ROSA: A COMPUTER MODEL FOR OPTICAL POWER RATIO

 CALCULATIONSBy
Ronald M. Anderson
Wayne T. Ford

July 15,1984

Work Performed Under Contract AC04-83AL21557

Texas Tech University
Lubbock, Texas

Technical Information Center
Office of Scientific and Technical Information
United States Department of Energy

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.
Available from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

Price: Printed Copy A07
Microfiche A01

Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issues of the following publications, which are generally available in most libraries: Energy Research Abstracts (ERA); Government Reports Announcements and Index (GRA and I); Scientific and Technical Abstract Reports (STAR); and publication NTIS-PR-360 available from NTIS at the above address.

THE CROSBYTON SOLAR PDWER PROJECT

ROSA: A COMPUTER MODEL FOR OPTICAL POWER RATIO CALCLIATIONS

Work Performed Under Contract No. DE-ACO4-83AL21557

SUBMITTED TO THE

UNITED STATES DEPARTMENT OF ENERGY
BY

TEXAS TECH UNIVERSITY
LUBBOCK, TEXAS 79409

Ronald M. Anderson and Wayne T. Ford, Principal Investigators

Department of Mathematics
Texas Tech University July 15, 1984

ABSTRACT

The Ratio of Solid Angles (ROSA) computer code was developed as part of the Crosbyton Solar Power Project (CSPP) for calculation of optical power concentrations due to reflection from a spherical segment mirror. It was developed primarily in support of Department of Energy Contracts DE-ACO4-76ET20255 and DE-AC04-83AL21557. This report provides technical information about the ROSA code.

The CSPP is concerned with the development of a technology for producing electric power from steam generated by reflection of the sun's rays from a fixed-mirror solar bowl onto a tracking receiver. In this system, the receiver is cantilevered and pivots about the center of curvature of the mirror. The ROSA code gives optical power concentration ratio profiles at points along the receiver surface.

The ROSA code is written for a spherical segment mirror and the rim angle of the mirror is an input variable. Orientation of the axis of symmetry of the bowl is specified in terms of a vertical-east-north coordinate system. Location of the sun relative to this coordinate system is also an input variable. Shading and rim cutoff effects are automatically included in the computation.

The code permits any convex surface of revolution as a receiver. Normally a cylinder or a cone would be used. For optimum energy capture, the axis of the receiver should lie along the from the center of the sun through the center of the bowl. However, tracking errors can cause misalignement of the reciever axis with this line. The code handles such misalignment in terms of misalignment angle input parameters.

This report consists of two parts, a technical reference manual and a user's guide. The reference manual provides the background material and derivations necessary for the implementation of the code. Computer listings for ROSA are also included in the reference manual.

The user's guide contains an explanation of the input data for the program, special user supplied subroutine requirements, a discussion of the output data, sample output and graphs of sample concentration profiles. Sample BOILER subroutines are given for a right circular cone and a right circular cylinder boiler. A sample RIM subroutine is given for an alternate rim shape.

THE CRDSBYTON SOLAR POWER PROJECT

ROSA: A COMPUTER MODEL FOR DPTICAL POWER RATIO CALCULATIONS

PART 1: Technical Description and Fortran Listing

TABLE OF CONTENTS

ABSTRACT i
TITLE PAGE - PART I iii
LIST OF FIGURES v
LIST OF TABLES. vi
STAFF vii
ROSA TECHNICAL DESCRIPTION - Introduction 1

1. THE RATIO OF SOLID ANGLES FORMLLATION. 4
2. OPTICAL POWER CONCENTRATION FOR SPHERICAL MIRRORS. 14
3. THE SUN-RECEIVER-COLLECTOR GEOMETRY. 40
4. SOLUTION OF STRUCTURE RELATIONS. 50
5. ROSA PROGRAM STRUCTURE 59
6. OPTICAL CONCENTRATION PROFILES 63
7. ALTERNATE RIM SHAPES 73
REFERENCES. 80
APPENDIX A: ROSA COMPUTER LISTING. 81

LIST OF FIGURES

Fiqure
I-1 Element of Area dA on Sun Illuminates Element of area $d A$ on the earth. 6
I-2 Section of Generalized Mirror Illuminates Field Point. 11
II-1 Mirror and Receiver Shape. 16
II-2 The Solid Angle Parameters B and ω. 18
II-3 The Sun Cone 23
11-4 The Geometrical Dependence of β on ψ and θ. 24
II-5 Intersection of Constant w Plane with the Sun Cone 28
II-6 Spherical Triangle Geometry 30
II-7 The Ranges in β_{i} Determined by Range in ψ. 31
II-8 Intersection of Constant ω Plane with Rim of Dish. 34
II-9 Effective Rim Angle for Front Rim Cut-off Effect 35
II-10 Effective Rim Angle for Front Rim Shadowing Effect 36
II-11 Effective Rein Angle for Back-side Rein Effects. 38
III-1 Relationship Between SEV and DMA Coordinate Systems. 43
III-2 Relationship Between SEV and FGe_{s} Coordinate Systems 43
III-3 Relationship Between FGe_{s} and $\mathrm{X}_{R^{\prime}} \mathrm{Y}_{\mathrm{R}} \mathbf{z}_{R}$ Systems 45
III-4 Relationship Between FGe_{5} and $x y z$ Coordinate Systems 45
IV-1 $\psi-\beta$ Curve for $n=1 \quad(q=0.55-0.95,0.99)$ 51
IV-2 $\psi-$ - Curve for $n=2$ ($q=0.90-0.99$). 52
IV-3 $\psi-\beta$ Curve for $n=4$ ($q=0.95-0.995$) 53
IV-4 Ranges of B Determined by Range of ψ 54
VI-1a Optical Power Profile: Cylinder ($1=0$) 65a
VI-1b Optical Power Profile: Cone (I=0) 65b
VI-2a Optical Power Profile: Cylinder ($\mathrm{I}=0, \Delta \psi=.5, \mathrm{PHIR}=0$) 67a
UI-2b Optical Power Profile: Cone (I $=0, \Delta \psi=5, \mathrm{PHIR}=0$). 67b
VI-3a Optical Power Profile: Cylinder ($\mathrm{I}=0, \Delta \psi=.5, \mathrm{PHIR}=90$) 68a
VI-3b Optical Power Profile: Cone (I $=0, \Delta \psi=.5, P H I R=90$) 68b
VI-4a Optical Power Profile: Cylinder ($1=0, \Delta \psi=.5$, PHIR=180). 69a
VI-4b Optical Power Profile: Cone ($I=0, \Delta \psi=.5, P H I R=180$) 69b
VI-5a Optical Power Profile: Cylinder ($\mathrm{I}=15, \mathrm{PHIR}=0$) 70a
VI-5b Optical Power Profile: Cone (I=15,PHIR=0) 70b
VI-6a Optical Power Profile: Cylinder (I=15,PHIR=90). $71 a$
UI-6b Optical Power Profile: Cone (I=15, PHIR=90). 71b

VI-7a Dptical Power Profile: Cylinder (I=15,PHIR=180) 72a
 VI-7b Optical Fower Frofile: Cone(I=15,PHIR=180) 72b
 VII-1 Optical Power Profile: Sliced Dish(I=0,PHIR=0) 77
 VII-2 Optical Power Profile: Sliced Dish(I=0,PHIR=90). . . . 78
 VII-3 Optical Fower Profile: Sliced Dish (I=0,PHIR=180) . . . 79

LIST OF TABLES

Table

V. 1 ROSA SUBROUTINE SUMMARY. 62

STAFF

Ronald M. Anderson and Wayne T. Ford Principal Investigators

John T. White Research Associate

Clint Dawson, Cathy Norwood, and Read Johnston Research Assistants

ROSA TECHNICAL DESCRIPTION

Introduction

The Ratio of Solid Angles (ROSA) computer code was developed as part of the Crosbyton Solar Power Project (CSPP) for calculation of optical power concentrations due to reflection from a spherical segment mirror. It was developed primarily in support of Department of Energy Contracts DE-ACO4-76ET20255 and DE-ACO4-B3AL21557. This report provides technical information about the ROSA code.

This report consists of two parts, a technical reference manual and a user's guide. The reference manual provides the background material and derivations necessary for the implementation of the code. Computer listings ROSA for the code are also included in the reference manual. The user's guide contains an explanation of the input data for the program, requirements for BOILER and RIM subroutines, a discussion of the output data and sample output. Sample BOILER subroutines are given for a right circular cone and a right circular cylinder boiler. A sample RIM subroutine is given for an alternate rim shape.

In the CSPP solar bowl concept, incident solar energy is focused onto a tracking receiver by the spherical segment mirror. The solar focal region of a spherical segment receiver is the frustrum of a cone. The vertex of the cone is at the center of curvature of the mirror. The axis of the cone lies along the line through the center of curvature of the mirror and center of the sun. The vertex angle of the cone is equal to the angular diameter of the sun. The frustrum is one-half the sphere radius in length, extending from the mirror surface half way to the cone vertex.

The tracking receiver is cantilevered and pivots about the center of curvature of the mirror. It is perfectly aligned when its symmetry axis points directly toward the center of the solar disk. For a perfect spherical mirror, the optimal receiver shape would be the frustrum of a cone, with vertex angle equal to the angular diameter of the sun. However, for imperfect mirrors, a cylindrical receiver is nearly as effective and is cheaper to manufacture. Maximum solar energy is captured at noon and, because the mirror is fixed, the power entering the bowl aperture decreases according to the cosine of the inclination angle of the sun langle between the sun and the bowl symmetry axis) at other times during the day.

In order to fully describe the optical power concentration profile along a receiver, it is necessary to consider several geometrical and physical factors. The size of the bowl aperture determines the maximum amount of incident energy available to the system. However, as the inclination angle of the sun increases, shading and vignetting effects are seen on the receiver. In addition, misalignment of the receiver effects the optical power profile. Finally, the shape of the receiver itself must be considered. All of the above complications are effectively handled in the ROSA computer code.

The Ratio of Solid Angles formulation yields an analytical formula for the solar concentration ratio at a field point, Q, on a receiver surface. The result is in the form of a sum of integrals, where the region of integration for each integral is described by a solid angle. Rays strike the receiver after reflecting one or more times from a mirror surface, and the integration regions can be described as the collection of all directions from which reflected rays strike the receiver at Q. This formulation is applicable to concentration calculations for general reflecting surfaces and general receiver shapes.

However, for the solar bowl technology associated with the CSPP, it is sufficient to consider a spherical segment reflecting surface and a receiver/boiler that is a convex surface of revolution. The ROSA code is implemented for such shapes.

The technical reference manual portion of this report consists of several chapters. The first chapter gives a derivation of the model. The results are due to Reichert and Brock [1,2] and yield an integral expression for the concentration ratio at a receiver point due to reflection from an arbitrary reflecting surface. Chapter 2 is devoted to deriving the necessary formulas for evaluation of this concentration ratio integral for the case where the reflecting surface is a segment of a sphere. Multiple reflections, rim cutoff and rim shadowing effects are also accounted for in these derivations. Several coordinate systems are introduced in Chapter 3 in order to account for the geometrical relationships between the sun, collector, and receiver. Chapter 4 discusses the numerical solution of a family of "structure relations" that must be solved in order to evaluate the concentration integral. A description of the ROSA code is presented in Chapter 5 and a complete listing of the code is given in Appendix A. Alternate rim shapes are discussed in Chapter 6.

1. THE RATIO OF SOLID ANGLES FORMULATION

Introduction

The original formulation of the Ratio of Solid Angles Method was due to Reichert [1]. A very complete discussion of the model was given by Brock in his disertation [2]. The material appearing in this chapter follows his presentation very closely and is included in this report for the sake of completeness.

The Solar Model

When viewed from earth, the sun appears as a disc with some distribution of light across its face. The effects of its spherical geometry can be lumped into the intensity distribution over the apparent flat disc. In describing the light from the solar disc, it is useful to take advantage of some of the terminology and concepts of the metrologies of photometry and radiometry. Terms will be defined as used.

Consider a spherical source viewed from a point 0 as illustrated in Figure 1 -1. The radiant exitance, M (emitted power per unit area) of the source will be considered to be uniform,

$$
\begin{equation*}
\mathbf{M}=\frac{\mathbf{P}_{\mathbf{T}}}{\mathbf{A}_{\mathbf{T}}} \tag{I-1}
\end{equation*}
$$

where P_{T} is the total power emitted from the source and A_{T} is the total surface area of the source. The radiance vector, \mathbb{C}, (radiance is power per unit area per steradian), is

$$
\begin{equation*}
\vec{L}=M B\left(\Omega, \theta_{S}, \psi_{s}\right) \vec{n}_{s} \tag{I-2}
\end{equation*}
$$

where $B\left(\Omega, \theta_{5}, \psi_{5}\right)$ is the radiant brightness distribution which in general depends of the position (θ_{s}, ψ_{s}) on the sun and the solid
angle Ω. The usual radiance that occurs in radiometry is

$$
\begin{equation*}
L=\vec{L} \cdot \vec{e}_{\Omega E} \tag{I-3}
\end{equation*}
$$

where $\overrightarrow{E N E}_{\Omega E}$ is the unit vector in the direction of the observer. If the solid angle emission characteristic is uniform everywhere on the source (isotropic) then

$$
\begin{equation*}
L=\frac{P_{T}}{A_{T}} B(\Omega) \cos \alpha . \tag{I-4}
\end{equation*}
$$

The radiant brightness distribution, $B(\Omega)$, is normalized so that

$$
\iint B(\Omega) \cos \alpha d \Omega=1
$$

If the radiant brightness $B(\Omega)$ is constant for all Ω, then

$$
\begin{equation*}
B(\Omega)=1 / \pi \tag{I-6}
\end{equation*}
$$

and the source is a Lambertian radiator. The radiance L is then proportional to the cosine of the angle, α, between the direction to the observer and the surface normal to the source surface. This is known as Lambert's Law (cosine law) and the source is said to have uniform brightness.

The quantity of interest is actually the power per unit area per unit solid angle (irradiance per steradian) that passes through an element of area on the earth. This element of area is oriented so that its normal lies along the direction to the sun,
\vec{e}_{s}. An element of area on the sun dA illuminates an element of area dA at the earth which subtends the solid angle

$$
\begin{equation*}
\mathrm{d} \Omega=\frac{d A_{-}}{\ell^{\prime 2}} \vec{E}_{5} \cdot \vec{e}_{\Omega 5}=\frac{d A_{-}}{\ell^{\prime 2}} \cos \tilde{\psi} \tag{1-7}
\end{equation*}
$$

when viewed from the sun along direction $\vec{e}_{\Omega E}$ as illustrated in

Figure I-1. Element of Area $d A$ on Sun Illuminates Element of Area $d A$ on the earth.

Figure 1-1. The power received at $d A$ is

$$
\begin{aligned}
d P_{0} & =\vec{L} \cdot \vec{e}_{\Omega E} d \Omega_{A} d A \\
& =\left(-\frac{P_{T}}{A_{T}} B(\Omega) \cos (\alpha)\left(-\frac{d A}{\ell^{\prime 2}} \cos \psi\right) d A\right.
\end{aligned}
$$

The area on the sun dA subtends a solid angle

$$
\begin{aligned}
& d \Omega_{A}=\frac{d A}{\ell^{\prime 2}} \vec{n}_{5} \cdot \vec{e}_{\Omega E} \\
& =-\frac{d A}{\ell^{\prime}} \frac{2}{2} \cos \alpha
\end{aligned}
$$

when viewed from the earth. The power passing through dA becomes

$$
\begin{aligned}
d P_{0} & =\left(-\frac{P_{T}}{A_{T}} B(\Omega) \cos \tilde{\psi}\right)\left(-\frac{d A}{e^{\prime 2}} \cos (\alpha) d A\right. \\
& =\vec{L}_{E} \cdot e_{5} d \Omega_{A} d A
\end{aligned}
$$

where

$$
\begin{equation*}
\vec{L}_{E}=\left(\vec{L}-\vec{n}_{5}\right) \vec{e}_{\Omega_{5}} \tag{1-11}
\end{equation*}
$$

is the received radiance vector at the earth. The irradiance at $d A$ from solid angle $d \Omega_{A}$ is

$$
\begin{equation*}
\frac{d P_{a}}{d A}=\vec{L}_{E} \cdot \vec{e}_{s} d \Omega_{A} \tag{I-12}
\end{equation*}
$$

The total irradiance from the entire sun is

$$
\begin{equation*}
I_{0}=\iint_{\Omega S} \vec{L}_{E} \cdot \vec{e}_{S} d \Omega_{A} \tag{I-13}
\end{equation*}
$$

$$
=\int_{0}^{0} \int_{0}^{2 \pi} \frac{P_{T}}{A_{T}} B(\omega, \psi) \cos \psi \sin \psi d \omega d \psi
$$

For an isotropic Lambertian source, $B(\Omega)=1 / \pi$ and

$$
\begin{equation*}
I_{0}=\frac{P_{T}}{A_{T}} \sin ^{2} \sigma \tag{1-14}
\end{equation*}
$$

The incident radiance I (irradiance per solid angle) can be written as

$$
\begin{equation*}
I=-\frac{I_{0}}{\pi \theta_{i n}^{2} \sigma} \cos \psi \tag{I-15}
\end{equation*}
$$

where

$$
0 \leq \tilde{\psi} \leq \sigma
$$

The radiance of the source in this case is

$$
\begin{equation*}
L=\frac{--I_{a^{2}}}{\pi \sin ^{2}} \cos \alpha \tag{I-16}
\end{equation*}
$$

It is interesting to note that when the source is Lambertian (follows the cosine law) it produces an incident radiance vector
C_{E} which produces an incident radiance that follows a cosine law at the point of incidence. Emission and reception are isotropic in the same sense.

