ALTERNATE CENTRAL RECEIVER POWER SYSTEM PROGRAM PHASE II

Midterm Technical Report. Volume 2-Sodium Test Receiver Experiment

By J. C. Amos A. V. Curinga

J. A. Elsner E. E. Gerrels C. C. Hussey D. J. Muller H. P. Offer C. Oganowski E. Olich B. D. Pomeroy P. J. Ring S. I. Schwartz

July 1980

Work Performed Under Contract No. AC03-79SF10535

General Electric Company Energy Systems Programs Department Schenectady, New York

U.S. Department of Energy

22.0041 VOL 2

DISCLAIMER

"This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

This report has been reproduced directly from the best available copy.

Available from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

Price: Printed Copy A15 Microfiche A01 MIDTERM TECHNICAL REPORT VOLUME II - SODIUM TEST RECEIVER EXPERIMENT

ALTERNATE CENTRAL RECEIVER POWER SYSTEM PROGRAM PHASE II

July 1980

PREPARED FOR UNITED STATES DEPARTMENT OF ENERGY (CONTRACT NO. DE-AC03-79SF10535)

GENERAL ELECTRIC COMPANY ENERGY SYSTEMS PROGRAMS DEPARTMENT SCHENECTADY, NEW YORK

GENERAL 🍪 ELECTRIC

VOLUME II

TABLE OF CONTENTS

	TABLE OF CONTENTS	
Section		Page
	LIST OF FIGURES	1.7
		VII
	PHASE II PROGRAM OVERVIEW	Ł
1	INTRODUCTION	L-1
	1.1 Experiment Objectives	1-1
	1.2 SRTA Description	L-2
	1.3 SRE Work Flow	L-2
	1.4 SRTA Design and Fabrication Overview	L-7
	1.4.1 Absorber Test Panel	L-9
	1.4.2 Sodium Loop Components	L-10
2	ABSORBER TEST PANEL DESIGN	2-1
	2.1 Absorbor Tost Barol Specifications	
	2.1 Absorber lest raner specifications	(−1) 1
	2.1.2 Solar Flux Considerations	1-T 7-T
	2.1.2 Solar Flux considerations	1-3 7 /
	2.1.9 Correlation of lest and commercial ranges	<u></u> 4
	2.2 Tanel latigue bile Analysis	1-11 2.11
	2.2.2 Creen/Fatigue Evaluation)_15
	2.3 Panel Thermal Analysis	
	2.4 Absorber Test Panel Detailed Design	19)_23
	2.4.1 General Arrangement	2J)_22
	2.4.2 Thermal Expansion	2-25
	2.4.3 Active Panel Subassembly	2-20
	2.4.4 Trace Heating.)_3Q
	2.4.5 Absorber Panel Stress Analysis	2-39
	2.5 References	2-42
3	ABSORRER TEST PANEL FARRICATION	≀_ 1
0		, 1
	3.1 Panel Manufacturing Plan	3-1
	3.1.1 Manufacturing Process	3-1
	3.1.2 Panel Manufacturing Schedule	3-5
	3.2 Panel Brazing Description	3-5
	3.2.1 Brazing Procedure	3-8
	3.2.2 Temporary Brazing Furnace Description	3-8
	3.2.3 Furnace Installation Schedule	3-9
	3.3 Weld Development/Mockups	3-10
4	SODIUM LOOP DESIGN	⊦−1
	4.1 Summary Description	-1
	4.2 Heat Dump	-2
	4.2.1 Structure	-10
	4.2.2 Heat Exchanger Section	-10
	4.2.3 Dampers	-12
	4.2.4 Fans	-12
	4.2.5 Heaters	-12

TABLE OF CONTENTS (Cont'd)

Section			Page
		4.2.6 Heat Dump Thermal Analysis	4-12
		4.2.7 Structural Analysis	4-15
	4.3	Sodium Pump	4-15
		4.3.1 Stator Assembly	4-16
		4.3.2 Pump Duct Assembly	4-18
	4.4	Sodium Tanks	4-18
	4.5	Support Structure	4-19
	4.6	Instrumentation	4-20
		4.6.1 Temperature	4-20
		4.6.2 Pressure	4-20
		4.6.3 Flow	4-25
		4.6.4 Level	4-25
		4.6.5 Solar Flux	4-25
		4.6.6 Displacement	4-25
		4.6.7 Strain	4-25
		4.6.8 Oxygen	4-26
		4.6.9 Smoke	4-26
		4.6.10 Alarm System	4-26
	4.7	Control System	4-26
		4.7.1 EM Pump Control	4-29
		4.7.2 Heat Dump Control	4-29
		4.7.3 Trace Heating Control	4-29
		4.7.4 Sodium Valves	4-30
		4.7.5 Cover Gas Valves	4-30
		4.7.6 Absorber Panel Door	4-30
	4.8	Auxiliary Equipment	4-31
	4.9	SRTA System Analysis	4-31
	4.10	Sodium Tanks	4-39
5	SODTU	M LOOP FABRICATION	5-1
0	5.1	Background	5-1
	5.2		5-2
	5.3	Electromagnetic Pump & Support Equipment	5-5
	5.0	5.3.1 EM Flowmeters	5-5
		5.3.2 Pining	5-5
	5.4	Sodium Tanks	5-8
	5.5	Trace Heater Equipment	5-8
	5.6	Piping Hangers and Snubbers	5-8
	5.7	Sodium Valves	5-9
	5.8	SRTA Manufacturing & Assembly	5-9
C	DD		6_1
6	PRELI		0-1 6 1
	0.L		0-1 4 0
	6.2	Descriptions of Major Tests	0-2
		b.2.1 Generalized Test Matrix	0-5
		0.2.2 lest #1 - Kadlation and Convective Loss	0-3
		0.2.5 lest $#2 - 5tartup/Snutdown and Translent$	د ۲
		Unaracterization	0-/

TABLE OF CONTENTS (Cont'd)

<u>Section</u>			Page
	6.0	6.2.4Test #3 Normal Operation6.2.5Test #4 Reflective Loss Test6.2.6Test #5 High Flux Test	6-11 6-11 6-11
	0.3	Test Program Schedule	6-15
	6.4	CRIF Support Services	6–15
7	PRELI	MINARY SAFETY EVALUATION	7-1
	7.1	Sodium Safety Overview	7-1
		7.1.1 Sodium Characteristics	7-1
		7.1.2 Personnel Hazards	7-2
	7.2	SRTA Safety Features	7-2
	7.3	Sodium Release to the Atmosphere	7-6
	7.4	Failure Mode and Effects Analysis	7-7
		7.4.1 Absorber Panel Failure	7-8
		7.4.2 SRTA Loop Failures	7-12
		7.4.3 Heat Dump Failures	7-13
		7.4.4 Instrumentation and Control Failures	7-19
		7.4.5 Cover Gas Pressure System	7-19
	7.5	Preliminary Assessment	7-22
	7.6	References	7-22
Appendix	A	Development Specification for Sodium Receiver Test Assembly	

Appendix B Equipment Specification for Absorber Panel

VOLUME II

LIST OF FIGURES

Figure		Page
1-1	SRTA Loop Schematic and Artist's Concept	1-3
1-2	Central Receiver Test Facility (CRTF)	1-4
1-3	Artist's Concept of SRTA Installed on the CRTF Tower	1-5
1-4	Summary Work Flow	1-6
1-5	SRTA Schedule	1-8
1-6	Absorber Test Panel Configuration	1-11
1-7	SRTA Structure	1-12
1-8	Disassembled Heat Dump	1-13
2-1	Absorber Test Panel Interface Control Drawing	2-5/6
2-2	Test Panel "Uniform" Flux Profile	2-7
2-4	Panel Flux Field Restrictions	2-9
2-5	Finite Element Model Node Locations	2-12
2-6	Finite Element Model	2-13
2-7	Panel Front to Back Temperature Distribution (°F) 6 Meters Below Top of Panel	2-16
2-8	Panel Front to Back Axial Stress Distribution (Ksi) 6 Meters Below Top of Panel	2-16
2-9	Absorber Test Panel Sodium Temperature Profiles	2-24
2–10	Jumper Tube Evolution	2-25
2-11	Absorber Test Panel General Arrangement	2-27/28
2-12	Absorber Test Panel Structure (Sheet 1)	2-29/30
2-13	Absorber Test Panel Structure (Sheet 2)	2-31
2-14	Tube-Header Stub Design Arrangement	2-32
2-15	Absorber Test Panel Brazing Details	2-35/36
2-16	Absorber Test Panel Sections and Details	2-37/38
2-17	Support Structure Natural Frequency Model	2-41
3-1	Summary Test Panel Manufacturing Work Flow	3-2
3-2	Prototype Pre-Braze Panel	3-4
3-3	Test Panel Typical Twelve Tube Section	3-4
3-4	Prototype Post-Braze Micrograph	3-6
3-5	Panel Subassembly Schematic	3–6

LIST OF FIGURES (Cont'd)

F	ligure		Page
	3-6	Panel Manufacturing Schedule	3-7
	3-8	Furnace Installation Schedule	3-10
	3-7	Temporary Brazing Furnace	3-11/12
	3-9	Plan View of Miniature Tube Orbital Welding Torch	3-13
	3-10	Side View of Miniature Tube Orbital Welding Torch	3-14
	3-11	Consumable Insert for Tube Orbital Welds	3-15
	3-12	Test Panel Weld Mockup Assembly	3-16
	4-1	Piping and Instrumentation Drawing	4-3/4
	4-2	SRTA Arrangement Drawing (Sheet 1)	4-5/6
	4-3	SRTA Arrangement Drawing (Sheet 2)	4-7/8
	4-4	SRTA Heat Dump Arrangement	4-9
1	4-5	Sefor Heat Dump Coil	4-11
	4-6	EM Pump Performance Curves	4-17
1	4-7	SRTA Support Structure (Sheet 1)	4-21
	4-8	SRTA Support Structure (Sheet 2)	4-22
	4–9	SRTA Instrumentation Diagram	4-23/24
1	4-10	SRTA Control Diagram	4-27/28
	4-11	SRTA Control Center	4-32
	4-12	Flux Down Transient	4-34
	4-13	Power Down Transient Operation	4-34
	4-14	Power Down Transient Operation	4-35
	4-15	Full Flow Response to 5%, 5 sec. Transient	4-35
	4-16	48% Flow Response to 5%, 5 sec. Transient	4-36
	4-17	16.8% Flow Response to 5%, 5 sec. Transient	4-36
	4-18	Loop Analysis Model	4-38
	5-1	SRTA Schematic Showing SEFOR Equipment	5-3
	5-2	Heat Dump Disassembly at the SEFOR Site	5-4
	5-3	EM Pump Duct	5-6
	5-4	EM Pump Stator with Duct Inside	5-6
	5-5	Piping Isometric	5-7
	5-6	2-Inch Pneumatic Operated Valve	5-10
	5-7	SRTA Assembly Schedule	5-11
	6-1	SRTA Test Flux Profiles	6-4
	6-2	SRTA Flux Ramps	6-5

LIST OF FIGURES (Cont'd)

Figure		Page
6-3	Curve Fit Determination of ε and H_{T}	6-8
6-4	Sample Data Plot for Test Runs 2.1 Through 2.12	6-10
6-5	Candidate Approach for Test $\#4$	6-13
6-6	SRTA Test Schedule	6-16
7-1	SRTA Safety Systems	7 - 5

.

VOLUME II

LIST OF TABLES

<u>Table</u>		Page
1-1	Absorber Test Panel Design Data	1-9
1-2	SRTA Tank Data	1-12
1-3	EM Pump Data	1-13
2-1	Absorber Test Panel Requirements	2-2
2–2	Absorber Loss Program Modifications	2-10
2-3	SRTA/Commercial Panel Comparison	2–10
2-4	Boundary Conditions for Receiver Panel Analysis	2-14
2-5	Creep-Fatigue Life of the Commercial Panel	2-18
2-6	Panel Absorbed Flux Distribution (W/cm ²) @ Maximum Load and Uniform Flux Operation	2-20
2-7	Panel Node Sodium Temperature (°F) @ Maximum Load and Uniform Flux Operation	2-20
2-8	Panel Average Outside Tube Metal Temperature (°F) @ Maximum Load and Uniform Flux Operation	2–20
2–9	Panel Absorbed Flux Distribution (W/cm ²) @ Maximum Load and Uniform Flux Conditions	2 - 21
2-10	Panel Node Sodium Temperatures (°F) @ Minimum Load and Uniform Flux Conditions	2-21
2-11	Panel Average Outside Tube Mêtal Temperatures (°F) @ Minimum Load and Uniform Flux Conditions	2-21
2-12	Panel Absorbed Flux Distribution (W/cm ²) @ Maximum Load and Single Point Aiming Conditions	2-22
2-13	Panel Node Sodium Temperatures (°F) @ Maximum Load and Single Point Aiming Conditions	2–22
2-14	Panel Average Outside Tube Metal Temperature (°F) @ Maximum Load and Single Point Aiming Conditions	2–22
2-15	Absorber Test Panel Dry Weights	2-33
3-1	Materials and Fixtures for Furnace Braze	3-8
3-2	Generalized Brazing Procedure	3–9
4-1	Comparison of SRTA and SEFOR Thermal Duty	4-13
4-2	Effect of SRTA Conditions on SEFOR Heat Transfer Calculations	4-14
4-3	General Information	4-16
4-4	Required Dump Tank Volume	4-19

LIST OF TABLES (Cont'd)

<u>Table</u>		Page
4-5	SRTA Alarm Signals	4-26
5-1	SEFOR Equipment List	5-2
6-1	SRTA Test Data Acquisition	6-2
6-2	Test #1 Radiation and Convective Loss Test Conditions	6-6
6-3	Test #2 Startup/Shutdown and Transient Characterization Test Conditions	6-9
6-4	Test #3 Normal Operation Test Conditions	6-12
6-5	Test #5 High Flux Test Conditions	6-14
7-1	Sodium Reactions	7-3
7–2	Small Absorber Panel Leak on Front Surface During Operation	7-9
7-3	Small Leak Absorber Panel on Back (Enclosed) Surface During Operation	7-10
7-4	Small Absorber Panel Leak During Hot Hold With Doors Closed	7-11
7-5	Large Absorber Panel Leak During Operation	7-13
7-6	Small Leak in Piping of Components During Operation	7-14
7-7	Large Leak in High Pressure Zone of Piping During Operation	7-16
7-8	Sodium Leak in Heat Dump Coil	7-17
7-9	Loop - Overall	7-18
7-10	Electrical Malfunction/Power Loss	7-20
7-11	Cover Gas Pressure System Failure	7-21

PHASE II PROGRAM OVERVIEW

This Midterm Technical Report documents progress during the first year of the Alternate Central Receiver Power System Program Phase II (DoE Contract No. DE-ACO3-79SF10535). The report consists of the following three volumes:

- Volume I Commercial Plant Design Refinement
- Volume II Sodium Test Receiver Experiment
- Volume III Materials Experiments

BACKGROUND

The Phase II program is a follow-on program to the completed Conceptual Design of Advanced Central Receiver Power Systems - Phase I (DoE Contract No. DE-ACO3-78ET20500) led by General Electric Corporate Research and Development.

During Phase I, parametric analyses were performed to select the preferred commercial scale (100 MWe) sodium cooled central receiver power plant. The reference concept selected utilizes an external cylindrical receiver with a surrounding field of heliostats. The plant loop schematic is shown in Figure 1 and an artist's concept of the plant in Figure 2. Thère are approximately three hours of storage, ground level steam generators, and a high efficiency reheat steam power conversion cycle.

A conceptual design was prepared for the reference plant concept and detailed cost estimates were calculated. A number of potential improvements to be examined during Phase II were identified, as were a number of Subsystem Research Experiments (SRE's). The SRE's were selected as those technical steps necessary for advancement of the sodium central receiver technology towards commercialization and addressed critical technical uncertainties.

The Phase II program is a logical extension of the Phase I effort and has as its objective "the near term application of sodium solar central receiver power plants for low cost electric power generation." The specific Phase II activities, shown graphically on Figure 3, include the following efforts:

• Performance of a receiver panel test at the Central Receiver Test Facility (CRTF)

1

Figure 2. Plant Arrangement

SYSTEM ENGINEERING AND ANALYSIS

SUBSYSTEM RESEARCH EXPERIMENTS (SRE'S)

• SRE 1	ABSORBER PANEL TEST
• SRE 2	MATERIALS SRE'S
SRE 2A	PANEL FABRICATION DEVELOPMENT
SRE 2B	PANEL INSPECTION AND EVALUATION
SRE 2C	STRESS CORROSION AND FATIGUE
SRE 2D	FATIGUE CRACK GROWTH AND FRACTURE TOUGHNESS

Figure 3. Major Phase II Activities

- Performance of materials experiments and panel fabrication development
- Commercial plant design updates
- Development planning.

PROGRAM WORK PLAN

The Phase II program consists of the five tasks described below that extend over two years.

• Task 1 - Subsystem Research Experiments (SRE's)

Perform the necessary hardware development efforts to move sodium central receiver technology from conceptual design status to commercial demonstration status. Key efforts are design, fabrication, and testing of a Sodium Receiver Test Assembly (SRTA) shown in Figure 4 and the conduct of critical materials experiments.

Task 2 - Commercial Plant Design

Perform a revivification of the conceptual design, based on improvements identified during Phase I. Near the end of the program, update the design to reflect knowledge gained during Phase II.

Task 3 - Critical Module Design

Define the next step in plant commercial plant development by conceptualizing a large scale critical module configuration. Update the critical module concept near the end of the program to reflect knowledge gained during Phase II.

• Task 4 - Development Planning

Prepare an update of the Phase I development plan for solar sodium receiver technology near the end of Phase II to reflect the knowledge gained during Phase II.

Task 5 - Program Management

Perform appropriate program management.

The work flow for accomplishing these tasks is shown on Figure 5 and the related schedule shown on Figure 6.

Figure 4. SRTA Schematic and Artist's Concept

Figure 6. Phase II Program Schedule

ORGANIZATION

The Phase II program is being led by the General Electric Energy Systems Programs Department (ESPD). The transition of leadership from Corporate Research and Development (CRD) to ESPD is a normal activity for General Electric and represents the logical transition of a primarily R&D program into a primarily hardware and commercial application program. CRD played a major role in the plant design refinement task and ensured that a sound technical transition occurred. Kaiser Engineers, Incorporated of Oakland, CA was the Architect Engineer during Phase I and performed the storage tank design refinement described in Volume I of this report. The current organization is shown in Table 1.

TABLE 1

PROGRAM ORGANIZATION

•	GENERAL ELECTRIC COMPANY
	- ENERGY SYSTEMS PROGRAMS DEPARTMENT (ESPD)
	Program Management Systems Engineering Plant Integration
	- ADVANCED REACTOR SYSTEMS DEPARTMENT (ARSD)
	Liquid Metal Engineering Sodium Components Brazing Development
•	FOSTER WHEELER DEVELOPMENT CORPORATION (FWDC)
	- Absorber Test Panel Fabrication
•	PYROMET INDUSTRIES, INC.
	- Test Panel Brazing
	- Temporary Brazing Furnace

PROGRAM STATUS

As of April 1980, the Phase II program is focused on fabrication of the 2.5 MWth Sodium Receiver Test Assembly (SRTA). The design refinement of the 100MWe commercial plant was completed in October 1979 and the analysis and results are detailed in Volume I of this report.

The SRTA design has been completed and fabrication of the components are underway. The panel fabrication scheme (horizontal furnace braze) has been selected and fabrication of a large temporary brazing furnace is well underway. The design and fabrication status of the SRTA is reported in Volume II.

Significant progress has been made in the development of the panel fabrication techniques and several materials test efforts are underway. The materials experiments are discussed in Volume III.

SECTION 1

INTRODUCTION AND OBJECTIVES

The design, fabrication, installation and testing of a test sodium-cooled receiver comprise the largest effort of the Phase II Program. This volume of the Midterm Technical Report describes the design status, analysis results, and fabrication status of the 2.5 MWth Sodium Receiver Test Assembly (SRTA).

1. 1 EXPERIMENT OBJECTIVES

This Subsystem Research Experiment (SRE #1) has seven principal objectives which will be discussed below:

Manufacturability

The SRTA absorber test panel has the thin-walled Incoloy 800 constuction selected for the commercial scale (100 MWe) receiver absorber panels. It is being fabricated using tube-to-tube brazing techniques developed in the Panel Fabrication Subsystem Research Experiment (SRE) described in Volume III of this report. Thus, the absorber test panel forms the first demonstration of this thin-walled, brazed construction.

Panel Structural Integrity

The SRTA absorber test panel will be installed and tested at the Central Receiver Test Facility (CRTF) at power levels up to 2.5 MWth and be subjected to a number of transients. This testing will enable verification of structural integrity during operation.

Control Stability

The control system being designed for this SRTA must demonstrate control characteristics and stability during actual testing at the CRTF for sodium cooled central receivers.

Panel Performance

Testing at CRTF will provide a measure of panel efficiency for typical operating modes as well as specific data for radiative, connective and reflective losses.

• Sodium System Reliability/Safety

Over thirty years of experience exists for liquid metal-cooled systems;

however, questions on sodium hardware reliability/safety in solar plants need demonstration. The three-month operation of this SRTA at CRTF will provide a visible opportunity for DOE and industry to examine sodium system operating and safety characteristics.

• High Flux Operation

The excellent heat transfer properties of liquid sodium allow receiver operation at relatively high heat flux levels. These higher fluxes result in smaller, more efficient receivers. The SRTA will therefore operate at fluxes up to approximately 1.5 MW/M^2 .

Cost Data

The construction of actual sodium hardware for solar applications, particularly the absorber test panel, will allow more confident calculation of commercial plant receivers.

1.2 SRTA DESCRIPTION

The 2.5 MW (thermal) sodium cooled test receiver has a nominal outlet temperature of 1100° F and a cold leg return temperature of 600° F, typical of the reference 100 MWe commercial scale plant.

The Solar Receiver Test Assembly (SRTA) shown in Figure 1-1, is scheduled to be tested at the Central Receiver Test Facility (CRTF) during the winter of 1980/ 81. It consists of a sodium fluid circulation loop powered by a helical electromagnetic pump. The loop schematic indicates that there are six major SRTA components: the absorber test panel, a surge tank, a dump (drain) tank, and electromagnetic (EM) pump, sodium-to-air heat dump, and control and instrumentation.

The fluid circulation module has an overall height of about 40 feet. The heat dump has a height of about eighteen feet. Therefore, the SRTA will be installed on top of the CRTF tower, in lieu of a test bay. The CRTF tower is shown in Figure 1-2 and an artist's concept of the installed SRTA is shown in Figure 1-3.

1.3 SRE WORK FLOW

The design and fabrication of the SRTA is controlled through the careful preparation and adherence to specifications. Once the test objectives and test panel configuration were selected during the commercial plant design refinement task (see Volume I), a top level system specification was prepared. The current issue system specification, provided as Appendix A, forms the baseline for all design and fabrication efforts. All lower level specifications must track the requirements of the system specification in order to ensure the SRTA meets all test objectives. Figure 1-4 shows the specification work flow. Note that specifications were prepared for

Figure 1-1. SRTA Loop Schematic and Artist's Concept

Figure 1-2. Central Receiver Test Facility (CRTF)

Figure 1-3. Artist's Concept of SRTA Installed on the CRTF Tower

all major components, including the refurbished SEFOR hardware.

Once The SRTA has been completely fabricated, it will be shipped to the CTRF in Albuquerque, N.M. The sodium loop will be erected first and then the absorber test panel will be installed. Finally the entire SRTA will be raised to the top of the tower after initial sodium fill. Testing will take place during the first quarter of 1981, as shown in the summary schedule on Figure 1-5.

1.4 SRTA DESIGN AND FABRICATION OVERVIEW

The design of the Sodium Receiver Test Assembly (SRTA) is based on a specification developed to define the requirements, characteristics, design and construction features and performance verification criteria for the unit. This specification, number 295A4725, is included as Appendix A.

The key component of the SRTA is the absorber test panel which has been designed to be prototypical of a commercial scale receiver. Panel dimensions of approximately 1 meter in width and 5 meters long were selected to give a total of 2.5 MW of incident energy at a uniform flux level of 0.5 MW/M^2 . This flux level was selected to be consistent with commercial peak average flux levels. As indicated in Section 2.0 of Volume I, the peak flux for commercial operation is anticipated to be approximately 1.2 MW/M^2 . Accordingly, tests at that peak flux value have been planned. The test matrix also includes operation at flux levels 130% of the expected peak 1.2 MW/M^2 value. These 1.55 MW/M^2 tests will be scheduled as the last test. The total power at all operating conditions is limited to 2.5 MW by the size of the sodium-to-air heat exchanger selected for use.

A schematic of the SRTA test loop was shown in Figure 1-1 that identified the major components. A factor in the design of the components was the opportunity to utilize hardware from a non-radioactive sodium loop of the decomissioned Southwest Experimental Fast Oxide Reactor (SEFOR) located near Fayetteville, Arkansas. SEFOR components used in the SRTA include the electromagnetic (EM) pump, surge and drain tanks, valves, flow meters, and the sodium-to-air heat exchanger (heat dump). The surge and drain tanks and air cooler have required substantial work to modify and refurbish for SRTA use. The tank volumes have been changed to meet the test requirements. The heat dump heat exchanger coil is being replaced because of external corrosion in the original exchanger.

The status of the principal components is described below.

1.4.1 ABSORBER TEST PANEL

The principal purpose of the SRTA effort is to successfully fabricate and test a prototype sodium cooled absorber based upon the General Electric thin-walled, brazed construction scheme. Key design parameters are listed in Table 1-1.

Table 1-1

ABSORBER TEST PANEL DESIGN DATA

Incident Power	2.5 MW
Peak Solar Flux	~1.5 MW/M ²
Inlet Temperature	500 ⁰ -700 ⁰ F
Outlet Temperature	1100 ⁰ F
Design Cyclic Life	30 Years
Material	Incoloy 800
No. Tubes	50
Tube O.D.	.75 inches
Tube Wall Thickness	.05 inches
Active Length	15 feet
Peak Na Velocity	2.3 fps
Width	~3.26 feet

The manufacturing approach for the test panel has undergone some changes from that initially considered as a result of the Phase I study. The initial approach was to braze a 51 tube 15 foot long panel with the tubes tangent to each other with braze alloy introduced between the tubes. This was subsequently modified with the addition of "hour glass" shaped filler strips between the tubes to increase the braze joint strength and aid fixturing of the panel tubes. Simple joint tensile tests show that the filler strip increases the strength by about a factor of 2. Brazing tests have indicated that best results were obtained not with the panel in the vertical position during brazing but with the panel horizontal and tilted at 45° to 60° from flat. After an extensive search of U.S. furnaces, it was found that a temporary hydrogen atmosphere brazing furnace needed to be built. A furnace was designed of sufficient size to braze a full length segment of a panel up to 20 tubes wide and it was planned to join several segments into the full panel width. This joining resulted in significant additional development effort and risk and the the decision was made to build a larger furnace of sufficient size to accommodate a

full width panel of 50 tubes. The design and procurement of this brazing furnace is the critical path item in the panel manufacturing schedule. The details of the brazing development program are provided in Section 2 of Volume III.

In order to provide an interface between the test panel and the other components of the sodium loop, an intermediate structure is provided. This structure, to be supplied by the panel manufacturer (Foster Wheeler), is bolted to the structure that supports the pump, piping and tankage. The panel support structure also serves as a strong back during shipping and handling of the panel. The panel is attached to the structure by a constant load hanger at the top. Thermal expansion downward is accommodated by pivoted links between the panel and structure which also provide support against wind loading on the panel. Wind loading and seismic forces constitute the major structural forces. The general configuration of the test panel is shown in Figure 1-6.

1.4.2 SODIUM LOOP COMPONENTS

Fabrication of the SRTA is well under way with most components in San Jose, California in preparation for assembly. The characteristics and status of some principal components are summarized below:

<u>Structure</u>: The structure for the fluid circulation module has been fabricated and erected and ladders, platforms, tanks, piping, etc. are currently being installed (Figure 1-7). Prior to shipment to the CRTF, the lower twelve feet will be unbolted from the top. This lower section, containing the dump tank, EM pump, and other large equipment will be shipped in a vertical orientation, while the top 28 feet will be shipped horizontally. The two parts will be welded together and provided with an enclosure in Albuquerque.

<u>Tanks</u>: The surge tank and drain tank were purchased from the Southwest Experimental Fast Oxide Reactor (SEFOR) in the summer of 1979 and have been refurbished for use in the SRTA. The surge tank is the high point in the loop and acts as an expansion and surge control volume. The drain tank is the low point in the loop and is used for sodium storage or for emergency dumping of the loop. Under normal operation and at night the loop will contain the sodium at elevated temperatures $(\sim 600^{\circ}F)$ through the use of trace heaters. Principal tank parameters are listed in Table 1-2.

Figure 1-6. Absorber Test Panel Configuration

Figure 1-7. SRTA Structure

Table 1-2

SRTA TANK DATA

Material	304 Stainless Steel
Design Pressure	50 psig
Design Temperature	1150 ⁰ F
Drain Tank Volume	240 gal.
Surge Tank Volume	75 gal.

<u>EM Pump</u>: The pump for the SRTA is also refurbished SEFOR hardware. The pump will be an important part of the control scheme by changing the flow as needed to maintain a nominal test panel outlet temperature of 1100° F. Principal data is listed below (Table 1-3):

Table 1-3

EM PUMP DATA

Design Flow	175 gpm
Design Head	30 psi
Design Temperature	1150 ⁰ f
Design Suction Pressure	5 psia
Power Input	33.6 kW
Power Factor	.327
Line Voltage	475 volts

<u>Heat Dump</u>: The sodium-to-air heat exchanger, also refurbished SEFOR equipment, is rated at 2.5 MW thermal. Unlike the other SEFOR equipment purchased last year, a portion of the heat dump required replacement. The W-shaped heater coil was found to have reduced contact between the coil piping and the mechanically connected fins. A replacement coil is being procured to ensure sufficient heat rejection capacity. SRTA control will utilize the variable speed fans and the outlet doors to match the test panel heat input after an appropriate time delay for hot leg loop transit. Photographs of the heat dump base and the coil/windscreen portions are shown below.

Figure 1-8. Disassembled Heat Dump

The following sections of Volume II of Midterm Technical Report detail the engineering design, analysis, and fabrication status of the SRTA.

SECTION 2

ABSORBER TEST PANEL DESIGN

As described in the overview and Section 1, the absorber test panel configuration is based on the system design engineering performed for a 100 MWe commercial scale plant during the Phase I program and revised during the early part of Phase II. This section describes the specification, design, engineering, and analysis for the test panel.

2.1 ABSORBER TEST PANEL SPECIFICATION

The basic technical requirements for the SRTA are contained in the "Development Specification for Sodium Receiver Test Assembly (SRTA)." The current revision of this specification (No. 295A4725) is provided as Appendix A.

2.1.1 TEST PANEL REQUIREMENTS

The system requirements of the SRTA Development Specification were expanded into specific requirements for the test panel through preparation and issuance of an "Equipment Specification for Absorber Panel." This equipment specification became the technical benchmark for Foster Wheeler in the design and fabrication of the absorber test panel. The current revision of the panel specification (No. 295A4724) is provided as Appendix B. Key requirements are listed on Table 2-1 and are summarized below.

2.1.1.1 Performance Requirements

As indicated in Table 2-1 the test panel is designed for a total incident power level of 2.5 MW. Three general flux profiles were planned for the CRTF test, including: a uniform flux of .5 MW/m^2 (representative of the average commercial panel), an intermediate profile with a peak of 1.2 MW/m^2 (representative of the peak commercial panel), and a high flux profile of approximately 1.5 MW/m^2 (representative of an upset condition on the commercial receiver).

To be consistent with the commercial plant operating modes, a constant outlet temperature of $593^{\circ}C$ (1100°F) is planned. A thirty year design life has been imposed on the panel to ensure that the resultant panel design has fatigue endurance sufficient for commercial application. Note that the rest of the SRTA is only

Table 2-1

ABSORBER TEST PANEL REQUIREMENTS

Performance

- 2.5 MW Total Incident Power with "Uniform" Flux \sim .5 MW/m², Peak Flux \sim 1.5 MW/m²
- Inlet Temperature 500°F-700°F
- Constant Outlet Temperature 1100°F
- 30 Year Cyclic Design Life
- Operating Modes
- Operating/Survival Requirements
- Truck Transportation
- Minimum Field Labor/Welding
- Cleanliness

Design and Construction

- ASME Boiler & Pressure Vessel Code Section VIII Division 1
- AISC Structure
- Incoloy 800

Design Documentation

Testing

- Hydrostatic or Pneumatic Pressure
- Helium Leak Test

Insulation/Trace Heating

Quality Assurance

Shipping

• Purged

designed for a 5,000 hour life.

The panel operating modes are the same as those for the SRTA system.

- Normal Operation automatic mode
- Hot Hold panel insulating door closed, trace heaters on auto at 600°F
- Preheat ambient to hot hold
- Startup hot hold to operation
- Shutdown operation to hot hold
- Emergency Dump rapid Na drain, inert gas
- Calibration 600°F to 1100°F isothermal, surge tank level gages

2.1.1.2 Design and Construction Requirements

The absorber test panel is designed to meet the intent of Section VIII of the ASME code, but is not required to have a code stamp. Some additional requirements appropriate for sodium systems, such as a helium leak check, have been imposed in the specification (Appendix B). As indicated in Section 1, the test panel will utilize brazed construction over the active length with Incoloy 800 inserts between the tubes.

2.1.1.3 Other Requirements

As indicated on Table 2-1, the panel is required to have appropriate design documentation, quality assurance, and nitrogen purged shipment in order to assure a satisfactory product for the CRTF test. Appendix B should be consulted for details.

2.1.1.4 Interface Control

The test panel has a number of direct mechanical interfaces with the rest of the SRTA. The more obvious interfaces are between the panel structure and the SRTA structure, between the panel inlet/outlet headers and the SRTA piping, and between the panel boundary and the solar shield. The details of the SRTA portion of the interfaces are described in Section 4.

Mechanical interface control is performed by preparation and careful updating of an Interface Control Drawing. The current revision of the Panel Interface Control Drawing is shown on Figure 2-1.

2.1.2 SOLAR FLUX CONSIDERATIONS

A basic input required for test panel detailed design is the flux profiles for the three general distributions described in Section 2.1.1 (uniform, 1.2 MW/m^2 peak, and 1.5 MW/m^2 peak).

2.1.2.1 Flux Profiles

As indicated in Section 1, the general configuration of the active portion of the absorber test panel is a flat plate about 1 meter wide and 5 meters tall. The three general panel distributions were provided to CRTF personnel, who then utilized the HELIOS code to generate flux profiles for the test panel when installed on the CRTF tower. Figures 2-2 and 2-3 are graphical representations of the HELIOS output for the "uniform" and maximum peak (1.5 MW/m^2) distributions. Examination of Figure 2-2 shows that the narrowness of the test panel has made achievement of a truly uniform distribution impossible; in fact, there is a peak-to-average ratio of about 1.5/1. This uneven flux distribution causes uneven vertical thermal expansion that made panel detailed design much more complicated than anticipated. Note that the maximum flux profile is non-symmetric in the vertical direction. This condition was necessary to avoid negative efficiencies near the panel top.

The flux data from CRTF was used as input to the General Electric Absorber Loss Code developed during the Phase I program. That code calculates thermal data for the panel (e.g. tube temperatures, sodium temperatures, flows, etc.). The Phase I code had to be modified to more accurately perform calculations for the test panel (Table 2-2). Detailed outputs are provided in Table 3-4 of Appendix A.

2.1.2.2 Flux Blockage

The incident solar flux beam geometry at the test panel surface is determined by the location of the CRTF heliostats, the height of the panel above the ground, and the east-west position of the SRTA on the tower top.

Analysis of these parameters resulted in the incident beam distribution shown in Figure 2-4. This information was provided to both the panel and SRTA structural designers with the requirement that no structures of the SRTA shall intercept the beam prior to its impingement on the test panel active surface.

2.1.3 CORRELATION OF TEST AND COMMERCIAL PANELS

The purpose of the SRTA experiment is to obtain data for use in the design and fabrication of commercial scale absorber panels. Table 2-3 shows a comparison of principal parameters for the absorber test panel, the commercial scale (100 MWe) stand alone plant absorber panel, and the repowering plant (60 MWe) absorber panel. It can be seen that the construction method, tube geometry, temperatures and fluxes of the SRTA panel are well correlated with the larger panels.
GENERAL 🛞 ELECTRIC

Figure 2-1. Absorber Test Panel Interface Control Drawing

2-5/6

Figure 2-2. Test Panel "Uniform" Flux Profile

GENERAL 🌄 ELECTRIC

Figure 2-3. Test Panel Peak Flux Profile

GENERAL 🌆 ELECTRIC

Figure 2-4. Panel Flux Field Restrictions

Table 2-2

ABSORBER LOSS PROGRAM MODIFICATIONS

- Expansion of data arrays to accommodate 121 data points from HELIOS.
- Changing panel physical description to conform to the test panel.
- Changing panel operating characteristics (Sodium inlet/outlet temps.)
- Changing basic panel geometry from three header center feed to two header bottom inlet, top outlet.
- Changing from Lyons to Lubarsky-Kaufman correlation for calculating Nusselt number (more realistic for test panel operating range).
- Addition of print out for absorbed flux.
- Changing flow calculation from a per horizontal mode basis to a total panel basis.

Table 2-3

SRTA/COMMERCIAL PANEL COMPARISON

Parameter Physical Characteristics		SR	TA		Commo (100	ercial MWe)	Repowe (60 N	ering Me)
Width, M (ft.)		1	(3.31)		2.09	(6.87)	1.52	(5.0
Length, M (ft.)		4.57	(15.0)		16	(52.48)	12	(39.3
Tube Diam. CM (in.)		1.905	(.75)		1.905	(.75)	1.905	(.7
Tube Wall, CM (in.)	.127		(.05)		.127	(.05)	.127	(.0
Number of Tubes		5	51			108		80
Material		18	300		I	800		1800
Flow Driver		EM	Pump		EM	Pump	E	M Pump
Tube-To-Tube Joints		Bra	zed		Br	azed	B	razed
Tube-To-Header Joints		Wel	ded		We	lded	W	elded
Performance Characteristics	Uniform	Profile	Peak Pr	ofile				
Peak Flux, (MW/M ²)	0.64		1.55			1.2		1.1
Inlet Temp., ^O C (^O F)	323	(613)	323	(613)	323	(613)	293	(56
Outlet Temp., ^o C (^o F)	593	(1100)	593	(1100)	593	(1100)	593	(110
Sodium Velocity (Max.) M/sec (ft/sec)	.70	(2.3)	.70	(2.3)	3.1	(10.2)	1.9	(6.
Max. Wall Temperature Rise oc (oF)	52	(90.5)	105	(189)	86	(155)	78 ⁻	(14
					t			

GENERAL 🐲 ELECTRIC

2.2 PANEL FATIGUE LIFE ANALYSIS

The absorber test panel will be operated at most a few thousand hours and fatigue does not appear to be a concern; however, it is very desirable that the design and fabrication be appropriate for a commercial scale plant with a thirty year life. Volume I Section 2 describes in detail the fatigue life calculations used by General Electric to evaluate the commercial panel. As described in Volume III Section 2 and in Section 1 of this volume, the test panel will be brazed with hourglass inserts between the tubes. Foster Wheeler and General Electric have conducted preliminary analysis of the fatigue life of a panel with inserts. The final analysis results will be included in the program final design report; however, the preliminary Foster Wheeler analysis for the current configuration is summarized below.

2.2.1 ANALYSIS METHOD

The steady-state temperature distribution analysis and thermal stress analysis of the commercial absorber panel were done using the finite element computer program ANSYS (Ref. 1). It should be noted that this analysis took into account only those stresses that were induced by the front-to-back thermal gradient, as opposed to those that were caused by temperature differentials at different points in the plane of the panel.

The finite element model used is shown in Figures 2-5 and 2-6. Because of symmetry, only one-half of the 19.05 mm (.75 inches) x 1.27 mm (.05 inches) mean wall tube and its 9.525 mm (.315 inches) x .762 mm (.030 inches) hourglass-shaped spacer strip was considered. The tube was divided into 100 isoparametric elements whereas the strip was simulated by a coarser, 12-element mesh because the critical area, in terms of stress, was expected to be the front of the tube. The boundary conditions for the thermal analysis are given in Table 2-4.

Generalized plane strain conditions were assumed for the stress analysis along with the stress boundary conditions shown in Table 2-4. Because of the intermediate and end supports and the axial variations of flux, the problem is of a three-dimensional nature. A study conducted by J. Jones of Sandia Livermore (Ref. 2) however, has demonstrated that the two-dimensional generalized plane strain model reflects the state of stress and strain accurately. The generalized plane strain analysis was accomplished by first performing a plane strain analysis and then relaxing the axial forces at the ends. A postprocessor computer program was written for this purpose. The postprocessor can also calculate the bending stresses and peak stress in the tube.

GENERAL 🌄 ELECTRIC

NOTE: (1) ELEMENT NUMBERS ARE SHOWN (2) NOT TO SCALE

GENERAL 🏵 ELECTRIC

NOTE: (1) NODE NUMBERS ARE SHOWN (2) NOT TO SCALE

Figure 2-6. Finite Element Model

GENERAL 🍘 ELECTRIC

Table 2-4

BOUNDARY CONDITIONS FOR RECEIVER PANEL ANALYSIS

Boundary	Thermal	Stress
$\mathbf{r} = \mathbf{r}$ $0 \le \theta \le \pi/2 - \phi$	$k \partial T/\partial r = -q'' \cos \theta$	$\sigma_{rr} = 0$
$r = r_0$ $\pi/2 + \phi \leq \theta < \pi$	∂T/∂r = 0	$\tau_{r\Theta} = 0$
$r = r_i$	$k \partial T/\partial r = h_i (T-T_f)$	$\sigma_{rr} = -p$
0 < θ < π		$\tau_{r\theta} = 0$
$r_{i} \leq r \leq r_{0}$ $\theta = 0$ $r_{i} \leq r \leq r_{0}$ $\theta = \pi$	9T/30 = 0	V = 0 $\tau_{r\theta} = 0$
z = 0 $z = 1$	$\partial T/\partial z = 0$	W = constant $\int \sigma da = 0$ Λzz
x = w/2 c ≤ y ≤ d	$k \partial T / \partial x = -q''_o$	$\sigma_{xx} = 0$
x = -₩/2 c ≤ y ≤ d	$\partial T/\partial x = 0$	$\tau_{xy} = 0$
$-w/2 \le x \le w/2$ y = d	$\partial T/\partial y = 0$	V = constant $\tau_{xy} = 0$

Note: U, V, W are the displacements in the x, y and z directions, respectively.

2–14

Based on Figures 2-7 through 2-9 of Panel Specification 295 A4724 (See Appendix B), it was expected that the panel's peak metal temperature would be experienced at a point located 6 m below the top of the panel. As a result, this elevation was chosen for analysis and the following parameters were determined to exist at this point:

- Flux $q_0 = 1.01 MW/m^2 = 320,700 Btu/h \cdot ft^2$
- Film coefficient h_i = 7,625 Btu/h•ft²°F
- Bulk temperature T_{f}^{-} = 518°C (965°F)
- Thermal conductivity k = 0.9416 Btu/in.h°F
- Modulus of elasticity $E = 22.4 \times 10^6 psi$
- Coefficient of thermal expansion $\alpha = 9.6 \times 10^{-6}$ in./in.
- Poisson's ratio v = 0.372

The temperatures and axial stresses were calculated at this elevation for each element of the model. The temperatures and stresses that exist at the inner and outermost elements of the tube and spacer strip are shown in Figures 2-7 and 2-8. From these data it can be seen that element #5, which corresponds to the crown of the tube exposed to the solar flux, experiences the worst combination of stress and temperature.

2.2.2 CREEP/FATIGUE EVALUATION

Although a complete evaluation of the creep-fatigue life of the panel can be done only after the transient analysis is completed, some insight can be gained by analyzing the steady-state results.

There is no consensus as to what is a reasonable approach or criteria to evaluate creep-fatigue life of solar receiver components. ASME Boiler and Pressure Vessel Code Sections I and VIII have no criteria for creep-fatigue evaluation. Code Case N-47 has criteria for creep-fatigue evaluation, but these criteria are deemed too conservative and may result in severe economic penalties if used for solar applications.

In this analysis, four approaches were considered. They are as follows:

I <u>Modified Coffin-Manson Approach</u>: This is a fatigue correlation suggested earlier by GE, but is not "frequency modified" as more recently proposed by GE and documented in Volume I, Section 2.

Figure 2-7. Panel Front to Back Temperature Distribution (°F) 6 Meters Below Top of Panel

Figure 2-8. Panel Front to Back Axial Stress Distribution (KSi) 6 Meters Below Top of Panel

- II <u>Modified Nuclear Approach</u>: This approach was suggested in Reference 3 and was used by Foster Wheeler in Phase I of this program. In this approach, the inelastic fatigue curves of Code Case N-47 are used. Creep damage due to compressive hold times is ignored.
- III Interim Structural Design Standard Approach: A detailed description of this approach may be found in Reference 4. This is also a modification of the nuclear approach. In this approach, creep-fatigue damage is evaluated according to the linear damage equation:

$$\sum_{j=1}^{p} \left(\frac{n}{N_{d}}\right)_{j}^{+} \sum_{k=1}^{q} \left(\frac{t}{T_{d}}\right)_{k}^{-< D}$$

where:

- D = Total allowable creep fatigue damage (=1 for Incoloy 800).
- n = Number of applied cycles of loading condition j.
- N_d = Number of design allowable cycles for loading conditions j. N_d is obtained from Figure T-1420-1C of Code Case N-47.

This is a departure from the nuclear approach which requires the use of Figure T-1430-1C in conjuction with elastic analysis.

- t = Time duration of load condition k.
- T_d = Allowable creep rupture time at a given stress from load, k. In this analysis, T_d is obtained from the creep-rupture time curves given in Code Case N-47. The stress value used is 1.25 S_{vk}, where S_{vk} is the yield stress. This is also a departure from nuclear approach which requires the use of 1.25 S_{vk}/0.9.
- IV <u>Nuclear Approach</u>: For comparison purposes, the nuclear approach is also considered.

Using the "Hold at Full Flux" time and cycle data given in Figure 3-2 of this panel specification the creep-fatigue life of Element #5 was calculated by all four of the above approaches and the results are summarized in Table 2-5. The effective stress and strain (elastic) for this element was calculated to be 27.018 ksi and 1.0887×10^{-3} , respectively.

The design approaches proposed by GE and FW both indicate that the commercial panel's full flux operating condition will result in creep-fatigue life in excess of 30 years. As expected, approaches III and IV predict much lower creep-life, but it is noted that there could be a considerable improvement through an elastic-plastic-creep analysis.

Table 2-5

Approach	Fatigue Life (Cycles)	Creep Life (hours)	Creep-Fatigue (years)
Coffin-Manson	>10 ⁶		> 30
Code Case 1592 Figure 1420-1C No hold time	>10 ⁶		>30
Interim Structural Design Standard	>10 ⁶	20,000	=6.5*
Nuclear (Elastic Analysis)	1,000	6,500	= <u>1</u> **

CREEP-FATIGUE LIFE OF THE COMMERCIAL PANEL

* This analysis ignores the reduction in stresses due to creep relaxation. If an inelastic analysis is done, it can be shown that the life would be considerably higher.

** This is very unrealistic. By doing an inelastic analysis, the creep-fatigue life can be shown to be increased at least up to 5 to 10 years.

††† Results shown are for steady-state (full flux) conditions only; effect of transient conditions will be included at a later date.

2.3 PANEL THERMAL ANALYSIS

The calculation of the "uniform" flux distribution to be absorbed by the brazed test panel when operated in a no wind, 70°F ambient condition was discussed in Section 2.1.2 (Figure 2-2). This distribution results in 2.26 MW of absorbed flux over the panel's face. Under this design condition, the flux distribution (shown in Table 2-6) is observed to be approximately symmetrical about the panel's horizontal and vertical centerlines with flux extremes ranging from 24.3 to 63.8 W/cm². For analysis purposes, the panel was subdivided into an 11 x 11 element matrix with each element approximately .885 cm (3.5 inches) wide x 4.1593 cm (16.375 inches) high. The sodium and average outside metal temperatures that will exist at the center of each element of the panel are given in Tables 2-7 and 2-8. Because the incident flux possesses significant nonuniformity, it is observed that the sodium outlet temperatures (topmost elements) will range from 548°C (1019°F) at the ends of the panel to 613°C (1136°F) at the center of the panel. Upon combining in the outlet pipe header, the sodium will exit thepanel at an average mix temperature of 593°C (1100°F), despite this 48°C (118°F) end-to-center element temperature difference. The average metal temperature of the end and center element flow streams will, however, be 470°C (878°F) and 513°C (955°F), respectively. Tables 2-9 through 2-11 tabulate similar data for the minimum load condition during which the sodium flow and absorbed solar flux will be reduced to 0.37 MW and 3786 kg/h (8,347 lb/h), respectively, while still yielding a 593°C (1100°F) outlet temperature.

Although uniform flux aiming will be the panel's design condition, an analysis was also made to determine the fluxes and temperatures that will exist if a "single point" aiming strategy was used (Figure 2-8). In this approach, the mirrors will be focused at a point slightly above the panel's horizontal centerline to minimize flux spillage off the bottom and top of the panel. Tables 2-12 through 2-14 present flux and temperature data for this condition. From these tabulations, it is observed that the flux will vary from extremes of 0.1 to 145 W/cm^2 and average outside metal temperatures will vary from 454° C (849° F) at the ends to 487° C (908° F) at the center. Although the average metal temperature differentials will be much lower than experienced with uniform flux aiming 14° C versus 25° C (57° F versus 77° F), the maximum absorbed flux will be approximately 2.3 times higher and result in substantially higher local tube metal temperatures.

Table 2-6

PANEL ABSORBED FLUX DISTRIBUTION (W/cm²) @ MAXIMUM LOAD AND UNIFORM FLUX OPERATION

22.7	24.7	26.5	27.8	28.6	28.9	28.8	28.0	26.8	25.1	23.1
37.4	40.9	44.0	46.2	47.5	48.1	47.5	46.2	44.0	41.0	37.5
46.1	50.5	54.0	56.7	58.3	58.9	58.3	56.6	53.8	50.2	45.8
49.1	53.6	57.5	60.2	61.8	62.6	61.8	60.1	57.3	53.4	48.9
49.9	54.5	58.2	61.1	62.9	63.4	62.7	61.0	58.0	54.2	49.6
50.0	54.7	58.6	61.3	63.1	63.8	63.0	61.2	58.5	54.5	49.9
50.0	54.7	58.5	61.4	63.2	63.8	63.2	61.4	58.5	54.6	49.9
49.2	53.8	57.6	60.4	62.1	62.8	62.0	60.2	57.5	53.6	49.0
46.2	50.5	54.2	56.8	58.5	59.0	58.4	56.7	53.9	50.2	45.7
37.0	41.6	44.7	47.0	48.5	49.1	48.5	47.1	44.8	41.8	38.0
24.3	26.6	28.5	30.0	31.0	31.3	31.1	30.2	28.9	27.0	24.7

Table 2-7

PANEL NODE SODIUM TEMPERATURES (°F) @ MAXIMUM

LOAD AND UNIFORM FLUX OPERATION

1019.4	1058.5	1091.4	1115.5	1130.6	1136.3	1130.4	1115.3	1091.0	1057.8	1018.7
991.5	1028.0	1058.7	1081.2	1095.3	1100.5	1095.0	1080.8	1058.1	1027.1	990.6
952.7	985.6	1013.1	1033.4	1046.1	1050.8	1045.8	1033.1	1012.7	984.8	951.9
908.5	937.2	961.3	979.1	990.3	994.4	990.0	978.9	961.1	936.7	907.9
862.5	887.1	907.6	922.8	932.4	935.9	932.2	922.6	907.5	886.7	862.1
816.1	836.4	853.4	865.9	873.9	876.7	873.7	865.9	853.4	836.3	815.9
769.7	785.6	799.0	808.9	815.2	817.5	815.1	808.9	799.1	785.6	769.5
723.6	735.2	745.1	752.4	757.0	758.7	757.0	752.5	745.2	735.4	723.6
679.3	686.8	693.2	697.9	701.0	702.1	701.0	698.2	693.5	687.2	679.5
640.2	644.0	647.3	649.7	651.3	651.9	651.4	650.0	647.7	644.5	640.6
611.3	612.3	613.2	614.0	614.4	614.5	614.4	614.0	613.4	612.5	611.5

Table 2-8

PANEL AVERAGE OUTSIDE TUBE METAL TEMPERATURE (°F) @ MAXIMUM LOAD AND UNIFORM FLUX OPERATION

1052.1	1094.0	1129.3	1155.2	1171.3	1177.5	1171.4	1155.2	1129.3	1094.0	1052.1
1045.6	1085.9	1121.8	1147.2	1163.0	1169.1	1162.7	1146.8	1121.2	1086.2	1044.9
1019.6	1058.5	1090.9	1114.8	1120.7	1135.2	1129.4	1114.3	1090.1	1057.3	1018.4
980.1	1015.1	1044.5	1066.0	1079.4	1084.6	1079.1	1065.6	1044.0	1014.2	979.2
935.7	966.8	992.5	1011.6	1023.7	1027.9	1023.3	1011.3	992.1	966.0	935.1
890.1	916.9	939.4	955.8	966.3	970.1	966.0	955.6	939.3	916.5	889.7
844.2	866.7	885.6	899.6	908.4	911.5	908.3	899.6	885.6	866.6	843.9
797.4	815.7	831.1	842.4	849.5	852.2	849.3	842.2	831.1	815.5	797.1
749.0	763.0	774.8	783.4	789.0	790.8	788.8	783.4	774.6	763.0	748.7
698.0	707.3	715.3	721.1	725.0	726.4	725.0	721.5	715.9	708.1	698.6
643.7	653.2	657.0	660.1	661.9	662.5	662.1	660.5	657.8	654.0	649.5

Table 2-9

2.2	2.4	2.5	2.6	2.7	2.7	2.7	2.6	2.6	2.5	2.3	
5.2	5.7	6.1	6.4	6.5	6.6	6.6	6.4	6.1	5.7	5.3	
7.1	7.8	8.3	8.7	9.0	9.1	9.0	8.7	8.3	7.7	7.1	
7.9	8.6	9.3	9.7	10.0	10.1	10.0	9.7	9.2	8.6	7.9	
8.3	9.1	9.7	10.2	10.5	10.6	10.5	10.2	9.7	9.0	8.2	
8.5	9.3	10.0	10.5	10.8	10.9	10.8	10.5	10.0	9.3	8.5	
8.7	9.5	10.2	10.8	11.1	11.2	11.1	10.8	10.2	9.5	8.7	
8.7	9.5	10.3	10.8	11.1	11.3	11.1	10.8	10.2	9.5	8.7	
8.2	9.1	9.8	10.3	10.6	10.7	10.6	10.3	9.7	9.0	8.1	
6.7	7.4	8.0	8.5	8.8	8.9	8.8	8.5	8.1	7.5	6.7	
4.1	4.5	4.9	5.2	5:4	5.5	5.4	5.3	5.0	4.6	4.2	
	Table 2-10										

PANEL NODE SODIUM TEMPERATURES (°F) @ MINIMUM LOAD AND UNIFORM FLUX CONDITIONS

1021.3	1062.5 1039.8	1097.0 1072.6	1122.0	1137.5 1111.5	1143.5 1117.1	1137.3	1121.7	1096.5	1061.8	1020.6
965.4	1001.6	1031.8	1053.9	1057.7	1072.8	1067.3	1053.5	1031.2	1000.6	964.5
922.9	955.1	982.0	1001.7	1014.1	1018.7	1013.8	1001.4	981.6	954.4	922.2
877.2	905.1	928.3	945.5	956.3	960.2	956.1	945.3	928.2	.904.6	876.7
829.8	853.0	872.6	887.0	896.2	899.4	896.0	886.9	872.6	852.9	829.5
781.2	799.7	815.4	826.9	834.2	836.9	834.1	826.9	815.5	799.8	781.0
732.1	745.8	757.4	766.0	771.5	773.4	771.4	766.1	757.6	746.0	732.1
684.3	693.2	700.8	706.4	710.1	711.4	710.1	706.7	701.2	693.7	684.6
642.0	646.6	650.5	653.4	655.3	656.0	655.4	653.7	651.0	647.1	642.5
611.5	612.8	613.9	614.7	615.2	615.4	615.3	614.8	614.1	613.0	611.8

Table 2-11

PANEL AVERAGE OUTSIDE TUBE METAL TEMPERATURES (°F) @ MINIMUM

LOAD AND UNIFORM FLUX CONDITIONS

1026.1	1067.6	1102.4	1127.6	1143.2	1149.3	1143.1	1127.4	1102.0	106.7.1	1025.6
1011.6	1052.0	1085.8	1110.3	1125.6	1131.4	1125.3	1109.9	1085.1	1051.0	1010.6
980.8	1018.4	1049.7	1072.6	1036.9	1092.2	1086.6	1072.2	1049.0	1017.3	979.7
940.0	973.8	1002.0	1022.6	1035.6	1040.4	1035.2	1022.3	1001.5	973.0	939.2
895.0	924.6	949.2	967.4	9789	983.0	978.6	967.2	949.0	924.1	894.5
843.1	873.2	894.2	909.7	919.5	923.0	9.19.3	909.6	894.2	873.0	847.8
800.0	820.4	837.5	850.2	858.2	861.1	858.1	850.2	837.6	820.3	799.8
750.9	766.5	770.7	789.4	795.6	797.8	795.4	789.4	779.8	766.6	750 [,] .8
702.1	712.9	722.0	728.7	.733.1	734.6	733.1	729.0	722.3	713.2	702.3
655.7	662.7	668.0	671.9	674.4	675.3	674.5	672.2	668.5	663.4	657.2
620.5	622.7	624.6	626.1	627.0	627.3	627.1	626.3	625.0	623.1	620.9

					Tab	le 2-12					
			PANEL AB	SORBED F	LUX DIST	RIBUTION	(W/cm ²) @	MAXIMUM			
			LO	AD AND S	INGLE PO	DINT AIMIN	G CONDITI	ONS			
	1.8	1.7	1.4	1.3	2.1	1.9	2.1	1.3	1.4	1.7	1.8
	12.6	13.4	14.1	14.9	14.7	15.6	14.7	14.9	14.1	13.4	12.6
	51.7	54.5	55.2	57.0	57.8	59.6	57.8	57.0	55.2	54.5	51.7
	111.6	118.3	128.7	133.5	139.1	142.9	139.1	133.5	128.7	118.3	111.6
	115.3	120.1	130.7	136.4	144.1	144.1	144.1	136.4	130.7	120,1	115.3
	113.0	119.7	130.4	135.3	141.1	145.0	141.1	135.3	130.4	119.7	113.0
	53.7	56.6	51.6	59.6	60.5	62.5	60.5	59.6	57.6	56.6	53.7
	14.7	15.7	16.7	17.6	17.6	18.6	17.6	17.6	16.7	15.7	14.7
	4.0	4.0	4.0	4.0	5.0	5.0	5.0	4.0	4.0	4.0	4.0
	2.0	2.0	2.0	2.0	2.0	2.0	2.0	5.0	5.0	2.0	2.0
	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
					Tał	ble 2-13					
			PANE	L NODE S	SODIUM TH	EMPERATURE	2S (°F) @	MAXIMUM			
			L	OAD AND	SINGLE 1	POINT AIM	ING CONDIT	IONS	10.00	1047	. 1012 0
1043.8	1067.5	1090	9 1110	1 11	39.6	1151.8	1139.6	1115-1	1000-0	1067.5) 1043.8 1027.1
1037.1	1060.5	1092.	7 1111	•6 11	31.8	1143.7	1131.8		1092.7	1000.5	1037.1
1007.3	1029.1	1060.	6 1078 1 000		144.3	1108.9	1098.3	1073.4	1000.0	040	
931.8	949.2	975.	5 QQ!)•3 .19	.2.10	1015.2	1007.2		· · · · · · · · · · · · · · · · · · ·) 949./ 000/	2 YOLOO
826.8	838.9	855.	5 805)•4 X		882.4	8/2.1	007.4	000.0	ייסני (עריד א	2 0 <u>20</u> .0
121.2	128.0		1 139 7 6.40		44.2	148.1	144.2	137.1 640 b	1.34 . 1	646	$\begin{array}{ccc} J & I \geq 1 \geq$
044.1	640.4	047.	7 049	'•0 0 0 0 2		415 1	610.9		612		6 612 A
- 012+4	012•¥		3 01: V X02)•0 0)ບ ∡	514 . 7	6010+1 604 0	604 0	- 010+0 - 601-9	613.5		A 603 8
	401 0	003. N 401	0 00. 0 401	0.0	994•2 91 A	601 0	504.2	601-0	601.0) (001-0 0 (00-0
501.9			0 001 0 600	100		600.0	600.0	600.0	600.0	600.0	0 600.0
A-JSE		, ,,,,,,,			Ta	ble 2-14					
		PAN	EL AVERAG	E OUTSI	DE TUBE	METAL TEM	PERATURE	(°F) @ MAX	IMUM		
			I	LOAD AND	SINGLE	POINT AIM	ING CONDIT	TIONS			
1047.9	1071.2	2 1103.	0 112	1.9 1	44.2	1156.2	1144.2	1121.9	1103.0) 1071.3	2 1047.9
1065.6	1090.8	3 1124.	4 1149	5.1 1	164.9	1178.7	1164.9	1145.1	1124.4	1 1090.	8 1065.6
1124.3	1151.9	> 1184.	5 1200	5.0 12	227.4	1242.0	1227.4	1206.0	1184.5	5 1151.º	9 1124.3
1184.2	1215.8	1264.	4 1289	.0 1	317.7	1333.8	1317.7	1289.0	1264.4	1 1215.	8 1184.2
1090.9	1113.3	3 1153.	0 1179	5.2 12	202.6	1208.5	1202.6	1175.2	1153.0) 1113.	3 1020.0
984.1	1006.0) 1036.	7 1052	2.3 10	169.7	1082.7	1069.7	1052.3	1036.7	1 1006.	0 984.1

				ND OINOID	T ATTIT 197911	THO CONDIT				
1047.9	1071.2	1103.0	1121.9	1144.2	1156.2	1144.2	1121.0	1103.0	1071.2	1047.9
1065.6	1090.8	1124.4	1145.1	1164.9	1178.7	1164.9	1145.1	1124.4	1090.8	1065.6
1124.3	1151.9	1184.5	1206.0	1227.4	1242.0	1227.4	1206.0	1184.5	1151.9	1124.3
1184.2	1215.8	1264.4	1289.0	1317.7	1333.8	1317.7	1289.0	1264.4	1215.8	1184.2
1090.9	1113.3	1153.0	1175.2	1202.6	1208.5	1202.6	1175.2	1153.0	1113.3	1030.0
984.1	1006.0	1036.7	1052.3	1069.7	1082.7	1069.7	.1052.3	1036.7	1006.0	984.1
772.2	781.3	784.9	791.2	794.8	801.2	794.8	791.2	784.9	781.3	772.2
648.0	650.8	653.6	656.4	657.3	660.1	657.3	656.4	653.6	650.8	648.0
613.4	613.4	613.4	613.4	616.3	616.3	616.3	613.4	613.4	613.4	613.4
605.9	605.9	605.9	605.9	605.9	605.9	605.9	605.9	605.9	605.9	605.9
600.2	600.2	600.2	600.2	600.2	600.2	600.2	600.2	600.2	600.2	600.2
CONTINUE	ITERATIO	N? (YES=1	,NO=0)?0							

2-22

PAJSE

. •

GENERAL 🐼 ELECTRIC

The sodium temperatures to be experienced at the end and center element stream tubes are plotted in Figure 2-9 versus panel length for both uniform and single point aiming conditions. These data reveal that the uniform aiming condition results in the largest tube-to-tube temperature differentials both within and above the active solar region of the panel. Figure 2-9 indicates that temperature differentials of approximately 58°C (136°F) and 62°C (143°F) will exist between the end and center tubes at the outlet of the brazed panel section during full load and minimum conditions, respectively.

This large panel center-to-edge temperature gradient causes uneven thermal expansion. Since the active panel is brazed rapidly, there will be stresses generated in the tube-to-tube braze. A further design implication is that the rigid panel must be joined to the rigid header by curved "jumper tubes" that accommodate the uneven expansion and resultant stresses. Figure 2-10 shows the evolution of the current crossed jumper tube configuration.

