10 14 10

SOLAR REPOWERING FOR ELECTRIC GENERATION, NORTHEASTERN STATION UNIT 1, PUBLIC SERVICE COMPANY OF OKLAHOMA

Appendix

July 15, 1980

Work Performed Under Contract No. AC03-79SF10738

Black & Veatch Consulting Engineers Kansas City, Missouri

U.S. Department of Energy

35-6112 NOL 3

DISCLAIMER

"This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

This report has been reproduced directly from the best available copy.

Available from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

Price: Paper Copy \$16.00 Microfiche \$3.50

SOLAR REPOWERING FOR ELECTRIC GENERATION NORTHEASTERN STATION UNIT 1 PUBLIC SERVICE COMPANY OF OKLAHOMA

APPENDIX

July 15, 1980

Black & Veatch, Consulting Engineers Public Service Company of Oklahoma Babcock & Wilcox Company

Department of Energy Contract No. DE-AC 03795F 10738

PREFACE

This report describes the conceptual design and evaluation of solar repowering an electric generation plant as part of the Department of Energy (DOE) Solar Repowering/Industrial Retrofit Program. The DOE San Francisco Operations Office issued Contract Number DE-AC03-79SF 10738 to Black & Veatch (B&V) for this effort, which was performed during the period September 24, 1979 to July 15, 1980 on B&V Project 8734. Significant contributions to the project were made by B&V's subcontractors, Public Service Company of Oklahoma, the utility and site owner, and the Babcock & Wilcox Company, designer of the solar receiver. B&V expresses appreciation for the guidance provided by Mr. Fred Corona, Contract Manager for the DOE San Francisco Operations Office, and Mr. Jim Gibson, Technical Manager for Sandia National Laboratories, Livermore, California.

The report is contained in three volumes: Executive Summary, Final Report, and Appendix. The Executive Summary provides a brief overview of the conceptual design, a synopsis of the performance and economic evaluation, and an assessment of the concept from the site owner's perspective. The Final Report contains a more comprehensive description of the work performed on the project; this volume presents the trade studies, conceptual design, system performance, economic analysis, and development plan as well as a description of a test program carried out on the project. The Appendix volume consists of the System Requirements Specification and insolation data obtained in the test program.

TABLE OF CONTENTS

. .

APPENDIX A SYSTEM REQUIREMENTS SPECIFICATION APPENDIX B DAILY INSOLATION PROFILES

.

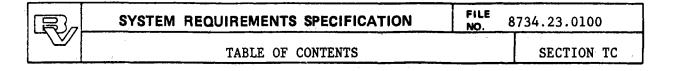
APPENDIX A System requirements specification TABLE OF CONTENTS

SOLAR REPOWERING FOR ELECTRIC GENERATION NORTHEASTERN STATION UNIT 1 PUBLIC SERVICE COMPANY OF OKLAHOMA

SYSTEM REQUIREMENTS SPECIFICATION

TABLE OF CONTENTS

				Page
1.0	GENE	RAL		1.1-1
	1.1	SCOPE		1.1-1
	1.2	SYSTEM	DESCRIPTION	1.2-1
		1.2.1	Site	1.2-1
		1.2.2	Site Facilities	1.2-3
		1.2.3	Collector System	1.2-5
		1.2.4	Receiver System	1.2-5
		1.2.5	Receiver Loop System	1.2-9
		1.2.6	Master Control System	1.2-11
		1.2.7	Fossil Energy System	1.2-11
		1.2.8	Specialized Equipment	1.2-14
	1.3	DEFINI	TION OF TERMS	1.3-1
		1.3.1	Solar Repowered Electric Generating Plant	1.3-1
		1.3.2	Capacity Factor, Annual-Nonsolar	1.3-1
		1.3.3	Capacity Factor, Annual-Solar	1.3-1
		1.3.4	Capacity Factor, Annual-Overall	1.3-1
		1.3.5	Design Point	1.3-1
		1.3.6	Repowering Per CentDesign Point	1.3-1
		1.3.7	Thermal Power, Fossil Heater Output	1.3-1
		1.3.8	Thermal Power, Prime Mover	1.3-1
		1.3.9	Thermal Power, Receiver Output	1.3-1
		1.3.10	Solar Fraction-Design Point	1.3-2
		1.3.11	Solar Fraction-Annual	1.3-2
		1.3.12	Solar Flux	1.3-2
		1.3.13	Direct Insolation	1.3-2
		1.3.14	Receiver Efficiency	1.3-2
		1.3.15	Field Receiver Power Ratio	1.3-2


R	SY	STEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
		TABLE OF CONTENTS		SECTION TC
				Page
		1.3.16 Fluid, Receiver		1.3-2
		1.3.17 Fluid, Working		1.3-2
		1.3.18 Geometric Concentration Ratio		1.3-2
		1.3.19 Beam Pointing Error		1.3-2
		1.3.20 Conversion Efficiency, Gross		1.3-2
		1.3.21 Conversion Efficiency, Net		1.3-3
		1.3.22 Nameplate Rating		1.3-3
		1.3.23 Hybrid System		1.3-3
		1.3.24 Demand		1.3-3
		1.3.25 Levelized Busbar Energy Cost		1.3-3
		1.3.26 Payback Period		1.3-3
		1.3.27 Present Value		1.3-3
2.0	REFE	RENCES		2.1-1
	2.1	STANDARDS AND CODES		2.1-1
	2.2	OTHER PUBLICATIONS AND DOCUMENTS		2.2-1
	2.3	PERMITS AND LICENSES REQUIRED		2.3-1
	2.4	LAWS AND REGULATIONS		2.4-1
3.0	REQU	IREMENTS		3.0-1
	3.1	SITE		3.1-1
		3.1.1 Drainage		3.1-1
		3.1.2 Roads and Parking		3.1-1
		3.1.3 Security Fencing		3.1-1
		3.1.4 Foundations		3.1-1
	3.2	SITE FACILITIES		3.2-1
		3.2.1 Cooling Water		3.2-1
		3.2.2 Service Water		3.2-1
		3.2.3 Control Air		3.2-1
		3.2.4 Service Air		3.2-1
		3.2.5 Nitrogen		3.2-1
		3.2.6 Fire Protection		3.2-2
		3.2.7 Communications		3.2-2

3.2.8 Water Treatment 3.2-3

.

	SYSTEM REQUIREMENTS SPECIFICATION	<u> </u>
¶.	TABLE OF CONTENTS	SECTION TC
		Page
	3.2.9 Control Room	3.2-3
	3.2.10 Control Equipment Room	3.2-3
	3.2.11 Personnel Facilities	3.2-3
	3.2.12 Storage and Maintenance	3.2-3
	3.2.13 Electrical Power	3.2-3
	3.3 COLLECTOR SYSTEM	3.3-1
	3.3.1 Collector Field	3.3-1
	3.3.2 Heliostat Performance	3.3-2
	3.3.3 Collector Control System	3.3-5
	3.3.4 Heliostat Foundations	3.3-8
	3.4 RECEIVER SYSTEM	3.4-1
	3.4.1 Structural Design	3.4-1
	3.4.2 Receiver	3.4-1
	3.4.3 Receiver Fluid	3.4-3
	3.4.4 Tower	3.4-3
	3.4.5 Receiver Controls	3.4-4
	3.5 RECEIVER LOOP SYSTEM	3.5-1
	3.5.1 Operating Requirements	3.5-1
	3.5.2 Design Requirements	3.5-2
	3.5.3 Interface Requirements	3.5-3
	3.6 MASTER CONTROL SYSTEM	3.6-1
	3.6.1 Operating Requirements	3.6-1
	3.6.2 Design Requirements	3.6-6
	3.6.3 Interface Requirements	3.6-9
	3.7 FOSSIL ENERGY SYSTEM	3.7-1
	3.7.1 Operating Requirements	3.7-1
	3.7.2 Design Requirements	3.7-2
	3.7.3 Interface Requirements	3.7-2
	3.8 SERVICE LIFE	3.8-1
	3.9 PLANT AVAILABILITY AND RELIABILITY	3.9-1
	3.10 MAINTAINABILITY	3.10-1
	3.10.1 Conventional Components	3.10-1

•

		· · ·	Page
		3.10.2 Solar Specific Components	3.10-1
		3.10.3 Control Components	3.10-2
	3.11	SPECIALIZED EQUIPMENT	3.11 - 1
		3.11.1 Specialized Solar Receiver Equipment	3.11-1
		3.11.2 Specialized Heliostat Equipment	3.11-1
4.0	ENVI	RONMENTAL CRITERIA	4.1-1
	4.1	ENVIRONMENTAL DESIGN REQUIREMENTS	4.1-1
		4.1.1 Site Climatology	4.1-1
		4.1.2 Seismology	4.1-2
		4.1.3 Lightning Considerations	4.1-5
	4.2	ENVIRONMENTAL STANDARDS	4.2-1
		4.2.1 Ambient Air Quality Standards	4.2-1
		4.2.2 Emission Limitations	4.2-2
		4.2.3 Water Quality Standards	4.2-4
5.0	CONC	EPTUAL DESIGN DATA	5.0-1
	5.1	PLANT CHARACTERISTICS AND PERFORMANCE DATA	5.1 - 1
		5.1.1 Site Data	5.1 - 1
		5.1.2 Site Facilities Data	5.1 - 1
		5.1.3 Collector Data	5.1-4
		5.1.4 Receiver Data	5.1 - 33
		5.1.5 Receiver Loop Data	5.1 - 51
		5.1.6 Master Control System Data	5.1-56
		5.1.7 Fossil Energy System Data	5.1-58
	5.2	EXISTING POWER PLANT DESCRIPTION	5.2 - 1
		5.2.1 Major Equipment Data	5.2 - 1
		5.2.2 Existing Power Plant Performance Data	5.2-6
	5.3	PLANT COST DATA	5.3 - 1
		5.3.1 Owner's Cost Estimate	5.3-1
		5.3.2 Construction Cost Estimate	5.3-2
		5.3.3 Operations and Maintenance Cost Estimate	5.3-24

	SY	STEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
		TABLE OF CONTENTS		SECTION TC
LA				
				Page
	5.4	ECONOMIC DATA		5.4-1
		5.4.1 Economic Evaluation Assumptions		5.4-1
		5.4.2 Alternate Fuel Cost Assumptions		5.4-3
	5.5	SIMULATION MODELS		5.5-1
	-	5.5.1 Insolation Models		5.5-1
		5.5.2 Plant Performance Models		5.5-1

	5.5.3	Economic Models	5.5-3
5.6	GENERA	L DATA	5.6 - 1
	5.6.1	Plant Availability Data	5.6-1
	5.6.2	Specialized Equipment Data	5.6-2

5.5-3

SREG NES-071580

GENERAL

SOLAR REPOWERING FOR ELECTRIC GENERATION NORTHEASTERN STATION UNIT 1 PUBLIC SERVICE COMPANY OF OKLAHOMA

1.0 GENERAL

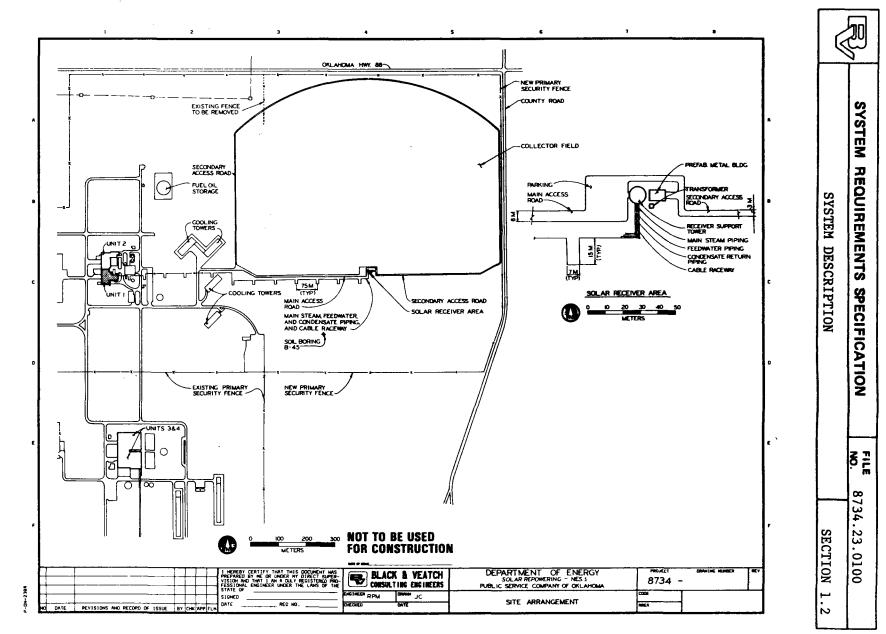
1.1 SCOPE

Northeastern Station Unit 1 is an existing 155 MWe gross gas and oil fired steam electric generating unit located approximately one mile south of Oologah, Oklahoma in Rogers County. The Solar Repowering for Electric Generation Project involves the development of a site specific conceptual design of a 30 MWe solar central receiver steam generation system for operation in conjunction with the existing 155 MWe Northeastern Station Unit 1. Principal elements of the solar repowered plant include the following.

- (1) Site.
- (2) Site Facilities.
- (3) Collector System.
- (4) Receiver System.
- (5) Receiver Loop System.
- (6) Master Control System.
- (7) Fossil Energy System.
- (8) Specialized Equipment.

This System Requirements Specification (SRS) defines the system characteristics, system environmental requirements, and plant conceptual design data requirements. This SRS also provides economic data and overall plant cost data.

1.2 SYSTEM DESCRIPTION


For the purpose of the repowered conceptual design project, the repowering system will be as described in the following paragraphs. 1.2.1 Site

The Northeastern Station of the Public Service Company of Oklahoma (PSO) is located on a 1,320 acre site adjacent to the Oologah Reservoir, approximately 30 miles northeast of Tulsa, Oklahoma. The heliostat field and receiver steam generator will be situated in the northeast quadrant of the property, east of Unit 1, on land presently owned by PSO. The overall site arrangement is shown on Figure 1.2-1. The maximum dimension of the heliostat field will be approximately 880 metres (2,887 feet).

The plant site is located entirely on the Oologah Formation, a geologic member of the Marmaton Group in the Desmoinesian series. This formation is represented by, in ascending order: the Pawnee Limestone; the Bandera Shale; and the Altamont Limestone. Pawnee Limestone is comprised of gray, massive crinoidal limestone which is overlain by black, fissile shale. The Bandera Shale is a very thin, gray to brown, sandy shale which grades vertically into sandstone and black shale. The Altamont Limestone is composed of gray shale and limestone, overlain by black fissile shale and gray cherty limestone. Test borings for Units 1 through 4 at Northeastern Station indicated that the top surface of the Oologah Formation is slightly weathered.

A thin soil mantle, generally 0.3 to 0.9 metres (1 to 3 feet thick), overlies the limestone bedrock. This soil is a silty clay which contains residual pieces of limestone. Specifically, the soil is classified as the Claremore Silt Loam, a soil formed under tall prairie grasses in material that weathered from limestone. It is easily worked, drains moderately well, but is susceptible to erosion. Due to its plastic nature, it is not good for borrow material.

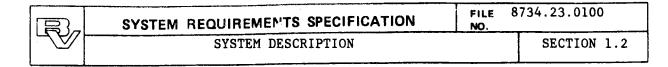
The soil boring closest to the proposed heliostat field (B-45) shown on Figure 1.2-1 indicates a clay soil 0.8 metres (2.5 feet) thick overlays 0.6 metres (2.0 feet) of weathered limestone with some clay layers which in turn overlays the competent limestone.

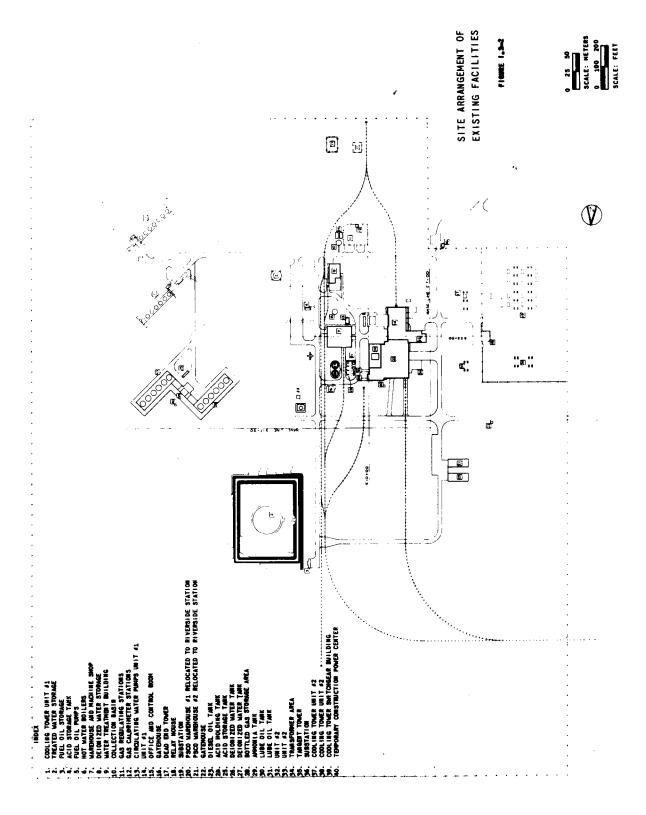
1.2-2

The heliostat field area slopes gently toward the southwest from about El 210 metres (690 feet) mean sea level (MSL) to El 198 metres (650 feet) MSL. Natural drainage for the area is provided by two depressions, one of which includes a farm pond. The area is a pasture, with little brush and few trees.

1.2.2 Site Facilities

Facilities at the Northeastern Station currently include Unit 1, rated at 155,000 kW; Unit 2, rated at 441,800 kW; and Units 3 and 4, which have a gross generating capability of 441,000 kW each. Units 1 and 2 utilize natural gas as the primary fuel with fuel oil as the secondary or backup fuel. Units 3 and 4 are coal fired with natural gas and fuel oil as secondary fuels.


The arrangement of the basic existing facilities associated with Units 1 and 2 is shown on Figure 1.2-2.


Facilities available to all of the units include the following.

- (1) Site facilities, such as roads, railroads, parking, area drainage, fencing, fire protection, etc.
- (2) Plant water supply pump house and transport pipeline for makeup to cooling towers and for service water.
- (3) Fuel gas supply system, fuel oil unloading, and storage.
- (4) Service water treatment and storage.
- (5) Wastewater treatment, plant drainage, and sewerage system.
- (6) Office, shop, and warehousing facilities.
- (7) 138-345 kV substation, transmission line network.
- (8) Station communications.

Because of the physical distance between Units 1 and 2 and Units 3 and 4, many of the plant systems cannot be utilized by all units. The facilities available to Unit 1 are described in the following paragraphs.

Unit 1 and 2 facilities include outdoor steam generators with enclosed turbine generators and feedwater heaters. Enclosures are also provided below the operating deck level for the steam generator and turbine generator auxiliaries of Unit 2. Separate structures are provided for warehousing, machine shop, and water treatment functions. The station offices and the

SYSTEM DESCRIPTION

control room functions are housed in an attached building located to the west of the turbine room at the north end of Unit 1 facilities. A common turbine room enclosure, including gantry type traveling crane, serves the main turbine, boiler feed pumps and turbines, generators, and miscellaneous turbine and generator auxiliaries for both units.

The generator step-up, main auxiliary, and reserve auxiliary transformers are located to the west of the turbine generator building at grade level. The substation for both units is located west of the central complex structures. Facilities and structures housing auxiliary or support functions for Units 1 and 2 are located in a "rear yard" area to the east of the central complex structures. Cooling towers and fuel oil storage tanks are also located, at greater distances, to the east and northeast of the central complex structures.

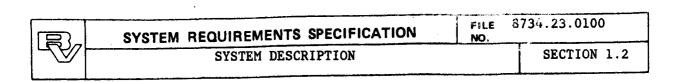
1.2.3 Collector System

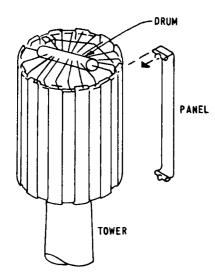
The Collector System consists of an array of computer-controlled, two-axis tracking heliostats; its functions are to intercept the incident direct solar insolation (energy) and to redirect and concentrate that energy onto the receiver. The collector system design will be specified in terms of the number and locations of heliostats required to produce a specified power level; these heliostat locations are determined to maximize annual efficiency. Heliostat orientations are constantly altered throughout the day, in response to computer generated commands, based on the instantaneous sun position and aim strategy so that the redirected solar flux lands upon the receiver and, further, that it provides the desired flux distribution on the receiver.

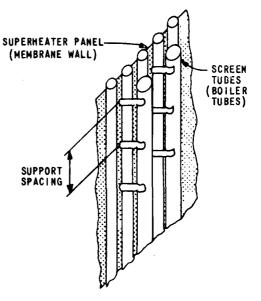
The Collector System also includes electromechanical and electrical controllers, including individual heliostat and heliostat field controllers, control system interface electronics, and power supplies. The heliostat itself consists of reflective surfaces, structural supports, drive units, control sensors, pedestal foundations, cabling, and cable array installations.

1.2.4 Receiver System

The Receiver System intercepts the solar energy redirected by the heliostats of the Collector System, converts this energy to thermal energy,

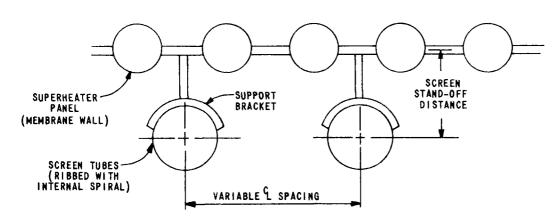

SYSTEM	REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100


SYSTEM DESCRIPTION

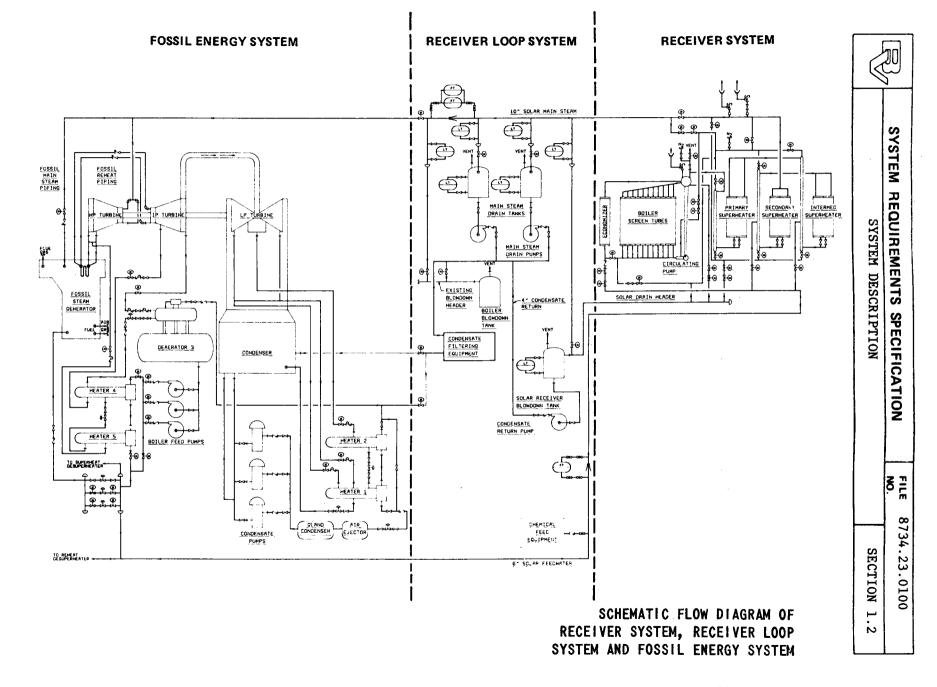

and transfers this thermal energy to the receiver fluid changing the feedwater to superheated steam. The Receiver System includes the solar receiver with closure doors, associated pumps, valves, heat exchangers, traps, drains, and controls, the receiver support tower and the tower accessories. The feedwater and steam piping within the tower will be part of the Receiver Loop System.

1.2.4.1 Solar Receiver. The solar receiver will be structured with an external absorber surface as shown in Figure 1.2-3. The receiver will be similar to steam generators in many conventional fossil fuel fired power plants in that it will consist of three main sections: economizer (or preheater), boiler, and superheater. The boiler section consists of spaced, vertical tubes which form a screen in front of the welded membrane superheater tube panels; the economizer panels are located at the sides of the superheater panels. The screen tubes absorb part of the incident solar energy to maintain a relatively low heat flux required on the superheater tubes. The solar flux incident on the screen tubes is non-uniform around the receiver, however, the center-to-center spacing of the screen tubes varies around the solar receiver in such a manner that the solar energy which penetrates the screen is fairly uniformly distributed on the superheater tubes.

The flow sequence through the solar receiver will be as illustrated on Figure 1.2-4. Feedwater is introduced into the economizer tubes, where it is preheated; it is then injected into the drum, where it is mixed with saturated water. Slightly subcooled water flows from the drum, through a downcomer, and is pumped through supply pipes into headers which distribute the flow to the boiler screen tubes. The steam/water mixture (of average steam fraction less than 0.30) flows from the boiler screen tubes into the steam drum where the water and steam are separated by cyclone separators and steam scrubbers. The saturated water returned to the drum is again mixed with feedwater from the economizer screen tubes; this mixture flows through the downcomer to the pump and is recirculated. Moisture-free steam from the drum flows to the primary superheater, where initial superheating occurs. The steam leaving the primary superheater flows through a steam



SOLAR RECEIVER


PANEL DETAIL

CROSS-SECTION

SOLAR RECEIVER SCREEN TUBE CONCEPT

FIGURE 1.2-3

1.2-8

FIGURE 1.2-4

	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
$\neg V$			

SYSTEM DESCRIPTION

downcomer to the intermediate superheater. A spray attemperator, located in the steam downcomer, is used to control the steam temperature by injection of feedwater into the steam flow. The steam leaving the intermediate superheater passes through the second stage attemperator located in another steam downcomer. From the attemperator, the steam enters the secondary superheater, where it is heated to the final steam temperature.

1.2.4.2 <u>Receiver Support Tower</u>. The receiver support tower supports the solar receiver, withstanding the gravitational, wind, and seismic loads. The tower also provides support for the feedwater and steam piping and the electrical cables running up and down the tower.

The tower will be a circular shell of steel-reinforced concrete, similar to a chimney, formed by slip or jump forming techniques. The tower will be tapered, having a larger diameter at the base than at the top; the wall thickness will be uniform from the base to the top. There will be no tower foundation per se; the tower will be anchored directly to competent bedrock via rock anchors.

Tower accessories will include an elevator, caged ladder, interior platforms, doorways, service crane atop the receiver, a ventilation system, lighting, communication equipment, and lightning protection. The elevator and ladder will extend the entire height to provide access to the receiver. Interior platforms will be located at the elevations of aircraft warning lights and near the top of the tower to house equipment. A personnel door and a truck door are located at the base of the tower.

1.2.5 Receiver Loop System

The Receiver Loop System provides the piping interface between the existing Fossil Energy System, and the Receiver System installed with the solar facility. A simplified flow diagram of the Receiver Loop System is shown on Figure 1.2-4. The Receiver Loop System transports feedwater to the Receiver System from the existing Fossil Energy System feedwater piping, for solar boiler feedwater makeup, and for attemperating sprays to control solar receiver steam temperatures. The Receiver Loop System also transports high pressure, high temperature solar steam from the Receiver System to the existing fossil main steam piping for delivery to the high pressure turbine

J7	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100	7
\checkmark	SYSTEM DESCRIPTION		SECTION 1.2	$\left[\right]$

steam chest. Piping, valves, instrumentation, and equipment to recirculate feedwater through the receiver for warming or freeze protection, and to drain the receiver piping and receiver loop piping are included as part of the Receiver Loop System.

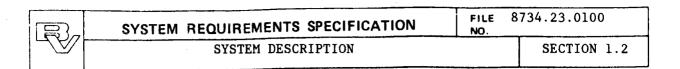
Draining of the receiver and piping is necessary to remove collected condensate from the superheater during start-up, to maintain the proper drum water level, and to remove all water during system shutdown in winter months. Draining of all collected condensate from the main steam piping, prior to opening of the solar main steam stop valve, prohibits the potentially damaging introduction of water into the turbine unit. Drains from the receiver and drains from piping near the receiver are taken to the solar receiver blowdown tank located near the receiver base. Drains from the piping near Unit 1 are taken to the existing Fossil Energy System blowdown tank. Drains from the interconnecting main steam piping are taken to main steam drain tanks located adjacent to the piping at drain points. Condensate collected in the solar receiver blowdown tank and in the main steam drain tanks is pumped to the existing fossil blowdown tank for disposal, or alternatively, the condensate is returned to the existing Fossil Energy System condenser or deaerator.

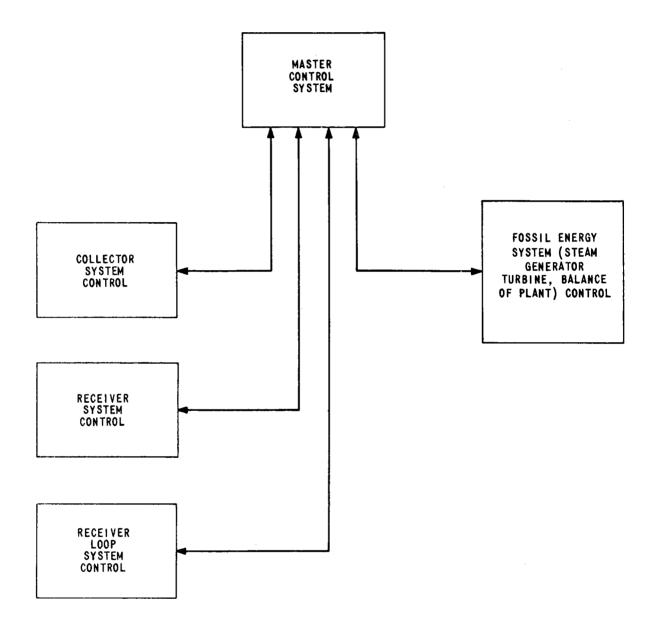
The Receiver Loop System includes phosphate chemical feed additive equipment for chemical treatment of the solar receiver boiler water. The Receiver Loop System also includes filtering equipment for removal of chemical solids from the solar receiver boiler water recirculated to the Fossil Energy System condenser and deaerator.

The steam, feedwater, and condensate piping located within the receiver tower is supported from the tower structure by pipe supports that permit the movement of piping to accommodate thermal expansion. The steam, feedwater, and condensate piping not located within the receiver tower is supported from grade level by concrete and steel structures, with pipe support attachments as required for anchoring and guiding the piping during movement due to thermal expansion. The steam, feedwater, and condensate piping includes sufficient expansion loops to accommodate thermal expansion. The piping is insulated to reduce thermal losses.

1.2.6 Master Control System

The Master Control System will coordinate the operation of the collector, receiver, receiver loop, and fossil energy systems to ensure safe and proper operation of the entire integrated repowered plant. The Master Control System operates at the highest level in the control hierarchy shown on Figure 1.2-5. The Master Control System issues commands to the control systems at the lower level of this hierarchy and receives feedback status information from these control systems. The Master Control System provides the capability for automatic start-up, normal operation, and shutdown of the Collector, Receiver, and Receiver Loop Systems. The Master Control System will also issue emergency shutdown commands whenever critical process parameters exceed allowable operating limits.


This system will also serve as a central data acquisition system which monitors, analyzes, and displays all critical solar system and subsystem parameters.


Process simulation capabilities which will be used to train the power plant operating personnel will also be provided.

The Master Control System consists of a control computer, computer peripheral equipment, control and display consoles, interface equipment to the other process systems, and all software required for a fully operational system.

1.2.7 Fossil Energy System

The Fossil Energy System provides a fossil energy source which is used to enhance performance and maintain normal plant operation during periods of reduced or no insolation. The Fossil Energy System consists of the existing fuel supply, fuel storage and transfer facilities, steam generator, turbine, condenser, condensate pumps, feedwater heaters, boiler feed pumps, and auxiliary power systems. The Fossil Energy System will provide for the transfer of heat during the combustion of the fuel (primarily natural gas with fuel oil being used as a secondary fuel source) to the feedwater and steam. This heat transfer will produce main steam at the pressure and temperature required by the high pressure turbine. In addition, heat will be transferred through the steam generator reheater to

CONTROL SYSTEM HIERARCHY

FIGURE 1.2-5

SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
SYSTEM DESCRIPTION		SECTION 1.2

increase the temperature of the cold reheat steam to those conditions required by the intermediate pressure turbine.

A simplified flow diagram of the Fossil Energy System is shown as part of Figure 1.2-4. The Fossil Energy System will have two flow patterns: water-steam and fuel-air-flue gas.

Water leaving the condenser is pumped by the condensate pumps through two low pressure feedwater heaters and into the deaerator. The boiler feed pumps then pump the feedwater from the deaerator through the two high pressure feedwater heaters and into the steam generator. As this feedwater leaves the feedwater heaters, a portion of the feedwater is bypassed to the Receiver Loop System. In the steam generator, the feedwater is transformed to superheated steam. This main steam leaves the steam generator, is then mixed with the high pressure, high temperature steam from the solar receiver and enters the high pressure turbine. Steam from the high pressure turbine exhaust (cold reheat) is returned to the steam generator where it passes through the reheater section and returned (hot reheat) to the intermediate pressure turbine. Steam from the intermediate pressure turbine then enters the low pressure turbine and is exhausted to the condenser. Condensate drains and recirculated feedwater from the Receiver and Receiver Loop System are piped back to the Fossil Energy System and routed to either the deaerator, condenser or the existing steam generator blowdown tank as required.

Natural gas is supplied under pressure by the Transok Pipeline Company. The fuel is dehydrated and purified before passing through high and low pressure regulating stations. The fuel is then supplied to Unit 1 through a 0.36-m (14-inch) header. Fuel oil is stored in a single 15,900 m³ (100,000 barrel), earth berm protected tank located northeast of the central complex area. Fuel delivery is by truck transport. Two fuel oil unloading pumps, each with a capacity of 0.028 m³/5 (450 gallons per minute), are provided for transfer operations. Two centrifugal forced draft fans supply combustion air to the furnace. The combustion gas flows from the furnace through the economizer and air heater, before being discharged to the stack.

7	SYSTEM REQUIREMENTS SPECIFICATION	File No,	8734.23.0100	
	SYSTEM DESCRIPTION		SECTION	1.2

1.2.8 Specialized Equipment

The conventional components of the solar repowered plant (i.e., the pumps, motors, piping, and valves, as they are conventional power plant equipment) will be maintained by the existing maintenance facilities and thus do not require specialized treatment. Those components of the solar repowered plant that do require specialized maintenance equipment are the solar receiver of the Receiver System and the heliostats of the Collector System.

1.2.8.1 <u>Specialized Solar Receiver Equipment</u>. The solar receiver will be designed for a 30 year lifetime with no replacement of major components. However, the random replacement of failed boiler tubes or superheater panels and the periodic recoating of the receiver's high-absorptivity coating will be required. These corrective maintenance actions will involve the use of specialized equipment.

The receiver support tower will be equipped with an internal caged ladder and elevator facilitating maintenance personnel access to the solar receiver atop the tower. The elevator will be designed to carry approximately 1,000 kg (2,200 lb). A hoist may be provided inside the tower to lift tools and equipment, loads too heavy for the elevator. The hoist will facilitate replacement of valves and pumps and other small components atop the receiver tower.

Replacement boiler tubes and superheater panels must be lifted into place externally of the support tower. For this operation, a polar crane and hoist, mounted on top of the solar receiver, will be employed. This crane can be rotated 360 degrees, enabling any screen tube or superheater panel to be easily reached. The crane telescopes radially, allowing the hoist to be withdrawn from the path of any "spillage" or misdirected insolation during the operation of the plant.

The polar crane will also facilitate the recoating of the solar receiver's high-absorptivity coating. A personnel scaffold will be supported from the crane, permitting easy access to all of the solar receiver's external surfaces. Reapplication of the coating will be accomplished via conventional spray equipment.

377	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
Y	SYSTEM DESCRIPTION		SECTION 1.2

1.2.8.2 <u>Specialized Heliostat Equipment</u>. Unlike the solar receiver, the heliostats of the Collector System may require scheduled maintenance, consisting primarily of reflector cleaning.

Cleaning of the heliostat reflectors will be accomplished via the heliostat washing vehicle. This vehicle will consist of a flat-bed truck carrying a self-contained, high pressure spray system and tanks of detergent and rinse solutions. A fixed vertical spray arm with multiple spray nozzles will spray the detergent or rinse solution onto the heliostat reflector, spraying the entire reflector width in one pass as the washing vehicle slowly drives past a heliostat. The Master Control System will turn the heliostats to the proper orientation for washing: reflector surfaces vertical and facing the receiver support tower.

In addition to the above scheduled maintenance, the heliostats will require occasional corrective maintenance, due to the random failure of components and damage by the elements. Because damage to a heliostat from a lightning strike may be total, all equipment necessary for the assembly and installation of a complete heliostat will be required. This equipment will include leveling equipment for the adjustment of the foundation anchor bolts, a mobile crane and/or fork lift for the setting of heliostat pedestal, drive unit, and reflector unit, and the field controller and laser aiming system for the alignment of the heliostat. The special brackets, slings, . and cradles required for the placement of a heliostat as well as the equipment itself will be available from the initial installation of the heliostats.

1.3 DEFINITIONS OF TERMS

The definitions of terms used in the System Requirements Specification are as follows.

1.3.1 Solar Repowered Electric Generating Plant

A fossil electric generation plant which uses central receiver technology and solar energy to partially displace oil or natural gas as an energy source.

1.3.2 Capacity Factor, Annual-Nonsolar

Annual nonsolar MWh divided by the product of 8,760 h and plant or unit rating in MW.

1.3.3 Capacity Factor, Annual-Solar

Annual Solar MWh divided by the product of 8,760 h and plant or unit rating in MW.

1.3.4 Capacity Factor, Annual-Overall

Annual solar MWh plus annual nonsolar MWh divided by the product of 8,760 h and plant or unit rating in MW.

1.3.5 Design Point

The time and day of the year at which the system is sized with reference insolation, wind speed, temperature, humidity, dewpoint, and sun angles.

1.3.6 Repowering Per Cent--Design Point

Given design point insolation, the energy supplied to the turbine from the solar receiver is 20 per cent of the total energy supplied to the turbine at rated conditions.

1.3.7 Thermal Power, Fossil Heater Output

Thermal power input to working or transport fluids from the fossil heater after stack and miscellaneous losses.

1.3.8 Thermal Power, Prime Mover

Thermal power input to turbine or other prime mover at design point. 1.3.9 <u>Thermal Power, Receiver Output</u>

Thermal power derived from the receiver; does not include electrical parasitic or downcomer thermal losses.

NO.

1.3.10 Solar Fraction-Design Point

Thermal power from the receiver (less downcomer and piping losses) divided by total thermal power to the prime mover.

1.3.11 Solar Fraction-Annual

Ratio of solar energy to the process divided by the total energy consumption, annual average, measured at turbine inlet.

1.3.12 Solar Flux

The rate of solar radiation per unit area (watt/ m^2).

1.3.13 Direct Insolation

Nonscattered solar flux falling on a surface of given orientation $(watts/m^2)$.

1.3.14 Receiver Efficiency

Ratio of thermal power from the output of the receiver to the incident solar power upon the receiver.

1.3.15 Field Receiver Power Ratio

Maximum heliostat field power output divided by maximum receiver power absorption capability.

1.3.16 Fluid, Receiver

The fluid used to cool the solar receiver and distribute the absorbed solar energy to other parts of the system; heat transport fluid of the receiver.

1.3.17 Fluid, Working

The fluid used in the turbine or other prime mover.

1.3.18 Geometric Concentration Ratio

The ratio of the projected area of a reflector system (on a plane normal to the insolation) divided by absorber area.

1.3.19 Beam Pointing Error

The angular difference between the aim point and the beam centroid of a mirror.

1.3.20 Conversion Efficiency, Gross

Gross output provided by a conversion device divided by total input power at specified conditions.

1.3.21 Conversion Efficiency, Net

Actual net output (after deducting parasitics) provided by a conversion device divided by the required input power at specified conditions.

1.3.22 Nameplate Rating

The full-load continuous rating of a generator, prime mover, or other electrical equipment under specified conditions as designated by the manufacturer.

1.3.23 Hybrid System

A combination of solar and nonsolar technology to provide a single plant system that is capable of continuous operation.

1.3.24 Demand

The power versus time profile of the energy required to satisfy the energy needs of the final consumer.

1.3.25 Levelized Busbar Energy Cost

That price per unit of energy which, if held constant throughout the life of the system, would provide the required revenue, assuming that all cash flow interim requirements or excesses are borrowed or invested at the utility's internal rate of return.

1.3.26 Payback Period

A traditional measure of economic viability of project investment. A payback period is defined in several ways, one of which is the number of years required to accumulate fuel savings which exactly equals the initial capital cost of the system. Payback often does not give an accurate representation of total life-cycle values.

1.3.27 Present Value

The present value of capital and operating costs (or annual savings, brought over a given time period such as the life of the plant, is a single value of revenue requirement) or savings at a reference time that account for economic factors such as escalation rates and rate of return on the capital.

2.0 REFERENCES

2.1 STANDARDS AND CODES

The standards and codes which apply to the Solar Repowering for Electric Generation Project are listed below.

- (1) Uniform Building Code.
 - (a) 1979 Edition by International Conference of Building Officials.
- (2) OSHA Regulations.
 - (a) OSHA Title 29, Part 1910--Occupational Safety and Health Standards.
- (3) ASME Boiler and Pressure Vessel Code.
 - (a) Section I--Power Boilers, including: ANSI B31.1-1977 Power Piping.
 - (b) Section II--Materials Specification.
 - (c) Section VIII--Unfired Pressure Vessels.
- (4) NRC Regulatory Guide 1.60.
- (5) NRC Regulatory Guide 1.61.
- (6) Institute of Electrical and Electronic Engineers (IEEE) Codes, as applicable.
- (7) National Fire Protection Association (NFPA) National Fire Codes--1979.
- (8) Human Engineering Design Criteria.
 - (a) MIL-STD-810C.
 - (b) MIL-STD-1472.
- (9) Design, Construction and Fabrication Standards.
 - (a) Standards of AISC (American Institute of Steel Construction).
 - (b) Standards of ACI (American Concrete Institute).
 - (c) Standards of TEMA (Tub. Exchanger Manufacturer's Association).
 - (d) Standard 650 of API (American Petroleum Institute)--Welded Steel Tanks for Oil Storage.
 - (e) Standards of ANSI (American National Standards Institute).

R	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
	REFERENCES		SECTION 2.1

- (f) Standards of ASTM (American Society for Testing Materials).
- (g) Standards of NEMA (National Electrical Manufacturer's Association).

2.2 OTHER PUBLICATIONS AND DOCUMENTS

Other publications and documents which apply to the Solar Repowering for Electric Generation Project are listed below.

- G. J. Miller and J. B. Woodward, STEAEC--Solar Thermal Electric Annual Energy Calculator Documentation, SAND 77-8278, Sandia Laboratories, Livermore, January, 1978.
- (2) Soil & Foundation Investigation Report, 5 MW STTF, Sandia Labs.
- (3) "Wind Forces on Structures," ASCE Paper No. 3269. Transactions, American Society of Civil Engineers, Vol. 126, Part II, 1961.
- (4) J. W. Doane, P. B. Bos, and others, The Cost of Energy from Utility-Owned Solar Electric Systems, A Required Revenue Methodology for ERDA/EPRI Evaluations, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, June, 1976.
- (5) Collector Subsystem Requirements Specification, Al0772, Issue C, Sandia Laboratories, Albuquerque, New Mexico, Livermore, California, October, 1979.

2.3 PERMITS AND LICENSES REQUIRED

The clearances from federal and state administrative agencies which are required for the Solar Repowering Electric Generation Project are listed below.

- (1) Oklahoma Public Service Commission--Certificate of Public Convenience and Necessity.*
- (2) Oklahoma Department of Labor--Pressure Vessel Permit and Inspection.

(3) Federal Aviation Administration--Notice of Intent to Construct. Furthermore, the EPA may require the preparation of an Environmental Assessment and, possibly, an Environmental Impact Statement before federal funds can be allocated to the project.

In addition to the above clearances, there are several clearances which might be required for the project. The following list consists of the relevant agency, the clearance, and what action would necessitate obtaining the clearance.

- US Environmental Protection Agency--Wastewater Discharge (NPDES) Permit required if there is any change in the quantity or content of the discharge.
- (2) Oklahoma State Department of Health--Open Burning Restrictions (Regulation 1) compliance required if open burning used during land clearing activities.
- (3) Oklahoma Water Resources Board--Water Appropriation Permit required if there will be any increased use of ground water or surface water.

^{*}A Certificate of Public Convenience and Necessity will probably not be required. However, the Oklahoma Public Service Commission should be notified of the intentions of the Solar Repowering Project.

2.4 LAWS AND REGULATIONS

The laws and regulations which apply to the Solar Repowering for Electric Generation Project are listed below.

- (1) National Energy Conservation Policy Act of 1978.
- (2) Power Plant and Industrial Fuel Use Act of 1978.
- (3) Public Utilities Regulatory Policy Act.
- (4) Natural Gas Policy Act of 1978.
- (5) Energy Tax Act of 1978.
- (6) National Environmental Policy Act (NEPA).
- (7) Clean Air Act of 1970.
- (8) Oklahoma Department of Health Regulation 6.
- (9) Oklahoma Department of Health Regulation 7.

3.0 REQUIREMENTS

The solar repowered plant shall be designed to meet the performance requirements of this section. This specification is applicable as a design requirement only to the new or modified portions of a solar repowered plant. The solar retrofit design specifications shall make maximum use of completed or ongoing DOE solar R&D activities. Design emphasis shall be on the solar/non-solar interfaces.

3.1 SITE

Site preparation work will be minimized to reduce costs and preserve natural drainage systems as much as possible. The dam for the farm pond will be removed and the natural drainage channels will be graded only as necessary to permit access of maintenance vehicles to the heliostats. Grading will be required in the vicinity of the tower and along access roads.

Site development work will primarily consist of construction of access roads and parking, and security fencing. No lighting will be required except at the receiver tower.

3.1.1 Drainage

The natural present site drainage will be preserved, augmented only by drainage ditches adjacent to the access roads, and culverts where the roads cross natural drainage patterns.