Few sources are truly Lambertian and the sun is no exception. At optical wavelengths, the sun appears slightly less bright at the limbs, an effect called limb-darkening. (It is interesting to note that at much longer wavelengths, this effect is reversed and limb-brightening occurs.) In such a case, the incident radiance I becomes

$$
\begin{equation*}
I=\frac{I_{0} B(\tilde{\psi}) \cos \tilde{\psi}}{2 \pi \int_{0}^{\sigma} B(\tilde{\psi}) \cos \tilde{\psi} \sin \tilde{\psi} d \tilde{\psi}} \tag{I-17}
\end{equation*}
$$

since $B(\Omega)$ depends only on $\tilde{\psi}$ for $1 i m b-d a r k e n i n g$ effects. However, the limb-darkening effects are slight, so considering the sun to be a Lambertian source is a useful model. Since the sun is so far away, σ is small ($\sigma \simeq 0.267^{\circ}$) so that

$$
\begin{equation*}
\cos \tilde{\psi}=1-\frac{1}{2} \sin ^{2} \psi>1-\frac{1}{2} \sigma^{2} a 1 \tag{1-18}
\end{equation*}
$$

In this case, the incident radiance can be modeled as

$$
\begin{equation*}
I=-\frac{I}{\Omega_{s}} \tag{I-19}
\end{equation*}
$$

where

$$
\begin{aligned}
\Omega_{5} & =\int_{0}^{\pi} \int_{0}^{2 \pi} \sin \tilde{\psi} d \omega d \tilde{\psi} \\
& =4 \pi \sin ^{2}(\sigma / 2)
\end{aligned}
$$

$$
(1-20)
$$

Eq. 1-19 is the constant irradiance for solid angle model for the sun.

The solar model for the radiance given by Eq. (1-19) will now be used to obtain the general expression for the optical power concentration. However, it is only used for convenience and it will be shown how it can be replaced by the general model of Eq. (1-17). The results displayed in Chapter II are based on the model of Eq. (I-19) simply because the limb-darkening effects are so small.

Generalized Optical Power Concentration

The optical power concentration, C, at a point on a receiver in a collector system is defined to be the ratio of the total optical power per unit area (irradiance) received at that point to the direct irradiance at that point. The direct irradiance is that optical power per unit area (normal to the earth-sun line) received by the collector aperture. If an area ΔA_{R} at a receiver point is illuminated by the area ΔA_{A} in the aperture plane then the total power received at ΔA_{R} is

$$
I_{o} \Delta A_{A}
$$

where I_{0} is the direct irradiance in the aperture plane. The total irradiance at the receiver point is

$$
I_{0} \Delta A_{A} / \Delta A_{R},
$$

so that the concentration is

$$
\begin{equation*}
C=-\frac{I_{0} \Delta_{A_{A}}^{\prime} \Delta A_{R}}{I_{0}}=\frac{\Delta A_{A}}{\Delta A_{R}} \tag{1-21}
\end{equation*}
$$

The concentration is simply a ratio of areas, but ΔA_{R} depends not only on ΔA_{A} and the location of the receiver point, but also on the shape of the collector mirror. To carry this method of analysis further requires specification of the collector shape, but this approach serves to illustrate the definition of concentration.

Consider an element dA of receiver area with local "outward" surface normal, \dot{B}, located at \mathbf{q} in the neighborhood of a mirror surface as indicated in Fig. I-2. Light from the sun reflected to dA through the differential of solid angle d Ω may be considered to come from a patch of area dS in a plane tangent to the mirror. The image of the entire sun in the same tangent plane subtends the solid angle Ω_{5} parametrized above. The differential of irradiance at dA through $d \Omega$ is, therefore,

Figure $I-2$ Section of Generalized mirror Illuminates Field Point.

$$
d I=I d \vec{\Omega} \cdot \vec{b}=-\frac{I_{o}}{\Omega_{s}} d \overrightarrow{\Omega^{\prime}} \cdot \vec{b}
$$

with the requirement that $d \vec{\Omega} \cdot \mathbf{B}>0$ for illumination only on the outward side of dA. The differential of optical concentration at $d A$ is the differential irradiance divided by the input solar intensity, I_{0} :

$$
d C=-\frac{\vec{b} \cdot d \vec{\Omega}}{\Omega_{\mathbf{s}}}
$$

The optical concentration, then, at dA is

$$
c(\vec{q}, \vec{b})=\frac{1}{\Omega_{s}} \iint_{\Omega_{M}} \vec{b} \cdot d \vec{\Omega}, \quad \text { for } \vec{b}_{b} \cdot d \vec{\Omega} \text { > only, (I-24) }
$$

where Ω_{M} is the apparent solid angle of the entire sun as viewed in the mirror. For a concentrating mirror, one finds $\Omega_{M}>\Omega_{s}$.

Light in a differential of solid angle will always consider the reflector to be locally flat; i.e., will reflect repeatedly as if from the local tangent planes. Thus the expression Eq. I-24 may be used in the presence of multiple reflections in the mirror by separating and adding the contributions from light that has reflected n times:

$$
\begin{equation*}
C(\vec{q}, \vec{b})=\sum_{n} R^{n} c_{n}\left(\overrightarrow{q, b} \vec{b}=\frac{1}{\Omega_{s}} \sum_{n} R^{n} \iint_{M n} \vec{b} \cdot d \vec{\Omega}_{M}\right. \tag{1-25}
\end{equation*}
$$

The solid angle $\Omega_{M n}$ is the apparent size of the sun as viewed in the mirror with radiation that has reflected n times. A reflection coefficient R has been included in Eq. I-25 to account for reflective losses. The factor R must be kept inside the integral if one wishes to include angle of incidence effects. Similarly, if the wavelength dependence of the reflectivity is of interest, one must add an integral over $W(\lambda) d \lambda$ to the form shown in Eq. $1-25$, where $W(\lambda)$ is a spectral density weight.

If one wishes to use an effective sun size σ_{n} that depends upon the number of reflections, then Ω_{5} should be expressed:

$$
\Omega_{5 n} \equiv 4 \pi \sin ^{2}\left(\sigma_{n} / 2\right) \text {, }(1-26)
$$

and included inside the summation shown in Eq. I-25. Policies for selecting σ_{n} are discussed in [2].

The next few chapters of this report will be devoted to evaluation of the concentration ratio integral given in Eq. I-25. The discussion will be limited to spherical collectors and receivers which can be described as surfaces of revolution.

2. OPTICAL FOWER CONCENTRATION FOR SPHERICAL SEGMENT MIRRORS

Introduction

The optical power concentration, C, at a point on a receiver is defined to be the total normally directed optical power per unit area received at that point. In the ROSA code, C is normalized by dividing by the direct normal insolation incident upon the receiver. The resulting dimensionless quantity becomes a concentration ratio expressed as "number of suns."

The ROSA method deals directly with a finite sun. The sun's size is expressed in terms of an angular radius, σ. Direct sunlight received at a point is viewed as a collection of rays lying inside a right circular cone with vertex at the receiver point Q and vertex angle $\mathbf{2 \sigma}$.

The ROSA formula for the concentration ratio, C, at a receiver point, Q, due to reflection from a mirror surface is given by the integral

$$
\begin{equation*}
c(\vec{q}, \vec{b})=\sum \frac{B_{n}^{n}}{\Omega_{5 n}} \iint_{\Omega_{M n}} \vec{b} \cdot d \vec{\Omega}, \text { for } \vec{b} \cdot d \vec{\Omega}>0, \tag{II-1}
\end{equation*}
$$

where,
$\mathbf{q} \quad=$ the vector locating a field point Q on the receiver with respect to a convenient coordinate system;
$\vec{b} \quad=$ the unit outward normal to the receiver at $Q ;$
n = the number of times a ray has been reflected on the mirror before striking the receiver at $\mathbf{Q}_{\mathbf{;}}$

$$
\begin{aligned}
\Omega_{s n}= & 4 \pi \sin ^{2}\left(\sigma_{n} / 2\right), \text { the effective solid angle of the sun as } \\
& \text { viewed directly from the field point } Q_{;} \\
\sigma_{n}= & \text { the effective angular radius of the sun to be used for } \\
& \text { light which reflects } n \text { times on the mirror (for a } \\
& \text { perfect mirror } \left.\sigma_{n}=\sigma\right) ; \\
\Omega_{M n}= & \text { the apparent solid angle of the sun as viewed in the } \\
& \text { mirror fron the field point } Q \text { from light which has } \\
& \text { reflectedexactly } n \text { times; } \\
R= & \text { thereflection coefficient of the mirror surface; }
\end{aligned}
$$

and,

$$
\begin{aligned}
d \vec{\Omega}= & \text { differential solid angle directed toward the apparent } \\
& \text { position of the sun as viewed in the mirror; i. e., the } \\
& \text { oriented element of surface area on the unit sphere, } \\
& \text { with unit outward normal. }
\end{aligned}
$$

In order to apply Eq. II-1, a convenient parameterization of the solid angle is required. Thus, the receiver and mirror shapes must be specified. As illustrated in Fig. II-1, the mirror to be studied is a concave hemispherical segment of radius R_{s} and rim angle θ_{R}. The center of curvature of the mirror is at C and the axis of symmetry of the spherical segment is along the direction \vec{A}. The unit vector \vec{A} is directed from C away from the mirror. The rim angle θ_{R} is the zenith angle (measured from the $-\vec{A}$ direction) of the circular aperture rim of the mirror. The aperture radius is $R_{A}=R_{s}$ sin θ_{R}, in units of R_{s}. In the discussion to follow, it is convenient to normalize all units by dividing by the radius of the spherical segment mirror. Thus, the mirror will always be taken to have unit radius of curvature.

Figure II-1 Mirror and Receiver Shape

The receiver to be studied is assumed to be a convex surface of revolution. The symmetry axis of the receiver lies along the unit vector \vec{z}_{R}. The vector $\vec{q}_{\text {, locating }}$ a field point Q on the receiver surface, has origin at C. The unit outward normal to the surface is denoted by \vec{v} and originates at Q. The receiver
is suspended from C and hangs down into the mirror surface. The mirror-receiver geometry is illustrated in Fig. II-2.

A parameterization for the integral given by Eq. II-1 is obtained by introducing a local x, y, z coordinate system with origin at the field point Q. As shown in Fig. II-2, the z axis lies along the 1 ine segment $C Q$ and the positive z direction is directed downward. The directions of x and y will be specified later. The integration is to be carried out over the solid angle $\Omega_{M n}$ - Using spherical coordinates, Eq. II-1 can be parameterized in terms of a zenith angle B measured from the positive z axis and an azimuth ω measured from the positive x axis, so that, $O \leq B \leq \pi$ and $O \leq \omega$ $\leq 2 \pi$. Then

$$
d \vec{\Omega}=\vec{v} d \Omega=\vec{v} \sin \beta d B d \omega .
$$

Thus, Eq. II-1 can be written

$$
\begin{equation*}
c(\vec{q}, \vec{b})=\sum_{n} \frac{B^{n}}{\Omega_{5 n}} \int_{\Omega_{M n}}(\vec{b} \cdot \vec{v}) \sin B d B d \omega, \quad \vec{b} \cdot \vec{v}>0 \tag{II-2}
\end{equation*}
$$

The unit vector \vec{v} designates the direction of a ray which reaches Q after n reflections from the mirror. The vector \vec{v} can be expressed in terms of its components in the $x y z$ coordinate system as

$$
\vec{v}=(\sin \beta \cos \omega, \sin \beta \sin \omega, \cos \beta)
$$

- Figure II-2 The Solid Angle Parameters β and ω

The unit surface normal to the receiver will have components of the form

$$
\vec{b}=\left(b_{x}, b_{y}, b_{z}\right)
$$

so that

$$
\begin{equation*}
\vec{b} \cdot \vec{v}=\left(b_{x} \cos \omega+b_{y} \sin \omega\right) \sin \beta+b_{z} \cos B \text {. } \tag{II-3}
\end{equation*}
$$

Substitution of Eq. II-3 into the integral in Eq. II-2 allows the integral to be expressed as an iterated integral. From a computational standpoint, it is convenient to carry out the integration by first integrating on B, followed by integration on ω. The concentration formula then becomes

$$
c(\vec{q}, \vec{b})=\Sigma-\frac{B_{n}^{n}}{\Omega_{5 n}} c_{n}(\vec{q}, \vec{b}),
$$

where,

$$
\begin{equation*}
C_{n}(\vec{q}, \vec{b})=\int_{\omega} \int_{\beta(\omega)}\left\{\left(b_{x} \cos \omega+b_{y} \sin \omega\right) \sin ^{2} \beta+b_{z} \cos B \sin B\right\} d B d \omega . \tag{II-4}
\end{equation*}
$$

The above integral gives a very simple formula for the concentration ratio at a receiver point. The difficult part of the integration arises in determining the region of integration, i.e. describing the solid angle consisting of all directions from which reflected light reaches the field point Q from the mirror. The complications for a given order of light (fixed n) arise from
(1) the limitations on B and w necessary to insure that $\vec{b} \cdot \vec{V}>0$;
(2) the finite size of the sun;
(3) aperture cut-off effects: vignetting and shading.

The next several sections of this report will be devoted to handling these difficulties.

THE CONDITION $\vec{b} \cdot \vec{v}>0$.

In this section we derive the conditions on ω and β that insure $\vec{b} \cdot \vec{v}>0$. Using Eq. II-3, this condition can be written as

$$
\begin{equation*}
\left(b_{x} \cos \omega+b_{y} \sin \omega\right) \sin \beta+b_{z} \cos \beta>0 \tag{II-5}
\end{equation*}
$$

There are three cases that must be considered.
Case 1 : $\quad b_{z}=0$.

In this case, the tangent plane to the surface at the field point Q contains the z axis of the local coordinate system. Eq. II-S then can be written in the form

$$
\begin{equation*}
\cos (\omega-\alpha)>0 \tag{11-6}
\end{equation*}
$$

where $\cos \alpha=b_{x}$ and $\sin \alpha=b_{y}$, and $\omega \in[0,2 \pi]$.

Case $2: \quad 0<\left|b_{z}\right|<1$.
It is convenient to set $b_{x y}^{2}=b_{x}^{2}+b_{y}^{2}$. Then

$$
b_{x} \cos \omega+b_{y} \sin \omega=b_{x y} \cos (\omega-\alpha)
$$

where, α is defined by the conditions that $b_{x}=b_{x y} \cos \alpha$, and $b_{y}=b_{x y} \sin \alpha$. Eq. II-5 then becomes

$$
b_{x y} \cos (w-\alpha) \sin \beta+b_{z} \cos \beta>0
$$

or,

$$
\begin{equation*}
D(\omega) \cos (\beta-\xi)>0 \tag{II-7}
\end{equation*}
$$

where,

$$
\mathrm{D}^{2}(\omega)=b_{x y}^{2} \cos ^{2}(\omega-\alpha)+b_{z}^{2}, \quad \omega \in[0,2 \pi]
$$

and, ξ is defined by the conditions

$$
D(\omega) \cos \xi=b_{z}, \quad D(\omega) \sin \xi=b_{x y} \cos (\omega-\alpha)
$$

Case $3: \quad\left|b_{z}\right|= \pm 1$.

Eq. II-5 becomes $b_{z} \cos \beta>0$. If $b_{z}=1$, then this condition requires that $0 \leq B \leq \pi / 2$, while if $b_{z}=-1$, then $\pi / 2 \leq B \leq \pi$. If we set $\xi=0$ when $b_{z}=1$ and $\xi=\pi$ when $b_{z}=-1$, then Eq II-7 still applies provided we set $\alpha=0$.

The Structure Relations

The location of the sun is determined by a unit vector, $\mathbf{E}_{\mathbf{S}}$, pointing from C to the geometrical center of the sun. Because the sun is very far away, light from a region on the solar disk very near the center may be considered to come to the dish aperture as a uniform distribution of rays moving in the direction, $-\overrightarrow{e x}_{S}$. Other locations on the solar disk may be specified by a family of unit vectors $\mathbf{e n}_{\mathbf{S}}{ }^{\prime}$, pointing from C toward the solar disk, as illustrated in Fig. II-3. This family of "sun directions" forms a cone with vertex at C with semivertex angle, σ, equal to the angular radius of the sun.

The extension of these directions through toward the mirror defines a cone called the "sun cone." The sun cone is a family of directions locating distant differential sources of solar input power. The direction $\vec{E}_{\mathbf{S}}$ is called the axis of the sun cone. the x^{\prime} and y^{\prime} axes shown in the figure are parallel to x and y, respectively, but pass through C as origin instead of Q. These axes will be of use later.

For any one of the directions \vec{S}_{s}^{\prime} in the sun cone, the angle, B, of the light received at Q may be determined as a function of the angles ψ and θ illustrated in Fig. II-4. This figure illustrates the ray plane for 1 ight that can reach Q from sun direction \vec{S}_{s}^{\prime}; i.e. C, Q, and the differential source on the sun located by
\vec{E}_{S}^{\prime} are coplanar and the ray lies in the plane determined by these three points.

The angle θ is called the "impact zenith" of a ray that first strikes the mirror at a point of impact P and eventually reaches the receiver surface at Q. Note that θ is measured from $\overrightarrow{e g}_{s}^{\prime}$ and that both the value of and the orientation of the ray plane

Figure Il-3 The Sun Cone

Figure II-4 The Geometrical Dependence of β on ψ and θ, shown for $n=2$
depend upon the orientation of $\vec{E}_{S}{ }^{\prime}$ in the sun cone.