This panel has been designed to operate with temperature differentials of $66^{\circ}C$ (150°F) in the jumper tube region and 27°C (80°F) within the brazed section. With regard to the latter requirement, it is conventional practice to weld boiler panel tubes tangent-to-tangent with up to $38^{\circ}C$ (100°F) difference in temperature between the tubes. Since the brazed panel's end-to-center tube differential is only 27°C (80°F) and since it is spread over 25 tubes rather than 2 tubes (differential is only about $3^{\circ}F$ to $4^{\circ}F$ between adjoining tubes), this differential will cause no problem provided the braze material strength is comparable to that of the Incoloy 800 tubes and spacer strips.

2.4 ABSORBER TEST PANEL DETAILED DESIGN

2.4.1 GENERAL ARRANGEMENT

The solar test panel's thermal performance has been discussed from the standpoint of a 51-tube assembly, based upon preliminary configuration specification during the Phase I program. The actual test panel has been designed to contain 50 tubes, 46 spacer strips, and 3 instrumentation strips. The latter are identical to the hourglass-shaped spacer strips except that their thickness has been increased to 2.38 mm (.09375 inch) at their minimum point to enable them to accept six thermocouples for measurement of the front face temperature of the panel. The panel's

GENERAL 🌆 ELECTRIC

Figure 2-10. Jumper Tube Evolution

tube count was reduced to an even number to permit an instrumentation strip to be placed on the panel's centerline, the point of flux symmetry. The two remaining strips are located between the second and third tubes in from each end of the panel. As a result, the panel will be 994.569 mm (39.15625 inches) wide (excluding nickel plating) and will be mounted vertically, as shown in General Arrangement Drawing 67-3581-5-20 (Figure 2-11). Sodium will enter the panel via a 76.2 mm (3-inch) Schedule 40 nozzle provided on the centerline of the panel's bottom headers 203.2 mm (8-inch) Schedule 40 pipe and exit via a similar arrangement at the top. To minimize heat loss, the backside of the panel and the pipe headers will be covered by insulation jackets/boxes. The panel's top header will be anchored via cantilevered beams that protrude from the four post-type support structure detailed in Figures 2-12 and 2-13. The bottom header will be left free to grow downward. A support linkage is attached to this header to enable it to withstand 226 kg (500-1b) 2033.7 Newton-meter forces and (1500-ft/lb) moments in any direction. The jumper tubes will be attached to the headers by butt welding to stubs. These stubs will be machined from rod material and welded to the headers. The rod will then be bored out to remove the root notch. Dye penetrant checks will be used to ensure weld quality. The tube-to-stub-to-header connection arrangement is shown in Figure 2-14.

As indicated in Table 2-15, the panel will weigh approximately 1905 kg (4,200 lb) dry and 2041 kg (4,500 lb) when filled with sodium; the support structure will weigh approximately 1814 kg (4,000 lb) thus yielding an overall operating assembly weight of approximately 3856 kg (8,500 lb).

2.4.2 THERMAL EXPANSION

The test panel's top-to-bottom header height is 22 ft-10-3/4 in. After installation in the SRTA at CRTF, the panel will be operated isothermally with 593.3°C (1100°F) sodium being pumped through the unit. Under this condition and with the top header anchored, the panel will expand and the bottom header translate approximately 63.5 mm (2.5 inch) downward. To accommodate and guide this movement, a series of linkages are attached to the backside of the panel, as shown in Figure 2-15. The top and bottom linkages center the panel relative to the structure, whereas the interior linkages accommodate the axial expansion and serve as wind braces for the panel. Linkages were chosen for the panel after consideration of alternatives such as

Figure 2-11. Absorber Test Panel General Arrangement

2-27/28

Figure 2-12. Absorber Test Panel Structure (Sheet 1) 2-29/30

Figure 2-13. Absorber Test Panel Structure (Sheet 2)

Figure 2-14. Tube-Header Stub Design Arrangement

I

Table 2-15

ABSORBER TEST PANEL DRY WEIGHTS

Item	We	<u>Weight kg (1bs)</u>				
Test Panel						
Headers	159	(350)				
Brazed Panel	200	(440)				
Jumper Tubes	50	(110)				
Header Boxes	907	(2000)				
Linkages	256	(565)				
Back Insulation Boxes	317	(700)				
	1889		(4165)			
Steel Structure	1814		(4000)			
Total	3703		(8165)			

slip joints and roller-ball bearing slides. The former were ruled out as they operate with the risk of binding whereas any misalignment between the panel and guide tracks would cause the latter arrangement to bind.

As discussed above, to accommodate a 65°C (150°F) design temperature differential between center and end tubes at the top of the panel, two expansion bends are provided in each jumper tube between the end of the solar active portion of the panel and the top header. For ease of fabrication (symmetry), the jumper tube arrangement provided at the top of the panel is also provided at the bottom. Since the jumper tubes have been designed to be relatively flexible, calculations have shown that the top jumpers will undergo excessive creep due to the weight of the panel. Consequently, the top jumpers are isolated from the hanging weight of the panel via the spring support arrangement shown in Figure 2-11.

2.4.3 ACTIVE PANEL SUBASSEMBLY

The 50-tube panel will be brazed together as a 1000.918 mm (39.406-inch) wide x 5929.312 mm (19.453-ft) long subassembly (Figures 2-15 and 2-16). Prior to brazing, each item will be nickle-plated in accordance with AMS 2424 to a thickness of .0177 mm \pm 0.00762 mm (0.0007 inch - 0.0003 inch) to enhance brazing characteristics. Although the tubes could be furnished with jumper-type expansion loops on each end, the tubes have been shortened to minimize braze furnace length requirements The tube-to-tube butt welds will be performed using a miniature orbital welder (described in Section 3). In order to facilitate the orbital weld operation, the panel's tube ends will bend off in multiples of four with approximately a 317.5 mm (12.5 inch spacing between bends to provide clearances and accessibility.

The braze zone of the panel will be 4.572 m (15 feet) long and end approximately 11.112 mm (15.437 inch) and 104.775 mm (4.125 inch), respectively, from the working point of the innermost tube bends. The clearance provided at the bottom of the panel is much larger than that provided at the top because the former corresponds to the shadow cast on the tube panel by the bottom header's insulation box.

In an attempt to reduce the braze furnace's width requirement, it was originally proposed to weld together three 16-tube brazed subassemblies to form a 48-tube test panel. An investigation of the work that would be involved in developing welding procedures and tooling/fixturing to control distortion during welding revealed that

GENERAL 🌆 ELECTRIC

G 🕇

Figure 2-15. Absorber Test Panel Brazing Details 2-35/36

Figure 2-16. Absorber Test Panel Sections and Details 2-37/38

it would be both expensive and risky. Since it would be cheaper to build a wider braze furnace, it was decided to go with the referenced 50-tube brazed subassembly. Prior to brazing the full panel, the brazing vendor will be required to braze together a full-length 12-tube minipanel to test vendor's procedures.

2.4.4 TRACE HEATING

Before sodium can be admitted into the test panel, the unit must be heated from ambient to 316°C (600°F) via electrical heaters. The heaters will be 12.7 mm (.5 inch) in diameter and possess Incoloy 800 sheaths. Since the pipe headers will be approximately 7.9 mm (.31 inch) thick, lugs can be welded to the headers that will enable the heaters to be clamped directly to the headers. Because the tubes will be only 1.27 to 1.524 mm (0.050 to 0.060 inch) thick, it will not be possible to weld heater mounting lugs to the panel.

The heaters to be provided on the backside of the panel will thus have to be attached to the insulation boxes. Although the details of the heat tracing system have not yet been defined, the panel will contain three independently operable heating zones on its backside and one zone on each header.

2.4.5 ABSORBER PANEL STRESS ANALYSIS

The test panel has been designed to safely withstand the thermal stresses that will be induced by the nonuniformity of incident solar flux as well as mechanical stresses caused by 160 kilometers/hour (100 mph) winds and 1-1/2 g seismic accelerations. The wind and seismic forces will be transmitted into the panel's support structure via the buckstay-linkage arrangement provided on the backside of the panel and detailed in Figure 2-13.

The metal temperature distributions given in Tables 2-8 and 2-11 reveal that the panel's center tube will be approximately 25°C (77°F) hotter than the end tubes. This temperature distribution will place the panel's center tubes in compression and, because of the panel's high length-to-radius of gyration ratio, the panel will tend to buckle. As a result, the panel's buckstay spacing has been set by buckling considerations rather than by seismic or wind conditions; the buckstays will be provided on 723.9 mm (28.5 inch) centers (unsupported tube span length) and will keep the panel from bowing/buckling. The tube bending stress induced by the wind was calculated to be 5.516 x 10^{6} Newton/meters (800 psi) whereas the seismic load was found to be negligible.

During the minimum load, uniform flux operating condition, a 62°C (143°F) difference in temperature will develop between the center and end jumper tubes. The stresses induced in the jumper tubes by this difference in temperature, assuming a 66°C (150°F) differential as a worst-case analysis, were determined via a FW piping stress computer program that considered both in-plane and out-of-plane (lateral) deflections. As a worst-case analysis, the jumper tube lateral deflection was calculated assuming the header to be at 593°C (1100°F) and the panel at 510°C (950°F). In-plane axial deflections were calculated assuming one jumper (end) at 538°C (1000°F) and another (center) at 621°C (1150°F), and that all jumper-to-panel connecting points remained in a straight line (panel expanded as a rigid body). Superposition of these in-plane and out-of-plane deflections revealed that the inner jumper would experience the highest stress and that this would occur at the bend nearest to the header. The maximum stress was calculated to be 5.7918 x 10⁷ Newton/meter² (8400 psi) which is well below the 1.83407 x 10⁸ Newton/meter² (26,600 psi) thermal stress limit permitted by the power piping code $(1-1/4 \times cold \ allowable + 1/4 \times hot \ allowable$ stress).

The thermal shear forces that will be induced in the brazed portion of the panel by the nonuniformity of the solar flux distribution were determined via the use of a STRUDL model. Because the solar flux distribution is approximately symmetrical about the panel's centerline, the model took into consideration only one side (half) of the panel. The model consisted of six vertical members, each of which corresponded to the column element matrix used to generate the Table 2-11 data. The eleven temperatures given for each column of elements in Table 2-11 were entered for each of the six vertical members. The vertical members were assumed to be interconnected at a total of 12 elevations; the topmost and bottommost elevations were assumed to be rigid members, whereas the 10 interior connections were assumed to be pinned joints. This joint arrangement was used, as testing of steam generator waterwall panels has shown that the vertical shear forces that develop in these panels do not distribute uniformly but instead are carried primarily at the ends of the panel. The topmost horizontal member was fixed in space and the bottommost member was left free to grow downward. This STRUDL analysis indicates that the shear forces that will exist

between the six vertical members, starting from the end column and working to the center of the panel, will be 1995.8 kg (4.4 kips), 2857.68 kg (6.3 kips), 2721.6 kg (6.0 kips), 1950.48 kg (4.3 kips) and 680.4 kg (1.5 kips).

Figure 2-17. Support Structure Natural Frequency Model

The seismic data for the CRTF site indicated that a 1-1/2 g acceleration can be assumed for all panel and structure elements possessing a natural frequency of 10 hertz or higher. Although panel natural frequencies could be determined relatively easily, a Macuto STRUDL program had to be developed for the support structure. The model used is shown in Figure 2-17; calculations revealed it would possess a minimum natural frequency of 7.5 hertz. Calculations also showed that, by providing an intermediate support for the structure (midpoint elevation), its natural frequency would be increased to 16.6 hertz.

2.5 REFERENCES

- ANSYS Engineering Analysis System User's Manual. Swanson Analysis Systems, Incorporated, 1974.
- 2. J. Jones, "Absence of Bending Effects on Solar-Receiver-Tube Fatigue." Journal of Energy, AIAA, Volume 3, No. 3, May-June 1979.
- 3. T. V. Narayanan, et al, "Structural Design of a Superheater for a Central Receiver." Transactions of ASME, Journal of Pressure Vessel Technology. Volume 101, February 1979.
- 4. I. Berman, et al, "An Interim Structural Design Standard for Solar Energy Applications." Report No. SAND79-8183, Sandia Laboratories, Livermore, California, April 1979.

SECTION 3

ABSORBER TEST PANEL FABRICATION

The fabrication effort includes all production stages required to take the panel from design to delivery at the Central Receiver Test Facility near Albuquerque, New Mexico. Principal fabrication activities include material procurement, material inspection and testing, process qualification, manufacturing operations, acceptance testing, and shipment. This section describes the panel fabrication plan and status through April 1980.

3.1 PANEL MANUFACTURING PLAN

The absorber test panel manufacturing plan defines all activities required to construct the panel. A summary flow chart of principal activities is shown on Figure 3-1. As described in earlier sections, the absorber test panel is comprised of the following major parts:

- 50 Incoloy 800 tube active panel; brazed into a rigid structure approximately 5 meters long; tubes to be separated by hourglass-shaped Incoloy 800 inserts
- Bottom Inlet Header
- Top Outlet Header
- 100 Incoloy 800 Jumper tubes to connect the ends of the active panel to the headers
- Structure to support the panel
- Insulation
- Trace Heaters

3.1.1 MANUFACTURING PROCESS

The manufacturing process was initiated during the design effort by identifying and planning the following four specific development efforts required prior to the final manufacturing of the absorber test panel:

- Braze Qualification
- Temporary Braze Furnace Construction
- Weld Qualification
- Mockup of Header/Jumper/Panel.

GENERAL 🐼 ELECTRIC

Figure 3-1. Summary Test Panel Manufacturing Work Flow

These development efforts are discussed in Sections 3.2 through 3.5.

The manufacturing process for the absorber panel is separated into the following elements: panel tubing, panel spacer (hourglass) inserts, brazing, header assembly, panel assembly, panel support structure and preparation for shipment. In order to expedite delivery of the panel tubing, available standard size Incoloy 800 tubes were purchased. The tubing was redrawn from its original 1.5 inch 0.D. (.125" wall thickness) condition down to the required .750 inch 0.D. and .050 inch wall thickness. This process required annealing to bring the Incoloy tubing back to its initial metallurigical properties. The tubing was ground on the outside diameter and vapor blasted on the inside diameter to obtain the required surface finish.

The redrawn tubing will be separated into jumper tubes and panel tubes. The jumper tubes will be cut to length and bent to the required shape completing preassembly efforts on the jumper tubes. The panel tubes will be nickel plated using an electroplating process to a thickness of .0004-.0016 inches, then bent at the ends to the required shape.

Concurrently with the tubing operations, the panel hourglass inserts are currently being rolled to shape from Incoloy 800 flat stock. The rolled hourglass shape must form a close fit with the panel tubing necessitating careful production controls. The inserts will then be nickel plated using an electroplating process.

The plated panel tubing and plated inserts will be shipped to the brazing vendor (Pyromet Industries, Inc.) and assembled together for the brazing operation. Figure 3-2 shows a typical pre-base prototype tubing and insert. The brazing process development and resulting braze procedure is described in detail in Volume III, Section 2. The panel braze requires a fixture to hold the tubing and inserts securely together in a diagonal orientation while in the furnace. In addition, the fixture accurately locates the panel tube ends. This is a critical item since alignment of the active panel tube ends and the jumper tubes is of great importance during the panel assembly operation. Figure 3-3 shows a typical twelve tube section of the panel. The braze material will then be applied to the tube/insert assembly and then the entire panel active portion will be placed in the hydrogen controlled atmosphere of the temporary brazing furnace. Figure 3-4 shows a typical post-braze micrograph from the braze development program.

Two cylindrical header assemblies are being fabricated from Incoloy 800. Stubs will be welded into the header pipes at the proper locations as described in

Figure 3-2. Prototype Pre-Braze Panel

Section 2. The plugs will then be bored out to remove the root notch as shown in Figure 2-14. The weld preparation added to the ends of the stubs will make the headers ready for butt welding to the jumper tubes.

The panel subassembly parts will then be accumulated at Foster Wheeler for the panel assembly operation. The brazed panel will be placed in a large fixture and the two headers accurately located at each end. The next operation is to cut and fit each jumper tube between the header plug and its corresponding panel tube. As shown in Figure 3-5, the tubes are then welded together using a miniature orbital welder developed by Foster Wheeler. The completed panel subassembly will then be pressure tested and helium mass-spectrometer leak checked.

The panel subassembly is now ready to be mated with the panel support structure, which contains the support linkages, insulation boxes and trace heaters. After assembly, the entire absorber test panel will be packaged for shipment to the Central Receiver Test Facility (CRTF).

3.1.2 PANEL MANUFACTURING SCHEDULE

The panel manufacturing schedule is shown in Figure 3-6. Each element of the plan is continuously monitored in order to identify problem areas and control the critical path.

3.2 PANEL BRAZING DESCRIPTION

The unique characteristic of the General Electric sodium cooled receiver is its thin walled tube construction and resulting high efficiency. The thin tube walls prompted selection of brazing for tube-to-tube joining during the Phase I program. As reported in Volume III, Section 2, significant efforts were expended during Phase II in panel fabrication development. The result was somewhat of a change in the braze procedure suggested during Phase I; specifically, the tubes will be horizontal instead of vertical and hourglass inserts will be installed between the tubes. These changes, when compounded with the need to braze a full two header panel instead of two one-half panels for the three header geometry (see Volume II, Section 2), required that a large horizontal hydrogen furnace be found. After an exhausted search, it was concluded that a temporary brazing furnace be fabricated.

Figure 3-4. Prototype Post-Braze Micrograph

Figure 3-5. Panel Subassembly Schematic

GENERAL 🐼 ELECTRIC

Figure 3-6. Panel Manufacturing Schedule

3-7

.

3.2.1 BRAZING PROCEDURE

The details of panel brazing is provided in Volume III, Section 2; however, the required materials and fixtures are shown on Table 3-1 and the general procedure is listed on Table 3-2.

Table 3-1

MATERIALS AND FIXTURES FOR FURNACE BRAZE

- Tube I800 19.05mm OD (.75 in) ASTM B407
- Filler Strip I800 Hourglass Extruded or Machined
- Plating Nickel Electroplate ~ 2.7 mil Thickness, Dull Finish
- Braze Alloy Amdry 939, Metal Powder ~140 mesh
- Stop-Off-Compound Nicrobraz Green
- Platers Tape
- Furnace Horizontal with Hydrogen DP of <-62°C (-80°F)
- Fixtures Flat Metal Hearth, Clamps and Weights

3.2.2 TEMPORARY BRAZING FURNACE DESCRIPTION

Pyromet Industries, Inc. has designed and is currently fabricating a temporary brazing furnace to accommodate the absorber test panel. The furnace has been designed to braze one 50 tube panel (approximately 20' long, by 34" wide, by 9" high) horizontally, with the width in a diagonal orientation. The modular design and low weight insulating brick make this furnace and, with fabrication of other modules, flexible for use with longer panels. It can be transported to another site, if required, on future solar programs.

The furnace has a simple fabricated steel construction as shown in Figure 3-7. The insulation is a combination of Kaowool and Pyroblock lined with refractory brick. The furnace is electrically heated to maintain at least 1900° F within the retort, a seal welded vessel used to contain the hydrogen atmosphere required by the brazing process. The furnace was designed so that the inlet dew point can be maintained at -80° F or lower. The absorber test panel and the necessary assembly fixture will be placed inside the retort for the brazing operation. The temperature will be monitored during heating, hold, and cooling portions of the furnace cycle.

GENERAL 🕼 ELECTRIC

3.2.3 FURNACE INSTALLATION SCHEDULE

The furnace installation is currently on schedule (Figure 3-8) and should be completed the week of June 13, 1980. A qualification run is scheduled for the week of June 20, 1980. The design has been completed and all materials are on order or have arrived at Pyromet for furnace and retort fabrication. Furnace fabrication has started and the steel structure is scheduled to be completed in mid-May.

Table 3-2

GENERALIZED BRAZING PROCEDURE

APPLICATION

- Step 1. Apply Plater Tape on Alloyed Portion of Tube
- Step 2. Apply Stop-Off Compound to Tubes and Fixtures
- Step 3.

step 1.

- Step 4. Apply Braze Alloy in Continuous Fillet
- Step 5. Apply Acrylic Enamel Spray to Braze Alloy
- Install Tubes in Fixture on 45° Angled Hearth in Furnace Step 6.
- Step 7. Prepare Fixture Guides and Weight

Step 8. Purge Furnace Muffle

Heat Panel Segment to ~900°C (1650°F) - Hold Step 9.

- Heat Rapidly to $\sim 1025^{\circ}$ C (1880°F) Hold 12 Min. Step 10.
- Cool Rapidly to Below 904°C (1660°F) Step 11.
- Step 12. Cool to Room Temperature
- Step 13. Remove and Clean as Necessary
- Step 14. Inspect

Figure 3-8. Furnace Installation Schedule

3.3 WELD DEVELOPMENT/MOCKUPS

The panel tube-to-jumper tube and jumper tube-to-header stub orbital welds will be accomplished via the miniature welding torch shown in Figures 3-9 and 3-10. Using this torch, development work has been conducted at Foster Wheeler to establish the parameters and develop the techniques for accomplishing these welds via the Gas Tungsten Arc Process. The welds will be performed in the horizontal position with argon purge gas and, in order to minimize wall thinning, tests have shown that it will be necessary to use the Inco 82 consumable inserts shown in Figure 3-11. The inserts will be tack-welded to the tube at the 3 and 9 o'clock positions. Welding will commence at the 8 o'clock position, and after completing 360[°] of rotation, tailoff will start at about 9 o'clock and terminate at approximately 2 o'clock.

All welding work performed to date has been with 1/16 in. average wall, commercial grade, Incoloy 800 tubing since test panel thin-walled tubing has not yet been available from the tube mill. Once test panel tubing is available, additional weld tests will be performed to finalize welding parameters. Testing to date indicates that to insure satisfactory weld quality, tube-to-tube fit up must be limited to lateral and angular misalignments of 0.015 in. and 1° , respectively. These tolerances are quite tight and, since good fit up is essential to the production of a satisfactory weld, a mockup of the panel jumper tube and header region is being made to permit a checkout of both the weld procedures and the tools/fixtures that have been designed for the fit up operation. The mockup is shown in Figure 3-12

Figure 3-7. Temporary Brazing Furnace 3-11 / 12

Figure 3-9. Plan View of Miniature Tube Orbital Welding Torch

Figure 3-10. Side View of Miniature Tube Orbital Welding Torch

GENERAL 🍘 ELECTRIC

Figure 3-11. Consumable Insert for Tube Orbital Welds

and it will have the capability of accommodating 23 jumper tubes. Header fabrication and tube bending operations have commenced on the mockup and fit up/assembly is expected to commence in early May 1980.

GÈNERAL 🛞 ELECTRIC

Figure 3-12. Test Panel Weld Mockup Assembly

SECTION 4

SODIUM LOOP DESIGN

The absorber test panel described in Sections 2 and 3 will be installed into a sodium fluid circulation loop at the Central Receiver Test Facility. This section describes the design of the heat transfer loop and the principal components.

4.1 SUMMARY DESCRIPTION

The SRTA system, as delineated by the Piping and Instrumentation (P&ID) Drawing (Figure 4-1) and the General Arrangement Drawing, Sheets 1 and 2 (Figures 4-2 and 4-3), provides the sodium heat transfer loop for the absorber test panel. The panel includes a support structure which attaches to the SRTA support structure. The SRTA also houses the components and piping which make up the fluid circulation equipment including an electromagnetic (EM) sodium pump, sodium valves, cold trap, surge and drain tanks and sodium flow, pressure, temperature, and oxygen level sen-The interconnecting piping is 3-inch Schedule 40 Type 304 stainless steel, sors. with the exception of the drain line which is 2" Schedule 40 pipe and the equalizer line which is 1" Schedule 40 pipe. All sodium piping is electrically trace heated and insulated to allow preheat to $600^{\circ}F + 50^{\circ}$ with the sodium drained and to maintain this temperature with sodium flowing in the system. Drip pans are provided under the SRTA structure and siding supported by the structure totally encloses the sodium system. Exceptions to this are the sodium heat dump, which is mounted separately on its own support structure and is separately enclosed, and the front of the absorber panel which is not covered during solar operation. The front of the absorber panel is covered by a movable insulating door when the system is not in the solar operating mode. The absorber panel is surrounded by a solar heat shield constructed with alumina and zirconia high temperature insulating tiles to protect the SRTA from solar spillage.

The SRTA structure and the heat dump will be mounted on separate sleeper beams to distribute their weight on the CRTF elevator module. The sleeper beams will be bolted to the elevator roof main support members to accommodate the design seismic and wind loads for the 200 ft. tower level. The SRTA sodium system is designed for a maximum operating temperature of $1150^{\circ}F$ at a maximum pressure of 50 psig, with a maximum sodium flow rate of 175 gpm, and an operating life of 5000 hours.

The SRTA local control panel is designed for location in the elevating module computer room and includes all local instrumentation and control equipment required for startup, operating, and shutdown of the SRTA. This panel also provides interfacing connections to the CRTF data acquisition system to provide data display and remote control from the experimenter's console in the CRTF master control room. SRTA instrumentation provided for test data only and not required for system operation will be connected directly to the CRTF interfacing connectors or signal conditioning equipment and will not pass through the local control panel. The SRTA emergency heliostat "cut" (rapid heliostat defocus) will be hardwired to redundant cable pairs connected to the CRTF heliostat control system.

The SRTA is equipped with an argon inert gas supply and vent system for controlled surge tank and drain tank cover gas pressure, that can be controlled either automatically or manually. This system will be connected to an argon supply bottle header provided by the CRTF and located in the elevator module machine shop level.

4.2 HEAT DUMP

This assembly can be described as a high temperature sodium to ambient air heat exchanger complete with forced draft air delivery system. Included are the structure, heat exchanger section, dampers and operator, fans, fan drives, heaters and controls. Air operated isolation doors mounted on the top and bottom of the heat exchanger are included as part of the structure. The arrangement of these components is shown in Figure 4-4.

The function of the heat dump is to transfer the heat from the high temperature sodium stream to the surrounding atmosphere. This is accomplished by passing the hot sodium through the tubes and cooling it by ambient air passed over the outside finned surface of the tubes. The sodium enters the inlet manifold (header) at the top of the heat exchanger, flows through one layer of tubes in four (4) cross counter-flow passes, and leaves through the outlet manifold at the bottom of the heat exchanger. The cooler ambient air enters the plenum chamber below the heat exchanger, flows vertically upward through the damper and the finned tube bundle, and then passes back into the atmosphere.

The heat dump is a refurbished auxiliary air blast cooler which was removed from the Southwest Experimental Fast Oxide (SEFOR) nuclear reactor. The major refurbishment items are summarized below and described in more detail in Section 5.

Figure 4-1. Piping and Instrumentation Drawing

4-3/4

^{4-5/6}

Figure 4-3. SRTA Arrangement Drawing (Sheet 2) 4-7/8

4-9

HEAT DUMP

10-099-01

Figure 4-4. SRTA Heat Dump Arrangement

Heat Dump Part

Action

Tube Bundle Section	Replaced
Isolation Doors and Operators	Rebuilt
Tubular Heaters	Replaced/higher rating
Damper Operating Motor	Replaced
Fan Motors	l Rebuilt, 1 Replaced
Assembly	Clean, Inspect, Paint, Checked Out

4.2.1 STRUCTURE

The heat dump structure is composed of the welded bed, support columns, grating, and isolating doors. The welded bed is essentially a plenum with double fan rings below and is bolted to four (4) vertical columns which support the bed, heat exchanger, etc. Angles are included for reinforcing the structure against side loads. Two expanded metal type fan guards are included to protect personnel from the fan blades. A grating is mounted above the heat exchanger for protection against "flying objects". The pneumatically operated upper doors are mounted above the grating and are opened and closed together. The doors are used to isolate the heat exchanger during hot hold operations in order to retain heat within the heat exchanger and keep the sodium in the tubes from freezing.

4.2.2 HEAT EXCHANGER SECTION

The heat exchanger or tube bundle section is composed of manifolds, finned tubes, thermocouples and the structure.

The manifolds or headers are made from seamless type 304 stainless steel pipe. The tube sheet has specially machined nipples to which the tubes are welded. With this design a crevice-free tube-to-tube sheet joint is obtained. The manifolds are closed at one end with standard welding cap and with eccentric reducers on the other end for attachment to the SRTA piping.

The tubes are 1" outside diameter with .072" thick seamless wall of type 304 stainless steel. Each tube is finned in the heat transfer region (approximately 88") with 5/8" high x .030" thick helically wound carbon steel fins at a pitch of 7 fins per inch. The carbon steel fins are nickel braze bonded to the tubes. The complete tube assembly from inlet to outlet manifold includes one shepherd crook 'U' tube and one 'U' tube butt welded together. Figure 4-5 shows the original SEFOR coil that is being replaced.

GENERAL 🍪 ELECTRIC

This tube and manifold support structure is composed of tube and manifold support plates welded to carbon steel side channels. Tube support plates support the O.D. of the tube at areas where no fins have been placed on the tube. In supporting the manifolds and tubes connecting to the manifolds, there is a provision for horizontal thermal expansion of both manifolds and tubes. A special thermal sleeve is used to connect the stainless steel manifolds to the carbon steel support plate at the fixed end. The tube return bends, manifolds and manifold caps are enclosed by sheet metal covers.

4.2.3 DAMPERS

The damper assembly was manufactured by Honeywell and includes two (2) sets of opposed steel blades mounted in a steel frame. An electrically operated positioning motor is supplied for operating the dampers. The motor can be controlled remotely and used with blade position indicator.

4.2.4 FANS

The cooling air is supplied by two (2) six-bladed aluminum fixed pitch propeller type fans manufactured by Hartzell Propeller Fan Company. Each fan is driven by a two-speed 5 HP totally enclosed, fan-cooled motor. Motor speeds are 1140 or 860 rpm.

4.2.5 HEATERS

The heaters are 'U' tube, .496 O.D. electric "Calrod" tubular heaters. They are mounted below the heat exchanger and can be used in the preheating or hot hold operations.

4.2.6 HEAT DUMP THERMAL ANALYSIS

A detailed component specification was prepared and a summary comparison of SRTA requirements to SEFOR requirements follows in Table 4-1. Several thermal analyses were made to investigate the capability of the refurbished SEFOR auxiliary air blast cooler to transfer the specified 2500 KW of heat under SRTA conditions.

Table 4-1

COMPARISON OF SRTA AND SEFOR THERMAL DUTY

•	Heat	Transfer	Rate Unchanged	
		2.5 MW	$= 8.5 \times 10^{6}$	

 $MW = 8.5 \times 10^{\circ} \qquad \frac{Btu}{Hr}$

Sodium Side

	SEFOR	SRTA
Inlet Temp	850 ⁰ f	1100 ⁰ F
Outlet Temp	550 ⁰ F	500-700 ⁰ F
Flow	92000 $\frac{1b}{hr}$	$47000 \ \frac{1b}{hr}$
Air Side		
Inlet Temp	90 ⁰ f	120 ⁰ F

Particular attention was given to themal contact resistance between the 304 stainless steel tube and the mechanically attached (grooved) carbon steel helical fin. At one location about four carbon steel fins were cut and peeled away from the groove in the stainless tube for visual inspection. Subjective evaluation of these indicated the following:

- The bottom edge of the fin base did not seat into the bottom of the groove; there was an air gap.
- Mechanical contact existed on the sides of the fin base through an overlap which varied from about 0.02 inches on a side to zero.
- There was a definite rust film over the fin base area through which the heat must flow.
- In the cold condition, contact pressure on the sides of the sides of the fin base was slight.

The effect on heat transfer resulting from imperfect contact is treated in the GE Heat Transfer Databook; data which is applicable to the fin/tube is included. The original heat transfer calculations for the SEFOR auxiliary air blast cooler were used as a data source and guide for new calculations except that provision was made to add a thermal contact resistance. As a verification of the analysis method, a "THTD" computer model was made to determine temperature distribution and overall conductance. Some of the salient conclusions from the analytical studies are:

- Convection on the air side is controlling when no contact resistance is assumed.
- Most all the heat passes through the fin surface or conversely, the bare tube area is not significant in the overall performance.

GENERAL 🍘 ELECTRIC

- If contact between fin and tube is perfect, the unit would have about 20% excess area for its 2500 kW rating (see Table 4-2).
- The contact resistance is estimated to be .0048. Thermal analysis indicated a capability of about 1600 kW. It must be emphasized that confidence in the contact resistance estimate is low. An order of magnitude lower contact resistance would be required to achieve 2500 kW.

Table 4-2

EFFECT OF SRTA CONDITIONS ON SEFOR HEAT TRANSFER CALCULATIONS

• "H_m" Convection Inside Tubes Drops

 $4500 \frac{Btu}{Hr} ft^{20} F - 3300$

• "LMTD" Increases

430[°]F — 500

• Required Surface Area Drops

2560 $Ft^2 - 2250$ (Available Area = 2730 Ft^2)

CONCLUSION: Acceptable for SRTA, however, consideration of contact resistance between imbedded carbon steel fin and stainless tube led to recommendation to replace with a new brazed fin tube bundle.

No analytical solution appeared likely, such as justifying an order of magnitude reduction in contact resistance. Hardware solutions considered were:

- Replace the tube bundle section.
- Increase air flow to get a higher log mean temperature difference and higher air side convection coefficient.
- Test to determine contact resistance then select alternate one or two unless the required order of magnitude reduction in contact resistance is verified.

Replacement of the tube bundle was implemented. The replacement tube bundle design is nearly identical to the original except that the carbon steel fins are to be attached with a nickel alloy braze thus eliminating the concern for contact resistance.

Alternate two was studied analytically (using the estimated contact resistance); it appeared that about three times the original air flow would be required. To get this air flow would mean replacement of the two five HP fans with two 70 HP vane arial fans. Also, it is expected that the present louvers would have to be replaced with inlet control dampers. A considerable extrapolation of available heat transfer correlation data (of a similar but not identical geometry) was used to estimate the air side convection at such a high Reynolds number (17000).

Testing was judged not to be a solution; it might have provided a more acceptable confidence in contact resistance to make alternate two more technically viable. Removing one of 23 tubes would have been necessary to make a practical test.

4.2.7 STRUCTURAL ANALYSIS

Calculations were made in accordance with the requirements of ASME B&PV Code Section VIII, Division 1, to justify the design of the heat dump tube assembly for a 50 psig design pressure at a design temperature of 1150° F. Also a finite element model of a tube was used to verify that the tube flexibility and support are adequate for an 1100° F to 600° F temperature distribution. Finally, a structural analysis was performed of the heat dump support structure for specified wind and seismic loadings.

4.3 SODIUM PUMP

EM Pump Model 5KY416PH1 is a helical induction electromagnetic pump with the characteristics listed in Table 4-3. Calculated performance is shown on Figure 4-6. The pump is hermetically sealed, has no moving parts, and has no direct electrical connections to the liquid metal carrying components. Pressure is developed by the interaction of the magnetic field and current which flows as a result of the voltage induced in the liquid metal contained in the dump duct. Flow may be controlled by variation of the voltage supplied to the pump windings. Power input and developed pressure at a particular flow vary approximately as the square of the applied voltage.

The pump consists of two major sub-assemblies: the stator assembly and the pump duct assembly.

Table 4-3

GENERAL INFORMATION

PUMP RATING	
Fluid	Sodium 700 ⁰ F
Flow	175 gpm
Developed Pressure	30 psi
Power Supply	480 volts, 3 phase, 60 cycle
Power Input	33.6 kW
Efficiency	6.8%
Power Factor	32.7
COOLANT REQUIREMENTS	
Coolant	Air
Coolant Flow	1500 cfm
Coolant Inlet Temperature	50 ⁰ C, Max
DESIGN_CHARACTERISTICS	
Pressure	75 psig at 1150 ⁰ F
Number of Poles	4
Duty Rating	Continuous
Hot Spot Temperature (Insulation)	200 ⁰ C
Weight, Less Duct	1487 lbs

4.3.1 STATOR ASSEMBLY

The stator winding is of form wound construction. The winding insulation system is Class H, suitable for operation at temperatures up to 200°C. After the coils are inserted in the slots and connected, the wound stator is treated with several applications of silicone resin. When supplied with three phase 60 Hz power, the stator winding produces a 4-pole magnetic field revolving at 30 revolutions per second in the stator bore. The stator is air cooled, utilizing a through ventilation pattern in which cooling air is supplied to one end shield, is directed around the end turns at one end, through axial passages between the frame and the outside of the stator laminations, around the end turns at the other end, and out of the pump by way of the end shield ventilation opening. Chromel-Alumel thermocouples are located in the end windings to provide a means of monitoring pump winding temperature during operation. A small fraction of the ventilating air flows axially between the stator bore and the pump duct.

4.3.2 PUMP DUCT ASSEMBLY

The pump duct is made of Type 304 stainless steel. Entrance and exit connections to the duct are perpendicular to each other at the same end of the duct. Therefore, the pump duct can expand freely without giving rise to stress. principal parts of the pump duct assembly are the outer tube and the inner tube. The inner tube includes machined helical passages such that, in the duct assembly, fluid passing through the pump is constrained to flow in a spiral path so that the tangential force on the fluid is converted into a developed pressure. The pump will operate satisfactorily in either direction, but it is designed for fluid entry through the annulus and exit through the central passage in the inner tube. The inner tube is shrunk onto the outer tube to minimize leakage between passages. The pump duct is entirely self-supporting and is insulated from the stator by a blanket of refractory fiber felt insulation. The insulation is applied directly on the duct forming one complete assembly. The approximately 1/4 inch of radial space between the inner sleeve and outer envelope is filled with refractory fiber felt applied as a blanket and secured with a covering of glass tape. Two Chromel-Alumel thermocouples are installed in channels which extend from the dead end of the thermal insulation assembly to the approximate center of the assembly. They lie on the outer surface of the duct, hence thermocouples inserted in these channels indicate duct temperature.

4.4 SODIUM TANKS

The drain tank is used for the initial filling of the SRTA loop and to allow for complete draining. The nominal volume of the drain tank is 234 gallons. A required 226 gallon drain tank volume is justified in Table 4-4. Nozzles are provided on the drain tank for: argon cover gas connections, filling and draining, connection to the circulating loop (through a normally closed valve), and level probes. Dip tubes (vertical pipes internal to the tank) are provided for the filland-drain nozzle and the circulating loop connection to allow sodium to be forced either into the circulating loop or out of the tank to shippers for decommissioning by the use of cover gas pressure. The drain tank is a modified expansion tank from the SEFOR plant.

The 75-gallon surge tank is normally filled with about 60 gallons of sodium. It is the highest elevation sodium containing SRTA component. Thus, the surge tank provides an argon space above the circulating sodium for thermal expansion, transient pressures surges and allows for the measurement of the loop sodium

GENERAL 🛞 ELECTRIC

inventory (level in surge tank). Nozzles are provided on the surge tank for: argon cover gas connections, sodium loop connections, and level probes. The surge tank is a modified expansion tank from the SEFOR plant.

Requirements for both the drain tank and the surge tank were defined in a component Specification; the more significant requirements applicable to both tanks are:

- Compliance with ASME B&PV Code Section VIII, Division 1 (except for stamping)
- Design pressure 50 psig at 1150°F
- Butt welds 100 percent radiographed
- Helium mass spectrometer leak test

Table 4-4

REQUIRED DUMP TANK VOLUME

Heat Dump	32 Gal
Solar Panel	42
Piping	37
Surge Tank (Na)	_60
	171 Gal
20% Miscellaneous Compo- nents or Overfill of	
Surge Tank	<u>+34</u>
	205

Allowance of 10% for free argon and heel results in a required dump tank volume of 226 gallons.

4.5 SUPPORT STRUCTURE

The support structure is a steel assemblage of square tubular columns, wide flange beams and double angle bracing, configured to provide a support for the SRTA that could be truck transported without violating overload/oversize highway limitations.

Standard structural steels were utilized for the framing. The horizontal beams are attached to the welded column gussets with two A307 bolts at each end. The flanges were coped locally to provide a simple shear connection. Lateral stiffness and strength is provided by the back-to-back double angle cross bracing. It was assumed that the siding would not provide any additional stiffness. The final support structure assembly is comprised of five major components:

- The base frame
- The upper frame
- The door support frame cantilevered from the roof
- The door support frame cantilevered from the base
- The tower elevator sleeper beams

After these subassemblies are connected, horizontal Z purlins will be attached to the columns and the corrugated asbestos siding installed. The structure for the fluid circulation equipment is shown on Figures 4-7 and 4-8.

4.6 INSTRUMENTATION

The instrumentation for the SRTA loop and associated components was shown in summary form on Figure 4-1 and is detailed on Figure 4-9. It consists of the following measurement functions, plus an alarm system:

Temperature

• Displacement

- Pressure
- Flow
- Level
- Solar Flux

- Strain
- Oxygen
- Smoke

4.6.1 TEMPERATURE

Temperature is measured at the absorber panel inlet and outlet with Resistance Temperature Detectors to obtain high accuracy for the loop heat balance, and for use in the flow control system. Thermocouples (Chromel-Alumel) are applied at the Heat Dump inlet and outlet for control of the Heat Dump and to monitor Heat Dump performance. Chromel-Alumel thermocouples are applied throughout the sodium loop structure and the absorber panel headers and rear surface for trace heat monitoring and control and absorber panel performance monitoring. Some temperatures are indicated on the local control panel, located in the tower elevating module, on meters and on data acquisition units. All temperatures except trace heating are recorded in the CRTF data system. Trace heat temperatures are indicated on a data acquisition (microprocessor) unit which also has provision for paper tape recording.

4.6.2 PRESSURE

Sodium pressure is measured at the absorber panel inlet and outlet and at the pump suction and discharge. A transducer using Sodium-Potassium (NaK) eutectic alloy, contained between two slack diaphragms, transfers pressure from the sodium

4-21

,

٦	AB	LE NO. 2	
	NO	FUNCTION	REMARKS
I	2001	FLOW CONTROL VALVE, ABSORBER PANEL INLET	
1	3	LOOP DRAIN VALVE	
	5	VENT VALVE) DRAIN TANK COVER GAS	
	7	VENT VALVE } SURGE TANK COVER GAS	
	600		
	010	EM PUMP POWER	
	12	EM PUMP BLOWER MOTOR POWER HEAT DUMP FANFIMOTOR POWER	
	14	HEAT DUMP FAN#2MOTOR POWER	
	16		
	61		
	020	RTAF INTERIOLE (RTAF OPEN)	
İ	ż.	ABJORDER PANEL DOOR CONTROL	
	4	ABSORBER PANEL DISPLACEMENT	
	5	ABSORBER PANEL TEMP PROFILE	
	Ĩ	ABSSREC PANEL TUBE TEMP.	
	<u>,</u>	INLET TEMP	
	0.00	INLET MANIFOLD TEMP	
	3	OUTLET TEMP.	
	4	OUTLET MANIFOLD TEMP.	
	67	OUTLET PRESS. DIFFERENTIAL PRESS	
	8	INLET FLOW	
	040	TEMPERATURE SURGETANK	
	ż	SODIUM LEVEL, ANALOG	
	3	SODIUM LEVEL, HIGH SODIUM LEVEL, LOW	
1	5	COVER GAS PRESS, CONTROL	
	i	LEVEL PROBE POWER SUPPLY,	
	3	COVER GAS SUPPLY PRESS CONTRALSURGE TANK	
	0.0	OUTLET TEMP	
	2	HEAT DUMP OUTLET, ABS PHLINET, AT	
	4	TEMP/FLOW MULTIPLIER	
	6	DOOR CONTROL HEAT DUMP	
	8	MAIN LOOP FLOW	
	060	TEND (CONTROL TEMP) , DRAIN TANK	
	2	OVER GAS PRESS (UNIROL)	
ĺ	4	COVER GAS SUPPLY PRESS.	
	5	RUPTURE DISC LEAK DETECTION , SURGE TANK	1
	7	RUPTURE DISC TEAK INTECTION , DRAIN TANK	
	ر 100	DUCTTEMP , E.M. PUMP	
	1	DUCT TEMP	
	3	WINDING TEMP	
	5	TEMP OFF NORMAL (ALARM)	1
	1	INLET DRESSURE	
	3	UNITE PRESSURE . C.M. POMP	
	020	SMOKE DETECTION, LUIP STRULTURE	
	3	DAY - NITE CONTROL SWITCH	
	4	ANNUMETER TEMP.	
	67	OXYGENMETER FLOW	
	6		
	030	ATCH'S MT SEEW IN NAL	
	i		1
	3		
	5		1
			1
	3	TOACH HEATING THMP MONIT DELMA	1
	100	SEE CONTINUATION	±

Figure 4-9. SRTA Instrumentation Diagram

to a third fluid (silicon oil) where a conventional pressure transmitter measures the sodium pressures and differential pressure (across the panel and the pump). Argon cover gas pressure is measured for the surge tank and drain tank at the cold side of the vapor traps for these two tanks. Argon supply pressures are also measured with conventional pressure transmitters. All pressures are indicated on the central control panel and sodium pressures are recorded in the CRTF data system.

4.6.3 FLOW

Sodium flow is measured with permanent magnet (PM) flow meters at three places in the loop. Main loop flow is measured in the cold leg piping (3 inch) between the Heat Dump and the pump suction control valve. By-pass flows in the oxygen meter loop and the low flow loop are measured with small PM flowmeters. All three flows are indicated on the central control panel and are recorded by the CRTF data system.

4.6.4 LEVEL

Level is measured in the surge tank and in the dump tank continuously over fixed ranges, and discretely in the surge tank at two points, one high and one low, for the purpose of calibrating the 3-inch flowmeter. The level probes use resistant types, both "I" (discrete) and "J" (continuous analog), based on the principle that stainless steel has significant electrical resistance and that sodium is a good electrical conductor which "shorts out" stainless steel electrical circuits. Level is indicated on the central control panel and recorded in the CRTF data system.

4.6.5 SOLAR FLUX

Solar flux is measured just off the edge of the absorber panel at ten discrete points using water cooled circular foil calorimeter sensors. One of the solar flux signals is used as a feed forward signal in the control system for the pump flow control. All ten signals are recorded in the CRTF data system.

4.6.6 DISPLACEMENT

The absorber panel expansion is measured with an LVDT (linear voltage displacement transducer) mounted at the bottom of the solar panel. A range of about 3 inches is provided and the signal is recorded in the CRTF data system.

4.6.7 STRAIN

Fifteen high temperature strain gauges are mounted on the back of the absorber panel. The strain signal is conditioned by an amplifier provided by CRTF and the signals are recorded in the CRTF data system.

4.6.8 OXYGEN

The oxygen level in the sodium is measured with an electrochemical oxygen meter probe. The probe is located in a separate small loop that by-passes the pump suction control valve. This loop is heated to provide sodium at 1000°F to the probe. The oxygen level is indicated on the measuring instrument located in the central control panel and is recorded in the CRTF data system.

4.6.9 SMOKE

Sodium "smoke" detectors are located at the ventilation outlet of the structure and over the heat dump to indicate a sodium leak in the system. These detectors provide an alarm at the central control panel and in the CRTF data system.

4.6.10 ALARM SYSTEM

An anunciator is located at the central control panel which provides audible and visual indication of process conditions "out of normal". These alarm signals are also transmitted to the CRTF data system to be recorded there. The alarm signals are listed in Table 4-5.

Table 4-5

SRTA ALARM SIGNALS

- Surge Tank, High or Low Level
- Surge Tank, High or Low Pressure
- Drain Tank, High or Low Pressure
- Surge Tank, Rupture Disk Leak
- Drain Tank, Rupture Disk Leak
- Loop Structure, Smoke Detection
- Heat Dump, Smoke Detection
- Oxygen Meter, High 0, Content

4.7 CONTROL SYSTEM

Control of the sub-systems of the loop are done from the local control panel, or for the key sub-systems, control can be taken over from the master control center. Controls are shown on Figure 4-10 and summarized below:

- E.M. Pump (Loop Flow Rate) *
- Heat Dump *
- Trace Heating **
- Sodium Valves *
- Cover Gas Valves **

- Absorber Panel, High Outlet Temperature
- E.M. Pump, High or Low Duct or Winding Temperatures
- Trace Heating, High Temperature
- Main Loop, Low Flow
- Absorber Panel, High Temperature
- Safety System, Trip

Figure 4-10. SRTA Control Diagram 4-27/28

Absorber Panel Door *

* Control at both Local Control Panel and Master Control Center ** Control at Local Control Panel Only

4.7.1 EM PUMP CONTROL

The EM pump is controlled automatically by absorber panel outlet temperature and solar-heat flux. Solar heat flux provides a feed forward signal that the control system responds to instantaneously and the outlet temperature provides the slower trimming control. Three mode control functions are provided for each control signal.

The pump can be manually tripped from the central local panel or automatically from low solar flux/high flow/heliostat slew combination or from the safety system. The pump cooling blower is manually controlled on-off only.

4.7.2 HEAT DUMP CONTROL

The heat dump is controlled by off, slow, and fast speeds of two blower motors and by louver positions. The blower controls are programmed based on panel power calculated from loop flow multiplied by absorber panel differential temperature. A preset matrix logic of fan speed combinations controls the primary air volume and velocity. The louvers are controlled from the heat dump outlet temperature and provide the trimming action for exact outlet temperature. All controllers have three mode adjustments (proportional band, reset, and rate action).

A bank of heaters in the cooling area can provide additional trimming of the outlet temperature controls, particularly at very low cooling rates where the fan/ louver combination tends to overcool. The heaters are controlled manually from the local control panel and can provide heating from near zero to their full power rating of 40 kW.

For shutdown operation the bottom and top doors are closed. These doors can be controlled from the local control panel or the master control center.

4.7.3 TRACE HEATING CONTROL

Trace heating control is done manually from the local control panel. Most of the heater banks are controlled by phase firing triacs, operating either in the 220 volt region or in the 120 volt region. Control is by adjustment of a potentiometer in the trace heating control module which is located in the local control panel. The voltage output of the triac is read by meter at the control module.
Switches provide for individual bank on-off control as well as multiple bank control which can also be made from the master control center. The multiple bank controls are:

- Drain tank
- Hot leg piping, including the surge tank and absorber panel outlet header
- Absorber panel back
- Cold leg piping and absorber panel inlet header

The balance of the controls are individual on-off controlled locally only.

Trace heating temperature monitoring consists of a thermocouple for each heater being monitored by a digital data processor located on the local control panel. Flexible controls on this data acquisition unit provide for overall scanning as well as bank or individual thermocouple monitoring. Paper tape recording and cathode ray tube viewing is available.

4.7.4 SODIUM VALVES

Two types of sodium valve control are used. For open-close operation a pneumatic operator controlled by electromagnetic solenoid(s) provides for either full open or full closed control. The loop drain valve and the gas pressure equalizing valve are controlled in this manner.

For position at any point between open and closed, an electric motor operated valve is provided. Controls on the local control panel drive the valve in the open or shut direction, and the stopping point is determined by the operator. All sodium valves are controlled from either the local control panel in the tower or the master control center.

4.7.5 COVER GAS VALVES

Control of the cover gas source pressure is done at the central control panel by an electronic-to-pneumatic control transducer for each of the two sodium vessels. The final control pressure is done by feed/bleed solenoid valves controlled from a pressure control system. In this manner a significant dead band can be set where both valves are closed in order to minimize usage of argon gas. Small fluctuations in the cover gas pressure are not important for most phases of operation.

4.7.6 ABSORBER PANEL DOOR

When the solar flux is not focused on the absorber panel, a door is provided to cover the panel to reduce heat loss. This panel is electric motor operated from full open to full shut by controls at either the local control panel or the master control center. Interlocks are provided so as not to interfere with the real time aperture flux measuring device which occupies the same space at the front of the panel. Open/shut stops and indicator lights are provided.

4.8 AUXILIARY EQUIPMENT

SRTA auxiliary equipment includes 480 volt electrical power supplies, breakers, switches, and cabling for the heat dump blowers, EM pump cooling blower and trace heating control equipment. The control center is shown in Figure 4-11. In addition, the EM pump will be supplied from a 90 ampere motor operated auto-transformer and will have 50 KVAR of power factor (PF) correcting capacitors.

4.9 SRTA SYSTEM ANALYSIS

One objective of the SRTA experiment is the demonstration of sodium absorber controlability during solar plant transient operation. In order to assure proper SRTA control and component acceptability, transient analyses are being performed.

4.9.1 LOOP ANALYSIS

The SRTA control loop is being evaluated to determine its tolerance to transient events. This evaluation utilizes a software simulation program that addresses loop regulation, response and controlability. The simulation assumes the loop to consist of two parts which may be considered somewhat independent of each other: the absorber panel and its control and the heat dump and its control. Although flow through both these components is controlled by a common pump, the transport time through the loop is sufficiently long that any control interaction between these two components will not be severe. The most critical control problem involves regulation/control of the solar panel.

The evaluation of loop regulation/control must consider the following characteristics:

- One control parameter (flow) controls the behavior of exit sodium temperature and maximum tube metal temperature.
- The panel consists of 50 tubes, ∿ 15 ft. long, with jumper tubes and inlet/ outlet headers. The active panel area is subjected to nonuniform time varying insolation.
- At rated flow (120 GPM), it takes ~ 20 seconds for sodium entering the panel to reach the outlet header. At 15% flow, the time is 120 seconds. The effect of the header (volume and thermal mass) is to mask the effect of incoming changes, such that a sodium temperature measurement at this point is likely to be ineffective for use in responsive closed loop regulation and control.

Figure 4-11. SRTA Control Center

GE NERAL S ELECTRIC • The major system disturbance anticipated during normal operation will be insolation transient on the panel due to passing clouds. An accurate method must be developed to measure insolation flux changes and derive a programmed flow signal from them.

The procedure being used for control system evaluation consists of: identification of candidate control algorithms, control simulation development and choice of preferred approvals, choice of system gains and stabilization valves, verification of preferred approval by simulation and analysis and evaluation of control system flexibility. For a complex, nonlinear development loop such as the SRTA, conventional linear control response and stability analysis procedures (Bode, Nyquist, etc.) are not applicable. System simulation of the loop and closed loop control is required in order to develop confidence in the control approach.

<u>Results to Date</u>

The original method of controlling flow does not appear adequate. This concept used a single flux sensor off to one side of the panel to indicate increasing or decreasing flux and then driving the pump up or down relative to the indication. Panel outlet header exit temperature was then used to fine tune the pump flow to maintain N a outlet temperature at 593°C (1100°F). The inability of this scheme to maintain the desired loop conditions is shown in Figures 4-12 through 4-14. Figure 4-12 is a plot of flux and flow versus time for a 120 second down transient; the flow tracking shown assumes an idealized case. Figure 4-13 shows that the average sodium exit temperature peaks 40 seconds after the conclusion of the transient. The high outlet temperature would signal the pump to increase flow, when in fact flow should be reduced to compensate for reduced insolation. The effects of flux and flow changes on panel center tube metal temperatures are shown on Figure 4-14.

The sensitivity of this scheme to loop flow rates is shown on Figures 4-15 through 4-17. These plots are based on 5% decrease of the initial insolation in 5 seconds. The control acts to restore the steady state temperature back to 1100°F; however, the response time is slow, almost 120 seconds at rated flow (Figure 4-15), some overshoot appears at 48% flow (Figure 4-16), and the response is unacceptably lightly damped at 16.8% flow (Figure 4-17).

Conclusion

Outlet header temperatures are not acceptable as a flow control parameter. Panel flux level changes must be incorporated as the primary flow control parameter. A fast and accurate method of measuring the flux changes must be incorporated into

Figure 4-13. Power Down Transient Operation

GENERAL 🍪 ELECTRIC

GENERAL 🍪 ELECTRIC

Absorber Panel Door *

* Control at both Local Control Panel and Master Control Center ** Control at Local Control Panel Only

4.7.1 EM PUMP CONTROL

The EM pump is controlled automatically by absorber panel outlet temperature and solar-heat flux. Solar heat flux provides a feed forward signal that the control system responds to instantaneously and the outlet temperature provides the slower trimming control. Three mode control functions are provided for each control signal.

The pump can be manually tripped from the central local panel or automatically from low solar flux/high flow/heliostat slew combination or from the safety system. The pump cooling blower is manually controlled on-off only.

4.7.2 HEAT DUMP CONTROL

The heat dump is controlled by off, slow, and fast speeds of two blower motors and by louver positions. The blower controls are programmed based on panel power calculated from loop flow multiplied by absorber panel differential temperature. A preset matrix logic of fan speed combinations controls the primary air volume and velocity. The louvers are controlled from the heat dump outlet temperature and provide the trimming action for exact outlet temperature. All controllers have three mode adjustments (proportional band, reset, and rate action).

A bank of heaters in the cooling area can provide additional trimming of the outlet temperature controls, particularly at very low cooling rates where the fan/ louver combination tends to overcool. The heaters are controlled manually from the local control panel and can provide heating from near zero to their full power rating of 40 kW.

For shutdown operation the bottom and top doors are closed. These doors can be controlled from the local control panel or the master control center.

4.7.3 TRACE HEATING CONTROL

Trace heating control is done manually from the local control panel. Most of the heater banks are controlled by phase firing triacs, operating either in the 220 volt region or in the 120 volt region. Control is by adjustment of a potentiometer in the trace heating control module which is located in the local control panel. The voltage output of the triac is read by meter at the control module.

Switches provide for individual bank on-off control as well as multiple bank control which can also be made from the master control center. The multiple bank controls are:

- Drain tank
- Hot leg piping, including the surge tank and absorber panel outlet header
- Absorber panel back
- Cold leg piping and absorber panel inlet header

The balance of the controls are individual on-off controlled locally only.

Trace heating temperature monitoring consists of a thermocouple for each heater being monitored by a digital data processor located on the local control panel. Flexible controls on this data acquisition unit provide for overall scanning as well as bank or individual thermocouple monitoring. Paper tape recording and cathode ray tube viewing is available.

4.7.4 SODIUM VALVES

Two types of sodium value control are used. For open-close operation a pneumatic operator controlled by electromagnetic solenoid(s) provides for either full open or full closed control. The loop drain value and the gas pressure equalizing value are controlled in this manner.

For position at any point between open and closed, an electric motor operated valve is provided. Controls on the local control panel drive the valve in the open or shut direction, and the stopping point is determined by the operator. All sodium valves are controlled from either the local control panel in the tower or the master control center.

4.7.5 COVER GAS VALVES

Control of the cover gas source pressure is done at the central control panel by an electronic-to-pneumatic control transducer for each of the two sodium vessels. The final control pressure is done by feed/bleed solenoid valves controlled from a pressure control system. In this manner a significant dead band can be set where both valves are closed in order to minimize usage of argon gas. Small fluctuations in the cover gas pressure are not important for most phases of operation.

4.7.6 ABSORBER PANEL DOOR

When the solar flux is not focused on the absorber panel, a door is provided to cover the panel to reduce heat loss. This panel is electric motor operated from

full open to full shut by controls at either the local control panel or the master control center. Interlocks are provided so as not to interfere with the real time aperture flux measuring device which occupies the same space at the front of the panel. Open/shut stops and indicator lights are provided.

4.8 AUXILIARY EQUIPMENT

SRTA auxiliary equipment includes 480 volt electrical power supplies, breakers, switches, and cabling for the heat dump blowers, EM pump cooling blower and trace heating control equipment. The control center is shown in Figure 4-11. In addition, the EM pump will be supplied from a 90 ampere motor operated auto-transformer and will have 50 KVAR of power factor (PF) correcting capacitors.

4.9 SRTA SYSTEM ANALYSIS

One objective of the SRTA experiment is the demonstration of sodium absorber controlability during solar plant transient operation. In order to assure proper SRTA control and component acceptability, transient analyses are being performed.

4.9.1 LOOP ANALYSIS

The SRTA control loop is being evaluated to determine its tolerance to transient events. This evaluation utilizes a software simulation program that addresses loop regulation, response and controlability. The simulation assumes the loop to consist of two parts which may be considered somewhat independent of each other: the absorber panel and its control and the heat dump and its control. Although flow through both these components is controlled by a common pump, the transport time through the loop is sufficiently long that any control interaction between these two components will not be severe. The most critical control problem involves regulation/control of the solar panel.

The evaluation of loop regulation/control must consider the following characteristics:

- One control parameter (flow) controls the behavior of exit sodium temperature and maximum tube metal temperature.
- The panel consists of 50 tubes, ∿ 15 ft. long, with jumper tubes and inlet/ outlet headers. The active panel area is subjected to nonuniform time varying insolation.
- At rated flow (120 GPM), it takes ~ 20 seconds for sodium entering the panel to reach the outlet header. At 15% flow, the time is 120 seconds. The effect of the header (volume and thermal mass) is to mask the effect of incoming changes, such that a sodium temperature measurement at this point is likely to be ineffective for use in responsive closed loop regulation and control.

Figure 4-11. SRTA Control Center

GENERAL 豂 ELECTRIC

• The major system disturbance anticipated during normal operation will be insolation transient on the panel due to passing clouds. An accurate method must be developed to measure insolation flux changes and derive a programmed flow signal from them.

The procedure being used for control system evaluation consists of: identification of candidate control algorithms, control simulation development and choice of preferred approvals, choice of system gains and stabilization valves, verification of preferred approval by simulation and analysis and evaluation of control system flexibility. For a complex, nonlinear development loop such as the SRTA, conventional linear control response and stability analysis procedures (Bode, Nyquist, etc.) are not applicable. System simulation of the loop and closed loop control is required in order to develop confidence in the control approach.

Results to Date

The original method of controlling flow does not appear adequate. This concept used a single flux sensor off to one side of the panel to indicate increasing or decreasing flux and then driving the pump up or down relative to the indication. Panel outlet header exit temperature was then used to fine tune the pump flow to maintain N a outlet temperature at 593°C (1100°F). The inability of this scheme to maintain the desired loop conditions is shown in Figures 4-12 through 4-14. Figure 4-12 is a plot of flux and flow versus time for a 120 second down transient; the flow tracking shown assumes an idealized case. Figure 4-13 shows that the average sodium exit temperature peaks 40 seconds after the conclusion of the transient. The high outlet temperature would signal the pump to increase flow, when in fact flow should be reduced to compensate for reduced insolation. The effects of flux and flow changes on panel center tube metal temperatures are shown on Figure 4-14.

The sensitivity of this scheme to loop flow rates is shown on Figures 4-15 through 4-17. These plots are based on 5% decrease of the initial insolation in 5 seconds. The control acts to restore the steady state temperature back to 1100°F; however, the response time is slow, almost 120 seconds at rated flow (Figure 4-15), some overshoot appears at 48% flow (Figure 4-16), and the response is unacceptably lightly damped at 16.8% flow (Figure 4-17).

Conclusion

Outlet header temperatures are not acceptable as a flow control parameter. Panel flux level changes must be incorporated as the primary flow control parameter. A fast and accurate method of measuring the flux changes must be incorporated into

Figure 4-13. Power Down Transient Operation

GENERAL 🍪 ELECTRIC

the control scheme. A single flux sensor provides only quantitative data relative to the flux level on the panel and in fact could conceivably give erroneous reading due to its location in the outer edge of the solar beam.

The use of the 18 thermocouples embedded in the panel tube spacer strips to provide fast and accurate data on flux changes is being investigated. Preliminary results indicate that a workable control scheme can be implemented using this approach.

4.9.2 COMPONENT TRANSIENT RESPONSE

To study the severity of the thermal transient on sodium components, a simple analytical model was constructed as shown schematically in Figure 4-18. The General Electric code GENCON was used in this analysis.

GENCON is a FORTRAN computer code which calculates transient temperatures and flows in a liquid metal heat transfer system, such as in a Liquid Metal Fast Breeder Reactor (LMFBR). The code is particularly suited to the analysis of an LMFBR after reactor shutdown when flow is produced mainly by natural convection.

Operation of GENCON is through a timesharing system, with detailed printout available on the batch system. Data is read from a simple input file, with the capability of accommodating relatively complicated piping systems, including brached flow. The following simplifying assumptions are made in the analysis in order to keep the input file simple and to minimize the calculation cost.

- Flow resistance is defined as a constant for each section of the system rather than for individual components that make up the section, with friction pressure drop proportional to flow squared.
- Average liquid density, thermal expansion coefficient, and heat capacity are assumed to be independent of temperature.
- Heat capacities of pipes and other components are accounted for, but with no time lag.

• Flow inertia is neglected (normally negligible at very low flow rates). The following events have been studied to date:

- Cuts of heliostats from an initial full power equilibrium condition.
 - a) With normal EM pump rundown to minimum flow
 - b) With a trip of the EM pump
 - c) With various panel losses
- Loss of EM pump and failure of the heliostats to cut off
- Studies of a realistic large rapidly moving cloud.
- Studies of the 1 MW/min transient specified in Appendix A.