3.1.2 Roads and Parking

A paved road will be provided to connect the existing road at the cooling towers to the receiver tower. The parking area at the tower will also be paved to reduce dusting of the heliostat field. This main road and the parking area will be permanent-type construction with a crowned 6-metre (20-foot-wide) traffic lane, 1.5 metre (5-foot-wide) shoulders, and contoured drainage ditches.

A secondary 3-metre (10-foot-wide) unpaved road will be provided from the receiver tower around the heliostat field. It will be constructed of crushed rock and oiled to minimize dusting of the heliostat field.

3.1.3 Security Fencing

The existing primary fencing section which now crosses the heliostat field area will be reused and supplemented with new fencing to surround the solar facility. The existing perimeter fences of barbed wire along the site property boundaries will be removed where security fencing is provided. 3.1.4 Foundations

The competent limestone has a very high load carrying capability. The allowable design bearing capacity has been conservatively established at

R,	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
	SITE	_	SECTION 3.1

7.2 kPa (150 kips per square foot), so the size of foundations bearing on the sound and unweathered limestone formation will be governed by the minimum practical dimensions as determined by stresses due to shears and bending moments within the foundation rather than by the allowable bearing capacity of the limestone.

3.2 SITE FACILITIES

The existing facilities at Northeastern Station will be used to supply most of the auxiliary services required by the new solar repowering equipment. The following paragraphs summarize the required services and the plans to provide these services.

3.2.1 Cooling Water

The receiver fluid circulating pump located in the solar receiver will utilize a closed-loop air to water heat exchanger for providing cooling water to the pump bearings. There are no requirements for utilization of station cooling water.

3.2.2 Service Water

No requirements for service water have been identified. The design will include provisions for possible future connection to the existing plant service water system.

3.2.3 Control Air

Since all control actuators will be electrically powered, there are no requirements for control air.

3.2.4 Service Air

A source of service air will be required during the construction phase and during periodic maintenance of equipment. A portable air supply system will be provided to meet these requirements.

3.2.5 Nitrogen

A separate nitrogen supply system will be provided for the solar repowering equipment. The system will be capable of supplying the maximum demands for inerting the receiver, feedwater pipe, and transport pipe during plant shutdowns. The requirements of the nitrogen storage system are as follows.

	Actual Volume cu m (cu ft)	Nitrogen Volume at 21 kPa (3 psi) and 21 C (70 F) scm (scf)
Receiver		
Superheater	2.0 (74)	2.5 (87)
Screen tubes	3.0 (109)	3.7 (129)

R/	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
	SITE FACILITIES		SECTION 3.2
		Nit	trogen Volume
	Actual Volume	at and	21 kPa (3 psi) 3 21 C (70 F)

	cum (cuft)	scm (scf)
Economizer	1.6 (57)	1.9 (67)
Drum	<u>10.2 (360)</u>	12.0 (425)
Total	16.8 (600)	20.1 (788)
Feedwater Pipe	24.3 (857)	28.7 (1,012)
Main Steam Transport Pipe	<u>45.2 (1,596)</u>	53.4 (1,885)
Total	86.3 (3,053)	102.2 (3,605)

During normal overnight shutdowns, the closure doors on the receiver and insulation on the main steam transport pipe will minimize heat loss and pressure decay in the system. Nitrogen requirements during overnight shutdown will therefore be minimal.

The largest routine use of nitrogen will be in the winter months when the solar receiver may be shut down for 1 or 2 days at a time. Feedwater would be recirculated and the system would not normally be drained. Nitrogen gas use during these winter shutdown periods is expected to be less than 28.3 scm (1,000 scf).

Nitrogen inerting will automatically be initiated whenever the system pressure drops below 0.14 MPa (5 psi).

The nitrogen gas storage containers will be standardized compressed gas bottles with an interconnecting manifold similar to the existing system at Unit 1. The total storage capacity will be sufficient to inert the total system at 0.12 MPa (3 psi) plus 30 to 50 per cent margin to allow for leakage. The system will be capable of being refilled by local suppliers. 3.2.6 Fire Protection

Hand held and moveable cart-mounted dry chemical fire extinguishers will be provided in the receiver tower area. No interconnection with the existing plant fire protection system is planned.

3.2.7 Communications

A communications system between the solar receiver tower and the main control room will be provided.

3.2.8 Water Treatment

The existing plant water treatment facilities will be used for analysis and treatment of the solar receiver water. No modifications to the existing facilities are planned.

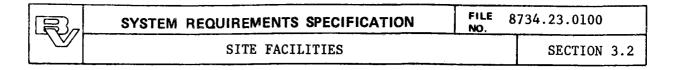
3.2.9 Control Room

The solar equipment control panel and the Master Control System programmer's console will be located in the main control room for Units 1 and 2. Figure 3.2-1 shows the planned layout of the control room.

3.2.10 Control Equipment Room

The control equipment cabinets and computers will be located in an existing control equipment room adjacent to the main control room. No modifications to this room are planned. Figure 3.2-1 shows the planned arrangement of this equipment.

3.2.11 Personnel Facilities


The existing plant office building and parking lot will accommodate the additional personnel needed for solar repowering. No modifications to these facilities are planned.

3.2.12 Storage and Maintenance

The existing plant warehouse and machine shop facilities will be used. No modifications to these facilities are planned.

3.2.13 Electrical Power

Electrical power will be provided to all solar plant loads required by the various auxiliary devices during shutdown, start-up and operation of the solar repowering plant as shown on Table 3.2-1. The electrical power supply can be divided into two categories--normal and uninterruptible auxiliary ac power. Normal ac power, backed up by an emergency standby diesel generator, will be used to supply power to such loads as the heliostat drives, the solar receiver boiler recirculation pump, motor-operated valves, and the receiver tower crane, elevator, aviation obstruction lighting, etc. Uninterruptible ac power will be supplied to specific loads, associated with the master control system, computers, and the multiplexing equipment at the receiver tower, where an interruption of power even for a

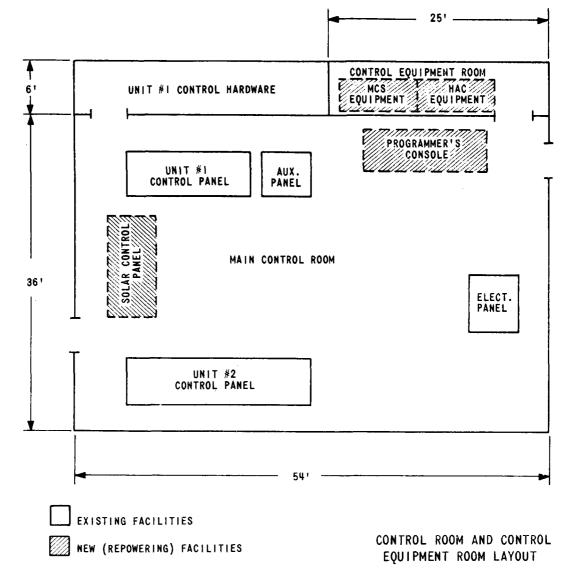
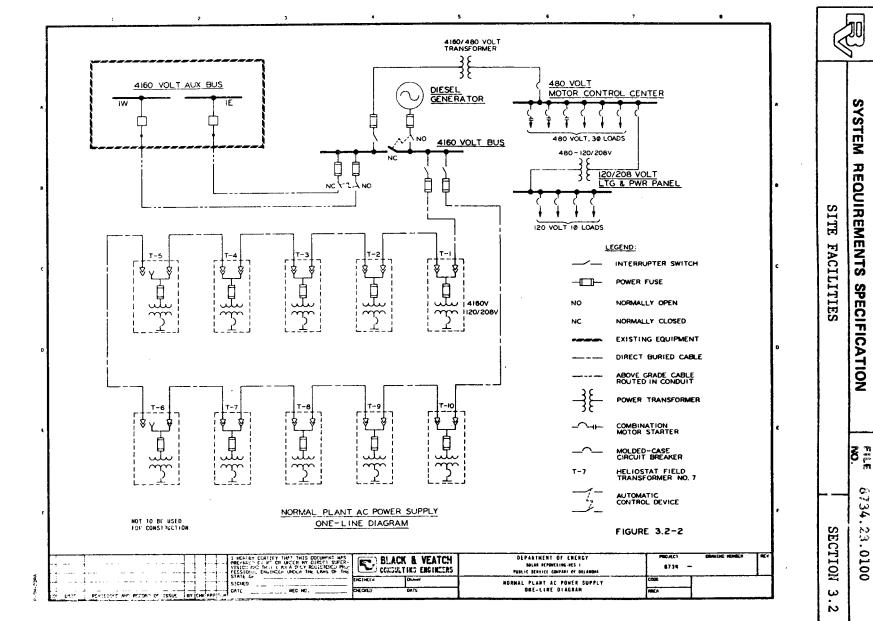


FIGURE 3.2-1

37	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
<u>۷</u>	SITE FACILITIES		SECTION 3.2

TABLE 3.2-1. SOLAR PLANT AUXILIARY POWER REQUIREMENTS

Solar Plant System	<u>Design Point</u> kW	<u>Start-up</u> kW	Shutdown kW
Collector System	1,144*	1,144*	1,144*
Receiver System	83	109	70
Master Control System	32	32	32
Miscellaneous	27	27	54
Total	1,286	1,312	1,300
Assumptions:			
Line Loss		5 per cent	
Transformer Loss		2 per cent	
Motor Loss		10 per cent	
Inverter Loss		20 per cent	


*Peak power for total heliostat field. Average power requirement will be about 68 kW.

few cycles cannot be tolerated under any normal or abnormal operating conditions of the solar repowering plant.

3.2.13.1 Solar Plant Normal Auxiliary AC Power. Figure 3.2-2 shows a one-line diagram of the normal auxiliary ac power system. Power will be tapped from the existing 4,160 volt auxiliary buses of Unit 1 and carried by 5 kV solid dielectric above grade cable routed in conduits to a 4,160 volt metal enclosed switchgear to be located near the base of the receiver tower. In order to obtain redundancy in the power supply system, two sources of power, one normal and the other standby, will be tapped from the existing switchgear buses. Automatic high speed source transfer switching will be provided between normal and standby sources to maintain a high degree of service continuity. In the event of a total loss of plant auxiliary power, an emergency power supply will be required to slew heliostats away from the receiver as quickly as possible to prevent damage to the receiver. This emergency power will be supplied by a quick-start diesel generator unit to be located near the solar tower.

Two 4,160 volt, three phase feeder circuits will distribute power to 10 heliostat field transformers. The heliostat field transformers will be the low profile pad-mounted type with 4,160 volt primary windings and 120/208 volt secondary windings. Each unit will have six load-break primary bushing wells constructed for primary system loop-feed dead front design. Power cable serving the transformers will be direct buried solid dielectric cable.

A reasonable level of reliability is desirable for the primary distribution system serving the heliostats. The system will be designed such that it will normally operate as an open-loop system, as shown in Figure 3.2-2 Distribution switching is provided at each transformer with load break elbows. In the event of a fault in a line section, the faulted section can be isolated quickly by opening both ends of the faulted section at the transformers. Service can be restored to all heliostats by closing the normally open elbows, while the repair work is carried out on the faulty section.

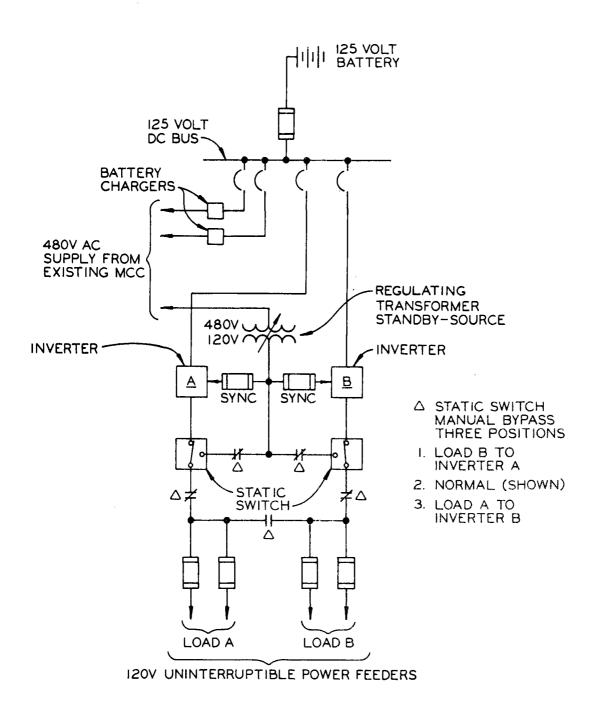
SREG NES-071580

3.2-7

	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
Y.	SITE FACILITIES		SECTION 3.2

Low voltage three phase power to motors, motor-operated values and other loads will be distributed by two sections of a 480 volt motor control center to be located at Elevation 106.7 metre (350'-0") of the receiver tower. A 4,160-480 volt pad mounted transformer located near the 4,160 volt switchgear will supply power to the motor control center. The primary side of the transformer will be fed by the 4,160 volt switchgear.

Single phase 120 volt power to lighting, receptacle, and other small single phase loads will be supplied by a 480-120/208 volt indoor dry type transformer and a lighting and power distribution panel.


3.2.13.2 <u>Solar Plant Uninterruptible Auxiliary AC Power</u>. Figure 3.2-3 shows the one-line diagram of the uninterruptible power system. Two fullcapacity static inverters will supply single phase 120 volt ac power to all uninterruptible loads. Under normal operating conditions each inverter will carry about half of the total uninterruptible load. In the event of an inverter component failure, a static switch will transfer the inverter load to a regulated station ac supply within 1/4 of a cycle. When the inverter supply is restored, the static switch will automatically transfer the load back to the inverter. To facilitate maintenance, one inverter can be taken out of service, while the other inverter carries the entire uninterruptible load. This transfer of load from one inverter to the other will be accomplished without power interruption to the load by a manual bypass switch.

Synchronism between the inverters and the standby station supply will be maintained at all times so that the transfer of load can be done between systems in synchronism with each other.

A dc input to the inverters will be provided by a 125 volt battery and two full-capacity battery chargers. Under normal operating conditions the chargers will supply the load and the battery will be floating. In the event of a loss of ac supply to chargers, the battery will supply dc power to the inverters. The battery will be sized to keep the inverter running for at least 1 hour after loss of both chargers.

The uninterruptible power supply equipment will be located in the existing main plant building.

R	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
	SITE FACILITIES		SECTION 3.2

SOLAR PLANT UNINTERRUPTIBLE AUXILIARY SUPPLY ONE LINE DIAGRAM

FIGURE 3.2-3

3.3 COLLECTOR SYSTEM

The Collector System consists of an array of computer-controlled heliostats which will redirect solar radiation onto the Receiver System. The Collector System will satisfy the receiver incident heat flux requirements described in Section 3.4 by employing a beam control strategy to distribute the locations of the individual heliostat images on the receiver surface. The beam control strategy will distribute the redirected power as evenly as possible on the north half of the receiver while limiting the peak incident heat flux to 660 kW/m²; heat fluxes on the tower and normally unirradiated portions of the receiver will be limited to 25 kW/m².

The Collector System will respond to commands from the Master Control System for emergency defocusing of the reflected energy or to protect the heliostat array against environmental extremes. Emergency defocusing will reduce peak incident radiation on the receiver to less than 3 per cent of initial value within 120 seconds. The environmental conditions to be encountered and survived by the Collector System are described in Section 4.0; the Collector System must maintain structural integrity in any applicable combination of those conditions.

Heliostat design will provide for stored or safe position for use at night, during periodic maintenance, and during adverse weather conditions. Heliostat drive systems will be environmentally sealed, and will provide corrosion protection of all parts.

3.3.1 Collector Field

The collector field design will provide a heliostat layout consistent with the following requirements.

- (1) Heliostats will be located within the plant site presently owned by Public Service of Oklahoma, as illustrated in Figure 1.2-1. Heliostat pedestals will be located within an area 880 m (2,887 ft) wide, with its western boundary located 60 m (197 ft) east of the Unit 1 & 2 cooling towers, and its eastern boundary 20 m (66 ft) west of the road easement bounding the plant site on the east.
- (2) The collector field will direct 82.45 MWt toward the receiver at the design point with a reference insolation of 0.95 kW/m^2 .

- (3) The collector field will produce an incident heat flux distribution on the receiver which is compatible with the requirements specified in Section 3.4.
- (4) The locations of heliostats within the field will be determined by maximizing the collector's annual performance per cost while satisfying the design point power and incident heat flux requirements specified above. Collector costs will include the following.
 - (a) Heliostat capital cost.
 - (b) Operation and maintenance cost.
 - (c) Field wiring cost.

Collector performance will include the annual effects of the following.

- (a) Sun position.
- (b) Direct normal insolation.
- (c) Cosine effects.
- (d) Shadowing and blocking.
- (e) Mirror reflectivity.
- (f) Atmospheric attenuation.
- (g) Heliostat optical performance.
- (h) Receiver size and elevation.
- (i) Beam control strategy.

3.3.2 <u>Heliostat Performance</u>

Heliostat performance requirements have been based on the requirements specified in the Collector Subsystem Requirements Specification, Al0772, Issue C, October 10, 1979, and modified as necessary to reflect specific performance and environmental criteria.

In order to attain overall plant field performance such that 95 per cent of the redirected energy will impinge on the receiver with an incident angle of less than 60 degrees, the following requirements have been established for designing and evaluating individual heliostats.

- Maximum beam pointing error (tracking accuracy) will be limited to 1.5 mrad standard deviation for each gimbal axis under the following conditions.
 - (a) Wind--heliostats operational up to 12 m/s (27 mph) wind.
 - (b) Temperature-- -27 C to 47 C (-17 F to 117 F).
 - (c) Gravity Effects--at all elevation and azimuth angles that could occur in a heliostat field.
 - (d) Azimuth Angles--at all angles except during gimbal lock.
 - (e) Sun Location--at least 0.26 rad (15 degrees) above horizon, any time of year.
 - (f) Heliostat Location--any position in the field.

Pointing error is defined as the difference between the aim point and measured beam centroid for all of the above conditions for any tracking aim point (on target or at standby).

- (2) Beam quality will be such that a minimum of 90 per cent of the reflected energy at target slant range falls within the area defined by the theoretical beam shape plus a 1.4 mrad fringe width. Heliostat beam quality will be met throughout 60 days without realignment. Beam quality requirements are applicable under the following conditions.
 - (a) Wind--none.
 - (b) Temperature-- -27 C to 47 C (-17 F to 117 F).
 - (c) Gravity effects--at all elevation and azimuth angles that could occur in a heliostat field.
 - (d) Sun location--at least 0.27 rad above horizon, any time of year.
 - (e) Heliostat location--any position in the field and any slant range.
 - (f) Operating mode--tracking on solar receiver.
 - (g) Facet alignment--each heliostat shall be aligned for its aim point on the solar receiver.
 - (h) Theoretical beam shape--the theoretical beam contour, determined by HELIOS, is the isoflux contour that contains 90 per

cent of the total power. This isoflux contour will be increased by 1.4 mrad fringe. The HELIOS computer code is available through Sandia.

(3) Overall structural support shall limit reflective surface static deflections to an effective 1.7 mrad standard deviation for a field of heliostats in a 12 m/s (27 mph) wind.

Wind deflections of the foundation, pedestal, drive mechanism, torque tube, and mirror support members shall be included, but not the slope errors due to gravity and temperature effects. Wind deflection limits apply to the mirror normal (not reflected beam) for each axis fixed in the reflector plane. Both beam quality and beam pointing are affected.

To assure that the net slope error of a field of heliostats is less than 1.7 mrad, the rms value of the slope error taken over the entire reflective surface of an individual heliostat, computed under the worst conditions of wind and heliostat orientation (but excluding foundation deflection), shall be limited to 3.6 mrad for a single heliostat. This limit represents a 3-sigma value for the field derived by subtracting foundation deflection from the total surface slope error (1.7 - .5 = 1.2) mrad standard deviation x = 3.6 mrad 3-sigma. The conditions under which this requirement applies are as follows.

- (a) Wind, including gusts--12 m/s (27 mph) at 10 m (33 ft) elevation.
- (b) Temperature-- -27 C to 47 C (-17 F to 117 F).
- (c) Heliostat location--any position in the field at any time of the year.
- (d) Gravity effects--not included.
- (e) Mirror module waviness--none.
- (f) Facet alignment error--none.
- (4) The allowable tilt and/or torsional rotation of a heliostat foundation shall not exceed \pm 1.5 mrad total angular deflection per axis, when the heliostat is subjected to a 12 m/s (27 mph)

operational wind load. This total deflection shall, in addition to elastic response, include the amount of plastic or permanent deflection, including any wobble (looseness) resulting from a prior 22 m/s (50 mph) wind experience. The allowable plastic or permanent deflection of the foundation resulting from a 22 m/s (50 mph) wind load shall not exceed \pm 0.45 mrad.

Both deflection allowances are 3-sigma limits expressed for a single heliostat/foundation field position, and are computed under the worst condition of wind and heliostat orientation. For a full field of heliostat foundations, the effective limits will result in one standard deviation or 1/3 of the deflection allowances specified for a single foundation.

The deflections specified are applicable at the foundationto-heliostat interface located on a plane parallel to and approximately 50.8 mm (2 inches) above the pier concrete surface, which is represented by the underside of the heliostat pedestal mounting flange.

Standard deviation as used in these requirements will be determined from a sample of at least 20 data points from each individual heliostat tested.

3.3.3 Collector Control System

The collector control requirements are as follows.

- (1) The Collector System shall function as appropriate for all steadystate modes of plant operation. This will include the capability of controlling the number of heliostats in tracking mode so as to vary the redirected flux to the receiver between zero and the maximum achievable level with step changes no larger than 10 per cent of the total collector field output.
- (2) Drive systems must be capable of positioning a heliostat to stowage, cleaning, or maintenance orientation from any operational orientation within 15 minutes.
- (3) Elevation and azimuth drives shall not drift from last commanded positions due to environmental loading.

NO.

- (4) Drive systems must be capable of resolving south field control singularity (i.e., "over-the-shoulder" limits or gimbal lock) within 15 minutes.
- (5) Drive system shall provide for cost effective stowage of the reflective surface to minimize reflected beam safety hazards and dust or dirt build-up on the mirrors. Heliostat orientation will be available to master control at all times. Calculated gimbal angles are acceptable; orientation sensors are not required.
- (6) Heliostat control shall be accomplished by a computer. Control functions shall be accomplished as follows.

Heliostat Array Controller (HAC) shall:

- (a) Initiate operational mode commands to HFC.
- (b) Address commands to HFC groups or individual HC.
- (c) Respond to MCS commands and requests.
- (d) Interface with beam characterization system.
- (e) Provide time base.

Heliostat Field Controller (HFC) shall:

- (a) Determine individual heliostat azimuth and elevation position requirements.
- (b) Transmit position requirements to HC.
- (c) Transmit status and data to HAC.
- Initiate safe stowage command upon loss of HAC communication. (d)
- (e) Control groups of HCs.

Heliostat Controller (HC) shall:

- (a) Control drive motors.
- (b) Provide heliostat axis position data to HAC.
- Reliable plant power is to be supplied to the heliostat array (7) controller, heliostat field controllers, and each heliostat junction box.
- The heliostat array controller shall be configured such that the (8) master control system can automatically achieve integrated control of, and alarm the collector system. The overall interface signals for plant operation are as follows.

COLLECTOR SYSTEM

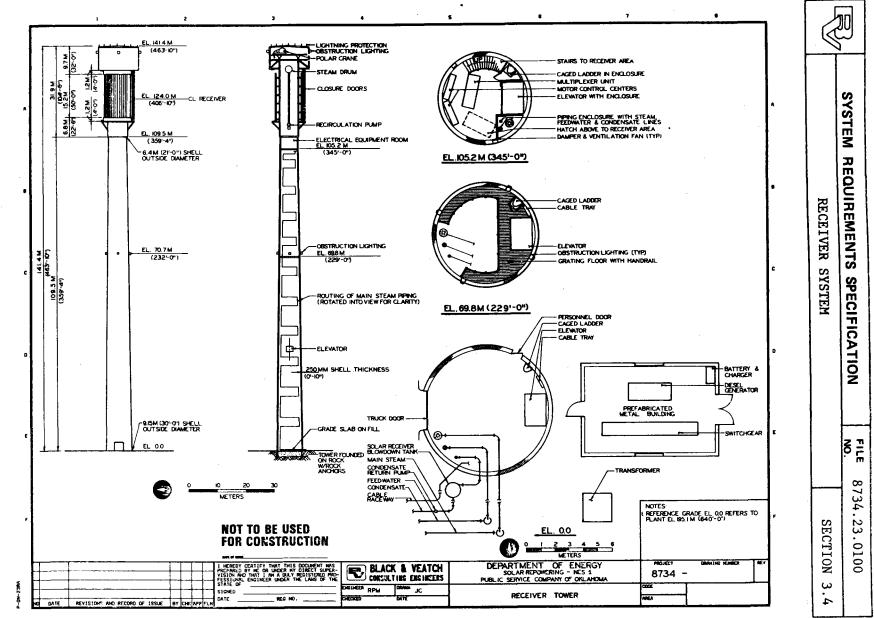
- (a) Control commands.
- (b) Operational data requests.
- (c) Operational alarm data outputs.
- (9) The master control system will perform the data collection function for evaluation of the plant system. The evaluation interface signals for the plant are as follows.
 - (a) Evaluation of data requests.
 - (b) Evaluation of data outputs.

Each of these sets of HAC/MCS signals is further designated as either continuous (i.e., automatically generated at regular preprogrammed intervals) or on-demand by an operator (i.e., issued upon request or over selectable intervals). Error checking shall be employed in all message transfers.

- (10) The heliostat array controller shall provide heliostat data, control, and positioning required for beam characterization by directing a heliostat to focus on the beam characterization system (BCS) target. The BCS will be commanded to execute data acquisition and return the beam centroid location to the HAC. Additional measurements will be made as needed to resolve all tracking error terms. In cases of large errors, the HAC will be requested by the BCS to adjust the heliostat alignment to bring the heliostat on target.
- (11) The HAC is expected to tolerate power transients which are commercially acceptable to the HAC purchased equipment suppliers. The heliostat field controller and heliostat controllers shall operate through the following power transient conditions.
 - (a) Increasing Transient--one cycle of the fundamental frequency at 1.7 PU voltage followed by an exponential decay back to the original voltage in five cycles.
 - (b) Decreasing Transients--a voltage dropout (zero volts) for three-cycle maximum of the fundamental frequency.
- (12) The Collector System control wiring shall be designed to minimize susceptibility to electromagnetic interference and to minimize the generation of conducted or radiated interference.

3.3.4 Heliostat Foundations

The foundations for the heliostats shall provide a stable support in order that the performance objectives specified in Section 3.3.2 will be met. The dimensions and design forces shall be based on data produced for the second generation heliostat design in the DOE Heliostat Development Program.


3.4 RECEIVER SYSTEM

The Receiver System shall provide a means of transferring the incident radiant flux energy from the Collector System into a suitable receiver fluid and transporting the energy charged fluid to the Fossil Energy System. 3.4.1 <u>Structural Design</u>

The receiver and tower shall be designed to provide access for maintenance and inspection of tower structure, receiver, receiver fluid, instruments and controls, power conversion equipment that may be located on the tower, utilities, etc. Consideration will be given to ease of maintenance. Adequate provisions will be made to ensure crew safety at all times for required operations, inspection, maintenance and repair. The receiver design shall be in accordance with ASME Boiler Codes. The structural design of the receiver and support tower will be as shown on Figure 3.4-1. 3.4.2 Receiver

The Receiver will be an external receiver with closure doors. The receiver design and operating parameters will be as follows.

- (1) Fully circumferential area of economizer and boiler screen tubes and flat projected area of superheater membrane tubes--597.4 m^2 (6,430 ft²).
- (2) Peak flux at equinox noon--0.62 MWt/m^2 .
- (3) Average flux at noon of equinox--0.277 MWt/m^2 .
- (4) Receiver power rating at noon of equinox--82.452 MWt.
- (5) Receiver fluid is water and steam.
- (6) Receiver fluid velocity at outlet of superheater--29.18 m/sec (95.74 ft/sec).
- (7) Receiver fluid mass flow rate at outlet of superheater--111,260 kg/h (245,300 lb/h).
- (8) Receiver peak upset tube wall temperature--619 C (1,146 F) where tube wall temperature = 1/2 (TOD + TID). TOD = Outside wall temperature, TID = inside wall temperature.
- (9) Receiver overall average tube wall temperature--373.38 C (704.08 F).
- (10) Receiver fluid inlet temperature--246 C (475 F).
- (11) Receiver fluid outlet temperature--544.2 C (1011.6 F).

3.4-2

- (12) Construction technique is erection on the tower by parts.
- (13) Worst case tube life (fatigue life) per Section 1 ASME Boiler Code.
- (14) Overall receiver efficiency--88.9 per cent at equinox noon.

```
3.4.3 Receiver Fluid
```

The receiver water quality shall be maintained within the following limits.

Feedwater Limits

рН	8.8-9.2
Oxygen, ppm	0.007 (max.)
Fe, ppm	0.01 (max.)
Cu, ppm	0.005 (max.)
Total Hardness, ppm	0
Si O ₂ , ppm	0.02 (max.)
Organic, ppm	0
Boiler Water Limits	
Total Solids, ppm	15 (max.)
Na ₃ PO ₄ , ppm	3-10
он	l (max.)
рН	9-10
Silica, ppm	0.32

Phosphate (Na₃PO₄) levels in the receiver drum will be manually checked approximately once a week. A small phosphate feed system located at the receiver will be used to adjust the receiver drum phosphate level as required. 3.4.4 Tower

The tower that supports the receiver, piping, and other elements of the Receiver System shall have the following characteristics.

- (1) Tower height--109.5 m (359'-4").
- (2) Structural type--reinforced concrete cylinder.
- (3) Base outside diameter--9.1 m (30'-0").
- (4) Top outside diameter--6.4 m (21'-0").
- (5) Description of tower foundation--secured to competent bedrock with rock anchors.

- (6) Material--reinforced concrete.
- (7) Structural integrity shall be provided in accordance with the environmental criteria presented in Section 4.0.
- (8) The following approximate wind profile as a function of height above ground level shall be used for tower design. At height Z, in metres,

$$v_{z} = v_{10} \left[\frac{z}{10} \right]^{1/7}$$

where

 V_{2} = velocity at height Z

 V_{10} = velocity at 10 metres

Wind analyses shall satisfy the requirements of the latest edition of ANSI A58.1.

3.4.5 Receiver Controls

The solar receiver shall be designed to provide the following types of controls.

- Feedwater flow control--to maintain proper water level in the drum.
 - (a) Normal operation--feedwater flow demand established by measured steam flow less attemperator flow.
 - (b) Start-up and shutdown--feedwater flow based only on drum level. A high level dump valve is used to control drum level swell during start-up.
- (2) Economizer Recirculating Valve Control--to provide a flow path for the recirculating pump discharge during start-up and shutdown.
- (3) Steam Temperature Control--to regulate the steam temperature at the superheater outlet through the use of water attemperation.
- (4) Superheater Panel Bias Valve Control--to redistribute flow from cold panels to hot panels during transients. If modulation of the bias valve does not adequately control panel outlet temperatures, heliostats are directed away from the hot panel(s).

3.5 RECEIVER LOOP SYSTEM

The Receiver Loop System provides the piping interface between the existing Fossil Energy System and the Receiver System installed with the solar facility. The requirements of the Receiver Loop System are as follows. 3.5.1 Operating Requirements

The Receiver Loop System operation is based on the solar receiver operating modes, including normal operation, routine shutdown and start-up operation, and cold start operation. The Receiver Loop System response to these modes of operation is in accordance with the following. 3.5.1.1 Normal Operation. Under normal operation, feedwater is supplied to the solar receiver to maintain the proper drum level, and solar generated main steam is supplied from the solar receiver superheater outlet to the Fossil Energy System main steam piping. At normal operating pressure and temperature conditions, the accumulation of condensate at drain points in the receiver loop system piping is not expected. The main steam piping drains will be closed under normal operation, except for emergency conditions. The receiver blowdown tank will collect water under normal operation only if water is drained from the solar receiver drum for control of receiver chemistry. The condensate return pumps will operate during these periods of draining based on tank water level. The feedwater supplied to the receiver will be batch treated by the addition of phosphate to control the solar receiver water chemistry within the ranges presented in Sec-

tion 3.4.3, Receiver Fluid.

3.5.1.2 Routine Shutdown and Start-up Operation. The Receiver Loop System provides feedwater to the receiver, and returns condensate from the receiver, for receiver warming before start-up and for freeze protection during shutdown operation in winter months. After completion of pre-warming by feedwater recirculation, the loop system main steam piping provides steam from the Fossil Energy System for final warming of the receiver above 116 C (240 F) to near the full load saturation temperature in preparation for start-up.

During shutdown and start-up operation, condensate collected in the receiver superheater and the main steam piping is drained to the receiver blowdown tank and main steam drain tanks. The collected condensate is pumped to the Fossil Energy System for return to the deaerator or condenser, or for disposal to the existing fossil steam generator blowdown tank. The draining and pumping of condensate is automatically initiated and terminated by level sensing devices at the piping drain points and in the associated tanks. Condensate returned to the deaerator or condenser is processed through filtering equipment to remove chemicals potentially carried from the receiver drum.

3.5.1.3 <u>Cold Start Operation</u>. The Receiver Loop System provides feedwater for filling the receiver and utilizes main steam from the Fossil Energy System for main steam pipe and receiver superheater warm-up. The condensate collected during warm-up is returned by the loop system to the fossil cycle.

3.5.2 Design Requirements.

The Receiver Loop System piping and values will be designed in accordance with the ANSI Power Piping Code, B31.1. The loop system pressure vessels will be designed in accordance with the requirements of the ASME Boiler and Pressure Vessel Code. The specific design requirements for major system components will be as follows.

3.5.2.1 <u>Main Steam Piping</u>. The loop system main steam piping design conditions are based on the maximum expected sustained pressure at the piping inlet, plus a suitable margin, as follows.

Design pressure	14.75 MPa (2,140 psi)
Design temperature	549 C (1,020 F)
Steam flow rate	111,260 kg/h (245,300 lb/h)

The main steam piping wall thickness and pipe diameter will be selected to achieve a reasonable fluid velocity, and to limit the piping pressure drop to a value that is compatible with the pressure requirements at the interfaces with the Receiver and Fossil Energy systems.

3.5.2.2 <u>Feedwater Piping</u>. The loop system feedwater piping design conditions are based on the maximum system pressure at feedwater pump shutoff operation as follows.

Design pressure	21.27 MPa (3,085 psi)
Design temperature	260 C (500 F)
Water flow rate	111,260 kg/h (245,300 lb/h)

The feedwater piping size will be selected from standard piping sizes with nominal wall thicknesses. The allowable feedwater piping pressure drop will be compatible with the requirements at the interfaces with the Receiver and Fossil Energy Systems.

3.5.2.3 <u>Condensate Drain Piping</u>. The loop system condensate drain piping design will be based on the maximum expected return water flow conditions as follows.

Design pressure	0.89 MPa (100 psi)
Design temperature	121 C (250 F)
Water flow rate	34,000 kg/h (75,000 lb/h)

3.5.3 Interface Requirements

The requirements at the interfaces with the Receiver Loop System are as follows.

3.5.3.1 <u>Feedwater Interfaces</u>. The Receiver Loop System interfaces with the Fossil Energy System at the feedwater piping after the fifth feedwater heater, ahead of the fossil feedwater regulating valves. The Receiver Loop System interfaces with the Receiver System at the regulating valves at the receiver economizer inlet and attemperating spray headers. The conditions at the feedwater interfaces vary with unit load, feedwater flow rate, and receiver steaming capacity. The maximum and minimum conditions corresponding to the required operating modes are as follows.

Normal Operation - Design Point Conditions

	Fossil Energy System Interface	Receiver System Interface
Feedwater flow	111,260 kg/h (245,300 lb/h)	111,260 kg/h (245,300 lb/h)
Pressure	18.96 MPa (2,750 psi)	17.27 MPa (2,505 psi)
Temperature	247 C (477 F)	246 C (475 F)

SYSTEM REQUIREMENTS SPECIFICATION

RECEIVER LOOP SYSTEM

FILE

NO.

SECTION 3.5

Start-up	and	Shutdown	Operation
----------	-----	----------	-----------

	Fossil Energy <u>System Interface</u>	Receiver System Interface
Maximum Flow Condition		
Feedwater Recirculation	34,000 kg/h (75,000 lb/h)	34,000 kg/h (75,000 lb/h)
Pressure	20.82 MPa (3,020 psi)	19.68 MPa (2,855 psi)
Temperature	186 C (366.5 F)	185 C (365.5 F)
Minimum Flow Condition		
Feedwater Recirculation	2,300 kg/h (5,000 lb/h)	2,300 kg/h (5,000 lb/h)
Pressure	20.82 MPa (3,020 psi)	19.86 MPa (2,880 psi)
Temperature	186 C . (366.5 F)	185 C (365.5 F)

3.5.3.2 <u>Main Steam Interfaces</u>. The Receiver Loop System interfaces with the Receiver System at the solar receiver superheater outlet, after the superheater outlet stop valve. The Receiver Loop System interfaces with the Fossil Energy System at the connection to the existing main steam piping near the fossil steam generator. The steam conditions at the solar receiver superheater outlet, and at the interface with the existing main steam piping, will be as required to match the existing turbine throttle steam conditions as follows.

Normal Operation - Design Point Conditions

	Receiver System Interface	Fossil Energy System Interface
Flow Rate	111,260 kg/h (245,300 lb/h)	111,260 kg/h 245,300 lb/h)
Overpressure	14.86 MPa (2,155 psia)	13.76 MPa (1,995 psia)
Rated Pressure	13.62 MPa (1,975 psia)	12.51 MPa (1,815 psia)
Temperature	544 C (1,011 F)	538 C (1,000 F)

SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
RECEIVER LOOP SYSTEM		SECTION 3.5

Under start-up conditions, the Receiver Loop System receives steam from the Fossil Energy System, and provides steam to the Receiver System for warm-up. The maximum warming steam flow rate is 18,000 kg/h (40,000 lb/h). 3.5.3.3 <u>Condensate Interfaces</u>. The Receiver Loop System interfaces with the Receiver System at all drain piping connections. The drain recirculates feedwater during warm-up, collects condensate at saturation temperature during start-up, and drains the receiver during period of extended shutdown. The Receiver Loop System interfaces with the Fossil Energy System at the deaerator, condenser, and existing steam generator blowdown tank. The interfaces with the deaerator and condenser allow return of condensate to the fossil cycle, and the interface with the existing blowdown tank allows for the disposal of condensate drained from the receiver.

The interface points will be sized to accommodate the maximum expected recirculation flow and the condensate drain piping design conditions stated previously.

MASTER CONTROL SYSTEM

3.6 MASTER CONTROL SYSTEM

3.6.1 Operating Requirements

There will be two modes of operation; "fossil only" operation and "combined fossil-solar" operation. There will be a smooth transition between these two modes of operation.

During combined fossil-solar operation, all available solar energy will be utilized subject to any operational limitations of the solar equipment. The fossil boiler will always be operated above a minimum turndown level and there will be local and remote (dispatch) automatic load control throughout a restricted load range of the unit.

The solar equipment will be capable of operation by a single operator who will simultaneously operate Unit 1 and Unit 2 at Northeastern station. The mode of operation will be primarily automatic with manual override capability. All solar equipment will be operated from a centralized location in the existing control room for Unit 1. No operating personnel will be required in the receiver tower.

The Master Control System (MCS) will be designed to support these operational criteria.

The MCS will coordinate the independent controls of the other systems (Receiver, Collector, and Fossil Energy Systems). The major control functions of the MCS are as follows.

- (1) Automated start-up of the solar equipment.
- (2) Coordination of the collector and receiver during solar operation.
- (3) Coordination of the receiver and fossil boiler during solar operation.
- (4) Automated shutdown of the solar equipment.
- (5) Emergency shutdown of solar equipment during abnormal situations to prevent equipment damage.

3.6.1.1 <u>Automated Start-up</u>. Because of the relatively large number of control actions necessary during the start-up of the solar equipment and because the equipment is to be operated by a single operator who will also have additional non-solar responsibilities, solar equipment start-up will be automated to minimize the required operator participation.

SECTION 3.6

The automated start-up program will control all solar equipment. This program will be comprehensive in order to safely start the equipment during a large variation in available solar insolation conditions. The complexity will be equivalent to automatic turbine start-up programs which are routinely used in many new power plants. The start-up program for a normal diurnal start-up will consist of several phases as follows.

- Prestart Phase--all solar equipment and system controls will be checked to determine that they are in the proper configuration for start-up (all steam lines drained of condensate, all controls on automatic, all heliostats respond to standby commands, etc.)
- (2) Receiver Warmup Phase--the receiver water temperature will be slowly increased at a rate of about 4.4 C (8 F) per minute. The water warmup will begin by circulating heated feedwater from the Fossil Energy System through the receiver and back to the Fossil Energy System through the Receiver Loop System. The feedwater warmup sequence will then be augmented by the injection of steam from the Fossil Energy System into the receiver water.
- (3) Solar Steam Generation Phase--the mirrors will be focused on the receiver in a predetermined sequence. As the receiver heats up the steam pressure and temperature will rise. The steam temperature will be controlled within allowable limits. When the pressure equals the existing turbine steam inlet pressure the solar steam stop valve will be gradually opened and solar generated steam injected into the turbine.

A mid-day start-up sequence will be slightly more complicated since a significantly greater amount of solar energy is available. During the Solar Steam Generation Phase, mirrors will be sequenced on target more slowly to prevent overheating of the receiver.

This start-up sequence will be automated to the extent that the required operator participation will be limited to push button initiation of each of these phases. The MCS will keep the operator appraised of the status of the start-up through CRT messages on the control panel. The operator will be able to interrupt the automated sequence at any point and complete the start-up manually.

3.6.1.2 <u>Coordination of Collector and Receiver Systems</u>. The main responsibility of the Master Control System is the prevention of over temperature conditions in the receiver panels.

The coordination requirements of the MCS are minimal during solar operation. This is due to the receiver design and incorporation of receiver steam temperature controls in the Receiver System which will maintain the proper temperatures during essentially all normal operating conditions. The MCS will attempt to focus all available mirrors on the receiver to maximize the solar insolation. Should an abnormal condition arise in which the receiver controls are unable to maintain temperatures below critical limits in the receiver panels, the MCS will automatically defocus mirrors according to a predetermined sequence to reduce the solar insolation to a point that the receiver controls are again able to control temperatures. When the abnormal condition has passed, the MCS will automatically refocus all mirrors.

3.6.1.3 Coordination of Receiver and Fossil Energy Systems. The main requirement is the regulation of the steam pressure to the turbine. The coordination requirements of the MCS are minimal. This is due to the existing steam pressure controls in the Fossil Energy System and the capability of the fossil steam generator to regulate its firing rate to maintain the desired pressure during all normal expected transient conditions of the solar receiver. The fossil steam generator is capable of increasing and decreasing its steam flow generation at a rate of 20,400 kg/h (45,000 1b/h). The MCS will transmit a measurement of the solar receiver steam flow to the existing fossil steam generator control system. This system will use this signal in a feed-forward control strategy to assist in the pressure controls. Should an unexpectedly severe solar transient cause a very rapid change in receiver steam flow which exceeds the capability of the fossil steam generator to compensate, one of two things will occur. If the pressure drops rapidly, this may cause a small reduction in load output of the turbine until the steam generator steam flow can respond. If the

pressure rises rapidly, a pressure relief valve in the Fossil Energy System will be actuated. Neither one of these eventualities is a serious operational problem.

3.6.1.4 <u>Automated Shutdown</u>. An automated shutdown is required for the same reasons that an automated start-up is required. The shutdown program will safely shut down the solar equipment and place all equipment into an overnight storage condition. The shutdown program for a normal shutdown will consist of the following phases.

- Shutdown Phase--all heliostats will be placed in the standby position. When the steam flow from the solar receiver drops to zero, the solar steam stop valve will be closed.
- (2) Storage Phase--all heliostats will be commanded to their stow positions. All receiver panel bias valves will be closed to minimize heat loss from the receiver during shutdown.

As in the automated start-up program, the operator participation will be limited to the push button initiation of each phase. Manual intervention at any point in the shutdown sequence will be possible.

3.6.1.5 <u>Emergency Shutdown</u>. The MCS will monitor critical solar equipment parameters and operating conditions of all critical plant equipment. Upon detection of any abnormal condition which would compromise the safety of personnel or integrity of the solar equipment, the MCS will trigger an emergency shutdown of all solar equipment. The shutdown would consist of the following actions done in parallel.

- (1) Command all mirrors to stow position.
- (2) Close the solar steam stop valve.
- (3) Open all receiver superheater and steamline drain valves.
- (4) Close all lines that may be capable of water injection to the turbine.
- (5) Start-up of the standby emergency diesel generator.

The main objectives of this emergency shutdown are to immediately remove all input energy from the system and then prevent any possibility of water induction into the turbine. This emergency shutdown system must function independently from all other elements in the MCS.

The conditions that will automatically trigger an emergency shutdown are as follows.

- (1) High receiver drum water level.
- (2) Low receiver drum water level.
- (3) Turbine trip.
- (4) Fossil boiler trip.
- (5) Loss of main source of electrical power to heliostat control motors.
- (6) Loss of main source of electrical power to control system.

The plant operator may also trigger an emergency shutdown from the main control room.

3.6.1.6 <u>Data Acquisition Requirements</u>. The MCS will include the facility to acquire plant data, analyze this data, display performance data to the operator, and store data for future detailed analysis.

(1) Data Acquisition--the MCS will scan plant input data at individual point adjustable scan rates from once a second to once every 30 seconds. The MCS will store the most current values of each input for further analysis and/or display. The estimated input count is as follows.

Measurement	Quantity
Temperatures	150
Pressures	20
Flow rates	10
Valve positions	50
Water levels	5
Control valve positions	15
Miscellaneous discrete status inputs (level switches, breaker positions)	50
Heliostat status	2,255

(2) Data Analysis--the MCS will perform real-time input data processing on all inputs. This processing will consist of conversion to engineering units, detection of bad or unreasonable data, data averaging, and other required processing. The MCS will also perform periodic performance calculations to determine the performance of the unit and the unit solar components.

- (3) Data Display--the MCS will display operational data to the plant operator. The displays will primarily consist of color CRT displays. The displays shall be updated at least once every 2 seconds.
- (4) Data Storage--the MCS will include long-term data storage capabilities. Both raw input data and computation results will be stored on magnetic media for off-site analysis.

3.6.1.7 <u>Operator Training</u>. The primary operation of the MCS will be automatic. However, manual over-ride controls will be provided. The MCS will provide training facilities for the MCS operators in the use of the control system.

