BETREEN THE S-E-V ANLC LC-M-2
CCORDINATE SYSTENS
THTIED = ALTITUDINAL ANGLE, IN DEGREES, EETWKEEN
TEE D-M-A AND X-Y-Z CCORDINAIE SYSTEMS

B. CTHER IKPUT1 VARIABLES
DPHIRD = TEF AMOUNT EHIR IS INCREMEKTEL IN
TFE PHIR-1O0CP (READ 1K)
ISTIPS = TEE NUMEER OF INTERVALS USED IN
TEE CMEGA-INTEGRATICN
(LSING SIMPSON'S RULE)
NZZ = NUEEFR OF TIMES 2 IS INCFEEENTED (EEAD IN)
REFC = THF BEFLECTION COEFPICIENT
SIGEAD = TFE SUN CONE HALF-AXNGIE
SPEFIR = TFE FINAL VALUE OF FHBIR (REAL IN)
STPEIR = TFEF SIARTING VALUE CF BHIR (REAL IN)
ZSTPRT = TEE INITIAL VALUE OF 2 (REAL IN)
ZSTCP = TEE FINAL VALUE OF 2 (EF=iD IN)

noanNnanNnnOonNnAAncOonNnOanNOOo0OnNnNOOnOn0nnnO

CCNIINDE

INTERNAI VARIAELES
ALPBA = THE ANGLE BETREEN THE X-AXIS AND TRBE
NOREAL IC THE RECEIVER
COEFF1, COEFFz = USED TC CALCULATE EHIO
CONST = A CONSTANT USED IN THE CONCENTRATIOK FCRMULA
DPSI, IPHI = LPSIL, AND LCPHID IN KALTANS
DP5IC, DPHIC = TBE COSINES OF DPSI AND DEHI
DPSIS, DPHIS = TEE SINES OF DPSI ANLC DPEI
DZ = TEE ANCUNT Z IS INCREMEKTED EACH TINME THE
C-10CP IS CCHPIETEL
LZ DEPEXKLS CN ZSTART, ZSTOF, AND NZ2Z
COMNIINUE :

sNeNsEeNsNesReNeEaEeReNe)

E, A = ED ANL AD IN RADIANS

EC = TEE CCSIKE CF E

ES = TEE SIKE OF E )

GAMBA, PHIL = GAMMAL ANL PHIDD IN RADIANS
GANMAC, PHIDC = THE COSINES OF GAFKMA ANLC PHID

s NeNeNeNg)
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GA%"MAS, PHILS = THE SINES OF GAMMA AND PHIL
OMEGAL = THZ I1OWER BOUNL GN OMEGA USED IN INTEGRATION
OMEGAU = TdE LFCPER EOUNI ON OMEGA USED INMN INTEGREATION
PODPC = COS(FEIC-DPHI)
PODPS = SIN(ELIC-DPHKI) ‘
PSI0, IRIO = THE ROTATICN ANGLES EEIWEEN THE SON
CCCEDINATE SYSTEM ANLC THE X-Y-Z COOUDINATE SYSTEYX
THE COSINES OF PSIC AND PHIC
TEE SINES OF PSIC ANL PHIO

PSICC, PHIOC
PSICS, PHIGS
CGKIINUE
PSIRD, PHIEL

TEE FOTATION ANGLES, IN LCEGREES, BETWEEN THE
XR—YR-ZR AND THE X-Y-Z CCCEDINATE SYSTEMS
PSIB, IHIR = ESIKD ANLC FHIRD IN RALIANS
PSIRC, PHIRC = THE COSINES OF PSIF AND PHIR
PSIRS, PHIRS = THE SINES OF PSIR ANL PHIR
Q = THI DISTAKCE FRCM THE CENTER T0 THE PCIKT
REIFE THE RAY STRIKES THE RECEIVER
RINCI (I=1,7) = USED TO COMPUTE THTAZ
SIGMA = SIGYRL IXN RADIANS o ~
SIGMAC, SIGMALSE = THE COSINE AND THE SINE CF SIGMA
THTAE = T3TAEL IN RALCIANS L ‘
THTARC, THTIRES = THE COSINE AND THE SINE CF THTAR

YNEMAL = THAE X-CC¥PCNENT OF THE GUTKARD NORFAL
TC TEE RECEIVEE AT Q '
YKRXAL = TEE Y-CCMPCNENT COF THE OUTWARD NCRMAL
TC TLE RECEIVER AT Q
XYNR¥1I = FECJFCTICN OF THE NORHAL TC THE RECEIVER

INIC THE XY-PLANE
X],YR,ZR = CCMECNENTS OF THE NORMAL IN TERMS OF
XR-YR-ZR CCORDINATE SYSTEM
Z = THI DISTAKCE FROM THE CENTER TO A POINT ON THE
CEMNIRAL AXIS CFTHE RECEIVER
ZNRMAL = THE Z-CCOMPONENT OF THE OUTWARD NORMAL TO
THE BECEIVER AT Q

COXIINOE

OUTPUT VARIAELIES

LI=NOFMEER CF ICOUNCES

Q0 = TIMPORALRY VARIABILE US“D TC PEINT THE VALUE OF Z
SU% = USED TC COMPUTE THE OMEGA INTEGRAL

SUNA = USED 1IC FIND THE TOTAL COCNCENTRATICK (N=1,5)

PEOGRAY COEKSTRANIS
PI=L*ATAN(1.)
BALIAN=FI/ 180.
PIRILF=ATAKZ (1.,0.)

DO 14 ¥¥=1,S




CC 16 Nb=1,100
SU¥ (NK,NM) =0.
16 CCNTINUE
14 CONTINUE

C INPUT VIRIAELES
WRITE(6,20€)
208 FORMAT(/,/4/4+/420%," INPUT',/,/)
REAL(5,197) ITITLE
197 FORPMAT (20 A44)
WRIIE(6,1S€) ITITLE -
REAL(5,199) CESIL,LCPEIL
| WEITE(6,2C2) DPSIT,DPHID
REAL(5,295) SIGMAD,EL,AD
REAL(5,29S) THIARD,GANMAD,PHID
WRITE(6,203) SIGMAD,EL, AD, THTARL, GAMMAL, PHIDD
199 FORPFAT (2F1C. )
299 FORMAT (3F1C.5)

202 FORPMAT (? BCILER-SUN ALIGNMENI PARAMETERS:',/,
* ! DELTA PSI (DPSII) = ',F10.5,/,
* 1 DELTA PHI (DPHIEL) = ',F10.5)
203 FORFAT (/," SUN PARAMETERS:',/,

' SUN CCNE HALF ANGLE (SIGMAD)
' SUN PCSITICH:',/,
ELEVATION (EL)
CISH EARAMCTERS: ', /,
DISH HALP-ANGLE (THTAED)
DISH ALIGNMENT: ',/,