Figure 4-18. Loop Analysis Model

The preliminary analysis indicates that anticipated transients will not adversely affect the sodium loop components. As indicated in Section 4.9.1, the test panel transient response is still under investigation.

4.10 SODIUM TANKS

Calculations were made in accordance with the requirements of ASME B&PV Code Section VIII, Division 1, to justify the design of the drain tank and the surge tank for a 50 psig design pressure at a design temperature of 1150°F. In addition to the basic code calculations, design calculations were made for tank mounting and overpressure protection.

SECTION 5

SODIUM LOOP FABRICATION

This section describes the fabrication status and assembly plan for the sodium loop equipment including the procurement and refurbishment of the SEFOR hardware.

5.1 BACKGROUND

In early April 1979 the General Electric Company, along with other organizations, was notified by the University of Arkansas of the intent to sell certain sodium loop equipment formerly used during operation of the Southwest Experimental Fast Oxide Reactor (SEFOR) experimental liquid metal breeder plant. The equipment was designed to the appropriate ASME Codes and fabricated from 304 SS. The General Electric Company had first-hand knowledge of this equipment since the Company was the prime contractor and plant operator in the late 1960's and early 1970's. It was immediately apparent by a review of the equipment list that much of the equipment associated with SEFOR secondary sodium system was of use in the Sodium Receiver Test Assembly (SRTA).

GE engineers visited the facility in April 1979 and examined the items of equipment that the University offered for sale. The result of the examination indicated that most of the equipment was in excellent condition and several key components were of the size and performance rating required of the SRTA. A subsequent evaluation of cost savings and risk was performed to arrive at a justifiable and realistic bid price. The equipment was subsequently purchased. The components purchased are identified in Table 5-1 and will be used as shown on the loop schematic shown in Figure 5-1.

The purchase of the equipment was made at the SEFOR site in July. Removal of equipment was initiated in mid-July 1979. All major sodium components were cut out of the loop and set on pallets. A hydraulic crane was used to pick up and separate the three major sections of the heat dump and remove sodium tanks and the EM pump stator from the inside of the building. The equipment was delivered to the GE San Jose, CA site in September 1979.

Table 5-1

SEFOR EQUIPMENT LIST

item	Quantity
2.5 MW ₊ Heat Dump	1
250 gpm Electromagnetic Pump	1
EM Pump Blower	1
EM Pump Controller/Capacitors	1
EM Flowmeter 3"-250 gpm	2
3" 304 SS Pipe	80'
75 Gal. Sodium Storage Tank	1
450 Gal. Sodium Storage Tank	1
Trace Heater Power Supplies & Controllers	-
Piping Hangers and Snubbers	-
2" Pneumatic & Motor Operated Valves	5
2" Manually Operated Valves	2
l" Sodium Valves	2
Vapor Trap	1

A brief description of the equipment and refurbishment performed in contained in the following paragraphs.

5.2 HEAT DUMP

The auxiliary air blast cooler (heat dump) was stationed outside the SEFOR building, the only piece of equipment not under cover. Photographs of the heat dump SEFOR removal process are provided in Figure 5-2.

The heat dump consists of a finned tube heat exchanger, support structure, controlled dampers, two fans, trace heaters, air operated isolation doors and controls. The unit was removed and the coil successfully cleaned and hydrotested at the site. The structure was wire brushed, cleaned, and repainted with Rustoleum primer and top coat. After arrival at San Jose the actuators and louvers were refurbished. The isolation doors were badly rusted and the insulation within the doors had deteriorated. The doors were completely refurbished with new metal plate and insulation. The heat dump controls were checked and a new louver operating motor was installed.

MAJOR COMPONENTS

- PANEL (FW)
- STRUCTURE
- DOOR
- PIPING LOOP/SUPPORTS

GENERAL

- DRAIN TANK
- SURGE TANK
- EM PUMP
- FLOW METERS
- Na VALVES
 COLD TRAP
- PLUGGING IND
- VAPOR TRAP ARGON SUPPLY
- HEAT DUMP INSTRUMENTATION ELECTRICAL
 - ELECTRICAL
- TRACE HEATING -CONTROLS SAFETY SYSTEM

Figure 5-1. SRTA Schematic Shwoing SEFOR Equipment

GENERAL 🌑 ELECTRIC

Heat Dump Being Disassembled

45 ton Crane Removing Lower Section of Heat Dump

Heat Dump Coil and Isolation Doors

Lower Section, Blowers and Louvers

Figure 5-2. Heat Dump Disassembly at the SEFOR Site

The heat dump coil was helium mass spectrometer leak checked at the San Jose facility. Five very small leaks were detected in the header welds. The size of the leaks were determined to be not greater than 3 cc's of helium a year. The leaks were repaired by weld buildup and a subsequent helium leak test was performed.

Concern existed with respect to the heat transfer performance of the finned tube heat dump coil since considerable rust existed on the carbon steel fins. As discussed in Section 4, the coil is being replaced after analysis results indicated an unacceptable heat transfer capacity. A new coil has been ordered from Voss Finned Tube Products, Medina, Ohio. A modification in the design has been made to provide a brazed fin/tube to prevent rusting of the heat transfer path from the fin to the tube. Larger trace heaters will also be installed.

A photo of the disassembled refurbished heat dump exclusive of the coil was shown in Figure 1-8.

5.3 ELECTROMAGNETIC PUMP & SUPPORT EQUIPMENT

The auxiliary secondary EM pump acquired from SEFOR is a helical induction pump designed and built by General Electric. The pump was located inside the SEFOR building and had been inerted since SEFOR plant closedown. The stator, duct, and pump support equipment were shipped to San Jose after cleaning of the pump duct at the site. The pump duct upon arrival at San Jose was successfully hydrotested to 225 psi. The stator was given an electrical check, baked out, and is considered in excellent condition. The cooling blower and controllers were also checked out satisfactorily. A 60 and 90 KVA power supply was obtained from the SEFOR site. The 90 KVA supply is to be used in the SRTA. Photographs of the EM pump duct and stator are shown in Figures 5-3 and 5-4.

5.3.1 EM FLOWMETERS

Two General Electric designed 250 gpm, 7.5 cm, (3 inch) electromagnetic flowmeters were obtained. No significant refurbishment was required.

5.3.2 PIPING

24 meters (80 ft.) of 7.5 cm (3 inch) piping was cut out of the SEFOR loop and alcohol/water cleaned prior to shipment to San Jose; however, new piping is being used in most areas of the SRTA loop, with the SEFOR piping retained as spare supplies. A typical piping isometric is shown in Figure 5-5.

Figure 5-3. EM Pump Duct

Figure 5-4. EM Pump Stator with Duct Inside

GENERAL 🌮 ELECTRIC

Figure 5-5. Piping Isometric

GENERAL 🌆 ELECTRIC

5.4 SODIUM TANKS

A 285 liter (75 gallon) auxiliary expansion tank and a 1640 liter (450 gallon) main secondary expansion tank were made available for the SRTA from SEFOR. The 75 gallon 304 SS tank, designed to Section VIII of the ASME Code, is 0.6 m (2 ft.) in diameter and 1.1 m (3 ft.-8 in.) high. The vessel has nozzles for cover gas sampling and level indicators in the upper head. This vessel was drained and has been kept inerted since SEFOR operation. Prior to shipment to San Jose, it was alcohol/ water cleaned and hydrotested at 210 psi.

The smaller tank is being used as the surge tank at the top of the SRTA loop. Modifications have been completed which included (1) removal of two 1-inch nozzles and replacement with 3-inch nozzles for tank inlet and outlet, (2) dye check and repair of all welds, (3) modification of support legs, and (4) modification of level probes. After these modifications the tank closing seam weld was made, and a leak test and hydrostatic test performed.

The larger tank will be used as the sodium drain tank. This tank was cut open and 0.95m (38 inches) was removed from the shell to reduce the volume from 450 gallons to 234 gallons. Minor modifications were made to the nozzles and the level probes were shortened. A dip tube was installed to be used in sodium filling. The legs were shortened. Weld dye checks and repairs were made, where required. The tank was cleaned and hydrotested after the closing seam was made and radiographed.

5.5 TRACE HEATER EQUIPMENT

The SEFOR auxiliary secondary loop was provided with electrical tubular-type resistance heaters on all piping and components containing sodium. Each functional circuit was provided with a preheater system which could be turned on or off as required. Manual controllers with auto-transformers (volt packs) were used. This equipment was all enclosed and in good working order and was removed and shipped to San Jose for use on SRTA.

5.6 PIPING HANGERS AND SNUBBERS

A number of pipe hangers and snubbers were on the SEFOR auxiliary secondary loop. This hardware was removed and shipped to San Jose and is being selectively used in the assembly of the SRTA loop piping components.

5.7 SODIUM VALVES

Several 2-inch and 1-inch sodium globe valves were available at SEFOR. The valves removed from the site included the following:

2 - 2-inch manual operated sodium valves

- 3 2-inch pneumatic operated sodium valves
- 2 2-inch motor operated sodium valves
- 2 1-inch manual operated sodium valves

These values have stellite seats and forged 304 SS bodies. A bellows stem seal with a back-up braided asbestos packing provides sodium isolation.

Alcohol/water cleaning was done at the site and again at the San Jose facility. Cleaning was followed by a test of the bellows stem seal per manufacturer's instructions and a helium mass spectrometer leak test of the bellows-to-stem seal and valve closure. A photograph of one of the 2-inch penumatic operated valves is shown in Figure 5-6.

5.8 SRTA MANUFACTURING & ASSEMBLY

The Sodium Receiver Test Assembly (SRTA) sodium loop and structure is being fabricated and assembled at General Electric's facilities in San Jose, CA. As shown in Figure 5-7, the present assembly plan specifies a delivery of the SRTA (exclusive of the absorber panel assembly) to the CRTF site in September 1980.

The 40-foot high structure was fabricated by a local structural steel vendor in December. The structure was cut in two parts to simplify erection in the high bay assembly area and provide a better transportation configuration for shipment to the CRTF. The erected structure, prior to component installation, was shown in Figure 1-7.

Platforms and ladders have been fabricated and installed on the structure to provide access to the loop during assembly and for maintenance and operation at the CRTF. As noted on the schedule, the final enclosure is made at the CRTF.

The surge and drain tanks have been installed in the structure. The loop piping consists of over 20 separate spool pieces that interconnect components and the panel. These spool pieces (3, 2, and 1-inch 304 SS piping and fittings) are presently being fabricated in the General Electric San Jose shop and are being assembled in a pre-established sequence in the structure. An isometric of the EM pump outlet piping was shown in Figure 5-5. All sodium contained welds are being radiographed and dye penetrant inspected. Due to the sequence of assembly, some

Figure 5-6. 2-Inch Pneumatic Operated Valve

Figure 5-7. SRTA Assembly Schedule

interconnecting welds will be made at CRTF (e.g., connections to the absorber panel, heat dump, and the two sections of the structure).

Additional loop components to be fabricated include a cold trap, vapor trap, sodium pressure gages, and the argon cover gas/relief system. These components are scheduled for fabrication in May 1980.

After assembly of piping and components, trace heaters will be installed on the entire loop. Loop instrumentation will be installed followed by insulation of the loop and components. This activity is scheduled for the months of May and June. Loop wiring will be accomplished after the insulation has been installed.

During the assembly of the loop, appropriate component and piping hangers and snubbers are being attached to maintain allowable pipe stresses as supported by a piping analysis.

Assembly of a 3 bay electrical control console is being initiated and is planned for completion in mid-summer. All of the electrical components for the console have been ordered.

Several components are scheduled for fabrication in May and June but will not be permanently assembled to the structure in San Jose, but will be shipped separately to the CRTF for assembly there. In some instances (i.e., door and hangers) fit up checks will be made in San Jose but the components will be removed from the assembly for separate shipment.

The SRTA structure and assembled loop will be shipped in two major sections to facilitate handling and shipping. The lower structure contains the bulk of the loop components including the drain tank, cold trap, EM pump, flowmeters, oxygen meters, and most valving. It is designed for shipment in the vertical position to reduce the donnage and special fixturing required. The oxygen meters and level probes will be removed from the unit for separate shipment due to their fragility.

The longer upper SRTA structure will be shipped horizontally. It contains the surge tank, a vapor trap, the pressure relief system, door drive unit, and considerable loop piping. The level probes will be removed from the surge tank for separate shipment.

Several mechanical components are scheduled for installation at the CRTF. The sleeper beams for both the SRTA structure and the heat dump and their respective sodium catch pans will be fabricated by a structural steel contractor for delivery to the CRTF in September 1980.

Initial activity at CRTF will begin sometime after September 1, 1980. The work will be performed on a lift platform inside the tower. The major tasks will be unloading and inspection of SRTA subassemblies, assembly of SRTA structure on the sleeper beams, installation of connecting piping, preheaters and insulation as appropriate, installation of pipe hangers, and connection of power cabling. The SRTA assembly will then be moved out of the tower to allow for lowering and removal of the Martin Marietta receiver. Framework for the solar shield will be provided for mounting of the insulation by CRTF personnel.

The absorber panel will arrive in October 1980. After receiving inspection it will be instrumented and readied for integration into the SRTA.

The GE local control panel will be moved into the computer level of the module and the elevating module lowered to allow for installation of equipment on the elevator module top. The heat dump, electrical power supply and SRTA structural assembly will then be mounted to the module top. The absorber panel will be mounted to the structure and the final welding and inspection of the sodium piping will be completed. Following this, the remaining preheaters and loop insulation will be installed. The installation of the solar shield, insulating door, cabling and SRTA siding will complete this activity.

SECTION 6

PRELIMINARY TEST PLAN

The general objectives of the SRTA experiment were described in Section 1. They formed the fundamental basis for preparation of a plan for the testing at the Central Receiver Test Facility (CRTF). The Preliminary Test Plan issued in February 1980 will be summarized in this section.

6.1 TEST OVERVIEW

The general objectives discussed in Section 1 were used to specify what items the SRTA experiment must demonstrate or verify and what measurements are required, specifically:

Demonstrate

- Manufacturability of Panel
- Safety and Reliability of Sodium Systems

Verify

• SRTA Compliance with Development Specification

Measure

- Panel Efficiency
- Radiation and Convective Losses
- Reflective Losses
- Thermally Induced Strains

The satisfactory completion of the test program will demonstrate the manufacturability of the absorber panel and the safety/reliability of sodium systems.

The test program will provide the necessary data for verification of performance requirements defined in Paragraph 4.3 of the SRTA development specification (Appendix A) and also provide measurement of panel efficiency, losses, and thermally induced strains. The synthesis of these data requirements into a minimum number of tests is shown on the following page:

GENERAL 🍪 ELECTRIC

SRTA Requirement

- Flux Handling
- Inlet Temperature Control
- Outlet Temperature Control
- Startup/Operation/Shutdown Emergency Dump
- Heat Dissipation
- Piping Pressure Drop
- EM Pump Control
- Heat Dump Control
- Panel Loss Characterization
- Thermally Induced Strains

- Tests
- Startup/Shutdown & Transient Characterization
- Normal Operation
- High Flux
- Radiation & Convection Loss
- Reflection Loss

The resultant five tests constitute the performance testing of the SRTA. Instrumentation to be provided in the SRTA was described in detail in earlier sections. Table 6-1 provides a tabulation of instrumentation used for test data acquisition.

Table 6-1

SRTA TEST DATA ACQUISITION

	INSTRUMENTATION	ACCURACY
PARAPLETER	INDIKOPENTATION	ACCORACT
Incident Flux	RTAF	4%
Front Surface Panel Temperature	Thermocouple	TBD
Back Surface Panel Temperature	Thermocouple	1%
Sodium ∆T	Platnium RTD	1%
Sodium Flow	Flow Meter	1.5%
Panel Strain	BLH Strain Gauge	TBD
Panel Expansion	Linear Variable Differential Transformer	2%
Ambient Temperatures	CRTF Weather Station	1%
Wind Speed	CRTF Weather Station	2%

6.2 DESCRIPTIONS OF MAJOR TESTS

This section provides descriptions of the general characteristics of SRTA test matrices and discusses each of the five major tests.

GENERAL 🛞 ELECTRIC

GENERALIZED TEST MATRIX

Each test matrix includes a tabulation of the test conditions required for each run of the test. The following nine columns are used to group the requirements.

- Total Time Estimated time for startup, data taking, and shutdown of the test for scheduling purposes.
- Flux Distribution Figure 6-1 shows the three flux distributions used for the test program, the number in this column selects one of the three. If no flux is required, a zero is entered in the column.
- Flux Ramp Figure 6-2 shows the nine startup and shutdown ramps used for the test program. The number in this column identifies which ramp is to be used for this test. If the test requires no flux, a zero is entered in the column.
- % Heliostats This defines the portion of the field to be utilized during testing.
- Inlet Temperature ^oF Sodium temperature at the absorber panel inlet header.
- Outlet Temperature ^oF Sodium temperature at the absorber panel outlet header.
- % Flow EM pump flow rate; this is only controlled in test #2. For all other tests, flow is controlled by panel outlet temperature and flux change sensing.
- Wind Speed Defines wind conditions compatible with test objectives.

• Air Temperature - Defines air temperature compatible with test objectives. The data requirements and sampling times are also listed in each matrix. The data interval is total time over which the data will be sampled and recorded on magnetic tape, disc or other appropriate storage medium. The data system will sample and record the identified parameters at the stated interval. The data will be reduced and analyzed after completion of the test.

6.2.2 TEST #1 - RADIATION AND CONVECTIVE LOSS

The objective of this test is to measure the radiation and convection losses of the absorber panel. The test will be performed by heating the loop to an isothermal condition and then, with no flux present, open the absorber panel insulating door and take data on panel ΔT and sodium flow. The test conditions and data requirements for this test are shown on Table 6.2.

The data acquired from Test #1 will be used to estimate the emissivity (ϵ) of the panel surface and the airside convective coefficient (H_T). A family of curves will be generated by varying H_T and ϵ in the following equations:

$$Q_R = \sigma \epsilon A (T_N + 460)^4 - (T_A + 460)^4$$
 (6-1)

FLUX DISTRIBUTIONS CANNOT EXCEED 2.5 MW TOTAL

Figure 6-1. SRTA Test Flux Profiles

Table 6-2

	RUN 🛙	total Tile	FLUX DISTRIBUTION	flux Ramp	NELIOSTATS	INLET Temp of	OUTLET TEMP ^O F	FLOW	WIND Speed	AIR Temp
Ì	1.1	4	0	0	0	350	300	As Rqd.	Note 1	Note 1
	1.2	4	0	0	0	450	400	λs Rqđ.	Note 1	Note 1
	1.3	4	0	0	0	600	550	As Rgd.	Note 1	Note 1
	1.4	4	0	0	0	850	800	As Rqd.	Not o l	Note l
	1.5	4	0	0	0	1100	1050	As Rqd.	Note 1	Note 1

DATA

RUN ()	DATA Interval	FLOW	Δτ	PANEL T/C	STRAIN GUNGE	rtap	WIND Speed	AIR Temp
1.1	10 min.	5 scc	5 sec	5 sec	NA	ŃЛ	30 sec	30 sec
1.2	u		87	"				
1.3			14	н	, н	14		u.
1.4	"	08		"				4
1.5		4	••		**		*	

Notes: 1. These conditions should be constant over the data recording interval of the test.

 $Q_{C} = H_{T}A (T_{N} - T_{A})$ (6-2) where: $Q_{R} = Radiative Loss$ $Q_{C} = Convective Loss$ A = Panel Surface Area $T_{N} = Average Panel Sodium Temperature$ $T_{A} = Ambient Temperature$ $\sigma = Stephan Boltzman Constant$

The actual heat loss will be calculated using measured panel parameters in the following equation:

THL = WCp $\Delta T_N = Q_R + Q_C$ (6-3) where: THL = Total Panel Heat Loss W = Panel Sodium Flow Rate Cp = Sodium Average Specific Heat ΔT_N = Sodium Average Panel Temperature Rise

The actual THL will be compared with the family of curves ($Q_R + Q_C$) to estimate the actual values of ϵ and H_T for the test panel. Figure 6-3 shows an example family of curves.

6.2.3 TEST #2 STARTUP/SHUTDOWN AND TRANSIENT CHARACTERIZATION

This test will determine the startup/shutdown flux ramp and flow conditions for subsequent tests as well as evaluating the SRTA tolerance to transients. The test conditions and data requirements for this test are shown on Table 6-3.

Test runs 2.1 through 2.12 will provide the startup/shutdown evaluation. For constant flux distributions and ramp conditions the initial flow rate will be held at 40, 30, 20 and 10 percent of normal flow until the 1100° F outlet temperature is reached. This will be updated for two additional flux ramps and an analysis of the data will determine the optimum startup/shutdown scenario. A sample plot of the data is shown on Figure 6-4.

Test runs 2-13 through 2-18 will evaluate the tolerance of the SRTA to transients. The transients will be introduced by steering off heliostats. Starting from normal operating conditions, three different ramps will be used to vary the flux from 100 to 50 percent, the ramps will be repeated varying the flux from 100 percent to zero.

The data will be analyzed to determine operational limits of the SRTA as a function of transient conditions.

APPENDIX A

DEVELOPMENT SPECIFICATION FOR SODIUM RECEIVER TEST ASSEMBLY

Figure 6-3. Curve Fit Determination of ϵ and ${\rm H}_T$

Table 6-3

TEST #2 STARTUP/SHUTDOWN AND TRANSIENT CHARACTERIZATION TEST CONDITIONS

RUN C	TOTAL TIME	FLUX DISTRIBUTION	FLUX RAHP	HELIOSTATS	INLET Temp op	OUTLET TEMP ^O F	FLOW	WIND SPEED	AIR Tenp
2.1	6	1	1	0-100-0	600	600-1100-600	Initial 40	Note 2	Note 2
2.2	6	1	1	0-100-0			Initial JO		
2.3	6	1	1	0-100-0			Initial 20		
2.4	6	1	1	0+100-0			Initial 10		
2.5	6	1	2	0-100-0			Znitial 40		
2.6	6	1	2	0-100-0			Initial 30		
2.7	6	1	2	0-100-0	1		Initial 20		
2.0	5	1	2	0-100-0			Initial 10		
2.9	6	1	3	0-100-0			Initial 40		
2.10	6	1	3	0-100-0			Initial 30		
2.11	6	1	3	0-100-0			Initial 20		
2.12	6	1	3	0-100-0		600-1100-600	Initial 10		
2,13	4	1	4	100-0		1100-600	As Rqd.		
2,14	4	1	5	100-0		1100-600	As Rod.		
2.15	4	1	6	100-0		1100-600	As Rqđ.		
2.16	4	1	7	100-50		1100-	As Rod.	1	
2,17	4	1	8	100-50		1100-	λ s Rqd.		
2.10	4	1	9	100-50	600	1100-	As Rqd.	Note 2	Noto 2

ACH #	DATA INTERVAL	FLOW	Δτ	PANEL T/C	STRAIN Guage	RTAF	WIND Speed	AIR Temp
RUN # 7.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.10	DATA INTERVAL 2 hours 2 hours 3 hours 14 hours 14 hours 14 hours 14 hours 14 hours 14 hours 14 hours 14 hours 16 hours 11 hours 11 hours 10 min. 1 hour, 10 min. 1 hour, 10 min. 1 hour, 10 min. 3 min. 3 min. 3 min. 3 min.	5 soc	Δτ 5 soc	PANEL T/C on cen- tor a odge tubes and these associated with strain gauges cvory 5 sco T/C on cen- tor a odge tubes and those associated with strain gauges every 5 sec-	STRAIN GUAGE	S min. Start 6 end of data interval	WIND SPEED 5 min. 5 min. 5 min. Start 4 ond 4 Interval Start 6 ond 4 Interval	AIR TEMP 5 min. 5 min. 5 min. of data
				onds				

Notes: 2. These values are accepted as is; there are no preset values required for this test.

Figure 6-4. Sample Data Plot for Test Runs 2.1 Through 2.12

GENERAL 🍘 ELECTRIC

6.2.4 TEST #3 NORMAL OPERATION

The objective of this test is to acquire data on the panel under normal operating conditions. The data will be used to evaluate panel efficiency and correlate the loss predictions made in Tests 1 and 4.

The test conditions and requirements are identified on Table 6-4. The SRTA will be operated with 1.5:1 peak to average flux distribution for 100, 60 and 20 percent of heliostat field capacity. Three test runs (3.4, 3.5, 3.6) will be made at the 1.2 MW/m^2 level to evaluate receiver performance for this condition.

6.2.5 TEST #4 REFLECTIVE LOSS TEST

The objective of this test is to measure the effective solar absorptivity of the panel coating.

The test conditions and data requirements are currently under revision. A current method under consideration would measure reflectivity directly by comparing the brightness of the panel reflected beam to the brightness of a standard reflector.

Figure 6-5 shows a schematic of this apparatus. The standard reflector is a white Barium Sulfate coated coupon (Kodak paint, catalog number 6090, or powder #6091) with a reflectance of 99.7%. The sensing apparatus consists of a simple tube (black inside) for colimating the incoming beam, a filter to eliminate the infrared interference from heat coming off the hot panel and a detector such as a photomultiplier tube or a thermopile.

To measure the panel reflectance, the colimator tube is aimed at the standard reflector and then at a nearby part of the panel. The ratio of the brightness is directly related to the ratio of the reflectivities of the two surfaces. Since the barium sulfate standard has a high reflectance its brightness is essentially that of the incident solar beam.

6.2.6 TEST #5 HIGH FLUX TEST

The objective of this test is to demonstrate the ability of the sodium cooled absorber panel to tolerate high flux levels. The test conditions and data requirements are shown on Table 6-5.

The procedure will be to operate the panel at \sim 1.5 MW/m² peak flux while maintaining 600°F inlet, 1100°F outlet. The data will be evaluated to determine the effects on the absorber panel of operating at this peak flux level.

Table 6-4

RUN #	total Time	FLUX DISTRIBUTION	flux Ramp	۱ Heliostats	Inlet Temp of	OUTLET TEMP ^O F	FLOW	WIND Speed	AIR Temp
3.1	6 hrs.	1	Note 3	100	600	1100	As Rqd.	Note 2	Note 2
3.2	6 hrs.	1		100			†		
3.3	6 hrs.	1		100					
3.4	4 hrs.	2		100					
3.5	4 hrs.	2		100					
3.6	4 hrs.	2		100					
3.7	4 hrs.	1		60					
3.8	4 hrs.	1		60					
3.9	4 hrs.	1		20					↓
3.10	4 hrs.	1	Noto 3	20	600	1100	As Rqd.	. Note 2	Note 2

TEST #3 NORMAL OPERATION TEST CONDITIONS

DATI.

RUN #	DATA Interval	FLOW	Δτ	PANEL T/C	STRAIN GUNGE	RTAF	WIND Speed	AIR Temp
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	 5 hrs. 5 hrs. 5 hrs. 2 hrs. 	5 sec.	12 continuous samples evary 15 seconds at 15 minute intervals	15 minutes	15 minutes	15 min.	15 min.	15 min.

Table 6-5

RUIT #	total Time	FLUX DISTRIBUTION	FLUX Ramp	N HELIOSTATS	Inlet Temp of	OUTLET TEMP OF	FLOW	WIND Speed	AIR Temp
5.1	6 hrs.	3	Note 3	As Rqd.	600	1100	As Rqd.	Note 2	Note 2
5.2	6 hrs.	3	Note 3	As Rqd.	600	1100	As Rqd.	Note 2	Note 2
5.3	6 hrs.	3	Note 3	λs Rqd.	600	1100	As Rqd.	Note 2	Note 2

TEST #5 HIGH FLUX TEST CONDITIONS

DATA	

RUN 🕯	DATA Interval	plow	Δτ	PANEL T/C	STRAIN GUNGE	RTAF	WIND Speed	AIR Temp
5.1	15 minutes	5 séc	5 sec	5 sec	5 sec	3 min.	l min.	l min.
5.2	15 minutes	5 sec	5 sec	5 sec	5 sec	3 min.	l min.	1 min.
5.3	15 minutes	5 sec	5 sec	5 sec	5 sec	3 min.	l min.	l min.

Notes: 2. These values are accepted as is; there are no preset values required for this test.

3. The appropriate flux rays will be determined in Test 2.

6.3 TEST PROGRAM SCHEDULE

Initial activity at CRTF will be performed on a lift platform inside the tower. The major tasks will be unloading and inspection of SRTA subassemblies, assembly of SRTA structure on sleeper beams, installation of piping, preheaters and insulation as appropriate, installation of pipe hangers, installation of pump stator, blower and capacitor, and connection of the pump power cabling. The SRTA assembly will then be moved out of the tower to allow for lowering and removal of the molten salt test receiver. Framework for the solar shield shall be provided for mounting of the insulation by CRTF personnel.

The absorber panel after a receiving inspection, will be instrumented and ready for integration into the SRTA.

The installation and checkout schedule is shown on Figure 6-6. The GE local control panel will be moved into the computer level of the module and the elevating module lowered to allow for installation of equipment on the module top. The heat dump, electrical power supply and SRTA structural assembly will then be mounted to the module top. The absorber panel will be mounted to the structure and the welding and inspection of the sodium piping will be completed. Following this the remaining preheaters will be installed and the loop will be insulated. The installation of the solar shield, insulating door, and cabling and SRTA siding will complete this activity.

Prior to the initiation of any performance testing a demonstration of solar startup, automatic control and safety circuits functioning and shutdown of the SRTA will be completed. The general test schedule is also shown on Figure 6-6.

6.4 <u>CRTF SUPPORT</u> SERVICES

The CRTF will supply the following equipment and services in support of SRTA installation and testing.

- RTAF A real time aperature flux system will be required to measure the amplitude and distribution of the incident flux impinging on the panel.
- DATA SYSTEM The hardware and software necessary to operate the SRTA from the MCS and record the data.
- FLUX DISTRIBUTION The required flux distribution and startup/shutdown ramps will be provided by CRTF control of the heliostat field.

DATA LOGGER - CRTF will provide an in-tower data logger to support SRTA operation and testing.

-																															
Ŀ	ACR ØII CRTF SCHEDULE WEEK		I	2		3	4	5	6	7	8	9	9 10	1	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
	INSTALLATION	1	$\overline{}$			ļ	NST	ALLAI	I ON			_	_		$ \Delta $		•														
Γ	ASSEMBLE SRTA ON TOWER LIFT PLATFORM (TOWER BASE)	7	<u>\</u>																												
2	ABSORBER PANEL ON-SITE				2	2																									
3	INSTRUMENT ABSORBER PANEL	1				Δ																									
4	MATE SRTA WITH ELEVATING MODULE							. 🛆			_																				
5	MATE PANEL WITH SRTA												Δ_																		
6	INSTALL CABLING												Δ.	^																	
7	WELD & INSULATE SODIUM PIPING												Δ_	\sim																	
8	CONNECT ARGON COVER GAS & INSTRUMENT AIR													- Δ																	
	CHECKOUT	1												Δ	CHEC	OUT						7									
9	CHECKOUT TRACK HEATING, INSTRUMENTATION CONTROL & INTERLOCKS																														
10	LEAK CHECK LOOP														<u>^</u> ^																
I	LOAD SODIUM																														
12	CALIBRATE FLOW METERS & T/C'S	1														Δ															
13	DEMONSTRATE SAFETY INTERLOCKS & LOOP CONTROL																	Δ	⊿												
H	MOVE SRTA TO TOWER TOP	7																	Δc	7											
15	DEMONSTRATE SOLAR OPERATION																		۵	<u></u>	_	2									
	PERFORMANCE TESTING																				2	<u>∧ </u>	ERFO	RMAN	ICE	TEST	ING				2
Η	TEST #1																				4	$\Delta \Delta$									
17	TEST #2																					Δ									
18	TEST #3	٦																										2			
19	TEST #4	1																									4	<u>~</u>	Δ		
20) TEST #5																											4	\sim	7	
2	LOOP SHUTDOWN																												2		۲
Γ																															

GENERAL 🍪 ELECTRIC

- HIGH TEMPERATURE INSULATION CRTF will install the solar shield insulation. CRTF will provide the zirconia and alumina (3000 board) shielding for the high spillage flux regions of the shield.
- RIGGING SUPPORT CRTF will provide the rigging necessary to support the offloading of SRTA components from trucks, assembly of SRTA assembly and movement of SRTA components and/or assembly on and off the elevating module.

WELDER - CRTF will provide a heliarc welding machine.

STORAGE AREA - Space to accumulate components required for assembly and installation.

- Space will be required for storage of tools, special equipment and repair parts.

ASSEMBLY & REPAIR FACILITIES - Space and equipment required for assembly, repair and maintenance of mechanical, electrical and electronic equipment.

OFFICE SPACE - Space for on-site organization of seven people.

COMPUTER TERMINAL - Space for a computer terminal of the GE terminet 1232 variety.

The CRTF will provide utility support for the SRTA electrical, air, argon gas system.

Section 7

PRELIMINARY SAFETY EVALUATION

The preliminary safety evaluation of the Sodium Receiver Test Assembly (SRTA) described in this section includes an examination of the major SRTA components and operating modes to evaluate the design safety features and to identify any needed safety improvements. The evaluation indicates that the SRTA system is designed to minimize hazards. Operation of the SRTA is not a significant hazard to the general public and presents only a minimum hazard to operating personnel and equipment. The preliminary safety evaluation performed consists of a preliminary failure mode and effects analysis of the SRTA components.

7.1 SODIUM SAFETY OVERVIEW

General Electric and a number of other industrial and governmental organizations in the US and foreign countries have over twenty-five years experience in the handling and operation of large liquid sodium loops in power plants and test facilities. Proof that liquid sodium can be handled and utilized safely has been demonstrated. This experience provides the basis for the design and operating and maintenance procedures to be used on the SRTA. The key factors leading to good safety records are proper design and rigorous adherence to established operating and maintenance procedures. Where necessary, a degree of redundancy is provided to assure high reliability. Equipment is included to detect leaks should they occur, and equipment and procedures will be included to handle leaks and spills, thereby minimizing their impact on other equipment and the environment.

7.1.1 SODIUM CHARACTERISTICS

Sodium in its solid state is a silvery white metal which can be cut easily with a knife. Sodium oxidized in air turns to a dull gray. Pure sodium melts at approximately 208°F (96°C), and when liquid, combines or reacts quite readily and violently with water. Liquid sodium exposed to air when temperatures are approximately 260°F (126°C) or above will often ignite. It gives off clouds of dense

white caustic smoke which is very noticeable and is quite irritating to the skin, nose, and throat. The temperature rapidly increases to over 1200°F (650°C). In this condition, burning liquid sodium spalls concrete and reacts with common materials such as asbestos, firebrick, and even glass.

Burning sodium is characterized by a very small or nonexistent flame depending on the oxygen content of surrounding materials. Elimination or suppression of free oxygen will extinguish or drastically reduce the combustion process. Common fire extinguishing agents such as water cannot be used because of sodium's violent reaction with water:

 $2Na + 2H_20 \rightarrow 2NaOH + H_2 + heat$

The liberated hydrogen is then free to combine with oxygen which can result in an explosion. Table 7-1 provides a summary of reactions of sodium with various materials.

7.1.2 PERSONNEL HAZARDS

Direct skin contact with sodium can cause severe thermal and chemical burns. Sodium hydroxide penetrates the tissues and must be neutralized before effective healing can be accomplished. Sodium burns are self-cauterizing and are rarely accompanied by bleeding.

The reaction between sodium and the eyes, throat, and lungs is generally limited to contact with sodium oxide smoke from a fire or caustic mist from a sodium/water reaction. Prolonged contact is unlikely, as the resulting irritation and coughing are sufficient warning of danger. There is no recognized local or systemic form of acute or chronic toxicity resulting from sodium or sodium oxide smoke.

The many years of General Electric experience with operation of sodium systems will be used to develop operating procedures for the SRTA that adequately consider sodium hazards.

7.2 SRTA SAFETY FEATURES

As described in previous sections, the SRTA is designed to accept a maximum steady state incident solar power of 2.5MW. The absorber panel inlet temperature

Table 7-1

SODIUM REACTIONS

Material	Reaction	No Reaction
Water	x	
Alcohol	X	
Acids (all)	X	· ·
Halogenated Hydrocarbons (methylbromine, methylchroide, etc.)	x	
Polyhalogenated Hydrocarbons (freon, carbon		
tetrachloride, etc.)	X	
Calcium Carbonate		X
Sodium Chloride (dry)	X	
Graphite		x
Dry Sand (below 300°F)		x
Met-L-X Compound (fire extinguisher)		Х
Dry Soda Ash		X
Glass (below 300°F)		X
Oxygen	X	
Argon		X
Dry Nitrogen		x
Helium		X
Carbon Dioxide	Х	
Stainless Steel		X
Carbon Steel		X

will be maintained between 260°C (500°F) and 371°C (700°F) and the outlet temperature at 593°C (1100°F) under all steady state solar insolation conditions. The operating modes form the boundary conditions for the safety analysis, and include:

- <u>Operation</u> EM pump and heat dump under automatic control responding to variations in the solar heat input.
- Hot Hold Hot shutdown condition with the absorber panel movable insulation closed. Trace heaters maintain the loop temperature at approximately 315°C (600°F).
- <u>Preheat</u> Transition mode from cold ambient temperature condition to hot hold.
- Startup Transition mode from hot hold to operation.
- <u>Shutdown</u> Transition mode from operation to hot hold.
- Emergency Dump In this mode, all sodium is drained rapidly (less than one minute) out of the loop into the dump tank and the loop is filled with inert gas.
- <u>Calibration Maneuvers</u> Possible calibration modes include sodium flowmeter calibration using the surge tank level gages, and thermocouple calibration over a range of isothermal temperatures from 315°C to 593°C (600°F to 1100°F).

The SRTA includes two safety systems, shown schematically in Figure 7-1. System #1 provides automatic heliostat cutoff to remove the solar heat input from the absorber panel in the event of a panel high temperature condition or sodium-low flow condition. High panel temperature is sensed by one thermocouple on each tube located on the back of the panel near the vertical center in the maximum heat flux region of the panel. These thermocouples detect the temperature rise due to reduction or loss of flow in any one or more of the panel tubes. System #2 provides for manual or automatic emergency sodium drain in the event of a sodium leak. Emergency drain is accomplished by simultaneous cutoff of the heliostats, an open signal to the normally open equalizer valve, shutoff of the EM pump, and opening of the drain valve. Complete sodium drain has been calculated to occur in approximately forty seconds. Since visual verfication of a leak on the panel surface during attended operation can be performed rapidly and effectively, manual draining may be used under most attended operating conditions. Smoke detection in either the SRTA enclosure or the heat dump air exhaust ducts and low surge tank level will activate a drain during automatic operation or will provide an annunciator alarm only when manual dumping is selected. Additional safety features include a

7-4

\$

GENERAL 🍪 ELECTRIC

GENERAL 🐲 ELECTRIC

combination rupture disc/pressure relief valve for over pressure protection in the surge tank and the drain tank. The rupture disc provides a leak-tight seal until activated. After activation the relief valve will reclose when pressure is reduced below the set pressure to maintain a positive inert gas pressure on the tanks. An automatic bleed is provided between the rupture disc and relief valve to assure that a pressure buildup does not occur in this region. Pressure buildup downstream could prevent proper rupture of the disc. The SRTA is equipped with drip/catch pans under the fluid circulation module and the heat dump capable of containing the total system sodium inventory.

Facility safety procedures will preclude access to the test elevation during solar operation to ensure personnel safety. When it is necessary to enter the SRTA enclosure for maintenance, it will be done only during hot standby or system drain conditions. Safety clothing will be worn any time the enclosure is entered when sodium is in the loop. The safety clothing will include face shield, fire resistant coat or coveralls, shoe scuffs and gloves.

When the SRTA is unattended, an annunciator provides an alarm and identification of out-of-limit conditions, including smoke detection. A set of contacts is provided to indicate at a remote location (i.e., guard shack) that an annunciation has occurred.

The SRTA is completely enclosed with fire retardant siding except during solar operation during which time the front side of the absorber panel is exposed. Since the drip pan for the heat dump will be exposed to the weather, it is equipped with a drain to remove any rain water collected in the pan. In the event of a large leak on the front of the panel, the system pressure will rapidly decay and the molten sodium will run down the panel into the pan. If the leak is small, sodium may spray out away from the panel. However, the sodium will form a fine oxide smoke which will be dispersed by the ambient air. The following section summarizes recent work on sodium releases to the atmosphere.

7.3 SODIUM RELEASE TO THE ATMOSPHERE

A condition that could result from a SRTA sodium leak is the burning of sodium in air and the resultant release of combustion product to the atmosphere. Recent experimental studies have been conducted by Rockwell Energy Systems Group under DOE contract at the Air Research Laboratory in Idaho. Releases 22 kg to 75 kg (50-160 lbs) of sodium were made. The amounts of sodium used in these experiments is far in excess of the maximum credible release of the SRTA.

A total of 7 atmosphere sodium release tests were conducted with the first 5 tests at release elevations ranging from ground level to 30 meters under Pasquill Type A and Type D meteorological conditions. The last two tests were conducted under very stable (Pasquill E and G) conditions where the natural humidity content was high (47 to 96%).

Detailed description of the tests and results are contained in References 1 and 2. In general, it was found that sodium releases result in rapid local fallout under all conditions. This rapid fallout is attributed to rapid agglomeration of particles in the plume near the release point. Analysis of particles collected closer than 200 meters downwind were predominantly sodium oxide with traces of sodium carbonate (without the presence of sodium hydroxide). The conversion from the hydroxide or hydroxide-hydrate is suspected to be rapid. Airborne concentrations measured beyond 200 meters were near or below the NIOSH inhalation limit for sodium hydroxide.

As indicated above, these experiments used very large quantities of sodium for the releases, yet the ground level damage was not significant. These tests will be analyzed and extrapolated to the smaller release levels postulated for the SRTA as part of the final safety evaluation; however, preliminary analysis indicates even under the worst SRTA accident that damage to heliostats will not be severe.

7.4 FAILURE MODE AND EFFECTS ANALYSIS

The failure mode and effects analysis was performed by postulating a potential event and its possible causes and failure effects. The analysis identifies the system failure detection modes and lists the safety design features. The potential hazards as the result of the event are also identified. The analysis was performed on the absorber panel, SRTA loop, instrumentation and controls, and cover gas pressure system. The major events postulated were (1) sodium leaks in the absorber panel and loop, (2) electrical malfunctions in the instrumentation and controls, and (3)

gas leaks in the cover gas pressure system. The system failure detection modes are listed in the order in which the safety design features may respond to the failure.

7.4.1 ABSORBER PANEL FAILURE

The failure mode and effects analysis for sodium leaks in the absorber panel is tabulated in Tables 7-2 through 7-5. Small sodium leaks (< 1 kg) are postulated in Tables 7-2, 7-3, and 7-4 and a large guillotine tube failure (> 1 kg) in Table 7-5. The event title is stated in the "failure mode" column.

Table 7-2 shows that during operation, TV surveillance is the most effective device for detection of leaks on the panel front surface. (See "system failure detection" and "safety design features" columns). A front surface panel leak is postulated to occur from a failed tube due to defects, stress, burn-out or exterior damage such as a rifle bullet. A sodium fire can result as the sodium exits and runs down the tube. The dense white caustic smoke directly in front of the panel may be masked by the glowing panel; however, two TV cameras with different camera angles should overcome this shortcoming. In addition, burning sodium on the panel surface will cause a temperature rise detectable by the panel thermocouples. Upon detection, the system will be shut down and the sodium inventory rapidly drained.

Table 7-3 discusses the postulated events assuming no immediate detection with the TV camera, as may be the case for a leak inside the enclosed surfaces of the panel. The fire will burn within the absorber panel insulation and smoke will flow into the structure where smoke detectors are placed. Thus, the smoke may be detected faster with smoke detectors than with the TV cameras. Eventually the white smoke will exit at the SRTA air outlet louvers at the top of the structure. The key to proper operation of the smoke detectors is an adequate bake-out of insulating materials to prevent false detector signals.

The events postulated in Table 7-4 occur during a hot hold operation mode where test personnel may not be present. The door is closed and the automatic dump is activated in this mode. The smoke generated from the fire will travel within the structure where the smoke will be sensed by the smoke detectors. The loop will then be automatically drained and the alarm at the guard shack will be simultaneously actuated. If a leak causes loss of level in the surge tank before smoke detector activation, the level probe in the surge tank can be the actuation signal

SMALL ABSORBER PANEL LEAK ON FRONT SURFACE DURING OPERATION

2	Failure Mode	Possible Cause		Failure Effects	-	Detection		Safety Design Features		Hazards
	Small sodium leak from a tube. Leak on the front sur- face of the panel at full power operation.	 Plugged tube/ burnout Tube defect Panel defect Stress failure Projectile 	1. 2. 3.	Sodium exits tube from panel front surface. Sodium dribbles down tube. A stream is not con- sidered probable. Sodium fire and smoke	1.a) b)	Small sodium leak may not be de- tected immediately until smoke becomes visible. Smoke will be de- tected by TV camera as leak rate in- creases gradually.	1. 2.	TV surveillance Thermocouple in- stalled in each tube to monitor temperature. Thermocouples are located at the middle of each tube.	1. 2.	No personnel hazard will occur because test area is "off limits" during loop operation. No equipment damage will occur other than localized caus tic contamination.
			4. 5.	Caustic contamina- tion of pamel and adjacent structure Corrosion of tube surface	2.a)	The temperature of the faulted tube will increase gradually until the high tem- perature set point is reached.	3. 4.	Annunciator system Thermocouples to monitor absorber panel temperatures.	3.	Minor impact on loo environment.
					b)	The alarm in the lo- cal and Master Control System panel will be actuated as the temper- ature goes beyond its set point.	5. 6.	The heliostat con- trol will slew the heliostats in less than 4 sec. Loop drain in 40 seconds by emer-		
					3.a)	Absorber Panel temper- ature will start to in- crease - the rate of temperature increase depends on leak size.		gency control. Pump stop is im- mediate.		
					b)	EM Pump and Heat Dump Control will be acti- vated as soon as the Absorber Panel outlet temperature reaches its set point.				
					c)	Alarm actuated from high Absorber Panel outlet temperature.				
					4.	Sodium smoke visible on TV.				
					a)	Emergency drain switch manually actuated.				
					5.	Pressure and flow mea- surements will not be affected by a small sodium leak.				

SMALL LEAK ABSORBER PANEL ON BACK (ENCLOSED) SURFACE DURING OPERATION

2.	Failure Mode Small sodium leak from a tube on the back surface of the panel at full power oper- ation.	<u>F</u> 1. 2. 3. 4.	Yossible Cause Plugged tube/ burnout Tube defect Panel defect Stress failure	1. 2. 3. 4. 5.	Failure Effects Sodium exits tube from panel back surface. Sodium runs down back side of panel. Sodium fire and smoke. Caustic contamination of panel and adjacent structure. Corrosion of tube surface.	1.a) 2.a) b) c) 3.a) b) 4.a) b)	System Failure Detection Small sodium leak may not be detected imme- diately. TV monitor not effective unless observed exiting top of structure. Smoke will collect in SRTA support struc- ture where smoke de- tectors are placed. Smoke sensed by smoke detector. Alarm actuated The temperature of the faulted tube will increase until thermo- couple set point is reached. Alarm actuated. Absorber Panel tem- perature will increase slowly. Alarm actuated on high Absorber Panel outlet temperature.	1. 2. 3. 4. 5. 6.	Safety Design Features TV surveillance par- tially effective. Tube thermocouples monitor tube temp- eratures. Annunciators active Thermocouples mon- itor absorber panel temperatures. Heliostat controls slew heliostats in less than 4 sec. Loop drain in 40 seconds. Pump stopped immediately.	1. 2. 3.	Hazards No personnel ha- zard will occur because test area is "off limits" during loop operation. No equipment damage will occur other than local- ized caustic contamination. Minor impact on local environment
						b)	Alarm actuated on high Absorber Panel outlet temperature.				
						5.	Sodium smoke visible at top and surrounding structure - TV moni- toring.				

SMALL ABSORBER PANEL LEAK DURING HOT HOLD WITH DOORS CLOSED

	Failure Mode	Possible Cause	Failure Effects		System Failure Detection	Safety Design Features		Hazards
3.	Small sodium leak from a tube. Leak occurs on front or back surface of the panel during	1. Tube defect 2. Panel defect 3. Stress/fatigue /failure	 Sodium exits tube Sodium runs down tube Sodium fire and 	1.	Small sodium leak may be detected with TV camera. However, de- tection may not occur due to:	 Annunciator at guard shack. Automatic system drain. 	1.	No personnel hazard will occur because test area is "off limits" during loop operation.
	hot hold operation.		<pre>smoke 4. Caustic contamin- ation of panel and adjacent structure 5. Correction of tube</pre>	a) b)	Insufficient light to operate camera. Smoke may be masked by door.		2.	No equipment damage will occur other than localized caustic contamin- ation.
			surface	c)	Camera not operating		3.	Minor impact on local environment.

for the emergency drain.

The potential worst case accident that may occur in the absorber panel is postulated in Table 8-5. This event is a guillotine rupture of one or more tubes. The emergency drain will be actuated manually during power operation or automatically by smoke detectors or surge tank level during hot hold operation. The loop will drain in forty seconds and the heliostats cut in less than four seconds once the emergency control switch is actuated. The catch pan at the base of the structure will restrain the spilled sodium from damaging the CRTF tower and associated equipment. The catch pan will contain the total sodium volume of the loop and drain tank. The fire from the sodium pool in the catch pan may be allowed to burn out or it can be suppressed with Met-L-X fire extinguisher.

7.4.2 SRTA LOOP FAILURES

The failure mode and effects analysis for events within the SRTA loop include sodium leaks in piping and components (Tables 7-6, 7-7, and 7-8) and overfill of the loop (Table 7-9).

The SRTA structure is designed to contain all leaks in the loop. The structure is completely enclosed with fireproof siding and roofing and a catch pan is located at the bottom of the structure to catch and confine any sodium. Draining of the loop stops the leak and sodium that remains in the insulation or in the catch pan would burn until self-extinguished or extinguished with an oxygen inhibitor such as Met-L-X powder. Smoke generated would fill the inside of the structure and escape out the upper vent. Although caustic, the dispersion of the smoke at the top of the tower will not constitute a hazard to personnel since the immediate area is cleared of personnel during testing. Small sodium leaks in SRTA loop piping or components are presented in the failure mode and effects analysis of Table 7-6. Small sodium leaks generally would result in a slow burning of sodium in the insulation causing an accumulation of the typical dense white caustic smoke. Based on sodium leak experiments in air, the growth rate of small leaks are slow unless the leak size is increased by external forces such as stress. It is anticipated that smoke would be detected prior to any accumulation of sodium outside the insulation and in the catch pans. The smoke detectors, the most responsive early warning feature incorporated in the SRTA design, will sense the smoke and actuate the alarm. Secondary

LARGE ABSORBER PANEL LEAK DURING OPERATION

	Failure Mode	Possible Cause		Failure Effects		System Failure Detection		Safety Design Features		Hazards
4.	Large guillotine tube failure at either top or bottom tube-to-panel joint	 Stress failure Fatigue Projectile 	1. 2. 3. 4. 5. 6.	Sodium outburst from tube. Sodium runs down the tubes and the SRTA structure. Significant fire and smoke. Significant caustic contami- nation around SRTA. Corrosion of ab- sorber panel. Some caustic re- leased to air at 200' level.	1. 2. 3. 4. 5. 6. 7.	Fire and smoke de- tected by visual observation, TV or with smoke detectors. Tube temperature will rise rapidly and be sensed by the tube thermocouples. Absorber panel temp- eratures will grad- ually increase until set point is reached. Emergency Dump Excessive smoke will actuate smoke will actuate smoke detec- tors inside of structure. Loss of sodium flow will be sensed and an emergency drain will take place. Sodium surge tank low level will be reached and an emergency drain will take place. Sodium spill will be stopped by catch pan at the base of the	1. 2. 3. 4. 5. 6. 7. 8.	TV surveillance T/Cs installed on panel are located at the middle of each tube. Annunciator system T/Cs to monitor absorber panel temperatures Heliostat slew in less than 4 seconds. Loop emergency drain in 40 sec. EM pump shutoff Sodium catch pan in bottom of SKTA. Met-L-X fire extin- guishing material	1. 2. 3. 4.	No personnel hazard will occur because test area is "off limits" during loop operation. Damage to absorber panel/tubing would be extensive. Field repair considered impractical. Some damage could occur to SRTA insu- lation, instrumen- tation, structure and loop equipment. No damage should oc- cur to CRTF equip- ment due to enclosure and catch pans. Some caustic ash may go in environment and fall to ground. Low den- sity of ash is not expected to cause equipment damage.

SMALL LEAK IN PIPING OF COMPONENTS DURING OPERATION

 Small sodium leak from pipe/compo- nent at full power operation. Weld/fatigue crack in noz- zle Med/fatigue crack in valve bellows Eastic contamination constrained inside structure by encloaure. Pipe/metal corrosion Pipe/metal corrosion Smoke generated from fire will be sensed by smoke detectors Annunciator system Gatch pan will occur becau to operation. No personnel haz will occur becau to operation. No equipament dam will occur other than localized Smoke dietectors Annunciator system Catch pan will occur other than localized Smoke dietectors Matm actuated The surveillance of structure. Smoke visually ob- served with TV Protective enclo- sure She kize may con- tinue to grow and so- dium flow may start to decrease. Metore schement to genese and so- dium flow may start to decrease. Metore schement surge tank low level set opint reached.
b) Emergency drain acti- vated

1

detection is provided by the smoke circulating through the structure and becoming visible as it exits the upper vent. Detection of smoke (visual or by TV) would probably occur prior to detection in a change in loop characteristics. Once a leak is verified, the emergency drain will be actuated.

The chances of a large leak are considered very low, but should one occur, large amounts of smoke would result and the pump would be stopped and emergency drain would be activated (See Table 7-7). The smoke detectors and surge tank level would provide indications for the annunciator system. The damage from a large leak would be confined to within the SRTA structure. Sodium spilled would be caught by the catch pan at the base of the structure. Normal procedure would call for letting what fire was initiated to burn out and self-extinguish. Met-L-X application would be available for use if needed. Since the test area is off limits during loop operation, no personnel hazards would occur.

A leak in the piping between the SRTA and the heat dump would be contained by a protective enclosure/catch trough which will drain excessive sodium into the catch pan of the SRTA.

7.4.3 HEAT DUMP FAILURES

A sodium leak in the coil of the heat dump is postulated and described in Table 7-8. A smoke detector is located at the outlet of this unit and would be a primary detector. A catch pan is also provided at the base of the unit. Detection of a leak in this unit is followed by a shutdown of the entire loop and an emergency drain of the sodium into the drain tank. Inert Argon cover gas immediately fills the entire loop piping and prevents oxygen/air from entering the loop. Equipment damage caused by a leak would be confined to the heat dump.

A loop overfill failure is postulated in Table 7-9. This event may be caused if the high level probe in the surge tank fails, too high a pressure is used in the drain tank, or the drain valve leaks across the seat when closed. The sodium level in the surge tank is monitored with an analog level probe. If the loop is overfilled, the pressure in the cover gas system may increase and the pressure alarm will be actuated. A loop overfill can be prevented by using the proper drain tank cover gas pressure coupled with a properly set cover gas pressure relief system. The SRTA is designed with vapor traps, relief valve and a rupture disc to prevent

LARGE LEAK IN HIGH PRESSURE ZONE OF PIPING DURING OPERATION

	Failure Mode		Possible Cause		Failure Effects		System Failure Detection		Safety Design Features		Hazards
2.	Large sodium pipe leak in high pres- sure zone below absorber panel inlet nozzle at full power operation	1.	Pipe break due to stress	1. 2. 3. 4. 5. 6.	Sodium burns in insu- lation Sodium fire and smoke Sodium spill Caustic contamination around leak site. Damage of equipment under spill Corrosion	1. a) b) 2. a) 3. 4. a) b)	Smoke generated from fire will be sensed by smoke detectors. Alarm actuated Emergency drain actuated Smoke circulated through and out the structure. Smoke visually ob- served with TV camera Any sodium spill will be restrained by catch pan. Surge tank level will decrease Alarm actuated when surge tank low le- vel set point reached. Emergency drain activated	1. 2. 3. 4. 5. 6. 7. 8.	Smoke detectors Annunciator system Catch pan TV surveillance of structure Met-L-X fire ex- tinguisher Emergency drain in 40 seconds Protective en- closure Slew heliostats	1. 2. 3. 4.	No personnel hazard should occur. Test area is "off limits" during loop oper- ation. Damage to equipment in lower portion of SRTA will result. Some damage could occur to SRTA struc- ture and instru- mentation. No damage should oc- cur to CRTF equip- ment due to enclo- sure and catch pan restraints. Some caustic smoke/ash will go into the en- vironment but con- centration on ground should be within tolerance to prevent damage to ground equipment. If personnel were required to inspect area and assist in
											fire suppression, protective clothing would be used.

SODIUM LEAK IN HEAT DUMP COIL

	Failure Mode		Possible Cause		Failure Effects		System Failure Detection		Safety Design Features		Hazards
3.	Sodium leak in heat dump coil during oper- ation or in standby	1. 2.	Stress failure Weld joint failure	1.	Sodium leaks/spills from coil tube/ header area and fire and smoke re- sult	1. a)	Smoke generated from fire will be sensed by smoke de- tectors. Alarm actuated	1. 2. 3.	Smoke detector Catch pan Met-L-X fire extinguisher	1.	No personnel hazard will occur. Test area is "off limits" during loop oper- ation.
				2.	Caustic contami- nation and corro- sion in tube bundle and louvers can re- sult. Some sodium could fall to drip pan Some caustic re- lease to the air at the 200° level.	b) 2. a) 3.	Emergency drain actuated Smoke circulated through and out the top of heat dump.	4. 5.	Annunciator sys- tem Heliostat slew in less than 4 se- conds	2.	No equipment damage will occur other than localized caustic contamin- ation/corrosion of heat dump surfaces.
				з. 4.			Smoke visually ob- served with TV camera (operation) Leak size may con-	6.	Loop emergency drain in 40 se- conds.	3.	Minor impact on lo- cal environment
						a)	tinue to grow and sodium flow may start to decrease. * Absorber panel outlet				
						-,	temperature increases gradually.				
						P).	 * Alarm actuated when temperature reaches high set point. 				
						4.	Any sodium spill will be restrained by catch pan.				
						5.	Surge tank level will decrease gradually.	* During o	* During operation only		on only
						a)	Alarm actuated when surge tank low level set point reached.				
						b)	Emergency drain ac- ivated				

GENERAL 🏵 ELECTRIC

Table 7-9

LOOP - OVERFILL

Failure Mode	Possible Cause	Failure Effects		System Failure Detection		Safety Design Features	Hazards
4. Loop overfill	 Surge tank high level sensor fails 	 Cover gas pressure system plugged 	1. a) b) c) 2. a)	Pressure increase in cover gas system Pressure alarm ac- tuated Cover gas pressure valve control acti- vated Monitor sodium level Excessive pressure re- leased Pressure relief valve	1. 2. 3. 4.	Annunciator system Rupture disc in series with mech- amoca; pressure relief valve Analog level probe SRTA loop fill procedures	1. No personnel hazard
			D)	Rupture disc			

gas overpressure. Recovery from an overfill is a normal system drain followed by inspection/maintenance to assure that the surge tank gas supply is not plugged.

7.4.4 INSTRUMENTATION AND CONTROL FAILURES

The failure mode and effects analysis for the SRTA instrumentation and controls is tabulated in Table 7-10. The major event postulated is an electrical malfunction. The principal effects due to this event is the loss of sodium flow, heat dump air flow and loop control. The CRTF will provide the power to the SRTA system. Heliostat cutoff must take place to prevent damage to equipment and burnout of absorber panel tubes. The CRTF heliostat power supply should be equipped with automatic transfer from M-G set power to utility power.

The SRTA system and the CRTF heliostats will always be operated from separate power supplies with the backup power system available when solar operation is performed, since simultaneous loss of heliostat control power and SRTA sodium pump power for a period of approximately one minute during high flux operation would cause meltdown of the absorber panel. Simultaneous loss of two independent power supplies plus the utility system backup power source is not considered a creditable event.

7.4.5 COVER GAS PRESSURE SYSTEM

The failure mode and effects analysis for the cover gas pressure system is tabulated in Table 7-11. A failure in the cover gas system has the potential for contamination of the loop and sodium with air/oxygen. The cover gas pressure system is protected with a vapor trap to avoid hot sodium from coming in contact with the cover gas pressure piping, vent and supply solenoid valves. A rupture disc is in series with a mechanical pressure relief valve which allows gas to flow only in one direction and prevents overpressure. The annunciator system will be actuated when the pressure reaches its low set point.

The SRTA sodium system is equipped with an oxygen meter which monitors the oxygen level in the sodium. If the oxygen level reaches a level equivalent to a plugging indicator temperature above 450°F, the annunciator in the SRTA will be actuated. Procedures will require discontinuing solar operation until the cause of high oxygen level has been determined and corrected.

ELECTRICAL MALFUNCTION/POWER LOSS

	Failure Mode		Possible Cause		Failure Effects		System Failure Detection		Safety Design Features		Hazards
1.	Electrical mal- function to pump and/or other SRTA components	1. 2. 3.	Wiring failure Device malfunction Loss of electrical power	1. 2. 3. 4. 5. 6.	Indicator device(s) may overrange Loss of data Electrical fire Equipment damage Loss of sodium flow Loss of heat dump blower/cooling	1. 2. 3.	Annunciator acti- vated. Faulted indicator device output com- pared with other measurements Emergency control power supply acti- vated	1. 2. 3. 4.	Annunciators System control from local and CRTF panels Emergency control power supply Low sodium flow or rise in panel temp- erature will result in annunciation and automatic or manual heliostat cutoff	1.	Damage to measure- ment devices and equipment
2.	Simultaneous fail- ure of SRTA pump power and CRTF heliostat control power	a.	Two simultaneous electrical power failures	1. 2.	Transfer to alter- nate power supply Temporary loss or interruption of data	1. 2.	Annunciation Loss of normal lighting	1. 2.	Alternate power supply for both systems Procedure prohibits solar operation ex- cept on normal power with alternate as backup	1. 2.	Loss of data or interruption No equipment damage unless complete loss of power to heliostats with no heliostat cut

COVER GAS PRESSURE SYSTEM FAILURE

Failure Mode	Possible Cause	Failure Effects	ystem Failure Detection	Safety Design Features	Hazards
1. Gas ¹ .cak	 Valve failure Tube ruptures Joint failure I&C failure 	 Potential for oxygen/ air contamination of sodium 	 Low pressure set point will be reached as gas pressure decreases a) Alarm actuated b) Cover gas control valves actuated 0xygen level in SRTA sodium loop exceeded 	 Annunciator Cover gas pressure control valves Oxygen meter Two cover gas sup- ply systems are provided (surge tank and drain tank); only one is required for nor- mal operation. 	l. None

7.5 PRELIMINARY ASSESSMENT

The preliminary safety evaluation indicates that the safety design features of the SRTA - catch pan, smoke detectors, and TV cameras - in conjunction with the proven sodium loop design and operating features of the SRTA will provide safe operation with no significant hazard to personnel and minimum hazard to local equipment. Further work will refine the analysis of airborne releases with particular emphasis on hazards to the heliostat field.

7.6 REFERENCES

- 1. N707TR130028, "Interim Test Report for the Characterization of Released Particle Tests Conducted at INEL During FY1979, dated 2/8/79.
- 2. N607TR130025, "Test Report for the Characterization of Released Particle Tests Conducted at INEL during FY1978, dated 9/23/78.

A-1

ENERGY SYSTEMS PROGRAM DEPARTMENT

REVISION CONTROL SHEET

No. 295A4725

Cont. on Sh ____

20 Rev .

_ Sh .