The MCS will contain a simulation of the solar related process equipment. During periods when the solar equipment is not utilized (i.e., evenings or cloudy days) the operator will be able to enter a simulation mode of operation. In this mode, all control outputs to the real process will be deenergized. These outputs will be channeled instead to the process simulation. The simulation will output all process measurements.

The operator will be able to operate all controls and see realistic displays of all feedback information from the process. The simulation will provide realistic process simulation for normal operation, including equipment start-up. A limited number of abnormal and emergency conditions will be simulated for operator training.

3.6.2 Design Requirements

The hardware configuration of the MCS is shown in Figure 3.6-1. The basic element of the MCS will be a single mini-computer that will perform all data acquisition, control logic, and peripheral control function. This computer will be supported by a complete set of peripherals for program editing and loading, for display of operating parameters to the operator, and for storage of data for off-site analysis. The computer will be located

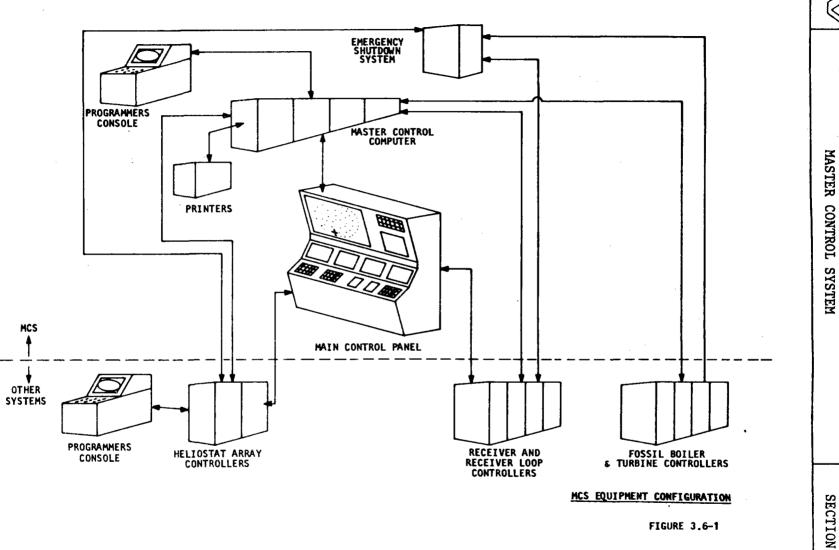


FIGURE 3.6-1

N

SYSTEM

REQUIREMENTS

SPECIFICATION

NO.

8734.23.0100

3.6

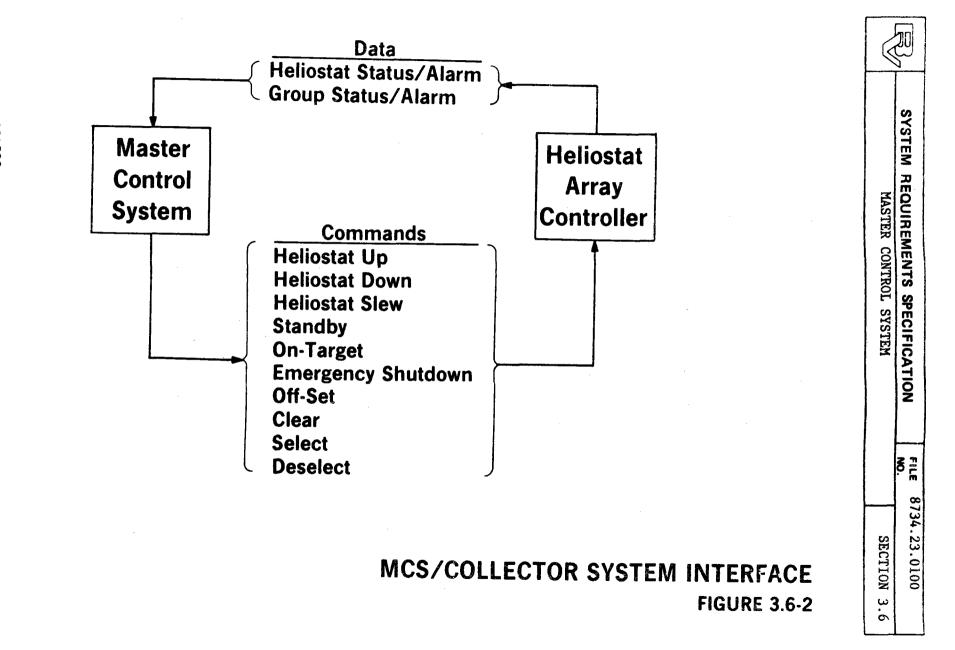
3.6-7

in a room adjacent to the control room. Remote multiplexing equipment will be located in the receiver tower. The MCS will include a control panel, located in the Unit 1 control room, which will contain all displays and manual controls for operating the solar equipment.

The MCS equipment must meet the following design criteria.

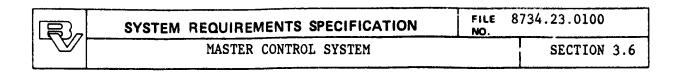
- Reliability--the MCS shall have an availability of over 99.5 per cent. This availability will be achieved through the use of simple designs, the use of proven highly reliable components, and the use of redundant elements whenever it is cost effective.
- (2) Flexibility--the MCS shall have the capabilities to modify control strategies easily at the plant site without extensive hardware or wiring changes.
- (3) Cost Effectiveness--the MCS shall use commercially available equipment throughout. All equipment supplied shall be generically similar throughout the MCS. The equipment configuration shall minimize cabling costs whenever feasible.
- (4) Ease of Maintenance--all equipment shall be easily maintainable by normal power plant personnel. The equipment configuration shall consist of generically similar equipment wherever practical for ease of maintenance.
- (5) Ease of Operation--all control panel displays shall be easily read from a distance of 3 metres (10 feet). All manual controls shall be such as to allow all operations by a single plant operator.
- (6) Operating Environment--any equipment located in the receiver tower shall be capable of continuous operation over an ambient temperature range of -29 C (-20 F) to 54 C (130 F) and a relative humidity of 5 per cent to 95 per cent noncondensing. All equipment in the centralized control room shall be capable of continuous operation over an ambient temperature range of 4 C (40 F) to 32 C (90 F). Electrical power for the MCS will be a nominal 120 volt, single phase, 60 hertz alternating current.

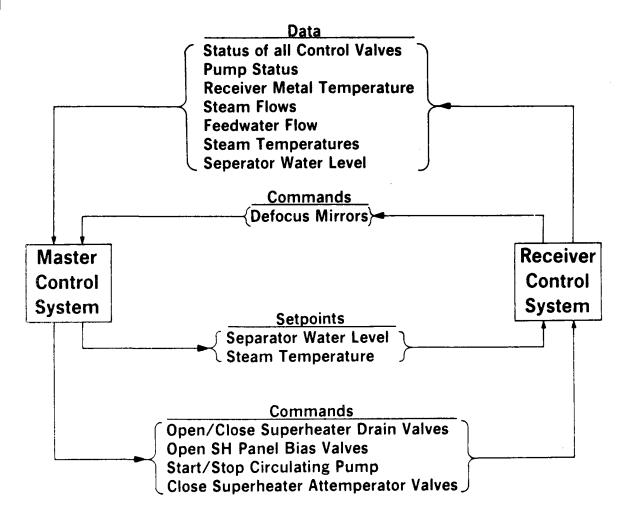
(7) Expandibility--the computer system shall have the capability of adding at least 25 per cent additional working memory for future expansion. The central processing unit shall allow for a 25 per cent spare duty cycle under worst case loading conditions and 40 per cent spare duty cycle under normal loading conditions.

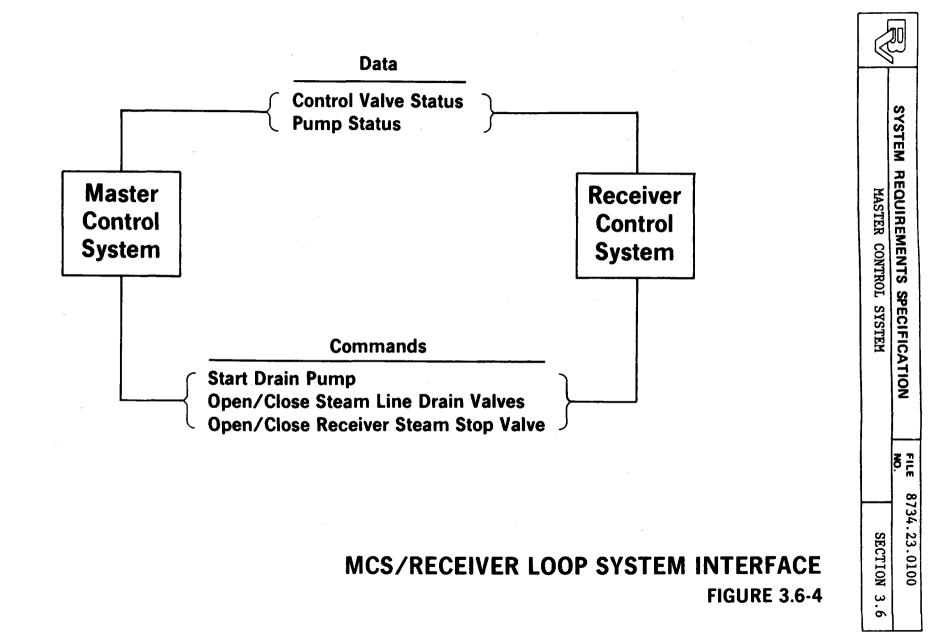

3.6.3 Interface Requirements

The MCS will communicate with all other systems. The communications will be control commands from the MCS to the other systems and status information from the other systems to the MCS.

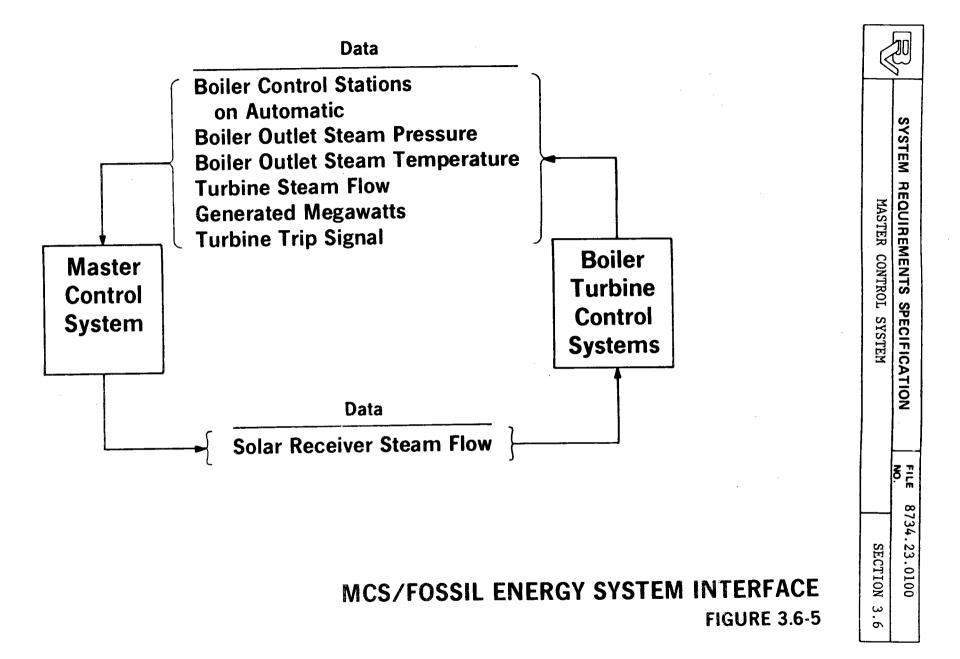
The interface between the MCS and the Collector System will consist of a digital data transmission link between the Master Control computer and the Heliostat Array Controller. Typical communication signals between the two systems are shown on Figure 3.6-2.


The interface between the MCS and the Receiver System and between the MCS and the Receiver Loop System will consist of a digital data transmission link between the Master Control computer and the Receiver Control System. Typical communications signals between the systems are shown on Figures 3.6-3 and 3.6-4.


The interface between the MCS and the Fossil Energy System will consist of signal cables between the Control computer and the turbine and fossil steam generator control systems. Since the existing fossil steam generator control system is pneumatic, electric to pneumatic and pneumatic to electric signal converters will be used. Typical communications between these systems are shown on Figure 3.6-5.


3.6-10

SREG NES-071580



MCS/RECEIVER SYSTEM INTERFACE FIGURE 3.6-3

3.6-12

3.6-13

SREG NES-071580

3.7 FOSSIL ENERGY SYSTEM

The Fossil Energy System provides a fossil energy source which is used to enhance performance and maintain normal plant operation during periods of reduced or no insolation. The requirements of the Fossil Energy System are as follows.

3.7.1 Operating Requirements

The solar receiver has three modes of operation which include normal operation, routine shutdown and start-up operation and cold start operation. The Fossil Energy System responds to these modes of operation according to the following.

3.7.1.1 <u>Normal Operation</u>. Under normal operating conditions, the fossil steam generator will respond to load changes and fluctuations in solar output. During overnight periods, the fossil steam generator will operate at minimum boiler turndown, 30 per cent of maximum load, or about 50 MW. During sunlit hours, the fossil steam generator operating range with solar power available is from minimum boiler turndown, up to a maximum turbine generator load of 155 MW.

3.7.1.2 <u>Routine Shutdown and Start-up Operation</u>. During routine shutdown and start-up of the solar systems in the winter months, the fossil steam generator will be maintained at minimum load (30 per cent). For freeze protection during shutdown operation feedwater will be circulated to the receiver and then returned to the deaerator so that the receiver temperature will be maintained above 4.4 C (40 F). Prior to sunrise, feedwater flow will be increased to warm up the receiver water to about 116 C (240 F). The water flow will be controlled to limit the rate of temperature rise in the receiver to about 4.4 C (8 F) per minute. Just before sunrise, superheated steam from the fossil steam generator superheater outlet will be back fed through the receiver loop piping for heating the solar receiver to near the full load saturation temperature. Spargers will be used to introduce the steam from the fossil steam generator (via the mainsteam line) to the solar receiver boiler water circulating pump suction line. Energy requirements during receiver start-up are further described in Section 5.1.4, Receiver Data. Condensate is collected and returned through the Receiver Loop System.

3.7.1.3 <u>Cold Start Operation</u>. During periods of prolonged shutdown or scheduled maintenance, the Receiver System will be drained and inerted with nitrogen gas. Prior to start-up of the Receiver System, the Fossil Energy System boiler feed pumps will fill the receiver with approximately 4,500 kg (10,000 pounds) of warm feedwater. The receiver will be filled at a controlled rate to avoid thermal shock. Makeup to the Fossil Energy System will be through the condenser from the existing 379 m³ (100,000 gallon) capacity deionized water storage tank. After the receiver is filled, start-up will be similar to diurnal start-ups described previously with the exception that start-up times will be extended to allow for warm-up of the main steam transport pipe.

3.7.2 Design Requirements

No modifications to the existing Fossil Energy System are required except for the interfaces. Requirements at the interfaces are described below.

3.7.3 Interface Requirements

The requirements at the interfaces with the Fossil Energy System will be as follows.

3.7.3.1 <u>Feedwater Interfaces</u>. The Fossil Energy System interfaces with the Receiver Loop System at the feedwater line after the fifth feedwater heater.

The conditions at the interface will vary with unit load and receiver steaming capacity. The maximum and minimum conditions corresponding to the required operating modes are as follows.

Normal Operation, Design Point Conditions

Feedwater flow to receiver	111,260 kg/h (245,300 lb/h)
Pressure	18.96 MPa (2,750 psi)
Temperature	247 C (477 F)

Start-up and Shutdown Operation

Minimum Feedwater Recirculation	2,300 kg/h (5,000 lb/h)
Maximum Feedwater Recirculation	34,000 kg/h (75,000 lb/h)
Pressure	20.82 MPa (3,020 psi)
Temperature	186 C (366.5 F)

3.7.3.2 <u>Main Steam Interfaces</u>. The Fossil Energy System also interfaces with the Receiver Loop System at the connection of the transport pipeline and the fossil main steam piping near the fossil steam generator. Steam conditions at the interface will match the existing Unit 1 steam conditions as follows.

Normal Operation, Design Point Conditions

111,260 kg/h (245,300 lb/h)
13.76 MPa (1,995 psia)
12.51 MPa (1,815 psia)
538 C (1,000 F)

Under start-up conditions, the Fossil Energy System will supply steam to the Receiver Loop System for receiver warm-up at a flow rate of about 18,000 kg/h (40,000 lb/h).

3.7.3.3 <u>Drain Lines</u>. Drain lines from the receiver will interface with the Fossil Energy System at the deaerator, condenser, and existing steam generator blowdown tank. The interface points will be sized to accommodate the maximum expected recirculation flow stated above.

R	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100	٦
	SERVICE LIFE		SECTION 3.8	

3.8 SERVICE LIFE

The integration of the solar repowering system into NES 1 is expected to increase the projected annual output of the plant and delay its retirement. Commercial operation of the solar repowered unit is scheduled to begin in 1985, and plant life shall be extended to 1999. The system shall be designed for a 15-year service life with no major component replacement required.

SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
PLANT AVAILABILITY AND RELIABILITY		SECTION 3.9

3.9 PLANT AVAILABILITY AND RELIABILITY

The solar repowered plant is required to have an availability of at least 85 per cent. The solar portion of the repowered plant, exclusive of scheduled outages and insolation-related outages, shall be in an operative state at least 85 per cent of the time. The availability of the solar portion of the repowered plant will be the product of the operational probabilities of its three constituents: the solar receiver, the heliostats, and the fluid circulation loop.

SECTION 3.10

3.10 MAINTAINABILITY

The maintenance of the solar repowered plant modifications shall be compatible with existing plant maintenance requirements. General maintenance requirements are discussed below. Estimated maintenance schedules and spare parts requirements are presented in Section 5.3, Plant Cost Data. 3.10.1 Conventional Components

The conventional components of the solar repowered plant modifications, including the piping, pumps, valves, and motors, will be maintained via the existing maintenance facilities. The existing personnel and facilities currently maintain the four fossil-fired electrical generating units adjacent to the repowering site. Maintenance of the conventional components of the solar repowered plant modifications shall require no new skills or specialized equipment; an additional inventory of spare parts and replacement equipment may be required for the solar repowering system. 3.10.2 Solar Specific Components

The solar specific components of the solar repowered plant modifications, the solar receiver and the heliostats, will have special maintenance considerations.

3.10.2.1 <u>Solar Receiver</u>. The solar receiver is designed for a 30-year lifetime and, except for routine inspections, the receiver shall not require any scheduled maintenance. Maintenance may be required to repair the randomly occurring leaks and tube failures and to occasionally repaint the absorptive surface.

Excessive leakage from the receiver shall necessitate repairs, primarily consisting of screen tube replacement or superheater panel replacement. An inventory of spare screen tubes and superheater panels will be kept for such corrective maintenance. Replacement of either involves the cutting and rewelding of steam piping, a process very similar to the repair of the conventional steam generator of the repowered plant. The receiver tower includes a crane and elevator to facilitate receiver maintenance.

Depending on the severity of the leakage, it may be practical to continue the collection of solar energy throughout the day, waiting until nighttime to perform the corrective maintenance on the solar receiver. In any case, maintenance on the solar receiver cannot begin until the receiver has sufficiently cooled. Due to the external configuration of the receiver, however, cooling will occur rapidly from natural heat losses; forced cooling of the receiver via water circulation is also feasible.

3.10.2.2 <u>Heliostats</u>. The heliostats require scheduled maintenance as well as occasional corrective maintenance. The scheduled maintenance shall consist primarily of heliostat reflector washing.

The reflectors of the heliostats are washed to maintain the reflectivity, thereby keeping plant performance at a high level. Washing of the reflectors may be performed on a set schedule or on an intermittent basis, washing whenever heliostat reflectivity drops below a threshold value.

Heliostat washing requires the use of special washing equipment, probably consisting of a truck carrying high-pressure spray equipment and tanks of detergent and rinse solutions. Washing is accomplished by slowly driving by vertical-oriented heliostats, spraying detergent and rinsing as the truck passes in front of the reflectors. The detergent and rinse solutions may be caught and recycled.

The heliostats may be damaged intermittently, since they are exposed to the elements. An inventory of spare drive units, reflector panels, controllers, etc. shall be stored on site for corrective maintenance. Replacement of reflector panels and other heliostat components shall require the use of a fork lift and/or a mobile crane.

3.10.3 Control Components

The control components of the solar repowered plant modifications, primarily the heliostat control system, shall be maintained utilizing procedures and facilities consistent with those currently employed for the maintenance of the control systems of the four fossil-fired electrical generating units on site. Maintenance shall be primarily corrective. An adequate inventory of spare components shall be stored on site to facilitate corrective repairs.

SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100	
SPECIALIZED EQUIPMENT		SECTION 3	. 11

3.11 SPECIALIZED EQUIPMENT

The solar repowered plant includes components unique to the utilization of solar energy. These unique components require specialized equipment for their service, maintenance, repair, or replacement. Conventional components included in the solar repowered plant (i.e., the pumps, motors, piping, and valves) will be maintained via the existing conventional equipment and facilities and thus do not require specialized equipment. The components unique to the solar repowered plant are the solar receiver of the Receiver System and the heliostats of the Collector System. The specialized equipment required by these components are described in the following paragraphs.

3.11.1 Specialized Solar Receiver Equipment

The solar receiver is designed for a 15-year lifetime and does not require scheduled maintenance. However, the solar receiver does require specialized equipment in order to perform unscheduled (corrective) maintenance, such as the repair/replacement of failed boiler tubes or superheater panels or the recoating of the receiver's high-absorptivity coating.

Specialized equipment to be included with the solar receiver and receiver tower includes the following.

- (1) Tower personnel elevator.
- (2) Small equipment chain hoist.
- (3) Polar crane.

3.11.2 Specialized Heliostat Equipment

The heliostats of the Collector System require scheduled maintenance, such as the periodic cleansing of the mirror surfaces and the lubrication of the drive mechanisms. The heliostats may also require unscheduled (corrective) maintenance, such as the replacement of damaged reflector panels or even the replacement of an entire heliostat, due to a lightning strike. These maintenance actions will involve the use of specialized equipment as follows.

- (1) Heliostat washing vehicle.
- (2) Motorized elevated platform.
- (3) Heliostat alignment tools.

3~	SYSTEM REQUIREMENTS SPECIFICATION	FILE 8	3734.23.0100
1	ENVIRONMENTAL DESIGN REQUIREMENTS		SECTION 4.1

4.0 ENVIRONMENTAL CRITERIA

4.1 ENVIRONMENTAL DESIGN REQUIREMENTS

4.1.1 Site Climatology

While considerable data is available from various weather stations in the northeastern section of Oklahoma, the first order station of the National Weather Service at Tulsa is utilized as the base line reference source for the establishment of the climatology for the plant site.

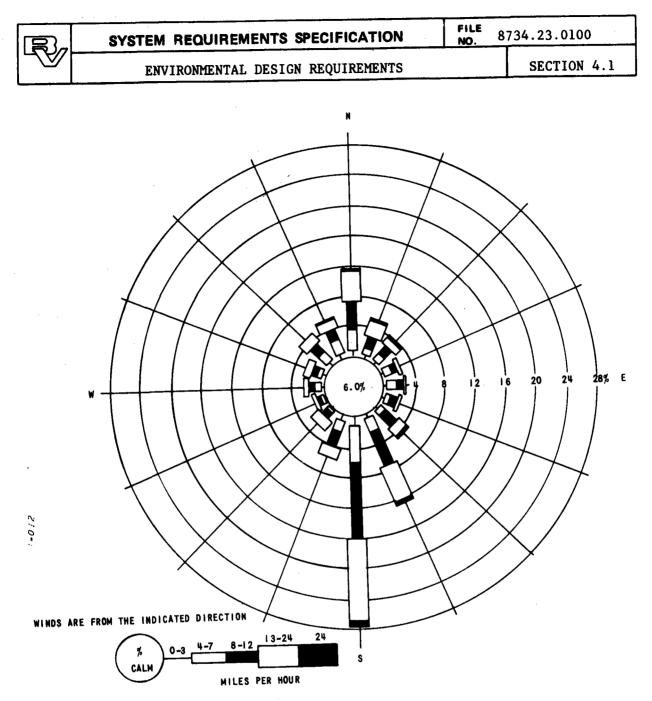
The following sections describe the climatology of the plant site as extrapolated from a composite of the above data. Seasonal data are averaged as follows: Summer (June, July, and August); Fall (September, October, and November); Spring (March, April, and May); and Winter (December, January, and February).

4.1.1.1 <u>Dry Bulb Temperature</u>. The average summer temperature is approximately 27 C (81 F), with an average daily minimum temperature of 21 C (70 F) and an average daily maximum temperature of 33 C (91 F). The extreme temperatures for the summer months were 9 C (48 F) and 44 C (111 F). Spring-fall temperatures average about 16 C (61 F) with an average daily minimum of 10 C (50 F) and an average daily maximum of 22 C (72 F). There is a 62 C (111 F) range of extreme temperatures during the spring-fall months. There is also a wide range of extreme temperatures for the winter months, -22 C (-8 F) to 30 C (90 F). For design purposes, the ambient temperature range at the site shall be assumed to be -27 C (-17 F) to 47 C (117 F).

4.1.1.2 <u>Precipitation and Snowfall</u>. The average annual precipitation for the area is 966 mm (38.03 in.). May is the wettest month with an average of 132 mm (5.21 in.) of precipitation. The average annual snowfall is 236 mm (9.3 in.). The plant shall be designed to withstand an average annual rainfall of 940 mm (37.1 in.) and a maximum 24-hour rate of 230 mm (9.0 in.) based on a 100-year mean recurrence interval. The plant shall be designed to survive a static snow load of 300 Pa (6.25 lb/ft^2), based on a 100-year mean recurrence interval and a snow deposition rate of 0.25 m (10 in.) in 24 hours, based on the recorded maximum.

ENVIRONMENTAL DESIGN REQUIREMENTS

4.1.1.3 <u>Wind</u>. Wind data is presented on Figure 4.1-1. The extreme mile wind recorded was 33.5 m/s (75 mph) in May, 1949. The average wind speed in all months ranges between 4.1 m/s (9.1 mph) and 5.7 m/s (12.7 mph). Wind roses for the four seasons are presented on Figure 4.1-2. These wind roses show the frequency with which the wind blows from a particular direction. The Tulsa region is subject to violent windstorms and tornadoes which occur mostly during spring and early summer although occurrences have been noted throughout the year.


The plant shall be designed to survive winds with a maximum speed, including gusts of 47 m/s (105 mph), based on 100-year mean recurrence interval, and ratio of gust speed to fastest mile wind of 1.3, without damage. Specific requirements for the solar receiver tower are given in Section 3.4.

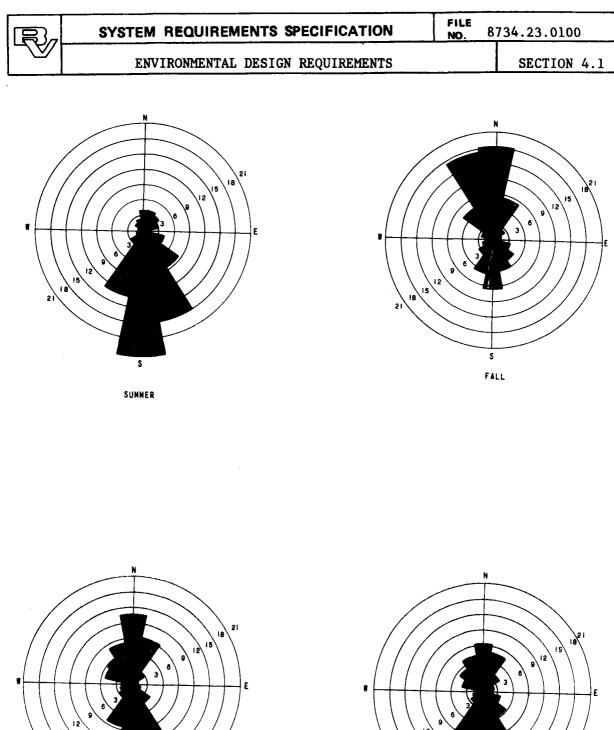
4.1.1.4 <u>Wind Rise Rate</u>. A maximum wind rise rate of 0.01 m/s² (1.3 mph/min) shall be used in calculating wind loads on heliostats during stowage. However, the heliostats shall withstand, without catastrophic failure, a maximum wind of 22 m/s (50 mph) from any direction, for any heliostat orientation, such as might result from unusually rapid wind rise rates, e.g., severe thunderstorm gust fronts.

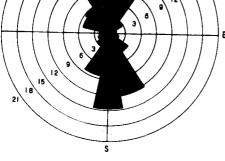
4.1.1.5 <u>Dust Devils</u>. For design purposes, dust devils with wind speeds up to 18 m/s (40 mph) shall be survived without damage to the plant. 4.1.1.6 <u>Sandstorm Environment</u>. The plant shall be designed to withstand flowing dust comparable to the conditions described by Method 510 of MIL-STD-810C or other conditions which may be found more appropriate during final design.

4.1.2 Seismology

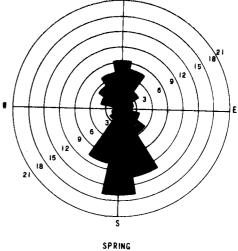
Northeastern Station is situated in a region of minor to moderate seismic risk. The site area is classified by the Uniform Building Code (UBC) as Zone 1 of seismic risk for the continuous United States. In this zone, minor damage from earthquake activity may be expected. Zone 1 indicates the possibility of an earthquake with a maximum intensity of VI on the Modified Mercalli Scale occurring in this area, or minor damage resulting from a major distant disturbance. Peak ground accelerations shall be

CALMS ARE DISTRIBUTED INTO THE 0-3 MPH CATEGORY AND THUS INCLUDED IN THE AVERAGE WIND SPEEDS SHOWN AT THE END OF EACH BAR.


.


PERIOD OF RECORD: 1962 THROUGH 1971

DATA SOURCE: ENVIRONMENTAL DATA SERVICE, MONTHLY AND ANNUAL WIND DISTRIBUTION BY PASQUILL STABILITY CLASSES (7)-STAR PROGRAM-TULSA, OKLAHOMA, 1962-1971, U.S. DEPARTMENT OF COMMERCE, ASHEVILLE, N.C., SEPT. 14, 1973


> ANNUAL WIND ROSE TULSA, OKLAHOMA 1962-1971

> > FIGURE 4.1-1

SEASONAL WIND ROSES

ह],	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO. 8	734.23.0100
$\overline{\mathbf{A}}$	ENVIRONMENTAL DESIGN REQUIREMENTS		SECTION 4.1

as required for UBC Zone 1. An operational design acceleration of 0.05 g is sufficient for Northeastern Station. The plant shall be designed to survive a ground acceleration of 0.10 g.

4.1.3 Lightning Considerations

The plant shall be provided with a lightning protection system. The receiver tower, being the tallest structure in the area, will be the most vulnerable target of a direct lightning discharge. Lightning rods shall be located on the top of the receiver tower to provide shielding against direct lightning strokes. Precautions shall be taken to prevent any damage to these rods by the concentrated energy of the reflected solar radiation.

The heliostat field also provides a potential ground plane for lightning discharge. Economic considerations may preclude the use of lightning masts to shield the entire heliostat field. Therefore, the total destruction of a single heliostat and its controller when subjected to a direct lightning discharge will be acceptable. However, the heliostats shall be designed and spaced in such a way that a direct lightning strike on a single heliostat will cause minimum damage to the adjacent heliostats. The central controller and the local controllers of heliostats adjacent to a direct lightning strike will be protected or alternate control methods will be provided to minimize the loss of collector subsystem control.

Lightning considerations will also include the local isokeraunic level, the corresponding ground flash density and the shielding effect of the receiver tower on the heliostat field. An estimate of the probability of direct lightning strike for heliostats in the various regions of the field will be made and factored into overall reliability/availability calculations. This information shall be used in the final arrangement of the heliostat field and any additional shielding will be provided if economically justified. ENVIRONMENTAL STANDARDS

4.2 ENVIRONMENTAL STANDARDS

- 4.2.1 Ambient Air Quality Standards
 - (1) <u>Federal Standards</u>. Pursuant to a requirement in the Clean Air Act of 1970, the Environmental Protection Agency (EPA) has identified seven air pollutants which have an adverse effect upon public health or welfare and has issued air quality criteria for them. The seven air pollutants are as follow.
 - (a) Sulfur Oxides
 - (b) Particulate Matter
 - (c) Nitrogen Oxides
 - (d) Carbon Monoxide
 - (e) Photochemical Oxidants
 - (f) Hydrocarbons
 - (g) Lead

The combustion gas produced by a fossil fuel fired steam generator may include sizable quantities of sulfur oxides, particulate matter, and nitrogen oxides. Since other pollutants will appear only in insignificant quantities only those three pollutants will be discussed. The national primary and secondary ambient air quality standards applicable to the Northeastern Station are as follow.

Bn	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
⊻	ENVIRONMENTAL STANDARDS		SECTION 4.2

Sulfur Dioxide	3-Hour <u>Average</u> µg/m ³ (ppm)	24-Hour <u>Average*</u> µg/m ³ (ppm)	Annual <u>Average**</u> µg/m ³ (ppm)
Primary Standard Secondary Standard	 1300 (0.50)	365 (0.14)	80 (0.03)
Particulate Matter Primary Standard Secondary Standard		260 150	75 60
Nitrogen Dioxide Primary Standard Secondary Standard			100 (0.05) 100 (0.05)

*The maximum 3-hour and 24-hour concentrations are not to be exceeded more than once during a year.

**The annual average for particulate matter shall be computed as a geometric mean, whereas the annual average for sulfur and nitrogen dioxide shall be computed as arithmetic means.

- (2) Oklahoma Standards. The Division of Air Pollution Control of the Oklahoma State Board of Health adopted ambient air quality standards on December 4, 1976 which are identical to those promulgated by EPA for sulfur dioxide, particulate matter, and nitrogen dioxide.
- 4.2.2 Emission Limitations.

There are no Federal Emission limits applicable to NES 1. However, the Oklahoma Department of Health Regulations has established emission limitations for particulate matter, visible emissions, hydrocarbons, sulfur oxides, carbon monoxide, and nitrogen oxides applicable to all existing sources. Since emissions from fossil fuel steam generators do not include significant quantities of hydrocarbons or carbon monoxide, these will not be summarized. An existing source which is altered, replaced, or rebuilt in such a manner that its air contaminant emissions are increased is designated as a new source under Oklahoma Regulation 3. Since the Solar Repowering Project would not cause an emissions increase at NES 1, the unit will continue to be subject to the emission limitations applicable to existing units. These emission limitations are summarized below.

NO.

(1) Particulate Emission Limitations--Particulate emission rates from fuel-burning equipment are governed by Figure 1 of Oklahoma Regulation 6. Figure 1 is a graph showing a decreasing emission limit, expressed in pounds per million Btu, for boilers rated between 1 and 1,000 million Btu per hour heat input. The equation for this decreasing emission limit is given in the following equation.

 $\log_{10} Y = -0.25938 \log_{10} X + 0.03753$ where Y = particulate emission rate (lb/MBtu heat input) X = heat input rate (MBtu/h heat input)

Oklahoma Regulation 7 limits the opacity of emissions to 20 per cent. However, the regulation allows deviations from the 20 per cent standard during the cleaning of a fire, building of a new fire, soot blowing, or other short-term occurrences. These deviations are limited to emissions of up to 60 per cent opacity for periods aggregating no more than 5 minutes in any 60 consecutive minutes or more than 20 minutes in any 24-hour period.

(2) Sulfur Dioxide Emission Limitations--Oklahoma does not impose a uniform sulfur dioxide emission rate limitation on existing fuel-burning sources. Instead, the maximum sulfur dioxide emission rate for each facility cannot exceed that required to prevent that source's ground level impact outside the property of the owner/operator from exceeding the following time dependent ambient concentrations.

Time Period	Maximum Allowable Impact (mg/m ³)
	<u> </u>
5 minutes	1,350
l hour	1,200
3 hours	650
24 hours	130

(3) Nitrogen Oxide Emission Limitations--Oklahoma has not established any nitrogen oxide emission rate limitations applicable to existing sources.

SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
ENVIRONMENTAL STANDARDS		SECTION 4.2

4.2.3 Water Quality Standards

The proposed design of the solar repowering systems at Unit 1 will not result in increased usage of ground or surface water. The proposed design will also not significantly change the quantity or quality of water discharged from the plant. The repowered plant operation will be consistent with the water quality standards and regulations currently in effect at Unit 1. CONCEPTUAL DESIGN DATA

5.0 CONCEPTUAL DESIGN DATA

This section contains data on the conceptual design which was developed to satisfy the requirements described in the previous sections. In order to enable DOE to assess the value of the conceptual design, the information in this section includes performance and characteristics for both the solar repowered plant and the existing plant, capital and O&M cost data, economic evaluation data, and descriptions of the simulation models used in the PSO assessment.

	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
4	PLANT CHARACTERISTICS AND PERFORMANCE DATA		SECTION 5.1

5.1 PLANT CHARACTERISTICS AND PERFORMANCE DATA

The following data characterize the solar portion of the repowering plant and describe its performance. Where appropriate, performance data are presented for the design point and annual average.

- 5.1.1 Site Data
 - (1) Roads and Parking. The main road and the parking area will be permanent-type construction with a crowned 6-metre (20-foot-wide) traffic lane, 1.5-metre (5-foot-wide) shoulders, and contoured drainage ditches. Approximately 3,800 square metres (4,550 square yards) will be surfaced with a 7.6 cm (3-inch) asphaltic course on a 20 cm (8-inch) crushed rock prepared basecourse. The crushed rock basecourse will be underlain by a prepared subgrade of site materials selected for drainability. Drainage slope will be to the outer shoulder at about 20 mm per metre (1/4 inch per foot). Shoulders will not be paved, but will be oiled, and will be sloped to the ditches at about 42 mm per metre (1/2 inch per foot).
 - (2) Security Fence. Approximately 1,600 metres (5,200 lineal feet) of new security fencing will be installed and 1,000 metres (3,400 lineal feet) of existing security fencing relocated.

The fencing will be galvanized steel chain link type with a three-strand barbed wire extension mounted at 45 degrees. The fabric height will be 1.8 metres (6 feet), and the overall height 2 metres (7 feet). It will not be necessary to provide gates.

5.1.2 Site Facilities Data

Design data for the nitrogen gas system and the auxiliary electrical power system required to support the new solar repowering equipment are as follows.

5.1.2.1 <u>Nitrogen Gas Systems</u>. Nitrogen gas will be stored in individual cylinders, 130 cm (51 inches high), with a capacity of 7 cubic metres (225 cubic feet) at a fill pressure of 15 MPa (2,200 psig). Two 12-cylinder modules with common fill and discharge manifolds will be utilized providing a total storage capacity of 167 cubic metres (5,400 cubic feet).

Ba	SYSTEM REQUIREMENTS SPECIFICATION	FILE 8	3734.23.0100
S/	PLANT CHARACTERISTICS AND PERFORMANCE DATA		SECTION 5.1

5.1.2.2 Solar Plant Normal Auxiliary AC Power.

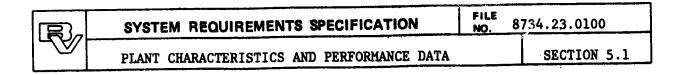
(1) One metal-enclosed switchgear, 4,160 volt, 60 BIL, three-phase, 60 hertz, 1,200 ampere mainbus, rated for 37,500 ampere rms symmetrical shortcircuit interrupting current. The switchgear is an assembly of three incoming modules, three feeder modules, one bus sectionalizing module and auxiliary modules for automatic transfer control devices.

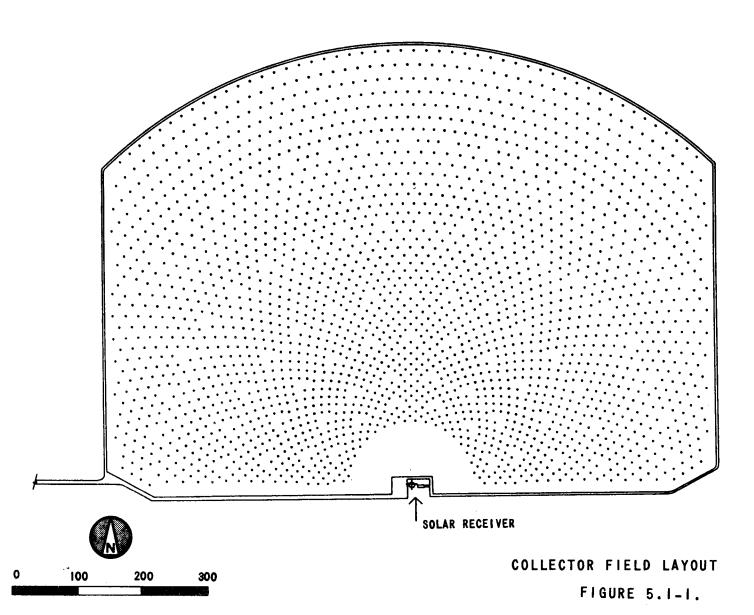
Circuit switching is performed by power-operated interrupter switches. Power fuses are provided for fault protection. Two automatic control devices complete with sensing devices are provided. One automatic control device is used for high speed source transfer control. The other control device controls the switching of the third incoming feeder connected to an emergency standby generator and prevents its paralleling with other incoming feeders by opening the bus sectionalizing switch.

- (2) One diesel-generator 930 kw, .8 power factor, 4,160 volt, threephase, 60 hertz. The unit has fast-start features (10-second starting time). The unit is complete with radiator, fuel storage tank 1,000 litres (265 US gallon) capacity, exhaust silencer, automatic starting system with heavy-duty nickel-cadmium storage battery and battery charger. Generator control panel includes metering, fully automatic start-stop control, automatic voltage regulator equipment, exerciser, generator protection package and annunciator panel.
- (3) One motor control center, three-phase, 480 volt, 60 hertz, indoor, NEMA 1 gasketed, with 12 vertical sections divided in two bus sections. Each section is nominally 38 cm (15 inches) deep, 51 cm (20 inches) wide, and 229 cm (90 inches) high. The main bus is 600 ampere and vertical buses are 300 ampere. There are 55 size 1 full voltage reversing combination starters, one size 4 full voltage non-reversing combination starter, and 100 ampere molded case circuit breakers, as required. Each starter and breaker unit is a plug-in module. Each combination circuit

breaker is equipped with a magnetic-only trip device to provide protection against short circuit current. Manually resettable thermal overloads are provided on all starters for motor overload protection. Each feeder circuit breaker is provided with a thermal magnetic trip device.

- (4) One outdoor oil-filled pad-mounted distribution transformer rated 300 kVA, three-phase, 60 hertz, 4,160 volt delta primary, 480/277 volt wye secondary with standard no load taps. High voltage bushings are radial feed, live front design. Standard accessories include terminals, filter and drain valves, removable front sill, oil gauge, dial type thermometer, lifting and jacking provisions and grounding pads in high and low voltage compartments.
- (5) Ten low profile outdoor oil-filled pad-mounted transformers, each rated 150 kVA, 4,160 volt, three-phase, 60 hertz, delta primary, 120/208 volt wye secondary. Each unit has six load-break primary bushing wells contructed for primary system feed-through and the units are dead-front design. Primary protection of each transformer in provided with fuses and secondary protection is provided with a circuit breaker. Standard accessories include terminals, filter and drain valves, removable front sill, oil gauge, dial type thermometer, lifting and jacking provisions and grounding pads in high and low voltage compartments.
- 5.1.2.3 Solar Plant Uninterruptibale Auxiliary AC Power.
 - (1) Two static inverters, 37.5 kVA, 125 volt dc input, 120 volt 60 hertz, single-phase ac output voltages. Output voltage is automatically regulated to no more than plus or minus 2.0 per cent from zero load to full load. The ac wave form does not have harmonic distortion of more than 5 per cent. The inverter has a solid state oscillator designed to automatically maintain its output in synchronism with station standby ac supply. A static switch is provided with each inverter to transfer the load to this standby supply within 1/4 of a cycle in the event of inverter failure. Each inverter is protected against overloads, short


R	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
	PLANT CHARACTERISTICS AND PERFORMANCE DATA		SECTION 5.1

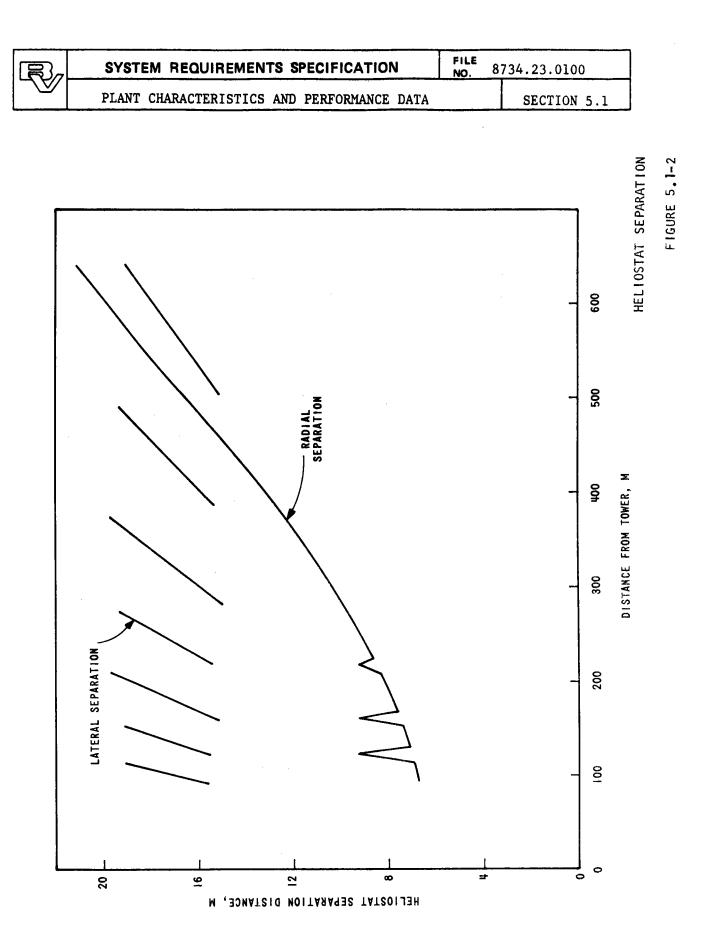

circuits and transient overvoltages in the line. A manual bypass switch is provided with each inverter to transfer the load from one inverter to the other without circuit interruptions. Each inverter is equipped with meters to measure the output current, voltage and frequency. Alarm contacts are provided to annunciate any abnormal input or output conditions.