The angle ψ is a zenith angle for $-\vec{e}_{S}{ }^{\prime}$ as measured from the z axis through Q. The zenith of the sun cone axis, the angle between z and $\left(-\vec{e}_{5}\right)$, is designated ψ_{O}. The value of ψ in the ray plane depends upon the orientation of \vec{S}_{S}^{\prime} in the sun cone. The parameters ψ and θ are the mechanism for describing the shape of the receiver and the shape of the mirror. The values of ψ at various q determine the shape and location of the receiver surface. The corresponding values of θ are essential to the description of the mirror shape and location. The relationship between these shape parameters and B is given by the "structure relations":

$$
\begin{equation*}
\beta=2 n \theta-\psi-(n-1) \tag{11-8a}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin \theta=q \sin \beta \tag{II-8b}
\end{equation*}
$$

The structure relations are easily deduced from Fig. II-4, drawn for $n=2$. They are obtained by considering the triangle CQP 1 $^{\text {- }}$ Eq. II-Ba is the measure of the angle at the vertex \mathbf{C} for this triangle and Eq. II-8b follows from an application of the law of sines to this triangle. As a convention, if, for any reason, Q and the point of ray impact P lie on opposite sides of the axis
\vec{E}_{S}, then the angle ψ from q to $\left(-_{S}{ }^{\prime}\right.$) is assigned a negative sign. One may easily verify that θ and B remain positive and that Eqs. II-8 are still valid in this situation.

The impact zenith can be eliminated from Eqs. II-8 to produce

$$
\begin{equation*}
B=2 n \operatorname{Sin}^{-1}(q \sin B)-\psi-(n-1) \pi \tag{II-9}
\end{equation*}
$$

This equation plays a central role in determining the limits of integration in the integral appearing in Eq. II-4. A detailed discussion of the solutions of this equation will be given in a later section. Graphs of ψ versus B for various values of q will
also be given. It will be shown that for given values of n and ψ, Eq. 11-9 may have more than one solution, B. With some ray tracing, one finds that, typically, there-are two values of θ (and, hence, two values of B) that contribute light at Q when $\psi>$ O, but only one value of θ (and, hence, one value of B) that contributes when $\psi<0$. A subscript $i=1$, 2 will be attached to B to distinguish the various solutions of Eq. II-9 for given values of ψ and n. Thus, if there are two solutions, B_{1} will denote the smaller and β_{2} will denote the larger.

Effects of Finite Sun Size.

It should be clear from the discussion above that contributions at Q come from a range of values of θ and ψ produced by moving the vector E_{S}^{\prime} throughout the sun cone. Due to this effect, for each ω in Eq. II-4, one may find a range of values of ψ locating sun axes, $\vec{E}_{\mathbf{S}}{ }^{\prime}$, lying in the plane of constant ω. Such a range of values for ψ, when used in Eq. II-9 determines ranges of values for the β. The set union of these ranges of values of the B_{i} is, for the specified ω, the range of B integration required in Eq. II-4 to account for finite sun size. As will be described later, this range of integration may be reduced because of "rim effects."

The range of values of ψ mentioned above is, of course, non-existent if the constant ω plane does not intersect the sun cone. If it does intersect, then the algebraically smallest and largest values of permitted ψ are designated ψ_{-}and ψ_{+}, respectively. Fig. II-5 illustrates a case in which Q lies inside the sun cone. As may be seen in Fig. II-2, by definition, the points C and Q lie on the plane of constant ω (because ω is measured about the CQ line, i.e., about the z axis). Thus, the dashed lines marked by ψ_{-}and ψ_{+}are coplanar with $C Q$ and a ray plane is defined whose contributions will be received at Q as it is located (as in Fig. II-4) by a range of values of ψ from ψ_{-}to $\Psi_{+}{ }^{-}$
$\psi_{ \pm}$are always measured from the z axis. The positive direction is taken to be opposite that of $\overrightarrow{\boldsymbol{v}}$. Thus, in Fig. II-5, $\psi_{-}<0$ and $\Psi_{+}>0$. This will always be the case when the field point Q lies inside the sun cone. If the field point Q lies outside the sun cone and the ω plane intersects the sun cone, ψ_{+}and ψ_{-}will have the same sign. In particular, if $\vec{\forall}$ is directed away from the sun cone, then both will be positive, while if $\overrightarrow{\boldsymbol{V}}$ is directed towards the sun cone, both will be negative.

Figure II-5 The Intersection of a Constant ω Plane with the Sun Cone

The formulas for ψ_{+}and ψ_{-}can be obtained from a detailed consideration of the geometry for the ω plane-sun cone intersection. The analysis is carried out using spherical trigonometry. The appropriate spherical triangle is shown in Fig. II-6. The law of cosines for spherical triangles gives

$$
\cos \sigma_{n}=\cos \psi_{0} \cos \psi_{+}+\sin \psi_{0} \sin \psi_{+} \cos \omega_{0} \quad(I I-10)
$$

Setting

$$
D=\sqrt{\cos ^{2} \psi_{0}+\sin ^{2} \psi_{0} \cos ^{2} \omega}
$$

Eq. II-10 can be rewritten as

$$
\cos \left(\psi_{ \pm}+\eta\right)= \pm\left[\cos \sigma_{n}\right] / D
$$

where,

$$
\eta=\operatorname{Tan}^{-1}\left\{\tan \psi_{0} \cos \omega\right\}, \quad \eta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] .
$$

These results are to be used for all cases with ω for which $(\vec{b}-\vec{v})>0$.

For any ω, once the range $\psi_{-}(w)$ to $\psi_{+}(w)$ has been determined, then the corresponding ranges of β_{i} may be determined from Eq. II-9, as mentioned earlier. The nature of the ranges in B_{i} is illustrated in Fig. II-7. For the positive values illustrated for ψ_{-}and ψ_{+}, two ranges are indicated:
range for $\beta_{1}=\left[\beta_{10}\left(\psi_{-}\right), \beta_{11}\left(\psi_{+}\right)\right]$
range for $\beta_{2}:\left[\beta_{20}\left(\psi_{+}\right), \beta_{21}\left(\psi_{-}\right)\right]$.

Two additional quantities are illustrated in the figure: Bmin and $\beta_{\text {max }}$. These are constraints on the range of B integration imposed by mirror rim effects to be discussed later.

Figure II-6 Spherical Triangle Geometry

Figure 1I-7 The Ranges in β_{i} Determined by Range in ψ

If one defines the quantities:

$$
\begin{align*}
& B_{L_{i}}=\operatorname{Max}\left\{\beta_{\min }(\omega), \beta_{i O}\left(\psi_{ \pm}\right)\right\} \tag{II-12}\\
& B_{\mathrm{Ui}_{i}}=\operatorname{Min}\left\{\beta_{\max }(\omega), \beta_{i 1}\left(\psi_{ \pm}\right)\right\}
\end{align*}
$$

where the top subscript on ψ is intended for $i=1$ and the lower is intended when $i=2$, then Eq. II-4 can be brought to the form:

$$
\begin{equation*}
C_{n}(\vec{q}, \vec{b})=\left.\frac{1}{2} \int \sum_{2}\left[\left(b_{x} \cos \omega+b_{x} \sin \omega\right)\left(\beta-\frac{1}{2} \sin 2 \beta\right)+b_{z} \sin ^{2} \beta\right]\right|_{\mathcal{E}_{L i}} ^{B_{U i}} d \omega \tag{11-13}
\end{equation*}
$$

where the $i^{\text {th }}$ term is to be kept only if $\beta_{U i}>\beta_{L i}$.

The problem has now been reduced to the numerical work required to evaluate the quantities $B_{L i}$ and $B_{U i}$ and, subsequently, to evaluate the integral over w. Further progress requires determination of the range of ω integration.

If the field point Q lies inside the sun cone; i.e., $\sigma \mathbf{Z} \mathcal{F}_{0}$, then there is no restriction on ω in addition to that shown in Eq. II-13. On the other hand, if $\sigma<\mathcal{F}_{0}$, the field point Q lies outside the sun cone and the ω plane may not intersect the sun
 if the ω plane intersects the sun cone, it is possible to limit the required range of ω even more. If Q is outside the sun cone, intersection with the sun cone is possible if and only if D $2 \cos \sigma_{n}$, where D is defined above. Solving this equation for ω yields

$$
\begin{equation*}
\cos ^{2} \omega=-\frac{\cos ^{2} \sigma_{n}-\cos ^{2} \psi_{0}}{\sin ^{2} \psi_{0}} \tag{II-14}
\end{equation*}
$$

This relation determines regions in ω for which the intersection occurs. The set intersection of the set union of these regions with the region defined in Eq. $11-12$ is the required region of intergration.

Rim Angle Effects.

The effect of the dish rim will now be considered. It determines the availability of the mirror support for contributions at the field point Q. This support may be missing due to either cut-off or shading. The constant ω plane, containing the incoming ray $\overrightarrow{\boldsymbol{v}}$, cuts the rim of the dish as shown in Fig. II-8. The dish rim angle in the ω plane can best be expressed as the front-side rim angle, $\theta_{z}{ }^{+}$, and the back-side rim angle, $\theta_{z}{ }^{-}$. Both $\theta_{z}{ }^{+}$and $\theta_{z}{ }^{-}$ are zeniths from the z axis, measured positive in the direction of $\overrightarrow{\boldsymbol{v}}$. When $\boldsymbol{\theta}_{\mathbf{z}}{ }^{+} \leq 0$, the dish is not seen in the $\overrightarrow{\boldsymbol{v}}$ direction and, thus, there is no contribution.

When $0<\theta_{z}^{+}+\psi \leq \pi / 2$ there $i s$ a rim cut-off; part of the mirror support is not present. As shown in Fig. II-9, the effective rim angle, $\theta_{z, e f f}$ describes the "illuminated" region of the dish. The angle ψ shown in Fig. II-9 is measured negative in the direction of $\overrightarrow{\boldsymbol{v}}$, so $\hat{\theta}_{2}^{+}+\psi$ is less than $\theta_{2}{ }^{+}$. This is the edge of the region from which light of order n reflects for the last time and leaves the mirror to strike Q. From the geometry in the figure, it is clear that the effective rim angle for rim cut-off is

$$
\begin{equation*}
\theta_{z, \text { eff }}=\theta_{z}^{+}-(n-1)\left(\pi-2 \theta_{z}^{+}-2 \psi\right) \tag{II-15}
\end{equation*}
$$

For a finite sun, the incoming rays arrive in a band between $\psi_{-} \leq \psi \leq \psi_{+}$. There is a portion of the dish that will be partially cut-off as illustrated in Fig. II-9. This partially cut-off region is small enough that ψ can be approximated as $\left(\psi_{+}+\psi_{-}\right) / 2$ and Eq. II-15 becomes

$$
\begin{equation*}
\theta_{z, \text { eff }}=\theta_{z}^{+}-(n-1)\left(\pi-2 \theta_{z}^{+}-\psi_{+}-\psi_{-}\right) . \tag{11-16}
\end{equation*}
$$

When $\pi / 2<\theta_{z}+\psi \leq \pi$, a portion of the mirror is shaded. This effect is called rim shadowing. As shown in Fig. II-10, θ_{z} ?eff

Figure II-8 The Intersection of a Constant ω Plane with the Rim of the Dish

Figure II-9 The Effective Rim Angle for the Front Rim Cut-off Effect

$\begin{array}{ll}\text { Figure II-10 } & \begin{array}{l}\text { The Effective Rim Angle for the Front Rim } \\ \text { Shadowing Effect }\end{array}\end{array}$
describes the "illuminated" region. Again, there is a portion of the dish that will be partially shaded as illustrated in Fig. II-10. With the same approximation, the effective rim angle for rim shadowing is

$$
\begin{equation*}
\theta_{z, \text { eff }}=\theta_{z}^{+}+n\left(\pi-2 \theta_{z}^{+}-\psi_{+}-\psi_{-}\right) \tag{II-17}
\end{equation*}
$$

The front-side rim effect comes from either the cut-off or the shadowing. Always, the smaller of the values determined by Eqs. II-16 and 17 must be used. The overall front-side effective rim angle is

$$
\begin{equation*}
\theta_{z, e f f}^{+}=\operatorname{Min}\left[\theta_{z}^{+}-(n-1) K, \theta_{z}^{+}+K\right] \tag{II-18}
\end{equation*}
$$

where

$$
K=\pi-2 \theta_{z}^{+}-\psi_{+}-\psi_{-}
$$

The back-side rim angle effect is simpler. $I f-\pi \leq \theta_{z}{ }^{-} \leq 0$, the back-side rim angle does not affect the contribution, because light from this region cannot reach Q. If $0 \leq \theta_{z}^{-} \leq \pi / 2$, the receiver field point Q is outside the dish and some of the reflected rays will be lost. If $\theta_{z}^{-} \leq-\pi$, a portion of the dish will be shaded, as shown in Fig. II-11. The overall result for the back-side becomes

$$
\begin{equation*}
\theta_{z, e f f}^{-}=\operatorname{Max}\left[0, \theta_{z}^{-},-\theta_{z}^{-}-\pi+\psi_{+}-\psi_{-}\right] \tag{II-19}
\end{equation*}
$$

The front-side and back-side rim angle effects place restrictions on the values of B. If θ_{z}^{+},eff $\leq \theta_{z}^{-}$, eff , there is no
limits
of B must satisfy

$$
\sin \left(\pi-B_{\max }\right)=-\frac{\sin \left(B_{\max }-\theta_{z}^{+}, e_{f f}\right)}{q}
$$

and

$$
\begin{equation*}
\sin \left(\pi-B_{\min }\right)=\frac{\sin \left(B_{\min }-\theta_{z, \mathrm{eff}}\right)}{q} \tag{II-21}
\end{equation*}
$$

Figure II-11 The Effective Rein Angle for the Back-side Rein Effects

Solving Eqs. II -20 and 21 for B, one obtains:

$$
B_{\max }(\omega)=\operatorname{Tan}^{-1}\left\{\begin{array}{c}
\sin \theta_{z}^{+}, \mathrm{eff} \tag{II-22}\\
\cos \theta_{z, \mathrm{f} f}^{+}-q
\end{array}\right\}
$$

and

$$
\beta_{m i n}(\omega)=\operatorname{Tan}^{-1}\left\{\begin{array}{c}
\sin \theta_{z}^{-}, \text {eff } \\
\cos \theta_{z, \text { eff }}^{-}-q
\end{array}\right\} \cdot(I I-23)
$$

These are the quantities required in Eq. II-12 to determine the limits of the B integral, $B_{L i}$ and $B U_{i}$. These complete the constraints on the B and ω in Eq. II-13 and the power concentration is obtained by evaluating the integral.

3. THE SUN-RECEIVER-COLLECTOR GEOMETRY

Introduction

The previous sections developed formulas for finding the 1 imits of integration for the ROSA integral given by Eq. II-4. The integration is accomplished by introducing a local xyz coordinate system at the field point Q and using spherical coordinates in this system. The limits of integration are then found by intersecting planes $\omega=$ constant with the sun cone which corresponds to light of order n (light which has reflected n times before striking the field point).

The location of the sun cone relative to the point Q depends upon several factors. These include the position of the sun, the size and orientation of the collector, and the shape and position of the receiver. It is therefore necessary to define additional coordinate systems in order to describe the geometrical relationship between these factors.

The next few sections will be used to define appropriate coordinate systems for describing the sun-collector-receiver geometry. The location of a field point, Q, on the receiver can be described in terms of these coordinate systems. In this way, the concentration calculations can be associated with specified locations on a receiver surface.

The Earth-fixed Coordinate System

This coordinate system is a South-East-Vertical coordinate system. The axes are called S, E, and V, respectively. The origin of this coordinate system is taken to be at C, the center of curvature of the spherical segment mirror.

The Bowl Symmetry Coordinate System

This collector fixed coordinate system has origin at C, and the axes are called D, M, and A. The standard collector is taken to be a segment of a sphere, and the A axis is the symmetry axis of the collector, pointing away from the bowl (see Fig. II-2). Dis oriented such that the lowest point (with respect to the vertical) on the rim of the mirror lies in the UD plane and has positive D component. If A coincides with the V axis, then D is taken to lie along S. The M axis is chosen so that the DMA system forms a right hand coordinate system.

The paramaters γ (the tilt angle) and Φ_{d} (the dip.azimuth) serve to define this system with respect to the SEV coordinate system as shown in Fig. III-1. The Maxis lies in the SE plane. The transition matrix from the SEV system to the DMA system is given by :

$$
[p]_{D M A}=\left[\begin{array}{lcc}
\cos \gamma \cos \Phi_{d} & \cos \gamma \sin \Phi_{d} & -\sin \gamma \tag{III-1}\\
-\sin \Phi_{d} & \cos \Phi_{d} & 0 \\
\sin \gamma \cos \Phi_{d} & \sin \gamma \sin \Phi_{d} & \cos \gamma
\end{array}\right][p]_{\operatorname{SEV}}
$$

The DMA and SEV coordinate systems are identical when $\gamma=0$ and $\Phi_{d}=0$ (The above matrix reduces to the identity.)
This coordinate system will also be used in describing alternate rim shapes. The standard bowl of unit radius is defined as the segment of the unit sphere lying below the plane $A=-\sin \theta_{R}$, where θ_{R} is the rim angle of the bowl.

The Sun Tracking Coordinate System

The sun tracking coordinate system also has its origin at C. Its axes are denoted by F, G, and E_{5}. The positive e_{s} axis points to the center of the sun. The F axis lies in the plane determined by V and e_{s}. The positive F axis is chosen so that the projection of the positive V axis onto the F axis is negative (if the V and e_{s} axis coincide, then F and S are taken to be coincident). G lies in the SE plane. Fig III-2 shows the relationship between these systems in terms of the solar elevation E_{s} and the solar azimuth A_{5}. The alternate azimuth $A_{s}=\pi-A_{5}$ is also used on occasion. The transition matrix between the two systems is given by:

$$
[p]_{F_{G e}}=\left[\begin{array}{lcc}
\sin E_{5} \cos A_{5} & \sin E_{5} \sin A_{5} & -\cos E_{5} \\
-\sin A_{5} & \cos A_{5} & 0 \\
\cos E_{5} \cos A_{5} & \cos E_{5} \sin A_{5} & \left.\sin E_{5}\right]
\end{array}\right] \quad{ }^{[p]_{S E V}} \text { (III-2) }
$$

Figure III-1 The Relationship Between the SEV and DMA
Coordinate Systems

Figure III-2 The Relationship Between the SEV and $\mathrm{FGe}_{\mathrm{S}}$ Coordinate Systems

Receiver Location and Orientation

In order to locate a field point Q on the surface of the receiver and determine the 1 imits $\beta_{\text {min }}(\omega)$ and $\beta_{\text {max }}(\omega)$, it is necessary to discuss the alignment of the receiver. An $x_{R} Y_{R} z_{R}$ coordinate system is fixed in the receiver, and locations on the surface of the receiver are determined by z_{R} and an azimuth ϕ_{R}, measured about the z_{R} axis, positive from x_{R} toward Y_{R}. The azimuth $\Phi_{R}=0$ locates the x_{R} axis and, for a perfectly aligned receiver, x_{R} is chosen to coincide with the F axis of the FGe_{5} coordinate system and the z_{R} axis coincides with the e_{s} axis direction. For a perfectly aligned receiver, the receiver surface generator at $\Phi_{R}=0$ is the one closest to the $-V$ direction, the negative vertical, so that $\Phi_{R}=0$ denotes the bottom (or lowest) side of the receiver. This is only true for perfectly aligned receivers.