ES-3-004 (5-78)

A-2

ENERGY SYSTEMS PROGRAM DEPARTMENT

REVISION CONTROL SHEET

No. 295A4725

Rev Q2a

Cont. on Sh ____

_ · Sh __

A-3

ENERGY				SPECIFICATION NUMBER
SYSTEMS	ENGINEEF	RING SPECIFIC	CATION	20544725
DEPARTMENT				29574760
	TITLE			
E				ORIGINAL ISSUE DATE
GENERAL				MAY 2 5 1979
FLECTRIC	CLASSIFICATION			
	<u></u>			[
PARAGRAPH	1	ABLE OF CONTENT	5	PAGE
1.0	SCOPE			7
2.0	APPLICABLE DOCUMENT	S		7
3.0	REOUIREMENTS			8
3.1	ITEM DEFINITION			8
3.1.1	DIAGRAMS			8
3.1.2	INTERFACE DEFINITIC	N		17
3.1.2.1	STRUCTURAL INTERFAC	E		17
3.1.2.2	UTILITY INTERFACE (ELECTRICAL)		17
3.1.2.3	UTILITY INTERFACE (FLUIDS)		17
3.1.2.4	INSTRUMENTATION INT	ERFACE		17
3.1.2.5	CONTROL INTERFACE			18
3.1.2.6	SOLAR INTERFACE			18
3.1.3	MAJOR COMPONENT LIS	T		19
3.1.3.1	ABSORBER PANEL			19
3.1.3.2	HEAT DUMP			19
3.1.3.3	FLUID CIRCULATION E	QUIPMENT		19
3.1.3.4	MONITOR AND CONTROL	EQUIPMENT		19
3.1.3.5	AUXILIARY EQUIPMENT	1		19
3.2	CHARACTERISTICS			20
3.2.1	PERFORMANCE CHARACT	TERISTICS		20
3.2.1.1	INCIDENT SOLAR BEAM	I ACCEPTANCE		20
3.2.1.2	ABSORBER PANEL INLE	T TEMPERATURE		20
3.2.1.3	ABSORBER PANEL OUTI	ET TEMPERATURE		20
3.2.1.4	DESIGN LIFE REQUIRE	MENTS		21
3.2.1.5	DESIGN OPERATING MC	DES		21
3.2.2	PHYSICAL CHARACTERI	STICS		21
3.2.2.1	ABSORBER PANEL SURF	ACE AREA		21
3.2.2.2	SURFACE ORIENTATION			21
3.2.2.3	SURFACE OBSTRUCTION	IS		21
3.2.3	RELIABILITY			22
3.2.4	MAINTAINABILITY			22
3.2.5	ENVIRONMENTAL CHARA	CTERISTICS		22
3.2.5.1	OPERATING REQUIREME	INT'S		22
3.2.5.2	SURVIVAL REQUIREMEN	ITS		22
3.2.0	TRANSPORTABILITY			23
3.2.1	INSTALLATION			23
3.2.0	CLEANLINESS	TAN .		23
3.3.1	MATERIALS PROCESSE	S AND PARTS		24
3.3.2	ELECTROMAGNETIC RAF	IATION		24 🗛
3.3.3	NAMEPLATE AND PRODU	CT MARKINGS		24 🖱
3.3.4	WORKMANSHIP			25
3.3.5	INTERCHANGEABILITY			25
3.3.6	SAFETY	· · · · · · · · · · · · · · · · · · ·		25
REVISION NUMBER	REVISION DATE	S	SUPERSEDES	2h - 58
2	24 406 79			PAGE CD OF

A-4

ENERGY			SPECIFICATION NUMBER
SYSTEMS PROGRAMS	ENGINEERI	NG SPECIFICATION	20544725
DEPARTMENT	TITLE		20071-1-20
EE			ORIGINAL ISSUE DATE
GENERAL			MAY 0 5 4070
ELECTRIC	CLASSIFICATION		FIAT 2 5 19/9
	<u> </u>		
PARAGRAPH			PAGE
3.3.7	HUMAN ENGINEERING		26
3.4	DESIGN DOCUMENTATION		27
3.4.2	INSTALLATION PLAN		27
3.4.3	OPERATING & MAINTENAN	CE PLANS	28
3.4.4	TEST PLAN		28
3.4.5	SAFETY ANALYSIS		28
3.5	LOGISTICS.		29
3.5.1	MAINTENANCE		29
3.5.2	SUPPLY		29
3.5.3	FACILITIES		29
3.6	PERSONNEL & TRAINING		29
3.7	MAJOR COMPONENT CHARA	CTERISTICS	30
3.7.1	ABSORBER PANEL		30
3.7.1.1	DESCRIPTION		30
3.7.1.2	MOUNTING		30
3.7.1.3	FLATNESS		30
3.7.1.4	ASSEMBLY		30
3.7.1.5	INSULATION		30
3.7.1.6	INSTRUMENTATION (SURF	ACE TEMPERATURE)	30
3.7.1.7	INSTRUMENTATION (SOD	IUM TEMPERATURE)	31
3.7.1.8	TRACE HEATING		31
3.7.1.9	ABSORPTIVE COATING		31
3.7.2	HEAT DUMP		31
3.7.2.1	DESCRIPTION		31
3.7.2.2	HEAT DISSIPATION		31
3.7.2.3	INSTRUMENTATION		31
3.7.3	FLUID CIRCULATION EQU	IPMENT	32
3.7.3.1	DESCRIPTION	····	32
3.7.3.2	SURGE TANK (LOCATION .	AND CAPACITY)	32
3./.3.3	TRACE HEATING		32
3.7.3.4	LOUP OPERATING TEMPER	HINKE	32
3.7.3.5	EM FUMF (FLOW KATE) Sontlim Diding (DDEcou		32 27 A
3.7.3.7	DIIMD TANK (IOCATION A	ND CADACTIVA)	34 A 33
3.7.3.8	LOOP FLOWMETERS	or creatily	33
3.7.3.9	SODIUM LEVEL GAUGES		33
3.7.3.10	THERMOCOUPLES		33
3.7.3.11	CODES		33
3.7.3.12	INSULATION		33
3.7.3.13	LOOP IMPURITY MONITOR	ING	33
3.7.3.14	INERT GAS SYSTEM		33
3.7.4	MONITOR AND CONTROL E	QUIPMENT	34
3.7.4.1	OPERATING MODES		34
3.7.4.2	DESCRIPTION		34
3.7.4.3	LOCAL AND REMOTE PANE	LS	34
REVISION NUMBER	REVISIÓN DATE	SUPERSEDES	
ユ	24 AUG79		PAGE 3 OF 50

ENERGY				····	SPECI	FICATIO
SYSTEMS PROGRAMS	ENGINEERIN	a Specifici	ATION	295A	47	25
DEPARTMENT				L 901		
E					OF	IIGINAL UE DATE
GENERA				MAY	25	1979
ELECTRI	CLASSIFICATION			• • • • •		-
				· · · · ·		F
PARAGRAPH					FAG	Ξ.
3.7.4.4	EM PUMP CONTROL LOGIC				34	
3.7.4.5	HEAT DUMP CONTROL LOGIC				35	
3.7.5	AUXILIARY EQUIPMENT				35	
3.7.5.1	DESCRIPTION				35	
3.8	PRECEDENCE				35	
4.0	PERFORMANCE VERIFICATIO	N			36	l.
4.1	GENERAL				36	
4.1.1	RESPONSIBILITIES				36	ı.
4.1.2	SPECIAL TESTS AND EXAMI	NATIONS			37	
4.1.2.1	ABSORBER PANEL				37	
4.1.2.2	FLUID CIRCULATION FOUTF	MENT			37	,
A 1 3	DATA DECUTPEMENTS				37	
4.1.2.1	TEST DIAMING				27	
4.1.3.1.1	TEST FLANNING	(م ر 10			ינ דר	
4.1.3.1.1	FACILITY ACCEPTANCE (CRIF)				37	
4.1.3.1.2	INSTALLATION & CHECKOUT (CRTF)				38	
4.1.3.1.3	SAFETY ANALYSIS	SAFETY ANALYSIS			38	
4.1.3.2	TEST PROCEDURES				38	
4.1.3.3	TEST REPORTS				38	
4.2	VERIFICATION DEFINITION				38	l
4.2.1	INSPECTION				39)
4.2.2	SIMILARITY				39	1
4.2.3	ANALYSIS				39	1
4.2.4	DEMONSTRATION				39	1
4.2.5	TEST				39)
1 3	VERTRICATION MATRIX				20	1
4.3	VERIFICATION MATRIX				10	
4.4	VERIFICATION METHODS				49	
4.4.1	DIAGRAMS				49	
4.4.2	STRUCTURAL INTERFACES				49	
4.4.3	UTILITY (ELECTRICAL)				49	•
4.4.4	UTILITY (FLUID)				49	I
4.4.5	INSTRUMENTATION				49	I
4.4.6	CONTROL				49	I.
4.4.7	SOLAR				50	I
4.4.8	ABSORBER PANEL				50	1
4.4.9	HEAT DUMP				50	1
4.4.10	FLUTD CIRCULATION FOUTE	MENT			50	
4 4 11	MONITOR & CONTROL FOUTE	MENT			50	
4 4 10	MUNITING CONTROL BOUT				50	
	TNUTDENIA COLAD DEAM ACC	ᢄᠣᡎᡘᢂᡘᢗ᠊ᢑ			50	
4.4.13	INCIDENT SULAR BEAM ACC	BF LANCE MDEDAUUDE			50	
4.4.14	ABSORBER PANEL INLET TE	MPERATURE			50	
4.4.15	ABSORBER PANEL OUTLET T	EMPERATURE			51	
4.4.16	DESIGN LIFE REQUIREMENT	5			51	
4.4.17	DESIGN OPERATING MODES				51	
4.4.18	ABSORBER PANEL SURFACE	AREA		<u> </u>	51	
REVISION	REVISION	SU	PERSEDES			
NUMBER	DATE				AGE I	4 of
2				[``		

ſ		<u></u>		SPE	CIFI	CATION
ENERGY SYSTEMS	ENGINEE	RING SPECIFICATION			NUM	BER
PROGRAMS			201	5 4 4	-72	25
DEPARTMENT	TITLE		1			
62	1					
			ł	(ORIG	INAL DATE
			i in			070
GENEHA				ay z	51	979
ELECTRI	CLASSIFICATION		ł			_
4.4.19	SURFACE ORIENTATION		L		51	<u> </u>
4.4.20	SURFACE OBSTRUCTION	S			51	
4.4.21	MAINTAINABILITY				51	
4.4.22	OPERATING REQUIREME	NTS			51	
4.4.23	SURVIVAL REQUIREMEN	TS			52	
4.4.24	TRANSPORABILITY				52	
4.4.25	INSTALLATION				52	
4.4.26	CLEANLINESS				52	
4.4.2/	DESIGN & CONSTRUCTION				52	
4.4.20	MATERIALS, PROCESSE	S AND PARTS			53 53	
4.4.29	WORKMANGUTD	MARKING			53	
4.4.31	SAFETY				53	
4.4.32	DESIGN DOCUMENTATION	3			53	
4.4.33	INSTALLATION PLAN	A Contraction of the second seco			53	
4.4.34	OPERATION & MAINTENA	ANCE PLAN			53	
4.4.35	TEST PLAN				53	
4.4.36	SAFETY ANALYSIS				53	
4.4.37	MAINTENANCE	,			54	
4.4.38	SUPPLY				54	
4.4.39	FACILITIES				54	
4.4.40	PERSONNEL & TRAINING	3			54	
4.4.41	DESCRIPTION				54	
4.4.42	MOUNTING				54	
4.4.43	FLATNESS				54	
4.4.44	ASSEMBLY				54	
4.4.45	INSULATION (ABSORBER	R PANEL)			55	
4.4.46	INSTRUMENTATION (SUP	RFACE TEMPERATURE & STRAIN GAUGE	S)		55	
4.4.4/	INSTRUMENTATION (SOL	DIUM TEMPERATURE)			55	
4.4.40	TRACE HEATING				55	
4.4.50	DESCRIPTIVE COATING				33 55	
4.4.51	HEAT DISCIDATION				55	
4.4.52	INSTRUMENTATION				56	
4.4.53	DESCRIPTION				56	
4.4.54	SURGE TANK				56	1
4.4.55	TRACE HEATING				56	
4.4.56	LOOP OPERATING TEMPE	RATURES			56	
4.4.57	EM PUMP FLOW RATE				56	
4.4.58	SODIUM PIPING				56	
4.4.59	DUMP TANK				57	
4.4.60	LOOP FLOWMETERS				57	i
4.4.61	SODIUM LEVEL GAUGES				57	Ì
4.4.62	THERMOCOUPLES				57	
4.4.63	CODES				57	
4.4.64	INSULATION				57	
REVISION	REVISION	SUPERSEDES				
5				PAGE	5	of 58
L Z						

ENERGY	ENGINEERING SPECIFICATION	SPECIFICATION NUMBER
PROGRAMS		295A4725
(CA)	TITLE	
		ISSUE DATE
GENERAL		MAY 2 5 1979
ELEUINIU		
PARAGRAPH		PAGE
4.4.64a I 4.4.64b I	OOP IMPURITY MONITORING	ड र ड र
4.4.65	DERATING MODES	57 A
4.4.67 I	LOCAL & REMOTE PANELS	58
4.4.68 E 4.4.69 H	IM FUMP CONTROL LOGIC TEAT DUMP LOGIC	58 58
4.4.70 E	DESCRIPTION	58 58
6.0 N	NOTES	58
REVISION NUMBER	REVISION SUPERSEDES DATE	
え	24 AVE 79	

E S	NERGY YSTEMS	ENGINEE	RING SPECIFICATION	SPECIFICATION NUMBER	
DEP	ARTMENT	TITLE		295A4725	
	86)			ORIGINAL ISSUE DATE	
GEI	NERAL		·	MAY 2 5 1979	
ELE	CTRIC	CLASSIFICATION			
1.0	SCOPE				
	This spe characte include to be us the oper for the	cification describe ristics of the sod: a description of th ed wherever these a ating modes, therma absorber panel and	es the design parameters and requium receiver test assembly. The ne absorber panel and the manufactare unique. The operating charactal performance and control function its associated equipment.	ired operating design parameters turing processes teristics describe ion requirements	
2.0	APPLICAB	LE DOCUMENTS			
	The foll specific	owing documents of ation to the extent	the issue in effect 25 May 1979 specified herein.	form a part of this	
2.1	Conceptu Company 1 1725, Ma	al Design of Advanc Final Report (Draft rch 5, 1979.	ced Central Receiver Power System c), U.S. Dept. of Energy Contract	us, General Electric No. EM-78-C-03-	
2.2	Alternat Proposal January	e (Advanced) Centra , General Electric 19, 1979.	al Receiver Power System Program Co., U.S. Dept. of Energy RFP No	Phase II Technical . EG-77-R-03-1483,	
2.3	Advanced Sandia L	Central Receiver F aboratories, Issue	Program Requirements, L.N. Taller B, March 16, 1978.	ico, C.F. Lundbom,	
2.4	Central :	Receiver Test Facil	lity Interface Specification, A.V	. Curinga.	
2.5	ASME Sec	tion I, II, V, and	VIII Division 1, Boiler and Pres	sure Vessel Code.	
2.6	ANSI Pow	er Piping Code B31.	1.		
2.7	Manual o Construc	f Steel Constructic tion.	on, 8th Edition 1974, American In	stitute of Steel	
2.8	National	Electric Code, NFF	PA 70-1978.		
2.9	OSHA Sta	ndards.			
2.10	2.10 National Electrical Manufacturers Association (NEMA) Standards.				
2.11	2.11 Uniform Building Code - 1976 Edition, Vol. 1 (Earthquake Criteria).				
Rt	UNBER	REVISION DATE	SUPERSEDES		
	3	l April 80		PAGE (UFOO	

-

ENEAGY SYSTEMS	ENGINEE	RING SPECIFICATION	SPECIFICATION NUMBER						
DEPARTMENT	TITLE		295A4725						
88			ORIGINAL ISSUE DATE						
GENERAL			MAY 2 5 1979						
ELECIRIC									
3.0 <u>REQUIREM</u>	3.0 <u>REQUIREMENTS</u>								
The sodi describe	The sodium receiver test assembly construction and operation requirements are described in this section.								
3.1 ITEM DEF	3.1 ITEM DEFINITION								
3.1.1 DIAGRA	MS								
The fo	ollowing diagrams a	are included with this specifica	tion:						
Figure Figure Figure Figure Figure	2 3-1 Sodium Recei 2 3-2 Sodium Recei 2 3-3 Absorber Pan 2 3-4 Control Func 2 3-5 Absorber Pan	ver Test Assembly - Schematic ver Test Assembly - General Arra el - Schematic tion Diagram mel Thermal Cycling Histogram	angement Drawing						
REVISION NUMBER 2	REVISION DATE	SUPERSEDES	PAGE 8 OF 58						

ENERGY SYSTEMS PROGRAMS	ENGINEE	RING SPECIFICATION	SPECIFICATION NUMBER			
DEPARIMENT	TITLE		2 9 9 4 7 2 9			
			ORIGINAL ISSUE DATE			
GENERAL			MAY 2 5 1979			
Figu	DRE 3-1 LEGET	ND & NOTES				
I. Aı	LL SODIUM PIPE \$	Fittings are 316 SS and (or	c) 304 ss			
2. Au Pe	L PIPING & COMPO R THE REQUIREMO	ongnts are Trace Heated Ents of Paragraph 3.7.3.3.				
3. Au Dr Tr	L RPING IS SLOF RAINAGE FROM THE LE DUMP TANK I	CED 3% MINIMUM FOR COMPI E SURGE TANK (HIGH POINT) T (LOW POINT).	.етс То			
4. AL Pe	l Components an R The Codes St	D RIPING SHALL BE DESIGNED RECIFIED IN PARAGRAPHS 3.7.) 3.1(
5. Ai Pe	er Paragraph 3	D RPING SHALL BE INSULATE 3.7. 3.12.	G			
6. II 17 Fi	NCIDENT SOLAR I IE CRTF SUPPL LUX SYSTEM.	Flux shall be Measured w IED Real Time Aperture	TH			
T 1	[HERMOCOUPLE					
× 7	THERMOCOUPLE PAI Plus Strain Gage Solar Heat Flux	r on Absorber Tube (see figure 3-3) K Sensor				
(P)	PRESSURE SENSC)R.				
(L) (L) (D) T	D LIQUID LEVEL SENSOR D TRACE HEATING JACKET WITH TEMPERATURE SENSOR					
Ē	E FLOWRATE SENSOR					
	- REMOTE CONTROL VALVE					
D I	D DISPLACEMENT SENSOR (PANEL EXPANSION)					
REVISION NUMBER 2	REVISION DATE	SUPERSEDES	PAGE 10 OF58			

,

ENGROUP ENGINEERING SPECIFICATION Second and a second a second and a second a second and a second a second a second a second a second and a second a second a second a second and a second a									
STATE Intermediate State State	ENERGY SYSTEMS PROGRAMS DEPARTMENT	ENGINEE	RING SPECIFICATION	SPECIFICATION NUMBER 295A4725					
GENERAL MAY 25 1973 FIGURE 3-3 LEGEND & Nores I TUDE BUNDLE SHALL BE ATTACHED TO A STRUCTURE UNICH SUPPORTS THE WEIGHT OF THE BUNDLE. Itsee Support Structure Shall MAINTAIN FLATURES OF THE SUPPORT STRUCTURE SHALL MAINTAIN FLATURES OF THE BUNDLE CONTRING OF THE BUNDLE CONTRING OF THE BUNDLE CONTRING OF THE BUNDLE CONTRING OF THE SUPPORT STRUCTURE SHALL MAINTAIN FLATURES 3. UDE BUNDLE CONTRINS ~ 51 TUDES. TUDES ARE JUNCTO FACTORE ANALLY BERFING. 0. UTER SUPPORT STRUCTURE ANALLY BERFING. OUTER SUPPORT TO THE FACTOR ANALLY BERFING. 0. UTER SUPPORT STRUCTURE ANALLY BERFING. OUTER SUPPORT STRUCTURE ANALLY BERFING. 0. UTER SUPPORT STRUCTURE ANALLY BERFING. OUTER SUPPORT STRUCTURE ANALLY BERFING. 0. UTER SUPPORT STRUCTURE ANALLY BERFING. OUTER SUPPORT STRUCTURE ANALLY BERFING. 0. UTER SUPPORT STRUCTURE SUPPORT SUPPORT 1. HEDDERS ARE LOCATIONS OF TUDE WALL TEMPERATURES SUPPORT SUPPORT SCANDERS ARE INDUCATED BY (X) AND DESCRIBED IN PROBATIONS SUPPORT SUPPORT 1. MERSURES ARE SHORT DE TO BY (X) AND DESCRIBED IN PROBATIONES SUPPORT SUPPORT SUPPORT 1. MERSURES ARE INDUCATED BY (X) AND DESCRIBED IN PROBATIONES SUPPORT SUPPORT 1. MERSURES ARE SHORT DE TO BY SUPPORT TO BE SUPPORT SUPPORT SUPPORT TO BE SUPPORT AND DESCOND DATE 1.		IIILE		ORIGINAL ISSUE DATE					
FIGURE 3-3 LEGEND & Nores 1 The BUNDLE SHALL BE ATTACHED TO A STRUCTURE UNICH SUPPORTS THE WEIGHT OF THE BUNDLE. 2 THE SUPPORTS THE WEIGHT OF THE BUNDLE. 2 THE SUPPORTS THE WEIGHT OF THE BUNDLE. 3 THE BUNDLE WHILE ALLOWING THERMAL CEPANNON. 3 THE BUNDLE CONTRINS ~ SI TUBES. THE BE BUNDLE CONTRINS ~ SI TUBES. THE RE JUNCL CONTRINS ~ SI TUBES. THE RE JUNCT TO THE ALLOWING THERMAL CEPANNON. 3 THE BOUNDLE CONTRINS ~ SI TUBES. OUTER SURFACE OF TUBES IS CONTENT A SOLAR. ABORTING MATERIAL. 4 HERDERS MUSICATED BY (X) AND DESCRIBED NO THE FOCUSSED SOLAR BEAM. 5 CANDING AND LOCATIONS OF TUBE SURFACE TEMPERATURE 5 CANDING LOCATIONS OF TUBER SUR PACE TEMPERATURE 5 CANDING LOCATIONS OF TUBER SURFACE OF THE SURPERSTURE 5 CANDING MILT BE MOUNTED IS SHOWN BELOW: SERVERGE ARE INDICATED BY (X) AND DESCRIBED IN PAREMARY LOCATIONS OF THE TOPE WALL TEMPERATURE SERVERGE ARE INDICATED BY (X) AND DESCRIBED IN MERGENERT LOCATIONS OF THE SURPERSTURE IN MENNERT SECON THE MAIN TENTERSTURE SECONT WEIGHT OF THE WAL	GENERAL ELECTRIC	CLASSIFICATION		MAY 2 5 1979					
I Tuge BUNDLE SHALL BE ATTACHED TO A STRUCTURE UMICH SUPPORTS THE WEIGHT OF THE BUNDLE. 2 THE SUPPORT STRUCTURE SHALL OF THE BUNDLE. 2 THE SUPPORT STRUCTURE SHALL MAINTAIN FLATACESS OF THE TUBE BUNDLE ANHLE ALLOWING THERMAL EXTANSION. 3. TUBE BUNDLE CONTAINS ~ 51 TUBES. TUBES ARE JUNCLE ONTAINS ~ 51 TUBES. TUBES ARE JUNCLE OF TUBES IS CONTENT A SOLAR ABSORTIVE MATERIAL. 4. HEADERS MUST BE PROTECTED FROM DIRECT EXPOSURE TO THE FOLUSSED SOLAR BEAM. 5. CANDIDATE LOCATIONS OF TUBE SUR FACE TEMPERATURE SENSORS ARE INDICATED BY (X) AND DESCRIBED IN PARAGRAPH 37.1.6. AN EXAMPLE OF NOW THESE SENSORS MIGHT BE MOUNTED IS SHOWN BELDU: FOUTS SURFACE OF Flue WINCH SURFACE TO THE SOLAR DEALD: FOUTS STRUCTURE MOUNTED IS SHOWN BELDU: THERES BACKEDE TUBE WALL FOR POSTIBLY T/C PLACEMENT. THERES BACKEDE TUBE WALL TEMPERATURE AND MAR BE STOT WEIDED IN PLACE MENSURES FRONTSIDE TUBE WALL TEMPERATURE THERMOLOCIPLES ARE SHENTHED IN STRINLESS STEEL (~ 0. 0.920-D. SHEATH) WITH OFON TIPS; THE WIRES ARE CHROMEL - ALUMEL. REVISION NUMBER SUPERSECT DEC WALL TEMPERATURE THERMOLOCIPLES ARE SHENTHED IN STRINLESS STEEL (~ 0. 0.920-D. SHEATH) WITH OFON TIPS; THE WIRES ARE CHROMEL - ALUMEL. NUMBER SUPERSECT SUPERSECT		Figure 3-3 Le	GEND & Notes						
2 THE SUPPORT STRUCTURE SHALL MAINTAIN FLATURES 0F THE TOBE BUNDLE NHILE ALLOWING THERMAL EXTRIBUT 3. TOBE BUNDLE CONTRINS ~ 51 TUBES. TUBES ARE INCOLOY 800, 0.75 IN. O.D. × 0.05 IN. WALL. TUBES ARE INCOLOY 800, 0.75 IN. O.D. × 0.05 IN. WALL. TUBES ARE INCOLOY 800, 0.75 IN. O.D. × 0.05 IN. WALL. TUBES ARE INCOLOY 800, 0.75 IN. O.D. × 0.05 IN. WALL. TUBES ARE INCOLOY 800, 0.75 IN. O.D. × 0.05 IN. WALL. TUBES ARE INCOLOY 800, 0.75 IN. O.D. × 0.05 IN. WALL. TUBES ARE SOURCE OF TUBES IS COATED WITH A SOLAR. ABSORPTIVE MATERIAL. 4. HEADERS MUST BE PROTECTED FROM DIRECT EXPOSURE TO THE FOCUSSED SOLAR BEAM. 5. CAN DIGATE LOCATIONS OF TUBES SURFACEOR FUNCTIONS SCHARGRAPH 3.7.1.6. AN EXAMPLE OF HOW THESE SENSORS MIGHT BE MOUNTED IS SHOWN BELOW: FRONTENE FOR MOUNTED IS SHOWN BELOW: THE MOUNTED IS SHOWN BELOW: FRONT SUPPORT OF FAULT TO MERSURES BACK SUPPORT SOLUME FOR POSSIBLE TUBE WALL FOR POSSIBLE T/C PLACEMENT. THERMOLORY DISSIDE TUBE WALL TEMPERATURE; AND MAY DE SOT WEDGED IN PLACE THERMOLORY DISS ARE SHEATHED IN STAILESS STEEL (~ 0. 0. 312 OLD SHEATH) WITH OPEN TIPS; THE WISION NUMERSION	L	L TUBE BUNDLE SHALL BE ATTACHED TO A STRUCTURE WHICH SUPPORTS THE WEIGHT OF THE BUNDLE.							
 3. UBE BUNDLE CONTRINES ~ 51 TUBES. TUBES ARE INCOLOGY 800, 0.75 IN O.D. X CLOSIN, WALL. TUBES ARE JOINED TOSETHER AXIALY BY BRAZING. OUTER SURFACE OF TUBES IS CATED WITH A SOLAR ABORTHVE MATERNE. 4. HEADERS MUST BE PROTECTED FROM DIRECT EXPOSURE TO THE FOLUSSED SOLAR BEAM. 5. CAN DIDATE LOCATIONS OF TUBES SUR PACE TEMPERATURE SENSORS ARE INDICATED BY (X) AND DESCRIBED IN PARAGRAPH 3.7.1.6. AN EXAMPLE OF HOW THESE SENSORS MIGHT BE MOUNTED IS SHOWN BELDW: FRONT SURFACE OF FRUEL FRONT SURFACE OF FRUEL THE FOLLOSSED BACKSIDE TUBE WOLL TOWER FOR POSSIBLE T/C PLACEMENT. T MEASURES BACKSIDE TUBE WALL TEMPERATURE AND MAY BE SPOT WEIDED IN PLACE MEASURES FRONTSIDE TUBE WALL TEMPERATURE AND MAY BE SPOT WEIDED IN STAINLESS STEEL (~ 0. 0.920D. SHEATH) WITH OPEN TIPS; THE WIRES ARE CHROMEL ALUMEL. ALUMDER 3 1 APTIL 80 	2	The Support Struc of the Tube Bund	TURE SHALL MAINTAIN FLATNES	is Kolekry.					
4. HEADERS MUST BE PROTECTED FROM DIRECT EXPOSURE TO THE FOCUSSED SOLAR BEAM. 5. CAN DIDATE LOCATIONS OF TUDE SUR PACE TEMPERATURE SENSORS ARE INDICATED BY (X) AND DESCRIBED IN PARAGRAPH 37.1.6. AN EXAMPLE OF HOW THESE SENSORS MIGHT BE MOUNTED IS SHOWN BELDU: FRONT SURPACE OF FROM TO BE TO THE MOUNTED IS SHOWN BELDU: FRONT SURPACE OF FROM TO BE TO MEASURES BACKSUBE TUDE WALL TEMPERATURE, AND MAY BE SPOT WEIDED IN PLACE MEASURES FRONTSIDE TUDE WALL TEMPERATURE THERCHOCOUPLES ARE SHEATTHED IN STAINLESS STEEL (- 0. 0. 12 °D. SHEATH) WITH OPEN TIPS; THE WIRES ARE CHROMEL - ALUMEL. REVISION NUMBER 3 1 April 80 PAGE 13 0F58	3.	TUBE BUNDLE CONTR TUBES ARE INCOLO TUBES ARE JOINED OUTER SURFACE OF ABSORPTIVE MATERI	INS~51 TUBES. DY 800, 0.75 IN. O.D. × 0.05 IN TOGETHER AXIALLY BY BRAZING. TUBES IS COATED WITH A SO AL.	WALL.					
5 CANDIDATE LOCATIONS OF TUGE SUR FACE TEMPERATURE SENSORS ARE INDICATED BY (X) AND DESCRIBED IN PARAGRAPH 37.1.6. AN EXAMPLE OF HOW THESE SENSORS MIGHT BE MOUNTED IS SHOWN BELDW:	4.	Headers Must Be To the Focussed	PROTECTED FROM DIRECT EXF SOLAR BEAM.	IDSURE					
FRONT SURPACE OF PAUEL Sodum Sodum TI Social	5.	Candidate Loca Sensors are inj In Paragraph 3.7.1 Sensors might B	TIONS OF TUBE SURFAC DICATED BY (X) AND DESCR G. AN EXAMPLE OF HOW THESE E MOUNTED IS SHOWN BELOW	E TENPERATURE BED T					
Image: Solution of the set of the s			FRONT SURPACE OF PANE	L.					
TI BLINO NOLE FOR POSSIBLE T/C PLACEMENT. TI MEASURES BACKSIDE TUDE WALL TEMPERATURE, AND MAY DE SPOT WELDED IN PLACE MEASURES FRONTSIDE TUDE WALL TEMPERATURE THERMOCOUPLES ARE SHEATHED IN STAINLESS STEEL (~ a. o. jz". D. SHEATH) WITH OPEN TIPS; THE WIRES ARE CHROMEL - ALUMEL. REVISION NUMBER 3 April 80 THE MIRES ARE SHEATHED IN STAINLESS SUPERSEDES PAGE 13 OF 58			Soburn Tube						
AND MAY BE SPOT WELDED IN PLACE MERSURES FRONTSIDE TUDE WALL TEMPERATURE THERMOCOUPLES ARE SHERTHED IN STAINLESS STEEL (~ a. o.j2"O.D. SHERTH) WITH OPEN TIPS; THE WIRES ARE CHROMEL - ALUMEL. REVISION NUMBER 3 1 April 80			BLIND NOLU FOR POS PLACEMENT.	31866 T/C					
THERMOCOUPLES ARE SHERTHED IN STAINLESS STEEL (~ a. a. j2"O.D. SHERTH) WITH OPEN TIPS; THE WIRES ARE CHROMEL - ALUMEL. REVISION NUMBER 3 1 April 80 PAGE 13 OF 58	AND MAY BE SPOT WELDED IN PLACE MEASURES FRONTSIDE TUDE WALL TEMPERATURE								
REVISION REVISION SUPERSEDES NUMBER DATE PAGE 13 0758 3 1 April 80		THERMOCOUPLES ARE SHEATHED IN STAINLESS STEEL (~ a. a \$2"O.D. SHEATH) WITH OPEN TIPS; THE WIRES ARE CHROMEL - ALUMEL.							
	REVISION NUMBER 3	REVISION DATE 1 April 80	SUPERSEDES	PAGE 13 OF 58					

ENERGY SYSTEMS PROGRAMS	ENGINEE	RING SPECIFIC	CATION	SPECIFICATION NUMBER			
DEPARTMENT	TITLE	<u></u>		295A4725			
E				ORIGINAL ISSUE DATE			
GENERAL				MAY 2 5 1979			
LLUINIG		<u>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>					
6. STRAN GAGES MOUNTED ON BACK SURFACE OF TUBES ARE INDICATED BY (A), REF. PARAGRAPH 3.7.1.6.							
	EVERY TUBE ACR BY (), REF.	oss width of Paragraph	PANEL ARE IN 3.7.1.6.	NDICATED			
	8. ACTIVE HEAT E: () AND SH SPECIFIED IN ON THIS SURF THE VERTICAL THE EXTREME: SHOWN BEL	XCHANGE SURF ALL HAVE A LE PARAGRAPH 3. ACE SHALL BE CENTERLINE, AN S OF IDEAL 	ACE IS INDIC NGTH AND WID 2.2.1. FLUX DIS SYMMETRICA ND MAY VARY VERTICAL DI	ATED BY TH AS TRIBUTIONS L ABOUT BETWEEN LTRIBUTIONS			
3 2 015TANEY 1 F & om H 100LE 0 +4 PANEL - 1 (HoTem)- 2 - 3	3 2 1 - 1 - 2 - 3			2 3 FLUX (Nw/n2).			
U 10	Joen M	TAPER	٩	6 A K 1.5 mw/m²			
	(P) (P) (D) (D)	Thermocouple Pressure Senso Displacement S TRACE HEATING	R EN 50R	- -			
REVISION NUMBER 3	REVISION DATE 1 April 80	Su	PERSEDES	PAGE 14 0558			

ENERGY SYSTEMS PROGRAMS DEPARTMENT		ENGINEEI	RING SPECIFICATION	SPECIFICATION NUMBER		
		TITLE		29574725		
GENE	RΔI			MAY 2 5 1070		
ELECT	RIC	CLASSIFICATION		LINI & O 1919		
3 1 2 1	NTEDE					
5.1.2		ACE DEFINITION				
ר א t	The SR below. vill be tion (1	TA shall have seve: The details of the e defined in the Ce Ref. 2.4).	ral types of interfaces with the ne interfaces described in the fo entral Receiver Test Facility int	CRTF as described CRTF as described CRTF ac paragraphs Cerface specifica-		
3.1.2.1	Struc	ctural Interfaces				
	• Co	ompatibility with (CRTF supplied real time aperature	flux system.		
	 At CI 	ttachment of test s RTF tower.	support structure to the 200' lev	rel deck in the		
 Mounting in the tower of the EM Pump power supply and capacitors, the heat dump power supply, the preheater voltage controllers, and a con- trol cabinet with display panel. 						
	• Mo to	ounting of the loca ower elevating modu	l control cabinet in the compute le.	r room of the CRTF		
3.1.2.2	Utili	ity Interface - Ele	ctrical			
	• EM	1 Pump				
	• He	eat Dump BLower				
	• So	odium Preheaters		Ì		
	• Mi ir	iscellaneous servic nsulating panel dri	e for power tools, heat dump, fl ve	ux sensor drive,		
3.1.2.3	<u>Utili</u>	ty Interface - Flu	ids			
	• Ar	gon Supply				
	• Ir	strument Air Suppl	У			
3.1.2.4	Instr	rumentation Interfa	ces			
	All instrument signals (except RTAF and meteorological) shall be available for display at both the local (GE) and remote (CRTF) control panels. Selected signals will be identified for data recording.					
	• Si	gnal Conditioning	Equipment			
	• Th	nermocouples				
	• St	rain Gages				
REVISIO		ux Meters REVISION	SUPERSEDES			
NUMBE	R	DATE		PAGE 17 0558		
2		** 40 4 14				

ENERG	Y	ENGINEE	RING SPECIFICATION		SPECIFICATION NUMBER		
PROGRA	MS			29	5A4725		
		TITLE					
					ORIGINAL ISSUE DATE		
GENEF	AL			MA	y 2 5 1979		
ELECT	RIC	CLASSIFICATION					
	• S	odium Flowmeters					
	• S	odium Pressure Gag	es				
	• S	odium Liquid Level	Gages				
	 Inert Gas Pressure Gages 						
	• L	inear Displacement	Sensor on Absorber Panel				
	• S	moke Detectors					
	• R	eal Time Aperature	Flux System				
	• M	eteorological Syst	em	Requi	red		
	All and/ mult leve	SRTA instrumentati for terminals compa ciplexing and other and of the tower ele	on signal leads shall be termina tible with the CRTF data system terminating equipment located i vator.	ated in signal n the	connectors conditioning, computer room		
3.1.2.5	Cont	rol Interfaces					
	All (in Cont quir	control functions and the CRTF tower) and rol Room). The it ring connections to	shall be connected to both a loc d a remote control (CRTF) panel ems listed below are the major c these two panels.	al con (in th control	trol (GE) panel e CRTF Master points re-		
	• E	M Pump automatic co	ontrols and manual override				
	• н	eat Dump automatic	louver controls and manual over	ride			
	• P	reheater automatic	control and manual override				
	• 0	pen/close control o	on absorber panel insulating doo	r			
	• S	odium valve control	ls				
	• 1	nert gas valve cont	trols				
3.1.2.6	Sola	r Interface					
	The sola	SRTA testing will n r beam characterist	require the following mutally ind	depende	ent incident		
	• A 0	flux distribution .5 MW/M ² over the a	which is nearly uniform with an active panel heat exchanger area	intens.	sity of		
	• A ne	flux distribution ear the center of t	which provides a peak intensity the panel.	of 1.5	5 MW/M ²		
 The ability to vary the incident solar power from 0 MW to 2.5 MW and back to 0 MW in less than 10 minutes. 							
	<u>. </u>		Suprocross				
NUMBE	R	DATE 1 April 80	SURFHSEDES		PAGE 18 OF 58		
L							

ENERGY SYSTEMS PROGRAMS DEPARTMENT		ENGINEE	RING SPECIFICATION	29	SPECIFICATION NUMBER			
		TITLE	······································	_ 23	514720			
E					ORIGINAL ISSUE DATE			
GENE	AL			M	y 2 5 1979			
ELECT	RIC	CLASSIFICATION						
3.1.3 <u>M</u>	AJOR	COMPONENT LIST	<u> </u>					
T f	The Sodium Receiver Test Assembly equipment can be organized into the following five categories:							
3.1.3.1	Abso	rber Panel						
· · · · · ·	This insu	category includes lation and associa	the tube bundle and headers ted instrumentation and heat	, support tracing.	structure,			
3.1.3.2	Heat	Dump						
	This category includes the sodium-to-air heat exchanger, blower, louvers, support structure and associated instrumentation and heat tracing.							
3.1.3.3	Flui	d Circulation Equi	pment					
	This category includes the sodium piping, tanks, EM pump, purification system, valves, heat tracing, insulation, support structure, inert gas system, moveable insulation and associated instrumentation.							
3.1.3.4	Moni	tor and Control Eq	uipment					
	This cont logi	category includes rol and display co cs for the EM pump	a local control panel (in C nsole (in CRTF control room) and heat dump louvers and a	RTF tower , and aut nnunciati), a remote omatic control on systems.			
3.1.3.5	Auxi	liary Equipment						
	This category includes the power supplies for the EM pump and other motors, sodium fire fighting equipment, and sodium system maintenance equipment.							
REVISIO	N	REVISION	SUPERSEDES	<u> </u>				
	₹	DATE			PAGE 19 OF 58			
					·			

SPECIFICATION NUMBER ENERGY **ENGINEERING SPECIFICATION** SYSTEMS PROGRAMS 295A4725 DEPARTMENT TITLE ORIGINAL ISSUE DATE MAY 2 5 1979 GENERAL CLASSIFICATION ELECTRIC 3.2 CHARACTERISTICS

3.2.1 PERFORMANCE CHARACTERISTICS

The SRTA shall be desinged to provide the following performance characteristics:

3.2.1.1 Incident Solar Beam Acceptance

The SRTA shall accept a maximum steady state incident solar power of 2.5 MW on the absorber panel active heat exchanger surface. The panel shall be able to accept this power level in any distribution which is symmetric about the vertical centerline of the panel, between the extremes of uniform flux and single point aiming flux (see Figure 3-3, note 8). The SRTA shall be designed to accept transients in the solar power level of up to 1 MW/minute and hold times at full power (2.5 MW incident) of up to 10 hours.

3.2.1.2 Absorber Panel Inlet Temperature

The absorber panel inlet temperature (measured at the inlet pipe on the panel inlet header) shall be maintained at a set point between $500^{\circ}F$ and $700^{\circ}F$ (± 5°F) under all incident solar power levels between 0.25 MW and 2.5 MW including transient as well as steady state condition. This specification shall be met under all operating environmental conditions listed in 3.2.5.1.

3.2.1.3 Absorber Panel Outlet Temperature

The absorber panel outlet temperature (measured at the outlet pipe on the panel outlet header) shall be maintained at $1100^{\circ}F \pm 5^{\circ}F$ under all steady state and transient insolation conditions from 0.25 MW to 2.5 incident power under all operating environments as defined in 3.2.5.1.

3.2.1.4 Design Life Requirements

The SRTA equipment shall be designed to operate for at least 5000 hours without significant deterioration in performance or planned replacement of major components. In addition the absorber panel shall be designed to provide 30 year life with respect to corrosion and thermal cycling damage of the metallic parts. For corrosion, 30 year life shall be defined as 131,000 hours of exposure to full load operating temperatures and environments. For thermal cycling damage, 30 year life shall be defined as in Figure 3.5.

REVISION REVISION SUPERSEDES DATE PAGE 20 OF	1				
PAGE 20 OF		REVISION	SUPERSEDES	_	
2 24 AUG 79	2	24 AUG 79		PAGE 20	ofOB

ENERGY SYSTEMS PROGRAMS		ENGINEE	RING SPECIFICATION	SPECIFICATION NUMBER		
DEPARTMENT		TITLE	TITLE			
E				ORIGINAL ISSUE DATE		
GENEF	AL			MAY 2 5 1979		
ELECTRIC CLASSIFICATION				6.000 ···		
2 2 3 5						
3.2.1.5	Desi	gn Operating Modes				
	The	SRTA shall be capab	ole of performing in the followir	ng modes:		
	• 0; a: i: a;	peration - In this n automatic control nput to maintain th pproximately 600 ⁰ F/	mode the sodium pump and the hea which responds to variations in the absorber panel inlet/outlet te '1100 ⁰ F respectively.	at dump are under 1 the solar heat 2 mperatures at		
	 Hot Hold - This is a hot shutdown condition in which the panel movea insulation is closed and the trace heaters function under automatic control to maintain the loop temperature at approximately 600°F. 					
	• P: d:	: temperature con-				
	• S†	tartup - This is th	e transition from hot hold to op	operation.		
	• Sl	hutdown - This is t	he transition from operation to	o hot hold.		
	● Er ou ga	mergency Dump - In it of the loop into as.	this mode all of the sodium is d the dump tank and the loop is f	rained rapidly filled with inert		
	 Ca fo le t 	alibration Maneuver or instance the sod evel gages. T/C ca emperatures from 60	s - Calibration modes shall be p ium flowmeter calibration using alibration may be run over a rang 00°F to 1100°F.	provided as required, the surge tank ge of isothermal		
3.2.2 <u>P</u>	HYSIC	AL CHARACTERISTICS				
3.2.2.1	Abso	cber Panel Surface	Area			
	The Sodium Receiver Test Assembly shall have an active solar heat ex- change area which has a vertical dimension of \sim 15 feet and a horizontal dimension of approximately 3.28 feet.					
3.2.2.2	Surfa	ace Orientation				
	The heat exchange active surface shall be oriented to face towards the CRTF heliostat field (north) and be mounted in the CRTF tower at an elevation of approximately 200 feet.					
3.2.2.3	.3 Surface Obstructions					
	This surface shall be located in such a manner that no structural feature					
REVISIO NUMBE	N B	REVISION	SUPERSEDES			
2		24 AUG 19		PAGE 21 OF 58		
ES3-005 (5-78	1 3)		A-23	<u> </u>		

1 1						
ENERGY SYSTEMS PROGRAMS	ENGINEEF	RING SPECIFICATION	295A4725			
DEPARTMENT	TITLE					
E			ORIGINAL ISSUE DATE			
GENERAL			MAY 2 5 1979			
ELECTRIC	CLASSIFICATION					
of the h	he CRTF or the test heat exchanger and	any heliostat in the field.	ical path between			
3.2.3 RELIAB	ILITY - NA					
3.2.4 MAINTAINABILITY						
The Soc vide fr should requir: trace h	dium Receiver Test ree access for main minimize the neces ing a crane in orde heaters, or electri	Assembly shall be designed and outenance operations. In particulasity to cut the sodium loop or mer to calibrate, repair or replaced control and power connection	constructed to pro- lar the design move large components ce instrumentation, ns.			
The ins the ran little	strumentation and c nge of operating cc or no maintenance	control equipment shall be design onditions for a minimum period of required after initial calibrat:	ned to function over f six months with ion.			
3.2.5 ENVIRON	NMENTAL CHARACTERIS	TICS				
3.2.5.1 Opera	ating Requirements					
The st	Sodium Receiver Tes following environme	at Assembly (SRTA) shall be design antal conditions:	gned to operate under			
Tempe Wind	erature (Dry Bulb): Speed:	-20 to 120 ⁰ F 0 to 14 M/S (30 mph)				
3.2.5.2 <u>Surv</u>	ival Requirements					
The Stions	SRTA shall be capab s of the environmen	ble of surviving without damage a ts specified below:	appropriate combina-			
Wind Snow	Speed: 45 M/S : 5 lb/ft	gusts from any direction (100 mg 2 snow deposition	ph)			
Light	tning: Direct	hit				
Ice:	2 inche	thick deposit				
Earthquake: .5 g lateral (no spectrum requirement) (at top of tower)						
Hail	Hail l inch diameter					
	0.9 specific gravity 75 fps					
Realignment prior to returning to operations after surviving these con- ditions is allowable.						
REVISION	REVISION	SUPERSEDES				
3	l April 80		PAGE 22 OF 50			

ENERGY SYSTEMS PROGRAMS	ENGINEERING SPECIFICATION	SPECIFICATION NUMBER 295A4725
DEPARTMENT	TITLE	ORIGINAL ISSUE DATE
GENERAL ELECTRIC	CLASSIFICATION	MAY 2 5 1979

3.2.6 TRANSPORTABILITY

The Sodium Receiver Test Assembly shall be constructed in modular form, and all of the modules shall be of a size which may be shipped by truck. In addition all of the modules which are to be placed in the CRTF tower must be of such a size and weight that they can be lifted into place with CRTF supplied elevators and cranes.

3.2.7 INSTALLATION

The SRTA assemblies shall be designed and constructed to minimize field installation labor with particular emphasis on minimizing field welding and instrumentation attachments.

3.2.8 CLEANLINESS

Fabrication, assembly and shop testing operations shall be conducted to facilitate cleaning, inspection for cleanliness and to minimize contamination during these operations. The SRTA equipment delivered to the CRTF shall be sutiable for installation without additional cleaning. Cleaning and cleanliness control shall be implemented according to approved procedures.

REVISION NUMBER	REVISION DATE	SUPERSEDES	PAGE 23	of 58
5				

ENERGY SYSTEMS PROGRAMS	ENGINEE	RING SPECIFICATION	SPECIFICATION NUMBER			
DEPARTMENT	TITLE		20014120			
E E			ORIGINAL ISSUE DATE			
GENERAL			MAY 0 5 1070			
ELECTRIC	CLASSIFICATION		MAY & 5 1515			
	<u> </u>					
3.3 DESIGN &	CONSTRUCTION					
As a min meet ASM the sodi however as neede tube hea with acc equipmen Code (Re (2.10).	imum the loop comp E Se um piping shall co code stamp is not d, for instance 10 der welds. The st repted design stand t and electrical c f. 2.8) and Nation	onents in contact with sodium sha ction VIII Division requirement mply with ANSI power piping code required. Additional requirement 0% x-ray inspection of butt welde ructure elements of the test asse ards (Ref. 2.7) and all electrica omponents shall be designed to th al Electrical Manufacturers Assoc	all be designed to (Ref. 2.5) and B31.1 (Ref. 2.6), ts may be imposed ed absorber panel embly shall comply al power distribution he National Electric ciation Standards			
assembly ing of a shipping only str directio The comp it to a	All lifting attachements to be used for assembly or handling shall be designed for 3g in all directions. Load test- ing of all integral lifting lugs shall be provided. Loads encountered during shipping shall be provided for in the item design or with suitable shipping only structure. Shipping loads shall be 2g vertical and lateral and 5g in direction of travel. The completed assembly shall be inspected for leak tightness by subjecting					
3.3.1 <u>Materi</u>	ALS PROCESSES AND	PARTS				
The absorber panel materials shall meet the appropriate ASME requirements, tubes and headers shall be constructed from a commercially available grade of Incoloy 800. The tubes shall be welded to the headers in such a way as to maximize radiographic inspection of all tube-header welds, and this in- spection shall be performed. The tubes shall be joined together longi- tudinally by brazing. The remainder of the loop components in contact with sodium shall be constructed from stainless steel (type 304 and/or 316). All welded joints within the inlet header and between the panel outlet header and the surge tank shall be designed to be radiographed and this inspection shall be performed. All non-corrosion resistant materials used in the structure and enclosure shall be painted with a rust preventative to protect it from the environ- ment. All surfaces (with the exception of the active zone panel tubing) subjected						
to the concentrated solar insolation from the hellostats shall be in- sulated to protect from thermal damage. Insulative covering shall be compatible with the environment.						
REVISION NUMBER	REVISION DATE	SUPERSEDES				
3	l April 80		PAGE 24 OF 58			

	<u></u>				
ENI SYS PROC	ERGY STEMS GRAMS	ENGINEE	RING SPECIFICATION	205	SPECIFICATION NUMBER
		TITLE		トンつ	~~/20
	6				ORIGINAL ISSUE DATE
GEN	ERAL			MAY	25 1979
ELEC	TRIC	CLASSIFICATION			** •1 •1
3.3.2	ELECTRO	MAGNETIC RADIATION	<u>N – NA</u>		
3.3.3	NAMEPLA	ATE AND PRODUCT MAI	RKINGS		
	The.abs tion (a	sorber panel shall as a minimum):	bear a nameplate which lists th	e follow	ving informa-
	Name of Materia	f manufacturer: al of construction:	:		
REVI	ISION MBER	REVISION DATE	SUPERSEDES		
ース	•	24 806 79		P/	age λ+Α of 58

					SRECIELCATION			
ENERGY SYSTEMS PROGRAMS		ENGINEEF	RING SPECIFICATION	20	SPECIFICATION NUMBER			
DEPARTMENT		TITLE	295		0 A4 123			
Ê					ORIGINAL ISSUE DATE			
GENI	RAL			MA	y 2 5 1979			
ELEC	TRIC	CLASSIFICATION						
	Design Weight Code:	temperature and pr s: Dry, Wet	essure:					
	The surge tank and dump tank shall bear nameplates which specify:							
	Name of Materia Volume Design Weight:	f Manufacturer: al: : temperature and pr s: Dry, Wet	essure:					
	The el	ectromagnetic pump	shall bear a nameplate which sp	ecifies	5:			
Name of manufacturer: Maximum Head: Maximum Flow: Maximum Temperature and Pressure: Electrical Circuits Required: volts, kVA Weights: Dry, Wet								
	The hea	at dump shall bear	a nameplat which specifies:					
	Name o: Maximur Weight: Electr:	f manufacturer: m Thermal Dissipati s: Dry, Wet ical Circuits Requi	on: red: volts, kVA					
	All ot with we	her components or a eights; dry, wet an	ssemblies to be lifted at CRTF d appropriate location of cente	shall b r of gr	e marked avity.			
3.3.4	WORKMAI	NSHIP						
	Unless otherwise specified workmanship shall be that commensurate with normal commercial practice. Nuclear service, codes, and practices are not required.							
3.3.5	INTERC	HANGEABILITY - NA						
3.3.6	.3.6 <u>SAFETY</u>							
	The test assembly shall be desinged to meet applicable government safety standards for industrial equipment (Reference 2.9). In addition, the apparatus shall be designed to prevent exposure of personnel to solar spillage flux or reflected flux with intensitites greater than 1 KW/M ² . Smoke detectors and sodium low pressure sensors shall be included in the apparatus to warn of large scale leaks. Equipment and procedures shall be							
REVI NUM	SION	REVISION DATE	SUPERSEDES		PAGE 25 OF 58			
ES3-005 (5-78) A-29								

<u></u>			
ENERGY SYSTEMS PROGRAMS	ENGINEE	ERING SPECIFICATION	SPECIFICATION NUMBER
DEPARTMENT	TITLE		295A4725
V			ORIGINAL ISSUE DATE
GENERAL			MAY 2 5 1979
ELEGIRIC	CLASSIFICATION		
provi event	ded to minimize dan of a leak.	age and contain where possible 1	iquid sodium in the
3.3.7 <u>HUMAN</u>	ENGINEERING - NA		
- - -			
REVISION	REVISION	SUPERSEDES	
NUNIDER D			PAGE 26 OF 58
ځ	⊥ April 80		

r			······		
ENERGY SYSTEMS PROGRAMS		ENGINEE	RING SPECIFICATION		SPECIFICATION NUMBER
DEPARTMENT			£		A4725
					OBIGINIAL
					ISSUE DATE
GENE	RAL			MAY	2 5 1979
ELECT	FRIC	CLASSIFICATION		••••	
3.4 DC	CUMENT	ATION		. <u></u>	
3 4 1	DESTON				
3.4.1	DESIGN	DOCOMENTATION			
	Docume: manufac code au ing qua require shall be adde	nts required with ctured components nd specification ad ality resutls, load ed for safe handlin be supplied when sp ed as appropriate:	the delivery of vendor supplied a shall include pertiment design ar dherence, performance characteris d test results, as-built drawings ng, packaging and unpacking. The pecified in the purchase request.	and inte alysis stics, m and in follow Other	rnally (GE) to show anufactur- formation formation ing items items may
	1) Qua	lity Records			
	 Ma Lo D: We 	aterial Certificati oad Test Conditions imensional Inspecti elding Records	on and Properties and Results on Results		
	2) As	Lailt Dimensions. a	nd Drawings		
	3) Des	sign Analysis			
	4) Con	mponent Operating C	Tharacteristics		
	5) Pac	cking, Packaging an	d Unpacking Instructions		
	6) Spe	ecial Handling/Ship	ping Requirements		
3.4.2	INSTALI	LATION PLAN			
	The installation plan shall define the schedule and procedures required to install and checkout the SRTA at the CRTF. Typically procedures shall be written for:				
	• Inst	tallation of SRTA c	n the elevating module		
	• Heli	ium Leak Test			
1	 CRTF 	interface connect	ions		
	Inst	rumentation Checko	ut (Local Control)		
	 Heat 	ter System Checkout			
		Lum Loading	ut (Domoto Control a Destrut)		
	 Instrumentation Cneckout (Remote Control & Readout) Pre-solar checkout (minimum insolation on resolution to workfor execution) 				
	pric	or to full scale te	sting)	AGTITÀ (oberaerou
REVIS		REVISION	SUPERSEDES		
NUMBER DATE 2 24 AVG 79				Ρ.	AGE 27 OF 58

.

[SPECIFICATION	
ENE SYS	RGY TEMS	ENGINEEI	RING SPECIFICATION	NUMBER	
DEPARTMENT				20544725	
S		11122		ORIGINAL	
N N				ISSUE DATE	
GEN	ERAL			MAY 2 5 1979	
ELEC	TRIC	CLASSIFICATION			
<u> </u>	The co	ntents of these pro	ocedures are described in paragra	aph 4.1.3.1.2.	
3.4.3	OPERAT	IONS AND MAINTENANC	CE (O&M) PLAN		
	This p and ma clude:	lan shall describe intenance of the SF	the procedures necessary for the RTA at the CRTF. As a minimum the	e safe operation he plan shall in-	
	• Mai	ntenance schedule			
	• Fun tio	ctional flow diagra ns of their operati	ams of the control circuits and a Lon (Ref. 3.1.3.4)	narrative descrip-	
	• Pro	cedures for each of	the operating modes:		
	- 0 - H - P - S - S - S - C	peraton ot Hold reheat tartup hutdown mergency Dump alibration checks c	of instrumentation	· · · · · · · · · · · · · · · · · · ·	
	• Pre	-test and post-test	evaluation of equipment operat	ion	
	• Saf	ety monitoring as n	required		
	• Sup	port services and m	nanpower required to operate and	maintain the SRTA	
	• Doc qui	umentation scheme t red	o record O&M data and corrective	e actions as re-	
	• Pro- rep	cedures for the rem airable.	oval and replacement of items the	nat are field	
3.4.4	TEST P	LAN			
	The co	ntents of the test	plan are described in paragraph	4.1.1 & 4.1.3.1.	
3.4.5	SAFETY	ANALYSIS			
A safety analysis of SRTA will be performed and a report of the results shall be available prior to the design review at the end of month 9. The safety analysis will include a first level failure mode and effects evaluation but not a statistical failure probability analysis. Design and procedural features will be identified to accommodate failure modes.					
REVI	SION	REVISION	SUPERSEDES		
η η	10CH -	14 406 79		PAGE 28 OF 58	
	<u> </u>		L		

······	······						
ENERGY SYSTEMS PROGRAMS	ENGINEERING SPECIFICATION		NUMBER				
DEPARTMENT	TITLE	TITLE					
EG			ORIGINAL ISSUE DATE				
GENERAL			MAY 2 5 1979				
ELECTRIC	CLASSIFICATION						
3.5 LOGISTI	<u>cs</u>						
3.5.1 <u>MAINT</u>	ENANCE						
To ma: equip allow	To maximum extent practical the SRTA instrumentation auxiliary and control equipment shall be field replaceable. The basic design of the SRTA should allow for the replacement of these items in a reasonable amount of time.						
The SI and de	RTA enclousre and s esign features (i.e	upport structure shall provide . . ladders) to facilitate mainte	personnel access nance.				
3.5.2 <u>SUPPLY</u>	<u> </u>						
On sit and av	e spare parts requivailable at the CRT	ired to support the CRTF testing F prior to checkout.	g will be identified				
3.5.3 <u>FACILI</u>	TIES (CRTF ONLY)						
The CRTF facility shall be capable of providing the interfaces generally described in paragraph 3.1.2 and more specifically defined in the CRTF Interface Specification (Ref. 2.4). The CRTF shall also provide space for accumulation and maintenance of the SRTA assemblies. Space shall be pro- vided for the storage of spare parts. Office space shall be provided for the resident and transient G.E. personnel. Material handling equipment for large assemblies shall also be provided by the CPTF							
3.6 PERSONNE	L AND TRAINING						
Trained technicians and engineering support will be required to install, checkout and operate the test apparatus at the CRTF.							
REVISION	REVISION	SUPERSEDES					
	DATE		PAGE 29 OF 58				
	~T HUG 117						

	The side	back side of the tu surface temperatur	ube bundle shall be insulated re of this insulation shall be	. The main a 150°F u	ximum back
3.7.1.5	Insu	lation			
	The	panel support struc fluid circulation f	cture shall mate with and be a	easily fa	stened to
3714	disp	lacement to within	± 0.05 inches.	g and rep	orting
	The j with: the d 3.2.1	panel support struc in \pm 1 inch while a operating condition 1.5 except for the	cture shall maintain flatness allowing movement for thermal as defined in Figure 3.3, note preheat and emergency dump mo	of the tu expansion 8 and pa des. The	ube bundle to h, under all aragraph e displacement
3.7.1.3	Flat	ness			
	The a whicl	absorber panel tube n supports the weig	e bundle shall be connected to wht of the panel when mounted	a suppor vertical	rt structure ly.
3.7.1.2	Moun	ting			
	The of a inch to fo shall exch	absorber panel is s tube bundle having wall (nominal). T orm a flat panel wi l be formed by weld ange surface which	shown schematically in Figure g 51 tubes, each 0.75 inch 0.0 These tubes shall be brazed to th a header at either end. Thing. The tube bundle shall f is \sim 15 feet long.	3-3. It). (nomina ogether lo The tube-h form an ac	shall consist al) by 0.05 ongitudinally neader joints ctive heat
3.7.1.1	Desc	ription			
3.7.1 <u>A</u>	BSORB	ER PANEL			
3.7 MAJ	OR CO	MPONENT CHARACTERIS	STICS	I	
GENERAL ELECTRIC CLASSIFICATION		CLASSIFICATION		<i>!</i> !#	y 2 5 1979
					ORIGINAL ISSUE DATE
DEPARTM	IENT	TITLE		_ 29	54725
ENERGY SYSTEMS PROGRAMS		ENGINEERING SPECIFICATION			NUMBER

A-34

ENERGY SYSTEMS PROGRAMS		ENGINEE	RING SPECIFICATION	SPECIFICATIONUMBER	
		TITLE	······································	293777	
	V			ORIG	DATE
GENE	RAL			May 2 5 197	٥
ELECT	RIC	CLASSIFICATION			
3.7.1.7	Inst	rumentation (Sodiu	m Temperature)		
	The absorber panel inlet and outlet header temperatures shall be measured at a minimum of 3 locations each to an accuracy of $\pm 4^{\circ}$ F. The absorber panel inlet/outlet ΔT shall be measured to an accuracy of $\pm 1^{\circ}$ F. In addition a sodium pressure sensor shall be located at the inlet/outlet of each header, the accuracy of these sensors shall be ± 1 psi.				
3.7.1.8	Trac	e Heating			
	The panel tube bundle shall have trace heaters on the back side to maintain a hot hold temperature of $600^{\circ}F \pm 50^{\circ}F$ with the moveable insulation in place.				
3.7.1.9	Abso	rptive Coating			
	The front surface of the tube bundle shall be coated with a material which has'the following properties at 600-1200°F Solar absorptivity: 0.95 (minimum) Infrared emissivity: 0.90 (maximum) Life: 5000 hours (minimum)				
	In addition the thermal conductivity and thickness of the coating shall be such that the temperature rise across the coating layer is less than 50° F at an absorbed flux of 1.5 MW/M ² .				
3.7.2 <u>н</u>	EAT DU	JMP			
3.7.2.1	Description				
	The heat dump shall consist of a sodium-to-air heat exchanger, an air blower, support and ducting structure, and a system for air flow control. The sodium/air heat exchanger shall be instrumented at the sodium inlet and outlet to measure sodium temperature, and shall have trace heating for preheating the exchanger prior to sodium fill.				
3.7.2.2	Heat Dissipation				
	The heat dump shall dissipate a minimum of 2.5 MW of thermal power (measured across the sodium inlet and outlet) in all of the operating environments specified in 3.2.5.1.				
3.7.2.3	3 Instrumentation				
Thermocouples used on the heat exchanger inlet and outlet shall have an accuracy of $\pm 4.0^{\circ}$ F.					in
REVISIO	R R	REVISION DATE	SUPERSEDES		
3		l April 80		PAGE 31	0F 50

	~			SPECIFICATION NUMBER	
ENERGY SYSTEMS PROGRAMS		ENGINEERING SPECIFICATION		295A4725	
DEPARTM		TITLE			
EE)				ORIGINAL ISSUE DATE	
GENERAL				May 2 5 1979	
ELECT	RIC	CLASSIFICATION			
3.7.3 <u>F</u>	LUID	CIRCULATION EQUIPME	ENT		
3.7.3.1	Desc	ription			
3.7.3.2	The fluid circulation equipment are described in Figure 3-1. These equipment shall consist of: sodium piping to form a closed loop with includes the panel and the heat dump, sodium inventory to fill the loop to the required level for full power operation, surge tank, dump tank, electromagnetic pump, cold trap, sodium valves, sodium flowmeters, thermac couples to measure sodium temperature, plug indicator, preheaters for dump tank, sodium liquid level indicators for tanks, heat tracing and thermocouples as required to preheat sodium piping and valves, thermal insulation for all components, insulating doors to cover panel during shutdown and to intercept spillage flux, inert gas pressurization system, structure to support all equipment and to mate with panel structure, smol detectors, drip pans for sodium spills, and interface connections to CRTH utilities. All piping shall have a minimum of 3" of insulation with a K factor of .5 BTU in/hr/ft ² oF at 600°F. All components shall have a mini- mum of 4" of insulation with a K factor of .5 BTU in/hr/ft ² oF at 600°F.				
3.7.3.3	shall be large enough to provide for calibrating the sodium flow meters.				
	The loop trace heating shall be sized and distributed so as to provide preheat from 70° F to 600° F in six hours and to maintain 600° F ± 50° F during shutdown and hold (shutdown and hold modes are with panel move-able insulation in place).				
3.7.3.4	Loop Operating Temperature & Pressure				
	The entire loop shall be designed to operate at 1100 ⁰ F and 50 psig minimum. All sodium piping shall be designed for a maximum temperature of 1150 ⁰ F and a maximum pressure of 75 psig.				
3.7.3.5	<u>EM P</u>	ump (Flow Rate)			
	The 150 and	electromagnetic pur gpm at a head of 30 pressure of 75 psic	np shall provide a maximum sodiu) psi at a maximum sodium temper J.	m flowrate of ature of 1150 ⁰ F	
REVISIO		REVISION	SUPERSEDES		
NUMBE 3	R	DATE 1 April 80		PAGE 32 OF 58	
L		L	<u>1</u>		

ENERGY SYSTEMS PROGRAM DEPARTME GENER ELECTR	SNT ENGINEERING SPECIFICATIO	N 295A4725
3.7.3.6	Sodium Piping (Pressure Drop) The sodium piping shall be designed to provi (including the panel and heat dump) of less sodium (measured at EM pump when cold leg te	de a loop pressure drop than 30 psi at 150 gpm of mperature is 600 ⁰ F).
REVISION NUMBER	REVISION DATE 24 AUG 79	s PAGEZAQF58

ENERGY SYSTEMS PROGRAMS		ENGINEE	RING SPECIFICATION	SPECIFICATION NUMBER	
DEPARTMENT		TITLE		29384120	
E			F	ORIGINAL ISSUE DATE	
GENEI	RAL			MAY 2 5 1979	
ELECT	RIC	CLASSIFICATION			
3.7.3.7	.3.7 Dump Tank (Location & Capacity)				
3.7.3.8	The dump tank shall be large enough to contain the entire loop inventory of sodium. The tank shall be located at the lowest point in the loop and shall be equipped with preheaters sized to heat the tank and sodium inventory from 70° F to 600° F in 24 hours and hold at 600° F \pm 50° F. The dump/drain tank shall be equipped with a fill line & shut off valve for sodium transfer to and from shipping containers. Loop Flowmeters				
	The flowmeters shall measure the sodium flowrate to -1.5 % of the reading within the range from 15 gpm to 150 gpm at 600 ^o F.				
3.7.3.9	Sodi	um Level Gages			
	The surge tank and dump tank shall be fitted with sodium liquid level gages. These gages shall have accuracies as follows: Surge tank: ± 0.1% Dump tank: ± 5.0%				
3.7.3.10	Thermocouples				
	Thermocouples used in the fluid circulation equipment shall have an accuracy of $\pm 4^{\circ}$ F or better.				
3.7.3.11	Codes				
	Piping shall be in compliance with ANSI B31.1 (Ref. 2.6), the pressure components shall be designed to be in compliance with Section VIII Division 1 (Ref. 2.5).				
3.7.3.12	Insulation (Loop)				
	Loop components shall be insulated with a material that is compatible with the piping material and which is protected against contamination by moisture.				
3.7.3.13	Loop Impurity Monitoring				
	The SRTA shall be equipped with oxygen monitoring equipment for contin- uous monitoring of the oxygen impurity in the sodium.				
3.7.3.14	Inert Gas System				
The SRTA shall include an inert gas system complete with vapor traps, supply, equalizer and vent valves for maintaining the sodium system					
REVISIO NUMBEI	a	REVISION DATE	SUPERSEDES	22 . 50	
3		l April 80		PAGE OF OF OF	
ENERGY SYSTEMS PROGRAMS DEPARTMENT	ENGINEE	RING SPECIFICATION	SPECIFICATION NUMBER 295A4725		
---	---	---	---		
			ORIGINAL ISSUE DATE		
ELECTRIC	CLASSIFICATION				
u 1 g đ v v đ	under an inert gas loading the sodium gravity drain into dition. All inert vapor traps shall b lesigned for a maxi	blanket and to provide different into the system. Piping shall the drain tank in the event of gas piping between the sodium system e preheated. The inert gas system mum pressure of 100 psig.	tial pressure for provide an automatic an emergency con- ystem and the tem shall be		
	REVISION DATE 24 AUG. 79	SUPERSEDES	PAGE33Q.OF 58		

					SPECIFICATION				
ENERG SYSTEN	NS NS	ENGINEE	RING SPECIFICATION		NUMBER				
DEPARTN	IENT			295	5A4725				
6.2				0710111					
	ツ		ISSUE DATE						
GENE	RAL			MAY	2 5 1979				
ELECT	RIC	CLASSIFICATION							
3.7.4 M	ONITO	DR & CONTROL EQUIPM	LENT						
3.7.4.1	Oper	ating Modes							
	The oper	monitor and contro cating modes define	el equipment shall be capable of d in paragraph 3.2.1.5:	suppor	ting the				
	• (peration							
	• F	lot Hold							
	• •	Preheat							
	• 5	Startup							
	• \$	Shutdown							
	• E	Imergency Dump							
	• (Calibration Maneuve	rs						
3.7.4.2	Desc	cription							
	The loca and by C pera inle	monitor and contro al control panel, i display console ce CRTF), automatic co uture, automatic co et temperature and	I equipment (Ref: Figure 3-4) so n the CRTF tower elevating modul inter, the real time aperture flu ntrol for EM pump to maintain pa ntrol for heat dump louvers to r annunciator systems.	nall co le, a r ux syst anel ou maintai	nsist of a emote control em (supplied tlet tem- n panel				
3.7.4.3	Loca	l & Remote Panels							
	All both pane lock * RT	instrumentation* r the local (GE) and I shall have prece out the local par AF and meteorologi	eadout and control functions sha d remote (CRTF) control panels; dence in all control decisions a nel control functions to insure cal not required at local panel.	ill be a however ind sha: the pro	available at r, the remote 11 be able to ecedence.				
3.7.4.4	EM F	ump Control Logic							
A control logic shall be built into the electromagnetic pump controls to automatically adjust the sodium flowrate to maintain a temperature o $1100^{\circ}F \pm 5^{\circ}F$ at the absorber panel outlet for the range of solar incide power from .25 MW to 2.5 MW. This logic shall be prototypical of that which would be used in a commercial solar power plant. These control circuits shall also include the option of bypassing the built-in logic to control the EM pump through the CRTF computer.									
REVISIO		REVISION	SUPERSEDES						
3		l April 80		PAGE 34 OF 58					

ENERGY SYSTEMS PROGRAMS DEPARTMENT	ENGINEERING SPECIFICATION	SPECIFICATION NUMBER 295A4725
(O)	TITLE	
		ORIGINAL ISSUE DATE
GENERAL		MAY 2 5 1979
ELECTRIC	CLASSIFICATION	
3.7.4.5 <u>Heat</u>	Dump Control Logic	
A co auto 700 ⁰	ntrol logic shall be built into the heat dump low matically maintain a sodium temperature setpoint $\frac{1}{2}$ ($\frac{1}{2}$ 5°F) at the absorber papel inlet for the range	ver controls to between 500 ⁰ F and ge of duty from

automatically maintain a sodium temperature setpoint between $500^{\circ}F$ and $700^{\circ}F$ (\pm 5°F) at the absorber panel inlet for the range of duty from 0.25 MW to 2.5 MW of reject heat. These control circuits shall include the option of bypassing the built-in logic to control the louvers through the CRTF computer.