- (2) Two battery chargers, rated output 400 ampere at 125 volt dc, 480 volt, three-phase, ac input voltage. Each charger is a self-regulating solid state silicon-controlled fullwave rectifier type, designed for parallel operation with the battery. Each charger is supplied with input and output voltmeters, ammeters, circuit breakers, equalizing charge timer, voltage adjusters, charge failure alarm, and ground detection circuitry.
- (3) One battery, nominal 125 volt dc output. The battery consists of 60 heavy-duty lead-acid cells. Each cell has 860 ampere-hour capacity on a 8-hour discharge basis. Cell container is a sealed, heat resistant, clear, shock absorbing plastic. Electrolyte in a fully charged cell maintains a specific gravity of 1.220 and a cell voltage of 2.22 volts when floated with the battery chargers. Maximum per cell voltage during equalizing is 2.33 volts. Standard battery accessories include battery racks, intercell connectors, terminal lugs, thermometer, hydrometer syringe and cell lifting facilities.
- (4) One voltage regulating transformer, static-magnetic type 37.5 kVA, single-phase, 480 volt primary, 120 volt secondary. Output voltage is regulated to plus or minus 1 per cent. Maximum harmonic content in the output voltage wave form is 3 per cent.

5.1.3 Collector Data

- (1) Design characteristics.
 - (a) The collector field lies north of the receiver tower, occupying a space 880 m (2,887 ft) wide and 5.1 x 10^5 m^2 (126 acres) in area, as illustrated in Figure 5.1-1. The field contains

NO.


a total of 2,255 heliostats placed in 48 circular arcs surrounding the receiver support tower. The inner and outer rows lie 93.8 m (308 ft) and 640 m (2,100 ft) from the tower centerline, respectively.

Heliostats are located in a staggered pattern formed by circular arcs and diverging radial lines; the staggering arrangement allows close packing with a minimum of optical interference (blocking) among heliostats.

Because heliostats are located on diverging radial lines, the lateral spacings of heliostats within the rows (rdr) increase with distance from the tower. When the lateral separation between radial lines becomes unacceptably large, the angular separation between radial lines is reduced by a factor of 0.75, causing the periodic readjustment in lateral separation shown in Figure 5.1-2. Counting outward from the tower, transitions in angular separation occur in rows 5, 10, 17, 24, 33, and 41; within those transition rows heliostats are periodically deleted to avoid mechanical and optical interference.

Figure 5.1-2 shows that radial separation between rows also increases with distance from the tower, allowing heliostats to see over the neighboring heliostats in front without blocking. To prevent mechanical interference, the transition rows 5, 10, and 17 were given slightly larger spacings as illustrated in the figure.

The actual X and Y locations of the heliostats are listed on Table 5.1-1. The heliostats are numbered from 1 to 2,255 and are listed in order from the inner row to the outer row and from the western end of the rows clockwise to the east. The X and Y coordinates are listed in metres, with positive X East and positive Y North of the tower centerline.

5.1-7

SYSTEM REQUIREMENTS SPECIFICATION

FILE 8734.23.0100

PLANT CHARACTERISTICS AND PERFORMANCE DATA

SECTION 5.1

TABLE 5.1-1. HELIOSTAT X-Y COORDINATES

HSTAT	_ X	Y	HST AT	X	Y	HSTAT	_ X	Y
1	5 92.87	12.96	51	72.15	79.59	101	5 99.87	84.40
2	1 89.43	28.20	52	84.36	66.51	102	88.55	96.20
3	83.51	42.66	53	94.24	51.59	103	75.86	106.50
4	75.26	55.93	54	101.49	35.21	104	61,98	115.13
5	<u> </u> 64.93	67.65	55	105.93	17.87	105	47.13	121.96
6	52.80	77.49	56	107.43	.04	106	31.54	126.89
7	~ 39.20	85.19	57	~114.1 4	6.31	107	15.46	129.84
8	24.51	90.51	58	* 111.51	25.18	108	.86	130.75
9	-9,14	93.32	59	105.78	43.34	109	17.17	129.62
10	6,48	93.55	60	* 97 . 11	60.30	110	33.21	126.46
11	21.92	91.17	61	85.75	75.59	111	48.73	121.33
12	36.76	86.27	62	72.01	88.78	112	63.49	114.30
13	50.57	78.97	63	56.27	99.50	113	77.26	105.49
14	62.98	69.48	64	38.97	107.47	114	89.82	95.02
15	73.64	58.05	65	20.58	112.44	115	100.97	83.07
16	82.26	45.02	66	1.63	114.30	116	110.55	69.82
17	88.59	30.74	67	17.37	112.99	117	118,40	55,48
18	92.46	15.60	68	35.89	108,53	118	124.39	40.28
19	100.46	5.56	69	53.41	101.07	119	128.45	24.44
20	98.14	22.16	70	69.45	90.80	120	130.49	8.22
21	93.10	38.15	71	83.56	78.00	121	137.90	1.87
22	*85.47	53.07	72	95.36	63.05	122	136.59	19.06
23	75.47	66.53	73	104.50	46.34	123	133.14	35.96
24	63.38	78.14	74	110.74	28.34	124	127.62	52.29
25	49.53	87.58	75	113.91	9.56	125	120.09	67.80
26	5 34.30	94.58	76	123.67	1.68	126	110.69	82.26
27	18.12	98.97	77	122.49	17.09	127	99.56	95.43
28	1.43	100.60	78	119.40	32.25	128	86.88	107.11
29	15.29	99.44	79	107.70	60.81	129	72.83	117.11
30	31.59	95.52	80	99.27	73.77	130	57.65	125.28
31	47.01	88.95	81	89.29	85.58	131	41.57	131.50
32	61.13	79.91	82	65.32	105.03	132	24.83	135.66
33	73.55	68.65	83	51.70	112.36	133	7.71	137.70
34	83.93	55.49	84	37.28	117.93	134	9,53	137.59
35	91.97	40.78	85	6.92	123.49	135	26.62	135.32
36	97.47	24.95	86	8.55	123.39	136	43.30	130.94
37	100.26	8.42	87	23.88	121.36	137	59.30	124.51
38	106.40	14.85	88	53.18	111.66	138	74.37	116.14
39	102,45	32.31	89	66.70	104.16	139	88.28	105.95
40	95.67	48.87	90	79.17	95.02	140	100.82	94.11
41	*86.23	64.09	91	100.24	72.46	141	111.77	80.79
42	74.39	77.50	92	108.49	59.38	142	120.98	66.21
43	60.49	88.78	93	115.06	45.38	143	128.29	50.60
44	44.91	97.59	94	122.71	15.48	144	133.61	34.20
45	28.08	103.69	95	123.68	.04	145	136.83	17.25
46	10.47	105.05	96	*130.37	9.94	145	137.91	.05
40	7.42	107.17	90 9 7	128.11	26.13	148	144.75	11.04
48	25.11	104.45	98	123.85	41.91	147	144.75	29.01
49	42.11	98.83	99	117.65	57.04	149	137.51	46.54
50	57.93	90.47	100	109.62	71.28	150	130.63	63.33
	07.00	50.77	100	103.02	72.20	100	100.00	00.00

[3]。	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
	PLANT CHARACTERISTICS AND PERFORMANCE DATA		SECTION 5.1

HSTAT	v	v						
151	<i>X</i> 121.70	у 70.40	HSTAT	X	Y	HSTAT	X	У
151		79.13	201	145.70	70.64	251	149.97	79.06
152	110.88	93.70	202	138.44	83.98	252	156.72	64.66
	98.32	106.81	203	120.34	108.33	253	162.08	49.69
154	84.22	118.24	204	*1 09.66	119.13	254	166.03	34.29
155	68.81	127.82	205	98.02	128.88	255	168.51	18.59
156	52.32	135.41	206	72.25	144.90	256	169.51	2.71
157	35.02	140.88	207	58.36	151.03	257	176.76	13.48
158	17.16	144.15	208	43.95	155.84	258	174.72	29.98
159	.96	145.16	209	* 14.11	161.30	259	* 171.14	46.22
160	19.06	143.91	210	1.07	161.91	260	5 166.06	62.05
161	36.87	140.41	211	16.23	161.10	261	* 159.51	77.33
162	54.10	134.71	212	46.00	155.24	262	151.56	91.94
163	70.49	126.90	213	60.35	150.25	263	142.28	105.74
164	85.78	117.12	214	74.16	143.94	264	131.75	118.60
165	99.72	105.50	215	99.71	127.57	265	120.06	130.42
166	112.10	92.23	216	111.22	117.67	266	107.31	141.10
167	122.74	77.52	217	121.76	106.73	267	93.62	150.53
168	131.45	61.60	218	139.53	82.14	268	79.10	158.64
169	138.11	44.72	219	146.62	68.71	269	63.89	165.35
170	142.61	27.13	220	152.41	54.67	270	48.12	170.61
171	_144.88	9.13	221	159.93	25.27	271	31.92	174.37
172	152.51	2.07	222	161.60	10.18	272	15.44	176.60
173	151.06	21.08	223	169.46	4.95	273	1.17	177.27
174	147.25	39.77	224	168.25	20.80	274	17.77	176.38
175	141.14	57.83	225	165.56	36.48	275	34.22	173.94
176	132.82	74.99	226	161.41	51.83	276	50.37	169.96
177	122.42	90.98	227	155.85	66.72	277	66.07	164,50
178	110.11	105.54	228	148.91	81.03	278	81.19	157.58
179	96.08	118.46	229	7140.66	94.63	279	95.60	149.28
180	80.55	129.52	230	131.18	107.39	280	109.16	139.67
181	63.76	138,56	231	120.54	119.21	281	121.77	128.83
182	~ 45.97	145.43	232	108.84	129,98	282	133.30	116.85
183	27.47	150.03	233	96,19	139.60	283	143.67	103.85
184	8,53	152.29	234	82.68	148.00	284	152.76	89.93
185	10.54	152.16	235	68.45	155.10	285	160.52	75.22
186	29,44	149.66	236	53.62	160.83	286	166.86	59.85
187	47.89	144.81	237	38.32	165.14	287	171.73	43.95
188	65.58	137.71	238	22.67	168.01	288	175.10	27.67
189	82.25	128.45	239	6.83	169.39	289	176.92	11.14
190	97.64	117.18	240	9.07	169.29	290	185.06	5.40
191	111.50	104.08	241	24.89	167.69	291	183.74	22.72
192	123.61	89.35	242	40.49	164.62	292	180.81	39.83
193	133.80	73.23	243	55.74	160.11	293	176.28	56.60
194	141.89	55.96	244	70.49	154.18	293	170.20	
195	147.76	37.82	245	94.63	146.90	294	162.62	72.87
196	151.33	19.09	246	98.02	138.32	295	153.62	88_49
197	152.53	.05	247	110.55	128.53	290	133.02	103.34 117.28
198	~161.45	12.31	248	122.10	117.61	298	131.64	130.18
199	1 59.59	27.38	249	132.59	105.65	299	118.86	141.95
200	151.67	56.68	250	141.90	92.76	300	115.04	152.46
					02.070	500	103.04	132.40

SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
PLANT CHARACTERISTICS AND PERFORMANCE DATA		SECTION 5.1

HSTAT	X	Y	HST AT	X	Y	HSTAT	X	Y
301	90.30	161.63	351	166.45	97.99	401	110.71	178.02
302	74.76	169.38	352	174.90	81.96	402	~ 93.55	187.61
303	758,56	175.64	353	181.81	65.21	403	75.56	195.55
304	41.84	180.35	354	187.12	47.89	404	56.90	201.76
305	24.76	183.48	355	190.79	30.15	405	37.75	206.21
306	7.46	184.99	356	192.77	12.14	406	18.26	208.84
307	9.90	184.88	357	201.23	5.88	407	1.38	209.63
308	27.18	183.14	358	199.79	24.70	408	21.02	208.58
309	44.22	179.78	359	7196.60	43.31	409	40.47	205.69
310	60.87	174.85	360	191.68	61.54	410	59.56	201.00
311	76.98	168.38	361	185.07	79.23	411	78.13	194.53
312	92.42	160.42	362	176.83	96.22	412	96.01	186.36
313	107.05	151.06	363	167.04	112.37	413	113.05	176.54
314	120.73	140.36	364	155.77	127.52	414	129.10	165.17
315	133.35	128.44	365	143.14	141.56	415	144.00	152.35
316	144.79	115.38	366	129.25	154.35	416	157.64	138.19
317	154.97	101.30	367	114.22	165.78	417	169.90	122.81
318	163.78	86.34	368	98.18	175.75	417	180.66	106.35
319	171.15	70,61	369	81.29	184.18	419	180.00	88.96
320	177.01	54.27	370	63.67	190.98	419	197.33	70.78
320	181.32	37.44	370	45.50	196.11	420	203.09	51.98
322	181.52	20.29	372	* 26,93	199.51	421	203.03	32.72
	185.12	20.29		8.11	201.15		209.22	
323	192.59		373			423	209.22	13.18
324		14.69	374	10.77	201.03	424	218.85	6.39
325	190.37	32.67	375	29.56	199.13	425		21.77
326	186.47	50.36	376	48.08	195.49	426	212.68	52.12
327	180.94	67.61	377	66.19	190.12	427	208.49	66.94
328	173.80	84.26	378	83.71	183.09	428	203.26	81.43
329	165.15	100.18	379	100.50	174.44	429	189.83	109.14
330	155.03	115.21	380	116.40	164.26	430	181.68	122.22
331	143.56	129.23	381	131.27	152.63	431	172.64	134.69
332	130.82	142.11	382	145.00	139.66	432	152.04	157.58
333	116.93	153.74	383	157.44	125.46	433	140.58	167.88
334	102.01	164.02	384	168.51	110.15	434	128.43	177.35
335	86.19	172.86	385	178.09	93.88	435	102.28	193.61
336	69.62	180.17	386	186.10	76.78	436	88.41	200.33
337	52.43	185.90	387	192.47	59.01	437	74.11	206.05
338	5 34.78	190.00	388	197.16	40.72	438	44.47	214.41
339	5 16.83	192.42	389	200.10	22.06	439	29.29	217.00
340	1.27	193.15	390	_201.29	3.22	440	13.96	218.52
341	19.37	192.18	391	209.03	15,94	441	16.84	218.32
342	37.29	189.52	392	206.62	35.45	442	32.15	216.60
343	54.88	185.19	393	202.39	54.66	443	47.30	213.80
344	71.99	179.24	3 94	198.3 7	73.38	444	76.82	205.05
345	88.47	171.70	395	188.64	91.45	445	91.05	199.14
346	104.16	162.66	396	179.24	108.73	446	104.83	192.25
347	118.95	152.19	397	168.26	125.04	447	130. 7ö	175.64
348	132.68	140.37	398	_ 155.81	140.28	448	142.79	100.01
349	145.25	127.32	399	141.98	154.24	:11 3	154.11	155.56
350	158.54	113.15	400	126.90	166.86	450	174.40	132.40

SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
PLANT CHARACTERISTICS AND PERFORMANCE DATA		SECTION 5.1

HST AT	X	Ŷ	HST AT	X	Ŷ	HSTAT	X	Y
451	183.28	119.81	501	227.35	11.65	551	231.04	83.26
452	191.25	106.63	502	236.42	6.90	552	224.62	99.30
453	204.32	78.74	503	235.35	23.51	553	217.08	114.84
454	209.35	64.18	504	233.11	40.00	554	208.46	129.82
455	213.35	49.30	505	* 229 . 72	56.29	555	198.82	144.16
456	218.15	18.89	506	225.20	72.31	556	188.19	157.78
457	_218.94	3.50	507	219.55	87.96	557	176.6 3	170.63
458	227.18	14.65	508	212.83	103.18	558	*164.20	182.62
459	225.59	30.58	509	205.04	117.89	559	150.95	193.72
460	222.88	46.37	510	196.25	132.02	560	136.95	203.85
461	219.07	61.93	511	186.48	145.49	561	122.28	212.98
462	214.17	77.18	512	*175.7 9	158.24	562	107.00	221.05
463	208.21	92.04	513	* 164.22	170.21	563	* 91.20	228.02
464	201.22	106.46	514	151.85	191.34	564	74.94	233.87
465	193.24	120.34	515	5 138.72	191.56	565	58.31	238.56
466	* 184.30	133.63	516	124.91	200.84	566	41.39	242.07
467	174.45	146.26	517	~ 110.48	209.13	567	24.26	244.38
469	* 163.73	158.17	518	95.50	216.38	568	7.02	245.48
469	152.21	169.29	519	* 80.05	222.56	569	10.26	245.37
470	139.93	179.57	520	64.20	227.64	570	27.49	244.04
471	126.95	188.96	521	48.04	231.59	571	44.59	241.50
472	113.35	197.42	522	31.63	234.39	572	61.45	237.77
473	99.19	204.90	523	15.07	236.04	573	78.02	232.86
474	84.54	211.37	524	1.56	236.51	574	94.20	226.80
475	69.46	216.79	525	18.19	235.82	575	109.91	219.62
476	* 54.05	221.14	526	34.72	233.96	576	125.08	211.34
477	5 38.36	224.39	527	51.09	230.93	577	139.63	202.03
478	22.49	226.54	528	67.20	226.77	578	153.49	191.71
479	6.51	227.56	529	82.98	221.48	579	166.59	180.44
480	9.51	227.45	530	98.35	215.10	580	178.87	168.28
481	25.48	226.22	531	113.23	207.65	581	190.26	155.29
482	41.32	223.87	532	127.55	199.18	582	200.71	141.52
483	56.96	220.41	533	141.24	189.72	583	210.16	127.06
484	72.32	215.86	534	154.23	179.32	584	218.57	111.97
485	87.32	210.24	535	166.46	168.03	585	225.91	96.32
486	101.88	203.58	536	177.86	155.91	586	232.12	80.20
487	115.95	195.91	537	188.38	143.02	587	237.18	63.68
488	129.44	187.27	538	197.97	129.42	588	241.08	46.84
489	142.28	177.71	539	206.58	115.17	589	243.77	29.78
490	154.43	167.26	540	214.17	100.36	590	245.26	12.56
491	165.81	155.99	541	220.70	85.06	591	254.75	7.44
492	176.36	143.95	542	226.13	69.33	592	253.60	25.33
493	186.05	131.19	543	230.44	53.26	593	251.19	43.10
494	194.81	117.78	544	233.62	36.92	594	247.54	60.66
495	202.61	103.79	545	235.64	20.40	595	242.66	77.91
496	209.41	89.29	546	236.49	3.78	596	236.58	94.78
497	215.17	74.34	540 547	245.08	15.80	597	229.33	111.18
498	219.86	59.03	548	243.36	32.99	598	220.94	127.03
499	223.47	43.42	549	240.44	50.02	599	211.46	142.25
500	225.97	27.60	550	236.32	66.80	600	200.94	156.77
						· · · •		

	SYSTEM REQUIREMENTS SPECIFICATION	734.23.0100
-	PLANT CHARACTERISTICS AND PERFORMANCE DATA	SECTION 5.1

001 19 42 1701 17 1714 273 52 602 176 183 41 652 98 17 245 165 701 1.61 273 274 604 1184 48 205 42 654 762 762 703 21.08 273 271 604 1184 602 164 655 744 55 700 703 21.08 273 271 606 119 052 225 35 656 726 705 59.20 267.61 607 102 912 331.16 657 77 562 261.257 709 131.21 240.63 607 662.26 233.62 659 29.59 262.69 709 131.21 240.63 610 751.76 249.426 566 664 7199 252.757 661 66.15 255.94 711 183.67 219.85 610 799 252.57 661 66.15 255.94 711 183.67 219.85 611 1960 254.43 666 150.30 271.47 716 229.41 149.67 611 1960 254.43 666 150.30 271.47 716 229.41 149.67 611 1960 254.43 666 150.30 271.47 718 248.18 116.67 6171 229.76 671 <	HSTAT	x	Y	hst at	x	Y	HST AT	x	Y
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			170.51		*115.18	237.94	701		273.52
603 * 163.62195.40653 * 60.66251.7570321.06273.27604 * 149.48206.42655 * 44.55260.5770559.20267.61605 * 119.05225.35656 * 26.12263.0670677.87222.78607 * 102.91233.16657 * 7.56264.2570796.16256.66608 * 66.26239.82658 11.04 264.12708 113.97 249.26609 * 66.176249.55660 47.93 259.96710 147.81 230.81611 * 34.09252.5766166.15255.94711 143.67 219.85612 * 16.24254.8466283.98250.66712 178.72 207.79613 1.68 254.85663 101.40 244.13713 192.89194.71 61419.60254.85666 150.30 217.47716229.41 149.97 613 1.66 231.73666 150.30 217.47716229.41 149.97 614 19.60 234.84666 150.30 217.47716229.41 149.97 615 37.42 252.10667 152.2226.36 717239.39 133.47 618 89.41 236.66 668179.32194.23718248.18116.30 619 105.97 231.73 669192.54 <td></td> <td>176.96</td> <td>103.41</td> <td>652</td> <td>98.17</td> <td>245.45</td> <td>702</td> <td>1.81</td> <td>274.07</td>		176.96	103.41	652	98.17	245.45	702	1.81	274.07
604"149.48206.42654"62.76256.8070440.24271.11605"139.05216.42655"44.55260.5770559.20267.61607"102.31233.16657"7.56284.2570796.16256.66608"62.62239.8265811.04284.12708113.67249.26609"63.18245.2365929.59255.94711163.67219.85611"34.09252.57661661.15255.94711163.67219.85612"16.24254.4366263.98250.66712178.72207.796131.68254.45663101.40244.13713192.89194.7161419.60254.10664118.31236.40714206.11180.6761537.42252.10665134.64227.50715218.30165.7361655.05244.84666165.22206.36717239.39133.4761889.41238.66668179.32194.23718248.18116.30619105.97231.73667204.80167.15720226.0480.34621137.44214.62671216.04152.34721267.0481.3622152.19204.43672245.28120.53723273.06238.44623193.2					80.65		703		
605"134.60216.42655"44.55260.5770559.20267.61606"19.05225.35656"26.12263.0670677.87262.78607"102.51233.16657"7.56244.2570796.16256.66608"86.26239.8265811.04264.12708113.97249.26609"69.18245.2965925.9222.69709131.21240.63611"34.09252.5766166.15255.94711163.67219.85612"16.24254.3466283.98280.6671.4206.11180.676131.66254.85663101.40244.13713129.89149.7161419.60254.10665134.64227.50715218.30165.7361537.42252.10665150.30217.47716229.41149.9761772.41244.36667165.22206.36717239.39133.4761889.41236.66668179.32194.23718246.18116.30619105.97231.73667204.60167.15720226.0480.34621137.44244.66671216.04152.34721267.0461.71622122.19204.43672226.21136.77722270.7242.74624179.36<							704	40.24	
606 $\mathbf{v}_{102,91}$ 225.35656 $\mathbf{v}_{26,12}$ 263.06 706 77.87 262.78 607 $\mathbf{v}_{102,91}$ 233.16657 $\mathbf{v}_{7.56}$ 264.25 707 96.16 256.66 608 $\mathbf{e}_{6.26}$ 239.62658 11.04 264.12 708 113.97 249.26 609 $\mathbf{e}_{6.26}$ 239.62 661 47.99 259.96 710 147.81 230.81 611 $\mathbf{v}_{34.09}$ 252.57 661 66.15 255.94 711 163.67 219.85 611 $\mathbf{v}_{34.09}$ 252.57 661 66.15 255.94 711 163.67 219.85 611 $\mathbf{v}_{34.09}$ 252.57 665 663 101.40 244.13 1713 192.89 134.71 613 1.66 254.40 6664 118.31 236.40 714 206.11 140.67 615 37.42 252.10 6656 134.64 227.50 715 218.43 30 133.47 614 $19.50.30$ 217.47 716 229.41 149.97 617 72.41 244.36 667 165.22 206.36 717 239.39 133.47 619 105.97 231.73 669 192.54 181.14 719 2257.74 98.56 620 122.01 23.76 670 204.80 167.15 720 262.74 80.34 621 122.01 237.78 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>705</td> <td></td> <td></td>							705		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
609 6 69.18245.2865929.59262.69709131.21240.63610 5 51.76249.5566047.99259.96710147.81230.81611 5 34.09252.57661661.15255.94711163.67219.85612 1 16.24254.85663101.40244.13713192.89194.716131.68254.85663101.40244.13713192.89194.7161419.60254.10665134.64227.50715218.30165.7361537.42252.10665134.64227.50715218.30165.7361655.05248.84666150.30217.47716229.41149.9761772.41244.36666150.30217.47716229.41149.9761889.41236.66668179.32194.23718248.18116.33619105.97231.73669192.54181.14719255.7498.56620122.0123.76670204.60167.15720262.0440.34621137.44244.62671216.04152.34721267.0461.71623166.19193.22673235.28120.53723273.0623.64624179.36181.06674243.17103.68724274.104.38									
610 51.76 249.55 660 47.99 259.96 710 147.81 230.81 611 734.09 525.57 661 66.15 255.94 711 163.67 219.85 612 16.24 254.34 662 83.98 250.66 712 178.72 277.79 613 1.68 254.10 664 118.31 236.40 714 206.11 190.67 615 37.42 252.10 665 134.64 227.50 715 218.30 165.73 616 55.05 248.84 666 150.30 217.47 716 229.41 149.97 617 72.41 244.36 667 165.22 206.36 717 239.39 133.47 618 89.41 238.66 668 179.32 194.23 718 248.18 116.30 619 105.97 231.73 669 192.54 181.14 719 255.74 98.56 620 122.01 23.76 670 204.80 167.15 720 262.04 80.34 621 137.442 244.62 671 216.04 152.37 $723.70.62$ 23.64 621 137.442 244.62 671 216.04 82.37 $722.70.72$ 270.72 42.74 622 193.22 673 235.28 120.53 723 $728.61.03$ 35.64 621 193.22 673 235.28 120.55							709		
611 $\overline{34}, 09$ $252, 57$ 661 $66, 15$ $255, 94$ 711 $163, 67$ $219, 85$ 612 $716, 24$ $254, 85$ 662 $83, 98$ $250, 666$ 712 $178, 72$ $207, 79$ 613 $1, 68$ $254, 85$ 663 $101, 40$ $244, 13$ 713 $192, 89$ $194, 71$ 614 $19, 60$ $254, 10$ 664 $118, 31$ $236, 40$ 714 $206, 11$ $180, 67$ 615 $37, 42$ $252, 10$ 665 $134, 64$ $227, 50$ 715 $218, 30$ $155, 73$ 616 $55, 05$ $248, 84$ 666 $150, 30$ $217, 47$ 716 $229, 41$ $119, 97$ 617 $72, 41$ $244, 36$ 667 $165, 22$ $206, 36$ 717 $239, 39$ $133, 47$ 618 $89, 41$ $238, 66$ 668 $179, 32$ $194, 23$ 718 $248, 18$ $116, 30$ 619 $105, 97$ $231, 73$ 669 $192, 54$ $181, 147$ 719 $255, 74$ $99, 56$ 620 $122, 01$ $223, 76$ 670 $204, 80$ $167, 15$ 720 $262, 04$ $80, 34$ 621 $137, 44$ $214, 62$ 671 $216, 04$ $152, 34$ 721 $267, 04$ 733 621 $137, 49$ $193, 22$ 673 $235, 28$ $120, 53$ 723 $273, 06$ $23, 64$ 622 $192, 491$ $166, 674$ $243, 17$ $100, 56$ 724 $274, 04$ 4.38 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
612 $^{+}16.24$ 254.34 662 83.98 250.66 712 178.72 207.79 613 1.66 254.40 664 110.31 236.40 714 206.11 180.67 615 37.42 252.10 665 134.64 227.50 715 218.30 155.73 615 57.42 252.10 665 134.64 227.50 715 218.30 155.73 616 55.05 248.84 666 150.30 217.47 716 229.41 149.97 617 72.41 244.36 667 165.22 206.36 717 239.39 133.47 618 89.41 238.66 668 179.32 194.23 718 248.18 116.30 620 122.01 223.76 670 204.80 167.15 720 262.04 80.84 621 137.44 214.62 671 216.04 152.34 721 277.04 61.71 623 166.19 193.22 673 235.28 120.53 723 273.06 23.64 624 179.36 181.06 674 243.17 103.68 724 274.04 4.38 625 191.65 168.00 675 249.86 86.33 725 283.74 3.28 624 179.36 184.95 677 259.50 50.43 727 727.86 629 230.78 198.45 677 259.50 <									
6131.68254.85663101.40244.13713192.89194.7161419.60254.10664118.31236.40714206.11180.6761537.42252.10665134.64227.50715218.30165.7361655.05248.84666150.30217.47716229.41149.9761772.41244.36667165.22206.36717239.39133.4761889.41238.66668179.32194.23718248.16116.30619105.97231.73669192.54181.14719255.7498.56620122.01223.76670204.80167.15720262.0480.34621137.44214.62671216.04152.34721267.0461.71623166.19133.22673235.28120.53723273.0623.64624179.36181.06674243.17103.68724724044.38625191.65168.00675249.8686.33725283.7413.28626202.99154.11676255.3168.55728274.6672.45629230.78108.15679264.0113.52729225.49100.58631234.64157.39682270.1346.35733725.88128.39632248									
61419.60254.10 664 118.31236.40 714 206.11180.67 615 37.42 252.10 665 134.64 227.50 715 218.30 165.73 616 55.05 248.84 666 150.30 217.47 716 229.41 119.97 617 72.41 248.66 668 179.32 194.23 718 228.41 116.30 619 105.97 231.73 669 192.54 181.14 719 255.74 98.56 620 122.01 223.76 670 204.60 167.15 720 262.04 80.84 621 137.44 214.62 671 216.04 152.34 721 257.704 61.71 623 166.19 193.22 673 235.28 120.53 723 273.06 23.64 624 179.36 181.06 674 243.17 103.68 724 274.04 4.38 625 191.65 168.00 675 249.86 86.33 725 280.76 43.11 622 222.60 124.11 676 255.31 68.55 726 724.67 72.45 629 230.78 194.55 677 259.50 50.43 727 278.67 72.45 629 230.78 194.55 680 $72.72.27$ $72.72.47$ $72.44.66$ 72.45 629 230.78 194.55 680 $72.72.272.27$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
61537.42252.10665134.64227.50715218.30165.7361655.05248.84666150.30217.47716229.41149.9761772.41244.36667165.22206.36717239.39133.4761889.41238.66668179.32194.23718248.18116.30619105.97231.73669192.54181.14719255.7498.56620122.01223.76670204.60167.15720262.0480.34621137.44214.62671216.04152.34721267.0461.71622152.19204.43672226.22136.77723273.0623.64624179.36181.06674243.17103.68724274.044.39625191.65168.00675249.8696.33725283.7413.28626202.99154.11676255.3168.55726280.7643.11627213.32139.45677259.5050.43727274.1057.86630237.8191.65680273.968.00730259.60114.85631243.6774.70681272.7227.24731253.38128.39632246.3157.99682202.05733229.96166.74633253.9121.98									
61655.05248.94666150.30217.47716229.41149.9761772.41244.36667165.22206.36717239.39133.4761889.41238.66668179.32194.23718248.18116.30619105.97231.73669199.54181.14719255.7498.56620122.01223.76670204.60167.15720262.0480.34621137.44214.62671216.04152.34721267.0461.71622152.19204.43672226.22136.77722270.7242.78623166.19193.22673235.28120.53723273.0623.64624179.36181.06675249.6666.33725283.7413.28625191.65168.00677259.5050.43727274.044.38626202.99154.11676255.3168.55726280.7643.11627213.32139.45677259.5050.43727278.1057.86628222.60124.11678262.4032.05728724.4454.39630237.8191.85680273.968.00730725.80114.85631248.6774.70681727.227.247317253.38128.39632246.315									
617 72.41 244.36 667 165.22 206.36 717 239.39 133.47 618 89.41 228.66 668 179.32 194.23 718 244.18 116.30 619 105.97 231.73 669 192.54 181.14 719 255.74 98.56 620 122.01 23.75 670 204.80 167.15 720 262.04 80.34 621 137.44 214.62 671 216.04 152.34 721 267.04 61.71 623 166.19 193.22 673 225.28 120.53 722 270.072 42.78 624 179.36 181.06 674 243.17 103.68 724 274.04 4.398 625 191.65 168.00 675 249.86 96.33 725 280.76 43.11 627 213.32 139.45 677 259.50 50.43 727 276.10 57.86 628 222.60 124.11 678 264.401 31.52 729 2265.491 100.98 630 237.81 91.65 680 277.396 8.00 730 259.80 114.85 631 248.367 74.70 681 272.72 27.24 731 725.38 128.39 632 248.31 57.39 682 270.13 46.35 733 7229.84 114.85 633 251.391 21.996 860			•						
61089.41238.66668179.32194.23718248.18116.30619105.97231.73669192.54181.14719255.7498.56620122.01223.76670204.80167.15720262.0480.34621137.44214.62671216.04152.34721267.0461.71622152.19204.43672226.22136.77722270.7242.7A623166.19193.22673235.28120.53723273.0623.64624179.36181.06674243.17103.68724274.044.38625191.65168.00675249.8696.33725283.7413.28626202.99154.11676255.3168.55726728.057.86628222.60124.11678266.4032.05729727.6672.45629230.78108.15679264.0113.52729729.60114.85631243.6174.70681272.7227.247317253.38128.39632248.3157.39682270.1346.35732238.44154.38633251.7439.78683726.2065.23733720.91148.59633254.834.086857254.42101.93735720.91748.64634253.91 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
619105.97231.73669192.54181.14719255.7498.56620122.01223.76670204.80167.15720262.0480.34621137.44214.62671216.04152.34721267.0461.71622152.19204.43672226.22136.77722270.72 $42.7R$ 623166.19193.22673235.28120.53723273.0623.64624179.36181.06674243.17103.68724274.044.38626622.99154.11676255.3168.55726280.7643.11627213.32139.45677259.5050.43727278.1057.86628222.60124.11678262.4032.05728274.6672.45630237.8191.55680273.968.00730259.80114.85631243.6774.70681272.7227.24731253.38128.39632248.3157.39682270.1346.35732238.44154.39633251.7439.78683266.2065.23733722.96166.74634253.9121.98684260.9683.79734220.84178.64635254.834.08695254.42101.93735200.79200.91636635.516									
620122.01223.76670204.80167.15720262.0480.34621137.44214.62671216.04152.34721267.0461.71622152.19204.43672226.22136.77722270.7242.78623166.19193.22673235.28120.53723273.0623.64624179.36181.06674243.17103.68724274.044.39625191.65169.00675249.8696.33725283.7413.28626202.99154.11676255.3168.55726280.7643.11627213.32139.45677259.5050.43727278.1057.86628222.60124.11678262.4032.05728724.9672.45630237.8191.65680273.968.00730725.80114.85631243.6774.70681272.7227.24731253.38128.39632248.3157.39682260.9683.79734220.84178.64634253.9121.93684266.2065.23733729.96166.74634254.834.086857254.42101.93735200.97200.91636254.8311.9568672.44135.9121.23238.53637254.8117.0168					1/9.32				
621137.44214.62671216.04152.34721267.0461.71622152.19204.43672226.22136.77722270.7242.78623166.19193.22673235.28120.53723273.0623.64624179.36181.06674243.17103.68724274.044.38625191.65169.00675249.8666.33725283.7413.28626202.99154.11676255.3168.55726280.7643.11627213.32139.45677259.5050.43727274.0057.86628222.60124.11676262.4032.05728724.5672.45629230.78108.15679264.0113.52729265.49100.98630237.8191.6568072.3968.00730725.86114.85631248.3157.39682720.7146.35732723.84128.39632246.3157.39683726.2065.23733729.96166.74634253.9121.98684726.6265.23733720.79200.91636726.844.08685727.61136.61737178.51220.856377261.9635.51687723.761136.61737178.51220.95638726.949									
622152.19204.43672226.22136.77722270.7242.78623166.19193.22673235.28120.53723273.0623.64624179.36181.06674243.17103.68724274.044.39625191.65168.00675249.8696.33725283.7413.28626202.99154.11676255.3168.55726280.7643.11627213.32139.45677259.5050.43727278.1057.86628222.60124.11678262.4032.05728274.6672.45630237.8191.65680273.968.00730259.80114.85631243.6774.70681272.7227.24731253.38128.39632248.3157.39682227.01.346.35732238.44154.38633251.7439.78683"266.2065.23733"229.96166.74634253.9121.98684"260.9683.79734"220.84178.64635254.834.08685"254.42101.93735"200.79200.91636"263.8117.01686"246.62119.577361.89.91211.23637"264.9035.51687"237.61136.61737178.51220.95638"254.8									
623166.19193.22673235.28120.53723273.0623.64624179.36181.06674243.17103.68724274.044.38625191.65168.00675249.8696.33725293.7413.28626202.99154.11676255.3168.55726280.7643.11627213.32139.45677259.5050.43727278.1057.86628222.60124.11678262.4032.05728274.6672.45630237.8191.65680727.3968.00730259.80114.85631248.6774.70681727.227.24731255.38128.39632248.3157.39682727.1346.35732738228.96166.74633251.7439.78683726.2065.237337220.96166.74634253.9121.98684726.9683.79734720.79200.916367263.8117.01686724.62119.57736189.91211.236377261.9635.516877237.61136.61737178.51220.956387269.8153.85689727.41152.98738154.23238.536397264.3971.916897160.75213.77740128.24253.45644 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
624 179.36 191.06 674 243.17 103.68 724 274.04 4.39 625 191.65 168.00 675 249.86 86.33 725 283.74 13.28 626 202.99 154.11 676 255.31 69.55 726 280.76 43.11 627 213.32 139.45 677 259.50 50.43 727 278.10 57.86 628 222.60 124.11 678 262.40 32.05 728 274.66 72.45 629 230.78 108.15 679 264.01 13.52 729 2265.49 100.98 630 237.81 91.65 680 273.96 8.00 730 259.60 114.85 631 243.67 74.70 681 272.72 27.24 731 253.38 128.39 632 248.31 57.39 682 270.13 46.35 732 238.44 154.39 633 251.74 39.78 683 226.20 65.23 733 220.96 166.74 634 253.91 21.98 684 226.96 83.79 734 220.94 178.64 635 254.83 4.08 685 7237.61 136.61 737 178.51 220.95 638 7261.96 35.51 687 223.70 183.37 740 128.24 253.45 644 248.70 89.62 690								270.72	
625191.65168.00675249.8696.33725 $^{2}293.74$ 13.28626202.99154.11676255.3168.55726 $^{2}80.76$ 43.11627213.32139.45677259.5050.43727278.1057.86628222.60124.11678262.4032.05728 $^{2}274.66$ 72.45630237.8191.65679264.0113.52729 $^{2}265.49$ 100.98631243.6774.70681 $^{2}272.72$ 27.24731 $^{2}253.38$ 128.39632248.3157.39682 $^{2}270.13$ 46.35732 $^{2}238.44$ 154.38633251.7439.78683 $^{2}266.20$ 65.23733 $^{2}229.96$ 166.74634253.9121.98684 $^{2}260.96$ 83.79734 $^{2}20.84$ 178.64635254.834.08695 $^{2}23.42$ 101.93735 $^{2}20.79$ 200.79636 $^{2}263.81$ 17.01686 $^{2}24.62$ 119.57736189.91211.23637 $^{2}261.96$ 35.51687 $^{2}23.74$ 136.61737 $^{1}78.51$ 220.95638 $^{2}258.81$ 53.85688 $^{2}27.41$ 152.98738154.23238.53639 $^{2}24.40$ 139.75693 $^{1}60.75$ 221.99744100.82255.56642 $^{2}23.67$ 12								273.00	
626 202.99 154.11 676 255.31 68.55 726 280.76 43.11 627 213.32 139.45 677 259.50 50.43 727 278.10 57.86 628 222.60 124.11 678 262.40 32.05 728 274.66 72.45 629 230.78 108.15 679 264.01 13.52 729 225.49 100.98 630 237.81 91.65 680 273.96 8.00 730 229.80 114.85 631 243.67 74.70 681 272.72 27.24 731 253.38 128.39 632 248.31 57.39 682 270.13 46.35 732 728.444 154.39 633 251.74 39.78 683 2266.20 65.23 733 229.96 166.74 634 253.91 21.99 684 2264.22 101.93 735 200.79 200.91 636 226.81 17.01 686 227.41 152.98 738 154.23 238.53 637 7261.96 35.51 687 2237.61 136.61 737 178.51 220.95 638 258.81 53.85 698 227.41 152.98 738 154.23 238.53 639 7254.39 71.91 689 216.09 168.59 739 141.43 246.34 640 248.70 89.62 690 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2/4.04</td> <td></td>								2/4.04	
627 213.32 139.45 677 259.50 50.43 727 278.10 57.86 628 222.60 124.11 678 262.40 32.05 728 274.66 72.45 629 230.78 108.15 679 264.01 13.52 729 225.49 100.96 630 237.81 91.65 680 273.96 8.00 730 259.80 114.85 631 243.67 74.70 681 272.72 27.24 731 253.38 128.39 632 248.31 57.39 682 270.13 46.35 732 238.44 154.38 633 251.74 39.78 683 226.20 65.23 733 229.96 166.74 634 253.91 21.98 684 226.96 83.79 734 220.94 178.64 635 254.83 4.08 685 224.42 101.93 735 200.79 200.91 636 263.81 17.01 686 2246.62 119.57 736 $1.89.91$ 211.23 637 726.96 35.51 687 237.61 136.61 737 178.51 220.95 638 259.81 53.85 688 227.41 152.98 738 154.23 238.53 639 7254.39 71.91 689 216.09 168.59 739 141.43 246.34 640 2248.70 89.62 690 <									
628 222.60 124.11 678 262.40 32.05 728 274.66 72.45 629 230.78 108.15 679 264.01 13.52 729 265.49 100.98 630 237.81 91.65 680 273.96 8.00 730 259.80 114.85 631 243.67 74.70 681 272.72 27.24 731 253.38 128.39 632 248.31 57.39 682 270.13 46.35 732 238.44 154.38 633 251.74 39.78 683 266.20 65.23 733 229.96 166.74 634 253.91 21.98 684 2260.96 83.79 734 220.84 178.64 635 254.83 4.08 695 224.42 101.93 735 200.79 200.91 636 263.81 17.01 686 246.62 119.57 736 189.91 211.23 637 7261.96 35.51 687 227.41 152.98 738 154.23 238.53 639 254.39 71.91 689 216.09 168.59 739 141.43 246.34 640 248.70 89.62 690 203.70 183.37 740 128.24 253.45 641 241.78 106.89 691 190.30 197.24 741 100.82 265.55 642 723.67 128.27 740								200.70	
629 230.78 108.15 679 264.01 13.52 729 $*265.49$ 100.98 630 237.81 91.65 680 $*273.96$ 8.00 730 $*259.80$ 114.85 631 243.67 74.70 681 $*272.72$ 27.24 731 $*253.38$ 128.39 632 248.31 57.39 682 $*270.13$ 46.35 732 $*238.44$ 154.38 633 251.74 39.78 683 $*266.20$ 65.23 733 $*229.96$ 166.74 634 253.91 21.98 684 $*260.96$ 83.79 734 $*220.84$ 178.64 635 254.83 4.08 685 $*254.42$ 101.93 735 $*200.79$ 200.91 636 $*263.81$ 17.01 686 $*246.62$ 119.57 736 189.91 211.23 637 $*261.96$ 35.51 687 $*237.61$ 136.61 737 178.51 220.95 638 $*258.81$ 53.85 688 $*227.41$ 152.98 739 $*141.43$ 246.34 640 $*248.70$ 89.62 690 $*203.70$ 183.37 740 $*128.24$ 253.45 641 $*241.78$ 106.89 691 $*190.30$ 197.24 741 100.82 265.55 642 $*233.67$ 123.62 692 $*175.97$ 210.13 742 86.67 270.50 643 $*224.40$								2/0.10 7078 65	
630237.8191.65680273.968.00730259.80114.85631243.6774.70681272.7227.24731253.38128.39632248.3157.39682270.1346.35732238.44154.38633251.7439.78683266.2065.23733229.96166.74634253.9121.98684260.9693.79734220.84178.64635254.834.08685254.42101.93735200.79200.91636263.8117.01686246.62119.57736189.91211.23637261.9635.51687237.61136.61737178.51220.95638259.8153.85688227.41152.98738154.23238.53639254.3971.91689216.09168.59739141.43246.34640248.7089.62690203.70183.37740128.24253.45641241.78106.89691190.30197.24741100.82265.55642233.67123.62692175.97210.1374278.67270.50643224.40139.75693160.75221.9974372.28274.70644214.02155.18694144.75232.7474442.94280.79645202.57 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
631 243.67 74.70 681 272.72 27.24 731 253.38 128.39 632 248.31 57.39 682 270.13 46.35 732 238.44 154.39 633 251.74 39.78 683 226.20 65.23 733 229.96 166.74 634 253.91 21.98 684 226.96 83.79 734 220.84 178.64 635 254.83 4.08 695 254.42 101.93 735 200.79 200.91 636 2263.81 17.01 686 246.62 119.57 736 189.91 211.23 637 2261.96 35.51 687 227.41 152.98 738 154.23 238.53 639 254.39 71.91 689 216.09 168.59 739 141.43 246.34 640 248.70 89.62 690 203.70 183.37 740 128.24 253.45 641 241.78 106.89 691 190.30 197.24 741 100.82 265.55 642 233.67 123.62 692 175.97 210.13 742 86.67 270.50 643 224.40 139.75 693 160.75 221.99 743 72.28 274.70 644 214.02 155.18 694 144.75 232.74 744 42.94 280.79 645 120.13 183.67 696 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
632 246.31 57.39 682 270.13 46.35 732 238.44 154.38 633 251.74 39.78 683 226.20 65.23 733 229.96 166.74 634 253.91 21.98 684 2260.96 83.79 734 220.84 178.64 635 254.83 4.08 695 2254.42 101.93 735 2200.79 200.91 636 2263.81 17.01 686 246.62 119.57 736 189.91 211.23 637 2261.96 35.51 687 227.41 152.98 738 154.23 238.53 639 2254.39 71.91 689 2216.09 168.59 739 141.43 246.34 640 248.70 89.62 690 2203.70 183.37 740 128.24 253.45 641 224.70 89.62 690 2203.70 183.37 740 128.24 253.45 641 224.70 89.62 692 175.97 210.13 742 86.67 270.50 643 224.40 139.75 693 160.75 221.99 743 72.28 274.70 644 214.02 155.18 694 144.75 232.74 744 42.94 280.79 645 202.57 169.84 695 128.02 242.34 745 228.06 282.66 646 190.13 183.67								239,00	
633251.7439.78683266.2065.23733229.96166.74634253.9121.98684260.9683.79734220.84178.64635254.834.08685254.42101.93735200.79200.91636263.8117.01686246.62119.57736189.91211.23637261.9635.51687237.61136.61737178.51220.95638258.8153.85688227.41152.98738154.23238.53639254.3971.91689216.09168.59739141.43246.34640248.7089.62690203.70183.37740128.24253.45641241.78106.89691190.30197.24741100.82265.55642233.67123.62692175.97210.1374286.67270.50643224.40139.75693160.75221.9974372.28274.70644214.02155.18694144.75232.7474442.94280.79645202.57169.84695128.02242.3474528.06282.66646190.13183.67696110.67250.7474613.11283.75647176.75196.58697792.76257.9174716.86283.55648162.49 <td></td> <td></td> <td></td> <td></td> <td>272.72</td> <td></td> <td></td> <td>200.00</td> <td>164 30</td>					272.72			200.00	164 30
634 253.91 21.98 684 260.96 83.79 734 220.84 178.64 635 254.83 4.08 685 254.42 101.93 735 200.79 200.91 636 263.81 17.01 686 246.62 119.57 736 189.91 211.23 637 261.96 35.51 687 227.41 136.61 737 178.51 220.95 638 258.81 53.85 688 227.41 152.98 738 154.23 238.53 639 2254.39 71.91 689 216.09 168.59 739 141.43 246.34 640 248.70 89.62 690 203.70 183.37 740 128.24 253.45 641 224.78 106.89 691 190.30 197.24 741 100.82 265.55 642 223.67 123.62 692 175.97 210.13 742 86.67 270.50 643 224.40 139.75 693 160.75 221.99 743 72.28 274.70 644 214.02 155.18 694 144.75 232.74 744 42.94 280.79 645 202.57 169.84 695 128.02 242.34 745 28.06 282.66 646 190.13 183.67 696 110.67 250.74 746 13.11 283.75 647 176.75 196.58 697									
635254.834.08685254.42101.93735200.79200.91636263.8117.01686246.62119.57736189.91211.23637261.9635.51687237.61136.61737178.51220.95638258.8153.85688227.41152.98738154.23238.53639254.3971.91689216.09168.59739141.43246.34640248.7089.62690203.70183.37740128.24253.45641241.78106.89691190.30197.24741100.82265.55642233.67123.62692175.97210.1374286.67270.50643224.40139.75693160.75221.9974372.28274.70644214.02155.18694144.75232.7474442.94280.79645202.57169.84695128.02242.3474528.06282.66646190.13183.67696110.67250.7474613.11283.75647176.75196.5869792.76257.9174716.86283.55648162.49208.5269874.40263.7974831.79282.27649147.42219.4369955.66268.3774946.64280.20									
636 263.81 17.01 686 246.62 119.57 736 189.91 211.23 637 261.96 35.51 687 237.61 136.61 737 178.51 220.95 638 258.81 53.85 688 227.41 152.98 739 154.23 238.53 639 254.39 71.91 689 216.09 168.59 739 141.43 246.34 640 248.70 89.62 690 203.70 183.37 740 128.24 253.45 641 224.78 106.89 691 190.30 197.24 741 100.82 265.55 642 233.67 123.62 692 175.97 210.13 742 86.67 270.50 643 224.40 139.75 693 160.75 221.99 743 72.28 274.70 644 214.02 155.18 694 144.75 232.74 744 42.94 280.79 645 202.57 169.84 695 128.02 242.34 745 28.06 282.66 646 190.13 183.67 696 110.67 250.74 746 13.11 283.75 647 176.75 196.58 697 92.76 257.91 747 16.86 283.55 648 162.49 208.52 698 74.40 263.79 748 31.79 282.27 649 147.42 219.43 699 <									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								200.79	
63.8258.8153.85688227.41152.98738154.23238.5363.9254.3971.91689216.09168.59739141.43246.34640248.7089.62690203.70183.37740128.24253.45641241.78106.89691190.30197.24741100.82265.55642233.67123.62692175.97210.1374286.67270.50643224.40139.75693160.75221.9974372.28274.70644214.02155.18694144.75232.7474442.94280.79645202.57169.84695128.02242.3474528.06282.66646190.13183.67696110.67250.7474613.11283.75647176.75196.5869792.76257.9174716.86283.55648162.49208.5269874.40263.7974831.79282.27649147.42219.4369955.66268.3774946.64280.20		263.81							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								154.23	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		254.39			216.09				
		248.70							
643224.40139.75693160.75221.9974372.28274.70644214.02155.18694144.75232.7474442.94280.79645202.57169.84695128.02242.3474528.06282.66646190.13183.67696110.67250.7474613.11293.75647176.75196.5869792.76257.9174716.86293.55648162.49208.5269874.40263.7974831.79282.27649147.42219.4369955.66268.3774946.64280.20		241.78						100.82	
644214.02155.18694144.75232.7474442.94260.79645202.57169.84695128.02242.3474528.06282.66646190.13183.67696110.67250.7474613.11283.75647176.75196.5869792.76257.9174716.86283.55648162.49208.5269874.40263.7974831.79282.27649147.42219.4369955.66268.3774946.64280.20									
645202.57169.84695128.02242.3474528.06282.66646190.13183.67696110.67250.7474613.11283.75647176.75196.5869792.76257.9174716.86283.55648162.49208.5269874.40263.7974831.79282.27649147.42219.4369955.66268.3774946.64280.20									
646190.13183.67696110.67250.7474613.11283.75647176.75196.5869792.76257.9174716.86283.55648162.49208.5269874.40263.7974831.79282.27649147.42219.4369955.66268.3774946.64280.20									
647176.75196.5869792.76257.9174716.86283.55648162.49208.5269874.40263.7974831.79282.27649147.42219.4369955.66268.3774946.64280.20									
648162.49208.5269874.40263.7974831.79282.27649147.42219.4369955.66268.3774946.64280.20									
649 147.42 219.43 699 55.66 268.37 749 46.64 280.20									
650 [*] 131.63 229.25 700 36.66 271.62 750 75.90 273.72									
	650	"131.63	229.25	700	36.66	271,62	750	/5.90	213.12