Receiver misalignment is described by the rotation angles $\Delta \phi$ and $\Delta \psi$. The rotation is described by a rotation through an angle $\Delta \Phi$ about the $e_{s} a x i s$, followed by a rotation through an angle $\Delta \psi$ about the new Y_{R} axis. The relationship between the FGe_{s} and $x_{R} Y_{R} z_{R}$ coordinate systems is shown in Fig. III-3. The transition matrix between the two systems is given by:

The coordinates of a point Q on the receiver can be found in the sun tracking coordinate system by application of the above transition matrices. In order to relate these coordinates to the local $x y z$ coordinate system, it is convenient to introduce two additional parameters Φ_{0} and ψ_{0}. The angle Φ_{0} is the azimuth of व (the vector locating Q from C) measured positive from F toward 6. The angle ψ_{0} is the angle between \vec{q} and the negative e_{s} axis. The relationship between the $x y z$ and FGes coordinate $_{s}$

Figure III-3 The Relationship Between the FGe_{s} and $x_{R} y_{R} z_{R}$ coordínate systems

Figure III-4 The Relationship Retween the FGes and $X-Y-Z$ coordinate systems
coordinate systems is shown in Fig. III-4. The transition matrix between the two systems is given by

$$
[p]_{x y z}=\left[\begin{array}{clc}
\cos \psi_{0} \cos \Phi_{0} & \cos \psi_{0} \sin \Phi_{0} & \sin \psi_{0} \\
\sin \Phi_{0} & -\cos \Phi_{0} & 0 \\
\sin \psi_{0} \cos \Phi_{0} & \sin \psi_{0} \sin \Phi_{0} & -\cos \psi_{0}
\end{array}\right]\left[\begin{array}{l}
{[p]_{F G e_{5}}}
\end{array}\right.
$$

Location of Field Point in the Sun Tracking System •

It is useful to obtain expressions for ψ_{0} and Φ_{0} in terms of the azimuth, Φ_{R}, of the field point Q and the misalignment parameters $\Delta \psi$ and $\Delta \Phi$. It is simple to write down the components of \vec{q} in the FGe_{5} system and in the $x y z$ system:

$$
[\vec{q}]_{\mathrm{FGe}_{5}}=q\left(\sin \psi_{0} \cos \phi_{0}, \sin \psi_{0} \sin \Phi_{0},-\cos \psi_{0}\right),
$$

(III-5)

$$
[\vec{q}]_{x_{R} Y_{R}{ }_{R}}=q\left(\sin \psi_{R} \sin \phi_{R}, \sin \psi_{R} \sin \phi_{R},-\cos \psi_{R}\right)
$$

The coordinate transformation between these systems, given by Eq-III-3, may be applied to obtain a second representation of \vec{q} in the FGe_{s} coordinate system and the two may then be compared. One obtains:

$$
\psi_{0}=\cos ^{-1}\left\{\cos \psi_{R} \cos \Delta \psi+\sin \psi_{R} \cos \phi_{R} \sin \Delta \psi\right\}
$$

and
(III-6)

$$
\begin{aligned}
& \sin \psi_{0} \sin \Phi_{0}= \\
& \sin \psi_{R} \cos \Phi_{R} \cos \Delta \psi \sin \Delta \psi_{+\sin \psi_{R} \sin \Phi_{R} \cos \Delta \Phi-\cos \psi_{R} \sin \Delta \psi \sin \Delta \phi_{1}},
\end{aligned}
$$

$\sin \psi_{0} \cos \phi_{0}=$
$\sin \psi_{R} \cos \oplus_{R} \cos \Delta \psi \cos \Delta \Phi-\sin \psi_{R} \sin \Phi_{R} \sin \Delta \phi-\cos \psi_{R} \sin \Delta \psi \cos \Delta \phi$

If $\sin \psi_{0}=0$ in the above formula, then Φ_{0} is assigned the value O. Otherwise, Φ_{a} and ψ_{o} are uniquely determined by Eqs. III-6.

Local Coordinates of the Unit Surface Normal .

The components of the unit surface normal, B, in the xyz coordinate system are obtained by manipulations similar to those of the previous section. Writing $B=\left(B_{1}, B_{2}, B_{3}\right)$ in the $x_{R} Y_{R} Z_{R}$ coordinate system, and using the rotation matrices given by Eq. III-3 and III-4, we find that:

$$
\begin{align*}
b_{x} & =B_{1}\left[\cos \psi_{0} \cos \Delta \psi \cos \left(\phi_{0}-\Delta \phi\right)-\sin \psi_{0} \sin \Delta \psi\right] \\
& +B_{2} \cos \Delta \psi \sin \left(\phi_{0}-\Delta()\right. \\
& +B_{3}\left[\cos \psi_{0} \sin \Delta \psi \cos \left(\phi_{0}-\Delta \phi\right)+\sin \psi_{0} \cos \Delta \psi\right], \\
b_{y} & =B_{1} \cos \Delta \psi \sin \left(\phi_{0}-\Delta \phi\right)-B_{2} \cos \left(\phi_{0}-\Delta()\right. \\
& +B_{3} \sin \Delta \psi \sin \left(\phi_{0}-\Delta \phi\right), \tag{III-7}
\end{align*}
$$

$$
\begin{aligned}
b_{z} & =B_{1}\left[\sin \psi_{0} \cos \Delta \psi \cos \left(\Phi_{0}-\Delta \phi\right)+\cos \psi_{0} \sin \Delta \psi\right] \\
& +B_{2} \sin \Delta \psi \sin \left(\Phi_{0}-\Delta \phi\right) \\
& +B_{3}\left[\sin \Psi_{0} \sin \Delta \psi \cos \left(\Phi_{0}-\Delta \phi\right)-\cos \psi_{0} \cos \Delta \psi\right]
\end{aligned}
$$

In order to obtain expressions for the components of B in the $X_{R} V_{R} \mathbf{z}_{R}$ coordinate system, we use the assumption that the receiver surface is described as a surface of revolution, with the z_{R} axis being the axis of symmetry of the receiver. The surface is then described by an expression of the form

$$
r=f\left(z_{R}\right), \quad z_{R} \leq 0
$$

where r denotes the perpendicular distance from the z_{R} axis to the receiver surface. A straightforward calculation then gives the formula

$$
\begin{equation*}
\vec{b}_{\left[x_{R} Y_{R} Z_{R}\right]}=\left(\cos \oplus_{R} \cos 5, \sin \oplus_{R} \cos 5,-\sin 5\right), \tag{III-8}
\end{equation*}
$$

where,

$$
\tan s=f^{\prime}\left(z_{R}\right) \quad \xi \varepsilon(-\pi / 2, \pi / 21
$$

and Φ_{R} denotes the azimuthal angle of the field point in the receiver coordinate system.

4. SOLUTION OF THE STRUCTURE RELATIONS

Introduction

The structure relations arise in determining the $\beta-1 i m i t s$ on the solar concentration integrals. The structure relations were derived in Chapter II and are given by Eq.II-Ba and II-Bb and in combined form by Eq. II-9. They are applied to the integral given by Eq. II-13.

The structure relation has the form

$$
\begin{equation*}
\psi=2 n \sin { }^{-1}(q \sin \beta)-\beta-(n-1) \pi, \tag{IV-1}
\end{equation*}
$$

where $B \in[0, \pi], 0<q \leq 1$, and n is a positive integer. Fig. IV-1 through IV-3 illustrate the relationship between ψ, B, and q for $n=1,2$, and 4. The curves show ψ plotted against B for various values of q.

In the application of the structure relation $I V-1, q, n$, and two values of $\psi, \psi_{ \pm}$, are given, where $-\pi<\psi_{-}<\psi_{+}<\pi_{-}$The problem is to find β-intervals on $[0, \pi]$ such that the inequality

$$
\begin{equation*}
\Psi_{-}<\psi(\beta)<\Psi_{+} \tag{IV-2}
\end{equation*}
$$

is satisfied. A case where two B-intervals exist is illustrated in Fig. IV-4. The number of solution intervals depends upon the values of Ψ_{-}and Ψ_{+-}It should be clear from Fig. IV-4 that the possibility exists for no solution to Eq- IV-2, one solution, or two solutions. The remainder of this chapter is devoted to describing a method for finding these limits numerically.

Figure $I V-1 \quad \Psi-\beta$ curve for $n=1 \quad(\alpha=0.55-0.95,0.99)$

Figure IV-2 $\Psi-\beta$ curve for $n=2(q=0.90-0.99)$

Figure IV-3 $\Psi-\beta$ curve for $n=4$ ($q=0.95-0.995$)

Figure IV-4 The Ranges in B_{i} Determined by Range in ψ

Properties of the v vs B curve

In this section we show analytically that the graphs shown in Figs. $I V-1$ through $I V-3$ are representative of the $\psi v s$ curves given by Eq. IV-1. Differentiation of Eq. IV-1 with respect to β yields

$$
\begin{equation*}
\frac{d \psi}{d \beta}=\frac{2 n q \cos \psi}{\sqrt{1-q^{2} \sin ^{2} B}}-1 \tag{IV-3}
\end{equation*}
$$

We note that at $B=0, d \psi / d B=2 n q-1$, and hence is positive provided $q>1 / 2 n$, while $d \psi / d \beta<0$ for $B>\pi / 2$. Thus, for q > $1 / 2 n, \psi$ must attain a maximum on the interval [0, $\pi / 2]$. Moreover, $d \psi / d \beta$ vanishes only once on the interval [0, $\pi / 2]$ and hence $\psi(B)$ has exactly one maximum and no minimum on this interval. The value of β where this maximum occurs will be denoted by $\beta_{p e a k}$ and is given by the formula

$$
\begin{equation*}
B_{\text {peak }}=\sin ^{-1}\left[\frac{4 n^{2} q^{2}-1}{\left(4 n^{2}-1\right) q^{2}}\right]^{1 / 2} \tag{IV-4}
\end{equation*}
$$

where q must satisfy $1 / 2 n \leq q \leq 1$. The corresponding maximum value of ψ is denoted by ψ peak and is obtained by substituting Bpeak into Eq. IV-1.

The Solution Strategy

In this section we briefly describe the logic involved in solving the inequality given by Eq. IV-2. We assume that ψ_{-}and ψ_{+}are given and that $\Psi_{p e a k}$ has been calculated from Eq. IV-4.
Reference to Fig. IV-4 will be helpful in understanding the various cases. The case when $n=1$ differs slightly from the case $n>1$, and will be treated separately compare Fig. IV-1 and Fig. IV-2).

1. Solutions for $n=1$.
a. If $\Psi_{-} 2 \Psi_{p e a k, ~ t h e n ~ n o ~ s o l u t i o n ~ i n t e r v a l ~ e x i s t s . ~}^{\text {a }}$
b. If $0 \leq \Psi_{-}<\Psi_{\text {peak }} \leq \Psi_{+}$, then a solution interval of of the form [$\left.B_{L}, B_{U}\right]$ exists, where B_{L} and B_{U} are the two solutions to the transcendental equation

$$
\begin{equation*}
2 \sin ^{-1}(q \sin B)-\beta=\psi_{-} . \tag{IV-5}
\end{equation*}
$$

c. If $\Psi_{-} \leq 0<\Psi_{p e a k} \leq \Psi_{+}$, then the solution interval has the form $\left[0, B_{U}\right]$, where B_{U} is the positive solution to Eq. IV-5.
d. If $0 \leq \Psi_{-}<\Psi_{+}<\Psi_{\text {peak, }}$ then two solution intervals exist of the form $\left[B_{L_{1}}, B_{\mathrm{U}_{1}}\right]$, $\left[\mathrm{B}_{\mathrm{L2}}, \mathrm{~B}_{\mathrm{U} 2}\right]$, where $\mathrm{A}_{\mathrm{L} 1}$ and A_{U1} are the smaller and larger of the solutions to

$$
\begin{equation*}
2 \sin ^{-1}(q \sin \beta)-B=\psi_{-} \tag{IV-6}
\end{equation*}
$$

and $B_{L 2}$ and $B_{U 2}$ are the smaller and larger of the solutions to

$$
\begin{equation*}
2 \sin ^{-1}(q \sin \beta)-\beta=\psi_{+} \tag{IV-7}
\end{equation*}
$$

e. If $\psi_{-}<0<\psi_{+}<\psi_{\text {peak, }}$ two solution intevals exist of the form $\left[0, B_{U 1}\right]$ and $\left[B_{L 2}, B_{U 2}\right]$. $B_{U 2}$ is obtained as the positive solution to Eq. IV-6, while $B_{U_{1}}$ and $B_{L 2}$ are the smaller and larger solutions to Eq. IV-7.
f. If $\psi_{-}<\psi_{+}<O_{\text {, }}$ then a single solution interval exists of the form [$\left.B_{L}, B_{U}\right]$, where B_{L} satisfies

$$
\begin{equation*}
2 \sin ^{-1}(q \sin \beta)-\beta=\psi_{+} \tag{10-8}
\end{equation*}
$$

and By satisfies

$$
\begin{equation*}
2 \sin ^{-1}(q \sin \beta)-\beta=\psi_{\ldots} . \tag{IV-9}
\end{equation*}
$$

2. Solutions for $n>1$.
a. If $\Psi_{-} 2 \Psi_{p e a k}$ then no solution interval exists.
b. If $\Psi_{-}<\Psi_{\text {peak }} \leq \Psi_{+}$, then a solution interval of the form•[$\left.B_{L}, B_{U}\right]$ exists, where B_{L} and B_{U} are the smaller and larger solutions to

$$
\begin{equation*}
2 n \sin { }^{-1}(q \sin B)-B-(n-1) \pi=\psi_{-} \tag{IV-10}
\end{equation*}
$$

c. If $\psi_{-}<\psi_{+}<\psi_{\text {peak }}$, then two solution intervals exist of the form $\left[\beta_{L 1}, B_{U 1}\right]$ and $\left[\beta_{L 2}, B_{U 2}\right]$. $\beta_{L 1}$ and $B_{U 2}$ are the smaller and larger of the two solutions to the equation

$$
\begin{equation*}
2 n \sin { }^{-1}(q \sin \beta)-\beta-(n-1) \pi=\psi_{-} \tag{IV-11}
\end{equation*}
$$

while $B_{\mathrm{U} 2}$ and $B_{\text {L1 }}$ are the smaller and larger of the two solutions to

$$
\begin{equation*}
2 n \sin ^{-1}(q \sin B)-\beta-(n-1) \pi=\psi_{+} \tag{IV-12}
\end{equation*}
$$

Finding solutions to the structure equation involves solving the transcendental equation

$$
\begin{equation*}
2 n \sin ^{-1}(q \sin \beta)-B-(n-1) \pi=\psi, \tag{IV-13}
\end{equation*}
$$

where q, n, and ψ are given and β is to be determined. This equation is readily solved by Newton's method provided a sufficiently accurate guess is made for the starting value of the iteration procedure.

Because of the nature of the curve described by Eq. IV-13, a parabolic approximation is used. The approximating parabola is defined to have its vertex at (Bpeak, $\psi_{p e a k \text {) and contain the point }}$ $(0,(n-1) \pi)$. The resulting equation for the parabola is

$$
\begin{equation*}
\psi=\psi_{\text {peak }}-T\left(\beta-\beta_{\text {peak }}\right)^{2} \tag{IV-14}
\end{equation*}
$$

where

$$
\begin{equation*}
T=\left[(n-1) \pi+\psi_{\text {peak }}\right] / \beta_{\text {peak }}^{2} \tag{IV-15}
\end{equation*}
$$

The starting values for the iteration for finding the smaller and larger solutions to Eq. IV-14 are then given by

$$
\begin{equation*}
B=B_{\text {peak }} \pm\left[\left(\psi-\psi_{\text {peak }}\right) / T\right]^{1 / 2} \tag{IV-16}
\end{equation*}
$$

where the + sign is used for the larger solution and the - sign is used for the smaller solution.

5. ROSA PROGRAM STRUCTURE

Introduction

The ROSA code gives the normalized optical power concentration ratio at user specified points on a receiver surface. The calculated values are normalized to units of number of suns. The code also uses normalized dimensions, with the radius of the spherical segment bowl taken to be unity. Physical and geometrical parameters for the program include the solar inclination and size, position of the receiver, receiver alignment, bowl rim angie, and the reflection coefficient the bowl. The receiver shape must be a surface of revolution and must be described in a subroutine named BOILER. Alternate rim shapes can be introduced by providing a RIM subroutine.

Receiver points are specified in terms of a distance, \mathbf{z}_{R}, measured along the axis of symmetry of the receiver and an azimuthal angle, \oplus_{R}, measured about this axis. If the concentration ratio is to be computed for several $\left(z_{R}, \phi_{R}\right)$ pairs the compution is most efficient if the outer loop is on the Φ_{R} variable. The program requires that loop parmeters be input for each of these variables.

The program flow for the ROSA code is given in the next section, together with a short table describing the ROSA subroutines. A complete computer listing is given in Appendix A.