', F10.5,/,

'11:10-5’/1

',F10.5,/,

3 % 3 3 N & *
- - a " w

GAMMAD = ',F10.5,/,
' PHIL = ',F10.5)
REAL(5,399) KEFC,ISTEPS
WRITE(6,204) REFC,ISTEPS
399 FOFPAT (F10.5,15)
204 FORPMAT (/,
| * 0 REFIECTION CONSTANT = ',F1C.5,/,
* 1 1STEPS =1,15, /)
REAI (5, 1) STEHIR,SEPHIR,DPHIKD
WRITE(6,205) STERIR,SEPHIR,DPHIRD
1 FORPMAT (3FE.0)
205 FOEKMAT (
% 0 START PHIR (STPHIR) = V,F5.0,/,
* 1 STOF PHIR (SPPHIR) = ',F5.0,/,
10 CELTA PHIR (DPHIRE) = ',F5.0,/)
RERI(5,2) NZER
FRITE(6,20€) XZER
2 FORPAT (I5)
206 FOERAT (
* 1 NUMBER CF Z-INTERVALS (NZER) =1,15)
LO X I=1,XNZER
RIAD (5,4) nZ2{(I) ,2START (I) ,ZSTGE (I)




WEITE(6,207) 1,822 (1) ,ZSTART (1) ,25T0P (1)
4  FCRMAT(I%,ZF%.3)

207  ECRMAT(® FOR I = Y,15%,/,
* NUMBER OF INCREFMEKTS (N2Z2) =',I15,/,
10 ZSTAR1 = ' ,F5.3,/,
v ZSTCP = ' ,F5.3)
3 CONTINUE

WRINF (6,13C8)
1308 FOFMAT('1 ')

o

C CONVEKSICN FRCK CEGREES T0 RADIANS
DPSI=DPSILARATIAN
CPH1=DPHIL#*RALIAN
PHII=PHIDCLAFALIAN
GANFA=GANYAL*RADIAN
E=FL*RALCIAN
A=2I*RALIAN
SIG}A=SICERL*EADIAN

C

C CALCULATION CF KI¥ ANGLE CONSTANIS
THTIP=THTARD*RADIAN
THT IRC=CCS (TETAR)
CONST=12.*FI1*SIN (. S5*SIGHA) **2
LPS1C=CCS (LPSI)
CPS1S=SIN(LPS1)
CPHIC=CCS (LPEI)
CPH1S=SIN ([FHI)
RI¥C1=SIN (E) *SIN (GAMEA) *COS (A-PHID)-CCS (E) ¥COS (GANMNA)
RINMC2=SIN (GAMEA) *SIN (A~PHID)
RIFC3=COS (E) *SIN (GAMIA) *COS (A—EHID) +SIN (E) *COS (GAMMNA)

C .

C CALCULATION OF TRIG COKNSTAKNTS
PHIIC=CCS (EEIL)
PRILS=SIN (EE1D)
SIGPAS=SIN (SIGMA)
SIGPAC=CCS (SIGMA)
EC=(CS ()
ES=¢IN (E)
GAFPAC=CCS (GAKMA)
GAY FAS=SIN (GAXNA)

C BEGIN LCCP FOF AZIMUTHAL ANGLE (PHIR)
PEIED=STFEIR
JSTC(P=1
IF (DPHIRLC .NE. 0.) JSTOP=(SPEEIR-STPHIR)/DPHIRD+1.01
DO 250 J=1,JS1ICP
EEIR=ERIFC*RADIAN
WEITE (€, 5) PHIRD
S FCRMATI('1',°? PHIR=',F12.3)
‘ PFIRC=CCS (EHIR)




PIIKS=SIK (PHIR)
C
C BEGINKIM; OF 2 LCCP
LC 600 K=1,NZRE
72=ZSTART (K)
IF (K2Z (K) .LE. 1) GO TO 50C0
5001 DZ= (2STOP (K) -ZSTART (K) )/ (NZZ (K) - 1)
5000 NZSTCE=NZZ (K)
LO 30CC N2=1,NZSTOP
CALL PBCILER(Z,FBHIR,PSIEK, ¥R,YR,ZR)
PSIRC=CCS (PS1KL)
PSIRS=SIN(PSIR)
C
C CALCULATION OF PS10
PSICC=CESIC*FSIKC+DPSIS*ESIRS*EHIRC
PSIC=ARCCS (PSICC)
PSICS=SIN(ESIC)
COEFF1=CPSIC*PSIRS*PHIRC-DESIS*ESIKC
COFFF2=PSIRS*PHIRS

C CALCULATION OF FHI1O
IF (2ES (FS10) .GT. 0.0) GO TO 15

10 PEIC=C(.
GC TC 20
15 PHICC=TCPHIC*CCEFF1-DPHIS*COLFF2

PEICS=DPHIS*COEFF1+DFPHIC*COEFE2
PHIC=ATAN2 (PHICS,PHICC)
20 PHICC=COS (PHIO)
PHICS=SIN(EHIO)
C
C CALCULAIION OF THE RECEIVER CONSTANTS
| PODEC=COS (FHIO~DPHI)
| PODES=SIK (EAIO-DPHI)
ZNRMAL=XR* (PSICS*DPSIC*PCDEC+PSICC*DPSIS)
* + YE*PSIOS*PODPS
1 + ZR* (PSICS*DPSIS*ECDPC—PSICC*DPSIC)
XNEF2L=XR* [PSICC*DPSIC*FCDEC-PSICS*DPSIS)
+ YR*PSIOC*PODPS
1 + ZR* (PSICC*DPSIS*PCDPC+PSICS*DPSIC)
YNEMEL=XF*IPSIC*PODPS -~ YR¥PODPC + ZR*DPSIS#*PODPS
XYNRKL=SQRT (1.-ZNRMAL**2)
IF (ABS(XYNRKL) .LT. .0001 .OR. {(AES(XNRMAL) .1T. .0001
1 -ANL. AES(YNRMAL) .LT. .0001)) GO 10 8526
ALPHR=ATAN2 (YNEMAL, XNRMAL)
GC TC 993 :
8526 ALPEA = C.0
C
C CALCULATION OF ACTITIONAI RIM CONSTANTS