3.7.5 AUXILIARY EQUIPMENT

3.7.5.1 Description

The auxiliary equipment shall consist of the motor controls and power supplies for the insulating panels and flux sensor drives, capacitors, and power supply for EM pump, power supply for heat dump motors, fire fighting equipment for sodium fires, maintenance equipment for working with sodium, cables and signal conditioning equipment for instrumentation and controls interconnection.

3.8 PRECEDENCE

In the event of conflict between this document and the reference documents, the contents of this specification shall be the superseding requirement.

REVISION NUMBER 2	REVISION DATE	SUPERSEDES	PAGE 35 OF 58

<u></u>	· · · · · · · · · · · · · · · · · · ·										
ENERGY SYSTEMS PROGRAMS	ENGINEE	RING SPECIFICATION		SPECIFICATION NUMBER							
DEPARTMEN	TITLE		29	5A4123							
				ORIGINAL ISSUE DATE							
GENERA			MA	y 2 5 1979							
ELECTR											
4.0 <u>PERF</u>	ORMANCE VERIFICATION										
This and	section establishes performance requireme	the test methods for verificati ents specified in Section 3.0 of	on of the state of	he design ocument.							
4.1 GENE	RAL										
The foll	verification philosop ows:	bhy applicable to this specifica	tion is	as							
a.	The verification appr with economy of imple equipment meets its s	coach shall provide high confide ementation, that each characteri specified requirement.	nce, con stic of	nsistent the							
b.	Operational and safet cost and schedule con of the equipment to t	rational and safety tests to largest scale practical (within t and schedule constraints) shall be performed prior to shipment the equipment to the Central Receiver Test Facility (CRTF).									
с.	Verification of perfo at the component leve level.	ormance shall make full use of d al to assure performance at the	lata ava: total a:	ilable ssembly							
đ.	All test, operations assemblies acquired t utilized to support a ability projections.	and maintenance data for the va hroughout the life of the test and or reliability, maintainabil	rious co program Lity, and	omponents/ will be d avail-							
Test (com Depa (tot	ing will be performed conents), ARSD - San ctment of Energy (DOE al assembly).	l at three primary locations; ve Jose test facilities (component) - Central Receiver Test Facil	ndors fa /assembl ity (CR1	acilities lies) and IF)							
4.1.1 <u>RE</u>	SPONSIBILITIES										
Al pro of	testing shall be pe ocedures. The test p the test locations l	rformed in accordance with appr lan shall address the following isted in 4.1;	oved tes areas f	st plans/ for each							
	 test organizati definition of a organizations sequence and sc facility test s 	on reas of responsibility between heduling of testing upport requirements	interfac	cing							
	• special test eq	uipment (not off the shelf)									
REVISION NUMBER	REVISION DATE	SUPERSEDES		PAGE 210 DEFR							
2											

ENERGY SYSTEMS PROGRAMS	ENGINEE	RING SPECIFICATION	SPECIFICATION NUMBER							
DEPARTMENT	TITIE	29544725								
(O)										
			ISSUE DATE							
GENERAL			MAY 2 5 1979							
ELECTRIC	CLASSIFICATION									
	 test software a technical detai safety consider 	nd off line data reduction (OLD) ls of each test ations of each test	R) requirements							
The requ	results of the test ired shall be docum	ing as well as any corrective ac ented in test reports.	ction or retest							
The the cedu	General Electric (G testing at the San res shall be approv	E) Company will be responsible f Jose and CRTF locations. All CF ed by CR TF and GE.	for conducting RTF test pro-							
Vend faci by C by C	or component tests lities according to E. Witnessing of v ase basis.	will be performed by the vendor procedures developed by them ar endor tests by GE will be determ	at their nd approved nined on a case							
CRTH CRTH agre	facility interface personnel accordin ed to by GE. These	verification tests will be perf g to procedures developed by the tests will be witnessed by GE.	formed by em and							
4.1.2 <u>SPEC</u>	IAL TESTS & EXAMINA	TIONS								
4.1.2.1 <u>A</u> E	SORBER PANEL (Major	Component 3.1.3.1)								
T) ri	e tubes shall be we diographic inspectio	lded to the header in a manner to of each weld.	that allows for							
4.1.2.2 <u>FI</u>	UID CIRCULATION EQU	IPMENT (Major Component 3.1.3.3)								
۲. ت	l sodium piping sha spection of each we	be welded in a manner that all ld	l lows for radiographic							
4.1.3 <u>DAT</u>	REQUIREMENTS									
4.1.3.1 <u>T</u>	ST PLANNING									
General Electric shall provide a test plan and test procedures that will be used to verify the performance requirements of Section 3.0 of this specification. The test plan shall address the area's identified in paragraph 4.1.1, and be responsive to the verification matrix.										
4.1.3.1.1	Facility Acceptance	ility Acceptance (CRTF Testing Only)								
	The test plan shall method of acceptanc facility requiremen	define the facility acceptance e. The interface specification w ts (Ref. 2.4)	criteria and the vill define the							
REVISION	REVISION DATE	SUPERSEDES	377 - 69							
3	l April 80		PAGE DI OFDO							

ENERGY SYSTEMS PROGRAMS	ENGINEE	RING SPECIFICATION	SPECIFICATION NUMBER										
DEPARTMENT	TITLE		295N-720										
EG)			ÓRIGINAL ISSUE DATE										
GENERAL	,		MAY 2 5 1979										
ELECTRIC	CLASSIFICATION												
4.1.3.1.2	Installation & Cheo	ckout (CRTF Testing Only)											
The test plan shall include the detailed installation and checkout procedures. These procedures as a minimum shall define: • Prerequisites • Support Equipment • Special Tools • Manpower • Hardware													
	 Pass/Fail Crit 	teria											
4.1.3.1.3	Safety Analysis												
	A safety analysis v (grouping of SRTA o	will be performed for each unique components).	test configuration										
4.1.3.2 <u>T</u> E	ST PROCEDURES												
Te ch mi	est procedures will maracteristics requi nimum the test proc	be written to verify the perform iring verification by test (Ref. cedure shall include:	ance of those 4.3). As a										
	 Equipment/Softwa Test Equipment Test Prerequisit Test Restriction Safety Considera Test Procedure Test Set Up and Data Sheets Data Reduction a 	are Requirements tes as ations Instrumentation Block Diagrams and Analysis											
	 Pass/Fail Criter 	la											
4.1.3.3 <u>TE</u>	ST REPORTS												
Re pl wi co as	Reports shall be provided for each test performed at the CRTF. (Ref: Test plan for sodium receiver test assembly testing at CRTF). These reports will consist of data acquired during the performance of the testing, test configuration, environmental conditions and data analysis (as required) to assess performance of the equipment under test .												
4.2 <u>VERIFI</u>	CATION DEFINITIONS												
Each p verifi	erformance requirem ed <u>using t</u> he follow	ent in Section 3 of this specific ing evaluation methods.	cation shall be										
REVISION NUMBER	REVISION DATE	SUPERSEDES	20 50										
3	l April 80		PAGE OD OF OD										

ENERC SYSTE	SY MS	ENGINEEF	RING SPECIFICATION	SPECIFICATION NUMBER
DEPARTA	IENT	TITLE		295A4725
				ÓRIGINAL ISSUE DATE
GENE	RAL			MAY 2 5 1979
ELECT	RIC	CLASSIFICATION		
4.2.1	INSPE	ECTION (I)		•
	Verif	ication by determin	nation of physical characterist	ics.
4.2.2	SIMI	ARITY (S)		
	Simil or id previ	larity is a procedu: dentical in design a lously qualified to	re used to show that an article and manufacturing processes to, equivalent or more stringent c	is comparable with, another article riteria.
4.2.3	ANALY	SIS (A)		
	Verif or an of co	ication by examination alytical combination pronent units.	tion of technical data, mathematon of measured data and/or other	tical derivations, r technical data
4.2.4	DEMON	ISTRATION (D)		
	Verif witho from	Eication by operation out a requirement for instrumentation of	on of any item or by performance or analysis of quantitative data recorded observations during the	e of any function a that might result e verification.
4.2.5	TEST	<u>(T)</u>		
	Verif that instr	fication by operation requires analysis of rumentation or from	on of any device or performance of quantitative data that result recorded observations during th	of any function ts from required he verification.
4.3 <u>v</u>	ERIFIC	CATION MATRIX		
T f a a o s P	he ver or all equire nalysi dequac f harc hall h roven	rification matrix shall Section 3 requires ements shall be base is, demonstration, a cy of design documes dware to design documes be used in verifying in another applica	hows the classification and methements. Verification of perform ed on evaluation by inspection, and/or test. Inspection shall h ntation to applicable specification umentation and applicable stand g the performance of a componen- tion.	nods of evaluation ance and design similarity, de used to check tions and conformance ards. Similarity t that has been
A t c	nalysi ion is ion. annot ost co	is shall be used in s used when quantit. Tests shall be con- be established by o ost-effective metho	lieu of, or to supplement, tes ative measurements are not requ ducted when an acceptable level other methods or when testing c d.	t data. Demonstra- ired for verifica- of confidence an be shown to be
AENIS: NUME	DN ER	REVISION DATE	SUPERSEDES	PAGE 39 0=58
2				
ES3 005 5	3,		A-47	

-

DEFARTMENT TITLE ORIGINAL ISSUE DAT GENERAL ELECTRIC CLASSIFICATION MAY 25 1979 The Section 3 paragraphs for which verification is not applicable are indicated in the table as N/A, on the basis of the following criteria: a. The paragraph contains the title only. b. The paragraph is introductory and the requirement is stated. c. The paragraph is introductory and the requirements are stated in sub- sequent subparagraphs. ALTERAL SUPERSEDES MAY 25 1979	ENERGY SYSTEMS PROGRAMS	ENGINEE	RING SPECIFICATION	SPECIFICATION NUMBER
GENERAL ELECTRIC CLASSIFICATION MMY 25 1979 The Section 3 paragraphs for which verification is not applicable are indicated in the table as N/A, on the basis of the following criteria: a. The paragraph contains the title only. b. The paragraph is descriptive and no requirement is stated. c. The paragraph is introductory and the requirements are stated in sub- sequent subparagraphs. Accuracy Number of the paragraph is introductory and the requirements are stated in sub- sequent subparagraphs. Accuracy Number of the paragraph is descriptive and no requirements are stated in sub- sequent subparagraphs. Accuracy Number of the paragraph is introductory and the requirements are stated in sub- sequent subparagraphs.	DEPARTMENT	TITLE	29084720	
GENERAL ELECTRIC CLASSIFICATION MAX 2 5 1979 The Section 3 paragraphs for which verification is not applicable are indicated in the table as N/A, on the basis of the following criteria: a. The paragraph contains the title only. b. The paragraph is descriptive and no requirement is stated. c. The paragraph is introductory and the requirements are stated in subsequent subparagraphs. REVISION The paragraph is introductory and the requirements are stated in subsequent subparagraphs. REVISION NUMBER REVISION DATE Superstores NUMBER PAGE 400 or 5	E			ÓRIGINAL ISSUE DATE
The Section 3 paragraphs for which verification is not applicable are indicated in the table as N/A, on the basis of the following criteria: a. The paragraph contains the title only. b. The paragraph is descriptive and no requirement is stated. c. The paragraph is introductory and the requirements are stated in subsequent subparagraphs. REVISION NUMBER REVISION Date Action 1 Superstore PAGE 40 or	GENERAL	CLASSIFICATION		MAY 2 5 1979
a. The paragraph contains the title only. b. The paragraph is descriptive and no requirement is stated. c. The paragraph is introductory and the requirements are stated in subsequent subparagraphs. sequent subparagraphs.	The Securit	ction 3 paragraphs ted in the table as	for which verification is not a N/A, on the basis of the follow	oplicable are wing criteria.
b. The paragraph is descriptive and no requirement is stated. c. The paragraph is introductory and the requirements are stated in sub- sequent subparagraphs. REVISION NUMBER PAGE 40 orf	a. Th	e paragraph contair	as the title only.	
c. The paragraph is introductory and the requirements are stated in sub- sequent subparagraphs.	b. The	e paragraph is desc	riptive and no requirement is :	stated.
REVISION REVISION SUPERSEDES PAGE 40 OF	c. The	e paragraph is intr quent subparagraphs	roductory and the requirements as	re stated in sub-
AEVISION PAGE 40 OPE				
REVISION NUVSER DATE SUPERSEDES PAGE 40 OF				
AEVISION NUMBER DATE SUPERSEDES PAGE 40 OF				
REVISION REVISION SUPERSEDES PAGE 40 ort				
REVISION REVISION SUPERSEDES PAGE 40 OF				
REVISION REVISION SUPERSEDES PAGE 40 OF				
AEVISION REVISION SUPERSEDES PAGE 40 OFE				
REVISION REVISION SUPERSEDES PAGE 40 OFE				
REVISION REVISION SUPERSEDES PAGE 40 OF				
REVISION REVISION SUPERSEDES PAGE 40 OF				
REVISION REVISION SUPERSEDES PAGE 40 OF				
REVISION REVISION SUPERSEDES PAGE 40 OF				
REVISION REVISION SUPERSEDES PAGE 40 OF				
REVISION REVISION SUPERSEDES PAGE 40 OF				
REVISION REVISION SUPERSEDES PAGE 40 OF				
REVISION REVISION SUPERSEDES PAGE 40 OF5	,		r	
	REVISION NUMBER	REVISION DATE	SUPERSEDES	PAGE 40 0F58

FS1 005 5 78.	_ا ک	NUNSER		VERIFICATION MATRIX SECTION 3.0 REQUIREMENT REFERENCE	N/A	I I	VER	NE ME	ICA THC D	TIC D T	ИС	COMMENTS	ELECTR	GENER	66	DEPARTMEN	ENERGY SYSTEMS PROGRAM
L			3.0	REQUIREMENTS	x		[5	AL		Ŧ	S
			3.1	ITEM DEFINITION	x								2	·			
			3.1.1	DIAGRAMS		x							As			3	
		PEV.	3.1.2	INTERFACE DEFINITION	x								SIFI			٣ļ	-
		IS:0:	3.1.2.1	STRUCTURAL		x		x					CAT				Z
			3.1.2.2	UTILITY (ELECTRICAL)		x				x		Test at CRTF	ŌZ				G
			3.1.2.3	UTILITY (FLUID)		x				х		Test at CRTF]				m
┢			3.1.2.4	INSTRUMENTATION		x				х		Test at CRTF					R
			3.1.2.5	CONTROL		x				x		Test at CRTF	1				Z
			3.1.2.6	SOLAR	\neg	x		x					1				ŝ
			3.1.3	MAJOR COMPONENTS	x								1				ю Ш
			3.1.3.1	ABSORBER PANEL		x							1				CI
		SCR	3.1.3.2	HEAT DUMP		x							1				-iC
		צרשי צרשי	3.1.3.3	FLUID CIRCULATION EQUIPMENT		х							1				AT
		000	3.1.3.4	MONITOR AND CONTROL EQUIPMENT		x							1			Í	Ō
		1	3.1.3.5	AUXILIARY EQUIPMENT		x						· · · · · · · · · · · · · · · · · · ·	1				2
				······································								······································	1				
Ì											_		1				
}															Τ		
													1 :	3		へし	9
Γ	PA													2		U V	л
	ີ ເຄິ													ເງ ເກ	70	ر 1	SPE
	t	:		· · · · · · · · · · · · · · · · · · ·	-									ğ		7	
	0	ł											1	õ	DAI	Ċ) BEAT
	<u> </u>	, I	1					<u> </u>	L				<u>+</u>		m_		Öz

ESJ COS - 5	N N	22	VERIFICATION MATRIX SECTION 3.0	₽⁄A	V	/ER	IF] MET	ICA THO	TIC D	ON		ELECT	GENE		DEPART	ENER SYSTE
75			REQUIREMENT REFERENCE		I	S	A	D	Т		COMMENTS	1 3	R /		U NEN	IAMS
		3.2	CHARACTERISTICS	x								5	r-		ન	
[3.2.1	PERFORMANCE CHARACTERISTICS	х								2			_	
		3.2.1.1	INCIDENT SOLAR BEAM ACCEPTANCE				x		X		Test at CRTF	ASS				
	ō	3.2.1.2	ABSORBER PANEL INLET TEMPERATURE				x		x		Test at CRTF	FO			m	ш
	T E		ABSORBER PANEL OUTLET TEMPERATURE				x		x		Test at CRTF	ÄT				N
	•	3.2.1.4	DESIGN LIFE REQUIREMENTS				x					2 2				ĨZ
		3.2.1.5	DESIGN OPERATING MODES		x		x	 	x		Test at CRTF					H
ł		-						ļ								RIP
												4				ົລ
																Sp
~												4				m
5												 .				Ť
0		SCP										1				C A
		77 77										1				Ĩ
		520										1				Z
		3.2.2	PHYSICAL CHARACTERISTICS	x							·	1				
		3.2.2.1	ABSORBER PANEL SURFACE AREA		x	I		<u> </u>					l			
	-	3.2.2.2	SURFACE ORIENTATION		x							<u> </u>	L	r		
		3.2.2.3	SURFACE OBSTRUCTIONS		x										Γ	ۍ
													MA			ע ח
l	PAG											1	N)	
	E E												्र स	IS CH	+	
	עני												979	M IG	Ţ	
	ר ס ויר ווי													ARA	C	א 15
	× ×	1										<u> </u>				

20012	2	21,13H		VERIFICATION MATRIX SECTION 3.0		٩	V	'ER	IF: ME	ICA THC	TI(D	ON		ELEC	GENE		DELAN	ENER
Ya.		R R Z Z		REQUIREMENT REFERENCE		-	I	S	A	D	Т		COMMENTS		RA			IGY ENIS RAMS
ľ			·															
		RE		·		_								ASSIF			ITLE	
		VISION	3.2.3	RELIABILITY		x												EN
		•.		<u></u>				_									:	SINE
$\left \right $				······································														ERI
														-				NG
														-				SPE
		s						_]				CIFI
		いっこう	3.2.4	MAINTAINABILITY		-	<u>x</u>	X		X			Demonstration at CRTF	4				CAT
		SOCS												1				NOI.
						_							· · · · · · · · · · · · · · · · · · ·	-				
														-				
						_]			T	ა ი
$rac{1}{2}$	PAG		3.2.5 3.2.5.1	ENVIRONMENTAL CHARACTERISTICS		×	\neg		x					+	N XI	1	0	л Л
	F.		3.2.5.2	SURVIVAL REQUIREMENTS			\square		x					1	07 77	IS OF	- -	A NO
	07			· · · · · · · · · · · · · · · · · · ·		-		-			_			-	979	IGINA	1	P D D
	01	ļ	1		[<u> </u>		· · · · · · · · · · · · · · · · · · ·	ŧ		<u>m</u>		õ

ES3 005 - 5	الله الألح		VERIFICATION MATRIX SECTION 3.0	 ₽`A	1	VER	IF: ME:	ICA THO	TIC	ON		ELEC	GENE		DEPAH	ENEP
78,	SER R		REQUIREMENT REFERENCE		I	s	Α	D	т		COMMENTS		нА	Q		AGY EMS AMS
		·,								<u></u>		<u> </u>				···
		5 ·			┣—						· 				크	
	1											SSIF				
	VISIC															EZ
	ž	3.2.6	TRANSPORTABILITY		x			X				- Ō				GINE
-		3.2.7	INSTALLATION		x			x			Demonstration at CRTF					EERIN
		3.2.8	CLEANLINESS		x			x			Demonstration at CRTF	-				IG SPE
		3.3	DESIGN & CONSTRUCTION	·····	x		x	x	x		See 4.2.27					ECIFI
	SUPE	3.3.1	MATERIALS, PROCESSES AND PARTS		x							4				CA
		3.3.2	ELECTROMAGNETIC RADIATION	<u>x</u>								4				TC
	DES	3.3.3	NAMEPLATE & PRODUCT MARKINGS		x							4				ž
		3.3.4	WORKMANSHIP		x											
		3.3.5	INTERCHANGEABILITY	<u>x</u>		<u> </u>	<u> </u>									
		3.3.6	SAFETY		x	<u> </u>	x		х			_		r]	
		3.3.7	HUMAN ENGINEERING	X			_						3		Ţ	ง 9
	PAC											-			Q	Л Л
	ι. Έ												ा त	ISSU SSU	-	
	9, +-					-	┢				<u>, </u>		979	IGINA		
	50 20				<u> </u>							<u>+</u>				

	NONE NONE		VERIFICATION MATRIX SECTION 3.0	 МА	1	/ER	IFI MET	ICA THO	TIC	ON		ELEC	GENE	S	DEPART	ENEF
ž	E P N		REQUIREMENT REFERENCE		I	S	A	D	т		COMMENTS.		38	99	NEV.	ENIS
	;	3.4	DOCUMENTATION	x								15	-		7	•
		3.4.1	DESIGN DOCUMENTATION		x							12				
	_	3.4.2	INSTALLATION PLAN		x							ASS		-	ΞÌ	
	238 238	3.4.3	OPERATIONS & MAINTENANCE PLAN		x							Ē		i	n	m
	TE	3.4.4	TEST PLAN		x							¥				Z
	Z	3.4.5	SAFETY ANALYSIS		x							Ī				SIN
																Î
												1				ERI
												1				NO
				1-								1				ŝ
		3.5	LOGISTICS	x								1				П
		3.5.1	MAINTENANCE		x							1				CIF
	SOS	3.5.2	SUPPLY		x							1				-iC
		3.5.3	FACILITIES		x							1				AT
	80 0											1				Ō
	U.											1				2
}				1								1				
		3.6	PERSONNEL & TRAINING		x							1				
													M		い 19	
\Box	PAC	3.7	MAJOR COMPONENTS CHARACTERISTICS	x								1 '	≺ ∾		র্তা	
	хі Г	3.7.1	ABSORBER PANEL								· · · · · · · · · · · · · · · · · · ·	1	UT Z	0	ק 4	SP III
	Ċ	3.7.1.1	DESCRIPTION		x							1		RIGI	<u>_</u>	UME
	с, Ц	3.7.1.2	MOUNTING		x		x	x			Demonstration at CRTF	1	9 1	NAL	เ เ บ	BER
	09	L							·			4	п			ů ří

÷ .

	P Notice Notice	NCISION	VERIFICATION MATRIX SECTION 3.0 REQUIREMENT REFERENCE	₽́А	L I	ver s	IFI MET	CA THO D	TIC D T	N	COMMENTS	ELECTRI	GENERA	DEFANINING	ENERGY SYSTEMS PROGRAMS
┝											· · · · · · · · · · · · · · · · · · ·	5	ř.		
		3.7.1.3	FLATNESS	<u> </u>	x		X		X		Test at CRTF	1 8			
		3.7.1.4	ASSEMBLY		X							SS		닅	
	0	3.7.1.5	INSULATION (SUPEACE MEMPEDAMUPE		x		X					Ē		m.	m
	Ē	<u>0</u> 3.7.1.6	INSTRUMENTATION & STRAIN MEASUREMENT		x	x	x					A			NO
		3.7.1.7	INSTRUMENTATION (SODIUM TEMPERATURE)		х	х					······································	2 S		ľ	ΪΪ
		3.7.1.8	TRACE HEATING		x		x		x		Test at CRTF				Ē
F		3.7.1.9	ABSORPTIVE COATING		x	х									R
]			NG
]			S
															Р Ш
·												T			C₽ ₽
		ç 3.7.2	HEAT DUMP	x								1			-IC/
		3.7.2.1	DESCRIPTION		x										1T
		3.7.2.2	HEAT DISSIPATION				x		x		Test at CRTF				9
		3.7.2.3	INSTRUMENTATION		x	x						ΙI			~
											****	1			
							_								5
													M		0
ſ	PAG	3.7.3	FLUID CIRCULATION EQUIPMENT	x									N 2		ม 2
	Ť	3.7.3.1	DESCRIPTION		х] (4 2
	6	3.7.3.2	SURGE TANK (LOCATION & CAPACITY)		x		x						197		
	о С	3.7.3.3	TRACE HEATING		х		x		х		Test at CRTF	1. '			UI SA
L	٥đ	- <u></u>							L			Ŧ	ţ.ı		Z,

ES3 005 .5 7	REVISI NUMBE	VERIFICATION MATRIX SECTION 3.0	NA	1	/ER	IF: ME	ICA THO	TIC	ON		ELECT	GENE		DEPART	ENER
ŝ	22	REQUIREMENT REFERENCE	╂╼╼┦	I	S	A	D	T		COMMENTS	3	H A A	Y	AMS	Ň
┝		3.7.3.4 LOOP OPERATING TEMPERATURE & PRESSUR	F	<u>x</u>			<u> </u>				<u>_</u>				
	ы	3.7.3.5 EM PUMP (FLOW RATE)		<u> </u>	<u>x</u>						19				
	A_ R	3.7.3.6 SODIUM PIPING (PRESSURE DROP)	┣───			X		X		Test at CRTF	iss				
	CT JO	3.7.3.7 DUMP TANK (LOCATION & CAPACITY)		<u>x</u>		X		X		Test at CRTF	- 2		m	' r	π
ł		3.7.3.8 LOOP FLOW METERS	 	X				X		Test at CRTF	김				5
	0	3.7.3.9 SODIUM LEVEL GAUGES		X	X						2				ž
		3.7.3.10 THERMOCOUPLES		x	x						1				$\frac{1}{2}$
ſ		3.7.3.11 CODES		x						-]				
		3.7.3.12 INSULATION		x											5
		3.7.3.13 LOOP IMPURITY MONITORING		x											2
A -		3.7.3.14 INERT GAS SYSTEM		x											n
5 S														ŝ	
	SUP	3.7.4 MONITOR & CONTROL EQUIPMENT	x								1			ξ	5
	27 S	3.7.4.1 OPERATING MODES		X		X _	x			Demonstration at CRTF	Ī				
	EDES	3.7.4.2 DESCRIPTION	Π	х						<u> </u>	1			Ι Ξ	Ξļ
	,	3.7.4.3 LOCAL & REMOTE PANELS		х			x			Demonstration at CRTF	1			1	-
		3.7.4.4 EM PUMP CONTROL LOGIC		х		x		x		Test at CRTF	1				
		3.7.4.5 HEAT DUMP CONTROL LOGIC		x		x		х		Test at CRTF					
														לת	
			\square											ğ	
	PAC		\square									< \		5 To	
	ñi L	3.7.5 AUXILIARY EQUIPMENT	x									ភ្ល		À	- Spin
	7	3.7.5.1 DESCRIPTION		x									R G	L L	UNE
	°, U											D AT	NAL	јо (Л	BER
L	Č9	Ι	<u> </u>								t	m			2 2

ENERGY SYSTEMS PROGRAMS	SPECIFICATION NUMBER						
DEPARTMENT	TITLE		ÓBIGINAL				
GENERAL			ISSUE DATE MAY 2 5 1979				
ELECTRIC	CLASSIFICATION						
COMMENTS							
NO							
IOD T							
IFIC METH							
VER							
×		╾┼╌┠╼┠╍╎╴╎	┠╍╌╏╼┠╼┲╋╶┨				
VERIFICATION MATRIX SECTION 3.0 REQUIREMENT REFERENCE 3.8 PRECEDENCE							
NUMBER	REVISION DATE	SUPERSEDES	PAGE 48 OF 58				

ES3 005 -5 781

A=20

ENGINEERING SPECIFICATION Museue DEFAULT OF THE CASSIFICATION ENGINEERING SPECIFICATION 295A 4725 ITTLE DISTINCT DISTINCT DISTINCT ITTLE CLASSIFICATION ITTLE DISTINCT Ittle CLASSIFICATION Ittle DISTINCT Ittle CLASSIFICATION Ittle MAY 25 1979 Ittle CLASSIFICATION		<u></u> .			SPECIFICATION					
ITTLE OPIGINAL SUPERAL ELECTRIC CLASSIFICATION MAY 2 5 1979 4.4 VERIFICATION METHODS This section establishes the test verification methods and concepts that shall be used to verify the requirements of section 3.0. The verification matrix (Ref. 4.3) includes a cross reference to the appropriate section 3.0 Requirement paragraph and verification method. Tests may be combined or rearranged in order to accommodate a more cost effective program or to maintain the program schedule. In the following paragraphs the number in the parenthesis referes to the appropriate section 3.0 paragraph. 4.4.1 <u>DIAGRAMS</u> (3.1.1) An inspection of the drawings and hardware of the SRTA shall be done to assure the equipment delineated in Figures 3-1, 3-2, 3-3 is present. 4.4.2 <u>STRUCTURAL INTERFACES</u> (3.1.2.1) An inspection of the drawings and mounting structures will assure the physical compatibility of the interface. An analysis will be performed to verify the ability of the structure to support the SRTA over the full range of its operating environments and modes. 4.4.3 <u>UTILITY (FLECTRICAL)</u> (3.1.2.2) An inspection of the drawing and equipment shall verify the availability and distribution of the specified interface. 4.4.4 <u>UTILITY (FLUID)</u> (3.1.2.3) Same as Paragraph 4.3.3. 4.4.5 INSTRUMENTATION (3.1.2.4) Same as Paragraph 4.3.3. 4.4.6 <u>CONTROL</u> (3.1.2.5) Same as Paragraph 4.3.3.	ENE SYS PROG DEPAR	RGY TEMS RAMS	ENGINEER	RING SPECIFICATION	NUMBER 295A4725					
Structural Structural 4.4 VERIFICATION MAY 2 5 1979 4.4 VERIFICATION METHODS MAY 2 5 1979 This section establishes the test verification methods and concepts that shall be used to verify the requirements of section 3.0. The verification matrix (Ref. 4.3) includes a cross reference to the appropriate section 3.0 Requirement paragraph and verification method. Tests may be combined or rearranged in order to accommodate a more cost effective program or to maintain the program schedule. In the following paragraphs the number in the parenthesis referes to the appropriate section 3.0 paragraph. 4.4.1 DIAGRAMS (3.1.1) An inspection of the drawings and hardware of the SRTA shall be done to assure the equipment delineated in Figures 3-1, 3-2, 3-3 is present. 4.4.2 STRUCTURAL INTERFACES (3.1.2.1) An inspection of the drawings and mounting structures will assure the physical compatibility of the interface. An analysis will be performed to verify the ability of the structure to support the SRTA over the full range of its operating environments and modes. 4.4.3 UTILITY (ELECTRICAL) (3.1.2.2) An inspection of the drawing and equipment shall verify the availability and distribution of the specified interface to within the specified toler-affects. 4.4.4 UTILITY (FLUID) (3.1.2.3) Same as Paragraph 4.3.3. 4.4.5 <td< td=""><td></td><td></td><td>TITLE</td><td></td><td></td></td<>			TITLE							
GENERAL ELECTRIC CLASSIFICATION MAY 2.5 1979 4.4 VERIFICATION METHODS This section establishes the test verification methods and concepts that shall be used to verify the requirements of section 3.0. The verification matrix (Ref. 4.3) includes a cross reference to the appropriate section 3.0 Requirement paragraph and verification method. Tests may be combined or rearranged in order to accommodate a more cost effective program or to maintain the program schedule. In the following paragraphs the number in the parenthesis referes to the appropriate section 3.0 paragraph. 4.4.1 <u>DIAGRAMS</u> (3.1.1) An inspection of the drawings and hardware of the SRTA shall be done to assure the equipment delineated in Figures 3-1, 3-2, 3-3 is present. 4.4.2 <u>STRUCTURAL INTERFACES</u> (3.1.2.1) An inspection of the drawings and mounting structures will assure the physical compatibility of the interface. An inspection of the drawing and mounting structures will assure the physical compatibility of the interface. A.1 <u>INTERFACES</u> (3.1.2.2) An inspection of the drawing and equipment shall verify the availability and distribution of the specified interface. 4.4.3 UTILITY (ELECTRICAL) (3.1.2.2) An inspection of the drawing and equipment shall verify the availability and distribution of the interface to within the specified toler- ances. 4.4.4 UTILITY (FLUID) (3.1.2.3) Same as Paragraph 4.3.3. 4.4.5 INSTRUMENTATION (3.1.2.4) Same as Paragraph 4.3.3. <t< td=""><td></td><td>6</td><td></td><td></td><td>ORIGINAL ISSUE DATE</td></t<>		6			ORIGINAL ISSUE DATE					
 4.4 VERIFICATION METRODS This section establishes the test verification methods and concepts that shall be used to verify the requirements of section 3.0. The verification matrix (Ref. 4.3) includes a cross reference to the appropriate section 3.0 Requirement paragraph and verification method. Tests may be combined or rearranged in order to accommodate a more cost effective program or to maintain the program schedule. In the following paragraphs the number in the parenthesis referes to the appropriate section 3.0 paragraph. 4.4.1 <u>DIAGRAMS</u> (3.1.1) An inspection of the drawings and hardware of the SRTA shall be done to assure the equipment delineated in Figures 3-1, 3-2, 3-3 is present. 4.4.2 <u>STRUCTURAL INTERFACES</u> (3.1.2.1) An inspection of the drawings and mounting structures will assure the physical compatibility of the interface. An analysis will be performed to verify the ability of the structure to support the SRTA over the full range of its operating environments and modes. 4.4.3 <u>UTILITY (ELECTRICAL)</u> (3.1.2.2) An inspection of the drawing and equipment shall verify the availability and distribution of the specified interface. Testing to the maximum extent practical shall be performed to verify the functioning and regulation of the interface to within the specified tolerances. 4.4.4 <u>UTILITY (FLUID)</u> (3.1.2.3) Same as Paragraph 4.3.3. 4.4.5 <u>INSTRUMENTATION</u> (3.1.2.4) Same as Paragraph 4.3.3. 4.4.6 <u>CONTROL</u> (3.1.2.5) Same as Paragraph 4.3.3. Auge Worker Paragraph 4.3.3. For the paragraph 4	GEN	ERAL			MAY 2 5 1979					
 4.4 VERIFICATION METHODS This section establishes the test verification methods and concepts that shall be used to verify the requirements of section 3.0. The verification matrix (Ref. 4.3) includes a cross reference to the appropriate section 3.0 Requirement paragraph and verification method. Tests may be combined or rearranged in order to accommodate a more cost effective program or to maintain the program schedule. In the following paragraphs the number in the parenthesis referes to the appropriate section 3.0 paragraph. 4.4.1 <u>DIAGRAMS</u> (3.1.1) An inspection of the drawings and hardware of the SRTA shall be done to assure the equipment delineated in Figures 3-1, 3-2, 3-3 is present. 4.4.2 <u>STRUCTURAL INTERPACES</u> (3.1.2.1) An inspection of the drawings and mounting structures will assure the physical compatibility of the interface. An analysis will be performed to verify the ability of the structure to support the SRTA over the full range of its operating environments and modes. 4.4.3 <u>UTILITY (ELECTRICAL)</u> (3.1.2.2) An inspection of the drawing and equipment shall verify the availability and distribution of the specified interface. Testing to the maximum extent practical shall be performed to verify the functioning and regulation of the interface to within the specified toler- ances. 4.4.5 <u>INSTRUMENTATION</u> (3.1.2.4) Same as Paragraph 4.3.3. ALSE AURE AUN	ELEG	INIC	CLASSIFICATION							
This section establishes the test verification methods and concepts that shall be used to verify the requirements of section 3.0. The verification matrix (Ref. 4.3) includes a cross reference to the appropriate section 3.0 Requirement paragraph and verification method. Tests may be combined or rearranged in order to accommodate a more cost effective program or to maintain the program schedule. In the following paragraphs the number in the parenthesis referes to the appropriate section 3.0 paragraph. 4.4.1 <u>DIAGRAMS</u> (3.1.1) An inspection of the drawings and hardware of the SRTA shall be done to assure the equipment delineated in Figures 3-1, 3-2, 3-3 is present. 4.4.2 <u>STRUCTURAL INTERFACES</u> (3.1.2.1) An inspection of the drawings and mounting structures will assure the physical compatibility of the interface. An analysis will be performed to verify the ability of the structure to support the SRTA over the full range of its operating environments and modes. 4.4.3 <u>UTILITY (ELECTRICAL)</u> (3.1.2.2) An inspection of the drawing and equipment shall verify the availability and distribution of the specified interface. Testing to the maximum extent practical shall be performed to verify the functioning and regulation of the interface to within the specified toler- ances. 4.4.4 <u>UTILITY (FLUTD)</u> (3.1.2.4) Same as Paragraph 4.3.3. 4.4.5 <u>INSTRUMENTATION</u> (3.1.2.4) Same as Paragraph 4.3.3. 4.4.6 <u>CONTROL</u> (3.1.2.5) <u>Same as Paragraph 4.3.3.</u> <u>PACE 40 or 55</u>	4.4 <u>v</u>	TERIFICA	TION METHODS							
Tests may be combined or rearranged in order to accommodate a more cost effective program or to maintain the program schedule. In the following paragraphs the number in the parenthesis referes to the appropriate section 3.0 paragraph. 4.4.1 DIAGRAMS (3.1.1) An inspection of the drawings and hardware of the SRTA shall be done to assure the equipment delineated in Figures 3-1, 3-2, 3-3 is present. 4.4.2 STRUCTURAL INTERFACES (3.1.2.1) An inspection of the drawings and mounting structures will assure the physical compatibility of the interface. An analysis will be performed to verify the ability of the structure to support the SRTA over the full range of its operating environments and modes. 4.4.3 UTILITY (ELECTRICAL) (3.1.2.2) An inspection of the drawing and equipment shall verify the availability and distribution of the specified interface. Testing to the maximum extent practical shall be performed to verify the functioning and regulation of the interface to within the specified tolerances. 4.4.4 UTILITY (FLUID) (3.1.2.3) Same as Paragraph 4.3.3. 4.4.5 INSTRUMENTATION (3.1.2.4) Same as Paragraph 4.3.3. *4.4.6 CONTROL (3.1.2.5) Same as Paragraph 4.3.3. REVISION DATE SUPERSECES PAGE 49 or 52	1 1 (F	This section establishes the test verification methods and concepts that shall be used to verify the requirements of section 3.0. The verification matrix (Ref. 4.3) includes a cross reference to the appropriate section 3.0 Requirement paragraph and verification method.								
In the following paragraphs the number in the parenthesis referes to the appropriate section 3.0 paragraph. 4.4.1 <u>DIAGRAMS</u> (3.1.1) An inspection of the drawings and hardware of the SRTA shall be done to assure the equipment delineated in Figures 3-1, 3-2, 3-3 is present. 4.4.2 <u>STRUCTURAL INTERFACES</u> (3.1.2.1) An inspection of the drawings and mounting structures will assure the physical compatibility of the interface. An analysis will be performed to verify the ability of the structure to support the SRTA over the full range of its operating environments and modes. 4.4.3 <u>UTILITY (ELECTRICAL)</u> (3.1.2.2) An inspection of the drawing and equipment shall verify the availability and distribution of the specified interface. Testing to the maximum extent practical shall be performed to verify the functioning and regulation of the interface to within the specified toler- ances. 4.4.4 <u>UTILITY (FLUID)</u> (3.1.2.3) Same as Paragraph 4.3.3. 4.4.5 <u>INSTRUMENTATION</u> (3.1.2.4) Same as Paragraph 4.3.3. 4.4.6 <u>CONTROL</u> (3.1.2.5) <u>Same as Paragraph 4.3.3.</u> REVISION NUMBER 2 PAGE 49 or 52	I	Tests may be combined or rearranged in order to accommodate a more cost effective program or to maintain the program schedule.								
 4.4.1 <u>DIAGRAMS</u> (3.1.1) An inspection of the drawings and hardware of the SRTA shall be done to assure the equipment delineated in Figures 3-1, 3-2, 3-3 is present. 4.4.2 <u>STRUCTURAL INTERFACES</u> (3.1.2.1) An inspection of the drawings and mounting structures will assure the physical compatibility of the interface. An analysis will be performed to verify the ability of the structure to support the SRTA over the full range of its operating environments and modes. 4.4.3 <u>UTILITY (ELECTRICAL)</u> (3.1.2.2) An inspection of the drawing and equipment shall verify the availability and distribution of the specified interface. Testing to the maximum extent practical shall be performed to verify the functioning and regulation of the interface to within the specified tolerances. 4.4.4 <u>UTILITY (FLUID)</u> (3.1.2.3) Same as Paragraph 4.3.3. 4.4.6 <u>CONTROL</u> (3.1.2.5) Same as Paragraph 4.3.3. REVISION And a set and /li>	í I a	In the following paragraphs the number in the parenthesis referes to the appropriate section 3.0 paragraph.								
An inspection of the drawings and hardware of the SRTA shall be done to assure the equipment delineated in Figures 3-1, 3-2, 3-3 is present. 4.4.2 <u>STRUCTURAL INTERFACES</u> (3.1.2.1) An inspection of the drawings and mounting structures will assure the physical compatibility of the interface. An analysis will be performed to verify the ability of the structure to support the SRTA over the full range of its operating environments and modes. 4.4.3 <u>UTILITY (ELECTRICAL)</u> (3.1.2.2) An inspection of the drawing and equipment shall verify the availability and distribution of the specified interface. Testing to the maximum extent practical shall be performed to verify the functioning and regulation of the interface to within the specified toler- ances. 4.4.4 <u>UTILITY (FLUID)</u> (3.1.2.3) Same as Paragraph 4.3.3. 4.4.5 <u>INSTRUMENTATION</u> (3.1.2.4) Same as Paragraph 4.3.3. 4.4.6 <u>CONTROL</u> (3.1.2.5) <u>Same as Paragraph 4.3.3.</u> <u>REVISION</u> <u>DATE</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u>	4.4.1	4.4.1 <u>DIAGRAMS</u> (3.1.1)								
 4.4.2 <u>STRUCTURAL INTERFACES</u> (3.1.2.1) An inspection of the drawings and mounting structures will assure the physical compatibility of the interface. An analysis will be performed to verify the ability of the structure to support the SRTA over the full range of its operating environments and modes. 4.4.3 <u>UTILITY (ELECTRICAL)</u> (3.1.2.2) An inspection of the drawing and equipment shall verify the availability and distribution of the specified interface. Testing to the maximum extent practical shall be performed to verify the functioning and regulation of the interface to within the specified toler- ances. 4.4.4 <u>UTILITY (FLUID)</u> (3.1.2.3) Same as Paragraph 4.3.3. 4.4.5 <u>INSTRUMENTATION</u> (3.1.2.4) Same as Paragraph 4.3.3. 4.4.6 <u>CONTROL</u> (3.1.2.5) <u>Same as Paragraph 4.3.3.</u> <u>REVISION</u> <u>BEVISION</u> <u>SUPERSEDES</u> <u>PAGE 49 or 55</u> 		An inspection of the drawings and hardware of the SRTA shall be done to assure the equipment delineated in Figures 3-1, 3-2, 3-3 is present.								
An inspection of the drawings and mounting structures will assure the physical compatibility of the interface. An analysis will be performed to verify the ability of the structure to support the SRTA over the full range of its operating environments and modes. 4.4.3 UTILITY (ELECTRICAL) (3.1.2.2) An inspection of the drawing and equipment shall verify the availability and distribution of the specified interface. Testing to the maximum extent practical shall be performed to verify the functioning and regulation of the interface to within the specified toler- ances. 4.4.4 UTILITY (FLUID) (3.1.2.3) Same as Paragraph 4.3.3. 4.4.5 INSTRUMENTATION (3.1.2.4) Same as Paragraph 4.3.3. 4.4.6 CONTROL (3.1.2.5) Same as Paragraph 4.3.3. A.4.6 CONTROL (3.1.2.5) Same as Paragraph 4.3.3. A.4.7 PAGE 49 or 55	4.4.2	.4.2 <u>STRUCTURAL INTERFACES</u> (3.1.2.1)								
An analysis will be performed to verify the ability of the structure to support the SRTA over the full range of its operating environments and modes. 4.4.3 <u>UTILITY (ELECTRICAL)</u> (3.1.2.2) An inspection of the drawing and equipment shall verify the availability and distribution of the specified interface. Testing to the maximum extent practical shall be performed to verify the functioning and regulation of the interface to within the specified toler- ances. 4.4.4 <u>UTILITY (FLUID)</u> (3.1.2.3) Same as Paragraph 4.3.3. 4.4.5 <u>INSTRUMENTATION</u> (3.1.2.4) Same as Paragraph 4.3.3. 4.4.6 <u>CONTROL</u> (3.1.2.5) <u>Same as Paragraph 4.3.3.</u> <u>REVISION</u> <u>DATE</u> <u>SUPERSEDES</u> PAGE 49 of 58		An ins physic	pection of the draw al compatibility of	yings and mounting structures wil the interface.	l assure the					
 4.4.3 <u>UTILITY (ELECTRICAL)</u> (3.1.2.2) An inspection of the drawing and equipment shall verify the availability and distribution of the specified interface. Testing to the maximum extent practical shall be performed to verify the functioning and regulation of the interface to within the specified toler- ances. 4.4.4 <u>UTILITY (FLUID)</u> (3.1.2.3) Same as Paragraph 4.3.3. 4.4.5 <u>INSTRUMENTATION</u> (3.1.2.4) Same as Paragraph 4.3.3. 4.4.6 <u>CONTROL</u> (3.1.2.5) <u>Same as Paragraph 4.3.3.</u> <u>REVISION</u> <u>REVISION</u> <u>SUPERSEDES</u> <u>PAGE 49 or 58</u> 		An ana to sup and mo	lysis will be perfo port the SRTA over des.	ormed to verify the ability of the the full range of its operating	e structure environments					
An inspection of the drawing and equipment shall verify the availability and distribution of the specified interface. Testing to the maximum extent practical shall be performed to verify the functioning and regulation of the interface to within the specified toler- ances. 4.4.4 UTILITY (FLUID) (3.1.2.3) Same as Paragraph 4.3.3. 4.4.5 <u>INSTRUMENTATION</u> (3.1.2.4) Same as Paragraph 4.3.3. 4.4.6 <u>CONTROL</u> (3.1.2.5) <u>Same as Paragraph 4.3.3.</u> <u>REVISION</u> <u>REVISION</u> <u>SUPERSEDES</u> PAGE 49 or 58 2	4.4.3	UTILIT	Y (ELECTRICAL) (3.1	2.2)						
Testing to the maximum extent practical shall be performed to verify the functioning and regulation of the interface to within the specified toler- ances. 4.4.4 UTILITY (FLUID) (3.1.2.3) Same as Paragraph 4.3.3. 4.4.5 INSTRUMENTATION (3.1.2.4) Same as Paragraph 4.3.3. 4.4.6 CONTROL (3.1.2.5) Same as Paragraph 4.3.3. REVISION REVISION DATE PAGE 49 of 58		An ins and di	pection of the draw stribution of the s	ing and equipment shall verify t pecified interface.	he availability					
4.4.4 UTILITY (FLUID) (3.1.2.3) Same as Paragraph 4.3.3. 4.4.5 <u>INSTRUMENTATION</u> (3.1.2.4) Same as Paragraph 4.3.3. 4.4.6 <u>CONTROL</u> (3.1.2.5) <u>Same as Paragraph 4.3.3.</u> <u>REVISION</u> <u>REVISION</u> <u>SUPERSEDES</u> <u>ATE</u> <u>PAGE 49 of 58</u>		Testin functi ances.	g to the maximum ex oning and regulatic	tent practical shall be performe on of the interface to within the	ed to verify the specified toler-					
Same as Paragraph 4.3.3. 4.4.5 <u>INSTRUMENTATION</u> (3.1.2.4) Same as Paragraph 4.3.3. 4.4.6 <u>CONTROL</u> (3.1.2.5) <u>Same as Paragraph 4.3.3.</u> <u>REVISION</u> <u>REVISION</u> <u>SUPERSEDES</u> <u>PAGE 49 of 58</u>	4.4.4	UTILIT	Y (FLUID) (3.1.2.3)							
4.4.5 <u>INSTRUMENTATION</u> (3.1.2.4) Same as Paragraph 4.3.3. 4.4.6 <u>CONTROL</u> (3.1.2.5) Same as Paragraph 4.3.3. REVISION REVISION SUPERSEDES DATE PAGE 49 of 58		Same a	s Paragraph 4.3.3.							
Same as Paragraph 4.3.3. 4.4.6 <u>CONTROL</u> (3.1.2.5) Same as Paragraph 4.3.3. REVISION REVISION SUPERSEDES NUMBER DATE PAGE 49 of 58	4.4.5	INSTRU	MENTATION (3.1.2.4)							
4.4.6 <u>CONTROL</u> (3.1.2.5) Same as Paragraph 4.3.3. REVISION REVISION SUPERSEDES NUMBER DATE PAGE 49 OF 58		Same a	s Paragraph 4.3.3.							
Same as Paragraph 4.3.3. REVISION REVISION SUPERSEDES NUMBER DATE PAGE 49 OF 58	4.4.6	CONTRO	<u>ь</u> (3.1.2.5)							
REVISION REVISION SUPERSEDES DATE DATE		Same a	s Paragraph 4.3.3.							
2 PAGE 44 OF 52	REVI	ISION IBER	REVISION DATE	SUPERSEDES	10 -9					
	2				PAGE 44 OF 50					

ENEF SYST PROCE	IGY EMS	ENGINEE	RING SPECIFICATION	SPECIFICATION NUMBER			
DEPART	MENT	TITLE		295A 4725			
	3			ORIGINAL ISSUE DATE			
GENE	RAL			May 2 5 1979			
ELEG	IKIC						
4.4.7	SOLAR	(3.1.2.6)					
	An ins provid	pection of flux pla e the required sola	ots shall verify the ability of t ar interface.	the CRTF to			
	An ana to var	lysis of the facil: y the flux over the	ity control fucntions will verify a required range within the requi	y its ability lred time frame.			
4.4.8	ABSORB	ER PANEL (3.1.3.1)					
	An ins paragr	wings and hardware shall verify o l requirements.	conformance with the				
4.4.9	HEAT D	UMP (3.1.3.2)					
	Same a	s Paragraph 4.4.8.					
4.4.10	FLUID	CIRCULATION EQUIPM	ENT (3.1.3.3)				
	Same a	s Paragraph 4.4.8.					
4.4.11	MONITO	R AND CONTROL EQU	IPMENT (3.1.3.4)				
	Same a	s Paragraph 4.4.8.					
4.4.12	AUXILI	ARY EQUIPMENT (3.1.	3.5)				
	Same as	s Paragraph 4.4.8.					
4.4.13	INCIDEN	NT SOLAR BEAM ACCEP	TANCE (3.2.1.1)				
	An anal flux le	lysis of the design evels, distribution	shall substantiate its ability as and transients associated with	to accept the actual operation.			
	Testing of the formanc	g of the SRTA under unit, cooroborate ce of the receiver.	the specified conditions will v the analysis and characterize th	erify performance e actual per-			
4.4.14	ABSORBE	ER PANEL INLET TEMP	ERATURE (3.2.1.2)				
	An analysis of the SRTA design and control loop functions over its range of operating modes and environmental conditions will substantiate the ability of the unit to satisfy its requirements. Testing of the SRTA under the specified conditions will verify performance of the unit, corroborate the analysis and characterize the actual performance of the test assembly.						
REVIS NUME	NON BER	REVISION DATE	SUPERSEDES	PAGE 50 OF 58			

ES3:005 (5-78)

ENER	IGY			SPECIFICATION NUMBER			
SYST PROGE	EMS	ENGINEE	RING SPECIFICATION	2954 4725			
DEPART		TITLE		LJJNNIE			
	5			ORIGINAL ISSUE DATE			
GENE	RAL			MAY 2 5 1979			
ELEC	TRIC	CLASSIFICATION					
4.4.15	ABSOR	BER PANEL OUTLET TI	EMPERATURE (3.2.1.3)				
	Same a	s Paragraph 4.4.14					
4.4.16	DESIGN	N LIFE REQUIREMENTS	٤ (3.2.1.4)				
	An ana the s <u>r</u>	alysis of the ATP pecified corrosion	design shall verify the 30 year and thermal cycling conditions.	requirement under			
4.4.17	DESIGN	OPERATING MODES	(3.2.1.5)				
	An inspection of the drawings and hardware will identify the equipme necessary to support the operating modes.						
	Analysis of the design will substantiate its ability to satisfy the specification requirements.						
	Testin rate t	ng at CRTF will ver The analysis.	ify compliance with the requirer	ments and corrobo-			
4.4.18	ABSORE	ER PANEL SURFACE A	AREA (3.2.2.1)				
	Same	s Pragraph 4.4.8.					
4.4.19	SURFAC	E ORIENTATION (3.2	2.2.2)				
	Same a	s Pragraph 4.4.8.					
4.4.20	SURFAC	E OBSTRUCTIONS (3.	2.2.3)				
	Same a	s Paragraph 4.4.8.					
4.4.21	MAINTA	INABILITY (3.2.4)					
	An inspection of the drawings and equipment will substantiate the ease of maintenance requirement. The ability of the equipment to support the 6 month operational requirement will be verified by data from use in similar applications. Verification of this requirement will be demon- strated by the maintenance activities performed at CRTF.						
4.4.22	OPERAT	ING REQUIREMENTS ((3.2.5.1)				
	An ana specif	lysis of the SRTA ied environment.	design shall verify ability to o	operate in the			
REVIS		REVISION DATE	SUPERSEDES				
3		l April 80		PAGE DI OFDO			

·			_				
ENER SYSTI PROGP	GY EMS IAMS	ENG	INEE	RING SPECIFICATI	ON	20	SPECIFICATION NUMBER
DEPART		TITLE		·····			
E	5						ORIGINAL ISSUE DATE
GENE	RAL					M	NY 2 5 1979
ELECI	RIC	CLASSIFICATIO	N			8-88	
4.4.23	SURVI	VAL REQUIREME	NTS (3.2.5.2)			· · · · · · · · · · · · · · · · · · ·
	An an speci	alysis of the fied environm	SRTA	design shall verify	its ability	to s	urvive the
4.4.24	TRANS	PORTABILITY (3.2.6)			
	An in the e demon the S	spection of d quipment to m strated by sh RTA equipment	rawin weet t hippin plac	gs and hardware shal nese requirements. I g the equipment to t ed on the test tower	l substantia Actual compl he CRTF via •	ate the Liance truck	e ability of will be and having
4.4.25	4.25 INSTALLATION (3.2.7)						
	An in of th demon	spection of t e equipment t strated by in	he dr o mee stall	awings and hardware a t these requirements ation at CRTF.	shall substa . Actual co	antiato mplia	e the ability nce will be
4.4.26	CLEAN	LINESS (3.2.8	;)				
	An in and a ment. clean	spection of t ssembly of th The ability ing will demo	he fa e equ to a nstra	cilities and procedu ipment will substant ssemble the SRTA on s te compliance with th	res used for iate complia site (CRTF) his requirem	the ince without the in	fabrication ith require- ut additional
4.4.27	DESIG	N & CONSTRUCT	ION (3.3)			
	Parag	raph 3.3 has	essen	ially four specific	verificatio	on requ	lirements:
	Code	Compliance -	Inspe 3.4.1 stand	tion of the document will verify complian ards requirements.	tation requi nce with the	red in codes	n paragraph 5 and
	Lifti: Load '	ng Lug - j Tests	An an of th will i requi:	alysis of the design a lifting lugs to sat be performed to verif rement.	will substa tisfy the re fy complianc	ntiate quiren e with	e the ability ments. Tests n this
	Shipp	ing Loads - 2	An an ping s stand	lysis of the design structure will substa the required shippin	of the unit antiate its ng loads.	and/c abilit	or the ship- ty to with-
] ; 	Perio and f demon	lic inspections of the nal inspection on an estate compliance with	ne equipment crival at si n this requi	durin te (CH rement	ng transport RTF) will
REVISI	ON	REVISION		SUPERSE	EDES		
3	-0	l April 80					PAGE 52 0F58

ES3-005 (5-78)

				SPECIFICATION				
ENER SYSTE PROGR	GY MS AMS	ENGINEEF	RING SPECIFICATION	DOED A725				
DEPART	MENT	TITLE		29574725				
	3			ORIGINAL ISSUE DATE				
GENE	RAL	·		MAY 2 5 1979				
ELECI	RIC	CLASSIFICATION						
	Leak '	Tests Tests v complia be perf	will be performed on the assemblance with the leak requirements. Formed at CRTF after completion	ed SRTA to verify This test will of the field welds.				
4.4.28	MATER	IALS, PROCESSES ANI	<u>PARTS</u> (3.3.1)					
	Inspec plian	ction of documentat ce with codes and s	tion required in paragraph 3.4.1 standards requirements.	will verify com-				
4.4.29	NAMEP	LATE AND PRODUCT MA	ARKING (3.3.3)					
	Same a	as Paragraph 4.4.8.						
4.4.30	WORKM	ANSHIP (3.3.4)						
ļ	Same a	as Paragraph 4.4.28	3.					
4.4.31	SAFETY (3.3.6)							
	Inspec of rec will Tests equip	ction of SRTA drawi quired safety equip verify that it is o will be performed ment.	ngs and equipment will verify to ment. An analysis of system de compliant with the specified saf to verify operation of the safe	he presence sign and operations ety requirements. ty monitoring				
4.4.32	DESIG	N DOCUMENTATION (3.	(4.1)	quirement				
1 1 33		$\frac{1}{1}$		qui i cherre.				
3.3.55	Same	as Paragraph 4.4 3	-,					
4.4.34	OPERA	TIONS AND MAINTENAL	NCE PLAN (3.4.3)	3				
	Same	as Paragraph 4.4.3	2.					
4.4.35	TEST	PLAN (3.4.4)						
	Same	as Paragraph 4.4.3	2.					
4.4.36	SAFET	Y ANALYSIS (3.4.5)						
	Same	as Paragraph 4.4.3	2.					
REVIS NUME		REVISION DATE	SUPERSEDES	PAGE 53 OF 58				
				······				