ROSA Calculation Procedure

The calculation procedure which is used by ROSA can be divided into three segments, an initialization segment, a computational segment and an output segment. The procedure is listed below:

BEGIN INITIALIZATION SEGMENT

1. Read Input Variables
A. Boiler title: ITITLE
B. Boiler-sun alignment parameters: DPSID,DPHID
C. Sun parameters:

Sun cone half-angle: SIGMAD
Sun position parameters: elevation (ED), azimuth (AD)
D. Dish parameters:

Dish half-angle: THTARD
Dish alignment parameters: GAMMAD,PHID
E. Reflection coefficient: REFC
F. ISTEPS--number of omega integration steps
G. STPHIR,SPPHIR, DPHIRD--initial and final values of the receiver azimuthal angle PHIR, and the amount to be incremented each time in the PHIR-loop.
H. NZRR--number of reciever axis subintervals to be used. The data in H. below will occur NZRR times.
I. NZZ, ZSTART, ZSTOP-the number of times Z will be incremented in the Q loop, and the initial and final values of Z (this line is read NZRR times).
2. Convert angles from degrees to radians
3. Calculate rim angle constants
4. Calculation rotation matrices
5. Initialization of PHIRD--azimuthal angle, and JSTOP--number of times PHIR loop is to be repeated.
6. Echo print all input values.

```
EEGIN COMPUTATIONAL SEGMENT
    Begin PHIR loop
        Begin NZRR loop
        Initialize Z loop parameters (Z=ZSTART), NQSTOP (number of
        times Z loop is repeated), and DZ (the Z increment)
        Begin Z loop
            CALL BOILER--BOILER subroutine gets }Z\mathrm{ and PHIR and
        returns Q, PSIR, and XR,YR, and ZR--the components of the
        outward normal to the receiver in the XR-YR-ZR coordinate
        system.
        Calculate PSIO and PHIO--the rotation angles between the
        F-G-ES and the X-Y-Z coordinate systems.
    Calculate the components of the unit outward normal to
        the receiver surface in the X-Y-Z coordinate system
        Find OMEGAU and OMEGAL--the omega limits and NOMEGA--the
        number of omega-intervals.
    Begin OMEGA integration loop
        CALL INTGRL - This subroutine computes the
        concentration integral for the given omega-interval.
    END omega interval loop
        END Z loop
    END NZRR loop
    BEGIN OUTPUT SEGMENT
        Begin Z loop
        Print Z
        Begin NBOUNCE loop
        Print contribution from n-th bounce
        Add n-th bounce contribution the total concentration
    END NBOUNCE loop
    Print total concentration
    END Z loop
    END PHIRD loop
    END PROGRAM
```

Table 5.1: ROSA SUBROUTINE SUMMARY

Subroutine Purpose

BLIMIT	Performs the logic for computing the beta integral integration ranges.
BOILER	A user supplied routine for computing distance and angle to a point on a receiver surface and the outward normal to the surface at the point.
INTGRL	Computes the solar concentration integral at a point on the receiver surface.
RIM	An optional user supplied routine for handling special rim shapes.
SOLN	Computes a solution to the structure relation equation by Newton's method.

6. OPTICAL CONCENTRATION PROFILES

Introduction

In previous chapters, we have stressed the dependence of the concentration ratio profiles on several geometrical and physical parameters. This chapter gives a few representitive profiles, in order to illustrate the nature of the results which are obtained from the ROSA code.

Only a few parameters will be varied in these profiles. Basically, only the solar inclination, position of the receiver, and receiver alignment are varied. The mirror rim angle is set at $\theta_{R}=60$ degrees. The receiver shape is taken to be a right circular cylinder, of radius 0.0066 (this is the normalized radius of the cylindrical receiver being used in the CSPP.) The cylinder extends from $Z=0.5$ to $Z=1.0$. The reflectivity of the mirror is set at 0.88 , independent of angle of incidence or wave length. Only power reflected by the mirror is counted, direct radiation on the receiver is ignored. The effective sun size is taken to be $\sigma=0.5$ degrees for all reflected rays.

Location of the center of the sun is accompished by using the inclination angle, I, of the sun relative to the axis of symmetry of the mirror. The optical concentration profiles depend upon I, which, in turn, depends upon time, latitude, and the tilt of the solar bowl with respect to the vertical. The tilt of the mirror axis with respect to the vertical is desribed by the tilt angle, γ, and tilt azimuth Φ_{d}. The location of the sun is described in terms of an azimuth, A, and elevation, E. These parameters are related to I by the formula

$$
\cos I=\left[\cos \gamma \sin E+\sin \gamma \cos E \cos \left(A-\oplus_{d}\right)\right] .(V I-1)
$$

Results for $1=0$

The case of a perfectly aligned receiver when the solar inclination is zero is called the "symnetric case" because the concentration profile is symmetircal about the axis of the receiver. The concentration profile for the symmetric case is shown as a function of Z in Fig. VI-1. The large peak near the top of the receiver is the paraxial peak resulting from rays at small impact angle, θ, tending to focus midway between the mirror surface and its center of curvature. The peak concentration is a sensitive function of σ and tends to infinity as σ tends to zero [5].

There are no multiple bounce contributions in the symmetric case because they are cut off by the 60 degree rim angle. Multiple reflections result from impact angles larger than 60 degrees and the required mirror support is not present for $I=0$.

The legend printed in Fig. VI-1 and in subsquent figures may be translated as follows:

```
PHIR \equiv © }\mp@subsup{\mathbb{R}}{R}{\prime}\mathrm{ , the azimuth for locations on the receiver;
SOLAR ELEVATION = 90 degrees - I
SIGMA \equiv\sigma, effective sun size
DPSI = \DeltaY, the zenith misalignment angle
DPHI = \Delta\varphi, the azimuthal misalignment angle
```

Concentration profiles are also presented for the case where the receiver is the frustrum of a cone. The angular radius, Ψ_{R}, of the cone (half the vertex angle) is set equal to the angular radius of the sun, i.e., $\psi_{R}=0.5$.

Figure VI - la Optical Power Concentration for a Cylindrical Receiver

Figure VI - 1b Optical Power Concentration for a Conical Receiver $\left(\Psi_{R}=0.5^{\circ}\right)$

Concentration profiles on a misaligned receiver for $1=0$ and $=0.5$ degrees are shown in Figs. VI-2, 3 , and 4. These figures show the profiles along the three slices:

$$
\Phi_{\mathrm{R}}=0,90 \text {, and } 180 \text { degrees, respectively. }
$$

Results for $I=15$

Figs. VI-5 through VI-7 illustrate the features of the concentration profile for nonzero inclination angles. Due to 1055 of symmetry with respect to the aperture rim, there is no azimuthal dependence in the concentration profiles.

For $I=15$ degrees the mirror support is 75 degrees at $\Phi_{R}=0$, and peaks due to second and third bounce rays are observed. At $\Phi_{R}=180$ degrees, rim cutoff effects occur.

Figure VI - 2a Optical Power Concentration for a Cylindrical Receiver

Figure VI -3a Optical Power Concentration fo a Cylindrical Receiver

Figure VI - 3b Optical Power Concentration for a Conical Receiver $\left(\Psi_{R}=0.5^{\circ}\right)$

Figure VI - 4a Optical Power Concentration for a Cylindrical Receiver

Figure VI - 4b Optical Power Concentration for a Conical Receiver $\left(\Psi_{R}=0.5^{\circ}\right)$

69-B

Figure VI - 5a Optical Power Concentration for A Cylindrical Receiver

Figure VI - 5b Optical Power Concentration for a Conical Receiver $\left(\Psi_{R}=0.5^{\circ}\right)$

Figure VI - 6a Optical Power Concentration for a Cylindrical

Figure VI - 6b Optical Power Concentration for a Conical
Receiver $\left(\psi_{R}=0.5^{\circ}\right)$ 71-B

Fiọure VI - 7a Optical Power Concentration for a Cylindrical Receiver

Figure VI - 7b Optical Power Concentration for a Conical Receiver $\left(\Psi_{R}=0.5^{\circ}\right)$

7. ALTERNATE RIM SHAPES

Introduction

In all previous derivations, we have assummed that the solar collector was a segment of a sphere. In this chapter, an analysis is carried out to extend the ROSA code to more general rim shapes. In this analysis, the rim is assumed to be expressed in the form

$$
\begin{equation*}
\theta=f(\psi), \tag{VII-1}
\end{equation*}
$$

where θ is the zenith angle of a point on the $r i m$ and ϕ is the azmuthal angle of the point on the rim. The angles are expressed in the bowl centered $D-M-A$ coordinate system, where A is perpendicular to the aperture plane of the bowl and is directed upward. The rim angle θ is measured from the negative A axis and - is measured from the D axis. As an example, $\theta=\theta_{R}=60$ degrees at the Crosbyton site.

Integration for the calculation of the solar concentration is carried out in the local $x-y-z$ coordinate system and rim angles must be calculated in this coordinate system in order to account for rim cutoff and shading. The $D-M-A$ and $x-y-z$ systems are related by a formula of the form

$$
[p]_{x y z}=n[p]_{D M A}
$$

(VII-2)
where [p] DMA represents a point in the $D-M-A$ coordinate system, $[p]_{x y z}$ represents the same point in the $x-y-z$ coordinate system and \cap is a known rotation matrix (\cap is readily computed using the transition matrices of Chapter III.) \cap depends upon the tilt angle of the bowl, the position of the sun, the shape. and orientation of the receiver, the location of a field point on the receiver, and values of the variables of integration in the ROSA code.

Eq. VII-2 can be expressed in component form to yield a system of three equations,

$$
\begin{aligned}
& \sin \theta_{2} \cos \omega=\left(L_{1} \cos \phi+L_{2} \sin \oplus\right) \sin \theta-L_{3} \cos \theta \\
& \sin \theta_{2} \sin \omega=\left(M_{1} \cos \phi+M_{2} \sin \oplus\right) \sin \theta-M_{3} \cos \theta \quad \text { (VII-3) } \\
& \cos \theta_{2}=\left(N_{1} \cos \phi+N_{2} \sin \phi\right) \sin \theta-N_{3} \cos \theta \quad
\end{aligned}
$$

$$
\text { In these equations, } \theta \text { is the unknown rim angle in the local }
$$

$$
x-y-z \text { coordinate system, } \oplus \text { is an unknown azimuthal angle in the }
$$

$$
\text { D-M-A coordinate system and } \theta=f(\otimes) \text { according to Eq. VII-1. } \omega
$$ is an integration variable and $L_{i}, M_{i}, N_{i} \quad i=1,2,3$) are direction cosines relating the $D-M-A$ and $x-y-z$ coordinate systems.

A Special Rim Shape

The above formulas will now be applied to the case where the standard bowl shape is sliced by planes $M= \pm M_{O}$ in the $D-M-A$ coordinate system). Eq. VII-1 then takes the form

$$
\theta=\theta_{0} \text { for }-\Phi_{0} \leq \Phi \leq \Phi_{0} \text { and } \pi-\Phi_{0} \leq \Phi \leq \pi+\Phi_{0}
$$

$$
\theta=\operatorname{Arccos}\left[1-M_{0} \csc 0\right] \quad \text {, elsewhere, }
$$

(VII-4)
where,

$$
\sin \Phi_{0}=M_{0} / \sin \theta_{0}
$$

The equation $\omega=$ constant defines a plane in the $x-y-z$ coordinate system with equation $y=x$ tan ω. In the $D-M-A$ coordinate system, this same plane has equation

$$
M_{1} D+M_{2} M+M_{3} A=\left(L_{1} D+L_{2} M+L_{3} A\right) \tan \omega_{2}
$$

(VII-5)

This plane will intersect the plane $M=M_{O}$ along the 1 ine

$$
\left(M_{1}-L_{1} \tan \omega\right) D+\left(M_{2}^{-L_{2}} \tan \omega\right) M_{0}+\left(M_{3}-L_{3} \tan \omega\right) A=0 . \quad(V I I-6)
$$

If this line intersects the unit sphere (using normalized units), the additional condition

$$
D^{2}+M^{2}+A^{2}=1
$$

(VII-7)
must be satisfied. Simultaneous solution of Eqs. VII-6 and 7 gives

$$
A=\frac{-\left(a_{2} a_{3} M_{0}\right) \pm\left[\left(a_{1}^{2}+a_{3}^{2}\right) a_{1}^{2}\left(1-M_{0}^{2}\right)-\left(a_{1} a_{2}^{2}\right)^{2}\right]^{1 / 2}}{\left(a_{1}^{2}+a_{3}^{2}\right)}
$$

where,

$$
a_{i}=M_{i}-L_{i} \tan \omega, i=1,2,3
$$

D is then calculated from Eq. VII-6.

There are three cases to consider.

1. If the quantity under the radical sign in Eq. VII-8 is negative, then the line of intersection of the ω-plane and the plane $M=M_{0}$ does not intersect the unit sphere and the rim angle in the $D-M-A$ system is given by $\theta=\theta_{0}$.

If A is real in Eq. UII-8, then let θ, $=\operatorname{Arccos} A$.
2. If $\theta \leq \theta_{0}$, then $\theta=\theta_{0}$.
3. if $\theta<\theta_{0}$, then $\theta=\theta_{0}$.

In each of the above cases, θ_{z} can be computed from θ using formulas that were developed previously for a dish with a constant rim angle.

The formulas for the plane $M=-M_{0}$ can be obtained from the above formulas by simply replacing M_{O} by $-M$.

Sample concentration profiles are given in Figs. VII-1 through VII-3.

Figure VII - 1 Optical Power Concentration for a Cylindrical Receiver with an Alternate Rim Shape

Figure VII - 2 Optical Power Concentration for a Cylindrical Receiver with an Alternate Rim Shape

[^0]
REFERENCES

1. Reichert, J. D., "A Strategy for Calculations of Optical Concentration Distributions for Fixed Mirror Systems", Proceedings of the ERDA Solar Workship on Methods for Optical Analysis of Central Receiver Systems, August 10-11, 1977, Houston, Texas, pp. 155-174.
2. Brock, B.C., "Optical Analysis of Spherical Segment Solar Collectors", Ph.D. dissertation, Texas Tech University, Lubbock, Texas, May 1977.
3. Leung, H., "Optical Power Concentrations on Aligned and Misaligned Receivers in Solar Gridiron Power Systens", M.S. thesis, Texas Tech University, Lubbock, Texas, August, 1978.
4. Reichert, J.D., Anderson, R.M., Leung, H., et al, "Crosbyton Solar Power Project Phase 1 Interim Technical Report", The Crosbyton Solar Power Project, Vol. II, Appendix C. Texas Tech University, Lubbock, Texas, February; 1977. ERDA Contract No. E(29-2)-3737.
5. Reichert, J. D., Anderson, R.M., Ford, W.T, et al, "Analytical Dptical Power Concentration Calculations For Reflection For Spherical Mirrors" . Proceedings of the ASME Solar Energy Division Sixth Annual Conference. Las Vegas, Nevada, April 8-12, 1984, pp. 57-63.
6. Reichert, J.D., et al, "Performance and Cost of Solar Power Plants". The Crosbyton Solar Power Project, Vol. VII, Texas Tec University, Lubbock, Texas, November 1, 1981. United States Department of Energy Contract No. DE-ACO4-76ET20255.
```
                                    |OSA CAlCULATICN CODE
```



``` C at a pCint on a meceivef.
```


WRITTEN BY

```
DR. RCNALE M. anderson, eEft. of mathematics
AND
DF. JOHK [. FEICHERT , DEPT. CP ELECTRICAL ENGINEEKING GRALUATE ASSISTANTS: C. NORKOCL, K. JOHNSTON, C. DAWSCN TEXAS TECH UNIVERSITY LUBBOCK, TEXAS JULY 24, 1984
PEAI SUN (1C0,5), QQ(1C0)
REAI ZSTAFT (10), 2STOP(10)
COMTON /BICCKA/ MOMEGA,ISTEPS,CMEGAL (2), OMEGAU(2), XYNRML,
*ALPFA, NZ, 2NPNAL, BSIOS, PSIOC, SIGMAC,
*BIMC4, PIMCE,RIMC6,THTARC, THTAFi
COMNCN /BICCKB/ PIHALF,PI,PSIP,PSIPK,PSIR,BETAPK,Q,NEC
COE ECN /CUT/ THTAR,GAMMAC, ES,A,PHID, GAMMAS, EC, PHIOC, PHIOS
REAI OMEGAL, CMEGAD, XYNRML,ZNRNAL, PSIC, SIGMAC,
* BIMC4, RIMC5, RIMC6,THTAFC, TRTAK,PI,PSIP,PSIPK,PSIM, BETAPK, Q INTEGER MCMEGA,ISTEPS,NZ,NBC
INTEGER NZZ(10), ITITIE(20)
```

C
C

```
COORDINITE SYSTEMS OSED:
1. TEE S-E-Y COORDINATE SYSTEM THIS IS THE SOUTH-EAST-VEBTICAI CCCRDINATE SYSTEM WHICH IS ALIGNED BITH THE EAETH.
2. TEE F-G-ES COORDINATE SYSTEM THIS CCORDINATE SYSTEM IS ALIGNED SO THAT the es axis points to the center cf the sun.
3. TEE X-Y-Z CCORLINATE SYSTE: this cCordinate system is aligned so that the \(Z\) ayis passes through tuf Center of THE HEPISFHERE END THE PCIKT \(Q\) ON THE RECEIVFR AND THE SON LIES IN THE XZ PLANE.
4. TEE XR-YR-ZR COORDINATE SYSTEM tHIS CCCRLINATE SYSTEM IS ALIGNED SO THAT TAE 2R AXIS IS THE RECEIVEF AXIS CG SYMMETRY.
5. TEE D-M-A CCCRDINATE SYSTEM THIS CCCREINATE SYSTEM IS AIIGNED SC THAT the a axis is the axis of symmethy of tee dish.
```