	SYSTEM REQUIREMENTS SPECIFICATION						FILE 8734.23.0100			
	PLANT	PLANT CHARACTERISTICS		AND PERFORMANCE DATA		DATA		SECT		CTION 5.1
	ي بي المراجع بين المراجع الم									
HST AT	X	¥	HST AT	X	Y	ŀ.	ISTAT		X	¥
751	90,24	269.34	801	40.64	291.46		951	*1 0	8.10	284.93
752 753	104.32 131.50	264.20 251.74	802	55.96	288.91		852	9	3.00	290.24
754	144.67	244.45	803	71.12	285.55		853	7	7.56	294.74
755	157.37	236.47	804 805	86.09 100.82	291.40		854	<u> </u>	1.90	298.42
756	181.41	218.58	805	115.26	276.47 270.77		855	4 ₩a	6.07	301.27
757	192.69	208.70	807	129.38	264.31		856 857	3 4	0.11 4.07	303.28
758	203.43	198.25	808	143.15	257.12		858		2.01	304.45 304.77
759	223.18	175.71	809	156.51	249.21		859		8.09	304.24
760	232.14	163,69	810	169.44	240,60		R60		+.11	302.96
761	240.45	151.22	811	181,90	231.33		861		0.04	300.64
762	255.05	125.04	812	193.85	221.41		862		5,83	297,59
763	261.29	111.41	813	205.26	210.87		863		1.44	293.69
764	266.80	97.47	814	216.10	199.75		864		5.82	288,99
765	275.59	68.82	815	226.34	188.07		865		1.93	283.48
766	278.83	54.18	816	235.94	175.87		866	120	5.73	277.18
767 768	281.30	39.40	817	244,89	163.18		867		L.18	270.11
769	283.89	9,54	818	253.16	150.03		868		5.23	262.28
770	294.22 293.49	6.00 21.51	819	260.72	136.47		869		.85	253.73
771	291,95	36.97	820 821	267.56	122.52		870		2.00	244.47
772	289.59	52.32	822	273.65 278.98	108.24 93.65		871		. 64	234.53
773	286.43	67.52	823	293.53	93.05 78.80		872 873		5.74	223.93
774	282.47	82.54	824	287.29	63.74		873 874		3.27 9.19	212,71
775	277,72	97.33	825	290.26	48,49		875		9.19	200.90 188.53
776	272.20	111.84	826	292.41	33,11		876		0.08	175.63
777	265,92	126.04	827	293.75	17.64		877		00	162.25
778	258.90	139.90	828	294,27	2.12		878		.20	148.41
779	251.16	153.36	829	304,44	14.25		879		.66	134.16
780	242.72	166.40	830	~ 303,27	30.29		880		.35	119.54
781	233.60	178.97	831	301.25	46.25	1	881		.27	104.58
782	223.83	191.04	832	298.39	62.08		982		.39	89.33
783 784	213,44	202.59	833	294.70	77.73		683		. 70	73.84
784 785	202.46 190.91	213.57	834	290.18	93.17		984		.18	58.14
786		223.95 233.71	835	284.87	108,35		985		.83	42.27
787	166.25	242.82	836 837	278.75 271.86	123.23		886		- 64	26.29
788	153.21	251.25	838 838	264.22	137.76		987	304	-60	10.23
789	139.74	258,98	839	255.84	151.91 165.64		888	7 315	.49	6.43
790	125.88	265.99	840	246.74	178.91		889	*314 *313	.71	23.07
791	111.68	272.26	841	236.96	191.67		890 991	313 * 310	- UU - E 13	39.64
792	97.16	277.78	842	226.52	203.91		892	310 307	103 11	56 . 10 72,40
793	82.37	282.52	843	215.44	215.57		893 893	307 302	• 4 •	72,40 88.51
794	67.35	286.47	844	203.77	226.64		594 594	297	. 80	104.36
795	52.14	289.62	845	191 .53	237.07		395	291	_ 88	119.93
796	236.79	291.97	845	~178.76	246.85		396	285	.15	135.16
797		293.50	84 7	165.49	255.93	ş	897	277	. 62	150.01
798		294.22	848	151.75	264.31	ş	898	* 269	. 32	164.45
799 800		294.12	849	137.60	271.95		399	~ 260	.27	178.43
000	25.21	293.20	850	123.0 6	278.83	ç	900	250	.49	191.91

SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
PLANT CHARACTERISTICS AND PERFORMANCE DATA		SECTION 5.1

HSTAT	X	У	HST AT	X	Y	HST AT	X	Ŷ
901	240.02	204.86	951	319.79	66.53	1001	312.29	95.74
902	228.88	217.24	952	315.84	83.31	1002	316.91	79.14
903	217.10	229.01	953	311.00	99.86	1003	320.64	62.31
904	204.72	240.14	954	305.30	116.13	1004	323.48	45.30
905	191.76	250.61	955	298.75	132.07	1005	325.42	28.18
906	178.27	260.38	956	291.37	147.65	1006	326.46	10.97
907	164.29	269.42	957	283.17	162.81	1007	*337.97	6.89
908	149.85	277.71	958	274.19	177.52	1008	337.14	24.71
909	134.99	285.23	959	264.44	191.74	1009	335.36	42.46
910	119.75	291.95	960	253.96	205.43	1010	332.66	60.10
911	104.18	297.86	961	242.77	218.54	1011	329.0)	77.56
912	88.32	302.95	962	230.90	231.04	1012	324.47	94.81
913	72.22	307.18	963	218.39	242.90	1013	319.02	111.80
914	55.91	310.57	964	205.27	254.08	1014	312.68	128.47
915	39.45	313.08	965	191.58	264.56	1015	305.46	144.79
916	22.89	314.73	966	177.36	274.30	1016	297.40	160.70
917	6.24	315.50	967	162.64	283.27	1017	288.51	176.17
918	10.41	315.39	968	147.47	291.46	1018	278 81	191.14
919	27.03	314.40	969	131.89	298.83	1019	268.34	205.59
920	43.58	312.54	970	115.94	305.37	1020	257.12	219.46
921	60.01	309,80	971	99.67	311.06	1021	245.18	232.71
922	76.27	306.20	972	83.12	315.89	1022	232.57	245.32
923	92.32	301.75	973	66.34	319.83	1023	219.30	257.25
924	108.11	296.46	974	49.37	322.89	1024	205.42	268.46
925	123.60	290.35	975	32.27	325.04	1025	190.97	278.93
92 û	138.74	283.42	976	15.08	326.29	1026	175.99	288.61
927	153.50	275.71	977	2.16	326.63	1027	160.52	297.50
928	167.83	267.23	978	19.38	326.07	1028	144.60	305.55
929	181.69	258.00	979	36.56	324.59	1029	128.28	312.75
930	195.05	248.06	980	53.63	322.21	1030	111.61	319.09
931	207.87	237.42	981	70.56	318.93	1031	5 94.62	324.53
932	220.10	226.12	982	87.28	314.76	1032	77.37	329.07
933	231.73	214.20	983	103.77	309.72	1033	59.90	332.69
934	242.70	201.67	984	119.96	303.82	1034	42.26	335.39
935	253.00	188.59	985	135.82	297.06	1035	24.51	337.15
936	262.60	174.98	986	151.30	289.49	1036	6.69	337.97
937	271.47	160.88	987	166.37	281.10	1037	11.15	337.86
938	279.58	146.34	988	180.96	271.93	1038	28.96	336.80
939	286.91	131.38	989	195.06	262.01	1039	46.69	334.80
940	293.44	116.07	990	208.61	251.35	1040	64.28	331.87
\$41	299.15	100.42	991	221.58	240.00	1041	81.70	328.02
942	304.03	84.50	992	233.93	227.97	1042	98.89	323.25
943	308.07	68.35	993	245.63	215.31	1043	115.81	317.54
SILI	311.25	52.00	994	256.65	202.06	1044	132.40	311.03
945	313.56	35.51	995	266.95	188.24	1045	148.62	303 .61
946	314,99	18.91	996	276.51	173.89	1046	164.44	295.35
947	315.55	2.27	997	285.30	159.06	1047	179.79	286.27
94.8	326.28	15.28	998	293.29	143.79	1048	194.64	276.38
949	325.02	32.47	999	300.47	128.12	1049	208.95	265.73
950	322.86	49.57	1000	306.81	112.09	1050	222.6ª	254.34

[景]。	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO. 8734.23.0100		
	PLANT CHARACTERISTICS AND PERFORMANCE DATA		SECTION 5.1	

HSTAT	X	Y	HST AT	X	Y	HSTAT	X	Ŷ
1051	235.78	242.23	1101	93.46	337.05	1151	* 82,81	352.25
1052	248.23	229.46	1102	111.11	331.65	1152	64.12	
1053	259.99	216.04	1103	128.46	325.33	1152	45.24	356.12
1054	271.03	202.03	1104	145.44	318.10	1155	26.24	359.01
1055	281.31	187.45	1105	162.02	309,98	1154	7.16	360.90
1056	290.81	172.34	1105	178.15	301.00	1155		361.78
1057	299.49	156.76	1100	193.78	291.19	1156	11.93	361.65
1058	307.35	140.75	1108	208.87	280.56	1157	31.00	360.52
1059	314.34	124.33	1100	223.38	269.15	1158	49.97	358.38
1060	320.47	107.58	1110	237,27	256.99		68.81	355.25
1061	325.69	90.52	1111	250.49	244.11	1160	87.46	351.12
1062	330.02	73.21	1111	263.02		1161	105.86	346.02
1063	333.42	55.70	1112	274.82	230.56	1162	123.96	339.95
1064	335.89	38.04	1113		216.36	1163	141.73	332.94
1065	337.43	20.26		285.85	201.56	1164	159.09	325.00
1066	338.03	2.43	1115 1116	296.09	186.20	1165	176.02	316.15
1067	* 349.39	16.36		305.50	170.32	1166	192.45	306.43
1068	*348.04	34.77	1117	314.06	153.97	1167	208.35	295.85
1069	345.72	53.09	1118	321.74	137.19	1168	223.67	284.44
1070	342.44	71.24	1119	328.53	120.02	1169	238.36	272.25
1071	338.20	89.21	1120	334.41	102.52	1170	252.39	259.30
1072	333.03	106.93	1121	339.35	84.74	1171	265.72	245.62
1073	*326.92		1122	343.35	66.72	1172	278.31	231.26
1074	319.91	124.35	1123	346.39	48.51	1173	290.12	216.25
1075	312.00	141.42 158.10	1124	348.47	30.17	1174	301.12	200.65
1076	303.22		1125	349.57	11.74	1175	311.29	184,48
1070	2 93.60	174.34	1126	361.77	7.38	1176	320.59	167.80
1078	283.17	190.09	1127	360.88	26.45	1177	328.99	150.66
1079	271.94	205.32	1128	358.98	45.46	1178	336.48	133.09
1080	259.96	219.97 234.01	1129	356.08	64.33	1179	343.04	115.16
1080	247.25	234.01	1130	352.20	83.03	1180	348.63	96.90
1082	233.85	247.40	1131	347.32	101.49	1181	353.26	78.37
1082	233.85	260.10	1132	341.49	119.67	1182	356.90	59.63
1083	205.15	272.07	1133	334.70	137.52	1183	359.55	40.71
1084	189.92	283.29	1134	326.98	154.99	1184	361.20	21.69
1085	189.92	293.72	1135	318.35	172.02	1185	_36 1. 84	2.60
1088	157.91	303.33	1136	308.83	188.58	1186	<u>373.88</u>	17.50
1087	157.91	312.09	1137	298.45	204.61	1187	372.44	37.20
1085	141.23	319.99	1138	287.24	220.06	1188	369,96	56.80
1089		327.00	1139	275.23	234.91	1189	366.45	76.24
	106.73	333.09	1140	262.45	249.10	1190	361.92	95.46
1091	89.01	338.26	1141	248.95	262.60	1191	356,37	114.42
1092	71.04	342.48	1142	234.75	275.37	1192	349.84	133.07
1093	52.87	345.75	1143	219.89	287.37	1193	342.34	151.34
1094	34.56	348.06	1144	204.43	298.57	1194	333.87	169.19
1095	16.15	349.40	1145	188.39	308,94	1195	324.48	196.56
1096	2.31	349.76	1146	171.83	318.45	1196	314.19	203.42
1097 1098	20.76	349.15	1147	154.79	327.07	1197	303.02	219.71
1098	39.15 57.43	347.57	1148	137.32	334.78	1198	291.01	235.39
1099	57.43 75.55	345.02	1149	119.47	341.56	1199	278.18	250.42
1100	19.00	341.51	1150	101.28	347.39	1200	264.59	264.75

R	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
	PLANT CHARACTERISTICS AND PERFORMANCE DATA		SECTION 5.1

HST AT	X	Y	HSTAT	X	Y	HSTAT	X	Y
1201	250.25	278.34	1251	367.00	123.20	1301	381.83	63.79
1202	235.22	291.15	1252	356.10	151.84	1302	384.06	48.63
1203	219.53	303.15	1253	* 349.82	165.81	1303	386.70	18.10
1204	203.23	314.31	1254	342.98	179.53	1304	387.11	2.79
1205	*186.37	324.60	1255	* 327 . 71	206.09	1305	400.21	10.80
1206	168.98	333.98	1256	319.29	218.90	1306	399.47	26.63
1207	151.13	342.43	1257	~ 310.38	231.36	1307	~ 398 . 10	42.42
1208	132.86	349.92	1258	* 291.11	255.18	1308	* 396.11	58.14
1209	114.21	356.44	1259	280.79	266.50	1309	393.50	73.77
1210	95.25	361.97	1260	7270.02	277.41	1310	390.27	89.29
1211	76.02	366.49	1261	247.23	297.89	1311	386.43	104.66
1212	56.58	369.99	1262	235.25	307.44	1312	381.99	119.87
1213	36,98	372.46	1263	222.90	316.51	1313	376.95	134.90
1214	17.28	373.90	1264	197.17	333.15	1314	371.31	149.71
1215	2.47	374.29	1265	183.83	340.69	1315	365.10	164.29
1216	22.21	373.63	1266	170.20	347.70	1316	358.31	178.61
1217	41.89	371.94	1267	142.17	360.07	1317	350.96	192.65
1218	61.46	369.21	1268	127.81	365.42	1319	343.06	206.39
1219	80.85	365.46	1269	113.25	370.19	1319	334.63	219.80
1220	100.02	360.68	1270	83.62	377.99	1320	325.66	232.87
1221	118.90	354.91	1271	68.59	381.00	1321	5 316.19	245.58
1222	137.40	348.14	1272	53.46	383.41	1322	306.23	257.90
1223	155.64	340.40	1273	22.97	386.44	1323	295.78	269.81
1224	173.38	331.72	1274	7.66	387.05	1324	284.87	281.31
1225	190.64	322.11	1275	7.66	387.05	1325	273.52	292.36
1226	207.36	311.60	1276	38.25	385.23	1326	261.73	302.90
1227	223.51	300.23	1277	53.46	383.41	1327	249.54	313.08
1228	239.04	288.02	1278	68,60	381.00	1328	236.95	322.71
1229	253.90	275.01	1279	98.51	374.38	1329	224.00	331.83
1230	268.06	261.23	1280	113.25	370.19	1330	210.69	340.44
1231	281.47	246.73	1281	127.81	365.42	1331	197.05	348.51
1232	294.09	231.53	1282	156.31	354.16	1332	183.10	356.03
1233	305.89	215.70	1283	170.21	347.70	1333	168.97	303.00
1234	316.85	199.26	1284	183.83	340.69	1334	154.37	369.40
1235	326.92	182.27	1285	210.20	325.09	1335	139.63	375.22
1236	336.08	164.76	1286	222.90	316.51	1336	124.68	380.45
1237	344.30	146.81	1287	235.25	307.44	1337	109.52	385.09
1238	351.57	128.44	1288	258.83	287.88	1338	* 94 . 20	389.12
1239	357.85	109.71	1289	270.02	277.41	1339	78.72	392.54
1240	363.14	90.68	1290	280.79	266.50	1340	63.13	395,35
1241	367.42	71.40	1291	300.98	243.46	1341	~ 47_43	397.54
1242	370.68	51.91	1292	310.38	231.36	1342	31.60	399.10
1243	372.90	32.29	1293	319.30	218.90	1343	15. 84	400.04
1244	374.08	12.57	1294	335.61	192.96	1344	.00	400.36
1245	387.11	2.79	1295	342.98	179.53	1345	15.84	400.04
1245	385.68	33.39	1296	349.82	165.81	1346	31.66	399.10
1240	384.06	48.63	1297	361.83	137.63	1347	47.43	397.54
1248	381.83	63.79	1298	367.00	123.20	1348	63.1 3	395.35
1249	*375.59	93.79	1299	371.59	108.58	1349	78.72	392.54
1250	371.58	108.59	1300	379.01	78.85	1350	94.20	389.12
2200	· · · · · · ·			. –				

٠

 SYSTEM REQUIREMENTS SPECIFICATION
 FILE NO.
 8734.23.0100

 PLANT CHARACTERISTICS AND PERFORMANCE DATA
 SECTION 5.1

HSTAT	, v	14						
1351	' <i>X</i> 109.52	у 205 00	HSTAT	X	Y	HSTAT	X	Y
1352	124.68	385.09 380.45	1401	311.33	272.91	1451	374.12	177.33
1353	139.64	375,22	1402	300.29	285.02	1452	380.84	162.38
1354	154.37	369.40	1403	288.78	296.68	1453	386.97	147.19
1355	168.87		1404	276.81	307.87	1454	392.49	131.76
1356	183.11	363.00	1405	264.41	318.59	1455	397.40	116.12
1357	197.05	356.03 348.51	1406	251.59	328.80	1456	401.68	100.30
1358	210.69	340.44	1407	238.38	338.50	1457	405.34	84.33
1359	224.00	331.83	1408	224.80	347.67	1458	408.36	68.22
1360	236.95		1409	210.87	356.29	1459	410.74	52.01
1361	238.95	322.71	1410	196.60	364.36	1460	412.47	35.71
1362	249.54	313.08	1411	182.03	371.85	1461	413.56	19.36
1363	273.52	302.96	1412	167.17	378.77	1462	427.17	28.48
1364	273.52	292.36	1413	152.05	385.08	1463	425.71	45.36
1365	295.78	281.31	1414	136.69	390.80	1464	423.58	62.18
1366	306.23	269.81	1415	121.12	395.90	1465	420.79	78.89
1367	316.19	257.90	1416	105.35	400.39	1466	417.33	95.48
1369	325.67	245.57	1417	89.43	404.24	1467	413.23	111.92
1369	334.63	232.87	1418	73.36	407.46	1468	408.48	128.19
1370	343.06	219.80 206.38	1419	57.18	410.05	1469	403.08	144.25
1371	350.96	192.65	1420	40,90	411.99	1470	397.06	160.09
1372	358.31	192.65	1421	24.57	413.29	1471	390.41	175.68
1373	365.10		1422	8.19	413.93	1472	383.15	190.99
1374	371.31	164.29 149.71	1423	8.19	413.93	1473	375.29	206.00
1375	376.95	134.90	1424	24.57	413.29	1474	366.85	220.69
1376	381.99	134.90	1425	40.91	411.99	1475	357.83	235.04
1377	386.43	104.66	1426	57.18	410.05	1476	348.24	249.02
1378	390.27	89.29	1427	73.36	407.46	1477	338.12	262.60
1379	393.50	73.77	1428	89.43	404.24	1478	327.46	275.78
1380	396.11	58.14	1429	105.36	400.39	1479	316.29	288.52
1381	398.10	42.42	1430	121.12	395.90	1480	304.62	300.81
1382	399.47	26.63	1431	136.69	390.80	1481	292.48	312.63
1383	400.21	10.80	1432	152.05	385.08	1482	279.88	323.96
1384	413.56	19.36	1433	167.17	378.76	1483	266.84	334.78
1385	412,47	35.71	1434	182.03	371.85	1484	253.38	345.08
1386	410.74	52.01	1435	196.60	364.36	1485	239.53	354.84
1387	408.36	68.22	1436 1437	210.87	356.29	1486	225.30	364.04
1388	405.34	84.33	1437	224.80	347.67	1487	210.71	372.67
1389	401.68	100.30		238.38	338.50	1488	195.80	380.72
1390	*397.40	116.12	1439	251.59	328.80	1489	180.58	388.17
1391	392.49	131.76	1440	264.41	318.59	1490	165.08	395.01
1392	396.97	147.19	1441	276.81	307.87	1491	149.32	401.23
1393	380.84	162.39	1442	288.78	296.68	1492	133.32	406.83
1394	374.12		1443	300.29	285.02	1493	117.12	411.79
1395	366.80	177.33	1444	311.33	272.91	1494	100.73	416.10
1396	358.92	192.00 206.36	1445	321.89	260.37	1495	84.18	419.76
1397	350.47	206.36	1446	331.94	247.43	1496	67.50	422.76
1398	³ 341.47	234.10	1447 1448	341.47	234.10	1497	50.72	425.10
1399	331.94	247.43	1448	350.47	220.40	1498	33.86	426.78
1400	³ 21.89	260.37	1449	358.92 366.81	206.36	1499	16.94	427.78
-		200807	1430	000.01	192.00	1500	.00	428.12

SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
PLANT CHARACTERISTICS AND PERFORMANCE DATA		SECTION 5.1

HSTAT	v	v	11.CM AM	v	v	11 CM A/7	1/	
1501	<i>X</i> 16.94	<u>ү</u> 427.78	<i>HST AT</i> 1551	<i>X</i> •354.93	у 264.57	HSTAT	X	y DOD CE
1501	33.86	426.78	1551	354.93	278.40	1601	383.77	220.65
1502	50.72	425.10	1552	332.89	291.81	1602	392.20	205.29
1503	67.51	423.10	1553	321.08	304.75	1603	400.02	189.61
1504	84.18	422.78	1554	308.77	317.22	1604	407.21	173.63
1505	100.73	419.78	1555	295.98	329.19	1605	413.76	157.38
1508	117.12	410.10	1558	295.95		1606	419.67	140.88
1509	133.32	406.83		269.01	340.65	1607	424.91	124.16
1509	149.32		1558	254.89	351.57 361.94	1608	429.50	107.25
1510	165.08	401.23	1559 1560	234.89		1609	433.40	90.17 72.95
1510	180.58	395.01		240.37	371.74	1610	436.63 436.74	
		388.17	1561	225.47	380.96	1611	436.74	137.06
1512	195.80	380.72	1562	194.63	389.59	1612	430.97	154.23
1513 1514	210.71 225.30	372.67	1563		397.60	1613	424.53	171.17
1514	225.30	364.04	1564	178.74	404.99	1614	417.42	187.83
	253.38	354.84	1565	162.58	411.75	1615	409.66 401.26	204.20
1516		345.08	1566	146.15	417.86	1616	392.23	220.26
1517	266.84	334.78	1567	^{129,50}	423.32	1617	³ 92.23	235.96
1518	279.88	323.96	1568		428.11	1618		251.30
1519	292.48	312.63	1569	95.62 78.44	432.23	1619	* 372.34 *361.51	266.25
1520	304.62	300.81	1570		435.68	1620	^{361.51}	280.77
1521	316.29	288.52	1571	61.14	438.44	1621		294.86
1522	327.46	275.78	1572	43.74	440.52	1622	338.17	308.48
1523	338.12	262.60	1573	26.27	441.90	1623	325.70	321.62
1524	348.25	249.02	1574	8.76	442.60	1624	312.72	334.26
1525	357.83	235.04	1575	8.76	442.60	1625	299.24	346.39
1526	366.85	220.69	1576	26.27	441.90	1626	285.30	357.95
1527	375.30	206.00	1577	43.74	440.52	1627	270.91 256.10	368.96
1528	383.15	190.99	1578	61.14	438.44	1628	236.10	379.39
1529	390.41	175.68	1579	78.44	435.68	1629	240.88	389.23
1530	397.06	160.09	1580	95.62	432.23	1630	225.29	398.46 207.06
1531	403.08	144.25	1581	112.65	428.11	1631	193.07	407.06 415.02
1532	408.48 413.23	128.19	1582	129.50	423.32	1632	193.07	
1533		111.92	1583	146.16	417.86	1633	176.50 159.65	422.34 428.99
1534	417.33 420.79	95.48	1584	162.58	411,75	1634	159.65	
1535		78.89	1585	178.75	404.99	1635	142.54	434.98 440.28
1536 1537	423.58 425.71	62 .17 45.36	1586 1587	194.63 210.21	397.60 389.59	1636 1637	125.22	440.28 444.89
1537	425.71 427.17	45.30 28.48					90.01	444.89 448.80
1538	427.17	72.95	1588	225.47 240.37	380.96	1638 1639	72.17	448.80
1539	438.63	90 . 17	1589 1590	254.89	371.74 361.94	1640	54.23	452.01
1540	433.40	107.25	1591	269.01	351.57	1641	36.20	456.30
1541	424.91	124.16	1591	289.01	340.65	1642	18.11	457.38
1542	424.51	140.88	1592	295.98	329.19	1643	.00	457.74
1545	413.76	157.38	1594	308.77	317.22	1644	18.12	457.38
1545	407.21	173.63	1595	321.08	304.75	1645	36.20	456.30
1546	407.21	189.61	1595	332.89	291.81	1646	54.23	454.51
1546	392.20	205.29	1598	344.18	278.40	1647	72.18	452.01
1548	383.77	203.29	1597	354.93	264.56	1648	90.01	448.80
1549	⁵ 374.74	235.67	1599	365.12	250.31	1649	107.70	444.89
1550	365.12	250.31	1600	374.74	235.67	1650	125.22	440.28
1000	000.12	200.01	1000	VI-T • I-T	200.07	1000	~~~.	

 SYSTEM REQUIREMENTS SPECIFICATION
 FILE NO.
 8734.23.0100

 PLANT CHARACTERISTICS AND PERFORMANCE DATA
 SECTION 5.1

HST AT	X	Y	HST AT	X	Y	HSTAT	X	Y
1651	142.55	434.98	1701	83,86	465.81	1751	240.87	426.01
1652	159.65	428.99	1702	65.36	469.77	1752	223.83	435.21
1653	176.50	422.34	1703	46.76	470.98	1753	206.43	443.73
1654	193.08	415.02	1704	28.09	472.47	1754	188.71	451.55
1655	209.35	407.06	1705	* 9.37	473.21	1755	170.69	458.66
1656	225.29	398.45	1705	9.37	473.21	1756	152.40	465.06
1657	240.89	389.23	1707	28.09	472.47	1757	133.88	470.73
1658	256.10	379.39	1708	46.76	470.98	1758	115.15	475.66
1659	270.91	368,96	1709	65.37	469.76	1759	96.23	479.84
1660	285.30	357,95	1710	83.87	465.81	1760	77.17	483.27
1661	299.25	346.38	1711	102.23	462.13	1761	57.98	485.95
1662	312.72	334.26	1712	120.44	457.72		39.70	487.86
1663	325.70	321.62	1713	138.46	452.59	1763	19.37	489.01
1664	338.17	308.48	1713	156.26	452.55	1764	.00	489.40
1665	350.12	294.86	1714	173.82	440.23	1764	19.37	489.01
1666	361.51	280.77	1715	191.11	433.00	1765	38.71	487.86
1667	372.34	266.24	1717	208.09	425.10	1767	57.98	485.95
1668	382.58	251.30	1718	208.09	416.53	1768	77.17	483.27
1669	392.23	235.96	1718	241.06	418.53	1769	96.23	483.27 479.84
1670	401.26	220.26	1720	256.99	397.45	1709	115.15	475.66
1671	409.66	204.20	1721	272.52	386,97	1771	133.88	470.73
1672	417.42	187.83	1722	287.62	375.88	1772	152.40	465.06
1673	424.53	171.17	1723	302.27	364.21	1773	170.69	458.66
1674	430.97	154.23	1724	316.45	351.96	1774	188.71	455.00
1675	436.74	137.05	1725	330.13	339.16	1775	206.43	443.73
1676	435.37	185.64	1726	343.29	325.83	1776	223.83	435.21
1677	427.69	202.72	1727	355.92	311.99	1777	240.88	426.01
1678	419.33	219.49	1728	367,98	297.66	1778	257.55	416.15
1679	410.31	235.91	1729	379,48	282.86	1779	273.81	405.63
1680	400.66	251.97	1730	390.37	267.62	1779	289.65	394.47
1681	*390.37	267.62	1731	400.66	251.96	1781	305.04	382.70
1682	379.48	282.86	1732	410.32	235.91	1782	319,94	370.33
1683	367.98	297.66	1733	419.33	219.49	1783	334.35	357.38
1684	355.92	311.99	1734	427.69	202.72	1784	348.23	343.87
1685	343.29	325.83	1735	435.38	185.64	1785	361.56	329.82
1686	7330.13	339.16	1736	⁴ 438.00	218.33	1786	374.33	315.25
1687	316,45	351.96	1737	429.01	235.49	1787	386.52	300.19
1688	302.27	364.21	1738	419.36	252.28	1788	398.09	284.66
1689	287.62	375.88	1739	409.04	268.68	1789	409.05	268,68
1690	*272.52	386.97	1740	398.09	284.66	1790	419.36	252.28
1691	256.99	397.45	1740	386.51	300.19	1791	429.01	235.49
1692	230.33	407.31	1742	374.33	315.25	1791	438.00	233.43
1693	224.75	407.51	1742	361.5 6	313.23	1792	⁴³⁸ .00	252.26
1694	208.09	410.00	1744	348.23	343.87	1793	438.03	269.40
1695	191.11	425.10	1744	348.23 334.35	343.87	1794	428.35	289.40
1695	173.82	433.00	1745	334.35 319.94	357.38	1795	420.19	306.43
1697	156.26	440.23	1748	315.54	382.70	1798	393.44	318.25
1698	138,46	452.59	1748	289.65	394.48	1798	383.82	329.79
1699	120.44	457.72	1740	273.81	405.63	1799	363.57	351.99
1700	102.23	462.13	1750	257.54	416.15	1800	* 352.97	362.62
2,00	102.020	TULSIO	2750	201004	410.10	1000	552.31	002.02

	SYSTEM REQUIREMENTS SPECIFICATION FILE NO. 8734.23.0100									
	PLA	NT CHARACT	TERISTICS	AND P	ERFORMANCE	DATA		SECTION 5.1		
a and a second secon				ويدر الطمانية (الكتيرية المطالب بين	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>					
hstat	X	Y	HST AT	X	Y	HSTA	T X	Y Y		
1801	342.05	372.94	1851	401,9		1901				
1802	*319.31	392.58	1852	\$391.7	8 346.87	1902				
1803	307.52	401.89	1853	*381.3	1 358.35	1903				
1804	295.45	410.84	1854	370.5	1 369.51	1904				
1805	270.55	427.65	1855	359.3	8 380.35	1905	347.	.93 390.84		
1806	257.74	435.49	1856	347.9	3 390.85	1906	359.	38 380.34		
1807	^w 244,70	442.95	1857	7336.1	7 401.00	1907	370.	51 369.51		
1808	217.98	456.69	1858	*324.1	2 410.80	1908	381.	.31 359.35		
1809	204.33	462.96	1859	311.7	8 420.24	1909	391.	78 346,87		
1810	190.50	468.82	1860	299.1	7 429.31	1910	401.	.91 335.09		
1811	162.34	479.30	1861	296.3	438.01	1911	. 411.	.68 323.01		
1812	148.04	483.91	1862	273.1	7 446.31	1912	421.	.08 310.65		
1813	133.61	488.09	1863	259.8	454.22	1913	430.	.12 298.01		
1814	104.41	495.16	1864	246.2	461.73	1914				
1815	89.67	498.04	1865	232.3	468.84	1915	5 430.	.61 327.66		
1816	74.84	500.48	1866	7218.3	475.53	1916	5 420.	.70 340.30		
1817	45.01	504.04	1867	204.1	5 481.80	1917	7 410.	41 352.64		
1818	30.03	505.15	1868	189.7	6 487.65	1918) * 399.	,76 364.66		
1819	15.02	505.82	1869	175.2	493.07	1919	9 388,	,76 376.37		
1820	15.02	505.82	1870	160.4	9 498.05	1920	5 377.	.42 387.74		
1821	30.03	505.15	1871	145.6	502.60	1921	365.	.74 398.78		
1822	45.01	504.04	1872	130.6	5 506.70	1922	2 353.	.74 409.46		
1823	74.84	500.48	1873	115.5		1923	341.	43 419.78		
1824	89.67	498.04	1874	100.3	35 513.56	1924	328.	.82 429.73		
1825	104.41	495.16	1875	85.0	516.31	1923	5 315.	.92 439.30		
1826	133.61	488.09	1876	69.7	70 518.61	1926	5 5302.	.74 448.48		
1827	148.04	483.91	1877	54.2	27 520.45	1921	7 289.	.29 457.27		
1828	162.34	479.30	1878	38.8	30 521.83	1920	3 275.	.59 465.66		
1829	190.50	468.82	1879	23.2	29 522.75	1929				
1830	204.33	462.96	1880	7.7		1930				
1831	217.98	456.69	1881	7.1	77 523.21	193:	L * 233.			
1832	244.70	442.95	1882	23.3	30 522.75	1933	2 218.	48 495.03		
1833	257.74	435.49	1883	38.1		1933	3 *203.	.69 501.30		
1834	270.55	427.65	1884	54.2	28 520.45	1934				
1835	295.45	410.84	1885	69.1	70 519.61	193				
1836	307.52	401.89	1886	85.0		1930				
1837	319.31	392.58	1887	100.3		193'				
1839	342.05	372.94	1888	115.		193	9 127.	.31 525.91		
1839	352.97	362.62	1889	130.0		193	9 111.	.64 529.46		
1840	363.58	351.99	1890	145.6	502.60	1940) 795.			
1841	383.82	329.79	1891	160.4	49 498.05	194:	1 780.			
1842	393.44	318.25	1892	175.		194:				
1843	402.72	306.43	1893	189.1		194				
1844	420.19	281.99	1894	204.3		194				
1845	428.38	269.40	1895	218.		194	5 16	.06 540.88		
1846	438.69	252.26	1896	232.		1940	6	.00 541.10		
1847	438.78	285.11	1897	246.		1941	7 16	.06 540.86		
1848	430.12	298.01	1898	259.		194	8 32	.11 540.15		
1849	421.08	310.65	1899	273.		194		.13 538.95		
1850	411.68	323.01	1900	286.		195		.11 537.29		
					-					

 SYSTEM REQUIREMENTS SPECIFICATION
 FILE NO.
 8734.23.0100

 PLANT CHARACTERISTICS AND PERFORMANCE DATA
 SECTION 5.1

HST AT	x	Y	HST AT	x	ÿ	HSTAT	X	Y
1951	80.03	535.15	2001	107.31	549.16	2051	*264.65	514.58
1952	95.88	532.54	2002	90.96	552.11	2052	249.25	522.21
1953	111.64	529.46	2003	74.53	554.56	2053	233.64	529.38
1954	127.31	525.91	2004	58.04	556.53	2054	*217.83	536.08
1955	142.87	521.90	2005	41.49	558.01	2055	201.82	542.31
1956	158.30	517.43	2006	24.91	559.00	2056	185.63	548.06
1957	173.59	512.50	2007	8.31	559.49	2057	169.28	553.33
1958	188.72	507.12	2008	8.31	559.49	2058	152.78	558.11
1959	203.69	501.30	2009	24.91	559.00	2059	136.14	562.40
1960	218.48	495.03	2010	41.49	559.01	2060	119.39	566.19
1961	233.08	488.33	2011	58.04	556.53	2061	102.53	569,49
1962	247.47	481.19	2012	74.53	554.56	2062	\$85,58	572.28
1963	261.65	473.63	2013	90.96	552.11	2063	68.55	574.57
1964	275.59	465.66	2014	107.31	549.16	2064	51.47	576.35
1965	289.30	457.27	2015	123.57	545.74	2065	34.34	577.63
1966	302.74	448.49	2016	139.71	541,83	2066	17.18	578.39
1967	315.92	439.30	2017	155.73	537.44	2067	.00	578.65
1968	328.82	429.73	2018	171.62	532.58	2068	17.18	578.39
1969	341.43	419.78	2019	187.35	527.25	2069	34.34	577.63
1970	353.74	409.46	2020	202.92	521.46	2070	51.47	576.35
1971	365.74	398.78	2021	218.31	515.21	2071	68.56	574.57
1972	377.42	387.74	2022	233.51	508.50	2072	85.58	572.28
1973	388.76	376.37	2023	248.50	501.34	2073	102.53	569.49
1974	399.76	364.66	2024	263.27	493.75	2074	119.39	566.19
1975	410,41	352.64	2025	277.81	485.71	2075	136.15	562.40
1976	420.70	340.30	2026	292.11	477.25	2076	152.78	558.11
1977	430.61	327.66	2027	306.15	468.37	2077	169.28	553.33
1978	429.77	358.32	2028	319.91	459.08	2078	185.63	548.06
1979	418.94	370.92	2029	333.40	449.38	2079	201.82	542.31
1980	407.75	383.19	2030	346.59	439.28	2080	217.83	536.08
1981	396.19	395.13	2031	359,49	428.80	2081	233.64	529.38
1982	384.29	406.71	2032	372.05	417.94	2082	249.25	522.21
1983	372.05	417.94	2033	384.29	406.71	2083	264.65	514.59
1984	359.48	428.80	2034	396.20	395.13	2084	279.80	506.50
1985	346.59	439.28	2035	407.75	383.19	2085	294.72	497.97
1986	333.40	449.38	2036	418,95	370.92	2086	309.37	489.00
1987	319.91	459.08	2037	429.77	359.32	2087	323.75	479.60
1988	306.14	468.37	2038	438.89	377.11	2088	337.84	469.78
1989	292.11	477.25	2039	427.50	389.97	2089	351.64	459,54
1990	277.81	485.71	2040	415.74	402.49	2090	365.12	448.90
1991	263.27	493.75	2041	403.60	414.65	2091	378.29	437.87
1992	248.50	501.34	2042	391.12	426.45	2092	391.12	426.45
1993	233.51	508.50	2043	378.29	437.87	2093	403.61	414.65
1994	218.31	515.21	2045	365.12	448.91	2094	415.74	402.49
1995	202.92	521.46	2045	351.64	459.55	2095	427.50	389.97
1996	187.35	527.25	2045	337.84	469.78	2095	438,89	377.10
1997	171.62	532.58	2040	323.75	479.60	2097	436.06	409.80
1998	155.73	537.44	2048	309.37	489.00	2098	423.71	422.57
1999	139.71	541.83	2049	294.72	497.97	2099	410.98	434.96
2000	123.56	545.74	2050	279.80	506.50	2100	397.88	446.97

	SYST		FILE NO.	8734.23	8734.23.0100			
			1 100.		TION 5.1			
	PLANT	UNAKAUTI	LATSIICS A	MD FERFU	RMANCE DATA		SE(
HSTAT	X Taala kuk	Y	HST AT	X	Y	HST AT	X	Y
2101	384.44	458.59	2153	431.65	443.46	2205	431.65	443.46
2102	370.66	469.79	2154	418.29	456.08	2206	425.54	478.03
2103	356.55	480.58	2155	404.57	468.29	2207	411.16	490.45
2104	342.13	490.96	2156	390.49	480.10	2208	396.42	502.44
2105	327.40	500.90	2157	376.07	491.48	2209	381.33	513.99
2106	312.39	510.39	2158	361.31	502.42	2210	365.91	525.08
2107	297.10	519.44	2159	346.24	512.93	2211	350.16	535.71
2108	281.55	528.03	2160	330.86	522.98	2212	334.10	545.87
2109	265.75	536.16	2161	315.19	532.57	2213	317.75	555.55
2110	249.72	543.81	2162	299.25	541.69	2214	301.12	564.74
2111	233.47	550.98	2163	283.03	550.34	2215	284.23	573.42
2112	217.01	557.67	2164	266.57	558.50	2216	267.08	581.61
2113	200.36	563.87	2165	249.88	566.16	2217	249.70	589.28
2114	183.53	569.57	2166	232.96	573.33	2218	232.09	596.43
2115	166.55	574.76	2167	215,84	579.99	2219	214.29	603.06
2116	149.41	579.45	2168	198.53	586.14	2220	196.29	609.16
2117	132.14	583.63	2169	~ 181.04	591.78	2221	178.12	614.71
2118	~114.7 6	587.30	2170	1 63.39	596.89	2222	159.80	619.73
2119	97.28	590.45	2171	*145.60	601.48	2223	141.33	624.20
2120	79.71	593.07	2172	127.69	605.54	2224	122.74	628.12
2121	62.07	595.18	2173	109.65	609.06	2225	104.04	631,49
2122	44.37	596.76	2174	91.53	∾612 . 05	2226	85.25	634.30
2123	26.64	597.81	2175	73.32	614.49	2227	66.38	636.55
2124	8.88	598.34	2176	55.04	616.40	2228	47.46	638.24
2125	8.88	598.34	2177	36.72	617.76	2229	28.49	639.37
2126	26.64	597.81	2178	18.37	618.58	2230	9.50	639.93
2127	44.37	596.76	2179	.00	618.85	2231	9.50	639.93
2128	62.07	595.18	2180	18.37	618.58	2232	28.49	639 . 33
2129	79.71	593.07	2181	36.73	617.76	2233	47.46	
2130	97.28	590.45	2181	55.05	616.40	2233		638.24
2131	114.76	587.30	2182	73.32	614.49	2234	66.38 85.25	636.55
2132	132.15	583.63	2185	91.53	612.05	2235		634.30
2133	149.41	579.45	2185	109.66			104.04	631.49
2134	166.55	574.76	2185	109.88	609.06	2237	122.74	628.12
2135	183.54	569.57	2188	127.69	605.54	2238	141.33	624.20
2136	200.36	563.87	2187		601.48	2239	159.80	619.73
2130	217.01	557.67		163.40	596.89	2240	179.12	614.71
2138	233.47	550.98	2189	181.04	591.78	2241	196.29	609.15
2139	249.72	543.81	2190	198.53	586.14	2242	214.29	603.06
2140	265.76	536.16		215.84		2243	232.10	596.43
2141	281.55		2192	232.96	573.33	2244	249.70	589.28
2141	297.10	528.03 519.44	2193	249.88	566.16	2245	267.08	581.61
2142			2194	266.57		2246	284.23	573.42
2143	312.39	510.39	2195	283.04	550.34	2247	301.12	564.73
2144	327.40	500.90	2196	299.25	541.69	2248	317.75	555.55
	342.13	490.96	2197	315.19	532.57	2249	334.11	545.87
2146	356.55	480.58	2198	330.86	522.98	2250	350.16	535.71
2147	370.66	469.79	2199	346.24	512.93	2251	365.91	525.08
2148	384.44	458.59	2200	361.32	502.42	2252	381.33	513.99
2149	397.89	446.96	2201	376.07	491.48	2253	396,42	502.44
2150	410.98	434.96	2202	390.49	480.10	2254	411.16	490.45
2151	423.71	422.57	2203	404.57	468.29	2255	425.54	478.03
2152	436.07	409.80	2204	418.30	456.08			

PLANT CHARACTERISTICS AND PERFORMANCE DATA

No contingency heliostats have been included in the collector design to replace those temporarily disabled during repair or routine maintenance.