993 RIKCU=ESIOC* (PEIOC*BRINMC1-PEIOS*RIMC2) +PSIOS*RINC3 ’
RIMCE=FHEIOS*RIFXC14PHICC*ERIFC2




RIFCE=PSIOS* (PBIOC*PIMC1-PEIOS*RIMC2) -PSIOC*RIMC3
C
C LIMITS }RE GIVEN PY THE CMEGA(I)--
C NOKLGA 1S THE MUMEER OF INTERVALS
IF (SIGMA .LT. PSIO) GG 10 40
45 OMFGAL (1) =ALEHA-PIHALF
OFEGAU (1)=ALEHA+PIHALF
OMEGAL (2) =ALEHA+PIHALT
CFEGAU (2) =ALEFHA+PIHALF*3.
NCFEGA=2
GC 1IC 90
C ELS} DO
40 CMEGA1=AFCOS (SQRT ( (SIGHMAC**2-PSTOC*%2) /PSICS**2) )
OFEGAU (1) =GMEGA1
CFEGAL (1) =-OFEGA1
OMEGAL (2) =EI-OMEGA1
OMEGAD (2) =PI+OMEGA?
NCFEGA=2
c ENDIF :
C
C THE W-IKTEGRATICN AND THE EETA-INTEGRATICN AFE EERPGRMED IN
C SUBROUTINE INTCGKI, SIMESCN'S RULE IS USED ON THE W-INTEGRATICN

90 DO 1(0 MONEGA=1, NOMEGA
CALI INTGKL (SUH)
100 CCNTINUE
CC(r2) =2
3000 Z=2+L7

C END OF INTEGEATICKR-EEGIN PRINT CUT
oC 500 1=1,KZST0P
SUMA=0.
WRITE (€,5C1)CQ (L)
Lo 505 11=1,5
SUR{1,1L1)=SONM(1,11) /CONST*REFC**L1
SUMA=SUMNA + SUM(L,L1)

501 FCRMAT (' C 2=" ,F8.4)
WRITE (€,502)L1,SUM(L,L1)
502 FORX2T (* BOUNCE NUMEER=!
* LI, CONCENTRATION="',F14.4)
505 SUM(L,L1)=0.
500 WRITE(6,503)SUMA
503 FOEMAT (' TOTAL COKCENTRATION=',P14.4,/,/)

600 CCMINUE

250 PHIRD=PHIFLC+CPAIRD
WRITE (6,8343)

8343 FOEMAT('1',/0/0/s" NCRFALI TEEEINATICHN')
STCE
ENI




C¥DECK INIGKL
SUBECUTINE INTIGRIL (SUF)
Ce#+¢ INTGIL PERFCRMS THE OFMEGA ANL EFTAR INTEGRATIONS
C AND (CMPUTES SUNM, WHICH IS RETUENED TO THE
C MEIM FROGEAPF.

C

C*#+*VPITTEIN BY: R.M.ANDERSON, ASSISTELC BY CLINT LCAWSON
C CATHY NORWOCD, AND READ JCHXSTON

C DATE VRITTEN: 06/01,/80

C

C**xEYFLAMATICN CF VARIAFLES:

C BETAL = LOWER LIMIT ON ECTA USED IN THE INTEGRATICN

C BETAMI = MINIFKUM VALUE CF BETA FCUNL WHEN CONSIDERING RIM-CUZICEF
C AND SHALOWING EFFECTS

C BETAMX = MAXIMUM VALUE CF BETA FOUNL WHEN CONSIDERING RIM-CUTCFF
C AND SEADCWING EFPECIS

C BETAPK = THE VALUE CF BETA CORRESFONDING TI0 THE

C MAXIMCUCM VALUE OF PSI FCR A GIVEN VAIUE OF Q

C BETASK = EET21 ¢ EETAU

C BETAT = BETAU - EETAL

C BETAU = UPPEF LIFIT ON EETA USED IN THE INTEGRATION

C BL = TFE LOKER PCOUONI ON BRETA WHEK CCNSIDERING THE RELATICNSHIE
C BEIWEEN EFFTRA, PSIP, AND PSTIH

C BU = TIE UPPER BECUND ON BETA WHEN CCNSIDERING THE RELATICNSHIE
C BEITKEEN EETR, PSIF, AND PSIN :

C CONSTW = A CCXSTANT USED IX THE CFEGA INTEGEATION

C DOMEGA = (CEEGAU - OMEGRL)/ISTEEFS

C ETA, EITA = USEL 10 CCMFUIE PSIF AND PSIH

C NKBC, X¥ = THE NUKEER CF ECUNCES

C ONEGA = THE 2AZINMOTHAL ANGIE FEASURED CLCCKWISE FROY THE X-AXIS
C

C

C

C

C

C

C

C

Cc

C

C

C

C

C

C

C

C

C

PSIM = ANGLE FETWEEN THE KECEIVER AND THE

I1FFT ELCE OF THE SUN CONE IN THE

ELANE CFEGA=CCNSTRANT
PSIP = ANGLE EFETRKEEN THE RECEIVEE AKND THE

FIGHT ELGE CF THE SUN CONE IN THE

FLANE CFEGA=CONETANT
PSIPK = MAXIMUM VALUE OF ESI FCE A GIVEN N AND Q
QSBETA = 0 TIFES THE SINKE OF BETAEK
RHO = USED TC FINLC EETANX TO ASSUEE THAT THE DOT PRODUCI IS >= 0
SB = USED TO CONMPBUTE THE BETA-INTEGEFAL
SUK1 = USEL TC CCEPUTE THE EBETA INTEGRAL
THT AW
THTAZ
THTAZE
TBTAZM
THTAZP

USED T0 CCMPUIE THTAZP
USEL TC FINC THTAZP ANLC TETAZHA

THETIP—-EFFECTIVE, USZD 1IC CCMPUTIE EETAFX

THE ANGLE EETWEEN THE RKRECEIVER ANLC THE LEFT RINM
THE ANGLE EEIWEEN THE RECEIVER AND THE RIGHT RIN

[ ]
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000

RIAL BL({Z),EU(2)
I'TEGER KEETA
CC¥MON /ELCCKA/ MOMEGA,ISTEPS,CMEGAL (2),0MEGAU (2), XYNKRHL,
* AIPHA,NZ,ZNRMAL,PSIOS,PSIOC,SIGMAC,
*# RINCU,HIFCS,RINC6,THTARC, THTAW
CCK4ON JELCCKB/ EIEALF,PI,PSIP,PSIPK,PSIM,BETAFK,Q,NBC
C(M4ON ,CUT, THTAR,GAMMAC,ES,A,PHID,GAMMAS,EC,PHIOC,PHICS
THE W-IMEGRATICN--ISTEPS IS THE NUMEBER OF
INTEGRATION STEPS/INTERVAL
SI%PSON'S RULF IS USED
UFIT=-1.
CCMEGA= (CMEGAD (MCMEGA) —~GMEGAL (MOYEGA)) /ISTEPS
LC 101 1=2,ISTEPS
CMEGA=CMECAL (MCMEGA) + (I-1) *DCMEGA
CHEGAC=CCS (OMEGA)
CONSTR=(2.-UNIT) *CCHEGA
CMEGAS=SIN (OMEGR)
RHO=ATANZ (XYNRFKL*CCS (CHEGA-AIPHA) ,ZNENAL)