ENERGY SYSTEMS	ENGINEE	RING SPECIFICATION	SPECIFICATION NUMBER							
PROGRAMS DEPARTMENT			295A4725							
E			ORIGINAL							
GENERAL			MAY 2 5 1979							
ELECTRIC	CLASSIFICATION		MAI 2 3 1979							
4.4.37 MAINT	ENANCE (3.5.1)									
Same	as Paragraph 4.4.8.									
4.4.38 <u>SUPPL</u>	4.4.38 <u>SUPPLY</u> (3.5.2)									
Inspe confo	Inspection of documentation, order forms and bills of lading shall verify conformance with this requirement.									
4.4.39 FACIL	ITIES (3.5.3)									
Inspe with	ction of drawing and this requirement.	d designated facilities shall ver	ify conformance							
4.4.40 PERSO	NNEL AND TRAINING (3.6)								
Inspe this organ	Inspection of documentation supplied in 3.4.4 (test plan) shall verify this requirement. The test plan will contain a description of the test organization (GE personnel) required to install, checkout, test and O&M.									
4.4.41 <u>DESCR</u>	IPTION (3.7.1.1)									
Same	as Paragraph 4.4.8.									
4.4.42 MOUNT	ING (3.7.1.2)									
An in the ed the al demon	spection of the draw quipment description osorber panel will b stration at CRTF.	wing and equipment will verify co n. The ability of the support st be substantiated by analysis and	mpliance with ructure to support verified by							
4.4.43 FLATN	<u>ESS</u> (3.7.1.3)									
An ins allow substa	spection of the draw ing movement for the antiate the ability	vings and equipment will identify ermal expansion. An analysis of of the equipment to maintain the	the method of the design will flatness tolerance.							
Testin will v and ch	Testing of the equipment at CRTF under the specified conditions of operation will verify design compliance with the requirement, corroborate the analysis, and characterize the actual performance of the unit.									
4.4.44 ASSEM	BLY (3.7.1.4)									
Same a	s Paragraph 4.4.8.									
REVISION		SUPERSEDES								
2	22		PAGE 54 OF 58							
ES3-005 (5-78)		A-62	,							

				r	
ENER SYST PROGE	GY EMS RAMS	ENGINEE	RING SPECIFICATION		SPECIFICATION NUMBER
DEPART	MENT	TITLE		295	5A 4725
Ľ	5				ORIGINAL ISSUE DATE
GENE	RAL			MA	y 2 5 19 79
ELEG	INIC	CLASSIFICATION			
4.4.45	INSUL	ATION (3.7.1.5)			
	An in of th stant tempe	spection of the dra e tube bundle is in iate the ability of rature over the ran	awing and equipment will verify nsulated. An analysis of the de f the insulation to maintain the nge of operating modes and envir	that t esign s e 150 ⁰ ronment	he back side hall sub- degree s.
4.4.46	INSTR	UMENTATION (SURFAC	E TEMPERATURE AND STRAIN MEASURE	EMENT (3.7.1.6)
	An in: locat: strum will	g and equipment will verify the ed instrumentation. Calibration r temperature regimes and analys of the accuracy tolerance.	quanti n data sis of	ty and on similar in- SRTA geometry	
4.4.47	INSTR	UMENTATION (SODIUM	TEMPERATURE) (3.7.1.7)		
	An in: locat:	spection of the dra ion of the specific	awings and equipment will verify ed instrumentation.	y the q	uantity and
	Calib: will y	ration data on sim: verify compliance o	ilar instrumentation in similar of the accuracy tolerance.	temper	ature regimes
4.4.48	TRACE	HEATING (3.7.1.8)			
	Inspectrace abili- dition with	ction of the drawin heating units. An ty to maintain the ns. Testing at CR the design and corr	ng and equipment shall verify th n analysis of the design will su required temperature under the IF under these conditions will w roborate the analysis.	ne pres ibstant specif verify	ence of the iate its ied con- compliance
4.4.49	ABSOR	PTIVE COATING (3.7	.1.9)		
	An in: quali with tions	speciton of the dra ty of an absorptive the requirements w •	awings and equipment will verify e coating. The ability of the o ill be verified by data from use	y the p coating e in si	resence and to comply milar applica-
4.4.50	DESCR	<u>IPTION</u> (3.7.2.1)			
	Same	as Paragraph 4.4.8			
4.4.51	HEAT	DISSIPATION (3.7.2	.2)		
	An an heat	alysis of the deise dissipation require	gn shall substantiate its abilit ements over the range of operati	ty to s ing mod	atisfy the es and
REVIS	ION ER	REVISION DATE	SUPERSEDES		PAGE 55 OF 58
2					

ENERGY SYSTEMS		ENGINEERING SPECIFICATION	SPECIFICATION NUMBER		
PROG DEPAR	RAMS TMENT		295A4725		
(ge)			OBIGINAL		
			ISSUE DATE		
GENE FIFC	HAL	CLASSIFICATION	MAY 2 5 1979		
	envir	onmental conditions			
	Testin mental corrol of SR	available environ- iirment, all characterization			
4.4.52	INSTRU	JMENTATION (3.7.2.3)			
	Same a	as Paragraph 4.4.47.			
4.4.53	DESCRI	IPTION (3.7.3.1)			
	Same a	as 4.4.8.			
4.4.54	SURGE	TANK (LOCATION AND CAPACITY) (3.7.3.2)			
	An inspection of the drawings and equipment shall verify that the surge tank is at the highest point in the system. An analysis of the system design and surge tank capacity will verify that it is large enough to support calibrating of the sodium flow meters.				
4.4.55	TRACE HEATING (3.7.3.3)				
	Same as Paragraph 4.4.48.				
4.4.56	LOOP C	DPERATING TEMPERATURES & PRESSURE (3.7.3.4)			
	An ins of mat	spection of the drawing and equipment will verify serials is compatible with the temperature and pre	that the selection essure criteria.		
4.4.57	EM PUM	1P FLOW RATE (3.7.3.5)			
	Inspection of the drawing and equipment shall substantiate the ability of the equipment design to satisfy specification requirements. Operating data on similar equipment under similar operating conditions shall verify the compliance with the requirements.				
4.4.58	SODIUM PIPING (PRESSURE DROP) (3.7.3.6)				
	An analysis of the design shall substantiate its ability to satisfy the requirement.				
	Testin the re	g at CRTF under the stated conditions will verify quirements, corroborate the analysis and contribu	compliance with te data to the		
REVISI NUMBI	ON ER	REVISION DATE 24 AUG 79	PAGE 56 OF 58		

ENER	GY	ENGINEE		SPECIFICATION NUMBER		
SYST PROGR DEPART	MS AMS MENT			295A4725		
(e.e.		TITLE		ORIGINAL		
	y			ISSUE DATE		
IGENE IELECT	HAL BIC	CLASSIFICATION		May 2 5 1979		
	overa	 11 characterizatio	n of SRTA performance.			
4.4.59	DUMP	TANK (LOCATION AND	<u>CAPACITY</u>) (3.7.3.7)			
	An in parag loop. Testi	spection of the dra raph description a An analysis of t ng at CRTF will ve	awing and equipment shall show c nd verify that it is in the lowe he design will substantiate the rify compliance with the preheat	compliance with the est point in the tank capacity. er requirements.		
4.4.60	LOOP	FLOWMETERS (3.7.3.	8)	2		
	An in: the sp with	spection of the dra pecified instrument the accuracy requi	awings and equipment will verify tation. Calibration tests will rement.	the inclusion of verify compliance		
4.4.61	SODIU	M LEVEL GAUGES (3.	7.3.9)			
	Same as Paragraph 4.4.57.					
4.4.62	THERMOCOUPLES (3.7.3.10)					
	Same as Paragraph 4.4.47.					
4.4.63	CODES	(3.7.3.11)				
	Inspector compl:	ction of the docum iance with this rea	entation required in paragraph 3 quirement.	.4.1 will verify		
4.4.64	INSUL	ATION (3.7.3.12)				
	Inspection of drawings and equipment will verify the presence of the re- quired insulation.					
4.4.64a	4a LOOP IMPURITY MONITORING (3.7.3.13)					
}	Same	as paragraph 4.4.8				
4.4.64b	4.4.64b INERT GAS SYSTEM (3.7.3.14)					
	Same	as paragraph 4.4.8	•			
REVIS NUMB	ON ER	REVISION DATE	SUPERSEDES			
3		l April 80		PAGE DI OF DO		

				SPECIFICATION
ENERGY SYSTEMS PROGRAMS DEPARTMENT		ENGINEE	RING SPECIFICATION	NUMBER
				295A4725
		11166		OBIGINAL
Y				ISSUE DATE
GENE	RAL			
ELEG	IKIC			
4.4.65	OPERAT	TING MODES (3.7.4.)	1)	
	An ins the mo modes.	spection of the dra onitoring and cont	awing and equipment will indicat col equipment to support the spe	e the ability of cified operating
	An ana demons	alysis of the designated at CRTF.	yn will substantiate this and ve	rification will be
		REVISION DATE	SUPERSEDES	PAGE 570 OF 58
L a	C		·	· · · · · · · · · · · · · · · · · · ·

				SPECIFICATION				
ENERGY SYSTEMS PROGRAMS		ENGINEE	RING SPECIFICATION	NUMBER				
DEPART	MENT	TITLE		295A4725				
86				ORIGINAL ISSUE DATE				
GENE	RAL			May 2 5 1979				
ELECT	RIC	CLASSIFICATION						
4.4.66	.4.66 DESCRIPTION (3.7.4.2)							
	Same a	as Paragraph 4.4.8						
4.4.67	LOCAL	AND REMOTE PANELS	(3.7.4.3)					
	The al preced drawin	bility of the cont dence of the remot ng and equipment a	rol panels to readout the requir e panel shall be substantiated b nd verified by demonstration at	ed date and the y inspection of the CRTF.				
4.4.68	EM PUI	MP CONTROL LOGIC (3.7.4.4)					
	An inspection of the drawing and equipment shall verify conformance with the equipment description. An analysis of the design shall substantiate its compliance with the specified requirements. Testing at CRTF will verify compliance with the requirements, corroborate the analysis and provide data for SRTA performance characterization.							
4.4.69	69 HEAT DUMP CONTROL LOGIC (3.7.4.5)							
	Same as 4.4.68							
4.4.70	DESCR	IPTION (3.7.5.1)						
	Same a	as Paragraph 4.4.8	•					
5.0 <u>PR</u>	EPARAT	ION FOR DELIVERY						
Pr ap vo eq	eparati propria lved. uipment	ion for delivery o ate vendor accordi Acceptance of equ sustaining visua	f the equipment will be the resp ng to accepted standards for the ipment at CRTF by GE will preclu l damage.	onsibility of the equipment in- de accepting				
6.0 <u>NO</u>	res – M	<u>NA</u>						
REVISI NUMB	ON ER	REVISION DATE	SUPERSEDES	PAGE 58 OF 58				
	L.	······································	<u> </u>	and the second				

APPENDIX B

EQUIPMENT SPECIFICATION FOR ABSORBER PANEL

ENERGY SYSTEMS PROGRAMS	ENGINEE	RING SP	ECIFICATION	SPECIFICATION NUMBER
DEPARTMENT		IPMENT SPE	CIFICATION	295A4724
		ABSORBER	R PANEL	
GENERAL	CLASSIFICATION C			AUG 8, 1979
	· · · · · · · · · · · · · · · · · · ·		·	
			•	
ENGR.	h, nee	\$1.1975		
	ung	6//4/17		
MFG.		DATE	PROGRAMMER.	2/13/79 DATE
MATILS		DATE		DATE
PREPARED BY	edunee a	1/10/1 CATE	ISSUED BY	Chine DATE
REVISION NUMBER	REVISION DATE		SUPERSEDES	m 5/14/70
	4.9.80	ON	GIFRC 13304	FAGE UF J J

GENERAL 🍘 ELECTRIC

ENERGY SYSTEMS PROGRAM DEPARTMENT

REVISION CONTROL SHEET

ENERGY SYSTEMS PROGRAM DEPARTMENT

REVISION CONTROL SHEET

ENERGY				SPECIFICATION NUMBER
SYSTEMS PROGRAMS	ENGINEERING SPECIFICATION		51 1721	
DEPARTMENT	TITIE	· · · · · · · · · · · · · · · · · · ·	27	544124
60				
E				
GENERAI			AU	G B. 19.79
ELECTRIC	CLASSIFICATION			
		·····	L	·····
		TABLE OF CONTENT	S	_
Paragraph				Page
1.0	SCOPE			7
2.0	APPLICABLE DOCUMENT	'S		7
3.0	REQUIREMENTS			7
3.1	ITEM DEFINITION			7
3.1.1	DIAGRAMS	NRT		8
3.1.2	STRUCTURAL INTERFACE			8
3.1.2.2	FLUTD INTERFACE	نے .		A S
3.1.2.3	INSTRUMENTATION INT	ERFACE		14
3.1.2.4	SOLAR INTERFACE			14
3.1.2.5	CONTAINMENT INTERFA	CE		14
3.1.3	MAJOR COMPONENT LIS	T		14
3.1.3.1	PANEL ASSEMBLY			14
3.1.3.2	SUPPORT STRUCTURE			14
3.1.3.3	THERMAL INSULATION	ASSEMBLIES		14
3.2	CHARACTERISITICS			15
3.2.1	PERFORMANCE CHARACT	ERISTICS		15
3.2.1.1	INCIDENT SOLAR BEAM	ACCEPTANCE		15
3.2.1.2	ABSORBER PANEL INLE	T TEMPERATURE		15
3 2 1 1	Absorber Panel Outl	et temperature Menurc		15
3 2 1 5	DESIGN DIFE REQUIRE	Men 15 IDFS		15
3.2.1.6	PRESSURE DROP-FLOW	220		16
3.2.2	PHYSICAL CHARACTERI	STICS		16
3.2.2.1	DIMENSIONAL LIMITS			17
3.2.2.2	WEIGHT LIMIT			17
3.2.4	MAINTAINABILITY			17
3.2.5	ENVIRONMENTAL CHARA	CTERISITCIS		17
3.2.5.1	OPERATION REQUIREME	INTS		17
3.2.5.2	SURVIVAL REQUIREMEN	ITS		17
3.2.6	TRANSPORTABILITY			18
3.2.7	INSTALLATION			18
3.2.8	CLEANLINESS	MTON		10
2.2	MATERIALS BROCESE	TION DADWE		19
3.3.1 1	SODTIM LOOP MATERIA	IS		19
3.3.1.2	BRAZE MATERIAL			19
3.3.1.3	STRUCTURAL MATERIAL	.		19
3.3.1.4	ABSORBER PANEL TUBE	MATERIAL		19
3.3.1.5	INSULATING MATERIAL			19
3.3.1.6	BRAZING PROCESS			19
3.3.1.7	CORROSION PROTECTIO)N		20
REVISION	REVISION	SUP	ERSEDES	
NUMBER	DATE			PAGE 3 OF 39
	1.			
L	L	L		1

ENERGY SYSTEMS	ENGINEE	ENGINEERING SPECIFICATION	
PROGRAMS DEPARTMENT	TITLE		295A 4724
EE			ORIGINAL ISSUE DATE
GENERA	L		AUG 8,1979
ELECTRI	C CLASSIFICATION		-
3.3.3	IDENTIFICATION AND N	ARKING	20
3.3.4	WORKMANSHIP		20
3.3.8	DOCUMENTATION		20
3.3.8.1	DESIGN DOCUMENTATION	1	21
3.4	MAJOR COMPONENT CHAP	ACTERISTICS	21
3.4.1	PANEL ASSEMBLY		21
3 4 1 1	TRACE HEATING		
3 4 1 2		ACT MEND C CMDATN)	22
2 1 1 2	INSTRUMENTATION SOR	ACE IEMP & SIRAIN)	22
3.4.1.3	INSTRUMENTATION (SOL	TOW TEMP)	22
3.4.1.4	ABSORBER COATING		22
3.4.1.5	EXAMINATION AND TEST		22
3.4.2	SUPPORT STRUCTURE		23
3.4.2.1	FLATNESS		23
3.4.2.2	ASSEMBLY		23
3.4.3	THERMAL INSULATION #	SSEMBLIES	23
3.4.3.1	TUBE INSULATION		23
3.4.3.2	TRACE HEATING		23
3.4.3.3	ASSEMBLY		24
3 4 3 4	HEADED AND HEADED DI		24
J J	DECEDENCE	PE INSULATION	24
3.5	PRECEDENCE		24
4.0	QUALITI ASSURANCE, PI	OVISIONS	24
4.1	GENERAL	24	
4.1.1	RESPONSIBILITIES		24
4.1.2	SPECIAL TESTS AND EX	AMINATIONS	25
4.1.2.1	ABSORBER PANEL		25
4.1.3	DATA REQUIREMENTS		25
4.1.3.1	TEST PROCEDURES		25
4.1.3.2	TEST REPORTS		25
4.2	VERIFICATION DEFINIT	ION	25
4.2.1	INSPECTION		26
4.2.2	SIMILARITY		26
4.2.3	ANALYSIS		26
4.2.4	DEMONSTRATION		26
4.2.5	TEST		26
4 3	VEDIETCARTAN MARDEY		20
	VEDIEICARION MERIODO		20
	VERTICATION METHODS		27
4.4.1	TTEM DEFINITION		27
4.4.2	INTERFACE DEFINITION	27	
4.4.3	STRUCTURAL INTERFACE		27
4.4.4	FLUID INTERFACE		33
4.4.5	INSTRUMENTATION INTE	RFACE	33
4.4.6	SOLAR INTERFACE		33
4.4.7	CONTAINMENT INTERFAC	E	33
4.4.8	PANEL ASSEMBLY		33
4.4.9	SUPPORT STRUCTURE		33
REVISION	REVISION	SUPERSEDES	
NUMBER	DATE		PAGE A DE 29
1	1		TAGE T UP O/
	1		

ŕ			SPECIFICATION
ENERGY SYSTEMS	ENGINEERIN	IG SPECIFICATION	NUMBER
PROGRAMS			295A 4724
	TITLE		
COP.		· · · · ·	OBIGINAL
		1	ISSUE DATE
CENEDA	1		4176 8 1079
GENENA			AUG 0,1919
ELECIHI	CLASSIFICATION		
4 4 10	THE DWAL THEIL ATTON ACCE		22
4.4.11	INCIDENT SOLAR BEAM ACC	EPTANCE	33
4.4.12	ABSORBER PANEL INLET TEL	APERATURE	33
4.4.13	ABSORBER PANEL OUTLET T	EMPERATURE	33
4.4.14	DESIGN LIFE REQUIREMENTS	5	33
4.4.15	PRESSURE DROP-FLOW		34
4.4.16	DIMENSIONAL LIMITS		34
4.4.18	MAINTAINABILITY		34
4.4.19	OPERATING REOUIREMENTS		34
4.4.20	SURVIVAL REQUIREMENTS		34
4.4.21	TRANSPORTABILITY		34
4.4.22	INSTALLATION		34
4.4.23	CLEANLINESS		35
4.4.24	DESIGN & CONSTRUCTION		35
4.4.25	SODIUM LOOP MATERIALS		35
4.4.26	BRAZE MATERIAL		35
4.4.2/	ABCORER BANEL WITE MATT	זגדמי	35
4.4.20	INSULATING MATERIAL	CREAD	35
4.4.30	BRAZING PROCESS		36
4.4.31	CORROSION PROTECTION		36
4.4.32	IDENTIFICATION MARKING		36
4.4.33	WORKMANSHIP		36
4.4.34	DESIGN DOCUMENTATION		36
4.4.35	PANEL ASSEMBLY		36
4.4.36	TRACE HEATING		36
4.4.3/	INSTRUMENTATION (SURFACE	E TEMPERATURE & STRAIN GAUGES)	36
4.4.38	INSTRUMENTATION (SODIUM	TEMPERATURE)	30
4.4.40	EXAMINATION AND TEST		37
4.4.41	SUPPORT STRUCTURE		37
4.4.42	FLATNESS		37
4.4.43	ASSEMBLY		37
4.4.44	TUBE INSULATION		37
4.4.45	TRACE HEATING		37
4.4.46	ASSEMBLY		38
4.4.47	HEADER AND HEADER PIPE	INSULATION	38
5.0	CENERAL	C	38 28
5.2	PREPARATION FOR SHIDNEN	r	38
5.2.1	CLOSURES	•	38
5.2.2	PURGING		38
5.2.3	PROTECTION		38
5.2.4	HANDLING		38
PEVISION	BEVISION	SUPERSEDES	<u> </u>
NUMBER	DATE		E - 39
			PAGE O OF J

ENERGY SYSTEMS PROGRAMS	ENGINEERING SPECIFICATION			SPECIFICATION NUMBER			
DEPARTMENT	TITLE			29	5A 4	-224	
					ISSU	GINAL E DATE	
GENERAL	CLASSIFICATION			AUG	8 197	9	
5.3 I	I NSTRUCTIONS	· · · · · · · · · · · · · · · · · · ·	I		39)	
6.0 N 6.1 V 6.1.1 F 6.1.2 F	OTES ENDOR SUBMITTALS OR APPROVAL OR INFORMATION				39 39 39 39	9 9 9 9	
· · · ·							
REVISION NUMBER	REVISION DATE	SUPERSE	DES	P	AGE G	of 39	
				1			

.

	NERGY			SPECIFICATION NUMBER				
S	STEMS	ENGINEEF	2051 4724					
DEP		TITLE						
Į,	86)			ORIGINAL ISSUE DATE				
GEI	NERAL			AOG 8, 1979				
ELE	CTRIC	CLASSIFICATION						
1.0	SCOPE	<u>, , , , , , , , , , , , , , , , , , , </u>						
	This specification establishes the requirements for the design, fabrication, testing and delivery of an Absorber Panel. The Vendor shall be responsible that all work and/or material provided by him or his subcontractors meets the requirements of this specification.							
2.0	APPLICAB	LE DOCUMENTS						
	The foll tent spe conflict dicated	owing listed docume cified herein. The s exist in the cont that issue in effec	ents form a part of this specif e requirements of this document cents of the documents. Unless of on 25 May 1979 shall apply.	ication to the ex- shall govern if otherwise in-				
2.1	ASME Boi	ler & Pressure Vess	sel Code					
	Sec	tion II, Materials						
	Sec	tion V, Non-Destruc	ctive Examination					
	Sec	tion VIII, Division	1 1					
2.2	American	Institute of Steel	Construction Manual					
2.3	3 Interface Control Drawing E-017.							
2.4	Deleted.							
2.5	National	Electric Code, NFI	PA 70-1978					
2.6	National	Electrical Manufac	cturers Associations (NEMA) Sta	indards				
2.8	Deleted.			1				
3.0	REQUIREM	ENTS						
	The absorber panel assembly design, construction and performance require- ments are described this section.							
3.1	1 ITEM DEFINITION							
	The following items are covered by this specification and will be provided by the panel manufacturer unless specified "to be supplied by others". The absorber panel consists of a flat panel assembly of Incoloy 800 seamless							
R	EVISION	REVISION DATE	SUPERSEDES					
	1	4-9-80	OPIGINAL ISSUR	PAGE (OF 37				

L
ENERGY SYSTEMS PROGRAMS	ENGINEE	RING SPECIFICATION	SPECIFICATION NUMBER						
DEPARTMENT	TITLE	295A 4724							
EG									
GENERAL	SENERAL								
ELECTRIC	CLASSIFICATION								
tubes welded to an inlet header and single connecting pipe at one end and an outlet header and single connecting pipe at the other end. The tubes are metallurigically joined together by brazing. The panel assembly shall be mounted to a panel support structure with appropriate attachments to accommodate differential thermal expansion encountered during any operating conditions. Heating elements are provided on the back side of the panel assembly to maintain a hot hold condition. Measuring instrumentation and lead outs are to be supplied by others and shall be attached to the panel by others to monitor temperatures and strain conditions during operation. Thermal insulation shall be provided between the heating elements and supporting structure and on the inlet/outlet headers and pipes. A high absorptivity coating shall be applied to the tubes on the panel side exposed to solar readiation. All attachements, clips and mountings required for the above other than measuring instrumentation shall be provided. A solar shield to be supplied by others, will surround the active panel to protect the sup- port structure and limit incident flux to the active panel to protect the sup-									
3.1.1 <u>ITEM</u>	DIAGRAMS	-							
The fo	ollowing diagrams a	re a part of this specification							
Figuro Figuro Figuro Figuro Figuro	e 3-1 Sodium Receiv e 3-2 Absorber Pane e 3-3 Absorber Pane e 3-4 Panel Flux Di e 3-5 Flux Distribu	er Test Assembly - Schematic l Thermal Cycling l Dimensional Limits stribution tion for Cyclic Life							
3.1.2 <u>INTERI</u>	FACE DEFINITION								
The al of a S Figure interi	osorber panel, as d Sodium Receiver Tes a 3-1 and the gener faces are as define	efined in 3.1, shall interface w t Assembly (SRTA) as shown schem al dimensional limits of Figure d below and in reference 2.3.	vith other portions matically in 3-3. Specific						
3.1.2.1 <u>Stri</u>	actural Interfaces								
• 2	Absorber panel supp structure.	ort structure to the fluid circu	lation equipment						
 Inlet/outlet header piping with loop piping. Pipe mechanical loads are as shown in Figure 3-3. Solar shield as shown in Figure 3-3 and Reference 2.3. 3.1.2.2 Fluid Interface Inlet/outlet header piping with loop piping. 									
REVISION	REVISION	SUPERSEDES							
NUMBER	4.9.80	OBIGINAL ISSUE	PAGE 8 OF 39						

Type of Cycle	Number of Cycles	DURATION (MINUTES)
() RAMP TO FULL TEMPERATURE	18,000	30
@ RAMP TO FULL FLUX	18,000	10
3 HOLD AT FULL FLUX CLEAR DAYS HALF CLOUDY DAYS PARTLY CLOUDY DAYS	7,000 2,500 8,500	600 300 60
@ RAMP TO MINIMUM FLOW	9,500	10
B RAMP TO UNIFORM TEMPERATURE	9, <i>50</i> 0	30
6 EMERGENCY SHUTDOWN	8,500	5 Seconds

* PERCENT OF FULL ROWER FLUX INTENSITY

PIGE 10 0F 39 REUSION 1 4-9-80

ENERGY			SPECIFICATION							
SYSTEMS PROGRAMS DEPARTMENT		ATION	29544724							
(SP)	TITLE									
			ORIGINAL							
GENERAL		AU	AUG 8, 1979							
ELEGIKIG										
	Table 3-4									
	Table 3-4 provides solar test pady dynamic characteristics for the conditions.	anel flux and therm following operation	10- 1g							
	A - "Uniform" flux with a to the panel of 2.5 MW and of 70 ^o F used to calculate	tal incident flux o an ambient temperat e losses.	on Jure							
	B, C - Same as A but with ambien -20°F and 120°F respectiv	nt temperatures of vely.								
	D - "Uniform" flux but reduced to a value con- sistent with a pump minimum flow of 20 GPM and an ambient temperature of 70°F.									
	E, F - Same as D but with ambien -20°F and 120°F respectiv	nt temperatures of vely.								
	G - "Peak" flux with a total panel of 2.5 MW and an ar of 70°F used to calcaular	incident flux on t mbient temperature te losses.	he							
NUMBER	DATE SUF	refisedes しろらいせ	PAGE 12 OF 39							
	<u> I</u>	······	<u></u>							

A UNIFORM FLUX, 70°FAMBIENT

ATPFW 11:19EDT 09/05/79

AIR TEMP., CONV. COEFF., C1?70., 2.0, .6366

FLUX PLOT FILENAME?FLUXTF

FULL PRINT(YES=1, NO=0)?1

RECEIVER SUMMARY

F	LOW	Ħ	50798.LB/HR
I	NCIDENT	=	2495438.W
R	AD. LOSS	=	86998.W
C	DAV. LOSS	Ξ	24845 . W
R	EFL. LOSS	=	124772.W
E	FFICIENCY	-	0.9052

TUBE	FLOW	INCIDENT	RADIATION	CONVECTION	EFFICIENCY
CROUP	LB/HR	W	W	W	
1	4618.	195242.	6783.	2139.	0.9043
2	4618.	213277.	7397.	2208.	0.9050
3	4618.	228505.	7946.	2265.	0.9053
4	4618.	239689.	8369.	2307.	0,9055
5	4618.	246663.	8644.	2333.	0.9055
6	4618.	249346.	8748.	2343.	0.9055
7	4618.	246622.	8640.	2333.	0.9055
8	4618.	239606.	8366.	2307.	0,9055
9	4618.	228381.	7941.	2265.	0.9053
10	4618.	213071.	7388.	2207.	0,9050
11	4618.	195036.	6775.	2139,	0.9043

в-16

- 1

20F 5

OUTSIDE TUBE TEMPERATURES(DEG. F)

1052.1	1094.0	1129.3	1155.2	1171.3	1177.5	1171.4	1155.2	1129.3	1094.0	1052.1
1045.6	1086.9	1121.8	1147.2	1163.0	1169.1	1162.7	1146.8	1121.2	1086.2	1044.9
1019.6	1058.5	1090.9	1114.8	1129.7	1135.2	1129.4	1114.3	1090.1	1057.3	1018.4
980.1	1015.1	1044.5	1066.0	1079.4	1084.6	1079.1	1065.6	1044.0	1014.2	979.2
935.7	966.8	992.5	1011.6	1023.7	1027.9	1023.3	1011.3	992 . I	966.0	935.1
890.1	916.9	939.4	955.8	966.3	970.1	966.0	955.6	939.3	916.5	889.7
844.2	866.7	885.6	899.6	908.4	911.5	908 . 3	892.6	885.6	866.6	843.9
797.4	815.7	831.1	842,4	849.5	852.2	849.3	842.2	831.1	815.5	797.1
749.0	763.0	774.8	.783.4	789.0	790,8	788.8	783.4	774.6	763.0	748.7
698.0	707.3	715.3	721.1	725.0	726.4	725.0	721.5	715.9	708.1	698.6
648.7	653.2	657.0	660.1	661.9	662.5	662.1	660.5	657.8	654,0	649.5

NODE EFFICIENCIES(P.U.)

0.831 0.835 0.834 0.833 0.832 0.831 0.831 0.832 0.834 0.835 0.837 0.876 0.877 0.876 0.876 0.876 0.877 0.878 0.878 0.878 0.877 0.876 0.893 0.893 0.894 0.893 0.893 0.893 0.893 0.893 0.894 0.894 0.894 0.901 0.901 0.902 0.902 0.902 0.902 0.901 0.902 0.902 0.902 0.902 0.908 0.908 0.908 0.908 0,908 0.908 0.908 0.907 0.907 0.907 0.908 0.912 0.913 0.913 0.913 0.913 0.913 0.912 0.912 0.913 0.913 0.913 0,917 0.918 0.918 0.917 0.916 0.918 0.918 0,918 0.916 0.917 0.918 0.922 0.922 0,922 0,921 0.920 0.919 0.922 0.922 0.919 0.921 0.921 0.924 0.925 0.925 0.925 0.924 0.924 0.921 0.923 0.924 0.923 0.921 0.925 0.925 0.925 0.924 0.923 0.922 0.920 0.920 0.922 0.923 0.924 0.917 0.917 0.917 0.915 0.913 0.911 0.910 0.913 0.915 0.916 0.917 PAUSE

LINE CALLING-ROUTINE

980 ATPFW

INCIDENT FLUX(W/SQ.CM)

2	7.2	29.6	31.8	33.4	34.4	34.8	34.6	33.6	32.1	30,1	27.6
4	2.6	46.6	50.2	52.7	54.2	55.0	54.2	52.7	50.2	46.7	42.7
5	1.6	56.5	60.5	63.5	65.3	66.0	65.3	63.4	60.3	56.1	51.3
5	4.4	59.4	63.7	66.7	68.6	69.4	68.6	66.6	63.5	59.2	54.2
5	5.0	60.0	64.1	67.3	69.2	69.9	69.1	67.2	63.9	59.7	54.7
5	4.8	59.9	64.1	67.2	69.1	69.9	69.0	67.1	64.0	59.7	54.7
5	4.6	59.6	63.7	66.9	68.8	69.4	68.8	66.9	63.7	59.5	54.5
5	3.5	58.4	62.5	65.6	67.4	68.2	67.3	65.3	62.4	58.2	53.3
5	0.1	54.7	58.6	61.4	63.3	63.8	63.2	61.3	58.3	54.4	49.7
4	1.2	45.1	48.5	50.8	52.5	53.1	52.5	51.0	48.6	45.3	41.3
2	6.7	29.1	31.2	32.8	33.8	34.1	33.9	33.0	31.6	29.5	27.2

B-17

ABSORBED FLUX(W/SQ.CM)

22.7	24.7	26.5	27.8	28.6	28.9	28.8	28.0	26.8	25.1	23.1
37.4	40.9	44.0	46.2	47.5	48,1	47.5	46.2	44.0	41.0	37.5
46.1	50.5	54.0	56.7	58.3	58.9	58.3	56.6	53.8	50.2	45.8
49.1	53.6	57.5	60.2	61.8	62.6	61.8	60.1	57.3	53.4	48.9
49.9	54.5	58.2	61.1	62.9	63.4	62.7	61.0	58.0	54.2	49.6
50.0	54.7	58.6	61.3	63.1	63.8	63.0	61.2	58.5	54.5	49.9
50.0	54.7	58.5	61.4	63.2	63.8	63.2	61.4	58.5	54.6	49,9
49.2	53.8	57.6	60.4	62.1	62.8	62.0	60.2	57.5	53.6	49.0
46.2	50.5	54.2	56.8	58.5	59.0	58.4	56.7	53.9	50.2	45.7
37.9	41.6	44.7	47.0	48.5	49.1	48.5	47.1	44.8	41.8	38.0
24.3	26.6	28.5	30.0	31.0	31.3	31.1	30.2	28.9	27.0	24.7
RADIATIC	N LOSS	(W)								
955.7	1067.7	1169.5	1248.6	1299.6	1319.9	1300.0	1248.6	1169.6	1067.6	955.6
939.0	1048.0	1147.1	1223.6	1273.0	1292.8	1272.1	1222.4	1145.5	1046.0	937.2
875.0	972.1	1059.0	1126.8	1170.6	1187.0	1169.8	1125.4	1057.0	968,9	872.0
783.6	864.0	936.3	991.8	1027.7	1041.7	1026.9	990.8	934.9	862,0	781.7
689.7	754.5	811.5	855.8	884.6	895.0	883,7	855.1	810.6	752.8	688.4
602.0	652.5	697.1	731.1	753.4	761:6	752.8	730.7	696.9	651.7	601.3
522.3	560.3	593.7	619.5	636.2	642.1	636.0	619.5	593.9	560 . I	521.8
449.3	476.8	501.1	519.4	531.2	535.6	530.8	519.1	501.0	476.7	448.9
381.9	400.6	416.8	428.9	437.0	439.6	436.8	429.0	416.6	400.5	381.5
319.1	330.0	339.5	346.5	351.3	353,1	351.4	347.0	340.2	330.9	319.8
265.8	270.3	274.3	277.5	279.4	280.0	279.6	27.7.9	275,1	271.2	266.6
CONVECT	ION LOSS	5(W)								
236.3	246.4	254.9	261.1	265.0	266,5	265.0	261.1	254.9	246.4	236.3
234.8	244.7	253.1	259.2	263.0	264.5	262.9	259.1	252.9	244.5	234.6
228.5	237.9	245.7	251.4	255.0	256.3	254.9	251.3	245.5	237.6	228.2
219.0	227.4	234.5	239.7	242.9	244.1	242,8	239.6	234.4	227.2	218.8
208.3	215.8	222.0	226.6	229.5	230.5	229.4	226.5	221.9	215.6	208.2
197.3	203.8	209.2	213.2	215.7	216.6	215,6	213.1	209.2	203.7	197.2
186.3	191.7	196.2	199.6	201.7	202,5	201.7	199.6	196.3	191.7	186.2
175.0	179.4	183.1	185.9	187.6	188.2	187.5	185.8	183.1	179.4	175.0
163.4	166.8	169.6	171.7	173.0	173.4	173.0	171.7	169.6	166.7	163.3
151.1	153.4	155.3	156.7	157.6	158.0	157.6	156.8	155.4	153.5	151.3
139.2	140.3	141.3	142.0	142.4	142.6	142.5	142.1	141.4	140.5	139.4

B-18

А зот5

NODE SODIUM TEMPERATURES (DEG. F)

1019.4	1058.5	1091.4	1115.5	1130.6	1136.3	1130.4	1115.3	1091.0	1057.8	1018.7
991.5	1028.0	1058.7	1081.2	1095.3	1100.5	1095.0	1080.8	1058.1	1027.1	990.6
952.7	985.6	1013.1	1033.4	1046.1	1050.8	1045.8	1033.1	1012.7	984.8	951.9
908.5	937.2	961.3	979.1	990.3	994.4	990.0	978.9	961.1	936.7	907.9
862.5	887.1	907.6	922.8	932.4	935.9	932.2	922.6	907.5	886.7	862.1
816.1	836.4	853.4	865.9	873.9	876.7	873.7	865.9	853.4	836.3	815.9
769.7	785.6	799.0	808.9	815.2	817.5	815.1	808.9	799.1	785.6	769.5
723.6	735.2	745.1	752.4	757.0	758.7	757.0	752.5	745.2	735.4	723.6
679.3	686.8	693.2	697.9	701.0	702.1	701.0	698.2	693.5	687.2	679.5
640.2	644.0	647.3	649.7	651.3	651.9	651.4	650.0	647.7	644.5	640.6
611.3	612.3	613.2	614.0	614.4	614.5	614.4	614.0	613.4	612.5	611.5
1000										

PAUSE

LINE CALLING-ROUTINE

1120 ATPFW

SODIUM HEAT TRANSFER COEFFICIENTS(BTU/HR*F*FT**2)

3502.1	3474.8	3452.5	3436.6	3426.7	3423.0	3426.9	3436.7	3452.8	3475.3	3502.6
3522.1	3496.0	3474.7	3459.4	3450.0	3446.4	3450,1	3459.6	34.75.1	3496.6	3522.8
3550.8	3526.4	3506.5	3492.2	3483.3	3480.1	3483.5	3492.4	3506.9	3527.0	3551.4
3584.7	3562.4	3544.3	3531.1	3523.0	3520.0	3523.2	3531.3	3544.5	3562.9	3585.1
3621.5	3601.6	3585.3	3573.5	3566.1	3563.5	3566.3	3573.6	3585.4	3601.9	3621.8
3660.4	3643.2	3629.0	3618.7	3612.2	3609.9	3612.3	3618.7	3629.0	3643.3	3660.6
3701.4	3687.1	3675.2	3666.6	3661.2	3659.2	3661.2	3666.6	3675.2	3687.1	3701.5
3744.2	3733.2	3723.9	3717.2	3712.9	3711.4	3712.9	3717.1	3723.8	3733.0	3744.2
3787.7	3780.2	3773.7	3769.1	3766.1	3765.0	3766.0	3768.8	3773.4	3779.7	3787.4
3828.2	3824.1	3820.7	3818.1	3816.5	3815.9	3816.4	3817.9	3820.2	3823.6	3827.7
3859.5	3858.4	3857.4	3856.6	3856.1	3856.0	3856.1	3856.5	3857.2	3858.2	3859.3
TUBE COND	UCTANCE	BTU/HR*F	*FT**2)					· .		
1396.9	1404.1	1410.0	1414.2	1416.8	1417.7	1416.8	1414.2	1410.0	1404.1	1396.9
1395.2	1402.4	1408.2	1412.4	1415.0	1416.0	1414.9	1412.4	1408.2	1402.3	1395.1
1390.2	1397.1	1402.7	1406.7	1409.2	1410.1	1409.1	1406.6	1402.6	1396.9	1390.0
1382.7	1389.1	1394.4	1398.1	1400.4	1401.3	1400.4	1398.0	1394.3	1389.0	1382.6
1374.1	1380.0	1384.7	1388.2	1390.3	1391.1	1390.3	1388.1	1384.6	1379.8	1374.0
1365.0	1370.2	1374.5	1377.6	1379.5	1380.2	1379.5	1377.5	1374.4	1370.1	1364.9
1355.4	1359.9	1363.6	1366.4	1368.1	1368.7	1368.0	1366.4	1363.6	1359.9	1355.4
1345.4	1349.1	1352.2	1354.5	1355.9	1356.5	1355,9	1354.5	1352.3	1349.1	1345.4
1334.8	1337.7	1340.1	1341.9	1343.0	1343.4	1343,0	1341.9	1340,1	1337.7	1334.8
1323.6	1325.6	1327.2	1328.4	1329.2	1329.5	1329,2	1328.5	1327,3	1325.7	1323.8
1312.9	1313.8	1314.6	1315.2	1315.6	1315.7	1315.6	1315.3	1314.7	1313.9	1313.0

TUBE WALL CONDUCTIVITY(BTU/HR*F*FT)

11.6	11,8	11.9	12.0	12.1	12.	1 12.1	12 0	11 0	11.8		
11.5	11.7	11.8	11.9	12.0	12.0	j 12.0	11.9	11.8	11.7	11.5	
11.3	11.5	11.6	11.8	11.8	11.8	3 11.8	11.8	11.6	11.5	11.3	
11.1	11.3	11.4	11.5	11.6	11.0	5 11.6	11.5	11.4	11.3		
10.9	11.1	11.2	11.3	11.3	11.	3 11.3	11.2	11.2	11 1		
10.7	10.8	10.9	11.0	11.0	11.0		11.0	10.9	10.8	10.9	
10.5	10.6	10.7	10.7	10.8	10.8	3 10.8	10.7	10.7	10.6		
10.3	10.3	10.4	10.5	10.5	10.5	5 10.5	10.5	10.4	10.0	10.3	
10.1	10.1	10.2	10.2	10.2	10.3		10.2	10.7	10.5	10.5	
9.8	9,9	9.9	9.9	9.9	0.0		0.0	0.0	10.1		
9.7	9.7	9.7	9.7	0.7	0	1 0 7	07	7•7 07	9 ,9	.7.7	
		· •			ו (7.1	7.1	¥ ∳ ·I	9.1	
PEAK TUB	E TEMPER	ATURE (D	EG. F)								
1070.8	1114.3	1151.0	1177.	9 11	94.5	1201.0	1104 8	1178 0	1161.2		1071 1
1076.5	1120.5	1157.8	1184.	8 120		1208 3		1194 4	1157.2	1114.0	1071.1
1057.9	1100.1	1135.3		2 11	77 1	1183 3	120145	1164.4	1137.2	1119.9	1075.9
1021.0	1059.5	1092.0	1115	6 11	20 2	1126 1	1177.1	1100.7	1134.3	1090.7	1020.4
977.5	1012.3	1041.0	1062	3 10	30.3 75 7	1080 5		1112.1	1091.3	1058.5	1020.0
932.3	962.9	988.5	1007			1000.5	1019.3	1004 9	1040+4	1011.3	970.7
886.7	913.0	935.0	951	1 10	61 K	065 2	061 5	0513	900.3	902.3	931.8
839.6	861.6	880.2	803	1 70 1 0/		905.2	901.5	901.3	932.0	912.8	880.3
788.9	806.5	821.4	832	1 8	30 3	905.0	902.1	093.4	880.1	801.3	839.1
731.0	743.5	754.2	761	1 U. D 7/	57•2 67 0	740 0	747 1		7540	800.2	788.2
670.0	676.5	682 0	886	7 ./(A	0. NO	107.U	101.1	102.5	154.8	144.4	131.1
CONTINUE	ITERATIC	1N2(VES=		т U(20	JA • 0	009.9	007.3	007.0	083.2	011.6	6/1.2
	*********	WALLED.		10							

B UNIFORM FLUX, - 20°F AMBIENT

B

ATPFW 13+04EDT 09/05/79

AIR TEMP., CONV. COEFF., C1?-20., 2.0, .6366

FLUX PLOT FILENAME?FLUXTF

FULL PRINT(YES=1,NO=0)?1

RECEIVER SUMMARY

	FLOW	=	50719.LB/HR
i i	INCIDENT	==	2495438.W
2	RAD. LOSS	*	87908.W
	CONV. LOSS	=	27463.W
	REFL. LOSS	Ξ	124772.W
	EFFICIENCY	=	0.9038

TUBE GROUP	FLOW LB/HR	INCIDENT W	RADIATION W	CONVECTION W	EFFICIENCY
1	4611.	195242.	6865.	2377.	0,9027
2	4611.	213277.	7479.	2445.	0.9035
3 4	4611. 4611.	228505. 239689.	8029. 8453.	2503. 2545.	0.9039
5	4611.	246663.	8727.	2571.	0.9042
6	4611.	249346.	8832.	2581.	0.9042
7	4611.	246622.	8724.	2571.	0.9042
8	4611.	239606.	8449.	2545.	0.9041
9	4611.	228381.	8024.	2503.	0.9039
10	4611.	213071.	7471.	2445.	0.9035
11	4611.	195036.	6856,	2376.	0.9027

B-21

OUTSIDE	TUBE	TEMP	PERATURES	(DEG.	F)

1051.9	1093.9	1129.2	1155.2	1171.3	1177.5	1171.4	1155.2	1129.3	1093.8	1051.9
1045.4	1086.8	1121.7	1147.1	1163.0	1169.2	1162.7	1146.8	1121.2	1086.1	1044.7
1019.5	1058.4	1090.8	1114.8	1129.7	1135.2	1129.4	1114.3	1090.1	1057.2	1018.3
979.9	1015.0	1044.5	1066.0	1079.4	1084.6	1079.1	1065.6	1043.9	1014.1	979.1
935.6	966.7	992.4	1011.6	1023.6	1027.9	1023.2	1011.3	992.0	965.9	934.9
889.9	916.8	939.3	955.8	966.2	970.0	965.9	955.6	939.2	916.4	889.6
844.0	866.6	885.5	899.5	908.4	911.5	908.3	899.5	885.5	866.5	843.7
797.3	815.5	831.0	842.3	849.5	852 . I	849.3	842.1	831.0	815.4	.797.0
748.9	762.9	774.7	783.2	788.8	790.7	788.7	783.3	774.5	762.8	748.6
697.9	707.2	715.2	721.0	724.8	726.3	724.9	721.4	715.8	708.0	698.5
648.6	653.0	656.9	659.9	661.8	662.4	662.0	660.3	657.7	653.8	649.4

NODE EFFICIENCIES(P.U.)

0.832	0.831	0.830	0.829	0.829	0.828	0.829	0.830	0.831	0.833	0.834
0.876	0.876	0.875	0.875	0.874	0.874	0.874	0.875	0.875	0.876	0.876
0.892	0.892	0.892	0.892	0.892	0.891	0.892	0.892	0.892	0,892	0.892
0.900	0.901	0.901	0.900	0.900	0.900	0.900	0.900	0.901	0.900	0.900
0.906	0.906	0.907	0.907	0.907	0.907	0.907	0,907	0,906	0.906	0.906
0.910	0.911	0.912	0.912	0.912	0.912	0.912	0.912	0,912	0.911	0.910
0.915	0.916	0.916	0.917	0.917	0.917	0.917	0.917	0.916	0.916	0.915
0.918	0.919	0.920	0.921	0.921	0.921	0.921	0.921	0,920	0.919	0.918
0.920	0.921	0.922	0.923	0.924	0.924	0.923	0.923	0.922	0.921	0.920
0.918	0.920	0.922	0.923	0.923	0,923	0.923	0.923	0.922	0.920	0.918
0.907	0.910	0.913	0.914	0.915	0.915	0.915	0.914	0.913	0.911	0.908
PAUSE										

B-22

LINE CALLINGTRUUTIN	LINE	CALL	ING-ROUT	INE
---------------------	------	------	----------	-----

980 ATPFW

INCIDENT	FL	JUX	(W/	'SQ.	CM)
----------	----	-----	-----	------	-----

27.2	29.6	31.8	33.4	34.4	34.8	34.6	33.6	32.1	30.1	27.6
42.6	46.6	50.2	52.7	54.2	55.0	54.2	52.7	50.2	46.7	42.7
51.6	56.5	60.5	63.5	65.3	66.0	65.3	63.4	60.3	56.1	51.3
54.4	59.4	63.7	66.7	68.6	69.4	68.6	66.6	63.5	59.2	54.2
55.0	60.0	64.1	67.3	69.2	69.9	69.1	67.2	63.9	59.7	54.7
54.8	59.9	64.1	67.2	69.1	69.9	69.0	67.1	64.0	59.7	54.7
54.6	59.6	63.7	66.9	68.8	69.4	68.8	66.9	63.7	59.5	54.5
53.5	58.4	62.5	65.6	67.4	68.2	6.7 . 3	65,3	62.4	58.2	53.3
50.1	54.7	58.6	61.4	63.3	63.8	63.2	61.3	58.3	54.4	49,7
41.2	45.1	48.5	50.8	52.5	53.1	52.5	51.0	48,6	45.3	41.3
26.7	29.1	31.2	32.8	33.8	34.1	33.9	33.0	31.6	29.5	27.2

0 20=5

ABSORBED) FLUX(W	N/SQ.CM))							
22.6	24.6	26.4	27.7	28,5	28.9	28.7	27.9	26.7	25.0	23.0
37.3	40.8	43.9	46.1	47.4	48.0	47.4	46.1	43.9	40.9	37.4
46.1	50.4	53.9	56.6	58.3	58.8	58.3	56.5	53.8	50.1	45.8
49.0	53.5	57.4	60.1	61.7	62.5	61.7	60.0	57.2	53.3	48.8
49.8	54.4	58.2	61.0	62.8	63.4	62.7	60.9	58.0	54.1	49.6
49.9	54.6	58.5	61.3	63.1	63.7	62.9	61.2	58.4	54.4	49.8
50.0	54,6	58.4	61.3	63.1	63.7	63.1	61.3	58.4	54.5	49.9
49.2	53.7	57.5	60.4	62.1	62.8	62.0	60.1	57.4	53.5	49.0
46.1	50.4	54.1	56.7	58.4	58.9	58,3	56.6	53.8	50 . I	45.7
37.8	41.5	44.7	46.9	48.4	49.0	48.4	47.0	44.8	41.7	37.9
24.2	26.5	28.4	30.0	30.9	31.2	31.0	30.2	28.8	26.9	24.7
RADIATIC	N LOSS	(W)								
962.9	1075.1	1177.0	1256.2	1307.3	1327.5	1307.6	1256.2	1177.0	1074.9	962.8
946.3	1055.4	1154.7	1231.2	1280.7	1300.5	1279.9	1230.1	1153.1	1053.4	944.5
882.3	979.6	1066.6	1134.4	1178.3	1194.7	1177.5	1133.1	1064.5	976,4	879.4
790.9	871.5	943.9	999.4	1035.3	1049.4	1034.6	998.4	942.4	869.5	789.1
697.1	761.9	819.0	863.4	892.3	902.6	891.3	862.7	818.1	/60,3	695.8
609.4	659.9	704.6	738.7	760,9	769.2	760.3	738.3	704.4	659,2	608,7
529.7	567.8	601.2	627.1	643.7	649.7	643.6	627.1	601.4	567.6	529,3
456.8	484.3	508.6	526.9	538.7	543.2	538.4	526.6	508.6	484.1	456.3
389.4	408.1	424.3	436.4	444.5	447.1	A44.3	436.6	424.1	408.0	389.0
326.7	337.5	347.0	354.1	358.8	360.6	358.9	354.6	347.7	338.4	327.3
273.3	277.9	281.9	285.0	286.9	287.6	287.1	285.4	282.7	278.7	274.2
CONVECT	ION LOS	S(W)								
257.9	268.0	276.5	282.8	286.7	288.2	286.7	282.8	276.5	268.0	257.9
256.4	266.3	274.7	280.8	284.7	286,1	284,6	280,8	274.6	266.1	256.2
250.1	259.5	267.3	273.1	276.6	278.0	276.6	272.9	267.1	259.2	249.8
240.6	249.0	256.1	261.3	264.5	265.8	264,5	261.2	256,0	248.8	240.4
229.9	237.4	243.6	248.2	251.1	252.1	251.0	248.2	243,5	237,2	229.8
219.0	225.4	230.8	234.8	237.3	238.2	237.2	234.7	230.8	225.3	218.9
207.9	213.3	217.9	221.3	223.4	224.1	223.4	221.3	217.9	213.3	207.8
196.7	201.1	204.8	207.5	209.2	209.9	209.2	207.4	204.8	201.0	196.6
185.0	188.4	191.2	193.3	194.6	195.1	194.6	193.3	191.2	188.4	184.9
172.7	175.0	176.9	178.3	179.2	179.6	179.2	178.4	177.0	175.2	172.9
160.9	162.0	162.9	163.6	164.1	164.2	164.1	163.7	163.1	162.1	161.1

NODE SODI	UM TEMPE	RATURESC	DEG. F)							
1019.3	1058.4	1091.4	1115.6	1130.6	1136.4	1130.5	1115.3	1091.0	1057.8	1018.5
991.4	1028.0	1058.7	1081.3	1095.3	1100.6	1095.1	1080.9	1058.1	1027.1	990.5
952.6	985.6	1013.2	1033.5	1046.2	1050.9	1045.9	1033.1	1012.7	984.8	951.8
908.4	937.2	961.4	979.2	990.4	994.5	990.1	978.9	961.1	936.7	907.8
862.5	887.0	907.6	922.8	932.5	935.9	932.2	922.7	907.5	886.7	862.1
816.1	836.3	853.4	866.0	873.9	876.8	873.8	865.9	853.4	836.2	815.8
769.6	785.5	799.0	808.9	815.3	817,5	815.2	808.9	700.1	785.6	769.5
723.5	735.2	745.1	752.4	757.0	758.7	757.0	752.5	745.2	735.4	723.5
679.2	686.7	693.2	697.9	701.0	702.1	701.0	698.1	693.5	687.2	679.5
640.2	644.0	647.2	649.7	651.3	651.8	651.4	649.9	647.7	644.4	640.6
611.3	612.3	613.2	613.9	614.4	614.5	614.4	614.0	613.4	612.5	611.5
INALIC'I"										

0 40F5

PAUSE

LINE CALLING-ROUTINE

1120 ATPFW

SODIUM HEAT TRANSFER COEFFICIENTS (BTU/HR*F*FT**2)

	3500.0	3472.7	3450.4	3434.4	3424.6	3420.8	3424.7	3434.5	3450.6	3473.1	3500.4
	3520.0	3493.8	3472.5	3457.2	3447.7	3444.2	3447.9	3457.4	3472.9	3494.4	3520.6
	3548.6	3524.2	3504.3	3490.0	3481.1	3477.8	3481.3	3490.2	3504.6	3524.8	3549.2
	3582.5	3560.2	3542.0	3528.9	3520.7	3517.7	3520.9	3529.1	3542.2	3560.6	3582.9
	3619.2	3599.4	3583.1	3571.3	3563.9	3561.2	3564.0	3571.4	3583.2	3599.6	3619.6
	3658.1	3640.9	3626.7	3616.4	3609.9	3607.6	3610.0	3616.4	3626.7	3541.0	3658.3
	3699.1	3684.8	3672.9	3664.3	3658.9	3656.9	3658.9	3664.3	3672.9	3684.8	3699.2
	3741.9	3730.9	3721.6	3714.8	3710.5	3709.0	3710.6	3714.8	3721.5	3730.7	3741.9
	3785.4	3777.8	3771.4	3766.7	3763.7	3762.7	3763.7	3766.5	3771.1	3777.4	3785.1
	3825.8	3821.8	3818.3	3815.7	3814.1	3813.5	3814.0	3815.5	3817.9	3821.3	3825.4
	3857.1	3856.0	3855.0	3854.2	3853.7	3853.6	3853.7	3854.1	3854,8	3855.8	3856.9
T	UBE COND	UCTANCE	BTU/HR*F	*FT**2)							
	1396.5	1403.7	1409.6	1413.8	1416.3	1417.3	1416.4	1413.8	1409.5	1403.6	1396.4
	1394.8	1402.0	1407.8	1412.0	1414.6	1415.6	1414.5	1411.9	1407.7	1401.8	1394.7
	1389.8	1396.7	1402.3	1406.3	1408.8	1409.7	1408.7	1406.2	1402.1	1396.5	1389.6
	1382.3	1388,7	1394.0	1397.7	1400.0	1400.9	1400.0	1397.6	1393.9	1388.6	1382.2
	1373.7	1379.6	1384.3	1387.8	1390.0	1390.7	1389.9	1387.7	1384.2	1379.4	1373.6
	1364.6	1369.8	1374.1	1377.2	1379.1	1379.8	1379.1	1377.1	1374.0	1369.7	1364.5
	1355.0	1359.5	1363.2	1366.0	1367.7	1368.3	1367.7	1366.0	1363.3	1359.5	1355.0
	1345.0	1348.8	1351.9	1354.1	1355.6	1356,1	1355.5	1354.1	1351.9	1348.7	1345.0
	1334.5	1337.4	1339.8	1341.5	1342.7	1343.0	1342.6	1341.6	1339,8	1337.4	1334.4
	1323.3	1325.2	1326.9	1328.1	1328.8	1329,1	1328.9	1328,1	1327.0	1325.4	1323.4
	1312.5	1313.4	1314.2	1314.8	1315.2	1315.3	1315.3	1314.9	1314.4	1313.6	1312.7

В-24

FUBE WALL	CONDUCT	FIVITY (B	TU/HR*H	F*FT)							
11.6	8.11	11.9	12.0	12.1	12.1	12.1	12.0	11.9	11.8	11.6	
11.5	11.7	11.8	11.9	12.0	12.0	12.0	11.9	11.8	11.7	11.5	
11.3	11.5	11.6	11.8	11.8	11.8	8.11.8	11.8	11.6	11.5	11.3	
11.1	11.3	11.4	11.5	11.6	11.6	11.6	11.5	11.4	11.3	11.1	
10.9	11.1	11.2	11.3	11.3	11.3	11.3	11.2	11.2	11.1	10.9	
10.7	10.8	10.9	11.0	11.0	11.0	0.11	11.0	10.9	10.8	10.7	
10.5	10.6	10.7	10.7	10.8	10.8	8.01	10.7	10.7	10.6	10.5	
10.3	10.3	10.4	10.5	10.5	10.5	10.5	10.5	10.4	10.3	10.3	
10.1	10.1	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.1	10.1	
9.8	9.9	9.9	9.9	9.9	9.9	, 9 . 9	9.9	9.9	9.9	9.9	
9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7	
PEAK TUBE	TEMPERA	ATURE (D	EG. F)								
1070.6	1114.1	1150.8	1177.	.8 11	94.5	1201.0	1194.7	1177.9	1151.1	1114.4	1070.9
1076.3	1120.3	1157.7	1184	.7 12	01.6	1208.3	1201.3	1184.4	1157.1	1119.7	1075.6
1057.7	1100.0	1135.2	1161.	.2 11	77.3	1183.3	1177.1	1160.6	1134.3	1098.5	1056.2
1020.8	1059.4	1091.9	1115.	.5 11	30.2	1136.0	1130.0	1115.1	1091.2	1058.3	1019.8
977.4	1012.1	1040.8	1062	.2 10	75.7	1080.4	1075.2	1061.9	1040.3	1011.1	976.5
932.1	962.7	988.3	1007	0 10	18.9	1023.3	1018.5	1006.7	988.2	962.2	931.6
886.5	912.8	934.8	951	.2 9	61.5	965.1	961.4	951.2	.934.9	912.6	886.1
839.4	861.4	880,0	893	.79	02.2	905.5	901.9	893.3	879.9	861.1	838.9
788.7	806.3	821.2	832	.0 8	39.0	841.2	838.8	832.0	820.8	806.0	788.0
730.8	743.3	754.0	761	.7 7	66.8	768.8	766.9	762.2	754.6	744.2	731.5
669.9	676.3	681.8	686	.2 6	88.8	689.7	689.1	686.8	683.0	677.4	671.0

CONTINUE ITERATION? (YES=1,NO=0)?0

C UNIFORM FLUX , 120°F AMBIENT

С 1055

ATPFW 13:08EDT 09/05/79

AIR TEMP., CONV. COEFF., C12120., 2.0, 6366

FLUX PLOT FILENAME?FLUXTF

FULL PRINT(YES=1,NO=0)?1

RECEIVER SUMMARY

FLOW	-	50848.LB/HR
INCIDENT	=	2495438.W
RAD. LOSS	=	86241.W
CONV. LOSS	=	23391.W
REFL. LOSS	=	124772.W
EFFICIENCY	=	0.9061

в-26

TUBE GROUP	FLOW LB/HR	INCIDENT W	RADIATION W	CONVECTION W	EFFICIENCY
I	4623.	195242.	6715.	2007.	0.9053
2	4623.	213277.	7328.	2075.	0.9059
3	4623.	228505.	7877.	2133.	0.9062
4	4623.	239689.	8300.	2175.	0.9063
5	4623.	246663.	8574.	2201.	0.9063
6	4623.	249346	8679.	2211.	0.9063
7	4623.	246622.	8571.	2201	0.9063
8	4623.	239606.	8296.	2174.	0,9063
9	4623.	228381.	7872.	2132.	0.9062
10	4623.	213071.	7320.	2075.	0.9059
11	4623.	195036	6707.	2006.	0,9053

K

OUTSIDE TUBE TEMPERATURES(DEG. F)

IS IDE I	UBE TEMP	ERATURES	(DEG, F)								C .
1052.2	1094.1	1129.4	1155.2	1171.3	1177.5	1171.4	1155.2	1129.4	1094.0	1052.2	2015
1045.7	1086.9	1121.8	1147.2	1163.0	1169.1	1162.7	1146.8	1121.2	1086.2	1045.0	
1019.7	1058.5	1090.9	1114.8	1129.7	1135.1	1129.4	1114.3	1090.2	1057.3	1018.5	
980.2	1015.1	1044.6	1066.0	10.79.4	1084.6	1079.2	1065.6	1044.0	1014.3	979.3	
935.8	966.8	992.5	1011.6	1023.7	1027.9	1023.3	1011.4	992.2	966.1	935.2	
890.2	917.0	939.4	955.9	966.3	970.1	966.0	955.7	939.3	916.6	889.8	
844.3	866.8	885.6	899.6	908.5	911.6	908.4	890.6	885.7	866.7	844.0	
797.5	815.7	831.2	842.5	849.6	852.3	849.4	842.3	831.2	815.6	797.2	
749.1	763.1	774.9	783.4	789.0	790.8	788.9	783.5	774.7	763.0	748.8	
698.1	707.4	715.4	721.2	725.0	726.5	725.1	721.6	716.0	708.2	698.7	
648.8	653.2	657.1	660 . I	662.0	662.6	662.2	660.5	657.9	654.0	649.6	

NODE EFFICIENCIES(P.U.)