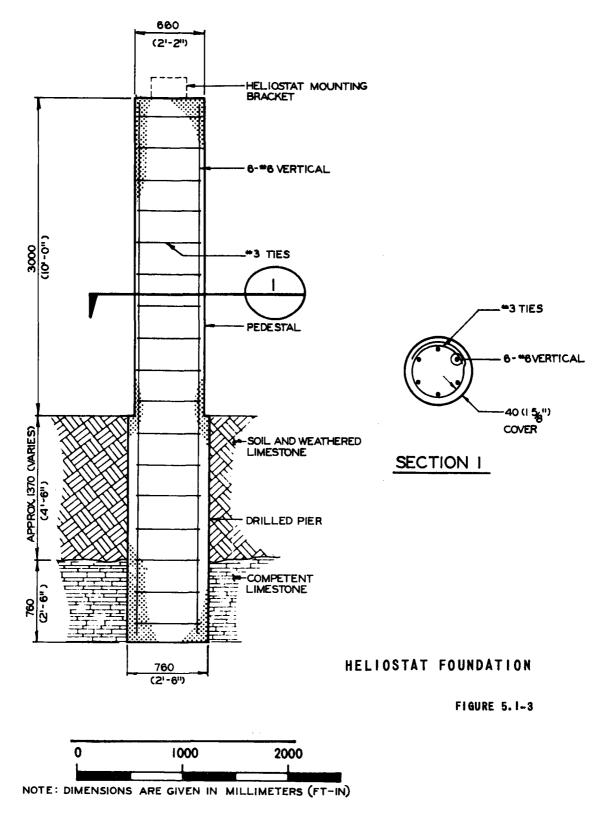

- (b) All 2,255 heliostats are identical in configuration to the second generation heliostat design developed in the DOE Heliostat Development Program.
- (c) Each heliostat is supported by a reinforced concrete foundation as illustrated in Figure 5.1-3. Below grade the foundation is constructed as a drilled pier socketed into the competent limestone. Above grade the pedestal is constructed as a circular column. A reinforcing cage extends the full height of the foundation. The dimensions and design forces are based on data produced for the second generation heliostat design in the DOE Heliostat Development Program.
- (2) Performance Characteristics. A detailed breakdown of the collector system performance at the design point (noon, March 21) is presented in the stairstep chart in Figure 5.1-4. The collector is specifically designed to direct 82.5 MWt to the receiver at the design point, with an insolation of 0.95 kW/m². Similarly, Figure 5.1-4 illustrates the annual average field performance stairstep; the reference insolation of 0.72 kW/m² is an annual average value based on the clear air insolation model described in Section 5.5.1.

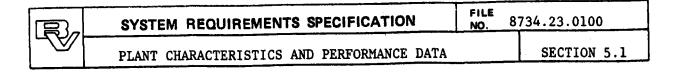
Figure 5.1-5 demonstrates the relative effectiveness of heliostats in various portions of the collector field for the design point and on an annual average basis. The isopleths represent the power per unit of mirror area redirected to the receiver surface, and indicate the most efficient heliostats will be those directly north of the tower; heliostats with the lowest efficiency will be those in the southwest and southeast corners of the field. The current field design represents a departure from optimum since heliostats in the southwest and southeast corners would deliver more annual energy to the receiver if they

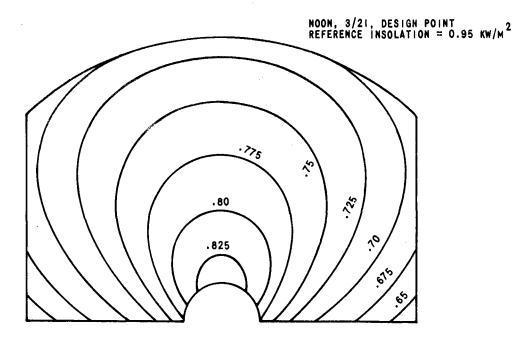
R

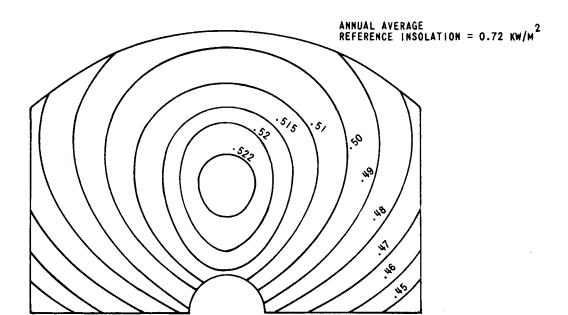
PLANT CHARACTERISTICS AND PERFORMANCE DATA

SECTION 5.1

	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
4	PLANT CHARACTERISTICS AND PERFORMANCE DATA		SECTION 5.1


105.1						
100.0	96.3					
	91.6	86.6	86.6	86.6	83.4	82.5
		82.4	82.4	82.4	79.4	78.5
						/0.5
IELD		ΙνιτΥ	ADOW	вгоск	TION	
INCIDENT ON FIELD	ESS COSINE	LESS REFLECTIVITY	LESS TOWER SHADOW	LESS SHADOW-BLOCK	LESS ATTENUATION	LESS SPILLAGE
INCID	LESS (LESS	LESS -	LESS (LESS	LESS :
	91.6	90.0	100.0	100.0	96.3	98.9

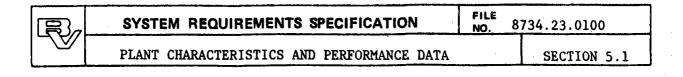

NOON, 3/21, DESIGN POINT


ANNUAL AVERAGE

	79.6						
	100.0						
		66.9					
		84.0	60.2	57.9	57.7		
			75.6	72.7	72.4	55.5 69.7	54.7
					z	05.7	68.6
Ì	LD L		Τ	LESS SHADOW-BLOCK	ESS TOWER SHADOW	NO	
	INCIDENT ON FIELD		LESS REFLECTIVITY	V-BL	SHA	LESS ATTENUATION	щ
	N O	NE	LEC	DO	ER	ENC	LESS SPILLAGE
	TNI	LESS COSINE	ΥEF	HA	MO	F	PIL
	SIDE	ss	SSF	s ss	L SS	SS /	SS S
	Ĩ	L L	Ϊ	Ŭ L	Ű	ΓË	Ľ
		84.0	90.0	96.1	99 .7	96.2	98.5

COLLECTOR SYSTEM EFFICIENCY STAIR STEPS

POWER INCIDENT ON RECEIVER PER UNIT OF MIRROR AREA


FIGURE 5.1-5

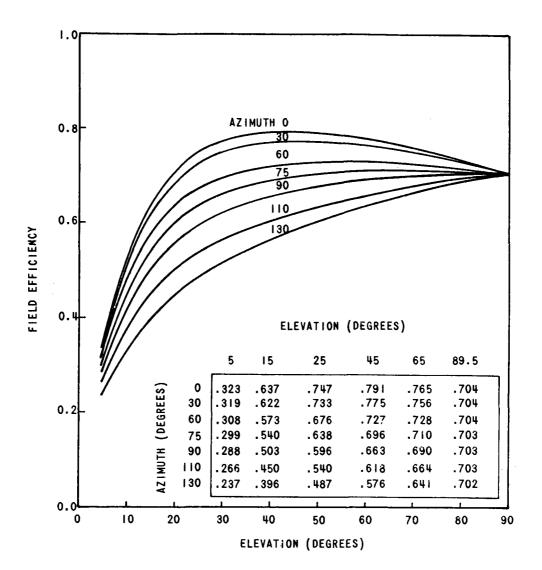
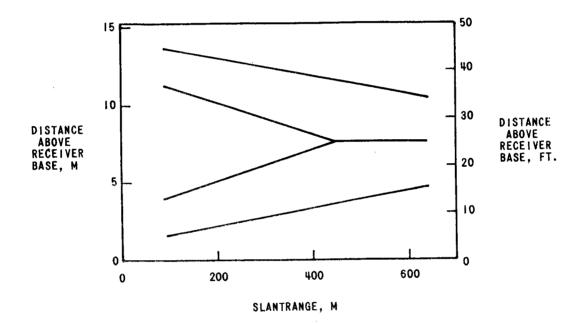

were placed along the northern edge of the field. However, the departure is necessary to reduce the peak incident flux on the north side of the receiver and redistribute more power to the west and east receiver panels, which results in less than 1 per cent loss in annual field performance.

Figure 5.1-6 presents the overall field efficiency values in graphical and tabular form for various sun azimuths and elevations. Field efficiency is defined such that its product with direct normal insolation and total field mirror area yields the total power incident on the receiver surface. The values shown here include the combined effects of cosine, tower shadow, heliostat shading and blocking, mirror reflectivity, atmospheric attentuation, and spillage.

The baseline heliostat design is composed of 12 curved mirror panels attached to a single frame; the orientations of the panels on the frame are adjusted (canted) to form a segmented surface with an overall effective curvature. The performance characteristics presented here assume the focal lengths of the individual panels and the overall focal length produced by on-axis canting were both equal to the heliostat's slantrange, the distance from mirror to target. On-axis canting refers to perfect focusing when the sun, heliostat, and aim point lie on the same line.

The collector subsystem will redirect power to the receiver using an aim strategy which assigns a unique aim point location to each heliostat in the field. All heliostats redirect their images toward the receiver centerline (i.e., no circumferential shift), but alternate between four vertical aim points on the receiver surface as illustrated in Figure 5.1-7. The vertical separation between aim points is a function of the heliostat's slantrange, and is tailored to meet the incident flux requirements of the receiver specified in Section 3.4. By spreading the beams vertically, incident power is evenly distributed without significantly increasing the total spillage loss.



COLLECTOR FIELD EFFICIENCIES

FIGURE 5.1-6

SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
PLANT CHARACTERISTICS AND PERFORMANCE DATA		SECTION 5.1

COLLECTOR FOUR POINT AIM STRATEGY

FIGURE 5.1-7

A simple algorithm is presented there to generate the aim point coordinates (X, Y, and Z) based on a heliostat's polar field coordinates (R and THETA) and identification number (NH). Heliostats have been assigned unique identification numbers from 1 to 2,255 by numbering them from the inner row to the outer, and from the west end of the row clockwise to the east.

The algorithm computes an aim point number (NA) from one to four corresponding to the numbered curves of the aim strategy diagram in Figure 5.1-7. Then the heliostat slantrange (S) is determined and used to compute the coordinates (X, Y, and Z) of the aim point in metres from the base of the tower.

The FORTRAN statements below can be used to perform the aim point calculations.

NA = 1 + MOD [(NH-1), 4] S = [(R - 4.724) ** 2 + 14,400] **0.5 X = 4.724 * ASIN (THETA/57.2958) Y = 4.724 * ACOS (THETA/57.2958) IF (NA.EQ.1) Z = 130.6 - 0.0057 * S IF (NA.EQ.2) Z = 117.6 + 0.0057 * S IF (NA.EQ.3) Z = AMAXI [124.1, (128.67 - 0.0102 * S)] IF (NA.EQ.4) Z = [124.1, (119.53 + 0.0102 * S)]

The function MOD, used in the equations above, is a FORTRANsupplied function which produces the remainder resulting from division of the first argument by the second. Functions ASIN and ACOS return the sine and cosine of their arguments, respectively.

- (3) Operating Characteristics. The baseline heliostat and its control electronics are identical to the second generation heliostat configuration developed in the DOE Heliostat Development Program. The following data describe the operating characteristics expected for that design.
 - (a) In normal operating mode, each heliostat will track the sun, redirecting sunlight to an aim point on the receiver surface. In standby mode, heliostats will track the sun in a similar

SYSTEM REQUIREMENTS SPECIFICATION

manner, redirecting sunlight to one of two stationary points in space. Heliostats in the east half of the collector field will be assigned a standby position northwest of the tower, allowing all heliostats on that side of the field to be brought from standby to the receiver without tracking accross the normally unirradiated portion of the south side of the receiver. Similarly, heliostats in the west half of the field will be assigned a standby position northeast of the tower.

Heliostats may assume a directed position for cleaning, maintenance, or stowage on command from the Heliostat Array Controller or from local manual command at the Heliostat Controller.

Control software will provide time sequenced commands to the heliostats to execute predefined procedures such as start-up, shutdown, and emergency defocussing. In normal start-up, groups of heliostats will be brought from stow position to standby by moving their beams from ground level up a vertical safety corridor to standby position. Then, upon command, the beams will be moved from standby to the receiver surface as needed. Evening shutdown will follow the reverse sequence, with beams redirected from the target to standby, then down the safety corridor to ground level.

Under emergency conditions requiring the immediate removal of power from the receiver surface, all heliostats will be directed to standby and will wait for operator command to return to target or to stow position.

Upon loss of command from the Heliostat Array Controller, the Heliostat Controllers will initiate a stow sequence, using preprogrammed instructions to bring the beam down safely. Upon loss of power, the heliostats will fail in place. PLANT CHARACTERISTICS AND PERFORMANCE DATA

(b) Each heliostat has two electric motors requiring a 110 volt ac power supply, and is expected to consume 32 watt-hours of energy per 12-hour day. The peak motor current for both motors combined is 5 amps; the peak inrush is 18 amps rms.

The Heliostat Controllers, Field Controllers, and Heliostat Array Controllers require a 120 volt supply with average currents of 0.24 A, 0.07 A, and 20 A, respectively. The Heliostat Array Controller has an identical backup system in hot standby which also requires 20 A.

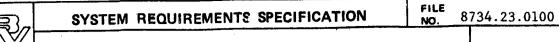
The total installed power rating of equipment in the Collector System (based on 2,255 Heliostats, 71 Field Controllers, and two Heliostat Array Controllers) is 1,064 kW, and is broken down as follows.

	Total Installed Power
Heliostat Motors	1,006 kW
Heliostat Controllers	53 kW
Heliostat Field Controllers	0.5 kW
Heliostat Array Controllers	4.0 kW

Only a portion of the heliostats will be positioned at a time. The average operating power required by the collector system is 63.4 kW.

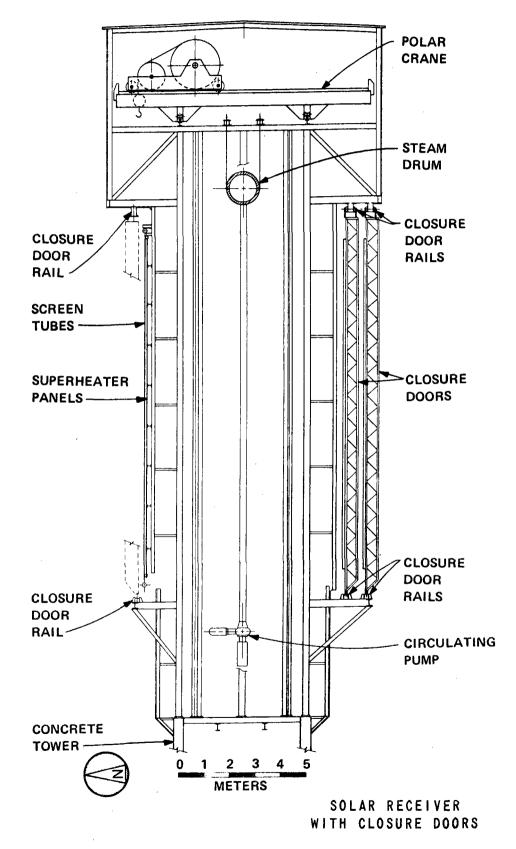
(c) Control system characteristics--heliostat control is accomplished by a digital computer system which interprets operator commands, generates steering instructions for each heliostat individually, and performs monitoring and self-test routines.

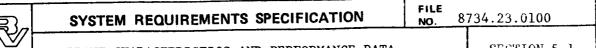
Executive control is exercised by the Heliostat Array Controller (HAC) which interfaces with the Master Control System (MCS) and interprets commands entered by the operator via CRT. The HAC performs sun position calculations using the ephemeris tables and time inputs synchronized with Coordinated Universal Time through radio station WWV. The calculations use barometric pressure and temperature to make corrections to the sun position due to atmospheric refraction. The HAC interfaces with the heliostat field by sequentially addressing the 71 Heliostat Field Controllers (HFC), and transmitting the sun position data and command information. Through the HFC's, the HAC is capable of addressing individual heliostats, groups of heliostats, or the entire field.


The HFC controls up to 32 heliostats by accepting sun position and command data from the HAC and sequentially transmitting the information to the individual Heliostat Controllers (HC). The HFC also accepts status information from the HC's and transmits it to the HAC.

The HC is a microprocessor controller which receives data from the HFC and calculates the azimuth and elevation angles of the heliostat based on sun position and on the heliostat and aim point coordinates stored in the microprocessor memory. The HC also services the ac motor control loop, advancing the motors until the calculated grimbal angles are reached. In addition, the HC has a self-check system which signals the HAC in the event of a failure. If command from the HAC is lost, the HC is capable of directing the heliostat to stow position.

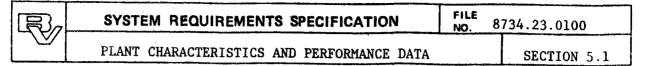
(d) The operating and survival limits of the collector system
 will be identical to those defined for the second generation
 heliostats designed in the DOE Heliostat Development Program.


5.1.4 Receiver Data


- (1) Design characteristics are as follows.
 - (a) External receiver with closure doors (Figure 5.1-8), modular design steam generator with pump circulation.
 - Diameter 9.5 m (31.2 ft).
 - Height 15.24 m (50 ft).
 - Center receiver 124 m (407 ft) above center of heliostats.
 - Active surface 4.189 rad (240 degrees).

PLANT CHARACTERISTICS AND PERFORMANCE DATA

SECTION 5.1



PLANT CHARACTERISTICS AND PERFORMANCE DATA

- (b) Absorber tubes and panels are as follows.
 - Materials, sizes, numbers, see Table 5.1-2.
 - Number of tubes spacing, flow, see Table 5.1-3.
- (c) Receiver valves, see Table 5.1-4.
- (d) Weight of external receiver with closure doors.
 - Boiler and mountings--73,000 kg (160,000 lb).
 - Circulating pump and motor--5,000 kg (11,000 lb).
 - Economizer--11,000 kg (25,000 lb).
 - Superheater and piping--74,000 kg (164,000 lb).
 - Controls--18,000 kg (40,000 lb).
 - Insulation and lagging--136,000 kg (300,000 lb).
 - Structural steel, platforms, and crane--277,000 kg (610,000 lb).
 - Casing and siding--73,000 kg (160,000 lb).
 - Closure door (with insulation)--63,000 kg (140,000 lb).
 - Receiver fluid--15,000 kg (33,000 lb).
 - Total--775,000 kg (1,643,000 lb).
- (e) Receiver is designed to Section 1 of ASME Boiler Code.
- (f) Receiver is designed for operational wind loads of 40 m/s
 (90 mph) and will survive gusts of 47 m/s (105 mph) as well as the seismic load of UBC Zone 1.
- (g) Receiver surface coating: Pyromark with absorptivity of95 per cent.
- (h) Thermal performance, see Figure 5.1-9.
 - Receiver heat losses, per Sandia Report No. SAND 79-8166
 on Solar Advanced Steam/Water Receiver, Appendix C.
 - Effect of wind speed and ambient temperature on thermal performance, see Figure 5.1-10.
- (i) Maximum receiver steam outlet pressure is 14.86 MPa (2,155 psi).Receiver design pressure is 16.55 MPa (2,450 psi).

Steam output at design point (equinox noon) is 111,260 kg (245,287 lb).

TABLE 5.1-2. GENERAL DESIGN DATA FOR SOLAR RECEIVER PANELS

Membrane (Superheater)	
Tube and Membrane Material	800H
Tube Outside Diameter cm (in.)	1.905 (0.750)
Tube Wall Thickness cm (in.)	0.254 (0.100)
Active Tube Length m (ft)	15.24 (50)
Total Tube Length m (ft)	15.85 (52)
Number of Tubes Per Panel	43
Panel Width m (ft)	1.24 (4.06)
Tube Spacing cm (in.)	2.858 (1.125)
Membrane Thickness cm (in.)	0.476 (0.187)
Inlet Header OD cm (in.)	11.43 (4.5)
Outlet Header OD cm (in.)	11.43 (4.5)
Header Matererial	800H
Design Pressure MA (PSIA)	16.9 (2,450)
Screen Tubes (Multi-Lead Internal Ribs)	
Tube Material	SA-213-T2
Tube Outside Diameter cm (in.)	3.493 (1.375); 3.810 (1.550); 4.128 (1.625)
Tube Wall Thickness cm (in.)	0.376 (0.148)
Tube Spacing cm (in.)	11.43 (4.50; 8.573 (3.375)
Number of Tubes PerPanel	15, 11
Active Tube Length m (ft)	15.24 (50)
Total Tue Length (ft)	16.15 (53)
Inlet Header OD cm (in.)	16.828 (6.625)
Outlet Header OD cm (in.)	16.828 (6.625)
Header Material	SA-210C
Membrane (Economizer)	
Tube and Membrane Material	SA-210-A1
Tube Outside Diameter cm (in.)	2.540 (1.000)
Tube Wall Thickness cm (in.)	0.343 (0.135)

SYSTEM REQUIREMENTS SPECIFICATION	FILE	8734.23.0100
PLANT CHARACTERISTICS AND PERFORMANCE DATA		SECTION 5.1

TABLE 5.1-2 (Continued). GENERAL DESIGN DATA FOR SOLAR RECEIVER PANELS

Membrane Economizer (Continued)	
Active Tube Length m (ft)	15.24 (50)
Total Tube Length m (ft)	15.85 (52)
Number of Tubes Per Panel	32
Panel Width m (ft)	1.24 (4.06)
Tube Spacing cm (in.)	3.810 (1.500)
Membrane Thickness cm (in.)	0.635 (0.250
Inlet Header OD cm (in.)	16.828 (6.625)
Outlet Header OD cm (in.)	16.828 (6.625)
Header Material	SA-106-C
Design Pressure MPa (PSIA)	17.25 (2,500)

TABLE 5.1-3. PANEL DATA (EXTERNAL RECEIVER)

			Screen	Tube (Bo	iler)				M	embrane Tul	be		
<u>Panel</u>	Width (ft)	<u>No.</u>	Space (in.)	$\frac{OD}{(in.)}$	ID (in.)	<u>Flow</u> (lb/h)	<u>Type</u>	<u>No.</u>	Space (in.)	<u>OD</u> (in.)	ID (in.)	<u>Flow</u> (lb/h)	Efficiency (per cent)
1	4.06	15	3.375	1.375	1.035	80180.	SH 1	43	1.125	0.750	0.530	54775.	88.99
3	4.06	15	3.375	1.375	1.035	80180.	SH 1	43	1.125	0.750	0.530	54775.	89.01
5	4.06	15	3.375	1.625	1.285	80180.	ัรห 3	43	1.125	0.750	0.530	60812.	86.94
7	4.06	15	3.375	1.625	1.285	80180.	SH 3	43	1.125	0.750	0.530	60812.	86.66
9	4.06	11	4.500	1.500	1.160	58799.	SH 2	43	1.125	0.750	0.530	60812.	86.85
11	4.06	11	4.500	1.375	1.035	58799.	SH 2	43	1.125	0.750	0.530	60812.	84.48
13	4.06	0					ECON	32	1.500	1.000	0.703	54775.	85.23
15	4.06	0					ECON	32	1.500	1.000	0.703	54775.	56.91

NOTES: (1) SH 1 - Primary superheater; SH 2 - Intermediate Superheater; SH 3 - Secondary Superheater ECON - Economizer

(2) Panels with even number located on the west side of receiver are identical to those with next lower odd number on the east side.

PLANT CHARACTERISTICS SYSTEM REQUIREMENTS AND PERFORMANCE DATA SPECIFICATION NO. FILE 8734.23.0100 SECTION 5 ш

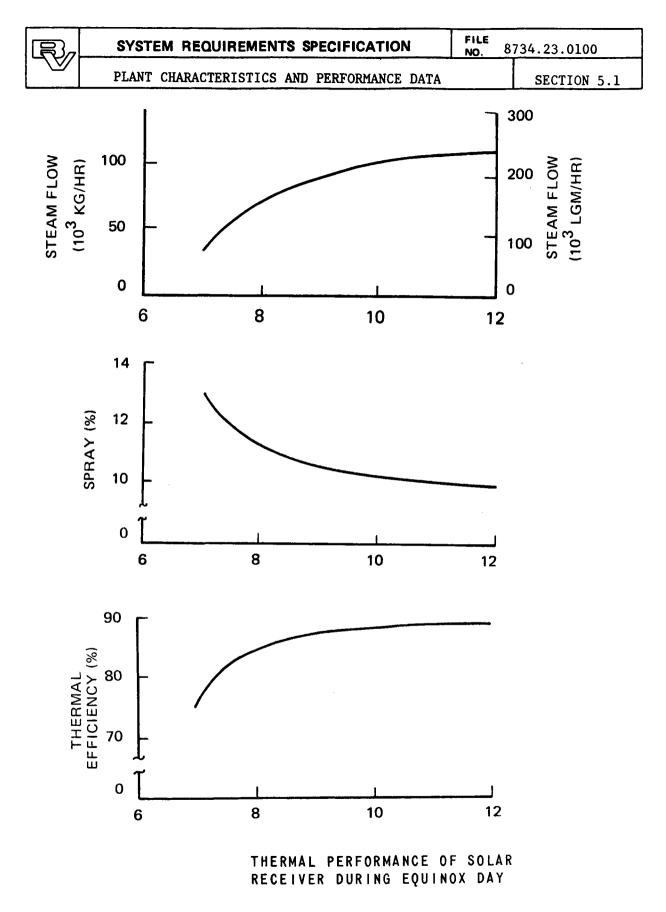
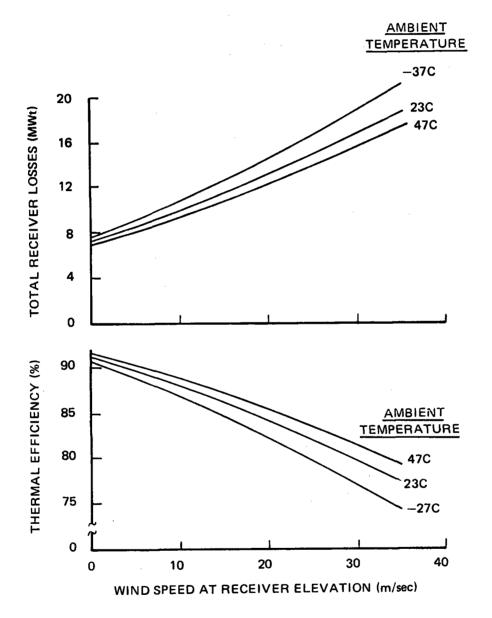
TABLE 5.1-4. LIST OF RECEIVER VALVES

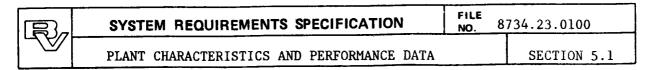
<u>No.</u>	Service	Туре	Operator*	<u>Size</u>	Quantity
1	Feedwater Regulator	Globe	Control	6	1
2	Feedwater Stop	Gate	Motor	6	1
3	Feedwater Check	Nonreturn		6	1
4	Economizer Drain	Globe	Motor	1.	1
5	Economizer Press Test	Globe	Manual	1	2
6	Economizer Vent	Globe		1	2
7	Drum Atmospheric Vent	Globe	Motor	1	2
8	Drum Safety Valve	Safety	Spring	3	1
9	Drum Press Test	Globe		1	2
10	Drum Press	Globe		1	2
11	Drum Nitrogen	Globe	Motor	1	1
12	Steam Sampling	Globe		1	2
13	Continuous Blowdown	Globe	Motor	1	2
14	Chemical Feed	Globe		1	2
15	Water Sampling	Globe		1	2
16	Remote Level Trnasmittr	Globe		1/2	4
17	Water Gage Glass	Globe		1/2	2
18	Water Gage Drain	Globe		1/2	2
19	Drum Level Dump Shut-Off	Gate	Motor	2	1
20	Drum Level Dump	Globe	Control	2	1
21	Pump Auxiliary	Globe		1	20
22	Sparger Check	Nonreturn	Motor	1-1/2	3

8734.23.0100 SECTION 5.1

TABLE 5.1-4 (Continued).	LIST OF RECEIVER VALVES

<u>No.</u>	Service	Туре	Operator*	Size	Quantity
23	Sparger	Globe	Control	1-1/2	1
24	Receiver Blowdown	Globe	Motor (1)	1	3
25	Economizer Crculation	Nonreturn	Motor	1-1/2	1
26	Attemperator Block	Gate	Motor	1-1/2	1
27	Attemperatur Spray	Globe	Control	1-1/2	4
28	Attemperator Check	Nonreturn		1-1/2	4
29	PSH Panel	Butterfly	Control	3	4
30	ISH Panel	Butterfly	Control	3	4
31	SSH Panel	Butterfly	control	3	4
32	Superheater Vents	Globe	Motor	1	6
33	SH Vent Shut-Off	Globe	Motor	2	1
34	SH Nitrogen	Globe	Motor	1	2
35	SH Drain	Globe	Motor	1	6
36	SH Drain Shut-Off	Globe	Motor	1-1/2	1
37	SH Trap	Trap		1	6
38	MS Press Test	Globe		1	2
39	MS Safety Valve	Safety	Spring	2-1/2	1
40	MS Electromagnetic Shuf-Off	Gate	Motor	3	1
41	MS Electromatic	Relief	Electric	2-1/2	1
42	MS Stop Valve	Gate	Motor	10	1
43	Warm-Up Shut-Off Valve	Gate	Motor	3	1
44	Warm-Up Valve	Globe	Control	3	1


FIGURE 5.1-9

R	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	070/ 00 0100					
	PLANT CHARACTERISTICS AND PERFORMANCE DATA		SECTION 5.1					

THERMAL EFFICIENCY AND LOSSES WITH VARIOUS WIND SPEED AND AMBIENT TEMPERATURE

FIGURE 5.1-10

- (2) Operating characteristics are as follows.
 - (a) Receiver incident power density, see Table 5.1-5.
 - (b) Receiver absorbed power, see Table 5.1-5 and Figure 5.1-11.
 - (c) Flux map at design point, see Figure 5.1-12.
 - (d) Recevier losses, see Table 5.1-5.
 - (e) Tube material temperatures, see Figure 5.1-13.

Working stresses are below Code allowable with at least 13 per cent safety margin.

Receiver can withstand at least 10,000 cold start-ups and 50,000 cycles from complete and partial cloud cover. Expected lifetime is 30 years.

(f) Start-up Procedures--morning start-up (receiver cold). The primary consideration for start-up in the morning is to prewarm the receiver with feedwater and main steam from the fossil boiler to allow complete solar insolation at sunrise. The initial conditions of the receiver are near ambient temperature with a nitrogen blanket at slightly above atmospheric pressure. The warm-up procedure brings the receiver to main steam line pressure and saturation temperature by sunrise.

A maximum of 34,000 kg/h (75,000 lb/h) of feedwater at 186 C (367 F) and 17,500 kg (38,700 kg) of steam at 538 C (1,000 F) are used to supply about 13 MWh (44 MBtu) of energy for warm-up of the receiver metal and fluid plus overcome losses to the surroundings.

The expected trends during cold start-up of energy required, steam consumption, receiver pressurization, and temperature are shown on Figure 5.1-14.

First, the boiler circulation system is heated from ambient to 116 C (240 F) saturation temperature with feedwater. At 100 C (212 F), the superheater is heated by admitting steam and removing condensate through drain traps.

.

TABLE 5.1-5. RECEIVER ABSORPTION DATA

	Incid	ent				
Panel No.	Power Density	Power	Absorbed	<u>Losses</u> (MW)		
	(KW/m^2)	(MW)	(MW)	• •		
1&2	439	8.28	7.53	0.75		
3 & 4	415	7.83	7.12	0.71		
5 & 6	392	7.40	6.57	0.83		
7 & 8	356	6.72	5.95	0.77		
9 & 10	290	5.47	4.85	0.62		
11 & 12	198	3.73	3.19	0.54		
13 & 14*	80	1.50	1.27	0.23		
15 & 16*	15	0.29	0.17	0.12		
Total		82.45	73.30	9.15		
Efficiency			0.8	39		

*Economizer Panels.

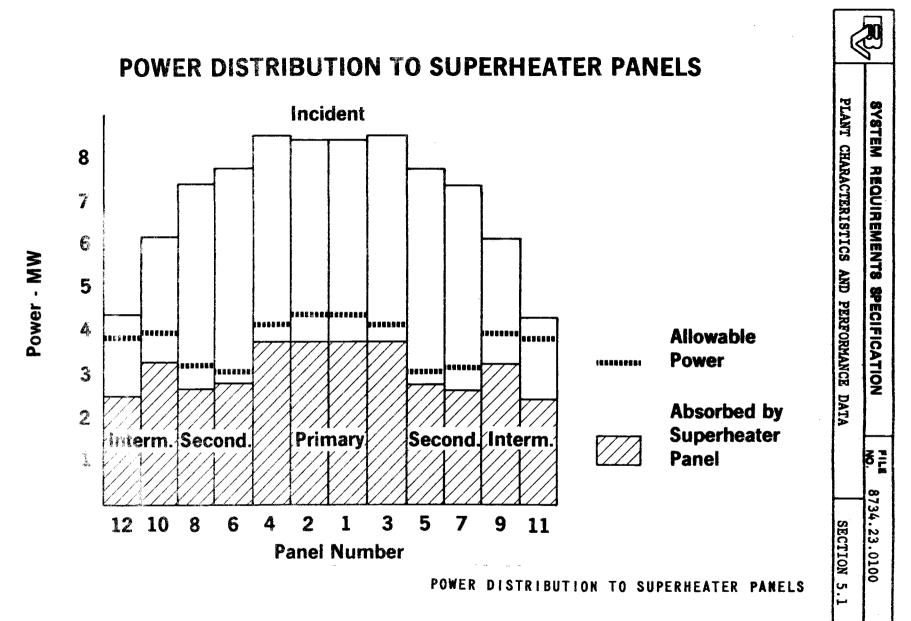


FIGURE 5.1-11

THE TIME POINT UNDER TEST IS: DAY = RO, HOUR = 12 TOTAL POWER WAS R3.3R1 MEGANATTS R2.63R MV HIT THE CYLINDER .744 MV MISSED THE CYLINDER INSOLATION = 0.95 KW/SQM

MAP OF THE INCIDENT FLUX (KW/SQ METER) AS VIEWED FROM THE FIELD IS

NETERS

• CW FROM NORTH

ABOVE BASE																								_
OF CYLINDER	353	338	323	308	293	278	263	248	233	21 8	203	188	173	159	143	129	113	ับห	83	69	53	38	23	8
		_!	_ _	_1_	_!_		_ _	_1_	_1_	_ _	_!_	_ _	_1_	_1_	_!_	_!_	_ _	_!_	_ _	_!_	<u> </u>	_!_	_!_	_!
14.48	128	135	123	121	97	70	32	14	1	0	1	0	0	1	0	1	4	32	70	9 7	121	123	135	128
12.95	412	353	357	333	294	207	77	14	1	0	0	0	0	0	0	1	14	77	207	294	333	357	353	412
11.43	473	412	390	388	330	204	86	19	3	0	0	0	0	0	0	3	19	86	204	330	388	390	412	473
9.91	594	578	542	449	373	254	102	14	6	0	0	0	0	0	0	6	14	102	254	373	449	542	57¤	594
8.38	592	584	520	1499	356	254	110	26	6	1	0	0	0	0	1						499			
6.85	626	593	522	470	383	233	104	27	3	1	0	0	0	0	1	3	27	104	233	383	470	522	593	626
5.33	595	539	503	473	359	250	109	18	6	1	0	0	0	0	1	6	18	109	250	359	473	503	539	595
3.81	459	470	450	392	337	219	93	18	14	1	0	0	0	0	1	4	18	93	219	337	392	450	470	459
2.29	400	375	391	330	275	219	65	11	1	0	0	0	0	0	0	1	11	65	219	275	330	391	375	400
0.76	113	117	130	116	99	71	20	4	0	0	0	0	0	0	0	0	4	20	71	99	116	130	117	113

FLUX MAP FOR RECEIVER

FIGURE 5.1-12

PLANT CHARACTERISTICS

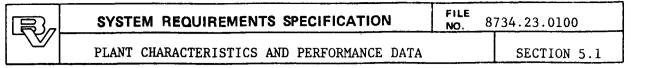
AND

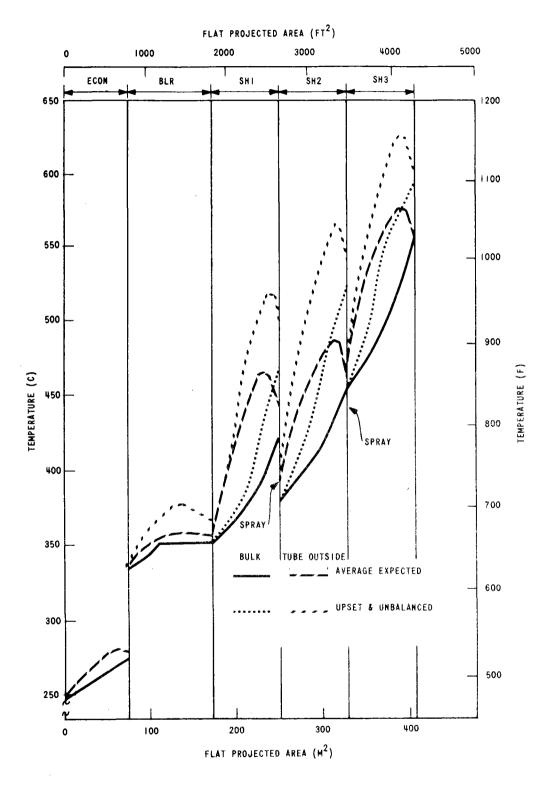
PERFORMANCE

DATA

SECTION 5

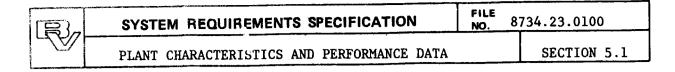
Ē

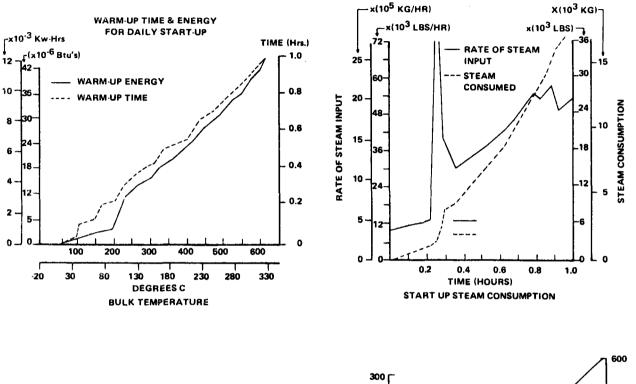

SYSTEM

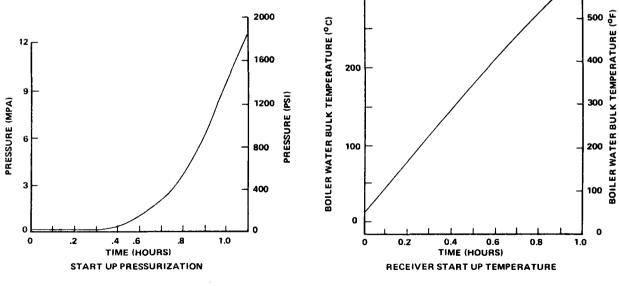

REQUIREMENTS

SPECIFICATION

NO.


8734.23.0100





FLUID AND METAL TEMPERATURE PROFILE OF BOILER

SREG NES-071580

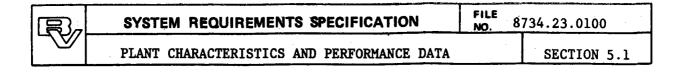
RECEIVER WARM-UP DATA AT START-UP

FIGURE 5.1-14

NO.

PLANT CHARACTERISTICS AND PERFORMANCE DATA

Then the circulation system and the superheater are warmed up to 538 C (620 F) together.


This accomplishes a cost savings in energy by reducing radiation and convection losses to the surroundings.

Additional start-up equipment required for a solar receiver are: a steam sparger inductor to warm up the boiler water and circulation system, drum level dump valve, superheater condensate traps and a warm-up valve to control rate of pressurization.

(g) Start-Up Procedures--Morning Start-Up (Receiver Warm). The receiver can be started up each morning with less energy requirements and in a shorter time period if enclosure doors are utilized. The receiver thermal energy is banked overnight by shutting the doors to reduce losses. The initial conditions for morning start-up may vary from 0.172 MPa (25 psia) and 115.6 C (240 F) to 1.72 MPa (250 psia) and 205 C (400 F) depending on ambient conditions.

The fossil boiler supplies 8.8 MWh (30 x 10^6 Btu) energy using about 13,600 kg (30,000 lb) main steam to warm up the solar receiver to saturation temperature and pressurize corresponding to steam line pressure existing at sunrise. The enclosure door is opened just prior to sunrise and the receiver will be at conditions to accept solar insolation.

- (h) Mid-Day Start-Up--for start-up after sunrise, selective heliostat focusing will be required to duplicate the morning solar power input to the receiver. Other procedures will be the same as either the cold or warm morning start-up procedures.
- (i) Receiver Cooldown--receiver cooldown curves with and without closure doors are shown on Figure 5.1-15.

RECEIVER COOLDOWN RATE

RECEIVER COOLDOWN RATE

FIGURE 5.1-15

		_	
	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
4	PLANT CHARACTERISTICS AND PERFORMANCE DATA		SECTION 5.1
5.	1.5 <u>Receiver Loop Data</u>		
	(1) Equipment Design Characteristics.		
Eq	uipment Description		
Co	175 gpm at 20 be designed f at 100 C (212 conditions of (250 F). The	0 feet or pumy F), w: 445 kl pump v driven	entrifugal pump, head. The pump will ping saturated liqu ith casing design Pa (50 psi) at 121 will be electric with a motor horse ely 10 hp.
Ma	in steam drain pumps Two full capa	city c	entrifugal pumps to

serve the two main steam pipe yard area drains. The pumps will each be rated 50 gpm at 200 feet head. The pumps will be designed for pumping saturated liquid at 100 °C (212 F), with casing design conditions of 445 kPa (50 psi) and 121 C (250 F). The pumps will each be driven with electric motors with approximate horsepower ratings of 5 hp.

One tank to serve the solar receiver drains and the main steam pipe drain near the receiver. The tank will be of carbon steel construction, with an internal stainless steel wear plate at the inlet connection. The tank will vent to atmosphere, and will drain to the condensate return pump. The tank will be 1.2 metres (48 inches) in diameter and 2.1 metres (84 inches) tall.

Two tanks to serve the two main steam pipe yard area drains. The tanks will be of carbon steel construction, with an internal stainless steel wear plate at the inlet connection. The tanks will vent to atmosphere, and will drain to the main steam drain pumps. The tanks will be 0.9 metres (36 inches) in diameter and 2.1 metres (84 inches) tall.

Filtering equipment to remove chemical solids from water returned from the solar receiver to the existing deaerator or condenser. The equipment will include redundant, full capacity, regeneration type filters. The filter

Solar receiver blowdown tank

Main steam drain tanks

Condensate filtering equipment

~	SYSTEM REQUIREMENTS SPECIFICATION	3734.23.0100
	PLANT CHARACTERISTICS AND PERFORMANCE DATA	SECTION 5.1

Equipment

Condensate filtering equipment (continued)

Chemical feed equipment

Description

pressure vessels will be designed for operation at 790 kPa (100 psi) and 121 C (250 F). The filtering equipment will include bypass, isolation, and drain valves and piping as required to facilitate operation.