C
Con IINHE
c input vitiaeles
C
ALPGA = THE ADGLf BETREfN TRE X-AXIS AND TbE NORMAL IC T日E RECEIVER
COEFP1, COEFFZ $=$ USED TC CALCOLATE FHIO
CONST $=$ A CONSTANT USED IN THE CONCENTRATION FCRMULA
C DPSI, IPHI = IPSIC, AND IPHID IN FAIIANS
C DPSIC, DPHIC $=$ THE COSIRES OP DPSI AND DEGI
C DPSIS, DPHIS = TEF SINES OF DPSI ANL DPEI
C DZ $=$ TEE AMCONT 2 IS INCREMENTED EACH TIME TBE
Q-IOCP IS CCHPIETEL
CZ DEPERIS ON ZSTART, ZSTOF, AND NZZ
CONIINDE
E, A = ED ANC AD IN RADIANS
EC = TEE CCSIXE CF E
ES = TEE SINE OFE
C GAMBA, PHID = GAMMAL ANC PHIDD IN BADIANS
C GAMMAC, PHIDC = THE COSINES OF GAEMA ANE PHID
C. GAYMAS, PHILS = THE SINES OF GAYMA AND PHIL

C OMEGAL = THE LOKER BOUNE GN OMFGA USED IN INTEGRATLON
C OMEGAU = THE LPPER LOUNI ON OMEGA IISED IN INTEGRITION
C \quad PODPC $=$ COS (FEIC-DPHI)
C PODPS $=$ SIN (EHIC-DPHI)
C PSIO, EPIO = THE ROTATICN ANGLES EEIWEFN TIE SON CCCFDINATE SYSTEM ANE THE X-Y-Z COOUDINATE SYSTE:
C PSICC, PHIOC = THE COSINES OE PSIC AND PHIC
C PSICS, PHICS = THE SINES OF PSIC ANE PHIO
COKII!UE
C PSIFD, PIIEL = TEE FOTATION ANGLES, IN DEGREES, BETWEEN THE
C XR-YR-ZR AND THE X-Y-Z CCCFDINATE SYSTEMS
C PSIB, IHIR = ESIED ANL EHIRD IN RADIANS
C PSIRC, PHIRC $=$ THE COSINES OF PSIF AND PHIK
C PSIRS, PHIRS = THE SINES OF PSIR ANL PHIR
C $Q=T H E D I S T A N C E$ ERCM THE CENTER TO THE PCIKTT hEIEE TEE KAY STRIKES THE KECEIVER
RIMCI $\{I=1,7\rangle=$ USED TO COMPUTE THTAZ
SIGMA $=$ SIGMIE IN RADIANS
SIGMAC, SIGYAS = THE COSINE AND THE SINE CF SIGMA THEAF = TATAFI IN RACIANS
THTAFC, THEES = THE COSINE AND THE SINE CF THTAR
YNEMAI = TAE X-CCNPCNENT OF TZE OUTKARD NORYAL TC TEF RECEIVER AT Q
YLRMAL $=$ TEE Y-CCMPCNENT OF THE OUTKARD NORMAL TC IEE RECEIVER AT Q
XYNRNI = FFCJFCTION OF THE NORMAL TC THE RECEIVER INIC THE XY-PLANE
XR, YE, $Z B=$ CCYEGNENTS OF THE NORMAL IN TERMS OF
XA-YR-ZR CCORDINATE SYSTEM
$Z=T H E D I S T A X C E F R O M$ THE CENTER TO A POINT ON THE
CENTRAL AXIS GFTHE RECEIVER
ZNRMAL = THE Z-COMPONENI OF THE OUTHARD NORMAL TO THE FECEIVER AT Q

CONTINOE
C
C OUTPUT IARIAEIES
LI = NOYEER CF ICONCES
C $Q Q=T I M P O R A F Y$ VARIGBLE USED TO PFINT THE VALUE OF Z
C SOE $=$ CSED TC COMPUTE THE OMEGA INTEGRAL
C SUMA = USED TC FIND THE TOTAL CONCENTKATICN (N=1,5)
C
C
PROGREM COFSTANTS
$P I=L$ *ATAN(1.)
GALIAN=EI/180.
PIH1LF=ATAKえ(1., O.)
DO $14: M=1,5$

```
!
```

 L(16 Nt=1,100
 SIM(NK,MM)=0.
 16 CCNTINUE
 14 CONIINUE
 C
C INPUT virIAELEs
HRIJE(G,20E)
208 FORMAT (/,/././.20X,' INPOT',/./)
REA[(5,197) ITITIE
197 FORPAT(2044)
HRITE(6,19E) ITITLE.
FEAI (5,199) LFSIC,IPFID
WEITE(G,2C2) EPSIE,DPHID
REA[(5,299) SIGYAD,E[,AD
REAI(5,29C) THTARD,GAEMAD,P|ID
WRITE(6,203) SIGMAD,EL,AD,THTARL,GAMMAL,PHIDD
199 FOEMAT (2F1C.5)
299 FOFPAT(3F1C.5)
202 FORMAT('
* '
203 FDFMAT(/,'
* ',
REAI'(5,399) FEFC,ISTEPS
WRITE(6,204) REFC,ISTEPS
399 FOFMAT(P10.5.15)
204 FOFMAT(/.

```

```

 REAI (5,1) STFHIR,SFPHIR,DPHIFD
 WEITE(6,205)STPFIR,SPPHIR,DPHIRD
 1 FOFNAT(3FE.0)
 205 FOG:AT(
* STAET PHIR (STPEIE) = ',R5.0.%.
* ' STOF PHIR (SPPEIE)
1 ' LELTA PHIB (DPHIRE)
= 1.F5.0.1.
= 1,F5.0.1)
REAI(5,2) N2FR
FRITE(6,20G)N2FR
2 FOFPAT (I5)
206 FOFMAT(
NUMBER CF Z-INTERVALS (N2RR) =',IS)
LO 三 I=1,NZEF
AEAD(5,4) `ZZ(I),ZSTART(I),ZSTCE(I)

```
```

 &FITE(f, 207) 1,NZZ(I), T.STAST(I),2STOP(I)
 4 FCRMAT(IE,ZF5.3)
 207 FCRMAT|% FOR I = .IS./.
    ```


NJMBER OF INCREMEXTS (NZZ) ZSTART ZSTCP
```

$$
\begin{aligned}
& =1.15: / \% \\
& = \\
& =
\end{aligned}: F 5.3 . / \%
$$

3 CONTINUE
$\operatorname{HRITF}(6,13 C 8)$
1308 FOFPAT('1 ')
C
C CONVEESJCN FRCM LEGREES TO RADIANS
DPS]=DPSI[\#RA[IAN
DPH]=DPHI[*RADIAN
PHII=PHIDI*EALIAN
GAMKA=GAYMAC*RADIAN
$\mathrm{E}=\mathrm{EL} \mathrm{F} \mathrm{RACIAN}$
$A=A I * R A C I A K$
SIGAA=SIGYA[*EADIAN
C
C CALCULATION CF FIY ANGIE CONSTANTS
AHI $1 \mathrm{P}=\mathrm{T}$ ITABE*RADIAN
THIIAC=CCS (NETAR)
$\operatorname{CON} \leq \mathrm{T}=12 . * \mathrm{EI}+\mathrm{SIN}(-5 * \operatorname{SIG}(1 A) * * 2$
$\mathrm{EP} \subseteq 1 \mathrm{C}=\mathrm{COS}(I \mathrm{P} \subseteq \mathrm{I})$
[PS]S=SIN(IPSI)
LPGIC=CCS (IPEI)
[RHIS=SIN(IFFI)
RI $\because(9=\operatorname{SIN}(E) * S I N(G A M M A) * \operatorname{COS}(A-P H I D)-C C S(E) * C O S(G A M M A)$
KIM(2=SIN (GAMMA)*SIN(A-PRID)
$\operatorname{RIM}(3=\operatorname{COS}(E) * S I N(G A M M A) * \operatorname{COS}(A-F H I D)+S I N(E) * \operatorname{COS}(G A M M A)$
C
C CALCULAIION OF TRIG CONSTANTS
PHIIC=CCS (EEIL)
PHILS=SIN(EHID)
SIGMAS=SIN(SIGMA)
SIGMAC=CCS (SIGMA)
$\mathrm{EC}=(\mathrm{CS}(\mathrm{E})$
$E S=S I N(E)$
GANPAC=CCS (GAMMA)
GAFPAS= ©IN(GAMMA)
C
C BEGIN LCCP FOF AZIMOTHAL ANGLE (PHIR)
PHIED=STEFI
JSTCP=1
IF (DPRIRE - NE_ O.) JSTOP=(SPEFIR-SMPHIR)/DPHIRD+1.01
DO $<50 \mathrm{~J}=1, \mathrm{JSTCP}$
EEIR=FEIFI*FADIAN
FEITE (E, ©) PGIRD
5 F(FMAT('17, $\mathrm{FHIR}=1, \mathrm{~F} 12.3$)
PFIRC=CCS (EHIR)

```

\section*{PIIRS=SIN(PHIR)}
c
C EEGINIIIG OF 2 L.CCP
\[
\begin{aligned}
& \text { LC } 6,00 \mathrm{~K}=1 \text {, } \mathrm{K} 2 \mathrm{FI} \\
& \text { Z=ZSTAFT (K) } \\
& \text { IF (NZZ (K) -LE. 1) GO TO 5OCO } \\
& 5001 \quad \mathrm{DZ}=(2 \operatorname{STOF}(\mathrm{~K})-\mathrm{ZSTART}(\mathrm{~K})) /(\mathrm{NZZ}(\mathrm{~K})-1) \\
& \text { LO 30CC NZ=1,N2STOP } \\
& \text { CALL ECILER (Z, FHIR, PSIF, XR, YR, ZR) } \\
& \text { PSIFC=CCS(PSIA) } \\
& \text { PSIRS=SIN(FSIR) }
\end{aligned}
\]

C
C CALCULATION OF PEIO
PSICC= LFSIC*FSIたC+DPSIS*ESIRS*FRIRC
PSIC \(=\triangle \operatorname{RCCS}(P \leq I C C)\)
PSICS=SIN(ESIC)
COEFF1= LPSIC*PSIRS*PiITRC-DESIS*FSIFC
COEFF2=PSIRS*PBIRS
c
C Calculajion of fhio
IF (AES (FSIO) -GT. O.0) GO TO 15
\(10 \quad\) PFIC=C
\(15 \quad\) GC TC 20
15 PHICC= 15 PRIC*COEFF1-DPHIS*COEFF2 PFICS=DPKIS*COEPF1+DFHIC*COEFF2 PHIC= \(A T A N 2\) (PHIOS, PHICC)
20 PHICC=COS (PHIO)
PHICS=SIN(EHIO)
C
C CALCULAJION Of the bfeeiver constants
PODEC=COS (EHIO-DPHI)
PODFS=SIK (EHIO-DPHI)
ZNRMAL=XF* (PSICS*DPSIC*PCDFC+PSICC*DPSIS)
+ YF*PSIOS*PODPS
+ ZR* (P SICS*DPSIS*ECDPC-FSICC*DPSIC)
XNEVAL=XR*(PSICC*DPSIC*FCDFC-PSICS*DPSIS)
+ YR*PSIOC*PODPS
+ ZR* (PSICC*DPSIS*PCDPC+PSICS*DPSIC)
YNEMAL=XF*IPSIC*PODPS - YR*PODPC \(+2 R * D P S I S * P O D P S\)
XYNREL = SQRT (1.-2NRMAL**2)
IF (ABS (XYNRBL) . LT. . 0001 . OR. (AES (XNRMAL) . LT. . 0001
- ANE. AES(YNRMAL) -LT. . 0001)) GO TO 8526

ALPHA=ATAN2 (YNGMAL, INRMAI)
GC TC 993
8526 ALPEA \(=\) C. 0
C
C CALCULAJION Of a deitional rim constants
993 RIEC4=FSIOC* (PEIOC*RIMC1-PEIOS*RIMC2) +PSIOS*RIMC3
RIMCS=FEIOS*RIMC1+PHICC*FINC2

RIMCERSSIOS*(RHIOC*RIMC1-PHIOS*RIMC2)-RSIOC*RIMC3
C
C LIMITS fRE GIVEN EY the CMEGA(I)--
C MOMEGA JS THE NUMEER OF INTERVALS
IF (SIGMA. LT. PSIO) GC 1040
45 OXFGAI (1)=ALFHA-PIHAIF OKFGAU(1) =ALEHA+PIHALF ONFGAL (2) =ALEHA+PIHALF CFFGAU(2) =ALFHA+PIHALF*3. NCPEGA=2 GC TC 90
C ELSI DO 40

CRFGA1=AECOS (SQRT ((SIGMAC**2-PSIOC**2)/PSICS**2)) ORFGAD(1) =CMEGA1 CYFGAL (1) =-0EEGA1 OMFGAI (2) =FI-OMEGA1 OQEGAO(2) =PI +OMEGA1 NCPEGA=2
C ENDIF
C
C the f-Iftegraticn and the eeta-Intigraticn afe ferpormed in C SUBROUTINE INTGEI, SIMESCN'S RULE IS OSED ON THE W-INTEGRATICN 90

100
3000
C END OF JNTEGFAIICN-EEGIN PRINT COT DC \(500 \mathrm{I}=1\), KZSTOP

SUMA=0. WRITE(E.EC1) QQ(L)
DO \(505 \mathrm{I} 1=1,5\)
\(\operatorname{SOM}(\mathrm{I}, \mathrm{L} 1)=\operatorname{SOM}(\mathrm{I}, \mathrm{L} 1) / \operatorname{CONST} * \operatorname{REFC} * \mathrm{I} 1\)
SUMA=SUMA \(+\operatorname{SUM}(\mathrm{L}, \mathrm{L} 1)\)
501
502
FCRMAT ('C \(\quad 2=1, F 8.4)\)
HFITE(E, 502)I1,SOM(L,L1)
 FOBEAT ('

BOUNCE NUMEER='
, I1.' CONCENTRATION=1, E14.4)
\(\operatorname{SUM}(\mathrm{L}, \mathrm{I} 1)=0\).
500 HEITE \((6,503)\) SOMA
503 FOFMAT(' TOTAL COKCENTRATION='.F14.4./.1)
600 CCPIINOE
250 PRIRD=PBIFC+DPAIRD
WRITE \((6,8 \equiv 43)\)
8343 FOFMAT('1'./ \(/ \% / \%^{\circ}\) NCRYAI TEENINATICN')
STCF ENI
```

C*DECK INJGKI
SUEECUTINE INTGRI (SIJR)
C** INTGEL PERFCFMS THE ONEGA AND EETA INTEGIATIONS
C AMD COMPUTES SUM, WHICH IS RETUFNED TO THE
C MRIN FROGFAY.
c
C***YPITTEN EY: R.B-ANDFRSON, LSSISTEL BY CLINT LAKSON
C CATHY NORKOCD, AND FEAD JCH\&STON
C DATE bLITIEN: 06/01/80
C
C***EXELAIATICN CF varIAELES:
C BETAL = LOWER LIMIT ON EETA USED IN THE INTEGRATICN
C RETAMI = MINIEUM VALUE CF BETA FCUNL VHEN CONSIDERING BIM-CUICPF
AND SHALOWING EFFECTS
BETAMX = MAXIEUS VALUE CF BETA FOUNE WHEN CONSIDERING RIM-CUTCFF
AND SEALCHING EFPECIS
BETAPK = THE TALOE CF BETA CORRESEONDING TO THE
MAXIMEM VALUE OF PSI FOR A GIVEN VAIUE OF Q
BETASE= EETAI 4 EETAU
BETAT = BETAO - EETAL
BETAO = UPPEF LIEIT ON EETA USED IN THE INTEGRATION
BL = TEE LOKFR ECONL ON EETA NHEN CCNSIDERING THE RELATICNSHIE
BETHEEN EETA, PSIP, AND ESIM
BU = TEE UPPER BCUND ON BETA HHEN CCNSIDERING THE RELATICNSHIE
BEJKEEN EETA, PSIE, AND PSIM
CONSTH = A CCNSTANT USED IN THE CNEGA INTEGFATION
DOMEGA = (CEEGAU - OMEGAL)/ISTEFS
ETA, EFTA = USEL IO CCMEOTE PSIF AND PSIM
RBC, XA= THE NOEEER CF RCUNCES
C OMEGA = THE AZINOTHAL ANGIE MEASUEED CLCCKKISE FROM THE X-AXIS
C PSIM = ANGLE EETVEEN THE FECEIVER AND TEE
IEFT EDEE OF THE SUN CONE IN THE
ELANE CYEGA=CCNSTANT
PSIP = ANGLE EETFEEN THE RECEIVEF AND THE
EIGHT ELGE CF THE SUN CONE IN THE
FLANE CNEGA=CONSTANT
PSIPK = MAXIMLM VALUE OF ESI FCF A GIVEN N AND Q
QSBETA = Q TIUES THE SINE OF BEIAEK
RHO = LSED TC FINC EETANX TO ASSUEE THAT THE DOT PHODUCT ISS >= 0
SB = OSED TO COBFOTE THE EEIA-INTEGFAL
C SUM1 = USEC IC CCMPUTE THE EETA INTEGRAL
C THTAK = DSED TO COMPUIE THTAZP
C THTAZ = USEL TC FIND THTAZP AND THTAZM
C THTAZE = THETA-EFFECTIVE, USED IC CCMPOTE EETARX
C THTAZM = THE ANGIE EETWEEN THE FECEIVER AND THE LEPT RIM
C THTAZP = THE ANGLE EETHEEN THE RECEIVER AND THE RIGHT RIM
C
C***********