CALCULATION OF PSIM,ESIP
ETA=RTANZ (FSTIOS*CNEGAC,FSICC)
BETA=ARCCS (SIGMAC/SQRT(PSICC*#2+ (ESICS*CMEGAC) *%*2))
ESIF=ETB+EETA '
ESIN=FTA-EETR

CALCULATION OF EFFECIIVE RIM ANGLE EARAMETERS
RIBCT=FIMCL*OMEGAC+RINCS*CFEGAS
THTAK=ETAN2 (-RINC7,-RINCE)
THTAZ=THTIARC/SQRT (RIMCH6**Z +RIMCT *#2)
IF (TETAZ .GTI. 1.0) GO TC 101

110 THTAZ= ARCCS (TETAZ)

C¥*** TF YOU WANTI AN ALTERNATE R1¥ SHAPE, REMNCVE THE

C
Cc
C

I

"CY® IN TEE NEXT LINE
CALYI BRIY¥ (OMEGRA,THTAZ,IFIAG)
IF (IFLAG .EC. 1) GO TIC 101
THIAZP= THIAZ+THIAWN
I¥ (1IHTAZP .lE. 0.0) GGC 7TI0 101
1 THIAZN= -THTIAZ+THTIAW
THBTAZM=AMAX1 (0.,THTAZN)
THTIAZF=AMIN1 (THTAZP,EI-THTAZP-FSIP-PSIN)
IF (TETAZP .LF. THTAZE) CO TO 101
112 CGNTIRUE

CALCULAIION OF MINIMUM AND MAXINONM BETA ANL EFFECTIVE EKIM ANGILE
RETAMI,EETAEX RANL THTAZE,RKESPECTIVIELY

EETAMI=0.
1¥ (TRTAZM .1E. 0.G) GC TO 302
301 EETAMI=ATAN2 (SIN(THTAZM) ,CCS (THTAZHN) -Q)
302 EETANI = AMAX1(BETANI,-PIHALF+RHO)
ELSE LC




0onon

LO 370 NFC=1,5
XN=NEC
THTAZE= (2. #XN-1.) * THTAZD+ (XN-1.) # (PSIP+PSIM-EI)
IP ((THTIAZE-THIAZM) .LE. 0.0) GO TO 300
371 EETANX=ATAN2 (SIN (TKTAZE) ,CCS (THTAZE) -Q)
BETAMX=AMIN1(BETAMX,P1,P1HALF+RHO)

CALCULATION OF FETR-FERK AND PSI-PEAK
IP (Q -.GTI. .5) GC 10 305

380 IF (NEC .GT. 1) GC TO 305
304 BETAPK=0.0
BESI1PK=0.0
GO T0 306
ELSE LO
305 CSEETA=SQRBI ( ((2.*XN*C) *%¥2-1.) / ((2. ¥XN) **2~1.))

FETAPK=ARSIN (QSBETA/Q)
PSIPK = 2.*XK*ARSIN(CSEETA)-BETAEK- (XN-1.) *PI

ENCIF
CONSIDEEFATION CF THE RELATIONSHIP EEIWEEN BESIM,ESIP,PSIPK
306 I¥ (PSI¥ .GE. PSIEK) GO TO0 300
303 CALL BLIMIT(B1,EU,NBETA)

TEST INITERVALS CF INTEGRATION FCR EKINM EFFECIS
St¥i=0.
CC 360 MEEIA=1,NBEIA
BETAL=AMAX1(EL (MEETA) ,BETAFT)
BETAU=AMIN1(BU (MBETA) ,BETALKX)
EETAT=EETAU-EETAIL
FETASM=BETAU+BETIAL
. IF (EFIAT .LE¥. 0.0) GO TC 360
352 SE=.5* (BETAT-SIN (BETAT) *COS(BETASHM)) *COS (OMEGA—- ALPHA)
SUMI=SUNM14.5*ZNREAL*SIN (BETAT) *SIN{BETASM) +SB* XYNRML
360 CCHNTINUE
370 SIM{RZ,NEC)=SUN(NZ,NBC)+SUET*CCNSTH
300 C(NTINUE
101 UN11=-0NI1T
BRET UEN

ENL




C*DECK SCIN
C
FUKCTICN SCLN (EETA,PSI)
Cx#+% PUNCTION SCIN COMPUTES BL AND BU USING NEWTON'S METHOL
C .
C#*4PITTEIN BY: R.M.ANDERSON
C*#*#*DATE SRITTEN: 06/01/80
C
C+**EXPLAMTICN CF VARIAELES
C PI = AIAN2(0.,-1.)
C BETA = FIRST CUESS FOR SOLN
C PSI = EETA — (2¢NBC*SIN(Q*SIN(BETA)) + (NBC-1)#PI
C O = VECIOR FFCM CENTER CF DISH 10 PGINT ON THE RECEIVER
C NBC = IOUNCE MNUMEER
C
C

kxkkkkk %
CCHMON JELCCKBy PIHALF,PI,PSIP,PSIPK,PSIM,EETAPK,Q,NBC
2=EETA
E=PSI
I }=NEC
E=B+ (XN-1.) *PI
I¢ 10 I=1,30
C21S=0#*SIN(R)
CILA= (B-Z. *XN*ARSIN (QAS) #+A)/ (1.—2. ¥C*XN*COS (A) /
#* SCRT (1.-CAS*%2))
?=A-TELA
1F (ABS(LELA) .LE. -00001) GC 10 300
11 II (A .1T. 0.0) GO TO 200
12  I® (A .G1. PI) GC 10 200
10 CCNTINUE
KEITE (6,100)
100 FCRMAT(' ITERATION DID NOT CONVERGE')
GC TO 30¢ ,
200 WEITE(6,201)
201 FCRMAT({' JITERATION DIVERGED')
A=0.
300 SCLN=A

KEITURN
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C*DECK LI1MI1
SUEFOUTINE BELINIT(EL,BU,NBETA)
C
RIAL FL(Z),BU(2)
I}TEGEF KEETA
CCMMON /ELCCKB, PIHALF,PI,PSIP,PSIFK,PSIM,BETAPK,C, NBC
C##%% CONSIDERATICN OF THE RELATICNSHIP BETWEEN PSIN,PSIP,PSIPK

C IN CRDER 1C CETERMINE THE BETA-LIMITS CF INTEGRATICN
o

C*#*#*WRITTIN BY: K.F. ANDERSCN, ASSISTED BY CLINT DAWSCN,

C CATHY NORWCCD, AND REAL JOHNSTON

C***DATE WRITTEN: 06/G1/83

C

C¥**EXPLAMATIONK CF VARIAELES:

C BL({2) = AREAY CCNTAININGC LOWER EETA-LIMITS
C BU(2) = AREAY CONTAINING UPPER BETA-LINITS
C NBETA = NUMEEF CF BETA-KEGIONS OVER WHICH TO INTEGRATE
C NBETIA=1 CR 2
C BETA = TBE FIFST GUESS FOR EL(I) CR BU(I) TO BE
C USED IN SUBRCUTINE SCIN
C
Crexdekrsd
C
1t (PSIM .1T. C.0) GO 1TC 320

C
C PSIM >=(

310 IF (ESIEF .1T. PSIPK) GO TIC 315
C

C PSIM >=( AND ESIE>=PSIPK
311 G1=SCRT { (PSIPK-PSIM) / (ESIPK+ (NBC-1) *EI))
BETA=FEETAPK* (1.-G1)
BL (1)=SCLN (BETA, PSIN)
BETA=EETAPK* (1.+G1)
BO(1)=SCLN (BET 2, PSIN)

NBETA=1
GC 1C 350
C
C PSIM>=0 ANC PSIE<ESIEK
315 G1=SCRT ((PSIPK-PSIMN)/ (ESIPK+ (NBC-1)*PI))

G2=S(KT ((PSIFR-PSIP)/ (PSIPK+ (NBC-1)*PI))
BETA=EETAPK* (1.-G1)
BL (1)=SCLN (BETA,PSIN)
BET2= EFTAEK*(1.-G2)
BU (1)=SCLN (BETA,PSIP)
BETA=EETAPK* (1.+G2)
EL(Z)=SCLN (BETA,PSIP)
PETA=EETAPK* (1.+G1)
BU (2)=SCLN (BETA,PSIN)
NEET2=2

GG 1C 350




o]

PSINCO

320 IF (PS1E .GT. PSIPK) GO 10 325

321 IF (ESIP .GT. €.0) GO 1C 323

PSIMCO IND PSIT<=C AND SINGLE BCUNCE

322 IF (NEC .GT. 1) GO TO 3291

390 G1=SQRT ( (PSIP-PSIPK) /(- (NBC*EI+PSIPK)))

G2=SQRT ( (PSIM~-PSIPK) /(- (NBC*PI+PSIPK)))
EETA=BETAPR+ (PI-BETAEK) *G 1

EL (1)=SOLN (BETA,PSIP)

EFETA=BETAPR+ (PI-BETAEK)*G2

ED (1) =SOLN (BETA,PSIN)

NEETA=1

GC TC 350

PSIM<0 IND PSIE<=0 AND MULTIPLE BGUNCE
391 EL (1) =SCLN (0., PSIN)
EU (1)=SOLN (EL(1) ,PSIE)
C1=SCRT( (PSIP-PSIPK) /(- (NBC*EI+PSIPK)))
EFTA=BETAEK+ (PI-BETAEK)*G1
EL (2)=SOLN (BETA,PSIP)
EU{Z)=SCLN (BL(2),PSIF)

NEETA=2
GO 1C 350
PSIA<0 IND 0<=FESIP<=PSIPK
323 FI (1)=0.
IF (NBC .LE. 1) GO TI0 374
373 EL {1)=SOLN (0., PSIN)
374 G1=SCQRT ( (PSIPK-PSIP) / (ESIPK+ (NEC-1)*PI))

EFTA=BETAPK* (1.-G 1)

EU (1)=SOLN (BETA,PSIP)

EETA=BETAPR* (1.4G1)

F1 (Z)=SOLN (BETA,PSIP)

G2=SQRT ( (PSIM-PSIPK) /(- (NBC*PI+PSIPK)))
EETA=BETAPK+ (PI-BETAEK)*G2

EU {2)=SOLN (BETA,PSIHN)

NEETA=2Z
¢C TC 350
PSIM<O IND PSIED>ESIPK
325 EL (1) =C.
IF (NEC .LE. 1) GO TC 37¢€
375 EL (1) =SOLN (0., PSIHM)
376 €1=SCRT { (PSIM-PSIPK) /(- (NBC*PI+PSIPK)))

EETA=BETAPK+ (PI-BETAEK) *G1
EU (1) =SCLN (BEETA,PSIN)
KEETA=1

350 BRITURRKN
ELIL




C*DFCK BCILER
SUPFCUTINE BCILER(Z,PUHIR,PSIR, XR,YR,ZR)
Ce#*% BOILIE SUEECUTINE FOR A CYLINCEEK. BOILER COMPUTES
C XR,YE, ANLC ZR WHICH AFE USED TO CCMPUTE
c THE MORMAL 10 THE RECEIVER
C IN TIE MAIN FRCGRAM.

C

C#**«WRITTEN BY: R.PFM. ANDERSON, CLINT LAWSON,

C CATHY NCRWOCD, AND READ JCHMSICN
C+#**DATE WRITTEN: 0€/01,/83

C

C***EXPLAMATICN CF VARIAELIES
C Z = PCLITICN CF VECIOR ¢ PRCJECTED CNTO THE AXIS OF SYMMETRY

C OF THE FFCEIVER
C XB,YR,2R = CCKPCNENIS OF THE OUHNIT SOURFACE NCRNAL
C

(I ELEZERELIEERREE E

CCMMON /ELCCKB/ EIEALF,PI,BSIP,PSIPK,PSIM,BETAPK,Q,NBC
FIDIUS=%5.938/24.,37.53

C=SORT (RADIUS*#2424%2)

ESIR=ATAKZ (EADIUS, 2)

XE=COS (EEIR)

YE=SIN (FEIF)

ZE=0.

FITURN

ENE




THE CROSBYTON SOLAR POWER PROJECT
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1. GENERAL PROGRAM OVERVIEW

Introduction

The Ratio of Solid Angles (ROSA) code was developed as part of
the Crosbyton Solar Power Project (CSPP) for calculation of
optical power concentrations due to reflection from a spherical
segment mirror. It was developed primarily in support of
Department of Energy Contracts DE-ACO4-76ET20255 and
DE~-ACO04-83AL21557. Detailed derivations and a technical
description of the ROSA code are given in Part I of this report.
The present volume is intended to provide a program users guide

for the ROSA code.

The Ratio of Solid Angles formulation yields an analytical
formula for the solar concentration ratio at a field point, @, on
a receiver surface. The optical power concentration, C, at a
point Q on a receiver is defined as the total normally directed
optical power per unit area received at that point. In the ROSA
code, C is normalized by dividing by the direct normal insolation
incident upon the receiver. The resulting dimensionless quantity

becomes a concentration ratio expressed as "number of suns".

The ROSA method deals directly with a finite sun. The sun’'s size
is expressed in terms of an angular radius, o. Direct sunlight
received at a point is viewed as a collection of rays lying
inside a right circular cone with vertex at the receiver point Q

and vertex angle 2¢c.