0.837	0.835	0.834	0.833	0.832	0.832	0.833	0.834	0.835	0.837	0,838
0.879	0.878	0.878	0.87.7	0.877	0.877	0.877	0.877	0.878	0.879	0.879
0.895	0.895	0.894	0.894	0.894	0.893	0,894	0.894	0.894	0,895	0.895
0.903	0.903	0.903	0.902	0.902	0.902	0,902	0.902	0.902	0.903	0.902
0.908	0.908	0.909	0.909	0.909	0.908	0,908	0.909	0.908	0.908	0.908
0.913	0,913	0.914	0.914	0.914	0.914	0.914	0.914	0.914	0,913	0.913
0.917	0.918	0.918	0.919	0.919	0,919	0.919	0.919	0.918	0.918	0.917
0.920	0.921	0.922	0.923	0.923	0.923	0.923	0.922	0.922	0.921	0.920
0.922	0.924	0.925	0.925	0.925	0.926	0.925	0.925	0.924	0.924	0.922
0.921	0.923	0.924	0.925	0.925	0.926	0.925	0.925	0.924	0,923	0.921
0.912	0.915	0.917	0.918	0.919	0.919	0.919	0.918	0.917	0,915	0.913
PAUSE										

LINE CALLING-ROUTINE

ATPFW **686**

INCIDENT FLUX (W/SQ.CM)

27.2	29.6	31.8	33.4	34.4	34.8	34.6	33.6	32.1	30.1	27.6
42.6	46.6	50.2	52.7	54.2	55.0	54.2	52.7	50.2	46.7	42.7
51.6	56.5	60.5	63.5	65.3	66.0	65.3	63.4	60.3	56.1	51.3
54.4	59.4	63.7	66.7	68.6	69.4	68.6	66.6	63.5	59.2	54.2
55.0	60.0	64.1	67.3	69.2	69.9	69.1	67.2	63.9	59.7	54.7
54.8	59.9	64.1	57.2	69.1	69.9	69.0	67.1	64.0	59.7	54.7
54.6	59.6	63.7	66.9	68.8	69.4	68.8	66.9	63.7	59.5	54.5
53.5	58.4	62.5	65.6	67.4	68.2	67.3	65.3	62.4	58.2	53.3
50.1	54.7	58.6	61.4	63.3	63.8	63.2	61.3	58.3	54.4	49.7
41.2	45.1	48.5	50.8	52.5	53.1	52.5	51.0	48.6	45.3	41.3
26.1	29.1	31.2	32.8	33.8	34.1	33.9	33.0	31.6	29.5	27.2

в-27

С ЗоF5

ABSORB	ED FLUX (W/SQ.CM))							
22.	7 24.8	26.5	27.8	28.6	29.0	28.8	28 . I	26.8	25.2	23.1
37.	5 41.0	44.1	46.2	47.5	48,2	47.5	46.2	44.1	41.1	37.6
46.	2 50.5	54.1	56.8	58.4	59.0	58,4	56.7	53.9	50,2	45.9
49.	1 53.6	57.5	60.2	61.9	62.7	61.9	60.1	57.3	53.4	48.9
49.	9 54.5	58.3	61.1	62.9	63,5	62.8	61.0	58:1	54.2	49.7
50.	1 54.7	58.6	61.4	63.2	63.9	63.1	61.3	58.5	54.5	50.0
50.	1 54.7	58.5	61.4	63.2	63.8	63.2	61.4	58.5	54.6	50.0
49.	3 53.8	57.7	60.5	62.2	62.9	62.1	60.3	57.6	53.6	49.1
46.	2 50.6	54.2	56.8	58.6	59.1	58.5	56.7	53,9	50.3	45.8
38.	0 41.6	44.8	47.0	48.6	49.2	48.6	47.1	44.9	41.8	38.1
24.	4 26.6	28.6	30.1	31.0	31.3	31.1	30.3	29.0	27.0	24.8
RADIAT	TON LOSS	(W)								
949.	6 1061.6	1163.3	1242.3	1293.3	1313.5	1293.7	1242.4	1163.4	1061.4	949.5
932.	9 1041.8	1140.9	1217.2	1266.6	1286.4	1265.8	1216.1	1139.2	1039.8	931.1
868.	8 965.9	1052.8	1120.4	1164.2	1180.6	1163.4	1119.1	1050.7	962.7	865.9
777.	4 857.8	930.1	985.5	1021.3	1035.4	1020.6	984.5	928.6	855.8	775.5
683.	5 748.2	805.2	849.5	878.3	888.7	877.4	848.8	804.3	746.6	682.2
595.	8 646.2	690.8	724.8	747.1	755.3	.746.5	724.4	690.6	645,5	595.1
516.	1 554.1	587.5	613.3	629.9	635.8	629.7	613.2	587.6	553.9	515.6
443.	1 470.6	494.8	513.1	524.9	529.4	524.6	512.8	494.8	470.4	442.7
375.	7 394.3	410.6	422.7	430.7	433.3	430.5	422.8	410.4	394.3	375.3
312.	9 323.7	333.2	340.3	345.0	346.8	345.1	340.8	333.9	324.6	313.5
259.	5 264.0	268.0	271.2	273.1	273.7	273.3	271.6	268.9	264,9	260.3
CONVEC	TION LOS	SCWD								
224.	3 234.4	242.9	249.1	253.0	254.5	253.0	249.1	242.9	234.4	224.3
222.	7 232.7	241.1	247.2	251.0	252.5	250.9	247.1	240.9	232.5	222.6
216.	5 225.8	233.6	239.4	243.0	244.3	242.9	239.3	233.4	225.5	216.2
207.	0 215.4	222.5	227.6	230.9	232.1	230.8	227.5	222.3	215.2	206.8
196.	3 203.8	210.0	214.6	217.4	218.5	217.4	214.5	209.9	203.6	196.2
185.	3 191.8	197.2	201.1	203.6	204.6	203.6	201.1	197.2	191.7	185.2
174.	3 179.7	184.2	187.6	189.7	190.5	189.7	187.6	184.2	179.7	174.2
163.	0 167.4	171.1	173.8	175.6	176.2	175.5	173.8	171.1	167.4	163.0
151.	4 154.7	157.6	159.6	161.0	161.4	161.0	159.7	157.5	154.7	151.3
139.	1 141.3	143.3	144.7	145.6	145.9	145.6	144.8	143.4	141.5	139.3
127.	2 128.3	129.2	130.0	130.4	130.6	130.5	130.1	129.4	128.5	127.4

NODE SODIUM TEMPERATURES(DEG. F)

1019.4	1058.5	1091.4	1115.5	1130.5	1136.3	1130.3	1115.2	1091.0	1057.8	1018.8
991.5	1028.0	1058.6	1081.1	1095.2	1100.5	1094.9	8.0801	1058.1	1027.1	990.6
952.7	985.6	1013.1	1033.4	1046.1	1050.8	1045.8	1033.0	1012.6	984.8	951.9
908.5	937.2	961.3	979.1	990.3	994.3	990.0	978.8	961.0	936.7	907.9
862.5	887.1	907.6	922.8	932.4	935.8	932.1	922.6	907.5	886.7	862.2
816.2	836.4	853.4	865.9	873.9	876.7	873.7	865.9	85.3.4	836.3	815.9
769.7	785.6	799.0	808.9	815.2	817.5	815.1	808.9	799.1	785.6	769.6
723.6	735.2	745.1	752.4	757.0	758.7	757.0	752.5	745.3	735.4	723.6
679.3	686.8	693.2	697.9	701.0	702.1	701.1	698.2	693.5	687.2	679.6
640.2	644.0	647.3	649.7	651.3	651.9	651.4	650.0	647.7	644.5	640.7
611.3	612.3	613.2	614.0	614.4	614.5	614.4	614.1	613.4	612.5	611.5

PAUSE

LINE CALLING-ROUTINE

1120 ATPFW

SODIUM HEAT TRANSFER COEFFICIENTS(BTU/HR*F*FT**2)

0.0.010.001				VD + 0 , 111 *						
3503.4	3476.2	3453.9	3437.9	3428.1	3424.4	3428.2	3438.1	3454.2	34.76.6	3503.9
3523.5	3497.4	3476.1	3460.8	3451.3	3447.8	3451.5	3461.0	3476.5	3498.0	3524.1
3552.1	3527.8	3507.9	3493.6	3484.8	3481.5	3484.9	3493.8	3508.3	3528.4	3552.7
3586.1	3563.8	3545.7	3532.5	3524.4	3521.4	3524.6	3532.7	3545.9	3564.3	3586.5
3622.9	3603.0	3586.7	3574.9	3567.6	3564.9	3567.7	3575,1	3586.8	3603.3	3623.2
3661.8	3644.6	3630.4	3620.1	3613.6	3611.3	3613.7	3620.1	3630.4	3644.7	3662.0
3702.8	3688.5	3676.7	3668.0	3662.6	3660.7	3662.7	3668.0	3676.6	3688.5	3702.9
3745.6	3734.6	3725.3	3718.6	3714.3	3712.8	3714.4	3718.5	3725.2	3734.4	3745.6
3789.2	3781.6	3775.2	3770.5	3767.5	3766.5	3767.5	3770.3	3774.9	3781.2	3788.9
3829.6	3825.6	3822.2	3819.6	3817.9	3817.3	3817.8	3819.3	3821.7	3825.1	3829.2
3861.0	3859.9	3858.9	3858.1	3857.6	3857.5	3857.6	3858.0	3858.7	3859.7	3860.8
TUBE COND	UCTANCE (BTU/IIR*F	*FT**2)							
1397.2	1404.4	1410.2	1414.5	1417.0	1418.0	1417.0	1414.5	1410.2	1404.3	1397.1
1395.5	1402.6	1408.5	1412.7	1415.2	1416.2	1415.2	1412.6	1408.4	1402.5	1395.4
1390.5	1397.4	1402.9	1407.0	1409.4	1410.4	1409.4	1406.9	1402.8	1397.1	1390.3
1383.0	1389.4	1394.6	1398.4	1400.7	1401.6	1400.6	1398.3	1394.5	1389.2	1382.8
1374.4	1380.2	1385.0	1388.4	1390.6	1391.4	1390.5	1388.4	1384.9	1380.1	1374.2
1365.2	1370.4	1374.7	1377.8	1379.7	1380.5	1379.7	1377.8	1374.7	1370.3	1365.1
1355.7	1360.2	1363.9	1366.6	1368.3	1368.9	1368.3	1366.6	1363.9	1360.1	1355.6
1345.7	1349.4	1352.5	1354.7	1356.2	1356.7	1356.1	1354.7	1352.5	1349.4	1345.6
1335.1	1338.0	1340.4	1342.1	1343.3	1343.6	1343.2	1342.1	1340.4	1338.0	1335.0
1323.9	1325.8	1327.4	1328.6	1329.4	1329.7	1329.4	1328.7	1327.6	1326.0	1324.0
1313.1	1314.0	1314.8	1315.4	1315.8	1315.9	1315.8	1315.5	1315.0	1314.2	1313.3

3-29

SCI

TUBE WALL	CONDUCT	ΓΙΥΙΤΥ (ΒΊ	U/HR*F*F	T)						
11.6	11.8	11.9 1	2.0 12	.1 12.	1 12.1	12.0	11.9	11.8	11.6	
11.5	11.7	11.8	1.9 12	.0 12.0	0 12.0	11.9	11.8	11.7	11.5	
11.3	11.5	11.6 1	1.8 11	.8 11.6	8 11.8	11.8	11.6	11.5	11.3	
11.1	11.3	11.4 1	1.5 11	.6 11.0	5 11.6	11.5	11.4	11.3	11.1	
10.9	11.1	11.2 1	1.3 11	.3 11.	3 11.3	11.2	11.2	11.1	10.9	
10.7	10.8	10.9	1.0 11	.0 11.0	0.11	11.0	10.9	10.8	10.7	
10.5	10.6	10.7 1	0.7 10	.8 10.1	8 10.8	10.7	10.7	10.6	10.5	
10.3	10.3	10.4	0.5 10	.5 10.9	5 10.5	10.5	10.4	10.3	10.3	
10.1	10.1	10.2	0.2 10	.2 10.	2 10.2	10.2	10.2	10.1	10.1	
9.8	9.9	9.9	9.9 9		9 9.9	9.9	9.9	9.9	9.9	
9.7	9.7	9.7	9.7 9	.7 9.	7 9.7	9.7	9.7	9.7	9.7	
PEAK TUBE	E TEMPER/	ATURE (DE	G. F)							
1071.0	1114.4	1151.0	1177.9	1194.6	1201.1	1194.9	1178.1	1151.3	1114.7	1071.3
1076.6	1120.6	1157.8	1184.9	1201.6	1208.3	1201.4	1184.5	1157.3	1119.9	1076.0
1058.0	1100.2	1135.3	1161.3	1177.4	1183.3	1177.1	1160.7	1134.4	1098.7	1056.5
1021.1	1059.6	1092.1	1115.6	1130.3	1136.1	1130.1	1115.2	1091.3	1058.6	1020.1
977.7	1012.4	1041.0	1062.4	1075.8	1080.5	1075.3	1062.0	1040.5	1011.3	976.8
932.4	963.0	988.6	1007.2	1019.1	1023.4	1018.7	1006.9	988.4	962.4	932.0
886.8	913.1	935.0	951.4	961.7	965.3	961.6	951.4	935.1	912.9	886.5
839.7	861.7	880.3	893.9	902.4	905.7	902.2	893.5	880.2	861.4	839.2
789.0	806.6	821.5	832.2	839.3	841.5	839.1	832.2	821.1	806.3	788.3
731.2	743.6	754.3	762.0	767.1	769.1	767.2	762.5	754.9	744.5	731.8
670 2	676.6	682 1	686.5	689.1	690.0	689.4	687.1	683.3	677.7	671.3
	TTEDATE				91999					

CONTINUE ITERATION? (YES=1, NO=0)?0

D UNIFORM FLUX, ZOGPM FLOW, TO FAMBLENT

D 10F5

ATPFW 13:42EDT 09/05/79

AIR TEMP., CONV. COEFF., C1770., 2.0, .6366

FLUX PLOT FILENAME?FLUXTF FULL PRINT(YES=1,NO=0)?1

RECEIVER SUMMARY

FLOW	=	8347.LB/HR
INCIDENT	×	496896 . W
RAD. LOSS	=	77250 . W
CONV. LOSS	=	23612.W
REFL. LOSS	#	24845.W
EFFICIENCY	Ŧ	0,7470

TUBE GROUP	FLOW LB/HR	INCIDENT W	RADIATION	CONVECTION W	EFFICIENCY
1	759.	38877.	6043.	2036.	0.7422
2	759.	42468.	6579.	2099.	0.7456
3	759.	45500.	7057.	2152.	0.7476
4	759.	47727.	7424.	2191.	0.7485
5	759.	49116.	7661.	2216.	0.7489
6	759.	49650.	7751.	2225.	0.7491
7	759.	49108.	7657.	2215.	0.7490
8	759.	47711.	7420.	2191.	0.7486
9	759.	45476.	7052.	2152.	0.7476
10	759.	42427.	6571.	20.99.	0.7457
11	759.	38836.	6035.	2035.	0.7422

OUTSIDE TUBE TEMPERATURES(DEG. F)

1026.1	1067.6	1102.4	1127.6	1143.2	1149.3	1143.1	1127.4	1102.0	1067.1	1025.6
1011.6	1052.0	1085.8	1110.3	1125.6	1131.4	1125.3	1109.9	1085.1	1051.0	1010.6
980.8	1018.4	1049.7	1072.6	1086.9	1092.2	1086.6	1072.2	1049.0	1017.3	979.7
940.0	973.8	.1002.0	1022.6	1035.6	1040.4	1035.2	1022.3	1001.5	973.0	939.2
895.0	924.6	.949.2	967.4	978.9	983.0	978.6	967.2	949.0	924.1	894.5
848.1	873.2	894.2	909.7	919.5	923.0	919.3	909.6	894.2	873.0	847.8
800.0	820.4	837.5	850.2	858.2	861.1	858.1	850.2	837.6	820.3	799.8
750.9	766.5	779.7	789.4	795.6	797.8	795.4	789.4	779.8	766.6	750.8
702.1	712.9	722.0	728.7	733.1	734.6	733.1	729.0	722.3	713.2	702.3
656.7	662.7	668.0	671.9	674.4	675.3	674.5	672.2	668.5	663.4	657.2
620.5	622.7	624.6	626.1	627.0	627.3	627.1	626.3	625.0	623.1	620.9

NODE EFFICIENCIES(P.U.)

0.407	0.401	0,396	0.391	0.388	0.387	0.391	0,395	0.402	0.410	0.416
0.616	0.614	0.612	0.609	0.607	0.607	0.607	0.609	0.612	0.615	0.617
0.694	0.694	0.692	0.691	0,690	0.689	0.690	0.691	0.691	0.693	0.693
0.730	0.731	0.732	0.731	0.730	0.730	0.730	0.731	0.731	0.731	0.730
0.756	0.759	0.759	0.760	0.760	0.760	0.760	0.760	0.759	0.758	0.756
0.778	0.782	0.784	0,785	0.786	0.786	0.786	0.785	0.784	0.781	0.778
0.798	0.803	0.806	0,808	0.809	0.810	0.809	0.808	0.806	0.803	0.798
0.815	0.821	0.825	0.827	0.829	0.829	0.829	0.827	0.825	0.820	0.815
0.825	0.832	0.837	0.840	0.842	0.842	0.841	0.840	0.836	0.831	0.824
0.817	0.827	0.833	0.837	0.840	0.841	0.840	0.838	0.833	0.827	0.818
0.767	0.781	0.791	0.798	0.802	0.804	0.803	0.799	0.793	0.783	0.770
PAUSE										

B-32

LINE CALLING-ROUTINE

980 ATPFW

INCIDENT FLUX(W/SQ.CM)

5.4	5.9	6.3	6.7	6.8	6.9	6.9	6.7	6.4	6.0	5.5
8.5	9,3	10.0	10.5	10.8	10.9	10.8	10.5	10.0	9.3	8.5
10.3	11.2	12.0	12.6	13.0	13.1	13.0	12.6	12.0	11.2	10.2
10.8	11.8	12.7	13.3	13.7	13.8	13.7	13.3	12.6	11,8	10.8
10.9	12.0	12.8	13.4	13.8	13.9	13.8	13.4	12.7	11.9	10.9
10.9	11,9	12.8	13.4	13.8	13.9	13.7	13.4	12.8	11,9	10.9
10.9	11.9	12.7	13.3	13.7	13.8	13.7	13.3	12.7	11.8	10.9
10.7	11.6	12.5	13.1	13.4	13.6	13.4	13.0	12.4	11.6	10.6
10.0	10.9	11.7	12.2	12.6	12.7	12.6	12.2	11.6	10.8	9.9
8.2	9.0	9.6	10.1	10.4	10.6	10.4	10,1	9.7	9.0	8.2
5.3	5.8	6.2	6.5	6.7	6.8	6.7	6.6	6.3	5.9	5.4

ABSORBED	FLUX ()	N/SQ.CM)	i							
2.2	2.4	2.5	2.6	2.7	2.7	2.7	2.6	2.6	2.5	2.3
5.2	5.7	6.1	6.4	6.5	6.6	6,6	6.4	6.1	5.7	5.3
7.1	7.8	8.3	8.7	9.0	9.1	9.0	8.7	8.3	7.7	7.1
7.9	8.6	9.3	9.7	10.0	10.1	10.0	9.7	9,2	8.6	7.9
8.3	9.1	9,7	10.2	10.5	10.6	10.5	10.2	9.7	9.0	8.2
8.5	9.3	10.0	10.5	10.8	10.9	10,8	10.5	10.0	9.3	8.5
8.7	9.5	10.2	10.8	11.7	11.2	11.1	10.8	10.2	9.5	8.7
8.7	9.5	10.3	10.8	11.1	11.3	11.1	10.8	10.2	9.5	8.7
8.2	9.1	9.8	10.3	10.6	10.7	10.6	10.3	9.7	9.0	8.1
6.7	7.4	8.0	8.5	8.8	8,9	8,8	8.5	8.1	7.5	6.7
4.1	4.5	4.9	5.2	5.4	5.5	5,4	5.3	5.0	4.6	4.2
RADIATIO		(W)								
890.5	996.1	1091.2	1164.4	1211.5	1230,1	1211.2	1163.8	1090.2	994.7	889.3
855.8	955.4	1044.9	1113.9	1158.5	1175.8	1157.6	1112.7	1043.1	952.9	853.5
785.1	872.0	949.5	1009.4	1048.2	1062.8	1047.3	1008.2	.947.8	869.4	782.8
698.3	769.6	833.2	882.1	913.9	925.9	913.1	881.3	832.2	767.9	696.8
611.0	667.5	717.4	755.9	.781.0	790.1	780.2	755.4	716.9	666.4	610.0
528.8	571.7	609.6	638.6	657.5	664.4	657.0	638.3	609.5	571.3	528.3
453.1	484.1	511.4	532.2	545.8	550.6	545.6	532.2	511.5	484.1	452.8
384.4	405.3	423.7	437.6	446.6	449.9	446.4	437.6	423.9	405.5	384.3
323.9	336.6	347.7	356.0	361.4	363.3	361.4	356.2	348.0	337.0	324.1
273.9	280.3	285.8	290.0	292.7	293.7	292.8	290.3	286.4	280.9	274.5
238.3	240.4	242.2	243.6	244.5	244.8	244.6	243.8	242.6	240,7	238.7
CONVECTIO	ON LOS	5(W)								
230.1	240.1	248.4	254.5	258.2	259.7	258.2	254.4	248.3	239.9	229.9
230.1	236 3	240.4	250.3	254.0	255.4	253.9	250.2	244.3	236.1	226.3
210.2	228.2	235.7	241.3	244.7	246.0	244.6	241.2	235.6	228.0	218.9
21212	217 5	2224 3	220.2	232.3	233.5	232.3	229.1	224.1	217.3	200.2
209.5	205 6	211.6	215.0	218.7	219.7	218.6	215.9	211.5	205.5	108.4
190.5	103 3	108 3	202 1	204.4	205.3	204.4	202.0	198.3	103.2	187.2
175.7	180.6	184.7	187.7	189.7	190.3	189.6	187.7	184.7	180.6	175.6
163 0	167.6	170.8	173.1	174.6	175.1	174.6	173.1	170.8	167.6	163.8
152 1	154.7	156.0	158.5	159.6	159.9	159.6	158.6	157.0	154.8	152.1
141 3	142 4	143 0	111 8	145.4	145.7	145.5	144.0	144.0	142.8	141.3
132.5	133.0	133.4	133.8	134.0	134.1	134.1	133.9	133.5	133.1	132.6

NODE SODIUM TEMPERATURES(DEG. F)

1021.3	1062.5	1097.0	1122.0	1137.5	1143.5	1137.3	1121.7	1096.5	1061.8	1020.6	
1000.4	1039.8	1072.6	1096.6	1111.5	1117.1	1111.2	1096.2	1071.9	1038.7	999.3	
965.4	1001.6	1031.8	1053.9	1057.7	1072.8	1067.3	1053.5	1031.2	1000.6	964.5	
922.9	955.1	982.0	1001.7	1014.1	1018.7	1013.8	1001.4	981.6	954.4	922.2	
877.2	905 . I	928.3	945.5	956.3	960.2	956.1	945.3	928.2	904.6	876.7	
829.8	853.0	872.6	887.0	896.2	899.4	896.0	886.9	872.6	852.9	829.5	
781.2	799.7	815.4	826.9	834.2	836.9	834.1	826.9	815.5	799.8	781.0	
732.1	745.8	757.4	766.0	771.5	773.4	771.4	766.1	757.6	746.0	732.1	
684.3	693.2	700.8	706.4	710.1	711.4	710.1	706.7	701.2	693.7	684.6	
642.0	646.6	650.5	653.4	655.3	656.0	655.4	653.7	651.0	647.1	642.5	
611.5	612.8	613.9	614.7	615.2	615.4	615.3	614.8	614.1	613.0	611.8	
HCC											

D 4 of 5

PAUSE

LINE CALLING-ROUTINE

1120 ATPFW

SODIUM HEAT TRANSFER COEFFICIENTS(BTU/HR*F*FT**2)

1700.0	1686.0	1674.8	1666.7	1661.9	1660.0	1661.9	1666.8	1674.9	1686.3	1700.2
1707.2	1693.7	1682.7	1674.9	1670.1	1668.3	1670.2	1675.0	1682.9	1694.0	1707.6
1719.6	1706.8	1696.4	1688.9	1684.3	1682.7	1684.4	1689.1	1696.6	1707.1	1720.0
1735.3	1723.4	1713.7	1706.8	1702.4	1700.9	1702.6	1706.9	1713.8	1723.6	1735.5
1752.8	1742.0	.1733.2	1726.9	1722.9	1721.5	1723.0	1727.0	1733.3	1742.2	1753.0
1771.9	1762.4	1754.6	1749.0	1745.4	1744.2	1745.5	1749.0	1754.6	1762.5	1772.0
1792.4	1784.4	1777.8	1773.0	1770.0	1768.9	1770.1	1773.0	1777.8	1784.4	1792.5
1814.3	1808.0	1802.8	1799.0	1796.6	1795.8	1796.6	1799.0	1802.7	1807.9	1814.3
1836.9	1832.6	1828.9	1826.2	1824.5	1823.9	1824.5	1826.1	1828.7	1832,3	1836.7
1858.0	1855.7	1853.7	1852.2	1851.3	1850.9	1851.2	1852.1	1853.5	1855.4	1857.8
1874.1	1873.4	1872.8	1872.4	1872.1	1872.0	1872.1	1872.3	1872.7	1873.3	1874.0
TUBE COND	UCTANCE (BTU/HR*F	*FT**2)							
937.2	937.9	938.5	938.8	939.0	939.1	939.0	938,8	938.5	937.9	937.2
937.2	938.0	938.6	939.0	939.2	939.3	939.2	939.0	938.6	938,0	937.2
936.8	937.6	938.3	938.7	938.9	939.0	938.9	938.7	938.3	937.6	936.8
935.9	936.8	937.5	937.9	938.2	938.3	938.2	937.0	937.5	936.8	935.9
934.8	935.7	936.3	936.8	937.1	937.2	937.1	936.8	936,3	935.7	934.8
933.5	934.3	935.0	935.5	935.7	935.8	935.7	935.5	935.0	934.3	933.5
932.0	932.8	933.4	933.8	934.1	934.2	934.1	933.8	933.4	932.8	932.0
930.3	931.0	931.5	931.9	932.1	932.2	932.1	931,9	931.5	931.0	930.3
928.4	929.0	929.4	929.7	929.9	930.0	929.9	929.7	929.4	929.0	928.4
926.4	926.8	927.0	927.3	927.4	927.4	927.4	927.3	927.1	926.8	926.5
924.6	924.7	924.8	924.9	925.0	925.0	925.0	925.0	924.9	924.7	924.6

• 1

C 305

TUBE WALL	CONDUCT	ΓΙVΙΤΥ(Β΄	TU/HR*F	*FT)							
11.5	11.7	11.9	12.0	12.1	12.1	12.1	12.0	11.9	11.7	11,5	
11.4	11.6	11.8	11.9	12.0	12.0	12,0	11.9	11.8	11.6	11.4	
11.3	11.5	11.6	11.7	11.8	11.8	11.8	11.7	11.6	11.4	11.3	
11.1	11.2	11.4	11.5	11.5	11.5	11.5	11.5	11.4	11.2	11.1	
10.9	11.0	11.1	11.2	11.3	11.3	11.3	11.2	11.1	11.0	10.9	
10.6	10.8	10.9	10.9	11.0	11.0	11.0	10.9	10.9	10.8	10.6	
10.4	10.5	10.6	10.6	10.7	10.7	10.7	10.6	10.6	10.5	10.4	
10.2	10.3	10.3	10.4	10.4	10.4	10.4	10.4	10.3	10.3	10.2	
10.0	10.0	10.0	10.1	10.1	10.1	10.1	10.1	10.0	10.0	10.0	
9.8	9.8	9.8	9.8	9.8	9.8	9.8	9.8	9.8	9.8	9.8	
9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9,6	9.6	
PEAK TUBE	TEMP ER/	ATURE (D	EG.F)								
1028.8	1070.5	1105.4	1130.	8 114	16.5	1152.5	1146.4	1130.6	1105.2	1070.1	1028.4
1018.0	1059.0	1093.3	11.18.	2 113	33.6	1139.6	1133.3	1117.7	1092.6	1058.1	1017.1
989.6	1028.0	1059.9	1083.	4 109	07.9	1103.3	1097.6	1082.9	1059.2	1026.8	988.4
949.7	.984.4	1013.4	1034.	6 104	17.8	1052.8	1047.5	1034.2	1012.9	983.6	948.9
905.2	935.8	961.2	979.	9 99	21.8	996.0	991.4	979.7	960.9	935.2	904.6
858.6	884.7	906.6	922.	6 93	32.8	936.5	932.6	922.5	906,5	884.4	858.3
810.7	832.1	850.1	863.	5 87	/1.9	874.9	871,8	863.4	850,2	832.1	810.5
761.7	778.3	792.4	802.	7 80)9.3	811.7	809.2	802.7	792.5	778.4	761.5
712.3	724.1	734.1	741.	5 74	46.2	747.8	746,2	741.7	734.3	724.4	712.4
665.0	672.0	6.78.0	682.	4 68	35.3	686.4	685.4	682.8	678,5	672.7	665.6
625.5	628.3	630.7	632.	6 6	33.7	634.1	633.9	632.8	631.2	628.8	626.0
OOM TO THE PARTY	TTCIATI2	NUN / VEC -	1 10-01	20					1		

CONTINUE ITERATION?(YES=1,NO=0)?0

E UNIFORM FLUX, ZOGPH FLOW, -ZO'F ANBIENT

Ē

1015

ATPFW 13:45EDT 09/05/79

AIR TEMP., CONV. COEFF., C17-20., 2.0, .623___366

FLUX PLOT FILENAME?FLUXTF

FULL PRINT(YES=1,NO=0)?1

RECEIVER SUMMARY

FLOW	=	8267.LB/HR
INCIDENT	=	496896 . W
RAD. LOSS	=	78202 . W
CONV. LOSS	=	26233.W
REFL. LOSS	Ħ	24845.W
EFFICIENCY	2	.0.7398

TUBE GROUP	FLOW LB/HR	INCIDENT W	RADIATION W	CONVECTION W	EFFICIENCY
1	752.	38877.	6122.	2274.	0.7341
2	752.	42468.	6662.	2337.	0.7381
3	752.	45500.	7143.	2391.	0.7405
4	752.	47727.	7514.	2430.	0.7417
5	752.	49116.	7753.	2455	0.7422
6	752.	49650.	7844.	2464	0.7424
7	752.	49108.	7749.	2454	0.7422
8	752.	47711.	7510.	2430.	0.7417
9	752.	45476.	7139.	2391	0.7405
10	752.	42427.	6654	2337.	0.7381
11	752.	38836.	6113.	2273.	0.7341

OUTSIDE	LUBE TEM	PERATURES	G (DEG. F)							
1025.5	1067.4	1102.4	1127.8	1143.6	1149.6	1143.5	1127.6	1102.0	1066.9	1025.0
1011.3	1052.0	1086.0	1110.8	1126.2	1132.0	1125.9	1110.3	1085.3	1051.0	1010.3
980.6	1018.5	1050.0	1073.1	1087.6	1092.9	1087.2	1072.7	1049.3	1017.4	979.5
939.8	973.8	1002.3	1023.1	1036.1	1041.0	1035.8	1022.7	1001.8	973.0	.939.0
894.8	924.6	949.5	967.8	979.4	983.5	979.1	967.6	949.2	924.1	894.2
847.9	873.2	894.4	910.0	919.8	923.4	919.6	909.8	894.3	872.9	847.5
799.7	820.2	837.5	850.3	858.4	861.3	858.3	850.3	837.6	820.2	799.5
750.6	766.3	779.6	789.4	795.6	.797.8	795.5	789.4	719.7	766.4	750.5
701.8	712.6	721.8	728.6	733.0	734.5	733.0	728.8	722.1	712.9	701.9
656.3	662.4	667.7	671.6	674.2	675.1	674.3	671.9	668.2	663.1	656.8
620.2	622.4	624.4	625.9	626.8	627.1	626.9	626.1	624.8	622.8	620.6
NONE FEE	ICIENCIE	S(P.II.)								
0.393	0.388	0.383 0.	.379 0.37	6 0.375	0.380	0.383	0.389	0.397 (), 403	
0.607	0.605	0.604 0.	601 0.59	9 0.600	0.600	0.602	0.604	0.607 (0.609	
0.686	0.687	0.685 0.	.684 0.68	3 0.683	0.683	0.684	0.685	0.686 (). 685	
0 723	0.725	0.725 0.	725 0.72	4 0.724	0.724	0.725	0.725	0.724 (), 723	
0.749	0.752	0.753 0.	754 0.75	4 0.754	0.754	0.754	0.753	0.751	749	
0.771	0.776	0.778 0.	779 0.78	0 0.780	0.780	0.779	0.778	0.775 (), 771	
0.792	0.797	0.800 0.	802 0.80	4 0.804	0.804	0.802	0.800	0.797). 791	
0.808	0.814	0.819 0.	821 0.82	3 0.824	0.823	0.821	0.818	0.814	808	
0.817	0.825	0.830 0.	834 0.83	6 0.836	0.835	0.833	0.829	0.824	0.816	
0.808	0.818	0.825 0.	.830 0.83	3 0.834	0.833	0.830	0.825	0.819	808	
0.753	0.768	0.779 0.	.787 0.79	1 0.792	0.791	0.788	0.781	0.770	.756	
PAUSE					7					

LINE CALLING-ROUTINE

980 ATPFW

INCIDENT FLUX(W/SQ.CM)

5.4	5.9	6.3	6.7	6.8	6.9	6.9	6.7	6.4	6.0	5.5
8.5	9.3	10.0	10.5	10.8	10.9	10.8	10.5	10.0	9.3	8.5
10.3	11.2	12.0	12.6	13.0	13.1	13.0	12.6	12.0	11.2	10.2
10.8	8.11	12.7	13.3	13.7	13,8	13.7	13.3	12.6	11,8	10,8
10.9	12.0	12.8	13.4	13.8	13.9	13.8	13.4	12.7	11.9	10.9
10.9	11,9	12.8	13.4	13.8	13.9	13.7	13.4	12,8	11,9	10.9
10,9	11.9	12.7	13.3	13.7	13.8	13.7	13.3	12.7	11.8	10,9
10.7	11.6	12.5	13.1	13.4	13.6	13.4	13.0	12.4	11,6	10.6
10.0	10.9	11.7	12.2	12.6	12.7	12.6	12.2	11.6	10.8	9.9
8.2	9.0	9.6	10.1	10.4	10.6	10.4	10.1	9.7	9.0	8,2
5.3	5.8	6.2	6.5	6.7	6.8	6.7	6.6	6.3	5.9	5.4

B-37

ABSORBED	FLUX (W	i/sq.cm)								
2.1	2.3	2.4	2.5	2.6	2.6	2.6	2.6	2.5	2.4	2.2
5.2	5.6	6.0	6.3	6.5	6.6	6.5	6.3	6.0	5.6	5.2
7.1	7.7	8.3	8.7	8.9	9.0	8.9	8.6	8.2	7,7	7.0
7.8	8.6	9.2	9.6	9.9	10.0	9.9	9.6	9.2	8.5	7.8
8.2	9.0	9.6	10.1	10.4	10.5	10.4	10.1	9.6	8.9	8.2
8.4	9.3	9.9	10.4	10.7	10.9	10.7	10.4	9.9	9. 2	8.4
8.6	9.5	10.2	10.7	11.0	11.1	11.0	10.7	10.2	9.4	8.6
8.6	9.5	10.2	10.7	11.0	11.2	11.0	10.7	10.2	.9,4	8.6
8.2	9.0	9.7	10.2	10.5	10.6	10.5	10.2	9 .6 .	8,9	8.1
6.6	7.3	8.0	8.4	8.7	8.8	8.7	8.4	8.0	7.4	6.7
4.0	4.4	4.8	5.1	5.3	5.4	5.3	5.2	4.9	4,5	4.1
RADIATIO	N LOSS	(W)								
896.8	1003.2	1099.0	1172.8	1220.3	1239.0	1220.0	1172.1	1098.0	1001.7	895.6
862.7	963.1	1053.3	1122.9	1167.8	1185.3	1166.9	1121.7	1051.5	960.5	860.4
792.3	879.8	958.0	1018.5	1057.6	1072.3	1056.7	1017.3	956.3	877.2	789.9
705.5	777.5	841.6	891.0	923.0	935.1	922.2	890.1	840.5	775.7	704.0
618.3	675.2	725.5	764.4	789.7	798.9	789.0	763.9	725.0	674.1	617.3
536.1	579.3	617.5	646.8	665.8	672.8	665.4	646.5	617.5	578.9	535.5
460.4	491.6	519.1	540.1	553.8	558.7	553.6	540.1	519.2	491.6	460.0
391.7	412.7	431.3	445.2	454.3	457.6	454.2	445.2	431.4	412,9	391.5
331.1	343.9	355.1	363.4	368.9	370.8	369.0	363.7	355.4	344.3	331.3
281.2	287.6	29 3.2	297.4	300.1	30.1.2	300.2	297.7	293.8	288,3	281.8
245.7	247.8	249.6	251.1	252.0	252+3	252.1	251.3	250.0	248.2	246.1
CONVECTI	ON LOS	5(W)								
251.6	261.7	270.1	276.2	280.0	281.4	280.0	276.1	270.0	261.5	251.5
248.2	258.0	266.1	272.1	275.8	277.2	275.7	272.0	266.0	<u>257.7</u>	247.9
240.8	249.9	257.5	263.0	266.5	267.8	266.4	262.9	257.3	249.6	240.5
230.9	239.1	246.0	251.0	254,1	255.3	254 . I	250.9	245.9	239.0	230,8
220.1	227.3	233.3	237.7	240.5	241.5	240.4	237.6	233.2	227.2	220.0
208.8	214.9	220.0	223.8	226.2	227.0	226.1	223.7	220.0	214.9	208.8
197.2	202.2	206.3	209.4	211.4	212.1	211.3	209.4	206.4	202.2	197.2
185.4	189.2	192.4	.194.8	196.3	196.8	196.2	194.8	192,4	189.2	185.4
173.7	176.3	178.5	180.1	181.2	181.5	181.2	180.2	178.6	176.4	173.7
162.7	164.2	165.5	166.4	167.0	167.3	167.1	166.5	165.6	164.4	162.9
154.0	154.6	155.1	155.4	155.6	155.7	155,7	155.5	155.1	154,7	154.1

NODE SODI	UM TEMPE	RATURES(DEG. F)							
1020.9	1062.5	1097.2	1122.4	1138.0	1144.0	1137.8	1122.1	1096.7	1061.7	1020.2
1000.1	1039.9	1073.0	1097.2	1112.2	1117.9	1111.9	1096.7	1072.3	1038.8	999.1
965.3	1001.8	1032.2	1054.5	1068.4	1073.6	1068.1	1054.1	1031.6	1000.8	964.4
922.8	955.3	982.4	1002.3	1014.8	1019.4	1014.5	1002.0	982.0	954.6	922.1
877.0	905.2	928.7	946.0	956.9	960.9	956.6	945.8	928.5	904.8	876.6
829.6	853.1	872.9	887.4	896.6	899.9	896.4	887.3	872.9	853.0	829.3
781.0	799.7	815.5	827.2	834.6	837.2	834.4	827.1	815.6	799.7	780.8
731.8	745.7	757.5	766.1	771.6	773.6	771.6	766.2	757.6	745.9	731.8
684.0	693.0	700.7	706.4	710.1	711.4	710.1	706.6	701.1	693.5	684.3
641.8	646.4	650.3	653.3	655.2	655.9	655.3	653.6	650.8	646.9	642.3
611.4	612.7	613.8	614.7	615.2	615.3	615.2	614.8	614.0	612.9	611.7

4055

PAUSE

LINE CALLING-ROUTINE

1120 ATPFW

SODIUM HE	AT TRANS	FER COEF	FICIENTS	(BTU/HR*	F*FT**2)					
1693.5	16.79.6	1668.2	1660.2	1655.3	1653.4	1655.3	1660,3	1668.4	1679.8	1693.8
1700.7	1687.1	1676.1	1668.2	1663.4	1661.6	1663.5	1668.4	1676.3	1687.5	1701.1
1713.0	1700.1	1689.7	1682.2	1677.6	1675.9	1677,7	1682.3	1689.9	1700.5	1713.4
1728.6	1716.7	1706.9	1700.0	1695.6	1694.1	1695.7	1700.1	1707.1	1716.9	1728.9
1746.1	1735.3	1726.4	1720.0	1716.1	1714.6	1716.2	1720.1	1726.5	1735.4	1746.3
1765.1	1755.6	1747.7	1742.1	1738.5	1737.3	1738.6	1742.1	1747.7	1755.6	1765.2
1785.5	1777.5	1770.9	1766.1	1763.0	1762,0	1763.1	1766.1	1770.9	1777.5	1785.6
1807.4	1801.1	1795.8	1792.0	1789.6	1788.7	1789.6	1792.0	1795.8	1801.0	1807.4
1829.9	1825.6	1821.9	1819.2	1817.5	1816.9	1817.4	1819.1	1821.7	1825.3	1829.8
1851.0	1848.6	1846.6	1845.1	1844.2	1843.8	1844.1	1845.0	1846.4	1848.4	1850.7
1866.9	1866.2	1865.6	1865.2	1864.9	1864.8	1864.9	1865.1	1865.5	1866.1	1866.8
		070.410.47								
TORE COND	UCIANCE	BIU/HK*F	*r1**2)	0267	026 7	074 7	026 5	026 1	035 (014 9
934.8	935.6	930.1	930.5	930.1	930.1	930.1	930.5	930.1	932.0	934.0
934.9	935.7	930.3	930.1	930.9	937.0	930.9	930.1	930.3	935.7	934.9
934.5	935.3	935.9	936.4	930.0	930.1	930.0	9.30'.4	935.9	935.3	934.5
933.7	934.5	935.2	935.6	935.9	930.0	935.9	935.0	935.2	934.5	933.1
932.6	933.4	934.1	934.6	934.8	934.9	934.8	934.6	934.1	933.4	932.6
931.3	932.1	932.8	933.2	933.5	933.6	933.5	933.2	932.8	932.1	931.3
929.8	930.6	931.2	931.6	931.9	932.0	931.9	931.6	931.2	930.6	929.8
928.2	928.8	929.4	929.7	930.0	930.1	930.0	929.7	929,4	928.8	928.2
926.3	926.8	927.3	927.6	927.8	927.8	927.8	927.6	927.3	926.8	926.3
924.3	924.7	925.0	925.2	925.3	925.4	925.3	925.2	925.0	924.7	924.4
022.5	922.7	922.8	922.9	922.9	923.0	923.0	922.9	922.8	922.7	922.5

B-39

TUBE WALL CONDUCTIVITY (BEU/IR*F*FT)

11.5	11.7	11.9	12.0	12.1	12.1	12.1	12.0	11.9	11.7	11.5
11.4	11.6	11.8	11.9	12.0	12.0	12.0	11.9	11.8	11.6	11.4
11.3	11.5	11.6	11.7	11.8	11.8	11.8	11.7	11.6	11.4	11.3
11.1	11.2	11.4	11.5	11.5	11.5	11.5	11.5	11.4	11.2	11.1
10.9	11.0	11.1	11.2	11.3	11.3	11.3	11.2	11.1	11.0	10.9
10.6	10.8	10.9	10.9	11.0	11.0	11.0	10.9	10.9	10.8	10.6
10.4	10.5	10.6	10.6	10.7	10.7	10.7	10.6	10.6	10.5	10.4
10.2	10.3	10.3	10.4	10.4	10.4	10.4	10.4	10.3	10.3	10.2
10.0	10.0	10.0	10.1	10.1	10.1	10,1	10.1	10.0	10.0	10.0
9.8	9,8	9. 8	9.8	9.8	9.8	9.8	9.8	9.8	9.8	9.8
9.6	9:6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6

PEAK TUBE TEMPERATURE (DEG. F)

1028.1 1070.2 1105.4 1130.9 1146.7 1152.8 1146.7 1130.8 1105.1 1069.8 1027.7 1017.6 1058.9 1134.1 1093.4 1118.5 1140.1 1133.8 1118.1 1092.8 1058.0 1016.7 989.3 1028.0 1060.2 1083.8 10.98.5 1103.9 1098.2 1083.3 1059.5 1026.8 988.1 949.4 984.4 1013.6 1035.0 1048.3 1053.3 1048.0 1034.6 1013.1 983.6 948.6 904.9 935.7 961.3 980.3 992.2 996.4 991.8 980.0 961.1 935.1 904.3 858.3 884.6 906.6 922.8 933.1 936.8 932.8 922.7 906.6 884.3 857.9 810.4 831.9 850.1 863.5 872.0 875.0 871.9 863.5 850.2 831.9 810.1 761.3 778.0 792.2 802.6 809.3 811.7 809.1 778.1 761.1 802.6 792.3 711.9 723.8 733.9 741.2 746.0 747.7 746.0 741.4 734.0 724.0 711.9 664.5 671.6 677.6 682.1 685.0 686.1 685.1 682.4 678.2 672.3 665.1 625.2 628.0 630.4 632.3 633.4 633.8 632.5 630.9 633.6 628.5 625.7 CONTINUE ITERATION? (YES=1 NO=0)?0

F UNIFORM FLUX PEOGPH FLOW, 120°F ANBIENT

F 10F5

ATPFW 13+49EDT 09/05/79

AIR TEMP., CONV. COEFF., C1?120., 2.0, .6366

FLUX PLOT FILENAME?FLUXTF

FULL PRINT(YES=1,NO=0)?1

RECEIVER SUMMARY

FLOW =	8398.LB/HR
INCIDENT =	496896.W
RAD. LOSS =	76468.W
CONV. LOSS =	22156.W
REFL. LOSS =	24845.W
EFFICIENCY =	0.7515

CROUP	FLOW LB/HR	INCIDENT W	RADIATION W	CONVECTION W	EFFICIENCY
I	763.	38877.	5977.	1904.	0.7473
2	763.	42468.	6510.	1967.	0.7504
3	763.	45500.	6985.	2020.	0.7521
4	763.	47.727.	7351.	2059	0.7529
5	763.	49116.	7587.	2083.	0.7531
6	763.	49650.	.7676 .	2092.	0.7533
7	763.	49108.	7583.	2083.	0.7532
8	763.	47711.	7347.	2058.	0.7520
9	763.	45476.	6981.	2020.	0.7521
10	763.	42427.	6502.	1967	0.7504
11	763.	38836.	5969	1904.	0.7473

OUTSIDE TUBE TEMPERATURES (DEG. F)

1026.4	1067.8	1102.3	1127.5	1143 0	1140 0	1142 0	1127 2	1102.0	1067 2	1025 0
1011 0	105 2 0	1005 4	112713	1143.0	1149.0	1144.9	1121.2	1102.0	1007.2	1020.9
IOTI • Q	1055-0	1082.0	1110.1	1125.2	1131.0	1124.9	1109.6	1084.9	1051.0	1010.9
980.9	1018.4	1049.5	1072.3	1086.6	1091.8	1086.2	1071.9	1048.8	1017.3	979.9
940.1	973.7	1001.8	1022.3	1035.2	1040.0	1034.9	1022.0	1001.3	972.9	939.4
895.2	924.6	949.1	967.2	978.6	982.7	978.3	967.0	948.9	924.1	894.6
848.3	873.2	894.2	909.5	919.3	922.8	919.1	909.4	894.1	873.0	848.0
800.2	820.4	837.5	850.1	858.1	860.9	858.0	850.1	837.6	820.4	0,008
751.1	766.6	779.8	789.4	795.5	797.8	795.4	789.4	779.9	766.7	751.0
702.4	713.1	722.2	728.8	733.2	734.7	733.2	729.1	722.4	713.4	702.5
656.9	662.9	668.2	672.0	674.5	675.5	674.6	672,4	668.7	663.6	657.4
620.6	622.8	624.7	626.2	627.1	627.4	627.2	626.4	625.1	623.2	621.0

F

201-5

NODE EFFICIENCIES(P.U.)

0.415 0.409 0.403 0.399 0.395 0.394 0.398 0.402 0.409 0.417 0.424 0.621 0.619 0.617 0.612 0.614 0.612 0.612 0.614 0.617 0.620 0.623 0.698 0.698 0.696 0.695 0.693 0.693 0,694 0.695 0.696 0.697 0.697 0.735 0.735 0.735 0.735 0.734 0.734 0.734 0.734 0.735 0.735 0.734 0.760 0.763 0.763 0.764 0.764 0.763 0.763 0.762 0.763 0.763 0.760 0.788 9.782 0.786 0.789 0.789 0.790 0.789 0.789 0.788 0.785 0.782 0.803 0.807 0.810 0.812 0.813 0.813 0.813 0.810 0.807 0.812 0.803 0.820 0.825 0.829 0.831 0.832 0.833 0.832 0.831 0.819 0.828 0.824 0.830 0.836 0.841 0,844 0.845 0.846 0.845 0.843 0.840 0.835 0.829 0.823 0.832 0.838 0.842 0.845 0.846 0.845 0.842 0.838 0.832 0.823 0.776 0.789 0.799 0.806 0.809 0.811 0.810 0.807 0.801 0.791 0.779 PAUSE

B-42

LINE CALLING-ROUTINE

980 ATPFW

INCIDENT FLUX(W/SQ.CM)

5.4	5.9	6.3	6.7	6.8	6.9	6.9	6.7	6.4	6.0	5.5
8.5	9.3	10.0	10.5	10.8	10.9	10.8	10.5	10.0	9.3	8.5
10.3	11.2	12.0	12.6	13.0	13.1	13.0	12.6	12.0	11.2	10.2
10.8	11.8	12.7	13.3	13.7	13.8	13.7	13.3	12.6	11.8	10.8
10.9	12.0	12.8	13.4	13.8	13.9	13.8	13.4	12.7	11.9	10.9
10.9	11.9	12.8	13.4	13.8	13.9	13.7	13.4	12.8	11.9	10.9
10.9	11.9	12.7	13.3	13.7	13.8	13.7	13.3	12.7	11.8	10.9
10.7	11.6	12.5	13.1	13.4	13.6	13.4	13,0	12.4	11.6	10.6
10.0	10.9	11.7	12.2	12.6	12.7	12.6	12.2	11.6	10.8	9.9
8.2	9.0	9.6	10.1	10.4	10.6	10,4	10.1	9.7	9.0	8.2
5.3	5.8	6.2	6.5	6.7	6.8	6.7	6.6	6.3	5.9	5.4

AAGI

ABSORHED	FLUX()	N/SQ.CM)								
2.2	2.4	2.6	2.7	2.7	2.7	2.7	2.7	2.6	2.5	2.3
5.3	5.7	6.2	6.4	6.6	6.7	6.6	6.4	6.2	5.8	5.3
7.2	7.8	8.4	8.8	9.0	9.1	9.0	8.8	8.3	7.8	7.1
8.0	8.7	9.3	9.8	10.0	10.1	10.0	9.7	9.3	8.7	7.9
8.3	9.1	9.7	10.2	10.5	10.6	10.5	10.2	9.7	9.1	8.3
8.5	9.4	10.1	10.6	10.9	11.0	10.8	10.5	10.0	9.3	8.5
8.7	9.6	10.3	10.8	11.1	11.2	11.1	10.8	10.3	9.6	8.7
8.7	9.6	10.3	10.8	11.2	11.3	11.1	10.8	10.3	9.6	8.7
8.3	9.1	9.8	10.3	10.7	10.7	10.6	10.3	9. 8	.9.1	8.2
6.8	7.5	8.1	8.5	8.8	8.9	8.8	8.5	8.1	7,5	6.8
4.1	4.6	5.0	5.3	5.4	5.5	5.5	5.3	5.0	4.7	4.2
RADIATIO	N LOSS	(W)								
885.0	990.1	1084.8	1157.7	1204.5	1223.0	1204.2	1157.0	1083.8	988.7	883.8
849.9	949.0	1038.1	1106.8	1151.1	1168.3	1150.2	1105.5	1036.3	946.6	847.7
179.1	865.5	942.6	1002.2	1040.8	1055.3	1039.9	1001.0	940.9	862.9	776.8
692.2	763.2	826.4	875.1	906.7	918.6	905.9	874.3	825.4	761.5	690.7
605.0	661.1	710.7	749.0	773.9	783.0	773.2	748.5	710.2	660.1	604.0
522.7	565.4	603.1	631.9	650.7	657.6	650.3	631.7	603.0	565.0	522.2
447.1	477.9	505.0	525.7	539.2	544.0	539.0	525.7	505.1	477.9	446.7
378.4	399.2	417.5	431.2	440.2	443.5	440.0	431.3	417.6	399.3	378.2
317.8	330.4	341.5	349.7	355.2	357.0	355.2	350.0	341.8	330.9	318.0
267.8	2/4.1	279.6	283.8	286,5	287.5	286.6	284.1	280.2	274.8	268.4
232.1	234.1	235.9	237.4	238.2	238.5	238.3	237.6	236.3	234.5	232.4
CONVECTIO	ON LOSS	5(W)								
218.1	228.1	236.4	242.4	246.2	247.6	246.1	242.4	236.3	227.9	218.0
214.6	224.3	232.3	238.2	241.9	243.3	241.8	238.1	232.2	224.0	214.4
207.2	216.2	223.7	229.2	232.6	233.8	232.5	229.0	223.5	215.9	206.9
197.3	205.4	212.2	217.1	220.2	221.4	220.1	217.0	212.1	205.2	197.2
186.5	193.6	199.5	203.9	206.6	207.6	206.5	203.8	199.4	193.5	186.4
175.2	181.2	186.3	190.0	192.3	193.2	192.3	190.0	186.3	181.2	175.2
163.7	168.5	172.6	175.7	177.6	178.3	177.6	175.7	172.7	168.5	163.6
151.9	155.6	158.8	161.1	162.6	163.1	162.5	161.1	158.8	155.6	151.8
140.1	142.7	144.9	146.5	147.5	147.9	147.5	146.6	145.0	142.8	140.2
129.2	130.6	131.9	132.8	133.4	133.7	133.5	132.9	132.0	130.8	129.3
120.5	121.0	121.5	121.8	122.0	122.1	122.1	121.9	121.5	121.1	120.6

NODE SODIUM TEMPERATURES(DEG. F)

1021.6	1062.6	1096.9	1121.8	1137.2	1143.2	1137.0	1121.5	1096.4	1061.9	1020.9
1000.5	1039.7	1072.4	1096.2	1111.1	1116.7	1110.8	1095.8	1071.7	1038.6	999.5
965.5	1001.5	1031.5	1053.5	1067.2	1072.3	1066.9	1053.1	1030.9	1000.5	964.6
923.0	955.0	981.7	1001.4	1013.7	1018.2	1013.4	1001.1	981.4	954.3	922 . 3
877.2	905.0	928.1	945.2	956.0	959.8	955.7	945.0	928.0	904.5	876.8
829.8	853.0	872.5	886.8	895.9	899.1	895,7	886.7	872.5	852.9	829.5
781.3	799.7	815.3	826.8	834.1	836.7	833.9	826.8	815.4	799.8	781.1
732.2	745.9	757.4	765.9	771.4	773.3	771.3	766.0	757.6	746.1	732.2
684.4	693.3	700.9	706.5	710.1	711.4	710.1	706.7	701.3	693.8	684.7
642.2	646.7	650.6	653.5	655.4	656.0	655.5	653.8	651.1	647.3	642.7
611.6	612.8	613.9	614.8	615.3	615.5	615.3	614.9	614.2	613.1	611.8
PAUSE										

LINE CALLING-ROUTINE

1120 ATPFW

SODIUM HEAT TRANSFER COEFFICIENTS(BTU/HR*F*FT**2)

1704.0	1690.1	1678.8	1670.8	1666.0	1664.1	1666.0	1670.9	1679.0	1690.3	1704.2
1711.3	1697.8	1686.8	1679.0	1674.2	1672.5	1674.3	1679.2	1687.1	1698.1	1711.7
1723.8	1710.9	1700.6	1693.1	1688.6	1686.9	1688.7	1693.3	1700.8	1711.3	1724.1
1739.4	1727.6	1717.9	1711.0	1706.7	1705.1	1706.8	1711.1	1718.1	1727.8	1739.7
1757.0	1746.3	1737.5	1731.2	1727.2	1725.8	1727.3	1731.2	1737.6	1746.4	1757.2
1776.1	1766.7	1758.9	1753.3	1749.8	1748.5	1749.8	1753.3	1758.9	1766.7	1776.2
1796.6	1788.7	1782.1	1777.4	1774.4	1773.3	1774.4	1777.4	1782.1	1788.7	1796.7
1818.6	1812.4	1807.1	1803.4	1801.0	1800.1	1801.0	1803.3	1807,1	1812.3	1818.6
1841.2	1836.9	1833.3	1830.6	1828.9	1828.3	1828.9	1830,5	1833.1	1836.7	1841.1
1862.4	1860.1	1858.1	1856.6	1855.7	1855.3	1855.6	1856.5	1857.9	1859.8	1862.2
1878.6	1877.9	1877.3	18.76.8	1876.6	1876.5	1876.5	1876.8	1877,2	1877.8	1878.4
TUBE COND	UCIANCE(BTU/HR*F	*11**2)							
938.6	939.4	939.9	940.3	940.5	940.6	940.5	940.3	939.9	939.4	938.6
938.6	939.5	940.1	940.5	940.7	940.8	940.1	940.5	940.1	939.5	A38*9
938.2	939.1	939.7	940.1	940.4	940.5	940.4	940.1	93 9 . 7	939. 0	938.2
937.3	938.2	938.9	939.3	939.6	939.7	939.6	939.3	938,9	938.2	937.3
936.2	937.1	937.8	938.2	938.5	938.6	938.5	938,2	937.8	937.1	936.2
934.9	935.7	936.4	936.8	937.1	937.2	937.1	936,8	936.4	935.7	934.9
933.4	934 . I	934.7	935,2	935.5	935.6	935.5	935.2	934.8	934.1	933.4
931.7	932.3	932.9	933.2	933.5	933.6	933.5	933.2	932.9	932.3	931.7
929.8	930.3	930.7	931.0	931.2	931.3	931.2	931.0	930.7	930.3	929.8
927.7	928.1	928.3	928.6	928.7	928.7	928.7	928.6	928.4	928.1	927.7
925.8	926.0	926.1	926.2	926.3	926.3	926.3	926.2	926.1	926.0	925.9

в-44

40F5

FUBE WALL	CONDUC	CIVITY(BTU/HR#	F*FT)					
11.5	11.7	11.9	12.0	12.1	12.1	12.1	12.0	11.9	11.7
11.4	11.6	11.8	11.9	12.0	12.0	12.0	11.9	11.8	11.6
11.3	11.5	11.6	11.7	11.8	11.8	11.8	11.7	11.6	11.4
11.1	11.2	11.4	11.5	11.5	11.5	11.5	11.5	11.4	11.2
10.9	11.0	11.1	11.2	11.3	11.3	11.2	11.2	11.1	11.0
10.6	10.8	10.9	10.9	11.0	11.0	11.0	10.9	10.9	10.8
10.4	10.5	10.6	10.6	10.7	10.7	10.7	10.6	10.6	10.5
10.2	10.3	10.3	10.4	10.4	10.4	10.4	10.4	10.3	10.3
10.0	10.0	10.0	10.1	10.1	10.1	10.1	10.1	10.0	10.0
9.8	9.8	9.8	9.8	9.8	9.8	9.8	9.8	9.8	9.8
9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6

PEAK TUBE TEMPERATURE (DEG. F)

B-45

:

PEAK LUDE	T CWL CRV	TORC (DC	Ю• Г/							
1029.2	1070.7	1105.5	1130.7	1146.3	1152.4	1146.3	1130.5	1105.2	1070.3	1028.8
1018.3	1059.1	1093.2	1117.9	1133.3	1139.2	1133.0	1117.5	1092.5	1058.1	1017.4
989.8	1028.0	1059.8	1083.1	1097.6	1103.0	1097.3	1082.6	1059.1	1026.8	988.6
949.9	984.4	1013.2	1034.3	1047.5	1052.4	1047.2	1033.9	1012.7	983.6	949.1
905.4	935.8	961.1	979.8	991.5	995.7	991.2	979.5	960.8	935.2	904.8
858.8	884.8	906.5	922.5	932.6	936.3	932.4	922.4	906.5	884.5	858,5
811.0	832.3	850.2	863.4	871.8	874.8	871.7	863.4	850.2	832.2	810.7
762.0	778.5	792.5	802.8	809.3	811.7	809.2	802.7	792.6	778.6	761.8
712.6	724.4	734.3	741.6	746.4	748.0	746.3	741.8	734.5	724.6	712.7
665.3	672.2	678.2	682.6	685.5	686.6	685.6	683.0	678,8	672.9	665.8
625.7	628.5	630.9	632.8	633.9	634.3	634.0	633.0	631.4	629.0	626.3
CONTINUE	ITERATIO	N?(YES=1	.NO=0).20							

F 50F5

11.5

11.4 11.3 11.1 10.9 10.6 10.4 10.2 10.0 9.8 9.6

G PEAK FLUX, 70% AMBIENT

ATPFW 16+48EST 11/28/79

AIR TEMP., CONV. COEFF., C1?70., 2.0, .6366

FLUX PLOT FILENAME?FLUXXX

FULL PRINT(YES=1,NO=0)?1

RECEIVER SUMMARY

FLOW	=	50992.LB/HR
INCIDENT	Ħ	2499415.W
RAD. LOSS	=	83421.W
CONV. LOSS	=	23559.W
REFL. LOSS	=	124971 . W
EFFICIENCY	=	0.9072

B-46

EUBE	FLOW	INCIDENT	RADIATION	CONVECTION	EFFICIENCY
GROUP	LBZHR	W	W	W	
1	4636.	202164.	6695.	2061.	0.9067
2	4636.	212825.	7051.	2095.	0.9070
3	4636.	227435.	7574.	2142.	0.9073
4	4636.	236122.	7895.	2170.	0.9074
5	4636.	245598.	8259.	2201.	0.9074
6	46.36 .	251126.	8472.	2219.	0.9074
1	4636.	245598.	8259.	2201.	0,9074
8	4636.	236122.	/895.	2170.	0.9074
9	4636.	227435.	7574.	2142.	0.9073
10	4636.	212825.	7051.	2095.	0.9070
11	4636.	202164.	6695.	2061.	0.9067

 Э П П П П
GZOF

OUTSIDE I	BBE TEMP	ERATURES	(DEG. F)							
1045.4	1069.9	1101.9	1150*6	1142.5	1154.6	1142.5	1120.9	1101.9	1069.9	1046.4
1055.3	1079.8	1112.9	1133.0	1152.9	1166.0	1152.9	1133.0	1112.9	1079.8	1055.3
1081.8	1107.3	1139.5	1159.6	1130.5	1193.6	1180.5	1159.6	1139.5	1107.3	1031.8
1092.5	1118.9	1159.4	1180.4	1204.9	1218.0	1204.0	1180.4	1159.4	1113.9	1092.5
994.9	1013.6	1044.9	1062.6	1034.0	1090.0	1084.0	1062.6	1044.9	1013.6	994.9
888.6	905.0	926.9	938 . 7	951.4	961.3	951.4	938.7	926.9	905.0	888.6
725.6	732.3	735.0	739.7	742.5	747.2	742.5	739.7	735.0	132.3	725.6
635.1	637.0	639.0	640.9	641.8	643.8	641.8	649.9	639.0	637.0	635 1
600.0	609.9	606.6	609.9	611.9	611.9	611.9	600.9	609.9	609.0	600.0
604.1	604.1	604.1	604.1	604.1	604.1	604.1	604.1	604.1	604 1	604 1
600.1	600.1	600.1	600.1	600.1	600,1	600.1	600.1	600.1	600.1	600.1

NODE EFFICIENCIES (P.U.)