```
    EIAL SOM(100.5)
C
```

 PIAL RL(Z),FU(2)
 IPTEGER NEETA
 CCYMON/ELCCKA/ MOMEGA,ISTEPS,CMEGAL(2),OMEGAU(2), XYNKML,
 * AIPHA,NZ,ZNHMAL,PSIOS,PSIOC,SIGMAC,
 * RIMC4,GIHC5,RIMC6,THTARC,THTAW
 CCM:AON /ELCCKB/ EIEALF,PI,PSIP,PSIPK,PSIM,BETAEK,Q,NBC
 CCMMON /CUT/IHTAR,GAMMAC,ES,A,PHID,GAPMAS,EC,FHIOC,PHICS
 C THE H-IMTEGRATICN--ISTEPS IS THE NUMEER OF
 C INTEGFAJION STEPS/INIERVAL
C SIMPSON'S RUIF IS OSED
OIIT=-1.
L(MEGA= (CMEGAD(MCMEGA)-OMEGAL(MOMEGA))/ISTEPS
LC 101 I=2,ISTEPS
CMEGA=CMECAL. (MCMEGA) +(I-1) * DC!!EGA
O:%EGAC=CCS(OMEGA)
CONSTK=(3_-UNIT)*[CMEGA
CMEGAS=SIN(OMEGA)
RHO=ATAN2(XYNRML*CCS(CMEGA-AIPHA), ZNEMAL)
C
C CALCOLATION OF PSIM,FSIP
ETA=AIAN2(FSIOS*CMEGAC,FSICC)
EETA=AFCCS(SIGMAC/SQKT(PSICC**2*(ESICS*CMEGAC)**2))
ESIE=ETA+EETA
ESIN=FIA-EFTA
C
C CALCULAIION OF EFFECIIVE RIM ANGLE FARAMETERS
RINC7=FINCH*OMEGAC+RIMC5*CNEGAS
IHTAK=ATAN2(-RIMC7,-RIMC6)
IHIAZ=THIARC/SQRT(EIMC6**2*RIMC7**2)
IF (TETAZ -GT. 1.0) GO TC 101
110
THIAZ= ARCCS (TETAZ)
C**** IF YOU RAXT AN ALTERNATE RIM SGAPE, FEMCVE THE
C
C CALI RIE (OMEGA,IHTAZ,IFIAG)
"C" IN TEF KEXT LINE
IF (IFLAG -EC. 1) GO TC }10
IHTA2P= THTAZ+THTAV
IF (IHTA2P - LE. O.0) GO TO 101
111
TBTAZM= -THTAZ+THTAK
THTAZM=AMAX1(O.,THTAZM)
THIAZF=AMIN1 (THTAZP,EI-THTAZP-FSIP-PSIM)
IF (TETAZP - LF. THTAZF) CO TO 101
112
CCNTINOE
C
C CALCOLAIION OF MINIMOM AND MAXIMOM BETA ANL EFPECTIVE FIM ANGIE
C BETAMI, IETAEX ANL THTAZE,EESPECTIVELY
EETAMI=0.
IF (THTAZM - IE. 0.0) GC TO 302
301
302
FETAMI = ANAX1(EETABI,-PIHALF+RHO)
ELSE LC

```
```

 LO 370 NFC=1.5
 XN=NEC
 THTAZE=(2.* \triangleN-1.)*THTAZP+(XN-1.)*(PSIP+PSIM-EI)
 IP ((THTAZE-THIAZM) -LE. 0.0) GO TO 300
 3 7 1
 EETAMX=ATAN2(SIN(THTAZE),CCS(THTAZE) -Q)
 EETAMX=AMIN1(BETAMX,PI,PIHALF+RHO)
 C
 C CALCULAIION OF FETA-EEAK AND PSI-PEAK
 IP (Q -GT. .5) GC IO 305
 380
 304
 C
 305
 EISE LO
 CSEETA=SQBI (((2.*XN*G)**2-1.)/((2.*ZN)**2-1.))
 EETAPK=ARSIN(QSBETA/Q)
 PSIPK = 2.*XN*ARSIN(&SEETA) - BETAEK- (XN-1.)*PI
 C
ENDIF
C
C CONSIDEFATION CF THE RELATIONSHIP EETNEEN FSIM,ESIP,PSIPK
306
IF (PSI%.GE. PSIEK) GO TO 300
303
CALL ELIMIT(BI,EU,NBETA)
C
C TEST INTERVALS CF INTEGRATION PCR FIN EPEECTS
STM1=0.
EC 360 MEETA=1,NEEIA
EETAI=AMAXI(EI (MEETA), BETAEI)
BETAD=AMIN1(BU(MBETA),BETAEX)
EETAT=EETAO-EETAI
EETASM= EFIAU + BEIAL
IF (EFIAT .LF. 0.0) GO TC 360
SE= -5* (EETAT-SIN (BETAT) *COS (BETASM)) *COS (OMEGA-ALPHA)
SUM1=SDK1+_5*ZNRMAL*SIN(EETAT)*SIN(BETASM) +SB*XYNRML
352
360 CCNTINUE
370 S[M(NZ,NEC)=SUY(NZ,NBC)+SUE1\#CCNSTR
300 CCNTINDE
101 UNII=-ONII
BETCEN
ENE

```
```

C*DECK SCIN
C
FUN(TICN SCLN(EETA,PSI)
C*** PUNCIION SCIN COMPUTES BL AND BU USING NEhTON'S METHOD
C
C***NPITTEN BY: R.M.ANDERSON
C***DATE bRITTEN: 06/01/80
C
C***EXPLAIATICN CF VARIAELES
C PI = AIAN2(0.,-1.)
C BETA = FIRST CUESS FOR SOIN
C PSI = EETA - (2*NBC*SIN(Q*SIN(BETA)) + (NEC-1)*PI
C Q = VECTOR FFCM CENTER CE DISH TO PCINT ON THE BECEIVER
C NBC = ROUNCE NUMEER
C
C*********
CCBMON /ELCCKB/ PIHALF,PI,PSIP,DSIPK,PSIM, EETAPK,Q,NBC
A=EETA
E=PSI
|I=NQC
E=E+(XN-1.)*PI
[(10 I=1,30
ClS=Q*SIN(A)
[ILA=(B-2.* XN*ARSIN(QAS) +A)/(1.-2.* \&*XN*COS(A)/
* S¢nT(1--CAS**2))
f=A-IEIA
IE (ABS(LELA) -LE. - 00001) GC TO 300
11 II (A -IT. 0.0) GO TO 200
12 II (A .GI. PI) GC IO 200
10 CCNTINUE
hFITE(6,100)
100 F(RMAT(' ITERATION DID NOT CONVERGE')
GC TO 300
200 HEITE(6,201)
201 F(RMAT(' ITERATION DIVERGED')
A=0.
300 SCLN=A
FITORN
END

```
```

C*DECK LIJMIT
SIEEOUTINE PLIMIT(EL,BU,NBETA)
C
RIAL EL(2),BU(2)
IITEGEF NEETA
CCMMON /ELCCRB/ PIHALP,PI,PSIP,PSIEK,PSIM,BETAPK,Q,NBC
C**** CONEIDERATICN DP THE RELATICNSHIP BETHEEN PSIM,PSIP,PSIPK
C IN CPDER TC LETERMINE TIE BETA-IIMITS CF INTEGRATICN
C
C***WRITTIN BY: G.F. ANDERSCN, ASSISTED BY CIINT DAWSCN,
C CATHY NORWCCD, AND REAL JOHNSTON
C***DATE bRITIEN: 06/C1/83
C
C***EXPLAAATIOIC CF VARIAELES:
C BI(2) = AREAY CCNTAINING LOWER EETA-LIMITS
C BU(2) = AREAY CONIAINING UPPER EEIA-LIMITS
C NBETA = NUMEEF CF BETA-FEGIONS OVER WHICH TO INTEGRATE
C NBEIA=1 CE 2
C BETA = THE FIEST GUESS FOR EL(I) CR BO(I) TO BE
C DSED IN SOERCUTINE SCIN
C
Cあれれ\#\#\#\#*{
C
II(PSIM .LT. C.O) GO TC 320
C
C PSIM > = C
310 IF (FSIE -IT. PSIPK) GO IC 315
C
C PSIM >=(AND ESIE)=PSIPK
311
G1=SQRI ((PSIFK-PSIM)/(FSIPK+(NBC-1)*PI))
EETA=EFTAPK*(1.-G1)
BL (1)=SCIN (BETA,PSIM)
BETA=EETAPK* (1.+G1)
EO(1)=SCIN(BETA,PSIM)
NEETA=1
GC TC 350
C
C PSIM>=0 AND PSIE<ESIEK
315
G1=sCRRT((PSIPR-PSIM)/(FSIPK+(NBC-1)*PI))
G2=SCEI((PSIFK-PSIP)/(PSIPK+(NBC-1)*PI))
EFIA=EETAPK*(1.-G1)
BL (1)= SCLN (BETA,PSIM)
DETA= EFTAEK*(1.-G2)
BO(1)=SCLN(BETA,PSIP)
BETA=EETAPK*(1.+G2)
EL(\overline{2})=SCLN(BEIA,PSIP)
PETA=EFTAPK* (1.+G1)
B\#(こ)=SCLN(BETA,PSIM)
NEETE=2
GC TC E50

```
```

C
C PSIM<0
320 IP (PSIF .GT. PSIPK) GO TO 325
321 IF (ESIP.GT. C.0) GO TO 323
C
C PSIM<O lND PSIF<=C AND SINGLE BCUNCE
322 IF (NEC .GT. 1) GO TO 391
390 G1=SQRT((PSIP-PSIPK)/(-(NBC*FI+PSIPK)))
G2=SQRT((PSIM-PSIPK)/(-(NBC*PI+PSIPK)))
EETA=BETAPR+(PI-BETAEK)*G1
EL(1)=SOLN(BETA,PSIP)
EFTA=BETAPK+(PI-BETAEK)*G2
EO(1)=SOLN(BETA,PSIM)
\EFTA=1
GC TC 350
C
C PSIM<O fND PSIF<=O AND MULTIPLE ECGNCE
391 EL(1)=SCLN(0.,PSIM)
EO(1)=SOLN(EL(1),PSIF)
C1=SQRT((PSIP-PSIPK)/(-(NBC*FI+PSIPK)))
EETA=BETAEK+(PI-BETAFK)*G1
EI(2)=SOLN(BETA,PSIP)
EU(2)=SCIN(BI(2),PSIM)
AEFTA=2
GO IO 350
C
C PSIM<O lND O<=ESIP<=FSIPK
323 EI (1)=0.
IF (NEC -LE. 1) GO TO 374
373 EL(1)=SOLN (0..PSIM)
374 G1=S\&RT((PSIPK-PSIP)/(ESIPK+(NEC-1)*PI))
EFTA=BETAPK*(1_-G1)
EO(1)=SOLN(BETA,PSIP)
EETA= BETAPR*(1_+G1)
EI(2)=SOLN(BETA,PSIP)
G2=SQRT((PSIM-PSIPK)/(-(NBC*PI+PSIPK)))
EETA=BETAPK+(PI-BETAFK)*G2
EU(2)=SOLN(BETA,PSIM)
NEETA=2
GC TC 350
C
C PSIM<0 lND PSIE>ESIPK
325 EL(1)=C.
IF (NEC -LE. 1) GO TC シ7e
375 EI (1)=SOIN(0..PSIM)
376
GITURN
EIC

```
```

C* DRCK RCIIER
SIJECUTINE ECILER(Z,PHIR,PSIR,XR,YR,ZR)
C*** BOILIR SUEECUTINE FOR A CYLINLEF. BOILER COMpUTES
C XP,YE, ANL 2R WHICH AFE USED TO CCMPUTE
C THE NORMAL TO THE RECEIVER
C IN TIE MAIN FFCGRAM.
C
C***HRITTEN EY: R.E. ANDEFSON, CLINT LAHSON,
C CATHY NCRKOCD, AllD FEAD JCHASTCN
C***DATE bRITTEN: OE/01/83
C
C***EXPLAMATICN CF VARIAELES
C Z = PCSITICN CF VECTOG \& PRCJECTED CHTO THE AXIS OF SYAMETRY
C OF THE FFCEIVFR
C XB,YR,2R = CCMPCNENTS OF THE ONIT SORFACE NCRMAL
C
C********************
CCMMON /EICCKB/ FIFALF, PI,FSIP,PSIPK,PSIM,BETAPK,Q,NBC F1LIUS $=5.938 / 24.137 .53$
$\mathrm{E}=$ SQRT(RADIDS**2+2**2)
$\mathrm{F} \subseteq \mathrm{IR}=\mathrm{ATAN2}(\mathrm{FADIOS}, \mathrm{z})$
$X E=\operatorname{COS}(F E I R)$
YF=SIN(EFIF)
$2 \mathrm{E}=0$ 。
FITURN
FAD

```

ROSA: A COMPUTER MODEL FOR OPTICAL POWER RATID CALCULATIONS

\author{
PART 2: Program User's Guide
}

\section*{TABLE OF CONTENTS}
TITLE PAGE - PART II. ..... i
LIST OF FIGURES ..... iii
LIST OF TABLES. ..... iii
1. GENERAL PROGRAM OVERVIEW1
2. PARAMETER DATA ..... 63. PRGGRAM OUTPUT9
4. BOILER SUBROUTINE. ..... 15
5. RIM SUBROUTINE ..... 17

\section*{LIST OF FIGURES}

\section*{Fiqure}

III-3 Optical Power Profile: Cylinder (I=0,PHIR=180) . . . . 14

\section*{LIST OF TABLES}

\section*{Table}

III-1 Echo Print of Input Parameters . . . . . . . . . . . . 11

III-2 Sample Concentration Ratio Output. . . . . . . . . . . 12

\section*{1. GENERAL PROGRAM OVERVIEW}

\section*{Introduction}

The Ratio of Solid Angles (ROSA) code was developed as part of the Crosbyton Solar Power Project (SSPP) for calculation of optical power concentrations due to reflection from a spherical segment mirror. It was developed primarily in support of Department of Energy Contracts DE-ACO4-76ET20255 and DE-ACO4-83AL21557. Detailed derivations and a technical description of the ROSA code are given in Part \(I\) of this report. The present volume is intended to provide a program users guide for the RDSA code.

The Ratio of Solid Angles formulation yields an analytical formula for the solar concentration ratio at a field point, \(Q\), on a receiver surface. The optical power concentration, \(C\), at a point \(Q\) on a receiver is defined as the total normally directed optical power per unit area received at that point. In the ROSA code, \(C\) is normalized by dividing by the direct normal insolation incident upon the receiver. The resulting dimensionless quantity becomes a concentration ratio expressed as "number of suns".

The ROSA method deals directly with a finite sun. The sun's size is expressed in terms of an angular radius, \(\sigma\). Direct sunlight received at a point is viewed as a collection of rays lying inside a right circular cone with vertex at the receiver point \(Q\) and vertex angle \(2 \sigma\).

The RDSA formula for the concentration ratio, \(C\), at a receiver point, \(Q\), due to reflection from a mirror surface is given by
\[
\begin{equation*}
c(\vec{q}, \vec{b})=\Sigma \frac{B^{n}}{\Omega_{s n}} \iint_{\Omega_{M n}} \vec{b} \cdot d \vec{\Omega}, \text { for } \vec{b} \cdot d \vec{\Omega}>0, \tag{1}
\end{equation*}
\]
where,
\(\mathbf{q} \quad=\) the vector locating a field point \(Q\) on the receiver with respect to a convenient coordinate system;
\(\vec{b} \quad=\) the unit outward normal to the receiver at \(\mathbf{Q}\);
\(n \quad=\) the number of times a ray has been reflected on the mirror before striking the receiver at \(Q\);
\(\Omega_{s n}=4 \pi \operatorname{sif}\left(\sigma_{n} / 2\right)\), the effective solid angle of the sun as viewed directly from the field point \(Q\);
\(\sigma_{n} \quad=\) the effective angular radius of the sun to be used for light which reflects \(n\) times on the mirror (for a perfect mirror \(\sigma_{n}=\sigma\) );
\(\Omega_{M n}=\) the apparent solid angle of the sun as viewed in the mirror from the field point \(Q\) from light which has reflected exactly \(n\) times;
\(R \quad=\) the reflection coefficient of the mirror surface; \(0 \leq R \leq 1 ;\)
and,
\(d \vec{\Omega} \quad=\) differential solid angle directed toward the apparent position of the sun as viewed in the mirror; i.e., the oriented element of surface area on the unit sphere, with unit outward normal.

The ROSA coide evaluates this integral.

\section*{OVERVIEW OF INPUT PARAMETER REQUIREMENTS}

The optical power concentration ratio at a point on a receiver surface is dependent upon several geometrical and physical factors. These include the position of the sun, the size and orientation of the collector, the shape and alignment of the receiver and the reflection coefficient of the collector. Thus, several geometrical and physical input parameters are required for the ROSA code. They include:
1. Geometrical parameters of the collector (bowl).

A spherical segment is used as the standard collector in the computer model. Normalized units are employed in the model, so that the spherical segment is taken to have unit radius. The height of the spherical segment is determined by specifying the rim angle, \(\theta_{R}\), of the bowl.

Bowl orientation parameters are also required. These parameters are given in terms of a SOUTH-EAST-VERTICAL (S-E-V) coordinate system. The tilt angle, \(\gamma\), of the bowl is measured between the symmetry axis of the bowl and the VERTICAL axis. The azimuth, \(\oplus\), of the lowest point on the rim is also measured in the S-E-V coordinate system.

\section*{2. Sun positional parameters.}

The solar elevation, \(E D\), and the solar azimuth, \(A D\), are specified in the S-E-V coordinate system.

\section*{3. Reciever orientation.}

Ideally, the axis of symmetry of the receiver should point directly towards the center of the sun. Misalignment is accounted for in terms of the zenith angle, \(\Delta \psi\), and the azimuthal angle, \(\Delta \Phi\), between the receiver axis and the vector from the center of the bowl to the sun.

Actual concentration values are computed for points on the receiver surface. The receiver surface is assumed to be a surface of revolution. Points on the surface are described in terms of two input variables, a z-coordinate measured along the axis of symmetry of the receiver and an azimuthal angle \(\oplus_{R}\), measured about the axis of symmetry of the receiver. A user supplied subroutine, BOILER, is called to compute the radial distance from the axis of symmetry to the surface of the receiver. (A discussion of this subroutine is deferred until later). Normally, the concentration ratio is computed for several values of \(z\) and \(\Phi_{R}\) in a given computer run
5. Number of reflections. This is the maximum number, \(N\), of multiple reflection contributions to be included in the calculations.