Equipment for the addition of chemicals to the receiver feedwater makeup to control receiver water chemistry. The equipment will include a chemical solution tank suitable for batch mixing, a chemical solution tank mixer, and a chemical feed pump. The chemical feed pump will be a diaphragm type pump rated to deliver approximately 1 gph at 20.86 MPa (3,025 psi) from the solution tank to the feedwater piping.

(2) Piping Design Characteristics. The design characteristics for receiver loop piping and associated valves will be as indicated in Table 5.1-6 Pipeline Listing. Nomenclature and abbreviations included in the pipeline listing are defined as follows.

Nomenclature	Description		
ASTM A335 Grade P22	Seamless 2-1/4 chrome, 1 per cent moly alloy piping		
ASTM A106 Grade B	Seamless carbon steel piping		
Sch	Schedule member for piping in compliance with ANSI B36.10, Welded and Seamless Pipe requirements for outside diameter and wall thickness.		
CL	Valve classification in accordance with the requirements of ANSI Bl6.34, Steel Buttwelding End Valves.		
2-1/4 CR	Valve body materials to be alloy chrome in accordance with requirements of ASTM A217 Grade WC9.		
CS	Valve body materials to be carbon steel in accordance with requirements of ASTM A216 Grade WEB.		
SW	Socket-weld type valve end connections.		
BW	Butt-weld type valve and connections.		

AND TEMPE	RATURES	TEST Pressure <u>psi</u>	PIPE	2" & SMALLER	ES 2½" & LARGER	INSULA- TION <u>CLASS</u>	SPECIAL FEATURES	PLANT C	0.0.
2140 PSI 1011 F	2155 PSIA 1020 F	3210	ASTM A335 GRADE P22	•		6"	FULLY RADIOGRAPH.	HARACI	
			10" PIPING: 8.250" ID 1.472" MIN WALL		54		SHOT BLAST CLEANING.	ERISTIC	
			2" AND SMALLER PIPING: SCH XXS						
2750 PSI 477 F	3100 PSIA 500 F	4628	ASTM A106 GRADE B	CL 2500 CS, SW	CL 2500 CS, BW	2-1/2"	SHOT BLAST CLEANING	PERFOR	
			6" PIPING: SCH XXS					MANCE	
			2" AND SMALLER PIPING: SCH 160					DATA	
82 PSI 212 F	115 PSIA 250 F	150	ASTM A106 GRADE B	CL 600 CS, SW	CL 150 CS, BW	2-1/2"	SHOT BLAST CLEANING.		
			4" PIPING: SCH 40					s	1
			2" AND SMALLER PIPING: SCH 80					ECTION	
	AND TEMPE OPERATING 2140 PSI 1011 F 2750 PSI 477 F 82 PSI	1011 F 1020 F 2750 PSI 3100 PSIA 477 F 500 F 82 PSI 115 PSIA	AND TEMPERATURES PRESSURE OPERATING DESIGN Psi 2140 PSI 2155 PSIA 3210 1011 F 1020 F 3210 2750 PSI 3100 PSIA 4628 477 F 500 F 4628 82 PSI 115 PSIA 150	ANDTEMPERATURES OPERATINGPRESSURE PSIPIPE2140PSI2155PSIA3210ASTM A335 GRADE1011F1020F3210ASTM A335 GRADE1011F1020F10"PIPING: 8.250"2140PSI2155PSIA3210ASTM A335 GRADE2140PSI2155PSIA3210ASTM A335 GRADE2140PSI2100F10"PIPING: SCH XXS2750PSI3100PSIA4628ASTM A106 GRADE477F500F4628ASTM A106 GRADE477F500F2"AND82PSI115PSIA150ASTM A106 GRADE82PSI115PSIA150ASTM A106 GRADE82PSI115PSIA150ASTM A106 GRADE212F250F150ASTM A106 GRADE2"ANDSMALLER PIPING: SCH 402"AND2"ANDSMALLER PIPING:2"	AND TEMPERATURES OPERATING DESIGHPRESSURE PSI2" & SMALLER2140 PSI2155 PSIA 1011 F3210ASTM A335 GRADE P22CL 2500 2-1/4 CR, SW2140 PSI2155 PSIA 1020 F3210ASTM A335 GRADE P22CL 2500 2-1/4 CR, SW2" AND SMALLER PIPING: SCH XXS2" AND SMALLER PIPING: SCH XXS2750 PSI3100 PSIA 500 F4628 GRADE BASTM A106 GRADE BCL 2500 CS, SW2750 PSI3100 PSIA 500 F4628 GRADE BASTM A106 GRADE BCL 2500 CS, SW2" AND SMALLER PIPING: SCH 1602" AND SMALLER PIPING: SCH 402" AND SMALLER PIPING: SCH 40	AND TIMPERATURES OPERATING PRESSURE 2" & 2½" & 22" &	PRESSURE Itor 2" & 22" & 22" & 100 AND TEMPERATURES OPERATING DESIGN PSI PIPE MALLER LARGER CLASS 2140 PSI 2155 PSIA 3210 ASTM A335 GRADE P22 CL 2500 2-1/4 CR, 2-1/4 CR, SW 6" 2140 PSI 2155 PSIA 3210 ASTM A335 GRADE P22 CL 2500 2-1/4 CR, 2-1/4 CR, SW 6" 21011 F 1020 F 3210 ASTM A335 GRADE P22 CL 2500 2-1/4 CR, 2-1/4 CR, SW 6" 21750 PSI 3100 PSIA 4628 ASTM A106 GRADE B CL 2500 CS, SW CL 2500 CS, SW 2-1/2" 2750 PSI 3100 PSIA 4628 ASTM A106 GRADE B CL 2500 CS, SW CL 2500 CS, SW 2-1/2" 477 F 500 F 6" PIPING: SCH XXS 2" AND SMALLER PIPING: SCH 400 2" AND SMALLER PIPING: 212 F 250 F 150 4" PIPING: SCH 40 ASTM A106 CS, SW CL 600 CS, SW CL 150 CS, SW 2-1/2" 2" AND SMALLER PIPING: 2" AND SMALLER PIPING: 2" AND SMALLER 2"/2"	PRESSURES AND TEMPERATURES OPERATING DESIGNPRESSURE PESSURE PAILPIPESMALLER 2" & 22" & 76TION 2" & 22" & 76SPECIAL FEATURES2140 PSI2155 PSIA 1020 F3210 ASTM A335 GRADE P22CL 2500 2-1/4 CR, 2-1/4 CR, 2-1/2 CR, 2	PRESSURES PRESSURE PRESSURE ADD TMMPERATURES PRESSURE DPERATING DESIGN 2140 PSI 2155 PSIA 3210 ASTM AUD TMAN 1011 F 1020 F 3210 ASTM AUD CL 1011 F 1020 F 3210 ASTM AUD CL 2500 CL 2500 F 3210 ASTM AUD CL 2500 F 3210 ASTM AUD F 10" PIPING: S.250" ID 1.472" MIN WALL 2" AND SMALLER PIPING: SCH 160 212 F 250 F 4628 ASTM A106 CL 2500 CL 2500 212 F 250 F 4628 ASTM A106 CL 2500 CL SCH 160 212 F 250 F 407

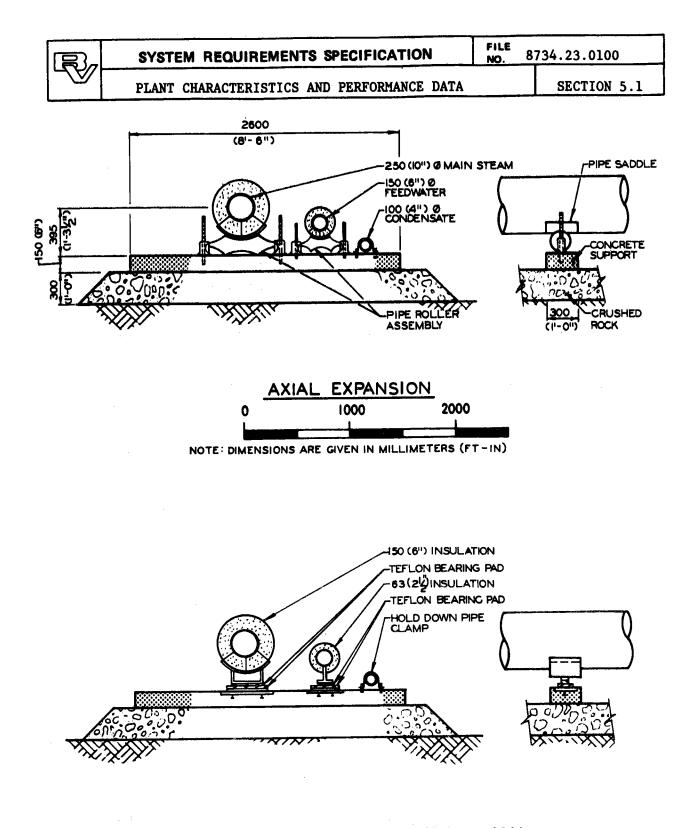
SREG NES-071580

5.1-53

NO.

PLANT CHARACTERISTICS AND PERFORMANCE DATA

The piping lengths indicated below include piping within the receiver support tower, and the expansion loops required to allow for thermal growth of the piping between ambient and operating temperatures.


Piping System	Length
Main steam	1,612 metres (5,289 feet)
Feedwater	1,337 metres (4,387 feet)
Condensate	1,337 metres (4,387 feet)
•	

The piping support method is illustrated on Figure 5.1-16.

(3) Operating Characteristics. The Receiver Loop System operating

characteristics are as follows.

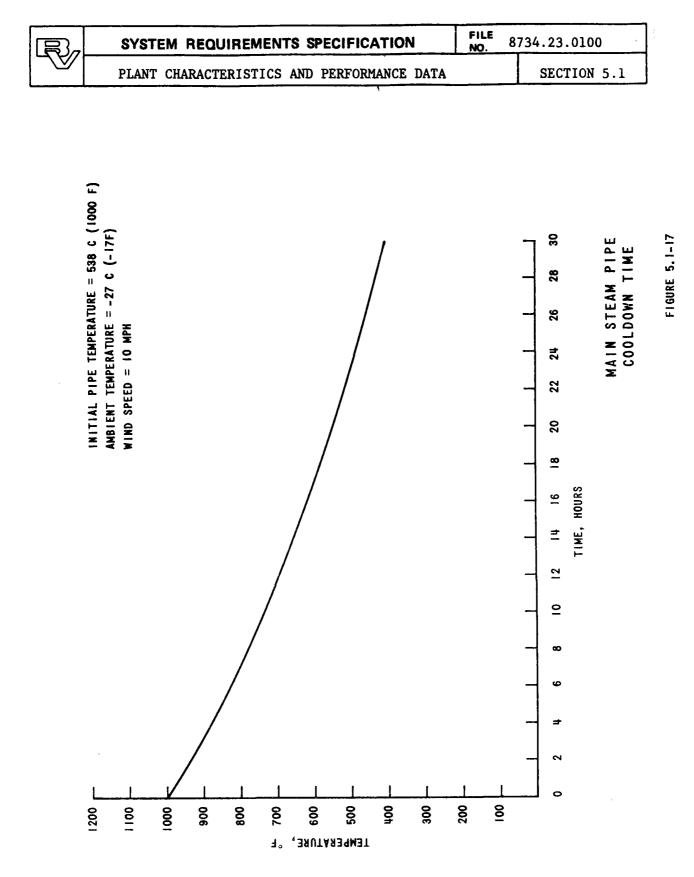
Main Steam Piping	Operating Conditions
Inlet pressure at overpressure operation	14.86 MPa (2,155 psia)
Outlet pressure at overpressure operation	13.76 MPa (1,995 psia)
Pressure drop	1.1 MPa (160 psi)
Inlet temperature	544 C (1,011 F)
Outlet temperature	538 C (1,000 F)
Flow rate	111,300 kg/h (245,287 lb/h)
Piping thermal loss at normal operating temperature	1,766,526 Btu/h
Feedwater Piping	
Inlet pressure at normal operation	19.07 MPa (2,765 psia)
Outlet pressure at normal operation	17.38 MPa (2,520 psia)
Pressure drop at normal operation	1.7 MPa (245 psi)
Water temperature	247 C (477 F)
Flow rate at normal operation	111,300 kg/h (245,287 lb/h)
Piping thermal loss at normal operation	636,554 Btu/h
Condensate Piping	
Inlet pressure for return flow to deaerator	668 kPa (96.9 psia)
Outlet pressure for return flow to deaerator	393 kPa (57 psia)
Pressure drop at normal operation	275 kPa (39.9 psi)
Water temperature	100 C (212 F)
Flow rate for receiver warming operation	34,000 kg/h (75,000 lb/h)

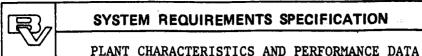
AXIAL-TRANSVERSE EXPANSION

PIPE SUPPORTS

R

PLANT CHARACTERISTICS AND PERFORMANCE DATA


The normal shutdown of the solar facility will resull in a reduction of the main steam pipe temperature. The expected rate in temperature decline from the normal operating temperature of 538 C (1,000 F) is indicated in Figure 5.1-17 as a function of the shutdown time.


5.1.6 Master Control System Data

The Master Control System (MCS) consists of a control computer, computer peripheral equipment, control and display consoles, interface equipment to the other process systems, and all software required for a fully operational system.

The MCS will be comprised of the following major hardware components.

- (1) Control Panel--a 3-metre (10 feet) wide, 2-metre (7 feet) high, 1.2-metre (4 feet) deep standup bench front panel which contains all operator displays and controls. The panel will include a 1.2-metre by 1.2-metre (4-foot by 4-foot) graphic display panel which indicates, at a glance, the operational status of each heliostat.
- (2) Control Computer--a minicomputer with 256 K words of high speed random access working memory. The central processing unit has a 32-bit parallel bus and arithmetic unit memory management system which includes the following.
 - (a) 1,024 memory mapping registers.
 - (b) Auto memory allocation hardware.
 - (c) Memory protect on 256-word basis.
 - (d) Multi-port memory interface.
 - (e) 640-nanosecond effective cycle time.
 - (f) 15 general purpose registers.
 - (g) Bit, byte, word, double word and file manipulation.
 - (h) Fixed and floating point arithmetric hardware.
 - (i) 174 microprogrammed instructions.
 - (j) Context switching file with 240 registers.
 - (k) 11 interrupt levels, expandable to 16.
 - (1) Control console.

NO.

SECTION 5.1

- (m) Memory parity.
- (n) Power Fail/Auto Start.
- (3) Mass Memory--five megaword moving head disk to be used as auxilliary memory for the control computer.
- (4) Programming Terminal--a console with cathode ray tube and keyboard for interrogating and modifying the computer software.
- (5) Magnetic Tape Unit--an IBM compatible nine-track tape unit for program entry and long term data storage for offsite analysis.
- (6) Interactive Cathode Ray Tubes and Keyboard--eight color intelligent CRT terminals with 64 alphaneumeric characters and 64 microprogrammed graphic characters. The CRT uses a EIA RS-232-C compatible interface at serial rates up to 9,600 BAUD. Each CRT is accompanied by an alphaneumeric keyboard and function push buttons for interactive display selection and modification.
- (7) Printers--120 characters per second printing speed, 132-column print, complete with pedestal and enclosure.
- (8) Emergency Shutdown System--a hardwired relay cabinet with power supply.
- (9) Computer Input/Output System--the input/output system uses remote multiplexing stations in the receiver tower and a digital data highway for communication between the control computer and the receiver and receiver loop systems. Asynchronous serial binary (EIA RS-232C) ports are provided with the control computer for communications to the collector system.
- 5.1.7 Fossil Energy System Data
 - (1) Design Characteristics. The Fossil Energy System will not require any modifications to be compatible with the solar repowering systems. Interface design characteristics will be consistent with the receiver loop piping characteristics presented in Section 5.1.5.
 - (2) Operating Characteristics. A summary of the design point operating characteristics for operation with and without solar repowering is shown on Table 5.1-7. This summary includes the unit

SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
PLANT CHARACTERISTICS AND PERFORMANCE DATA		SECTION 5.1

TABLE 5.1-7. DESIGN POINT PERFORMANCE CHARACTERISTICS

	Fossil Only Operation	Fossil and Solar Operation
Unit Generation		
Gross turbine output, kWe	155,220	155,220
Auxiliary power, kWe	10,041	10,251
Net plant output, kWe	145,179	144,969
Turbine Heat Input		
Fossil, MBtu/h	1,242.38	993.90
Solar, MBtu/h	0	248.48
Total, MBtu/h	1,242.38	1,242.38
Plant Heat input		
Fossil, MBtu/h	1,485.04	1,188.16
Solar, MBtu/h	0	279.51
Total, MBtu/h	1,485.04	1,467.67
System Heat Rates		
Gross turbine heat rate, Btu/kWh	8,004	8,004
Equivalent fossil gross turbine heat rate, Btu/kWh	8,004	6,403
Equivalent fossil net plant heat rate, Btu/kWh	10,229	8,196

22	SYSTEM REQUIREMENTS SPECIFICATION		3734.23.0100
Y	PLANT CHARACTERISTICS AND PERFORMANCE DATA		SECTION 5.1

generation, turbine heat input, plant heat input, and the system heat rates.

The turbine cycle of the Fossil Energy System will not be affected by the solar repowering project since the solar steam will be at the same pressure and temperature as the superheated steam from the fossil boiler at the interface of the Receiver Loop System and the existing fossil main steam piping.

The fossil steam generator provides all of the hot reheat steam and only part of the superheated steam to the turbine generator during combined fossil-solar operation. This results in a slight change in the expected reheat steam temperatures during combined fossil-solar operation as shown on Figure 5.1-18. The worst case condition is at minimum turndown on the fossil steam generator (30 per cent flow) and maximum solar steam flow (25 per cent of maximum fossil steam flow). This condition would be infrequent and would still result in reheat steam temperature greater than 482 C (900 F), which will not significantly affect the performance of the turbine generator.

A plot of the boiler efficiency versus the fossil boiler power output during combined fossil-solar operation is shown on Figure 5.1-19.

	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
-8	PLANT CHARACTERISTICS AND PERFORMANCE DATA		SECTION 5.1

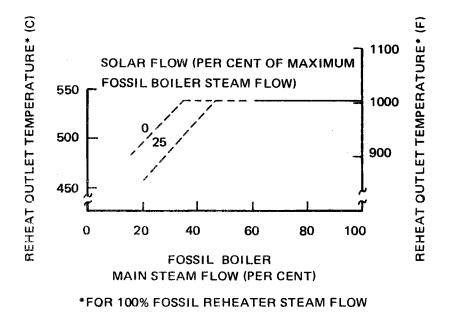
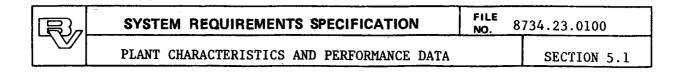
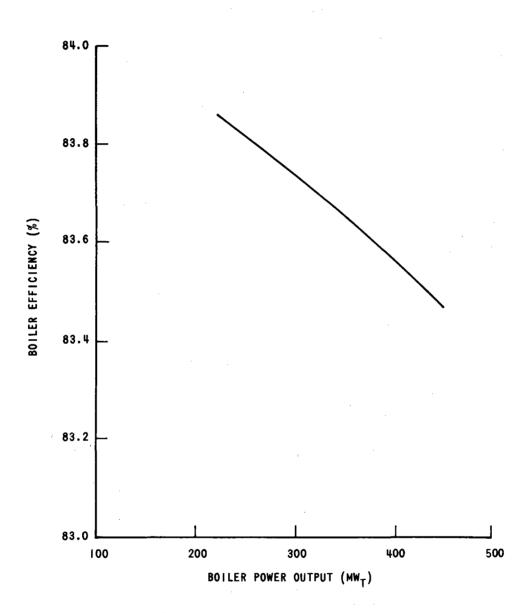




FIGURE 5.1-18

BOILER EFFICIENCY VERSUS FOSSIL BOILER POWER OUTPUT

FIGURE 5.1-19

5.2 EXISTING POWER PLANT DESCRIPTION

The existing power plant description and performance characteristics are as follows.

5.2.1 Major Equipment Data

The technical data for Unit 1 as extracted from the original manufacturer's equipment lists are as follows.

(1) <u>Turbine Generator</u> .	
Manufacturer	Westinghouse
Туре	Two cylinder, tandem compound, double flow impulse-reaction, condensing reheat - 23 inches last stage baldes TC2F23LSB
Generator	200,000 kVA, 0.80 power factor, three pase, 60 hertz, 60 psi hydrogen pressure, 14,400 V
Exciter	Separately driven, 1,000 kW, 375 V dc, air cooled motor generator
Capability*	
Rated steam conditions	
Throttle steam pressure	1,800 psi
Throttle steam temperature	1,000 F
Reheat steam temperature	1,000 F
Generator output	143,800 kW
Turbine cycle heat rate	8,036 Btu/kW-h
Overpressure steam conditions	
Throttle steam pressure	1,980 psi
Throttle steam temperature	1,000 F
Reheat steam temperature	1,000 F
Generator output	155,200 kW
Turbine cycle heat rate	8,004 Btu/kW-h

*With all five feedwater heaters in service.

R

EXISTING POWER PLANT DESCRIPTION

(2) <u>Steam Generator</u> .					
Manufacturer			Babcoc	k & Wilcox	
Type of unit				t reheat, pre	ssure
Continuous rating, lb	steam/h		1,000,	000	
Maximum rating, 1b st	eam/h		1,150,	000	
Design pressure, psi			2,325		
Superheater outlet pr	essure, psi		2,070		
High pressure steam t	emperature,	F	1,005		
Reheat steam temperat	ure, F		1,005		
(3) Piping Systems.					5.
	Main <u>Steam</u>	Hot <u>Rehea</u>	<u>t</u>	Cold <u>Reheat</u>	Boiler Feedwater
Number of lines	1	2		2	1
Outside diameter	14 in.	16 in	•	14 in.	12-3/4 in.
Min. wall thick- ness (sched.)	2 in.	100		80	1-7/16 in.
Material	2-1/4 chrome l per cent moly	2-1/4 chrome 1 per cent r	2	carbon steel	5 per cent chrome
Specification σ	ASTM A335 P22	ASTM A335 I	22	ASTM A106 Grade B	ASTM A335 P5
(4) <u>Condenser</u> .					
Manufacturer			Westing	ghouse	
Туре				ntal, two pass e condenser	s deaerating
Surface area			120,000) sq ft	
Tube material			Inhibit	ted admiralty	
Cooling water			119,000) gpm	
Air ejector					
Number of units			1		
Туре			Steam j two sta	jet – twin ele Ige	ement -
Priming ejector					

Priming ejector Type

Steam

7

\checkmark	EXISTING POWER PLANT DESCR	IPTION	SECTION 5.2
	(5) Boiler Feed Pumps.		
	Manufacturer	Pacific pumps	
	Туре	Centrifugal 10	stage
	Number of pumps	3	
	Capacity (each)	650,000 lb/h	
	Total dynamic head	2,535 psi	
	Speed	3,600 rpm	
	Motor	3,000 hp, 4,160	V
	(6) Feedwater Heaters.		
	(a) LP Heater No. l.		
	Manufacturer	Lummus	
	Number	1	
	Туре	U-Tube	
	Heating surface, effective	4,900	
	Tube material	Inhibited Admir	alty
	Design steam pressure, psi	150	
		Steam	Feedwater
	Capacity, lb/h	54,598	857,176
	Inlet temperature, F	178.1	102.5
	Outlet temperaure, F	112.5	173.1
	(b) LP Heater No. 2.		
	Manufacturer	Lummus	
	Number	1	
	Туре	U-Tube	
	Heating surface, effective	3,070	
	Tube material	Inhibited Admir	alty
	Design steam pressure, psi	150	

FILE

NO.

8734.23.0100

 Steam
 Feedwater

 Capacity, lb/h
 47,512
 857,176

 Inlet temperature, F
 321
 173.1

 Outlet temperature, F
 183.1
 228.5

FILE 8734.23.0100

EXISTING POWER PLANT DESCRIPTION

SECTION 5.2

(c) HP Heater No. 4.		
Manufacturer	Lummus	
Number	1	
Туре	Multilok U-Tube	
Heating surface, effective	5,940	
Tube material	70-30 Cupro Nickel	
Design steam pressure, psi	300	
	Steam Feedwater	
Capacity, lb/h	87,059 1,047,280	
Inlet temperature, F	792 293.5	
Outlet temperature, F	303.5 395.6	
(d) HP Heater No. 5.		
Manufacturer	Lummus	
Number	1	
Туре	Multilok U-Tube	
Heating surface, effective	4,970	
Tube material	70-30 Cupro Nickel	
Design steam pressure, psi	750	
	Steam Feedwater	
Capacity, lb/h	97,615 1,047,230	
Inlet temperature, F	694 395.6	
Outlet temperature, F	405.6 478.8	
(7) <u>Deaerator</u> .		
Manufacturer	Cochrane	
Number of units	1	
Туре	Jet tray - direct contact	
Maximum output, lb/h	1,300,000	
Water storage capacity, gal	18,000	
Operating guarantee	0 to .005 oxygen cc/litre	
Vent condenser	External tube and shell	

FILE 8734.23.0100

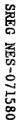
EXISTING POWER PLANT DESCRIPTION

SECTION 5.2

(8) <u>Cooling Tower</u> .	
Manufacturer	Marley
Туре	Induced draft cross flow
Material	Douglas fir pretreated with boliden salts
Number of units	2
Water capacity	61,000 gpm
Design inlet water temperature	103.5 F
Design outlet water temperatuer	88 F
Design ambient wet bulb	76 F
Fans per tower	7
Fan wheel	22 feet diameter, 12 cast aluminum alloy blades
Fan speed	154 rpm
Fan motors	75 hp
(9) <u>Condensate Pumps</u> .	
Manufacturer	Westinghouse Electric
Туре	Vertical pit type
Number of pump	3
Pumping temperature, F	130
Total dynamic head, ft water	450
Capacity, gpm	1,300
Speed, rpm	1,170
Motor	250 hp 4,160 V Dripproof, vertical
(10) Forced Draft Fans.	
Manufacturer	American Blower
Туре	No. 726 Sirocco (double inlet)
Number of fans	2
Design temperature, F	125
Design static pressure, in. water	40.5
Capacity, cfm	195,000
Type control	Inlet and outlet dampers
Motor	1,750 hp, 4,160 V weather protected

R,	SYSTEM REQUIREMENTS SPECIFICATION		FILE 8734.23.0100		
\mathbf{V}	EXISTING POWER PLANT DESCRIPTION		SECTION 5.2		

A piping diagram of the boiler feedwater system is found on Figure 5.2-1. Included in this figure are the pipe sizes and routing, valves, drains, pumps, feedwater heaters, and deaerator of the fossil boiler feedwater system. The high pressure steam piping of the Fossil Energy System is shown on Figure 5.2-2. Illustrated on this diagram are the pipe sizes and location, valves, drains and interfaces with the steam generator and turbine generator.


Elevation drawings for NES-Unit 1 are shown on Figures 5.2-3 through 5.2-6. These elevation drawings show the arrangement of Unit 1 from the north, east, south, and west direction, respectively.

5.2.2 Existing Power Plant Performance Data

The predicted heat balances for various loads are shown on Figures 5.2-7 through 5.2-9. The predicted performance at minimum boiler turndown or 50 MW is shown on Figure 5.2-7. The heat balance for rated pressure conditions at 144 MW is shown on Figure 5.2-8. Figure 5.2-9 illustrates the design point performance for overpressure conditions at full load (155 MW). A plot of the turbine heat rate (Btu/kWh) versus generator output (MW) for rated and overpressure conditions is shown on Figure 5.2-10.

The design characteristics for feedwater regulators is shown on Figure 5.2-11. This figure plots the feedwater pressure versus feedwater flow and shows the available pressure at the feedwater interface with the Receiver Loop System.

A summary of the fossil steam generator performance is presented on Table 5.2-1.

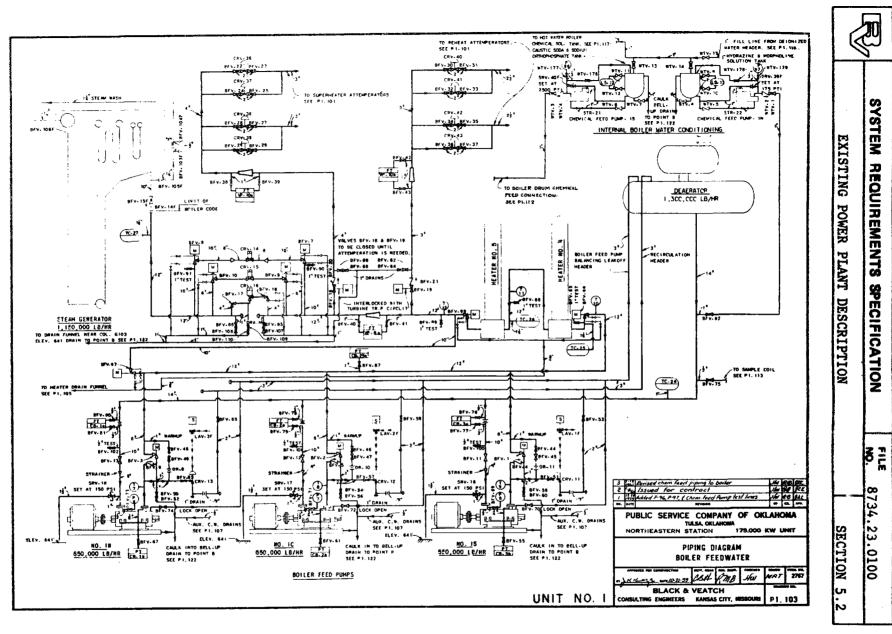
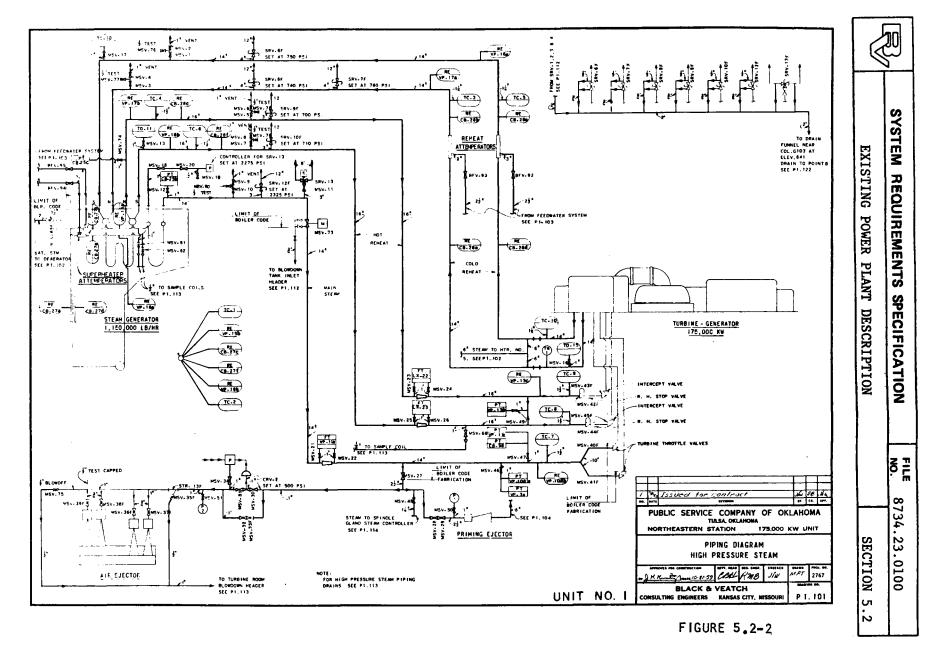
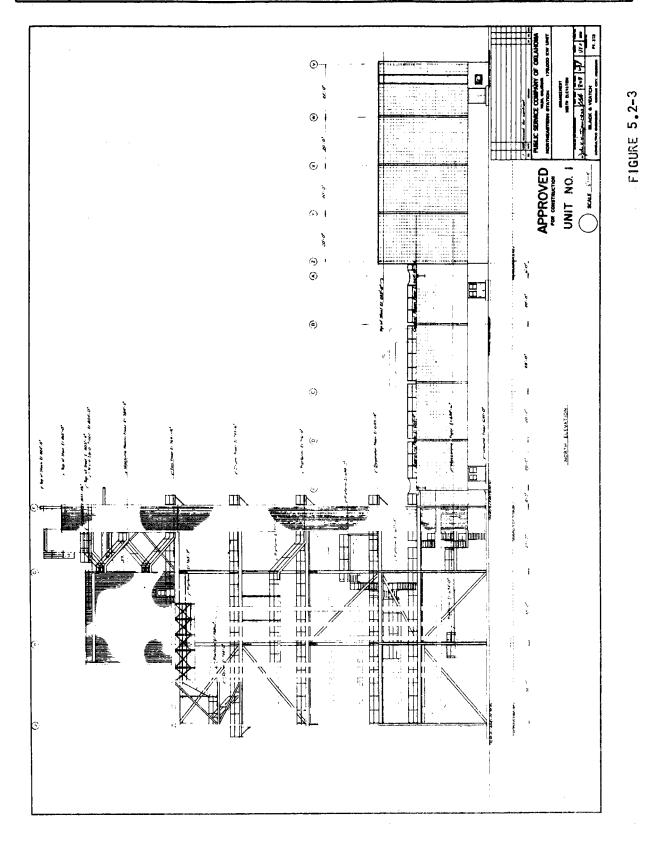



FIGURE 5.2-1

5.2-7



5.2-8

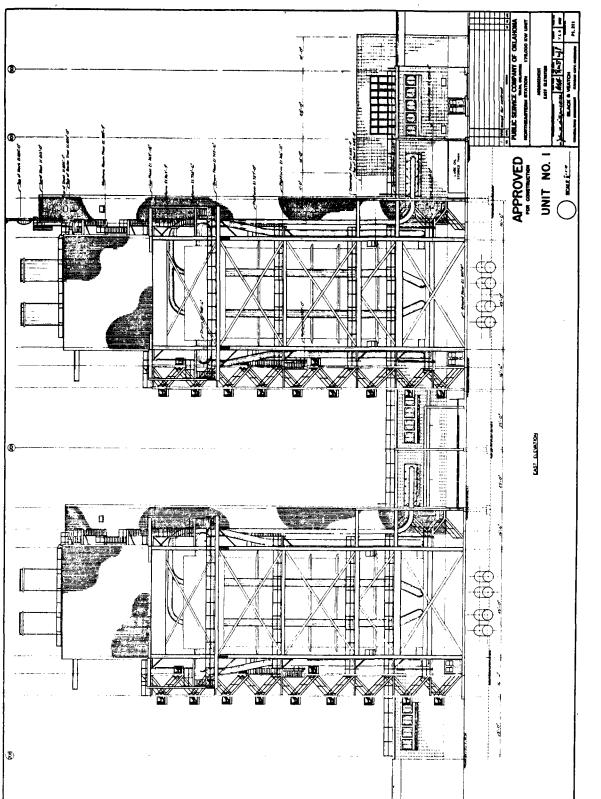
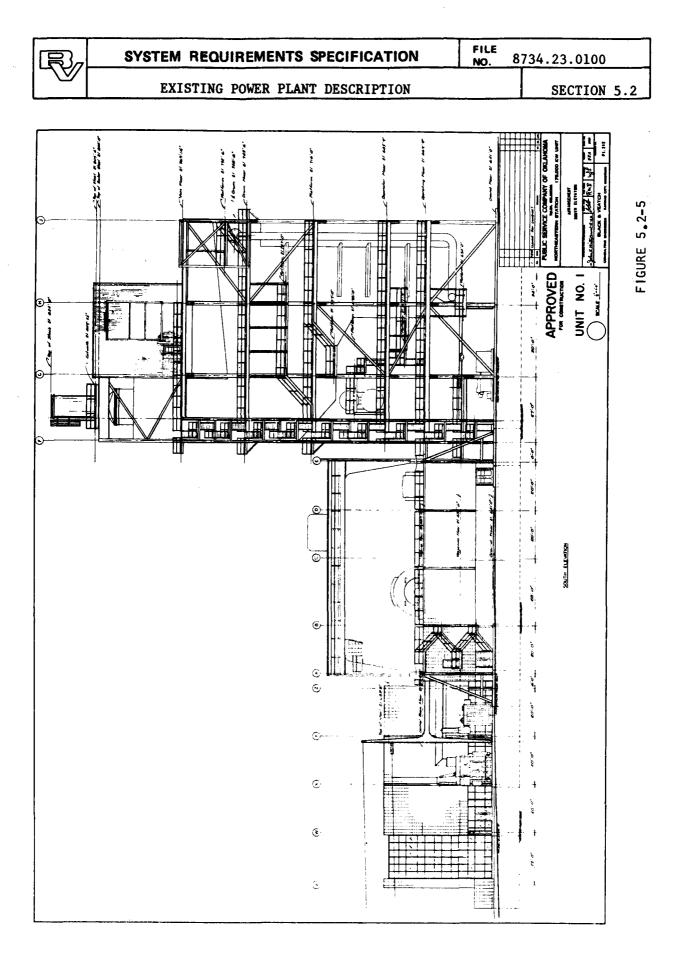
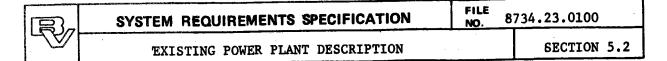
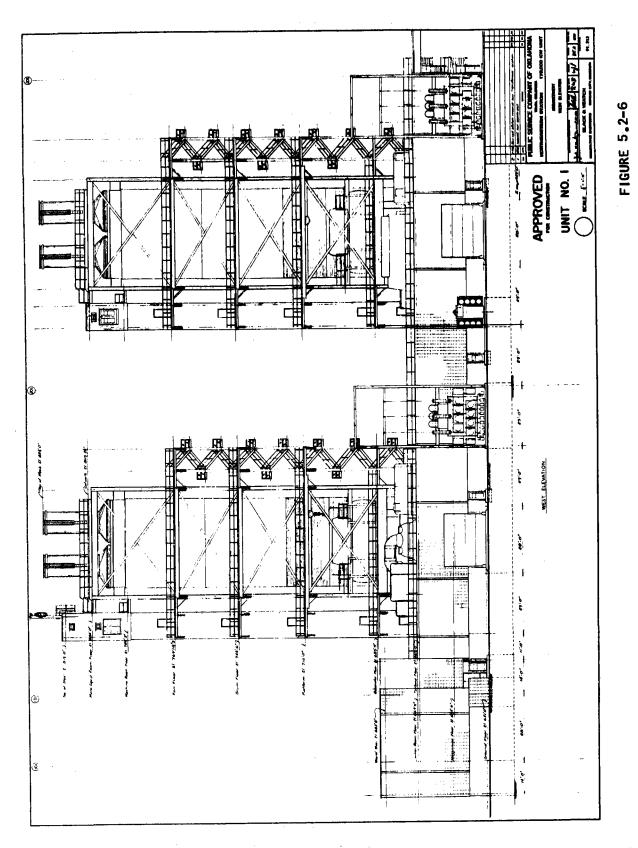
FILE 8734.23.0100

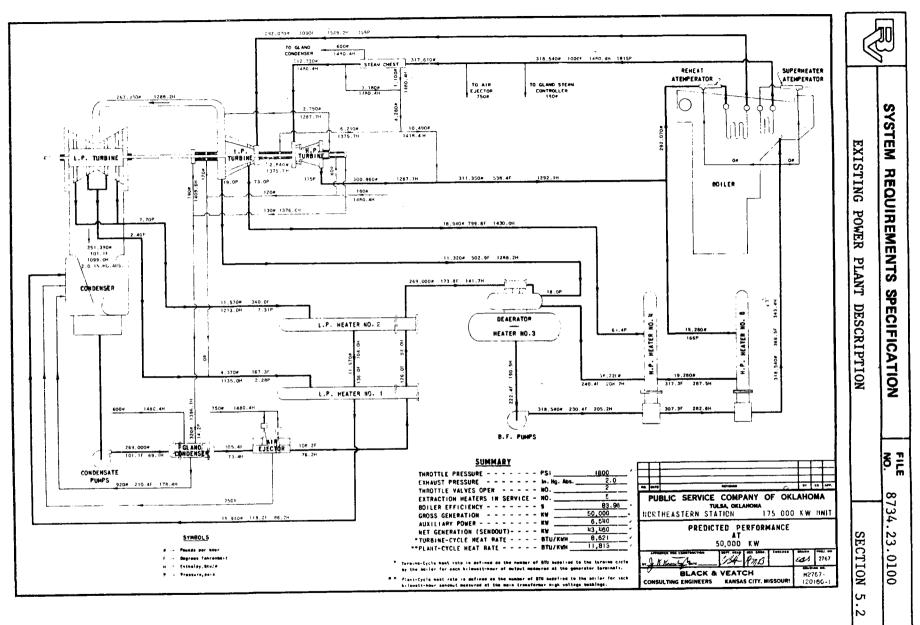
EXISTING POWER PLANT DESCRIPTION

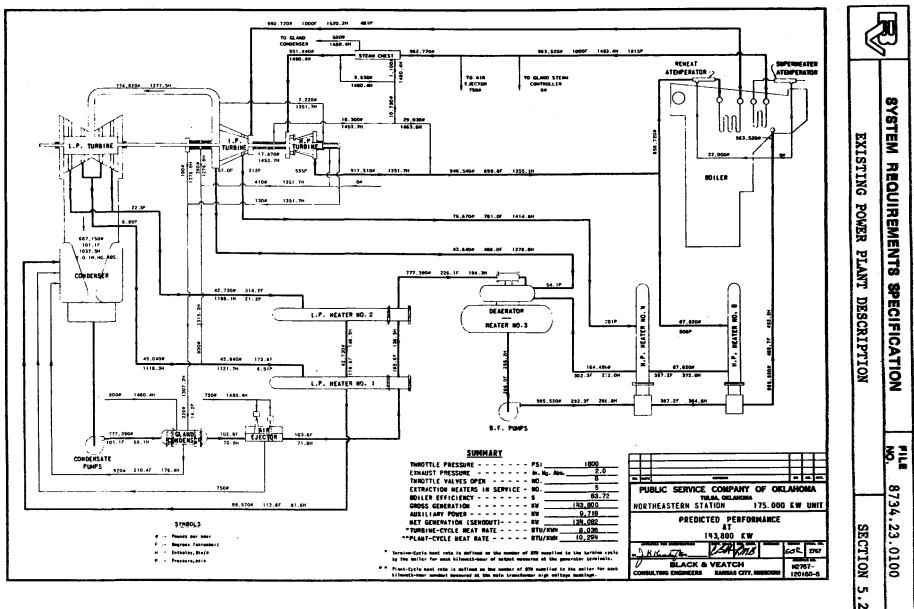
SECTION 5.2

EXISTING POWER PLANT DESCRIPTION

SECTION 5.2


FIGURE 5.2-4



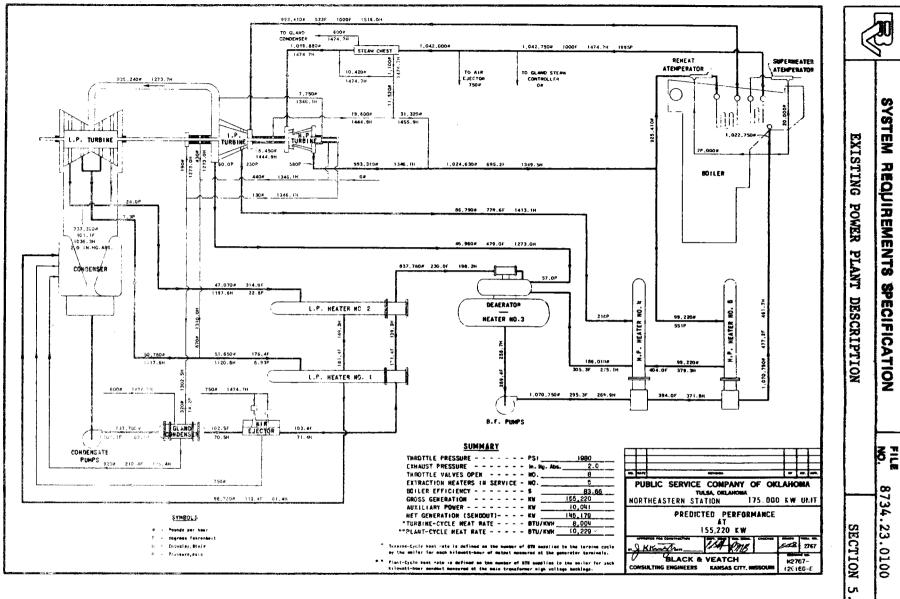
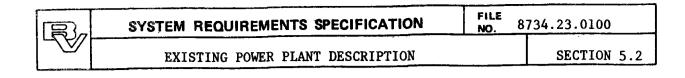
5.2-12

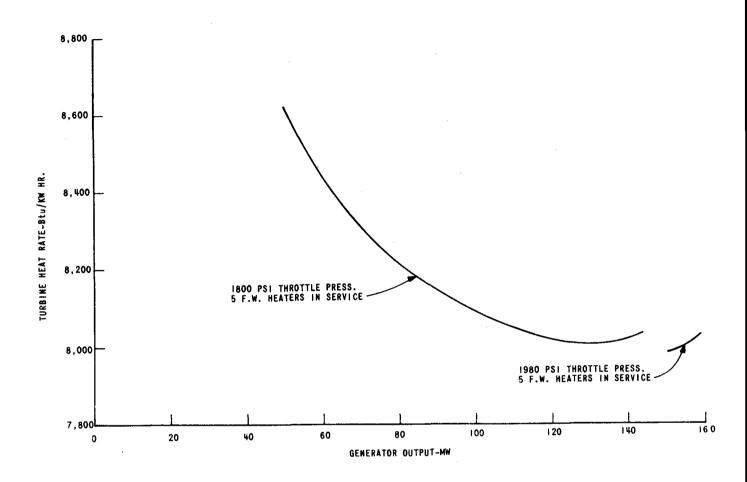
5.2-13

FIGURE 5.2-7

5.2-14

FIGURE 5.2-8

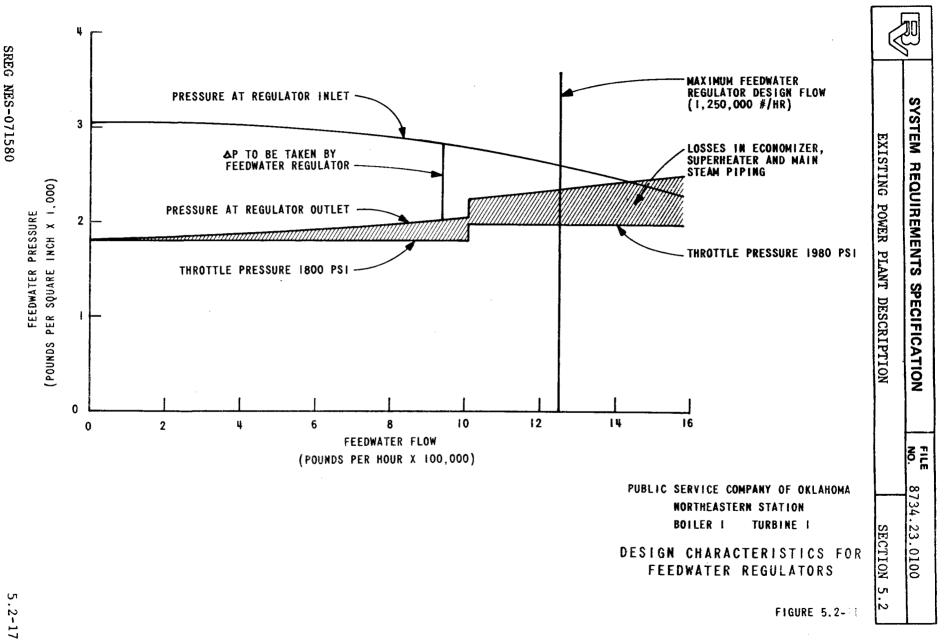




FIGURE 5,2-9

N

5.2-15

SREG NES-071580



PUBLIC SERVICE COMPANY OF OKLAHOMA NORTHEASTERN STATION 175,000 KW UNIT UNIT NO. 1

TURBINE HEAT RATE VERSUS GENERATOR OUTPUT

FIGURE 5.2-10

SYSTEM	REQUIREMENTS	SPECIFICATION	FILE NO.	8734.23.0100

EXISTING POWER PLANT DESCRIPTION

TABLE 5.2-1. STEAM GENERATOR PERFORMANCE DATA (BASED ON NATURAL GAS FUEL AT 1,025 BTU/CU FT)

	60 Per Cent Capacity	Rated Capacity	Maximum Capability
Steam output, 1b/h	600,000	1,000,000	1,150,000
Reheat steam flow, lb/h	530,000	891,000	1,150,000
Excess air leaving air heater, per cent	25	7	7
No. burners in use	15	15	15
Fuel, cu ft/h	900,000	1,416,000	1,818,000
Flue gas leaving air heater, lb/h	874,000	1,184,000	1,525,000
Air leaving air heater, lb/h	834,000	1,123,000	1,443,000
Steam pressure at SH outlet, psi	1,850	1,850	2,070
Pressure drop, drum to SH outlet, psi	37	102	102
Pressure drop through economizer, psi	19	53	70
Steam pressure entering reheater, psi	300	486	515
Steam pressure leaving reheater, psi	287	. 458	485
Steam temperature leaving super- heater, F	1,005	1,005	1,005
Steam temperature entering reheater, F	601	661	695
Steam temperature leaving reheater, F	1,005	1,005	1,005
Flue gas temperature leaving economizer, F	630	715	720
Flue gas temperature leaving air heater, F	290	330	340
Air temperature entering air heater, F	100	100	100
Water temperature entering economizer, F	419	466	310
Water temperature entering boiler, F	497	526	463

-	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO. 8734.23.0100		
	EXISTING POWER PLANT DESCRIPTION		SECTION 5.2	

TABLE 5.2-1 (Continued). STEAM GENERATOR PERFORMANCE DATA (BASED ON NATURAL GAS FUEL AT 1,025 BTU/CU FT)

	60 Per Cent Capacity	Rated Capacity	Maximum Capability
Boiler and superheater draft loss, in. water	1.6	3.0	4.9
Economizer draft loss, in. water	1.0	1.8	2.9
Air heater draft loss, in. water	2.0	3.6	5.8
Damper and flue draft loss, in. water	0.1	0.3	0.5
Burner and wind box air resistance, in. water	1.8	3.5	5.7
Duct resistance, in. water	0.3	0.5	0.8
Air heater resistance, in. water	1.8	3.3	5.3
Net resistance and draft loss, in. water	8.6	16.0	25.9
Dry gas, per cent heat loss	3.90	4.01	4.18
Hydrogen and water in fuel, per cent heat loss	10.32	10.48	10.53
Moisture in air, per cent heat loss	0.11	0.11	0.12
Unburned combustible, per cent heat loss	0.00	0.00	0.00
Radiation, per cent heat loss	0.31	0.23	0.20
Unaccounted, per cent heat loss	1.50	1.50	1.50
Total heat loss, per cent	16.14	16.33	16.53
Efficiency of unit, per cent	83.86	83.67	83.47

5.3 PLANT COST DATA

Presented herein is the project cost estimate for the Solar Repowering of Northeastern Station, Unit 1. Documentation for the assumptions made by Black & Veatch in developing the estimate is included. The total project cost estimate is summarized on Table 5.3-1 and includes estimated owner costs, construction costs, and operations and maintenance costs.