0.321 0.272 0.242 0.331 0.354 0.314 0.331 0.242 0.272 0.321 0.354 0.761 0.757 0.160 0.759 0.750 0.754 0.750 0.750 0.757 0.761 0.760 0.892 0.388 0.892 0.888 0.886 0.886 0.886 0.888 0.892 0.888 0.892 0.922 0.922 0.921 0.921 0.921 0.921 0.921 0.921 0.921 0.922 0.922 0.928 0.928 0.928 0.928 0,928 0.928 0.928 0.928 0.928 0.928 0.928 0.933 0.933 0.934 0.934 0.934 0.934 0:934 0.934 0.934 0,933 0.933 J.927 0.928 0.928 0,928 0.928 0.929 0.928 0.928 0,928 0.928 0.927 0.889 0.892 0.895 0.897 0.897 0.899 0.897 0.897 0.895 0,892 0.889 9.768 0.768 0.768 0.768 0.798 0.798 0.798 0.768 0.768 0.768 0.768 0.653 0.653 0.653 0.653 0.653 0.653 0.653 0.653 0.653 0.653 0.653 0.070 0.070 0.070 0.070 0,070 0.070 0.070 0.070 0.070 0.070 0.070 PAUSE

P

LINE CALLING-ROUTINE

980 ATPFW

INCIDENT FLUX (W/SQ.CM)

5.2	5.2	5.2	5.2	6.2	6.2	6.2	5.2	5.2	5.2	5.2
16.6	17.6	18.6	19.7	19.7	20.7	19.7	10.7	18.6	17.6	16.6
58.0	61.1	62.1	64.2	65.2	67.3	65.2	64.2	62.4	61.1	58.0
151.1	128.3	139.7	144.9	151.1	155.2	151.1	144.9	139.7	128.3	121.1
124.2	129.4	140.8	147.0	155.2	155.2	155.2	147.0	140.8	129.4	124.2
121.1	128.3	139.7	144.9	151.1	155.2	151.1	144.9	139.7	128.3	121.1
58.0	61.1	62.1	64.2	65.2	67.3	65.2	64.2	62.1	61.1	58.0
16.6	17.6	18.6	19.7	19.7	20.7	19.7	10.7	18.6	17.6	16.6
5.2	5.2	5.2	5.2	6.2	6.2	6.2	5.2	5.2	5.2	5.2
3.1	3,1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1,0	1,0	1.0	1.0

47

8-

۰. ۲

ABSORBE) FLUX(V	V/5Q.CM))							
1.8	1.7	1.4	1.3	2.1	1.9	2.1	1.3	1.4	1.7	1.8
12.6	13.4	14.1	14.9	14./	15.6	14.7	14.9	14.1	13.4	12.6
51.7	54.5	55.2	57.0	57.8	59.6	57.8	57.0	55.2	54.5	51.7
111.6	118.3	128.7	133.5	139.1	142.9	139.1	133.5	128.7	118.3	111.6
115.3	120.1	130.7	136.4	144.1	144.1	144.1	136.4	130.7	120.1	115.3
113.0	119.7	130.4	135.3	141.1	145.0	141.1	1.35.3	130.4	119.7	113.0
53.7	56.6	57.6	59.6	60.5	62.5	60.5	59.6	57.6	56.6	53.7
14.7	15.7	16.7	17.6	17.6	18.6	17.6	17.6	15.7	15.7	14.7
4.0	4.0	4.0	4.0	5.0	5.0	5.0	4.0	4.0	4.0	4.0
2.0	2.0	2.0	2.0	2.0	2.0	2.0	5.0	2.0	2.0	2.0
0.1	0.1	0.1	0.1	0,1	0.1	0.1	0.1	0.1	0.1	0.1
A)IATI(N LOSS	(W)								
241.1	1005.0	1089.9	1144.6	1209.4	1246.8	1209.4	1144.6	1089.9	1002.0	941.1
963.8	1028.6	1121.3	1180.4	1241.3	1282.5	1241.3	1180.4	1121.3	1028.6	963.8
1934.1	1105.2	1200.2	1252.4	1329.5	1373.1	1329.5	1262.4	1200.2	1105.2	1034.1
1063.4	1138.8	1261.8	1329.3	1411.3	1456.7	1411.3	1329.3	1261.8	1138.8	1053.4
317.0	860.5	937.2	983.0	1940.1	1056.7	1040.1	983.0	937.2	860.5	817.0
500.2	629.6	672.1	695.7	721.9	742.8	721.9	695.7	672.1	629.6	599.2
352.1	360.4	363.9	360.0	373.5	379.5	373.5	360.0	363.9	360,4	352.1
252.3	254.2	256.1	258.0	258.9	260.8	258.9	258.0	256.1	254.2	252.3
228.6	228.6	558.6	228.6	230.4	230.4	230.4	228.6	223.6	<u>228.6</u>	228.6
223.4	223.4	223.4	223.4	223.4	223.4	223:4	223.4	223.4	223.4	223.4
515.8	219.8	219.8	219.8	219.8	219.8	219.8	516*8	219.8	219.8	219.8
C):WECTI	loa Loss	5(4)								
235.0	240.6	248.3	252.9	258.1	261.0	258.1	252.9	248.3	240.6	235.0
237.1	243.0	251.0	255.8	260.6	263.7	260.6	255.8	251.0	243.0	23/.1
243.5	240.6	257.4	252.2	267.2	270.4	251.2	262.2	257.4	249.6	243.5
246.0	252.4	262.1	267.2	273.1	276.2	273.1	261.2	262.1	252.4	246.0
222.6	227.1	234.6	238.9	244.0	245.4	244.0	238.9	234.6	227.1	222.6
197.0	500.0	502.5	500.0	212.1	214.5	212.1	209.0	205.2	200.9	197.0
157.8	159.4	160.0	151.2	161.8	163.0	161.8	161.2	160.0	159.4	157.8
136.0	136.4	136.9	137.4	137.6	138.1	137.6	137.4	136.9	135.4	136.0
129.9	120.0	129.9	150.0	130.4	130.4	130,4	129.9	120.0	129.9	129.9
128.5	128.5	128.5	128.5	128.5	128.5	128.5	128.5	128.5	128.5	128.5
157.6	127.6	127.6	127.6	127.6	127.6	127.5	127.6	127.6	127.6	127.6

NODE SODIUM	CEMPER	ATURES (1	DEG. F)							
1043.8 10	067.5	1086°8	1119.1	1139.6	1151.8	1139.6	1119.1	1099.9	1067.5	1043.8
1037.1 10	060.5	1092.7	1111.6	1131.8	1143.7	1131.8	1111.6	1092.7	1060.5	1037.1
1007.3 10	029.1	1060.6	1078.4	1098.3	1108.0	1098.3	1073.4	1060.6	1029.1	1007.3
931.8	940.2	975.5	999.3	1007.2	1015.2	1007.2	020.3	975.5	949.2	931.8
826.8	838.9	855.5	865.4	875.1	882.4	876.1	865.4	855.5	838,9	826.8
/21.2	728.0	734.7	739.7	744.2	748.7	744.2	739.7	734.7	728.0	721.2
644.1 (646.4	647.7	649.5	450.º	652.7	650.9	644.5	647.7	646.4	644.1
612.4 (512.9	613.3	613.8	614.7	615.1	614.7	613.8	613.3	615.9	612.4
603.8 (603.8	603.8	603.8	604.2	604.2	604.2	603.8	693.8	603.8	603.8
601.0 (501.0	601.0	601.0	601.0	601.0	601.0	601.0	601.0	601.0	601.0
500.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0

G 4or5

PAJSE

LINE CALLING-ROUTINE

1150 VLbEM

SODTUM HE	AT TRANS	FER COEF	FICIENTS	(BEU/HR*	F*F[**2)					
3490.3	34/4.0	3452.2	3439.5	3426.1	3418.3	3426.1	3439.5	3452.2	3474.0	3490.3
3495.0	3478.7	3456.9	3444.4	3431.2	3423.5	3431.2	3444.4	3456,9	3478.7	3495.0
3516.0	3500.6	3478.6	3466.6	3453.2	3446.2	3453.2	3455.6	3478.6	3500.6	3516.0
3572.1	3558.8	3539.2	3528.4	3516.1	3510.4	3516.1	3528.4	35.39.2	3558.8	3572.1
3656.8	3646.6	3632.8	3624.7	3615.9	3610.8	3615.9	3624.7	3632.8	3545.6	3656.8
3752.2	3745.7	3739.3	3734.7	3730.5	3726.3	3730.5	3734.7	3739.3	3745.7	3752.2
3829.9	3827.5	3826.1	3824.2	3822.7	3820.3	3822.7	3824.2	3826.1	3827.5	3820.0
3864.2	3863.7	3863.2	3862.7	3851.7	3861.2	3861.7	3862.7	3863.2	3863.7	3864.2
3873.8	3973.8	3873.8	3873.8	3873.3	3873.3	3873.3	3873.8	3873.8	3873.8	3873.8
3876.9	3876.9	3876.9	3875.9	38/6.9	3876.9	3876.9	38.76.9	3876.9	3876.9	3876.9
3878.0	3878.0	3878.0	3878.0	3878.0	3878.0	3878.0	3878.0	3878.0	3878.0	3878.0
LUBE COND	UCTANCE	B fu/h R*F	*FT**2)							
1397.6	1401.7	1407.1	1410.3	1413.8	1415.7	1413.8	1410.3	1407.1	1401.7	1397.6
1308.8	1403.0	1408.6	1411.9	1415.2	1417.2	1415.2	1411.9	1408.6	1403.0	1398.8
1402.2	1406.5	1411.9	1415.2	1418.6	1420.7	1418.6	1415.2	1411.9	1406.5	1402.2
1402.2	1406.7	1413.4	1415.9	1420.8	1422.9	1420.8	1416.9	1413.4	1406.7	1402.2
1383.9	1387.3	1392.9	1396.0	1399.7	1400.8	1399.7	1325.0	1302.0	1387.3	1383.9
1362.5	1365.6	1369.7	1371.9	13/4.2	13/6.1	1374.2	1371.9	1369.7	1365.6	1362.5
1329.8	1331.2	1331.8	1332.7	1333.3	1334.3	1333.3	1332.7	1331.8	1331.2	1329.8
1311.1	1311.5	1311.9	1312.3	1312.5	1312.9	1312.5	1312.3	BH.9	1311.5	1311.1
1305.7	1305.7	1305.7	1305.7	1396.1	1306.1	1306.1	1305.7	1305.7	1305.7	1305.7
1304.4	1304.4	1304.4	1304.4	1304.4	1304.4	1304.4	1304.4	1304.4	1304.4	1304.4
1303.6	1303.6	1303.6	1303.6	1303.6	1303.6	1303.6	1303.6	1303.6	1303.6	1303.6

TUBE WALL	CONDUC		TUZHR *F	*FT)						;	
11.6	11.7	11.9	12.0	12.1	12.1	12.1	12.0	11.9	11.7	11.6	
11.6	11.7	11.9	12.0	12.1	12.1	12.1	12.0	11.9	11.7	11.6	
11.6	11.7	11.9	12.0	12.1	12.1	12.1	12.0	11.9	11.7	11.6	
11.5	11.6	11.7	11.8	11.9	12.0) 11.9	11.8	11.7	11.6	11.5	
11.0	11.1	11.2	11.2	11.3	11.3	3 11.3	11.2	11.2	11.1	11.0	
10.5	10.5	10.6	10.6	10.7	10.7	1 10.7	10.6	10.6	10.5	10.5	
9.9	9.9	10.0	10.0	10.0	10.0) 10.0	10.0	10.0	0.0	0.0	
9.6	9.6	9.6	9.7	9.7	0.7	1 9.7	9.7	9.6	9.6	9.6	
9.6	9.6	9.6	9.6	9.6	0.6	5 0 A	0 6	9.6	0.6	0.6	
9.5	9.5	9.5	6 .5	0.5	0.5	5 0 5	0 5	0.5	05	0 5	
9.5	9.5	9.5	0.5	0.5	0.6	5 0.5	0.5	05	9.J 0.5	05	
				· •			× •		2 . J		
PEAK TUBE	TEMPER/	ATURE (D	FG. F)								
1047.9	1071.2	1103.0	1/21.	9 11	44.2	1156.2	1144.2	1121.9	1103.0	1071.2	1047.9
1065.6	1090.8	1124.4	1145	1 11	64.9	1178.7	1164.9	1145.1	1124.4	1090.8	1065.6
1124.3	1151.9	1184.5	1206	0 12	27.4	1242.0	1227.4	1206.0	1184.5	1151.9	1124.3
1184.2	1215.8	1264.4	1289	0 13	17.7	1333.8	1317.7	1289.0	1264.4	1215 8	1194 2
1090.9	1113.3	1153.0	175	2 12	02.6	1208.5	1202.6	1175.2	1153.0	1113.3	1020.9
984.1	1006.0	1036.7	1052	3 10	60.7	1082.7	1069.7	1052.3	1036.7	1006 0	084 1
772.2	781.3	784.9	791	2 7	94.8	801.2	704.8	791.2	784.0	781 3	772 2
648.0	650.8	653.6	656	A 6	57 3	660 1	667 3	656 4	45.2 A	450 B	649 0
613.4	613.4	613.4	613	. <u>4</u> 6	16.3	616.3	616.3	613 4	V-2-0	613 4	613 4
605.9	605.9	605.9	605	0 6	05.0	X05 0	605 0	605 0	605 0	605 0	605 0
600.2	600.2	600 2	600)	01.7	X00 2	600 3	600 2	400 D	600.9	600 2
· · · · · · · · · · · · · · · · · · ·	0.000			<u> </u>	00 + C	000+2	000.2	000+2	000•<	000.2	000.2

WATE (YNNING) FIVETVEDTUELONES CTS **FUBE**

в-50

600.2 600.2 600.2 600.2 CONTINUE ITERATION?(YES=1,NO=0)?0

G Sors

INCIDENT FLUX (MW/SO.M	NODE EFFICIENCIES(P.U.)	ABSORBED FLUX(MW/SQ.M)
0.180 0.330	0.7530	0.060 0.136 0.278
0.510 0.800 1.100	0.8802 0.9058 0.9189	0.449 0.725 1.011
1.200	0.9242 0.9273 0.9302	1.109 1.113 1.116
1.100 0.800	0.9327 0.9340 0.9320	1.027 0.746
0.330 0.180	0.9173 0.8950	0.303 0.161
	0.8555	

FIGURE 3-5, FLUX DISTRIBUTION FOR CYCLIC LIFE

ENERO SYSTE PROGRA	GY MS AMS	ENGINEE	RING SPECIFICATION	SPECIFICATIO NUMBER				
DEPARTM	MENT	TITLE		295A4724				
	ý			ORIGINAL ISSUE DATE				
GENE	RAL			AUG 8,1979				
ELEGI	HIC	CLASSIFICATION						
3.1.2.3	Ins	trumentation Inter	face					
	•	All measuring inst	rumentation shall be attached and	d routed by others.				
3.1.2.4	Sol	ar Interface						
	Abs inc	orber panel testing ident solar beam cl	g will require the following mutu haracteristics:	ually independent				
	•	A flux distribution of 0.5 MW/M ² over t	n which is nearly uniform with ar the active panel heat exchanger a	n intensity area.				
	• :	A flux distribution near the center of	n which provides a peak intensity the panel.	y of 1.55 MW/M ²				
3.1.2.5	Con	tainment Interface						
	•	The absorber solar ting equipment by a vided by others.	panel shall be isolated from the a fire resistant and leak resisti	e primary circula- ing barrier pro-				
3.1.3 <u>M</u>	AJOR	COMPONENT LIST						
T P	he al arts	osorber panel can b breakdown.	be organized into the following s	ubassembly and				
3.1.3.1	Pane	al Assembly						
	Consists of tubes, tube spacers, header assembly, inlet pipe, outlet pipe, strain sensors (provided by others) tube thermocouple assembly (provided by others), attachment brackets, header and pipe heater elements, assembly hardware, absorptive coating, header thermocouple assembly (provided by others).							
3.1.3.2	Supr	ort Structure						
	Consists of panel support structure, attachment points to fluid circula- ting equipment support structure, thermal insulation attachment hard- ware, attachment hardware panel to structure, header/pipe guides/sup- ports as required.							
3.1.3.3	Ther	mal Insulation Ass	emblies					
	Cons stru	ists of absorber p cture, panel heate	anel back side rigid insulation, rs, heater attachment hardware,	insulation support inlet/output header				
REVISIO	N R	REVISION DATE	SUPERSEDES					
1		4-9.80	OBGIFAL ISSVE	PAGE 14 OF39				

ENERG SYSTEN PROGRA	Y AS MS	ENGINEERING SPECIFICATION	SPECIFICATION NUMBER						
		TITLE	29044104						
K			ORIGINAL ISSUE DATE						
GENEF	RAL		AUG 8,1979						
ELECT	RIC	CLASSIFICATION							
insulation, inlet/outlet piping insulation.									
3.1.4 <u>G</u>	OVERN	MENT FURNISHED EQUIPMENT							
N	one								
3.2 <u>CHA</u>	RACTE	RISTICS							
3.2.1 <u>P</u>	ERFOR	MANCE CHARACTERISTICS							
T	he abo	osrber panel shall be designed to provide the foll	lowing performance:						
3.2.1.1	Incid	dent Solar Beam Acceptance							
	The absorber panel shall accept a maximum steady state incident solar power of 2.5 MW on the absorber panel active heat exchanger surface. The active region of the panel shall be able to accept this power level in any distribution which is symmetric about the vertical centerline of the panel, between the extremes of uniform flux and single point aiming flux of para. 3.1.2.4. Flux and thermodynamic data for the uniform intensity and maximum single point aiming strategy are shown in Table 3-4.								
3.2.1.2	Absor	cber Panel Inlet Sodium Temperature (For informat:	ion only, not a						
	requirement) The absorber panel inlet temperature (measured at the inlet pipe on the panel inlet header) shall be maintained at a set point between 500°F and 700°F under all incident solar power levels between 0.25 MW and 2.5 MW including transient as well as steady state condition. This specifica- tion shall be met under all operating environmental conditions listed in 3.2.5.1.								
3.2.1.3	Absor	ber Panel Outlet Sodium Temperature							
	The a panel state power	absorber panel outlet temperature (measured at the l outlet header) shall be maintained at $1100^{\circ}F \pm 5$ e and transient insolation conditions from 0.25 MW c under all operating environments as defined in 3	outlet pipe on the ^O F under all steady to 2.5 incident 2.2.5.1.						

3.2.1.4 Design Life Requirements

The absorber panel shall be designed to provide 30 year life with respect to corrosion and thermal cycling damage of the metallic parts. For corrosion, 30 year life shall be defined as 131,000 hours of exposure to full load operating temperatures and environments. For thermal cycling damage, 30 year life shall be as defined in Figure 3-2 with the flux

			and the defined in right of a wi	at are tran
	SION	REVISION DATE	SUPERSEDES	
		4.9.80	ORIGINAL ISSUE	PAGE 15 OF 39

ENERGY SYSTEMS PROGRAMS	ENGINEE	ERING SPECIFICATION	SPECIFICATION NUMBER						
DEPARTMENT	דודו כ	······································	295A4124						
E			ORIGINAL ISSUE DATE						
GENERA	L		ANG 8 1979						
ELECTRI	C CLASSIFICATION								
di a st	stribution shown in limited number of c rategy defined in 3	Figure 3-5. In addition the pay ycles corresponding to the single .2.1.1.	nel shall survive e point aiming						
3.2.1.5 <u>De</u>	sign Operating Mode	\underline{s} (for information only, not a r	equirement)						
Th	e absorber panel sh	all be capable of performing in	the following modes:						
•	 Operating - In this mode the sodium pump and the heat dump are under an automatic control which responds to variations in the solar heat input to maintain the absorber panel inlet/outlet Na temperatures at approximately 600°F/1100°F respectively. 								
•	 Hot Hold - This is a hot shutdown condition in which the panel move- able insulation is closed and the trace heaters function under automatic control to maintain the loop Na temperature at approxi- mately 600°F. 								
•	Preheat - This is condition to hot h	the transition from a cold ambies old.	nt temperature						
•	Startup - This is	the transition from hot hold to a	operation.						
•	Shutdown - This is	the transition from operation to	o hot hold.						
	Emergency Dump - I out of the panel i inert gas.	n this mode all of the sodium is nto the dump tank and the panel :	drained rapidly is filled with						
•	Calibration Maneuv quired for instanc tank level gages. thermal temperature	ers - Calibration modes shall be e the sodium flowmeter calibration T/C calibration may be run over es from 600°F to 1100°F.	provided as re- on using the surge a range of iso-						
3.2.1.6 <u>Pr</u>	essure Drop-Flow								
Pump flow as measured at pump outlet is variable from 20 to 250 GPM. The fluid pressure drop measured from the weld prep face of the inlet nozzle to the weld prep face of the outlet nozzle at the outlet operating temperature of 3.2.1.3 and incident flux of 3.2.1.1 and a fluid flow of 144 gallons per minute shall not exceed 5 psi due to friction and momen- tum losses (excluding gravity head). The pressure at the face of the inlet nozzle at this condition is 45 psig. 3.2.2 PHYSICAL CHARACTERISTICS									
NUMBER	DATE		1/2 - 20						
	4.9.80	UEIQIPA COUTE	FAGE 10 OF 37						

ES3-005 (5-78)

		SPECIFICATION					
ENERGY SYSTEMS PROGRAMS	ENGINEERING SPECIFICATION	295A4724					
DEPARTMENT	TITLE						
E		ORIGINAL ISSUE DATE					
GENERAL		AUG 8,1979					
ELECTRIC	CLASSIFICATION						
3.2.2.1 Dim	ensional Limits						
The Fig	e absorber panel assembly shall not exceed the dime wre 3-3.	ensional limits of					
3.2.2.2 Wei	ght Limit						
The wit the	absorber panel assembly shall not exceed 16000 po th an operating sodium content. The vendor shall d total dry weight and wet weight of the absorber p	unds, letermine and provide anel assembly.					
3.2.2.3 <u>Sur</u>	face Obstruction						
No bet	structural feature of the test assembly will obstru ween the active panel region and heliostats in the	ict the optical path field, see Ref. 2.3.					
3.2.3 <u>RELIA</u>	BILITY - NA						
3.2.4 <u>MAINT</u>	AINABILITY						
The a acces to cu to ca	bsorber panel assembly shall be designed and const s for maintenance operations. The design should m t the sodium loop or move large components, requiri librate, repair or replace instrumentation and tra	ructed to provide inimize the necessity ng a crane,in order ce heaters.					
3.2.5 <u>ENVIR</u>	ONMENTAL CHARACTERISTICS						
3.2.5.1 Ope	rating Requirements						
The fol	absorber panel assembly shall be designed to oper lowing environmental conditions:	ate under the					
Tem Win	perature (Dry Bulb): -20 to 120°F d Speed: 0 to 14 M/S (30 mph)						
3.2.5.2 <u>Sur</u>	vival Requirements						
The	absorber panel assembly shall be capable of survi combinations of the environments specifie	ving without damage d below:					
Wind Speed:45 M/S gusts from any direction (100 mph)Snow:5 lb/ft² snow depositionLightning:Direct hitRain:3 inches in 24 hoursIce:2 inch thick depositEarthquake:0.5 g constant lateral acceleration at top of towerHail:1 inch diameter0.9 specific gravity75 fps							
REVISION NUMBER	DATE ARIGINAL ISSUE	55 PAGE 7 OF 39					

ENERGY SYSTEMS PROGRAMS DEPARTMENT	ENGINEERING SPECIFICATION	SPECIFICATION NUMBER 29544724
E	TITLE	ORIGINAL ISSUE DATE
GENERAL ELECTRIC	CLASSIFICATION	AUG 8,1979

Realignment prior to returning to operation after surviving these conditions is allowable.

3.2.6 TRANSPORTABILITY

The Absorber Panel Assembly shall be constructed in modular form, and all of the modules shall be of a size which may be shipped by truck. Shipment assembled as one unit is acceptable.

3.2.7 INSTALLATION

The absorber panel assembly and attachment to the supporting structure shall be designed and constructed to minimize field installation labor with particular emphasis on minimizing field welding.

3.2.8 CLEANLINESS

Fabrication, assembly and shop testing operations shall be conducted to facilitate cleaning, inspection for cleanliness and to minimize contamination during these operations. The equipment as delivered shall be suitable for installation without additional cleaning. Cleaning and cleanliness control shall be implemented according to vendor procedures approved by the contractor.

3.3 DESIGN AND CONSTRUCTION

As a minimum the components in contact with sodium shall be designed and manufactured to meet the requirements of ASME Section VIII Division I and appropriate mandatory appendices with the exception that code stamping and marking is not required. Alternate rules for design for buckling and creepfatigue failure may be developed and used as approved by the contractor. For design purposes the maximum absorber panel internal pressure shall be 125 psig. The structure elements of the test assembly shall comply with accepted design standards (Ref. 2.2) and for elevated temeprature service shall be designed to the allowable stress values of ASME Section VIII. All electrical power distribution equipment and electrical components shall be designed to the National Electric Code (Ref. 2.5) and National Electrical Manufacturers Association Standards (2.6). All critical non-pressure system structural welds, those critical to function or safety, shall be identified and shall have the root and final weld pass inspected by magnetic particle or liquid penetrant methods. All non critical, non-pressure system structural welds may be to Ref. 2.2 requirements. All lifting attachments to be used for assembly or handling shall be designed for 5 g in all directions. Loads encountered during shipping shall be provided for in the item design or with suitable shipping only structure.

REVISION	REVISION	SUPERSEDES		
NUMBER	DATE		PAGE 18	OF 39
			· · · ·	

ENERGY SYSTEMS PROGRAMS DEPARTMENT		ENGINEER	RING SPECIFICATION	SPECIFICATION NUMBER 295A 4724	
		TITLE			
E				ORIGINAL ISSUE DATE	
GENEI	RAL			AUG 8,1979	
ELECT	RIC	CLASSIFICATION			
3.3.1 <u>M</u> 3.3.1.1	ATERI Sodi All with Sect	ALS, PROCESSES AND um Loop Materials material in contact contractor supplic ion II product for Tubing SB-407 Pipe SB-407 Plate SB-409 Weld Rod SFA 5.14	PARTS t with sodium shall be Incoloy ed specifications or in accord ms listed below. Type ERNiCr-3	800 in accordance ance with the ASME	
3.3.1.2	Braz	<u>e Material</u> - (to be	e determined)		
3.3.1.3	Structural Material				
	All part Equi	structural material A Ferrous Material valency shall be ap	l shall meet the requirements ls or equivalent commercial de oproved by the contractor.	of ASME Section II signations.	
3.3.1.4	Abso	rber Panel Tube Mat	terial		
	The fica Rece be p	Incoloy 800 tube ma tions supplied by a iving inspection in erformed by the ven	aterial shall be procured by t the contractor and concurred t n accordance with the tubing s ndor.	he vendor to speci- o by the seller. pecification shall	
3.3.1.5	Insu	lating Material			
	All and	insulation shall be shall be water res:	e compatible with materials in istant or protected from moist	close proximity ure contamination.	
3.3.1.6	Braz	ing Process			
	The proc supp the atta	vendor shall provided edure supplied by lier to be identif: necessary fixtures chments as required	le a detail brazing procedure the contractor and concurred w ied by the contractor. The ve required for brazing tubes to 1.	based on a general with by a brazing ndor shall provide gether and other	
REVISI	NC	REVISION	SUPERSEDES		

ENERGY SYSTEMS PROGRAMS	ENGINEE	ERING SPECIFICATION	SPECIFICATION NUMBER 29544724		
DEPARTMENT	TITLE		OBICINAL		
			ISSUE DATE		
GENERA	GENERAL		AVG 8,1979		
ELECTRI	CLASSIFICATION				
3.3.1.7 <u>Co</u>	rosion Protection				
Al su 3.3.2 <u>ELEC</u>	l non corrosion res itable rust prevent TROMAGNETIC RADIATIO	istant structural components shal ative to protect it from the envi ON - NA	l be painted with a ronment.		
3.3.3 <u>IDEN</u>	TIFICATION AND MARK	ING			
The mati	panel assembly shal on:	l bear a name plate with the foll	owing minimum infor-		
Manu	lacturer				
Seri	l Number (Part Num)	ber)			
Mate	ial of Construction	n			
Desi	n Temperature				
Desi	m Pressure				
Weig	it, Dry, Wet				
The each	upport structure as bear a name plate of	ssembly and back side rigid insul or be marked with the following m	ation assembly shall inimum information:		
Manu	acturer				
Seri	1 Number (Part Numb	ber)			
Weig	t				
3.3.4 <u>WORK</u>	ANSHIP				
Unle: norma requ:	s otherwise specifi l commercial practi red.	ed workmanship shall be that com ce. Nuclear service, codes, and	mensurate with practices are not		
3.3.5 <u>INTE</u>	CHANGEABILITY - NA				
3.3.6 <u>SAFE</u>	.6 <u>SAFETY</u> - NA				
3.3.7 HUMA	.7 HUMAN ENGINEERING - NA				
3.3.8 <u>DOCU</u>	.3.8 DOCUMENTATION				
REVISION	REVISION	SUPERSEDES			
NUMBER	DATE		PAGE 20 OF 39		
	l				

.

ENERGY SYSTEMS PROGRAMS DEPARTMENT		ENGINEERING SPECIFICATION	SPECIFICATION NUMBER
		TITLE	
0,0			
			ISSUE DATE
GENER	AL		AUG 8,1979
ELECTR	IC	CLASSIFICATION	
3.3.8.1	Desi	gn Documentation	·····
1 2 2 5 1 1 1	Docu comp spec qual info follo pria	ments required with the delivery of vendor suppli- onents shall include pertinent design analysis to ification adherence, performance characteristics, ity results, pressure and leak test results, as-bu- rmation required for safe handling, packaging and owing items shall be supplied. Other items may bu- te:	ed and manufactured show code and manufacturing uilt drawings and unpacking. The e added as appro-
1	1) (Quality Records	
		 Material Certification and Properties Leak Test and Pressure Test Results Dimensional Inspection Results Welding Records 	
2	2) 2	As Built Interface Dimensions and Drawings	
3	3) I	Design Analysis	
. 4	4) (Component Operating Characteristics	
5	5) 1	Packing, Packaging and Unpacking Instructions	
e	5) \$	Special Handling/Shipping Requirements	
3.4 MAJOF	r coi	MPONENT CHARACTERISTICS	
3.4.1 PAN	NEL 1	ASSEMBLY	
The tuk oth tra be sid tuk of Fig the tuk and res	e abs bes w ansfe meta de es be-he rad: gure e tub be he doe he fure l out	sorber panel consists of a single row of 51 Incole welded to an inlet header at one end and an outled and. The tubes will be $3/4$ " OD 0.050" wall with a er length of 15 ft. and a panel width of ~ 3.28 ff allurgically bonded together by brazing and will be posed to the solar radiation with a high absorpt: eader and header joints shall be formed by welding iographic inspection. The panel configuration sha 3.2. The inlet and outlet headers may be located be bundle or behind it (alternate configuration). eader joints shall be shielded from direct solar is the pipes are attached by welding to the inlet and tively. The panel tubes, headers and inlet/outled braining in the operating configuration. The inlet	by 800 seamless t header at the an effective heat t. The tubes will be coated on the ivity coating. The g and be capable all be as shown in d in the plane of The headers and insolation. Inlet and outlet headers t piping shall be et/outlet pipes

REVISION NUMBER	REVISION DATE	SUPERSEDES	PAGE 21	of 39
			PAGE C 1	UF Q ,

İ

ENERG System	iy Ms	ENGINEE	RING SPECIFICATION		SPECIFICATION NUMBER
DEPARTMENT				es _	TA 4724
					ORIGINAL ISSUE DATE
GENES	RAL			AUG	8,1979
ELECT	RIC	CLASSIFICATION			
s i 3.4.1.1	hall ng to <u>Trac</u>	be prepared by the 3 inch diameter, s the Heating	panel manufacturer with weld sheedule 40 type 304 stainless	preparati steel pi	on for weld- pe.
	temp Heat tern	headers shall be so erature of $600^{\circ}F \pm$ er design to be suj ating current.	Spiled with trace heaters to 50°F with moveable and fixed pplied by the vendor shall be	maintain insulati 480 volt	on in place. s 60 cps al-
3.4.1.3	<pre>mately seventy seven locations on the active heat exchange surface as shown in Figure 3-3. This instrumentation shall include thirty front surface temperature sensors, seventy seven back surface temperature sensors and fifteen strain gages mounted on the back surface. Special features (to be determined) for access for thermocouples to the front side of the panel shall be supplied by the vendor. 3 Instrumentation (Sodium Temperature)</pre>				
	The moun tion measu each	header insulation s ted thermocouples, s on the inlet head ure sodium temperat header.	shall be removeable to provide supplied and installed by otilier and three locations on the sure at the inlet/outlet and the	e access hers, at : e outlet ! the extrem	to surface three loca- header, to ne ends of
3.4.1.4	Abso:	rptive Coating			
	The : has :	front surface of th the following prope	e tube bundle shall be coated rties at 600-1200°F	l with a n	naterial whic
	Solar Infra Life:	r absorptivity: 0. ared emissivity: 0. : 50	95 (minimum) 90 (maximum) 00 hours (minimum)		
	In ac such at ar	dition the thermal that the temperatu 1 absorbed flux of	conductivity and thickness or rise across the coating la 1.2 MW/M ² .	of the coa ayer is le	ating shall h ess than 50°F
3.4.1.5	Exami	ination and Test			
	The p teste Secti	panel assembly shal ad in accordance wi on VIII, paragraph	l be hydrostatically or pneum th ASME Boiler and Pressure V UG-99 or UG-100.	atically Vessel Spe	pressure ecifications
REVISIO	R	REVISION DATE	SUPERSEDES		
1		4.9.80	ORGINAL ISSUE		PAGE 22 OF3
	1				

۰.

ENERGY SYSTEMS PROGRAMS DEPARTMENT	ENGINEERING SPECIFICATION	SPECIFICATION NUMBER 29544724
E	TITLE	ORIGINAL ISSUE DATE
GENERAL Electric	CLASSIFICATION	AUG 8, 1979

The complete panel assembly shall be inspected for leak tightness by subjecting it to a helium leak test using the hood method per ASME Section V by approved procedures. The total allowable integrated leak rate shall not exceed 1 x 10^{-8} std cc/sec of helium.

3.4.2 SUPPORT STRUCTURE

As shown in Figure 3-3, the receiver tube and header assembly shall be mounted on a panel support structure in a manner which will accommodate both axial and lateral thermal expansion and contraction during temperature changes between ambient and maximum operating temperatures support the weight and maintain flatness of the tube bundle. Vertical expansion shall be downward from the outlet end.

3.4.2.1 Flatness

The panel support structure shall maintain flatness of the tube bundle to within ± 1 inch while allowing movement for thermal expansion, under all the operating conditions defined in paragraph 3.2.1.5.

3.4.2.2 Assembly

The panel support structure shall mate with and be easily fastened to the fluid circulation equipment support structure.

3.4.3 THERMAL INSULATION ASSEMBLIES

3.4.3.1 Tube Insulation

The back side of the tube bundle shall be insulated. The insulation design shall be based on a maximum cold side surface temperature of 150° F.

3.4.3.2 Trace Heating

The panel tube bundle shall have trace heaters on the back side to assure a hot hold temperature of $600^{\circ}F \pm 50^{\circ}F$ and provide the following:

- Heater electrical power, supplied by others, shall be 480 volts, 60 cps, 3 phase, alternating current.
- The heaters shall be 0.50 "dia and rated at 125 watts/ft. minimum. Heater sheath shall be suitable for operation to 1250°F.
- Total heating capacity shall be 10 kw. The heaters shall be

REVISION NUMBER	REVISION DATE	SUPERSEDES	PAGE 23	of 39

			SPECIFICATION		
ENERGY SYSTEMS PROGRAMS DEPARTMENT	ENGINEEF	RING SPECIFICATION	29524724		
	TITLE				
FE			ORIGINAL ISSUE DATE		
GENERAL			AUG 8, 1979		
ELECTRIC	CLASSIFICATION				
el ou	ectrically connect tput. Each bank s	ed in five horizontal banks of hall be wired to provide indepe	approximately equal endent control.		
• He ot	ater control will hers.	be on-off type. Switch gear wi	ll be provided by		
3.4.3.3 <u>Asse</u>	embly				
The remo tior	back side insulati oval and installati 1.	on and trace heaters shall be c on to provide access for instru	apable of ready mentation installa-		
3.4.3.4 <u>Head</u>	ler and Header Pipe	Insulation			
Insu tens ture fror	lation on inlet an sions shall be desi a of not more than at surface from the	d outlet headers with inlet and gned to provide a nominal cold 150 ⁰ F. Insulation shall be pro header to the active solar regi	loutlet pipe ex- side surface tempera- ovided on the panel .on.		
3.5 PRECEDEN	ICE				
In the e the cont	event of conflict b ents of this speci	etween this document and the re fication shall be the supersedi	ference documents, .ng requirement.		
4.0 QUALITY	ASSURANCE PROVISIO	NS			
This sec tion and	tion specifies the performance requi	methods for verification of th rements specified in Section 3.	ne design, construc- 0 of this document.		
4.1 GENERAL					
The primary method of assuring compliance of the absorber panel assembly with the requirements of this specification will be through inspection of drawings, hardware and the design documentation specified in paragraph 3.3.8.1, item 3. A limited number of demonstrations (\sim 3) and tests (\sim 1) will be performed					
to verif	to verify compliance with performance requirements.				
4.1.1 <u>RESPON</u>	4.1.1 <u>RESPONSIBILITIES</u>				
All te	All testing and demonstrations will be performed by the vendor according to				
approved procedures. The results of each test as well as any corrective action or retest required shall be documented.					
REVISION	REVISION	SUPERSEDES			
NUMBER	DATE		page 24 of 39		

ES3-005 (5-78)

······	r		SPECIFICATION
ENERGY SYSTEMS PROGRAMS	ENGINEEF	RING SPECIFICATION	295A4724
	TITLE		
E			ORIGINAL ISSUE DATE
GENERAL			AUG 8, 1979
ELECTRIC	CLASSIFICATION		
Tests facil: and ap	and demonstrations ties will be done oproved by the cont	performed at the vendors (or t according to procedures develop ractor.	heir subcontractor) ed by the vendor
Witnes mined	sing of Foster Whe on a case by case 1	eler tests and demonstrations b basis.	y GE will be deter-
4.1.2 SPECIA	AL TESTS AND EXAMIN.	ATIONS	
4.1.2.1 Abso	orber Panel		Í
The allo ava: ider	panel tubes shall ows for radiographi ilable for inspecti ntified in 3.3.8.1,	be welded to the jumper tubes i c inspection of each weld. Thi on by the contractor as part of item 1.	n a manner that s data will be the welding records
4.1.3 DATA F	EQUIREMENT		
4.1.3.1 <u>Test</u>	Procedures		
Test of t the	: procedures will b hose characteristi test procedure sha	e written by the vendor to veri cs requiring verification by te ll include:	fy the performance st. As a minimum
• 1	Equipment/Software	Requirements	
1 • 1	lest Equipment lest Prerequisites		
• 1	est Restrictions		
	Safety Consideration Test Procedure	ns	
, • 1	lest Set Up and Ins	trumentation Block Diagrams	
• [ata Sheets	Analyzia	
• 1	Pass/Fail Criteria	miary 515	
4.1.3.2 <u>TEST</u>	REPORTS		
Repo of d envi form	orts shall be providata acquired durin lata acquired durin lronmental condition mance of the equipm	ded for each test. These repor g the performance of testing, t n and data analysis (as require ent under test.	ts will consist est configuration, d) to assess per-
4.2 <u>VERIFIC</u>	TION DEFINITIONS		
Each per	formance requireme	nt in Section 3 of this specifi	cation shall be
REVISION	REVISION	SUPERSEDES	
NOMBER	4.9.80	ORIGIVAL ISSUE	PAGE 25 0F39
E\$3-005 (5-78)	L,	B-63	- <u>-</u>

· · · · · · · · · · · · · · · · · · ·	_	r			
ENERG SYSTEN PROGRA		ENGINEE	RING SPECIFICATION	29	SPECIFICATION NUMBER
DEPARTM	15141	TITLE	******		
P					ORIGINAL ISSUE DATE
GENEF	AL			AD	G 8,1979
ELECT	RIC	CLASSIFICATION			
ver	ified	using the follow:	ng evaluation methods		
4.2.1 <u>I</u>	NSPEC	TION (I)			
v	erifi	cation by determin	nation of physical characteris	tics.	
4.2.2 <u>s</u>	IMILA	RITY (S)			
s o p	imila or ide orevio	rity is a procedu ntical in design a usly qualified to	e used to show that an article and manufacturing processes to equivalent or more stringent o	e is com , anothe critiera	parable with, er ariticle
4.2.3 <u>A</u>	NALYS	IS (A)			
v 0 0	erifi or ana of com	cation by examinat lytical combinatio ponent units.	ion of technical data, mathems on of measured data and/or oth	atical d er techn	erivations, ical data
4.2.4 <u>D</u>	EMONS	TRATION (D)			
V W f	erifi vithou rom i	cation by operation t a requirement for nstrumentation of	on of any item or by performand or analysis of quantitative day recorded observations during	ce of an ta that the veri	y function might result fication.
4.2.5 <u>T</u>	EST ('	<u>T)</u>			
V ti i:	erifi hat r nstru	cation by operatin equires analysis o mentation or from.	g of any device or performance f quantitative data that resul recorded observations during t	e of any Lts from the veri	function required fication.
4.3 <u>VER</u>	IFICA	TION MATRIX			
The verification matrix shows the classification and methods of evaluation for all Section 3 requirements. Verification of performance and design requirements shall be based on evaluation by inspection, similarity, analysis, demonstration, and/or test. Inspection shall be used to check adequacy of design documentation and applicable specifications and conformance of hardware to design documentation and applicable standards. Similarity shall be used in verifying the performance of a component that has been proven in another application.					
Anal tior tior be e	lysis n is u n. Te establ	shall be used in used when quantita ests shall be cond Lished by other me	lieu of, or to supplement, tes tive measurements are not requ ucted when an acceptable level thods or when testing can be s	it data. Lired fo: . of con: Shown to	Demonstra- r verifica- fidence cannot be most cost-
REVISIO	N	REVISION	SUPERSEDES		
					PAGE 26 OF 39

ES3-005 (5-78)

			· · · · · · · · · · · · · · · · · · ·	SPECIFICATION						
EN SYS PRO	ERGY STEMS GRAMS	ENGINEER	RING SPECIFICATION	NUMBER 20541774						
DEPA	ATMENT	TITLE		27174,04						
S	6		,	ORIGINAL ISSUE DATE						
GEN	ERAL		· · · · · · · · · · · · · · · · · · ·	AUG 8, 1979						
ELEC	CTRIC	CLASSIFICATION								
	effectiv	e method.								
,	The Sect	ion 3 paragraphs f d in the table as 1	or which verification is not app N/A, or the basis of the followi	plicable are Ing criteria:						
	a. The	paragraph contains	the title only.							
I	b. The j	paragraph is descr	iptive and no requirement is sta	ited.						
	c. The j seque	paragraph is intro ent subparagraphs.	ductory and the requirements are	e stated in sub-						
4.4	VERIFICA	TION METHODS								
1	This section establishes the test verification methods and concepts that shall be used to verify the requirements of section 3.0. The verification matrix (Ref. 4.3) includes a cross reference to the appropriate section 3.0 Requirement paragraph and verification method.									
	Tests may be combined or rearranged in order to accommodate a more cost effective program or to maintain the program schedule.									
	In the fo appropria	ollowing paragraph ate section 3.0 pa	s the number in the parenthesis ragraph.	refers to the						
4.4.1	ITEM DI	EFINITION (3.1)								
	An ins done to	pection of the draw o assure compliance	wings and hardware of the absorm with this requirement.	er panel shall be						
4.4.2	INTERF2	ACE DEFINITION (3.)	1.2)							
	Same as	s paragraph 4.4.1.								
4.4.3	STRUCT	JRAL INTERFACE (3.	1.2.1)							
	An ins physica	pection of the draw al compatibility of	wings and mounting structures wi f the interface.	.ll assure the						
	An analysis will be performed to verify the ability of the structure to support the absorber panel over the full range of its operating environ- ment and modes.									
REV	ISION MBER	REVISION DATE	SUPERSEDES	PAGE 27 0F39						
ES3-005	(5-78)		3-65							

ESJ 005 -5 781	NUMSER	VERIFICATION MATRIX SECTION 3.0 REQUIREMENT REFERENCE	NA	V I	/ER S	IF ME A	ICA THC D	TIC D T	N	COMMENTS.	ELECTR	GENER.	DEPARTME	ENERGY SYSTEMS PROGRAM
Ļ											3	AL	7	Ū.
		3.0 REQUIREMENTS	x									[<u> </u>	
	*1	3.1 ITEM DEFINITION		х]]		3	
	U A S V	3.1.1 ITEM DIAGRAMS	x								SIFI		ᆔ	_
	5102 TE	3.1.2 INTERFACE DEFINITION		x] ရှိ		ł	
		3.1.2.1 STRUCTURAL INTERFACE		x		х					ğ			
		3.1.2.2 FLUID INTERFACE		x]			m
ľ		3.1.2.3 INSTRUMENTATION INTERFACE								ТВА				8
		3.1.2.4 SOLAR INTERFACE				x					1			Z
		3.1.2.5 CONTAINMENT INTERFACE		x							1			s s
떠											1			m
66											1			0
	SUS						-				1			ö
ł	ERSE	3.1.3 MAJOR COMPONENT LIST	х	-						······································	1			AT
	DES	3.1.3.1 PANEL ASSEMBLY		x							1			<u></u>
		3.1.3.2 SUPPORT STRUCTURE		x										2
	-	3.1.3.3 THERMAL INSULATION ASSEMBLIES		х							1			
												~	Ŋ	
											1	400	9 2	
	PAG	3.1.4 GOVERNMENT FURNISHED EQUIPMENT	х								ŧ	00	D D	
	32								T		[- - - - - - - - - - - - - - - - - - -	5	
	0											J T CE	ţ	
	л С						_				}	T ANAL		SEA 1
Ľ	<u> </u>	1									ł	10,		2

ES3 005 .5 78,

в-66

ESJ 005 -5 781	REVISION NUMBER	VERIFICATION MATRIX SECTION 3.0 REQUIREMENT REFERENCE	NД	V I	/ER S	IF ME A	ICA THO D	TIC D T	N	COMMENTS	ELECTRI	GENERA	63	DEPARTMEN	ENERGY SYSTEMS PROGRAMS
	DATE	3.2 CHARACTERISTICS 3.2.1 PERFORMANCE CHARACTERISTICS 3.2.1.1 INCIDENT SOLAR BEAM ACCEPTANCE 3.2.1.2 ABSORBER PANEL INLET TEMP. 3.2.1.3 ABSORBER PANEL OUTLET TEMP 3.2.1.4 DESIGN LIFE	x x x			x x x x					CLASSIFICATION	F			ENGINEE
R-67	SUPERSEDES	3.2.1.5 DESIGN OPERATING MODES 3.2.1.6 PRESSURE DROP-FLOW 3.2.2 PHYSICAL CHARACTERISTICS 3.2.2.1 DIMENSIONAL LIMITS 3.2.2.2 WEIGHT LIMIT	x			x 				Not a requirement					RING SPECIFICATION
		3.2.3 RELIABILITY	x									AUG		4.2 4.2	
	PAGE 29 0=39	3.2.4 MAINTAINABILITY		x	x							8, 1979	ORIGINAL ISSUE DATE	DH4104	SPECIFICATION

B-67

REVIS NUMS	VERIFICATION MATRIX SECTION 3.0	р М А		VĘR	IF ME	ICA THC	TI) D	ON			GENI	Ŕ	ENE SYSI DEPAR
μ N K	REQUIREMENT REFERENCE	_	I	s	A	D	T		COMMENTS.		R W	J)	AGY FAGY TMENS
	· · · · · · · · · · · · · · · · · · ·	 			 					12			20
	3.2.5 ENVIRONMENTAL CHARACTERISTICS	x				<u> </u>					1		1
על	3.2.5.1 OPERATING REQUIREMENTS				x					>		- FFT	
EVIS	3.2.5.2 SURVIVAL REQUIREMENTS				x							m	
E ON		<u> </u>		L						Ĭ			l Z
		 								ļĝ			H H
	3.2.6 TRANSPORTABILITY		x			x							
		ļ											P
		<u> </u>											්ත්
	3.2.7 INSTALLATION		х										S
													м
50.55	3.2.8 CLEANLINESS		x			х							Ō
ASE													AT
										I			9
ļ	3.3 DESIGN AND CONSTRUCTION		х		X								
	3.3.1 MATERIALS, PROCESSES AND PARTS	х								1	1		
1	3.3.1.1 SODIUM LOOP MATERIALS		х										
ļ	3.3.1.2 BRAZE MATERIAL								TBD]	Þ		3
	3.3.1.3 STRUCTURAL MATERIAL		х							1.	Ua l		9
PAG	3.3.1.4 ABSORBER PANEL TUBE MATERIAL		x				x		Venfor Responsibility	ŧ	00		A
ω	3.3.1.5 INSULATING MATERIAL		х	х	X					1			47 47
	3.3.1.6 BRAZING PROCESS		x	_		x	1	1	Vendor Responsibility				
μ,	3.3.1.7 CORROSION PROTECTION		x										BER
<u>_</u>										<u>t</u>	m.		O Z

•

ESJ CUS .5 781

з-68

ESJ 005 5	REVIS NUMB	VERIFICATION MATRIX SECTION 3.0	N/1		VER	NIF ME	ICA THO	TI(D	NC		ELECI	GENE	ENER SYSTE DEPART
žë.	с о С о С	REQUIREMENT REFERENCE		I	S	A	D	T		COMMENTS .	RIC	R A I	GY AMS AMS
ł											12		
	رد س ح					┢─					ASSIF		ITLE
	VISIO	3.3.2 ELECTROMAGNETIC RADIATION	x										E N
	2				-		-				2 2		
+		3.3.3 IDENTIFICATION AND MARKING		x									
				-									L G G
		3.3.4 WORKMANSHIP		x	┼─	┼─			┝──┤				
5													
	SUPER					-					$\frac{1}{2}$		CAT
	SEDES	5.5.5 INTERCHANGERDILITI	^								1		ÖZ
				┟┷		┼─							
		3.3.6 SAFETY	X										
					_							AU	2
$\left \right $		3.3.7 HUMAN ENGINEERING	X	┼─			┝		┝╼╍┢			00	5A
	ε β											I S LI S C I	SPECIN A72
	 0	3.3.8 DOCUMENTATION	X	┼─				-	┝╼╍┝			T Q	MBER
	39	3.3.8.1 DESIGN DOCUMENTATION	L	<u>X_I</u>	<u> </u>	<u> </u>		I			ł	m'r'	N N N N N N N N N N N N N N N N N N N

в-69

ESJ 045 - 5 78,	REVISION NUMBER	VERIFICATION MATRIX SECTION 3.0 REQUIREMENT REFERENCE	N/A	, I	/ER	IF ME	ICA THC D	TI D T	ON	COMMENTS.	ELECTRI	GENERA	ENERGY SYSTEMS DEPARTMENT		
	<u> </u>	3.4 MAJOR COMPONENT CHARACTERISTICS	X								- 21				
		3.4.1 PANEL ASSEMBLY		X	L						- AS		퀴		
	DA	3.4.1.1 TRACE HEATING		X		x							m	m	
	TE	3.4.1.2 INSTRUMENTATION (TEMP & STRAIN)		x	x						- 길			ΪŻ	
	-	3.4.1.3 INSTRUMENTATION (NO TEMP)		х	х						<u></u>		ľ	Ĕ	
		3.4.1.4 ABSORPTIVE COATING		x	х										
ł		3.4.1.5 EXAMINATION AND TEST						x		At Vendor Facility				Hin H	
			ŀ												
		· · · · · · · · · · · · · · · · · · ·	T	1										S	
쩐		3.4.2 SUPPORT STRUCTURE		X							7			m m	
2		3.4.2.1 FLATNESS		x		x					7			<u>ୁ</u> କ୍ଳ	
	SC	3.4.2.2 ASSEMBLY		x							1			- 1	
	с Л										1			AT	
	EDE		1								1			ō	
	v										1			Z	
		3.4.3 THERMAL INSULATION ASSY	X							······································	-				
											1				
1		2 4 3 2 MDACE HEAMING		<u>x</u>		<u> </u>							l		
				<u>X</u>		<u> </u>								0	
ł	P			<u> </u>									6	S S	
	GE	5.4.5.4 READER & READER PIPE INSULATION		<u> </u>		<u> </u>						_		2 K	
	20										9	ŚRU			
. [ę,										13		•		
	39	5.5 PRECEDENCE									ł	ゴイ		NOL	

B-70

ENE					SPECIFICATION
SYST PROG	EMS RAMS	ENGINEEF		295	4724
UEPAR		TITLE			
Ľ	5				ORIGINAL
GENE	RAL			AUG	8 1979
ELEC	TRIC	CLASSIFICATION			
4.4.4	FLUID	INTERFACE (3.1.2.2)			
	Same a	s paragraph 4.4.1.			
4.4.5	INSTRU	MENTATION INTERFACE	2 (3.1.2.3)		
	T.B.D.				
4.4.6	SOLAR	INTERFACE (3.1.2.4)	_		
	See pa	ragraph 4.4.11.			
4.4.7	CONTAI	NMENT INTERFACE (3.	1.2.5)		
	Same a	s paragraph 4.4.1.			
4.4.8	PANEL	ASSEMBLY (3.1.3.1)			
	Same a	s paragraph 4.4.1.			
4.4.9	SUPPOR	T STRUCTURE (3.1.3.	.2)		
	Same a	as paragraph 4.4.1.			
4.4.10	THERMA	L INSULATION ASSEM	BLIES (3.1.3.3)		
	Same a	as paragraph 4.4.1.			
4.4.11	INCIDE	INT SOLAR BEAM ACCEN	PTANCE (3.2.1.1)		
	An ana and er satisi	alysis of the absorb nvironmental condit: Ty this requirement	per panel design over its range ions will verify the ability of	of ope the pa	rating modes nel to
4.4.12	ABSORE	SER PANEL INLET TEM	PERATURE (3.2.1.2)		
	For in	nformation only.			
4.4.13	ABSORI	BER PANEL OUTLET TE	MPERATURE (3.2.1.3)		
	Same a	as paragraph 4.4.11			
4.4.14	DESIG	N LIFE REQUIREMENTS	(3.2.1.4)		
	An ana	alysis will be perf	ormed using commercial panel ch	aracter	istics
REV NUN	SION IBER	REVISION DATE	SUPERSEDES		PAGE 33 OF 39
1			l		

ENERGY SYSTEMS PROGRAMS DEPARTMENT	ENGINEE	ERING SPECIFICATION	SPECIFICATION NUMBER 29544724
(FP)	TITLE		
E			ORIGINAL ISSUE DATE
GENERA	L		AUG 8,1979
ELECTRI	CLASSIFICATION		
prov	ided to verify life	requirements.	
4.4.15 PRES	SURE DROP-FLOW (3.2	.1.6)	
An ai confe	nalysis will be per prance to requireme	formed at operating conditions pr nt.	rovided to verify
4.4.16 DIME	NSIONAL LIMITS (3.2	.2.1)	
Same	as paragraph 4.4.1		
4.4.17 WEIGH	HT LIMIT (3.2.2.2)		
An ar under	nalysis will be per coperating condition	formed to determine the weight of ons.	f the panel assembly
A der excee	monstration of the p ed the requirements	panel assembly dry weight will ve of this paragraph.	rify it does not
4.4.18 MAINT	TAINABILITY (3.2.4)		
An ir maint simil	nspection of the dra cenance requirement operational requ ary applications.	awings and equipment will substan . The ability of the equipment t uirement will be verified by data	itiate the ease of to support the from use in
4.4.19 OPERA	TING REQUIREMENTS	(3.2.5.1)	
Same	as paragraph 4.4.11	L.	
4.4.20 <u>SURVI</u>	VAL REQUIREMENTS (3	3.2.5.2)	
Same	as paragraph 4.4.1]	L.	
4.4.21 TRANS	PORTABILITY (3.2.6)		
An in the e strat	spection of drawing quipment to meet th ed by shipping the	as and hardware shall substantiat tese requirements. Actual compli equipment via truck.	e the ability of ance will be demon-
4.4.22 <u>INSTA</u>	LLATION (3.2.7)		
Same	as paragraph 4.4.1.		
REVISION NUMBER	REVISION DATE	SUPERSEDES	PAGE 34 OF 39
	L	1	

	Y MS ENT	ENGINEEF	RING SPECIFICAT		4724 AZ				
		TITLE							
CENER) IAL								
CENER	AL				ORIGINAL ISSUE DATE				
OFHER				UA	68,1979				
ELECTR	RIC	CLASSIFICATION							
4.4.23 <u>CI</u>	LEANL	INESS (3.2.8)							
An as Th as re	n insp ssembl he ab: ssembl equire	pection of the faci- ly of the equipment ility to integrate ly without addition ement.	ilities and procedu t will substantiate the panel assembly hal cleaning will d	res used for the compliance with into the sodium emonstate complia	fabrication and requirement. receiver test ance with this				
4.4.24 <u>DE</u>	ESIGN	AND CONSTRUCTION	(3.3)						
Pa	aragra	aph 3.3 has essenti	ially four specific	verification red	quirements:				
Co	ode co	ompliance - Inspect 3.3.8.1 standar	tion of the documen will verify compl rds requirements.	tation required : iance with the co	in paragraph xdes and				
4.4.25 <u>sc</u>	ODIUM	LOOP MATERIALS (3.	.3.1.1)						
Same as paragraph 4.4.1.									
4.4.26 BF	RAZE N	MATERIAL (3.3.1.2)							
TE	BD.								
4.4.27 <u>51</u>	TRUCT	URAL MATERIAL (3.3.	.1.3)						
Sa	ame as	s paragraph 4.4.1.							
4.4.28 <u>AF</u>	BSORBI	ER PANEL TUBE MATEI	RIAL (3.3.1.4)						
Re Fo pa	eceiv: oster ackage	ing inspection of (-Wheeler. Receipt e.	this material will inspection records	be the responsib shall be include	ility of ed in data				
4.4.29 <u>IN</u>	NSULA	TING MATERIAL (3.3.	.1.5)						
Th Ve av ha ta	The ability of the insulating material to satisfy this requirement can be verified by data from use in similar applications or when this is not available by analysis of the materials. An inspection of the drawing and hardware will verify that the insulation is protected from moisture con- tamination.								
REVISIO NUMBEF	DN R	REVISION DATE	SUPER	REDES	25				
1		4 9.80	ORIGINAL	ISSUE	PAGE 33 OF 37				

ENERGY SYSTEMS PROGRAMS	ENGINEE	RING SPECIFICATION	SPECIFICATION NUMBER					
DEPARTMENT	TITLE		29584724					
<i>E</i> G			ORIGINAL ISSUE DATE					
GENERAL			AUG 8,1979					
ELECTRIC	CLASSIFICATION							
4.4.30 BRAZIN	IG PROCESS (3.3.1.	5)						
An ins requir quirem	pection of the pro ements. Compliance ments will be demon	ocedure will verify that it comp ce with the brazing fixturing and nstrated during the actual brazin	lies with the GE d attachments re- ng of the panel.					
4.4.31 CORROS	ION PROTECTION							
Same a	s paragraph 4.4.1							
4.4.32 IDENTI	FICATION AND MARKI	ING (3.3.3)						
Same a	s paragraph 4.4.1.							
4.4.33 WORKMA	NSHIP (3.3.4)							
Inspection of the documentation required in 3.3.8.1 will verify compliance with this requirement.								
4.4.34 DESIGN DOCUMENTATION (3.3.8.1)								
An ins	pection of the doc	umentation shall verify compliar	ice.					
4.4.35 PANEL	ASSEMBLY (3.4.1)							
Same as	s paragraph 4.4.1.							
4.4.36 TRACE 1	HEATING (3.4.1.1)							
Inpsect trace h ability ditions	tion of the drawin heating units. An y to maintain the 5.	g and equipment shall verify the analysis of the design will sub required temperature under the s	presence of the stantiate its pecified con-					
4.4.37 <u>INSTRUN</u>	ENTATION (TEMPERA	TURE AND STRAIN GAUGES) (3.4.1.2)					
An insp cation	pection of drawing of the access req	and equipment will verify the q uired.	uantity and lo-					
4.4.38 <u>INSTRUM</u>	ENTATION (SODIUM	TEMPERATURE) (3.4.1.3)						
An insp move in	ection of the draw sulation for inst	wings and equipment will verify rumentation access.	the ability to re-					
REVISION NUMBER	REVISION DATE	SUPERSEDES	PAGE 36 OF 39					
ES3-005 (5-78)		3-74						

ENEF SYST PROGE	IGY EMS IAMS	ENGINEEF	RING SPECIFICATION	SPECIFICATION NUMBER
DEPART	TMENT	TITLE		C7544104
ee ee	3			ORIGINAL ISSUE DATE
GENE	RAL			AUG 8, 1979
ELEC	TRIC	CLASSIFICATION		, , , , , , , , , , , , , , , , , , ,
4.4.39	ABSORP	TIVE COATING (3.4.)	L.4)	<u> </u>
	An ins qualit with t tions.	pection of the draw y of an absorptive the requirements will	vings and equipment will verify coating. The ability of the co ll be verified by data from use	the presence and pating to comply in similar applica
4.4.40	EXAMIN	ATION & TEST (3.4.)	L.5)	
	The pa tested Sectio	nel assembly shall in accordance with n VIII, paragraph (be hydrostatically or pneumatic n ASME Boiler and Pressure Vesse JG-99 or UG-100.	cally pressure el Specifications
	The co jectin by app be as	mpleted panel assen g it to a helium le proved procedures. specified.	mbly shall be inspected for leak eak test using the hood method <u>p</u> The total allowable integrated	k tightness by sub- per ASME Section V leak rate shall
4.4.41	SUPPOR	T STRUCTURE (3.4.2)	<u>.</u>	
	Same a	s paragraph 4.4.1.		
4.4.42	FLATNE	SS (3.4.2.1)		
	An ins allowi substa ance.	pection of the drav ng movement for the ntiate the ability	wings and equipment will identif ermal expansion. An analysis of of the equipment to maintain th	fy the method of f the design will he flatness toler-
4.4.43	ASSEMB	SLY (3.4.2.2)		
	Same a	as paragraph 4.4.1.		
4.4.44	TUBE 1	INSULATION (3.4.3.1)	<u>)</u>	
	An ins requir	pection of the draw red equipment.	wings and hardware will verify t	the presence of the
	An ana ments.	lysis of the design	n will verify compliance with th	he state require-
4.4.45	TRACE	HEATING (3.4.3.2)		
	Same a	as paragraph 4.4.44		
REVI	SION BER	REVISION DATE	SUPERSEDES	PAGE 37 OF 3
L				

NUME	BER	DATE 4.9.80	ORIGINAL ISSUE		PAGE 38 OF 39
REVIS	Non sta safe ha Standar	ndard lifting dev ndling during shi d lifting devices REVISION	ices, if required, shall be pro pment, installation, and remova such as eyebolts shall be defi SUPERSEDES	vided (l of th ned by	to permit ne assembly. the vendor.
5.2.4	HANDLIN	IG			
	The ass or any	embly shall be protected other contaminant.	otected during shipment from mo s.	isture	, dirt, dust,
5.2.3	PROTECT	LION			
	The sod within assembl tain a	lium containing un the assembly has y shall be fitted positive pressure	it shall be purged with dry nit attained a dew point of -25 [°] F o with a suitable nitrogen press inside.	trogen or lowe sure sy	until the gas r. The stem to main-
5.2.2	PURGIN	3			
	All no: as not	zzles and openings to damage the wel	shall be sealed and covered, p d preps or flange faces.	lugged	or capped so
5.2.1	CLOSURI	ES			
5.2 <u>P</u>	REPARAT	ION FOR SHIPMENT			
A o s p t	ll pack ther equigned and lan and the control the cont	aging, protective uipment required f nd furnished by th procedures for pr ontractor for revi	covers, attachments, holddown of for shipment of the absorber part we vendor. The arrangement of eparation, marking and shipment we and comment prior to shipping	devices nel sha the equ t shall ng equi	, skids, and 11 be de- ipment, and be submitted pment fabrica-
5.1 <u>G</u>	ENERAL				
5.0 <u>P</u>	REPARAT	ION FOR DELIVERY			
	Same a	s paragraph 4.4.44	4.		
4.4.47	HEADER	AND HEADER PIPE I	INSULATION (3.4.3.4)		
	Same a	s paragraph 4.4.1.			
4.4.46	ASSEMB	LY (3.4.3.3)		- !	
ELEC	TRIC	CLASSIFICATION	······································	- AUG	68,1979
	9				ORIGINAL ISSUE DATE
Ó		TITLE]	
SYS PROG DEPAR	TEMS RAMS	ENGINEE	RING SPECIFICATION	295	A4724
FNF	RGY	P 1 (A)1 (P -			SPECIFICATION

			SPECIFICATION
ENERGY SYSTEMS PROGRAMS	ENGINEEF	RING SPECIFICATION	2951 1724
DEPARTMENT	TITLE		_ C 75A 4/ C 4
96			ORIGINAL ISSUE DATE
GENERAL			AUG 8,1979
ELECTRIC			
5.3 <u>INSTRUCTIONS</u>			
The vendor shall supply packing, unpacking and handling and rigging instruc- tions.			
6.0 <u>NOTES</u>			
6.1 VENDOR SUBMITTALS			
6.1.1 FOR APPROVAL			
The following shall be supplied to the contractor for approval:			
 Layout and assembly drawings from which are madedetailed manufacturing part drawings. As a minimum to consist of major component assemblies of para. 3.1.3. 			
• The purchase order requirements for the absorber panel tube material of paragraph 3.3.1.4.			
ullet The detail braze procedure as required by paragraph 3.3.1.6.			
• The design and characteristics of the trace heater systems of paragraph 3.4.1.1 and 3.4.3.2.			
• The cleaning procedures and cleanliness control specified in paragraph 3.2.8.			
• The arrangement of and implementation and instructions for preparation for delivery as specified in Section 5.0.			
6.1.2 FOR INFORMATION			
All other verification requirements of Section 4.0 Quality Assurance Provisions shall be supplied to the contractor for information purposes.			
REVISION NUMBER	REVISION DATE 4. 9.80	SUPERSEDES ORIGINAL ISSUE	PAGE 39 OF 39
		<u></u>	