\section*{6. Effective sun size -}

For a perfect mirror, this parameter is simply the angular radius, \(\sigma\), of the sun cone. For imperfect mirrors, a set of effective angular radii, \(\sigma_{n}, n=1,2, \ldots, N\), can be specified to account for stochastic errors in the mirror surface.

\section*{7. Reflection coefficient -}

The reflection coefficient, \(R\), of the mirror surface is also an input variable for the program.

\section*{BOILER SUBROUTINE REQUIREMENTS}

A user supplied subroutine, BOILER, is required to describe the receiver surface as a function of distance along the axis of symmetry of the receiver. The receiver is assumed to be a surface of revolution. The subroutine receives a value of the distance, \(z\), and returns the radial distance, \(Q\), to surface of the receiver and the components of the unit outward normal to the surface at \(z\) in the receiver coordinate system. A discussion of this subroutine, including examples for a receiver in the form of the frustrum of a right circular cone and a right circular cylindrical receiver are discussed in the section entitled SUBROUTINE BOILER.

\section*{RIM SUBRDUTINE REQUIREMENTS}

A spherical segment is taken as the standard bowl shape in the model and is described by specifying the bowl rim angle, \(\theta_{R}\). \(A\) user supplied routine, RIM, is used to describe more general rim shapes. The section SUBROUTINE RIM discusses an example in which the standard bowl is cut by two parallel, vertical planes. The planes are parallel to the VERTICAL-SOUTH coordinate plane and are symmetrically located on each side of this plane.

\section*{2. PARAMETER DATA}

The parameter data cards describe the solar collector (bowl) constants, receiver alignment constants and sun parameters. The output of the program gives the solar concentration ratio at points on the surface of the receiver. These points are described in terms of an azimuthal angle, \(\oplus_{R}\), about the axis of the receiver and a distance, \(Z_{R}\), measured along the axis of the receiver. Loops have been provided in the program for calculations at several ( \(Z_{R}, \phi_{R}\) ) pairs. The loop parameters are also described in the following data input summary. These cards are read only once during a concentration calculation run.
A. Title card (40A2)

ITITLE - Describes receiver type.
B. Boiler-sun alignment paramaters (2F10.5)
DPSID \(-\Delta \psi,\)\begin{tabular}{l} 
angle between the receiver axis and and the \\
line through the center of the bowl and the \\
center of the solar disk (degrees).
\end{tabular}
DPHID \(-\Delta \Phi,\)\begin{tabular}{l} 
azimuthal angle measured about the bowl \\
center, solar disk center line (degrees).
\end{tabular}
C. Sun parameters (3F10.5)

SIGMAD - Effective sun size (degrees).

ED - Elevation angle of the sun (degrees).

AD - Azimuthal angle of the sun (degrees).
D. Bowl parameters (3F10.5)

H. Parameter for subdivision of receiver axial parameter (15)

NZRR - Number of subdivisions of the receiver axis to be used in the concentration calculations. The concentration profile varies rapidly with \(Z_{R}\) over some regions and slower over other regions and this parameter permits the user to vary the distance between calculated points accordingly.
I. Loop parameters for the inner calculation loop (15,2F5.3) (This data card must occur NZRR times.)

NZZ - Number of \(Z_{R}\) values in the \(Z\) loop.

ZSTART - Starting value of \(\mathbf{Z}_{R}\).

ZSTOP - Final value of \(Z_{R}\).

\section*{3. PROGRAM DUTPUT}

This chapter provides a brief description of the ROSA program output. A portion of the output is also shown, together with a concentration profile graph.

\section*{Physical and Geometrical Parameters}

The ROSA program always echo prints the following input data:
A. Boiler title card;
B. Boiler - Sun alignment parameters;
C. Sun Parameters;
D. Solar bowl parameters;
E. Reflection coefficient;

Sample output is shown in table 3.1.

\section*{Optical Concentration Dutput}

Concentration ratio values are obtained at points along the receiver surface. Points on the surface are located by prescribing pairs of values \(\left(Z_{R}, \Phi_{R}\right)\), where \(Z_{R}\) is measured along the axis of symmetry of the receiver and \(\Phi_{R}\) is an azimuthal angle measured about the receiver axis. The \(\oplus_{R}\) variable is the slower varying variable in the calculations. The loop structure for the ouput is as follows:
```

BEGIN PHIR loop
Print PHIR (degrees)
Begin ZR loop
Print ZR
FOR J = 1 to 5
PRINT contribution from Jth bounce
NEXT J

```
```

 Print the total concentration (sum of 5 bounces)
 END IR loop
 END PHIR loop

```
(Note: we are only considering contributions from light that has reflected five times or less before striking the receiver.) Sample output corresponding the the imput in Table 3.1 is shown in Table 3.2.

It should be noted that normalized units are used in the ROSA code. The radius of the bowl is taken to be unity, so that necessarily \(0 \leq Z R \leq 1\). The output values are also normalized. The input solar intensity, \(I\), at the aperture plane is an overall scale factor and all concentration results are given in "number of suns", i-e. \(1=1\).

Table 3.1 Echo Print of Input parameters

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{PHIR \(=0.0\)} \\
\hline \(\mathbf{Z}=\) & 0.5000 & & & \\
\hline BOUNCE & NUMBER=1 & & ONCENTRATION= & 0.0 \\
\hline BOUNCE & NUMBER \(=2\) & & ONCENTRATION= & 0.0 \\
\hline BOUNCE & NUMEER \(=3\) & & ONCENTRATION= & 0.0 \\
\hline BOUNCE & NUMBER \(=4\) & & ONCENTRATION= & 0.0 \\
\hline BDUNCE & NUMBER=5 & & ONCENTRATION= & 0.0 \\
\hline \multicolumn{5}{|l|}{TOTAL CONCENTRATION=} \\
\hline \multicolumn{5}{|c|}{\(\mathrm{Z}=0.5050\)} \\
\hline BLUNCE & NUMBER=1 & & ONCENTRATION= & 0.0 \\
\hline BDUNCE & NUMBER=2 & & ONCENTRATION= & 0.0 \\
\hline BOUNCE & NUMBER=3 & & ONCENTRATION= & 0.0 \\
\hline bounce & NUMBER \(=4\) & & ONCENTRATION= & 0.0 \\
\hline BOUNCE & NUMBER=5 & & ONCENTRATION= & 0.0 \\
\hline \multicolumn{5}{|l|}{TOTAL CONCENTRATION=} \\
\hline \multicolumn{5}{|c|}{\(Z=0.5100\)} \\
\hline BOUNCE & NUMBER \(=1\) & & CONCENTRATION= & 0.0 \\
\hline BOUNCE & NUMBER=2 & & ONCENTRAT ION= & 0.0 \\
\hline BOUNCE & NUMBER=3 & & ONCENTRATION= & 0.0 \\
\hline BOUNCE & NUMBER=4 & & ONCENTRATION= & 0.0 \\
\hline BOUNCE & NUMBER \(=5\) & & ONCENTRATION= & 0.0 \\
\hline \multicolumn{5}{|l|}{TOTAL CONCENTRATION=} \\
\hline \multicolumn{5}{|c|}{\(Z=0.5150\)} \\
\hline BOUNCE & NUMBER=1 & & ONCENTRATION= & 66.4747 \\
\hline bounce & NUMBER \(=2\) & & ONCENTRATION= & 0.0 \\
\hline BIUNCE & NUMBER=3 & & ONCENTRATION= & 0.0 \\
\hline BIUNCE & NUMBER=4 & & ONCENTRATION= & 0.0 \\
\hline BIUNCE & NUMBER=5 & & ONCENTRATION= & 0.0 \\
\hline total & CONCENTRA & \(\mathrm{ON}=\) & \(=\quad 66.47\) & \\
\hline
\end{tabular}
\(Z=0.5200\)
\begin{tabular}{llc} 
BOUNCE NUMBEF=1 & CONCENTRATION \(=\) & 185.9003 \\
BOUNCE NUMBER=2 & CONCENTRATION \(=\) & 0.0 \\
BOUNCE NUMBER=3 & CONCENTRATION \(=\) & 0.0 \\
BOUNCE NUMBER=4 & CONCENTRATION \(=\) & 0.0 \\
BOUNCE NUMBER=5 & CONCENTRATION= & 0.0 \\
TOTAL CONCENTRATION \(=\) & 185.9003 &
\end{tabular}
\(\mathrm{Z}=0.5250\)
\begin{tabular}{llc} 
BOUNCE NUMBER=1 & CONCENTRATION= & 296.1956 \\
BOUNCE NUMBER=2 & CONCENTRATION= & 0.0 \\
BOUNCE NUMBER=3 & CONCENTRATION= & 0.0 \\
BOUNCE NUMBER=4 & CONCENTRATION= & 0.0 \\
BOUNCE NUMBER=5 & CONCENTRATION= & 0.0
\end{tabular}
\[
Z=0.5300
\]

BOUNCE NUMBER=1 CONCENTRATION=
BOUNCE NUMBER=2 CONCENTRATION= 0.0
BOUNCE NUMBER=3 CONCENTRATION= 0.0
BOUNCE NUMBER=4 CONCENTRATION= 0.0. BOUNCE NUMBER=5 CONCENTRATION= 0.0 TOTAL CONCENTRATION= 381.1919
\[
z=0.5350
\]
BOUNCE NUMBER=1 CONCENTRATION= 399.5920
BOUNCE NUMBER=2 CONCENTRATION= 0.0 BOUNCE NUMBER=3 CONCENTRATION= 0.0 BOUNCE NUMBER=4 CONCENTRATION= 0.0 BOUNCE NUMBER=5 CONCENTRATION= 5.0 TOTAL CONCENTRATION= 399.5920


Figure III - 1 Optical Power Concentration for A Cylindrical Receiver

\section*{4. BOILER SUBROUTINE}

\section*{Introduction}

The ROSA code is sufficiently general to permit any convex surface of revolution for the receiver/boiler surface. However, this requires that a BOILER subroutine be provided by the user. The formulas necessary for this routine are derived in Chapter 3, Part 1 of this report: In this chapter, we provide the ingredients for building the subroutine and give examples for a cylinder and a cone.

\section*{Subroutine Dutline}

The routine assumes that the receiver surface is described in the form
\[
\begin{equation*}
r=f(Z) \tag{IV-1}
\end{equation*}
\]
where \(Z\) is measured along the axis of the receiver (with \(Z \leq 0\) ) and \(r\) is the perpendicular distance from the axis of the receiver. Input for the routine includes the value of \(Z\) and an azimuthal angle, PHIR, measured about the axis of the receiver. These two values determine a field point on the receiver surface. The subroutine returns the distance, \(Q\), from the origin of the. reciever coordinate system to the field point, the zenith angle of the point, and the components of the unit outward normal to the surface. The routine then becomes:
```

SUBRDUTINE BOILER (Z,PHIR,Q,PSIR,XR,YR,ZR)
REAL Z,PHIRD,Q,PSIR,XR,YR,ZR
F= formula for surface of revolution : r=f(Z)
FP= formula for F'(Z)
ZETA = ATAN(FP)
Q=SQRT (F**2+2**2)

```

PSIR=ATAN \((F / Z)\)
\(X R=\operatorname{COS}(P H I R) * \operatorname{COS}(Z E T A)\)
YR=SIN(PHIR)*COS (ZETA)
ZR=-SIN(ZETA)
RETURN
END

For a right circular cylinder, \(f(Z)=r_{0}\), a constant and \(f^{\prime}(Z)=0\). Thus, ZETA \(=0\), and the above formulas can be simplified.

For the frustrum of a cone, \(f(Z)=\left(-\tan \psi_{R}\right) Z, f^{\prime}(Z)=-\tan \psi_{R}\), where \(\psi_{R}\) is the angular radius of the cone. Thus, ZETA \(=-\psi_{R}\) for a cone.

\section*{5. RIM SUBROUTINE}

This section presents a iisting of an implementation of a RIM subroutine corresponding to the rim shape described in Chapter 7, Part 1 of this report.

\section*{SURROUTINE FIM}

C*DECK RI:

> SISEIOUTIKE RIM (OMEGA, THTAZ, IFFAG)

C*** RIM CALCULATES THTAZ FOR A DISH TEAT HAS EEEN
C PARTIALLY CCT-CFF BY THO PLANES RUNNING PARALLEL
C TO THE D-A ELANE (SEE D-M-A COCEDINATE SYSTEM)
C
C***HRITTIN BY: CLINT DAGSON AND CATHY NCFKCOL
C***DATE BRITIEA: 02/01/84
C
C***EXPLAPATICK CF VARIAELES:
C C.YEGA, THTAZ: SEE MAIX PRCGRAK
C RLT-FI3, RE1-FM3,FN1-BN3: ENTEIES CFTHE ROTATION MATEIX
EITHEEN THE D-M-A AND X-Y-Z COCRDINATE SYSTEMS
RIMC4-RIMC6,FIMC10-RIMC15: USED IN CALCULATIONS
OF RI1,RL2,ETC.
CAPA: the a-ccoeninates of the fCints hefre THE PLANE CUIS T日E SPHERE
CAPD: THE D-COCEDINATE OF THE LONEST POINT Where the elane cuis the sfbere
amin: the minimum cf capa(1) anc capa(2)
thtafe: the arcos cf the absolote valoe cF amin RMO: JHE ECOATICN CF TEE PARAILEI FLANES bHICH CET THE DISH
CCMMON /EICCKA/ ROMEGA, ISTEFS, CMEGAL (2), OMEGAU(2), XYNRML, * AIPHA,NZ, ZNFRAL, PSIOS, PSIOC, SIGMAC,
* RIMC4,RIEC5,FIMC6,THTARC,TATAK

CCMMON /COT/ TETAR,GAMMAC, ES,A, PHID, GAMYAS, EC, PHIOC, PHIOS fiAL CMEGA. THTAZ
BEAL RIBC 10 , RIEC11,RIMC12, EIMC 13,RIMC14,RIMC 15
FEAL AO, A1, A2, A 3, AMIN, CAPA (2), FAD1, FBO,THTAPR,THTAPC,THTAPS

C
```

IIIAG=0
BIMC 10=GAEMAC*ES*CCS(A-PHID) + GAMMAS*EC
BIMC11=-GAEMAC*SIN(A-PHID)
RJMC12=GAMMAC*EC*CCS(A-PHID) - GAMMAS*ES
EIMC13=ES*SIN(A-FHID)
EIMC14=CCS(A-PHII)
RIMC15=EC*SIN(A-FEID)
RI1=PSICC*(EHIOC*RIMC10 + PHIOS*RIMC11) + PSIOS*RIMC12
G:1=PHICS*KIMC10- PHIOC*FIMC11
RN1=PSICS* (EHIOC*RIMC10 + PBIOS*RIMC11) - PSIOC*FIMC12
FI2=FSICC*(FGIOC*RIMC13 + FBIOS*RIMC14) + PSIOS*EIMC15
FP2=PHIOS*FIMC13- PHIOC*RIMC14
GF2=PSICS*(EHICC*RINC13 + FEIOS*RINC14) - PSIOC*RIMC15
E13=RIMC4
E:3=RIMC5
F13=GIMCE

```

C
```

 AC=-COS(THTAR)
 R PO=. 5
 CPEGAT=TAK(CMEGA)
 A1=KM1-FI1*CMEGAT
 A:=RM3-RI 3*CMEGAT
 IE(A1**\Sigma+A3**2.EC. 0.0) GC TC 784
 C ELSE CCATINOE
C
A己=RM2-EI2*CMEGAT
R\&C1=(A1**2 +A 3**2)*A1**2*(1-FMC**2)
C -A1**2*A2**2*FMC**2
IE (RAC1 .LT. 0.0) GO TO 7E4
C ELSE CCMTINUE
C

```
        C1PA \((1)=(-A 2 * A 3 * R M C+S Q R I(\operatorname{RAD} 1)) /(A 1 * * 2+A 3 * * 2)\)
        C1FA (2) \(=(-A 2 * A 3 * \operatorname{LM} 0-S Q R T(R A D 1)) /(A 1 * * 2+A 3 * * 2)\)
        AEIN=AMIN1(CAPA(1), CAPA(2))
        IE (AMAX 1 (CAPA(1), CAPA (2)) -GE. A0) GO TO 785
        heIte (6.7e6)
    786 FCRMAT(' SEF BACK EURNER!')
    785 IE (AMIN -GE. AO) GO TO 784
C
C ElSe CCPPOTE xif tutaz
C
    THTAFF=AFCCS (AES (AEIN))
    CIPD \(=-(A M I N * A 3+R M 0 * A 2) / A 1\)
    FIEI=ATAM2(FBO,CAPI)
    IETAPC =COS (THTAPR)
    TETAPS = SIN(THTAPR)
    GFHIC=CCS (FEEI)
    AFHIS=SIK (KERI)
    TETAZ=RN1*FEEIC*THTAPS + RN2*RFHIS*THTAPS - RN3*THTAPC
    II (THTAZ -GT. 1.) GC TO 794
        THTAZ=AFCCS (TBTAZ)
        GO TC 784
    794 IILAG=1
784 RITURN
    Fid

\title{
United States Department of Energy
}

Office of Scientific and Technical Information
Post Office Box 62
Post Office Box 62
Oak Ridge, Tennessee 37831

OFFICLAL BUSINESS
-
PENALTY FOR PRIVATE USE, \(\$ 300\)

United States Department of Energy
Office of Scientific and Technical Information
Post Office Box 62
Oak Ridge, Tennessee 37831
OFFICLAL BUSINESS
PENALTY FOR PRIVATE USE, \(\$ 300\)
PENALTY FOR PRIVATE USE, \(\$ 300\)
```


[^0]: Figure VII - 3 Optical Power Concentration for a Cylindrical Receiver with an Alternate Rim Shape