The ROSA formula for the concentration ratio, C, at a receiver

point, @, due to reflection from a mirror surface is given by '




+ - gn + + 9
o C(q,b) = 3 -BZ- J J b-di, for b d > O, (1)

fgn
IMn

where,

a = the vector locating a field point Q@ on the receiver

with respect to a convenient coordinate system;

-~

b = the unit outward normal to the receiver at @;

n = the number of times a ray has been reflected on the

mirror before striking the receiver at Qj
0, = 4T sifi (0,/2), the effective solid angle of the sun
as viewed directly from the field point &;
on = the effective angular radius of the sun to be used
for light which reflects n times on the mirror
(for a perfect mirror o,= 0)3;
nﬁn = the apparent solid angle of the sun as viewed in
the mirror from the field point Q@ from light which
has reflected exactly n times;
R = the reflection coefficient of the mirror surface;
0 <R £ 13
and,
-
d = differential solid angle directed toward the apparent

position of the sun as viewed in the mirror;
i.e., the oriented element of surface area on the unit

sphere, with unit outward normal.

The ROSA cdde evaluates this integral.




OVERVIEW OF INPUT PARAMETER REQUIREMENTS

The optical power concentration ratio at a point on a receiver
surface is dependent upon several geometrical and physical
factors. These include the position of the sun, the size and
orientation of the collector, the shape and alignment of the
receiver and the reflection coefficient of the collector. Thus,
several geometrical and physical input parameters are required

for the ROSA code. They include:

1. Geometrical parameters of the collector (bowl).

A spherical segment is used as the standard collector in the
computer model. Normalized units are employed in the model, so
that the spherical segment is taken to have unit radius. The
height of the spherical segment is determined by specifying the
rim angle, 6rs of the bowl.

Bowl orientation parameters are also required. These parameters
are given in terms of a SOUTH-EAST-VERTICAL (S—-E~V) coordinate
system. The tilt angle, ¥, of the boﬁl is measured between the
symmetry axis of the bowl and the VERTICAL axis. The azimuth, ¢ ,
of the lowest point on the rim is also measured in the

S—-E-V coordinate system.

2. Sun positional parameters.

The solar elevation, ED, and the solar azimuth, AD, are specified

in the S-E-V coordinate system.

3. Reciever orientation.

Ideally, the axis of symmetry of the receiver should point
directly towards the center of the sun. Misalignment is accounted
for in terms of the zenith angle, a¥, and the azimuthal angle,
2%, between the receiver axis and the vector from the center of

the bowl to the sun.

100




‘ . Receiver coordinates.

Actual concentration values are computed for points on the
receiver surface. The receiver surface is assumed to be a surface
of revolution. Points on the surface are described in terms of
two input variables, a z—coordinate measured along the axis of
symmetry of the receiver and an azimuthal angle ¢n, measured
about the axis of symmetry of the receiver. A user supplied
subroutine, BOILER, is called to compute the radial distance from
the axis of symmetry to the surface of the receiver. (A
discussion of this subroutine is deferred until later). Normally,
the concentration ratio is computed for several values of z and

% in a given computer run

5. Number of reflections.

This is the maximum number, N, of multiple reflection

contributions to be included in the calculations.

6. Effective sun size .

For a perfect mirror, this parameter is simply the angular
radius, &, of the sun cone. For imperfect mirrors, a set ot
effective angular radii, op, n=1, 2, ..., N, can be specified to

account for stochastic errors in the mirror surface.

7. Reflection coefficient .

The reflection coefficient, R, of the mirror surface is also an

input variable for the program.
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BOILER SUBROUTINE REQUIREMENTS

A user supplied subroutine, BOILER, is required to describe the
receiver surface as a function of distance along the axis of
symmetry of the receiver. The receiver is assumed to be a surface
of revolution. The subroutine receives a value of the distance,
z, and returns the radial distance, @, to surface of the receiver
and the components of the unit outward normal to the surface at z
in the receiver coordinate system. A discussion of this
subroutine, including examples for a receiver in the form of the
frustrum of a right circular cone and a right circular
cylindrical receiver are discussed in the section entitled
SUBROUTINE BOILER.

RIM SUBROUTINE REQUIREMENTS

A spherical segment is taken as the standard bowl shape in the
model and is described by specifying the bowl rim angle, 6r- A
user supplied routine, RIM, is used to describe more general rim
shapes. The section SUBROUTINE RIM discusses an example in which
the standard bowl is cut by two parallel, vertical planes. The
pPlanes are parallel to the VERTICAL-SOUTH coordinate plane and

are symmetrically located on each side of this plane.
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2. PARAMETER DATA

The parameter data cards describe the solar collector (bowl)
constants, receiver alignment constants and sun parameters. The
output of the program gives the solar concentration ratio at
points on the surface of the receiver. These points are
described in terms of an azimuthal angle, ¢g, about the axis of
the receiver and a distance, Zp, measured along the axis of the
receiver.‘ Loops have been provided in the program for
calculations at several (Ig,%g) pairs. The loop parameters are
also described in the following data input summary. These cards

are read only once during a concentration calculation run.
A. Title card (40A2)

ITITLE — Describes receiver type.
B. Boiler—-sun alignment paramaters (2F10.5)

DPSID - aY, angle between the receiver axis and and the
line through the center of the bowl and the
center of the solar disk (degrees).

DPHID - a%®, azimuthal angle measured about the bowl

center , solar disk center line (degrees).

C. Sun parameters (3F10.5)

SIGMAD — Effective sun size (degrees).

ED —~ Elevation angle of the sun (degrees).

AD — Azimuthal angle of the sun (degrees).
6
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D. Bowl parameters (3F10.5)
THTARD - '— Rim angle of the bowl (degrees)
GAMMAD - Tilt angle of the bowl. The angle between

the symmetry axis of the bowl and vertical

- (degrees).

PHIDD — Angle between the lowest point on the bowl
and south (degrees).

E. Reflection coefficient (F10.5)
REFC — Reflection coefficient of the mirror.
F. Omega integration parameter (15)
ISTEPS — Number of intervals to be used in the
Simpson’‘s rule integration of the
concentration ratio integral.

G. Loop parameters for outer calculation loop (3F10.5)

STPHIR — Azimuth of starting point for PHIR angular

sweep around the receiver surface (degrees).

SPPHIR — Azimuth of stopping point for PHIR angular

sweep around the receiver surface (degrees).

DPHIRD — step size for PHIR sweep (degrees).
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H. Parameter for subdivision of receiver axial parameter (I5)

NZRR - Number of subdivisions of the receiver axis
to be used in the concentration calculations.
The concentration profile varies rapidly with
Zp over some regions and slower over other
regions and this parameter permits the user
to vary the distance between calculated points

accordingly.

1. Loop parameters for the inner calculation loop (15,2F5.3)

(This data card must occur NZRR times.)

NZZ — Number of Zg values in the Z loop.
ZSTART - Starting value of ZIR.
ZSTOP ~ Final value of Zg.

)
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3. PROGRAM OUTPUT

This chapter provides a brief description of the ROSA program ‘

output. A portion of the output is also shown, together with a

concentration profile graph.

Physical and Geometrical Parameters

The ROSA program always echo prints the following input data:
A. Boiler title card;

B. Boiler — Sun alignment parameters;

€. Sun Parameters;

D. Solar bowl parameters;

E. Reflection coefficient;

Sample output is shown in table 3.1.

Optical Concentration Output

Concentration ratio values are obtained at points along the
receiver surface. Points on the surface are located by
prescribing pairs of values (Zn,%R), where Ip is measured

along the axis of symmetry of the receiver and ¢r is an

azimuthal angle measured about the receiver axis. The *r
variable is the slower varying variable in the calculations. The

loop structure for the ouput is as follows:

BEGIN PHIR loop
Print PHIR (degrees)
Begin ZR loop
Print ZR
FOR J =1 to S5
PRINT contribution from Jth bounce
NEXT J




Print the total concentration (sum of 5 bounces)

. END IR loop
END PHIR loop

from light that has
the receiver.)

Table 3.1 is shown

(Note: we are only considering contributions
reflected five times or less before striking
Sample output corresponding the the imput in
in Table 3.2.

1t should be noted that normalized units are used in the ROSA

code. The radius of the bowl is taken to be unity, so that
necessarily O € ZR £ 1. The output values are also normalized.
The input solar intensity, I, at the aperture plane is an overall

scale factor and all concentration results are given in "number

of suns", i.e. I = 1.

10
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Table 3.1

BOILER SHAPE: CYLINDER

BOILER-SUN ALIGNMENT PARAMETERS:

DELTA PSI (DPSID)
DELTA PHI (DPHID)

SUN PARAMETERS:

SUN CONE HALF ANGLE (SIGMAD)

SUN POSITION:
ELEVATION (ED)
AZIMUTH (AD)

DISH PARAMETERS:
DISH HALF-ANGLE (THTARD)
DISH ALIGNMENT:
GAMMAD
PHID

REFLECTION CONSTANT
ISTEPS

START PHIR (STPHIR)
STOP PHIR (SPPHIR)
DELTA PHIR (DPHIRD"

NUMBER OF Z—INTERVALS (NZRR)
NUMBER OF INCREMENTS (NZZ)

ZSTART
ZSTOP

11
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Echo Print of Input parameters

e °
o o

0.50000

30. 00000
0.0
60.00000

15.00000
0.0

0.88000
a0

100

0.500
0.995




Table 3.2 Sample Concentration ratio output

PHIR =

7=
BOUNCE
BOUNCE
BOUNCE
BOUNCE
BOUNCE
TOTAL

BOUNCE
BDUNCE
BOUNCE
BOUNCE
BOUNCE

TOTAL

=
BOUNCE
BOUNCE
BOUNCE
BOUNCE
BOUNCE
TOTAL

=
BOUNCE
BOUNCE
BOUNCE
BOUNCE
BOUNCE
TOTAL

0.0
0.5000
NUMBER=1  CONCENTRATION=
NUMBER=2 CONCENTRATION=
NUMBER=3 CONCENTRAT ION=
NUMBER=4 CONCENTRATION=
NUMBER=5 CONCENTRATION=
CONCENTRATION= 0.0
2=  0.5050
NUMBER=1 CONCENTRATION=
NUMBER=2 CONCENTRAT ION=
NUMBER=3 CONCENTRATION=
NUMBER=4 CONCENTRATION=
NUMBER=5 CONCENTRATION=
CONCENTRATION= 0.0
0.5100
NUMBER=1 CONCENTRATION=
NUMBER=2 CONCENTRATION=
NUMBER=3 CONCENTRATION=
NUMBER=4 CONCENTRATION=
NUMBER=5 CONCENTRATION=
CONCENTRATION= 0.0
0.5150
NUMBER=1 CONCENTRATION=
NUMBER=2 CONCENTRATION=
NUMBER=3 CONCENTRATION=
NUMBER=4 CONCENTRATION=
NUMBER=5S CONCENTRATION=
CONCENTRATION= 66.4747
12

109

0.0
0.0
0.0
0.0
0.0

66.4747
0.0
0.0
0.0
0.0




1=
BOUNCE
BOUNCE
BOUNCE
BOUNCE
BOUNCE
TOTAL

=
BOUNCE
BOUNCE
BOUNCE
BOUNCE
BOUNCE
TOTAL

=
BOUNCE
BOUNCE
BOUNCE
BOUNCE
BOUNCE

TOTAL

=
BOUNCE
BOUNCE
BOUNCE
BOUNCE
BOUNCE
TOTAL

0.5200
NUMBER=1 CONCENTRAT I10N=
NUMBER=2 CONCENTRAT 10N=
NUMBER=3 CONCENTRATION=
NUMBER=4 CONCENTRATION=
NUMBER=5 CONCENTRAT 10N=
CONCENTRATION= 185.9003
0.5250
NUMBER=1 CONCENTRAT ION=
NUMBER=2 CONCENTRATION=
NUMBER=3 CONCENTRAT10N=
NUMBER=4 CONCENTRATION=
NUMBER=5 CONCENTRATION=
CONCENTRATION= 296.1956
0.5300
NUMBER=1 CONCENTRATION=
NUMBER=2 CONCENTRATION=
NUMBER=3 CONCENTRATION=
NUMBER=4 CONCENTRATION=
NUMBER=35 CONCENTRATION=
CONCENTRATION= 381.19219
0.5350
NUMBER=1 CONCENTRATION=
NUMBER=2 CONCENTRATION= -
NUMBER=3 CONCENTRATION=
NUMBER=4 CONCENTRATION=
NUMBER=35 CONCENTRATION=
CONCENTRATION= 399.5920

13
110

185. 9003
0.0
0.0
0.0
0.0

296. 1954
0.0
0.0
0.0
0.0

381.1919
0.0
0.0
0.0.
0.0

399.5720
0.0
0.0
0.0
0.0
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4. BOILER SUBROUTINE

Introduction

The ROSA code is sufficiently general to permit any convex
surface of revolution for the receiver/boiler surface. However,
this requires that a BOILER subroutine be provided by the user.
The formulas necessary for this routine are derived in Chapter 3,
Part 1 of this report. In this chapter, we provide the
ingredients for building the subroutine and give examples for a

cylinder and a cone.

Subroutine Outline

The routine assumes that the receiver surface is described in the
form

r = (), (IV-1)
where Z is measured along the axis of the receiver (with Z £ 0)
and r is the perpendicular distance from the axis of the
receiver. Input for the routine includes the value of Z and an
azimuthal angle, PHIR, measured about the axis of the receiver.
These two values determine a field point on the receiver surface.
The subroutine returns the distance ,Q, from the origin of the
reciever codéainate system to the field point, the zenith angle
of the point, and the components of the unit outward normal to

the surface. The routine then becomes:

SUBROUTINE BOILER (Z,PHIR,Q,PSIR,XR,YR,ZR)
REAL Z,PHIRD,Q,PSIR,XR,YR,ZR

F= formula for surface of revolution : r=f(2)
FP= formula for F*(Z)

ZETA = ATAN(FP)

Q=SERT (FX#2+Z*%2)

u

1
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PSIR=ATAN(F /2)

@ r-cosHIR) sCOS(ZETA)
YR=SIN(PHIR) *COS (ZETA)
ZR=-SIN(ZETA)

RETURN

END

For a right circular cylinder, f(Z) = ros a constant and
£°(Z) = 0. Thus, ZETA = 0, and the above fofmulas can be

simplified.

For the frustrum of a cone, f(Z) = (-tan YR)Z, °(Z) = — tan Vg,
where Yp is the angular radius of the éone. Thus, ZETA = - YR

for a cone.
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5. RIM SUBROUTINE

This section presents a iisting of an implementation of a RIM

subroutine corresponding to the rim shape described in Chapter 7,

Part 1 of this report.

[
~
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C*DECK RI1!
SUEFOUTINE RIM (OMEGA,THdTAZ,IFLAG)
C*#+ RIM (ALCULATES THTAZ FOR A DISH TEAT HAS EEEN

C PARTIALLY CUT-CFF BY TWO PLANES RUNNING PARALLEL
C TO TIE C—3 ELANE (SEE D-M-A COGERDINATE SYSTEMN)
C

C***WRITTIN BY: CLINT DAWSON AND CATHY NCHKWCOL
C#+**DATE VRITIEN: (02/01,/84

C

C***EXPLAMTICN CF VARIAELES:

C CMEGA, THTIAZ: SEE MAIN PRCGRAX
C RL1-FI13,R¥1-F¥3,EN1-BN3: ENTRIES OF THE ROTATION MATRIX
C EITWEEN THE D-N-A AND X-Y-2 COCRDINATE SYSTEMS
C RIMCY4-RINC6,FIMNCI10~-RINC15: USED IN CALCULATIONS
C OF RL1,RLZ,EIC.
Cc CAPA: THF A-CGGECINATES OF THE PCINTS RWBHERE
C THE PLARE CUTS TBE SPHERE ‘
Cc CAPD: THE L-COCRDCINATE OF THE LOREST POINT
C WHERE THE FLANE CUIS THE SEHERE
C AMIN: THE MINIMUN CF CAPA(1) ANL CAPA(2)
C THTAFF: THE ARCGCS CF THE ABSOLUTE VALUE CF AMIN
C RM0: 9IHE ECUATICN CF TEE PARAILLEI FPLANES
C 'HICH CUT THE DISH
CCMMON /ELCCKA/ FOMEGA,ISTEFS,CMEGAL (2),0MEGAU (2),XYNREL,
* AIPHA,NZ,ZNKFEAL,PSIOS,PSIOC,SIGHMAC,
* RBIMCU,RIFCS5,KIMC6,THTARC, THTAR
CCMMON /CUT/ THTAR,GAMMAC,ES,A,PHID,GAFrYAS,EC,PHIOC,PHIOS
RIAL CMECA,THTAZ
RIAL RIMXC10,RIMC11,RINC12,KINC13,RINC14,RINC15
RIAL AO,21,AZ,A3,AMIN,CAPA (2),KAD1,K¥0,THTAPR, THTAPC,THTI2PS
RIAL CAEI,EEHI,REHIS,RPHIC,OMECAT
C

I1LAG=0

RIMC10=GAEMAC*ES*CCS (A—PHID) + GAMMAS*EC
BIMC11=-CREEAC*SIN (A-PHID)

RIMC12=GAMMAC*EC*CCS (A-PHID) — GAMMAS*ES
FIMC13=ES*SIN(A-FHID)

EIMC14=C(CS (A-PHIT)

RIMC1E=EC*SIN(A-PHID)

R11=PSICC* (EHIOC*RINC10 + PHIOS*RINC11) + PSIOS*RINC12
EF1=PHICS*EINMC10 - PHIOC*RIMC11

RN1=PSICS#* (FEIOC*RINC10 + PHIOS*RINC11) PSIOCC*RIMC12
RI2=PSICC* (EEIOC*RINMC13 + EBIOS*RINC14) + PSIOS*RIMC15
FF2=PHIOS*EINC13 — PHIOC*RINCI1Y4 '
EF2=PSICS#* (EHICC*RINC13 + FEIOS*RINC1I4) — PSIOC*EINCI5
EI3=RIKCH

EF3=RIMCE

F13=EKINCE
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A(=-COS (1HTAR)
RPO=.5

CPEGAT=T2K (CHMEGA)
A1=RN1-FI14CMEGAT
AI=RM3-RI3*CMEGA1

IF (AV1%%Z+734¢2 _EC. 0.0) GC TC 784
ELSE CCIMTINUE

(aNe}

AZ=RM2-E12*CMEGAT
RICT= (AT4#24A34%2) #1425 (1-FHC*+2)
c —AT*SZEAZARZHENCHA2
IF (RAC1 .1T. 0.0) GO TO 7€4
C ELSE CCMINUE

CIPA (1) =(-A2*A3%RNC + SQRI(RAD1))/ (A1*%2+A3%*2)
CIBA(2)=(-AZ*A3*EMO — SQRT(RAD1))/ (A1%%24+A3%%2)
AFIN=AMIN1(CAPA (1) ,CAPA(2))
IEF (AMAX1{CAPA(1),CAPA(2)) .GE. A0) GG TG 785
WEITE (6,7€€)

786  FCRMAT(' SEF BACK EURNER!')

785 IF (AMIN .GE. AO) GO TO 784

ELSE CCP!PUTE NEW THTAZ

NOO

TETAFE=AFCCS {AES (AMIN))
C1PD=— (AKIN*A3+RM0*A2) /A1
EIBHI=ATAMN2 (FM0,CAPI)

TETAPC =COS (IHTAPR)
TETAPS =SIN(THTAPR)
FEIHIC=CCS (FEEI)
REHIS=SIK (KERI)
TETAZ=RN1*EFEIC#THTAPS + RN2*REHIS*THIAPS — RN3* THTAPC
IF (THTAZ .GT. 1.) GC TO 764
THTAZ=2FKCCS(THIAZ)
GO 1IC 784

794  IILAG=1

784  RITURN
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