5.3.1 Owner's Cost Estimate

The owner's cost estimate is summarized in Table 5.3-2. A detailed description of the owner's cost estimate is shown on Figure 5.3-1. 5.3.1.1 <u>Basis of Estimation</u>. The following costs were considered owner's costs for the estimate.

- (1) Land and Land rights at \$3,000/acre.
- (2) Consulting services for site studies including: topographic surveying, geotechnical investigations, and construction control testing.
- (3) Costs of obtaining all necessary licenses and permits including preparation of environmental impact statements (included as part of the engineering costs).
- (4) Owner's managerial, engineering, financing, and accounting, procurement, labor relations, general services; estimating, planning and scheduling, coordination, construction management, and other home office services directly associated with the project.
- (5) Plant consumable supplies and start-up costs (included as part of the operation and maintenance costs).
- (6) Property taxes and insurance costs on the land and plant during construction based upon insurance at .73 per cent of asset value and taxes at 1.58 per cent of asset value.
- (7) Cost of money, AFUDC (Allowance for Used Funds During Construction) based upon a rate of 10.5 per cent compounded semi-annually.

5.3.2 Construction Cost Estimate

The construction cost estimate is summarized on Table 5.3-3. The detailed breakdown of the construction cost estimate by account number

R	SYSTEM REQUIREMENTS SPECIFICATION	8734.23.0100
\vee	PLANT COST DATA	SECTION 5.3

TABLE 5.3-1. PROJECT COST ESTIMATE SUMMARY

Owner's Cost Estimate	\$22	2,038,000
Construction Cost Estimate	55	5,099,000
Annual Operations and Maintenance Cost Estimate	\$	243,720

5.3-2

R	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	3734.23.0100
	PLANT COST DATA		SECTION 5.3

TABLE 5.3-2. OWNER'S COST ESTIMATE SUMMARY

Land and Land Rights	\$ 528,000		
Consulting Services	84,000		
Owner's Managerial, Engineering, Etc. (Included in Construction Cost Estimate)			
Property Taxes and Insurance on Land and Plant During Construction	3,453,000		
Cost of Money (AFUDC)	17,973,000		
Total Owner's Cost Estimate	\$22,038,000		

PLANT COST DATA

SECTION 5.3

EATCH Plant NORTH COSTERN STATION Unit _/					-	Computed By $U - C S$. Date $G - S - 19 - 0$			
Onsulting Project No. 8737 File No. 8737.23.0100 Maintense Project No. 8737 File No. 8737.23.0100 Title Owners 's Cost - Estimate Cost - Estimate						Date 19 Checked By 19 Date 9 Page 0f			
	MATERIAL					ABOR			
ITEM	QUANTITY	UNIT COST	TOTAL MAT'L COST		TOTAL		TOTAL LABOR COST	TOTAL COST	
1) LAND & LAND RIGHTS	/76 Ac	3000	5 28,000					528,000	
(Z) CONSULTING SERVICED:									
TOPOGRAPHIC SURVEY		5,000			i		/5,000 7,500	Z0, 000	
GEOTECHNICH / HVESTIGATAN CONST. CONTROL TESTING			7,500 8,500				40,500	-5,000 49,000	
(3) OWNER'S MANAGERIAL									
ENCR., F.NANCING, ETC.	145		welv	0 40	1~	60~57	. Cost		
(4) PROPERTY TAXES & INSURANCE									
ON LAND F PLANT DURING		∦		┥┝					
CONSTRUCTION:		7 7/100	2,361,000	<u> </u>				2,361,000	
/NJURANCE	7[01,092,00		<u> </u>			/, 092,000	
(5) COST OF MONEY (AFUDO	145	17,973,00	17,973.00		 	-		17,973,000	
	-								
TOTAL OWNER'S COST Excusine		┨────			+				
Home OFFICE COSTS INCLOSE			21,975,000	╡───		<u> </u>	63,000	22,038,000	
IN CONSTRUCTION ESTIMATE.				╢					
			<u> </u>	╢	0	1	COST	Sterie -	
			<u> </u>	╢───	1		ure 5.		
			+	1					
			1						

n GN 1718

		Cost Expressed In January, 1980 Dollars (\$ X 1,000)						
Account Number	Element Description	Level 3	Level 2	Level 1	Level 0			
5000	Total Facility*				55,099			
5100	Site Improvements			309				
5200	Site Facilities			1,690				
5300	Collector System			29,106				
5310	Heliostats		28,770					
5320	Other Costs		336					
5400	Receiver System			14,192				
5410	Tower		2,574					
5420	Receiver		11,618					
5450	Receiver Loop System			3,854				
5451	Pipe Supports System	279						
5452	Feedwater Piping System	796						
5453	Main Steam Piping System	2,029						
5454	Condensate Piping System	750						
5500	Master Control System			5,817				
5600	Fossil Energy System			131				

SYSTEM REQUIREMENTS SPECIFICATION

NO.

8734.23.0100

SECTION

5.3

PLANT COST DATA

*Total facility cost excludes owner's costs and operations and maintenance costs.

5.3-5

.

FILE

NO.

showing material and labor costs is presented on Tables 5.3-4a through 5.3-4p. The supporting data for each account follows the appropriate table.

5.3.2.1 <u>Basis of Estimation</u>. The construction cost estimate summarized in Table 5.3-3 is based upon the following.

- Estimate uses Construction Cost Code format with alphabetical account breakdown.
- (2) Costs are for a facility to be located at the Public Service Company of Oklahoma's Northeastern Station Unit 1 near Oologah, Oklahoma.
- (3) General owner's costs not included in the construction cost estimate are land, licenses and permits, taxes, and cost of money.
- (4) Transportation costs to the facility site for materials and components are included in the material costs.
- (5) A minimal amount of spare parts is included as required; those included are considered necessary for normal operation of the facility.
- (6) Costs are summarized in January, 1980 dollars. Costs are given in the supporting base sheets are also January, 1980 dollars and indicate material and labor cost breakdowns.
- (7) Each line item is based on current design information. Some items are based on vendor quotations that have been checked against costs for similar items from recent B&V projects; other items are based on recently contracted costs. The price basis varies throughout the estimate.
- (8) Labor costs are based on recently experienced man-hours to complete similar tasks on other B&V projects, multiplied by the appropriate wage rate. The wage rates used for the estimate are based on a wage rate survey of the Tulsa, Oklahoma area. The labor costs for heliostat installation (Account 5310-E-Machinery & Equipment) are not shown separately, but are included in the \$260/M² total heliostat costs supplied by DOE.

	SYSTEM REQUIREME	NTS SP	ECIFICATIO	ON FI	LE 8734,7	3.0/00
	PLANT C	,	Sec.	-10N 5.3		
CL	IENT D. O. E P.J. O. NORTHEASTERN MON STRTION - UNIT 1	<u></u>	CCOUNT	5000		
	TION STRTION - UNIT 1	مر نــــــــــ	иммеру		CONT. NO MADE BY	NIEJ
	JECT 7 3 4				APPROVED	
A/C		MAN				
NO.	ITEM & DESCRIPTION	HOURS	LABOR	SUBCONTRACTS	MATERIALS	TOTALS
	Excavation & Civil					
В	Concrete					
C D	Structural Steel Buildings					
	Machinery & Equipment					
F	Piping					
G	Electrical					
н	Instruments				ļ	
J	Painting					
к	Insulation				· · · · · · · · · · · · · · · · · · ·	
					11 201 215	14 2020
	DIRECT FIELD COSTS	Z 03286	2,565,09	1 237,230	41,906,210	# 4, 40 9,0 m
	Temporary Construction Facilities					290,000
M	Construction Services, Supplies & Expense					910,000
N	Field Staff, Subsistence & Expense					660 101
P	Craft Benefits, Payroll Burdens & Insuranc	e				258,000
٩	Equipment Rental					200,000
	TOTAL FIELD COSTS					Z, 438000
			- <u>+</u>			
R						3,860,000
	Design & Engineering					7/0000
	Home Office Costs R & D		-			
s	Major Equipment Procurement					173 000
						345,000
T	Construction Management		-+			5,558,00
	TOTAL OFFICE COSTS					
	TOTAL FIELD & OFFICE COSTS					7, 176,00
U	Labor Productivity					
v	Contingency					2,37:300
						-+
W	Fee					
	TOTAL CONSTRUCTION COST					55,099,00
1		1	l			

DATE ______ REVISION NO. ______ REVISION DATE ______ PAGE NO. _____

l

PLANT COST DATA

SECTION 5.3

TABLE 5.3-46 CONSTRUCTION COST ESTIMATE

CLIENT D.O.E. - P.S.O. DESCRIPTION NOATHEASTERN ACCOUNT 5100 LOCATION STATION - UNIT /

•

PROJECT 8734

SITE IMPROVEMENTS

CONT. NO. ______. E. S.

APPROVED

A/C	ITEM & DESCRIPTION	MAN				
NO.		HOURS	LABOR	SUBCONTRACTS	MATERIALS	TOTALS
. <u> </u>						
A	Excevetion & Civil	Z,978	48,219		73,162	121,38
B	Concrete					
<u>C</u>	Structural Steel					
D	Buildings					
E	Machinery & Equipment					
F	Piping					
G	Electrical	_				
Н	Instruments					
J	Painting					
κ	Insulation					
					· · · · · · · · · · · · · · · · · · ·	
	DIRECT FIELD COSTS	2,978	48,219	-	73,162	121,38
L	Temporary Construction Facilities					6,09
M	Construction Services, Supplies & Expense					8,61
N	Field Staff, Subsistence & Expense					13,86
Ρ	Craft Benefits, Payroll Burdens & Insurance					17,22
Q	Equipment Rental					5,416
··						
	TOTAL FIELD COSTS					51,19
R	Engineering		- ,			95,97
	Design & Engineering					
	Home Office Costs					
	R&D					
S	Major Equipment Procurement					3,63
T	Construction Management					17, 11.
	TOTAL OFFICE COSTS			 		116,71
	TOTAL FIELD & OFFICE COSTS					167,91
U	Labor Productivity					
v	Contingency					19,15
W	Fee					
	TOTAL CONSTRUCTION COST		An			308,44

FILE 8739.23.0/00

PLANT COST DATA

SECTION 5.3

TABLE 5.3-4C CONSTRUCTION COST ESTIMATE

	IENT D.O.E P.J.O. NOATHEASTERN					
OCA	TION STATION - UNIT /	517	E FACILI	TIES	CONT. NO MADE BY	IES
			. <u> </u>		MADE BY	<u> </u>
PRC	NECT			/	APPROVED	
A/C NO.	ITEM & DESCRIPTION	MAN HOURS	LABOR	SUBCONTRACTS	MATERIALS	TOTALS
			/58			158
<u> </u>	Excavation & Civil	3	289		106	395
8	Concrete	_ 23	281	·		
с	Structural Steel		20,250		13,500	33,750
D	Buildings	1600			35,828	
E	Machinery & Equipment	4,009	47, 128	<u>↓</u>		-,
F	Piping			<u> </u>	407 820	552, 53 3
G	Electrical	12,342	149,663	+	7-1, 7, 1	
н	Instruments				+	
J	Painting				┝────┤	
ĸ	Insulation			+		
	DIRECT FIELD COSTS	17,979	217,488	-	452,304	669,792
	Temporary Construction Facilities		<u></u>			33 350
M	Construction Services, Supplies & Expense					47,150
	Field Staff, Subsistence & Expense					75,900
P	Craft Benefits, Payroll Burdens & Insurance					94,30
a	Equipment Rental					29,67
		ļ			+	
	TOTAL FIELD COSTS	<u> </u>				280,370
			<u> </u>			5255 5
R	Engineering	+	<u> </u>		+	
	Design & Engineering	+	+			
	Home Office Costs	+	<u> </u>			1
 	R&D	+	+			
s	Major Equipment Procurement					19,89.
			+			93,72
T	Construction Management TOTAL OFFICE COSTS					639,17
			1			

919,540 TOTAL FIELD & OFFICE COSTS Labor Productivity U 100,548 Contingency V Fee W 1,689,880 TOTAL CONSTRUCTION COST

DATE _____ REVISION NO. _____ REVISION DATE _____ PAGE NO. 5.3 9.

Owner D.o. E. - P50

Plant NORTH CASTERN STATION Unit 1 Project No. 8734 File No. 8734. 23.0100 Title CONSTRUCTION COST ESTIMATE Computed By (2), (3, 5)Date 5 - 13 - 19Checked By Date 5 - 20 - 19Page 1 of

						-age		
		ا						
ITEM	QUANTITY		TOTAL	HRS.	Γ	ABOR COST	TOTAL	TOTAL
ACCOUNT NO. 5100	COANTIT		MAT'L COST	PER	TOTAL	I LU	LABOR	COST
SITE IMPROVEMENTS			0031		1	HOUR	COST	
A - ExCAVATION & CIVIL								
AI SITE GRADING (REMOVE DAM								
É FILL-IN FARM PONO								
700 HA CRAWLER DOZER	100	4675	4,675	40	40	33.45	1338	6,013
AZ ROADE SUB-GARDE	ZWK	1,825	3,650	40	80	13.84	1109	4.759
A3 TRENCHING FOR CULVERTS	3054	1.3-5	41	.089	3	14.65	39	50
A4 CULVERTS	20015	12.00	Z, 400	.175	35	16.80	588	2,988
A5 MAIN ACCUSS ROAD BASE	6,02754	1.70	10,246	.019	115	25.20	2.886	13,13E
AG MAIN ACCESS ROAD (ASPHALT)	4,01854	2.40	9,643	.048	193	18.13	3 4 97	
AT PARKING LOT	53454	4.10	2,189	. 067	36	43.33	σιι	3,739
Ad Secondary Access Road								
OILED GRAVEL 6' CHAIN LINK W/ 3 STRANDS B. WHE	9,04454	. 71	6,421	.020	181	80.67	19,572	21,013
A9 REMOVE EREINSTALL FENCE 61 CHAMLINE W/2 STANDS B-WIRE	3,909 15			.320	1089	8.31	9,052	9,052
A10 INSTALL NEW FENCE	5,2316	6.48	33,897	_193	1,012	11.82	11,960	45,857
A 11 REMOVE BARBED WIRE FENCE	5,23165		_	,037	199	8.31	1608	1,608
A. CIVIL TOTAL			73,162		2978		48,219	121,381
			ا اب		/.			
					: Å			
· · · · · · · · · · · · · · · · · · ·					5			
				j, J				
·				9 7				
				, ,				5.3-26
								and the second

CN 171B

5.3-9a

BLACK & VEATCH CONSULTING ENGINEERS

3

Owner D. O. E. - PJO

Plant NO RTHGATTERN STATION Unit _____ Project No. P34 File No. P34 Z3.0100 Title CONSTRUCTION COST ESTIMATE

Computed By	ω.	E.	5.	_
Date				
Checked By _	<u> </u>			
Date _ 5 -		_ 19	<u> 1875</u>	_
Page Z		of	24	

		MAT			ABOR]	
ITEM	QUANTITY	UNIT	TOTAL	HRS.	TOTAL	COST	TOTAL	TOTAL
ACCOUNT NO. 5200	QUANTIT	COST	MAT'L COST	PER UNIT	HRS.	HOUR	LABOR COST	COST
SITE FALLUTIES								
A - Excavation & Civil				<u> </u>				
AI EXCAVATION I BAUCFILL FOR								
							-5-8	
TOWER & SWITCHGEAR GRAVNO	1			.210	3	50.00		/58
A. EXCANATION & CIVIL TOTAL					3		~5P	158
	ļ							
				<u> </u>				
		·						
		<u> </u>						
					ļ			
	ļ				<u> </u>		i	<u> </u>
					<u> </u>	<u> </u>		
				╢────	<u> </u>			
	l		ļ	 		. 		
]]				
					1			
	┨─	∦	 	╢		┢		
			ļ			ļ		
					1			
		╢────	+	╢╴	1	1		
	· ·	╢	<u> </u>	╢	+		<u> </u>	
		· · ·						5.3-27
	 	 	1	↓└────		+	_	r n al

5.3-96

BLACK &	$Owner \underline{D. 0. \epsilon P50}$	_ Computed By E.J.
	Plant NORTHERAJTERN STATION Unit	Date 5- 14 - 19 80
ENGINEERS	Project No. 0734 File No. 8734. 23. 0100	_ Checked By <u>G</u> _ 4
	Title CONSTRUCTION COST ESTIMATE	_ Date 5-20-19 50
		Page S of 2.4

][]	MAT	MATERIAL		LABOR			
ITEM	QUANTITY	UNIT	TOTAL MAT'L	HRS. PER	TOTAL		TOTAL	TOTAL
ACCOUNT NO. 5200		COST	COST	UNIT	HRS.	HOUR	LABOR COST	COST
SITE FREILITIES								
B- CONCRETE	i							
BI TRANSFORMER PAD	1.4 04	75.71	106	17.857	25	11.56	289	395
B. CONCRETE TOPAL	[] .		106		25		239	395
		 		<u> </u>				
								
	╽┝							
- · · · · · · · · · · · · · · · · · · ·	╬────┥							
		[
······································	∦							
				··				
	I							
	[]							
	┝╢							
								5.3-28
	├							

Б

5.3-9C

BLACK &
VEATCH
CONSULTING
6 N 6 1 N 6 6 6 6

Title

Owner	\mathcal{D}	. o. é		- P	50			
Plant _	ە بەر	RTHO	SA J	TERN	Sra	TION	. Un	it
Project	No.	873	4	File	No.	873	¢,	23

CONSTRUCTION COST

Computed By	U.E.	s
Date	15- 19-	80
Checked By	1	
Date	<u> </u>	
Page 4	L of	24

		MATERIAL		LABOR				
ITEM	QUANTITY		TOTAL MAT'L COST	HRS. PER UNIT	TOTAL HRS.	COST PER HOUR	TOTAL LABOR COST	TOTAL COST
ACCOUNT NO. 5200 SITE FACILITIES	íi			ا				
D - BUILDINGS								
DI PREFABRICATED METAL								
BUILDING (25'x30')	750 56	18 00	13 500	7.183	1600	12.66	20250	33,750
BUILDING (20 X 30)			······································					
		ļ				<u> </u>		
	╢────							
	╢	ĺ				<u> </u>		
				1	1	1		
	╢────	╢			 			
]]		!} }	1	}		
	┥┝╾╌╍───┈─	╢────			<u> </u>			
		.	<u> </u>	╢	<u> </u>	<u> </u>		
			1					
	┥┝╌─────────	1						
		┥┝╼───	<u> </u>	╢───	. <u> </u>	┼───	+	
		1	<u> </u>	1		1		
		┥┝╾──╴╸		╢───		+	+	{
		•						
		-	+		+		+	
								1
	-∦	-i		-				
				_		_ _		
		╺╢────		-				
								-
		ļ						
and the model and the second		-		-1				
		_		_				
								5.3-29
			and the second se					
								NUMBER OF COLOR

0000

ESTIMATE

5,3-41d

Owner D.O.E. - PSOComputed By GLLPlant Nor theastern Sta UnitIDate 5-20-19 SUProject No. 8734File No. 8734.23.0100Checked By W. G.J.TitleCorristructionCostsDate 5-22-19 80TitleCorristructionCostsDate 5-22-19 80 BLACK & VEATCH CONSULTING ENGINEERS ₹⁄/ _ Page ______ of __ Z 4 MATERIAL LABOR TOTAL HRS. COST MAT'L PER TOTAL PER COST UNIT HRS. HOUR TOTAL HCCOUNT 5200 SITE FACILITIES QUANTITY UNIT COST TOTAL LABOR COST COST E- Machinery & Equipment 510 1176 6000 El Heat Exchanger air to H20 40 KW pump W/ 90 KW Startup 4000 25 10,000 CONDENSATE SASTEM 306/ 1176 36,000 60 000 ÉQ L.S 24,000 FILTERS Feedwater Recirculation 6-259pm E3 Nitray ... Sys Two 12 cylinder Dar KS Manitelis # pripring ASTM B88 Type K 150 1176 1,764 15 7,408 5.614 EA Service Hir Suiten 36444 2.25 Piping Incl Bibs 11-26 1529 819 130 2348 ES Service Water STITT 364LE 3 1100 11 ASTA BOE Elo Fire Extinguistics 3EH 88 265 155 1126 18,00 2,100

P-GN 171B

E. MACHINERY & EQUIPMENT TOTAL

5,3-9C

47,128 82,956

300

3 1176 35

4009

35,828

BLACK & VEATCH

CONSULTING ENGINEERS

Uwner L. U. E. - PJ Project No. 8734 File No. 873 4. 23. 0/00 -Title CONSTRUCTION COST ESTIMATE

__ Computed By _____€.S. Date 5-15- 19 20 Checked By <u>1 L L</u> Date <u>5 - 36 - 19</u> 80 Page 6 of 24

		MATERIAL						
		I	TOTAL	HRS.	TOTAL	COST	TOTAL	TOTAL
ITEM ACCOUNT No. 5200	QUANTITY	UNIT COST	MAT'L	PER UNIT	TOTAL HRS.	HOUR	LABOR COST	COST
SITE FACILITIES								
G - ELOCTRICAL								
GI 990 KW- 4160 V DIESEL								
GENERATOR & ASTOL. EQUIP.	1 EA	182,932	182,932	360	360	12.32	4,435	187,367
GZ 4160 V SWITCH GEAR	1 EA	76000	76,000	109.11	109	12.12	1,322	77,322
63 CIRCUIT POI SKY CABLE	30 LF	3.14	. 94	.171	5	12.12	67	156
64 CIRCUIT POZ SKY CARLE	60 LF	3.14	188	. 171	/0	12.12	124	312
G5 3" RIGIO STEEL CONOVIT								
FOR CIRCUITS POI 1 POZ	9015	4.00	360	.750	68	12.02	818	1178
GL INCOMINE POWER CIRCUITS								
SOO MEM CAPLE	Z 4,0 600	3,73	89,744	.067	1.612	12.12	19,538	107, 282
G7 4" RIGIO STELL CONOVIT								
FOR INCOMING PONER CACUITS	8,02041	6.00	48,20	1.250	19.25	12.12	121,503	169,623
G8 PAO MOUNTED TRANSFORMER	IEA	4,293	4,293	44.44	44	12.12	539	4,822
G 9 TOWER & SWITCHBEAR GROWNDING	1 65	1,139	1,139	109	109	12.12	1322	2,461
G. ELECTAICAL TOTAL			462,87	P	12,34	×	149,663	552,5%
		1						
						ļ		
				 		_	+	
	_		<u> </u>					
			<u> </u>					
			ļ	l				
				l				
an a							n ang panén dan terta pangangan da Katalan da Kata	
an she sheraran an a								
								5.3-46

"-GN 17IB

5,3-4F

SYSTEM REQUIREMENTS SPECIFICATION

FILE 8734.23. 0/00

PLANT COST DATA

SECTION 5.3

TABLE 5.3-40

PROJECT 8734

CONSTRUCTION COST ESTIMATE

CLIENT $\underline{D. o. \varepsilon. - P. S. o.}$ DESCRIPTION_ NORTHEASTERN LOCATION STATION - UNIT /

ACCOUNT 5300 COLLECTOR SYSTEM

APPROVED

A/C	ITEM & DECODIDITION	MAN				
NO.	ITEM & DESCRIPTION	HOURS	LABOR	SUBCONTRACTS	MATERIALS	TOTALS
<u>A</u>	Excevation & Civil	54	2,720			2,720
B	Concrete		····-			
<u> </u>	Structural Steel					
<u>D</u>	Buildings		······			
<u>E</u>	Machinery & Equipment		-		28,879,741	28,879,741
F	Piping					
G	Electrical	854	10,350		10,500	Z 0, 85
H	Instruments				· · · · · · · · · · · · · · · · · · ·	
1	Painting	┣───┟	<u>_</u>			
K	Insulation	├				
	DIRECT FIELD COSTS	908	/3, 070		28,890,241	28,903,31
L	Temporary Construction Facilities				<u> </u>	6,67
M	Construction Services, Supplies & Expense					6,67 9,43
N	Field Staff, Subsistence & Expense					15,18
P	Craft Benefits, Payroll Burdens & Insurance					18,86
0	Equipment Rental				······································	5,93
	TOTAL FIELD COSTS					56,07
R	Engineering				· · · · · · · · · · · · · · · · · · ·	105,11
	Design & Engineering		·····			
	Home Office Costs R & D					
S	Major Equipment Procurement		······································			3,97
т	Construction Management				·	18,74
	TOTAL OFFICE COSTS					127,83
	TOTAL FIELD & OFFICE COSTS			·		183,90
U	Labor Productivity				······································	
V	Contingency					19,157
W	Fee		₩ <u>₩</u> ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
A	TOTAL CONSTRUCTION COST		****************************		**** #################################	29,106,37

BLACK & VEATCH

CONSULTING

Owner .	Ð.	٥.	Е.	_	Р.	5.0	
-						-	

Plant NORTHEASTERN STATIONUNIT | Project No. 3734 File No. 8734. 23. 0100 Title CONSTRUCTION COST ESTIMATE

W, E, J. Computed By 19 00 6 - 5 -Date _ CLES Checked By 6-1 .19 . 2. - 2 Date 24 7 Page . of ___

	ر ا	MATERIAL						
			TOTAL	HRS.		COST	TOTAL	TOTAL
ITEM	QUANTITY	UNIT	MAT'L	PER	TOTAL	PFR	LABOR	COST
ACCOUNT NO. 5300		COST	COST	UNIT	нкз.	HOUR	COST	
COLLECTOR JYSTEM								
				ļ	ļ			
1					54		2,720	2,720
A - ExCAVATION & CIVIL			-	 	37			
	{┝━━━━━							
E- MACHINERT & EQUIPMENT			28,87974		-		-	28,879,741
	()							
					0.50		0.3.50	70.950
G- ELECTRICAL		ļ	10,500		854		10,330	20,850
		1						
	┨				+	<u> </u>		
TOTAL ACCOUNT 5300			20,890,241		908		13,070	28,903,311
	1		F / //		<u> </u>	<u> </u>		
	·				1			
	1		1					
	1							
	l					ļ		
		╢─		╢────	+		<u> </u>	
		11						
		┫┝╼────	+	}───		1	<u> </u>	
			1.1					
		1][Ţ	T		
	<u> </u>						L	
				11				
	-╟	┫────		╢	+	+		
		11						
·		╢────		╢────	+		+	iF
					1	1]
		-1	1]]
	l	II		-↓				┨┝
				11				
	-	┩────	+		+			1
		1	1					
							ļ	
	-┫─────	-∦	+			+		┨╞╼╍╍╍╍╍╍
						ļ		
		-╟				+		1
					1]
		-	+			1		
								11
								<u> </u>

5,3-10a

SYSTEM REQUIREMENTS SPECIFICATION

FILE 8734.23.0/00

PLANT COST DATA

SECTION 5.3

TABLE 5.3-40

CONSTRUCTION COST ESTIMATE

. CI	LIENT D. O. E P.S. O. NORTHEASTERN TION STATION - UNIT!	DESC	RIPTION_	5310		
LOCA	TION STATION - UNIT!	H	ELLOSTA		CONT. NO	
			· · · ·		MADE BY	W.E.J.
PRC	NECT 8734				APPROVED	······································
_				*		<u></u>
A/C	ITEM & DESCRIPTION	MAN				
NO.		HOURS	LABOR	SUBCONTRACTS	MATERIALS	TOTALS
			·····			
A	Excavation & Civil					
В	Concrate					
С	Structural Steel					
D	Buildings				28,769,741	28,769,741
E	Machinery & Equipment		· · · · · · · · · · · · · · · · · · ·			
F	Piping					
G	Electrical					
Н	Instruments					
3	Painting					
ĸ	Insulation					
-						
	DIRECT FIELD COSTS		<u> </u>	-	28,769,741	28,769,741
					,	
L	Temporary Construction Facilities					-
M	Construction Services, Supplies & Expense					
N	Field Staff, Subsistence & Expense					
Ρ	Craft Benefits, Payroll Burdens & Insurance					—
Q	Equipment Rental					
	TOTAL FIELD COSTS					
8	Engineering					
	Design & Engineering		· · · · · · · · · · · · · · · · · · ·			
<u> </u>	Home Office Costs					
	R & D					
S	Major Equipment Procurement					
L		<u> </u>				
T	Construction Management					<u> </u>
	TOTAL OFFICE COSTS	ļļ				
		┟────┤				
	TOTAL FIELD & OFFICE COSTS	ļ				ļ
						ļ
U	Labor Productivity	ļ ļ				
ļ		<u> </u>	,	···		
<u>v</u>	Contingency	ļ				
		<u> </u>			ļ	
W	Fee	ļ				
		ļ				
	TOTAL CONSTRUCTION COST					28,769,741

DATE 6-7-80 REVISION NO. ______ REVISION DATE _____ PAGE NO. 5.3+11

SYSTEM REQUIREMENTS SPECIFICATION

FILE 8734.23. 0100

PLANT COST DATA

SECTION 5.3

TABLE 5.3-45

PROJECT 8734

CONSTRUCTION COST ESTIMATE

CLIENT D.O. C. - P.J.O. DESCRIPTION NORTHEASTERN ACCOUNT LOCATION STATION - UNIT 1 OTHER C

ACCOUNT 5320 OTHER COSTS

CONT. NO. _______

APPROVED

A/C MAN **ITEM & DESCRIPTION** HOURS NO. SUBCONTRACTS LABOR MATERIALS TOTALS **Excavation & Civil** 54 2,720 A --2,720 8 Concrete C Structural Steel D **Buildings** Ë Machinery & Equipment -_ -110,000 110,000 F Piping Electrical 854 10,350 _ G 10,500 20,850 н Instruments J Painting κ Insulation DIRECT FIELD COSTS 908 13.070 120,500 133,570 -L **Temporary Construction Facilities** 6,670 M **Construction Services, Supplies & Expense** 9,430 N Field Staff, Subsistence & Expense 15,180 Ρ Craft Benefits, Payroll Burdens & Insurance 18,861 a Equipment Rental 5,934 56,074 **TOTAL FIELD COSTS** 105,110 R Engineering Design & Engineering **Home Office Costs** R& D 3,979 S Major Equipment Procurement 18,745 т Construction Management 127,834 TOTAL OFFICE COSTS 183,908 **TOTAL FIELD & OFFICE COSTS** U Labor Productivity 19,152 v Contingency W Fee TOTAL CONSTRUCTION COST 336,630

DATE 6-7-80 REVISION NO. REVISION DATE PAGE NO. 5.3 12

BLACK & VEATCH

٠

CONSULTING
ENGINEERS

Owner	P.	٥.	<u>e.</u> -	- /	S. (0.

Plant NORTHERSTEAN STATIONUNIT 1 Project No. 8734 File No. 8734. 23.0100 Title CONSTRUCTION COST ESTIMATE

Computed By Date	<u>- 19 00</u>
Checked By	<i>4</i> 3
	19 30
Page P	of 24
	V

	QUANTITY	UNIT	TOTAL MAT'L	HRS. PER	TOTAL		TOTAL LABOR	TOTAL
COLLECTOR SYSTEM		COST		UNIT	HRS.	HOUR	COST	СОЗТ
COLLECTOR SYSTEM Heliostats								
E- MACHINERY & EQUIPAENT	1 1							
EI HELIDSTATS	2,2550	@	49.07	m ² /EA	xza	0.00	m ² =	28,767,741
EI HELLOSTATS E. MACHMERY I EONIMAENT TOTAL			-	-	-			28,769,741
· · · · · · · · · · · · · · · · · · ·								
	i							
						-	· · ·	
					 			
					<u> </u>		·····	
					 			
							+	
							<u> </u>	╢
						<u> </u>		
				 				
						101 P. V		
								al and a state of the state of
								al prosector in the statement of the statement of
			ļ				_	5. 3. 120

5.3.120

BLACK &
VEATCH
CONSULTING

Owner	Э.	0	. E	<u> </u>	~	50
				_		

Plant NORTHEASTERN STATION Unit / P Ti

Computed By W. E. S. Date 5- 21 - 19 80 Checked By 19 5.2 Date 6----24 9 Page of ___

ENGINEERS

roject No. 8734	File	No.	87	34.	z	3,	010	00
itle CONSTRUCTIO								

		MAT	ERIAL		L	ABOR		
ITEM Account No. 5320	QUANTITY	UNIT COST	TOTAL MAT'L COST	HRS. PER UNIT	TOTAL HRS.	COST PER HOUR	TOTAL LABOR COST	TOTAL COST
COLLECTOR SYSTEM OTNER COSTS								
A- ExCAVATION & CIVIL								
AI PRIMARY DISTRIBUTION								
DIRECT BURIAL CAOLY								
EXCAVATION & BRUTFILL	25904			.210	54	50.00	2.72	2,720
A. EXCRURTION & CIVIL TOTAL					54		2,720	Z,720
							······	
E- MACHINERY É EQUIPMENT								
El HELIOSTAT WASHING VEA.CLE	I EA	30,000	30000	-	-	-	_	34,000
E 2 HELIOSTAT MAINT. VEH. ELE			25000	[_	-		25000
E3 HELDSTAT LEVELING EQUIPMENT			10 000			_		10,000
E.4 HELIOSTAT LIFTING VEHICLE	/ EA	30,000	39000	-	-	-	-	30,000
ES FIELD CONTROLER FLASER STITEM	1 15	15,000	15,000		-	-		-5,000
E. MACHINER + SEQUIPMEN- TOTAL		, 	110,000	-	-			110,000
G- ELEC-RICAL								
GI SIEU DIASCT BURINE CARLE	7,0000	1.50				12.12		20,850
G. ELECTRICAL TOTAL			10,500		854		10,350	20,350
			ļ	<u> </u>		L		

SN 171B

5.3-126

2

		SYSTEM REQUIREME	NTS S	PECIFICATIO	ON F	ILE 8734.2	23.0/00
	V	PLANT COST	DATA				TION 5.3
LO	CLI CAT	ENT $D_{-0.E.} - P.S.O.$ NORTHEASTERN NON STATION - UNIT I ECT 8734	DESC A	CRIPTION	700 *	CONT. NO MADE BY APPROVED	ω.ε.Γ.
A/ N	/C 0.	ITEM & DESCRIPTION	MAN HOURS	LABOR	SUBCONTRACT		TOTALS
		Excevation & Civil	222	13,942		8160	22.102
		Concrete	40,346	442,145		133,675	22,102 575,820
		itructural Steel	9,698			\$ 1,249,368	
		Buildings	201	2,266		6,382	8,648
		Aechinery & Equipment	22, 485	310,359			6,435,140
		Piping					
		lectrical	9,873	119,680	-	1 42,402	262,082
		nstruments	1,190	······································		572,772	594,121
		Peinting	22	250			
		nsulation	29,372	411,355	115,60	0 1, 282,198	1,809,153
	<u> </u>			<u>•••</u> • <u>•</u>	<i>*,</i> _		
		DIRECT FIELD COSTS	113,409	1, 450, 455	2 37,23	0 9,434,733	11,121,918
		Temporary Construction Facilities					50,750
		Construction Services, Supplies & Expense	<u>}</u>				71,750
		Field Staff, Subsistence & Expense				1	002,211
		Craft Benefits, Payroll Burdens & Insurance					143,500
-		Equipment Rental				* <u></u>	\$5,150
						-	
		TOTAL FIELD COSTS					426650
			+				799,750
	<u>R </u>	Engineering	+		<u>}</u>		
-		Design & Engineering	╂		+		
	+	Home Office Costs	<u></u> +·───		+		
\vdash		R&D	+	<u></u>	+		
	s	Major Equipment Procurement	+				30,275
-			+	<u> </u>			142,62
\vdash	<u> </u>	Construction Management TOTAL OFFICE COSTS		<u> </u>			972,65
		TOTAL FIELD & OFFICE COSTS	1				1, 399,300
┢		TOTAL HELD & OFFICE COSTS					
	U	Labor Productivity					
L				+			1,671,01
\vdash	<u>v</u>	Contingency		+	+		
1			1		1	1	

Fee 14,192,230 TOTAL CONSTRUCTION COST DATE 5-29-80 REVISION NO. _____ REVISION DATE ____ PAGE NO. 5.3-13

* Excluses Account 5450 SNOWN SEPARATELY.

W

Owner D. S. E. - P. J. O.

CONSULTING ENGINEERS

5

 North EASTERN Statim Unit
 1

 Plant
 North EASTERN Statim Unit
 1

 Project No.
 8734
 5734, 23, 0100

 Title
 CONSTRUCTION
 Cosst

		MAT	ERIAL		L	ABOR		
ITEM	QUANTITY	INIT	TOTAL	HRS.	TOTAL	COST	TOTAL	TOTAL
ACCOUNT NO. 5400	COANTIT	COST		PER	TOTAL HRS.		LABOR	соят
RECEIVER SYSTEM			0081	UNIT		HOUR		
Receiver Storem							1	
1								
A- EXCRUATION & CIVIL			8,160		222		13,942	22,102
х								
E- CONCRETE			/33675		40346		+42,145	575820
ζ.								
			*					
C- STRUCTURAL STEEL			1,280,726	1 .!	9,693		133,792	1, 414, 518
· · · · · · · · · · · · · · · · · · ·								
D- BUILDINGS			6,38Z		201		2.260	8,648
E- MACHINERY & EQUIPMENT	[6,129,181		22,485		3/0 359	6,435,140
								· · · · · · · · · · · · · · · · · · ·
							•	
G- ELECTRICAL			142,402		9,873		119,680	262,082
			,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		77 7, 000	
H- INSTRUMENTS & CONTROLS			* 571,455		1,190		16 66	594,121
			5 7 9 7 7		7,770		70,000	······································
J- PAINTING			84				250	334
		· <u> </u>	07	i	22		200	
K - INSULATION & LAGGING			*		79.300		A11 255	1,807,153
X - MOULANS - ZAGGING			1,397,798		29,372		711,200	7,007,700
TOTAL ACCOUNT STOO			× 9,671,463		113,409		1 450.455	11,121,918
10/AC / AC 300/ 0/00			1,01,100		//-//		/ , / · · · / ·	, , , , , , , , , , , , , , , , , , , ,
			<u> </u>					·
	I		L					;
* MATERIAL \$'S INCLUSE SUBC	ONTRACT	\$ 5						
		· · · · ·		i				
					· · ·			. – .

" GN 171B

5.3-13a

	SYSTEM REQUIREMENTS SPECIFICATION FILE NO.	8734.23.0100 .
\mathbb{A}	PLANT COST DATA ~	Section 5.3

CONSTRUCTION COST ESTIMATE

CLIENT_D. 0. C. - P. J. 0. NORTHENSTORN LOCATION STATION

DESCRIPTION Account 5410

PROJECT 8734

THOLE 5.3-44

TOWER

CONT. NO. MADE BY W.E.J. APPROVED _____

ITEM & DESCRIPTION xcavation & Civil concrete tructural Steel tuildings fachinery & Equipment iping ilectrical nstruments	HOURS 222 40,346 460 261 1,995	13 942 442,145 5,415 2,266	-	8,160 133,675	575,820
oncrete tructural Steel uildings fachinery & Equipment iping lectrical	40,346 460 Za1	442,145 5,415 2,266	-	133,675	575,820
oncrete tructural Steel uildings fachinery & Equipment iping lectrical	40,346 460 Za1	442,145 5,415 2,266	-	133,675	575,820
tructural Steel Juildings Machinery & Equipment Iping Jectrical	460 Z01	5,415		/33,675	575,820
uildings fachinery & Equipment iping lectrical	201	2,266		25,945	the second se
uildings fachinery & Equipment iping lectrical					31,360
iping lectrical	1,995		-		8,648
lectrical		Z3,400	-	97,600	121,000
Detrumente	9,873	119,680	-	142,402	262,082
na cristeri ca				·	
ainting	22	250	- ·	84	334
nsulation		5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -			
DIRECT FIELD COSTS	53,119	607,098	-	414,248	1,021,346
		م المردمين من المردمين الم			
					50,750
					71,750
					115,500
and a second					/ 43,500
quipment Rental					45,150
· · · · · · · · · · · · · · · · · · ·			ļ		
TOTAL FIELD COSTS					426,650
naincering					799.750
السارة الكمالية المتقاقلية الأوري ويستعدن البريزيان ومعدونة وتعارجان أوروجا فيجار بالبرا					
Aaior Equipment Procurement					30,275
onstruction Management					142,625
TOTAL OFFICE COSTS	-				972,650
	<u> </u>		<u> </u>		
TOTAL FIELD & OFFICE COSTS					1,399,300
			<u> </u>		
abor Productivity					
		·····			
Contingency			1		153,216
		· · · · · · · · · · · · · · · · · · ·			
· 0•					
TOTAL CONSTRUCTION COST					Z, 573,862
	emporery Construction Facilities onstruction Services, Supplies & Expense ield Staff, Subsistence & Expense raft Benefits, Payroll Burdens & Insurance quipment Rental TOTAL FIELD COSTS 7 ngineering Design & Engineering Home Office Costs R & D lajor Equipment Procurement TOTAL OFFICE COSTS TOTAL FIELD & OFFICE COSTS abor Productivity ee	emporery Construction Facilities onstruction Services, Supplies & Expanse ield Staff, Subsistence & Expanse raft Benefits, Payroll Burdens & Insurance quipment Rental TOTAL FIELD COSTS 7 ngineering Design & Engineering Home Office Costs R & D lajor Equipment Procurement onstruction Management TOTAL FIELD & OFFICE COSTS abor Productivity ee	emporary Construction Facilities onstruction Services, Supplies & Expense ield Staff, Subsistance & Expense raft Benefitz, Payroll Burdens & Insurance quipment Rental TOTAL FIELD COSTS ngineering Design & Engineering Home Office Costs R & D lajor Equipment Procurement onstruction Management TOTAL FIELD & OFFICE COSTS abor Productivity ee	emporary Construction Facilities	emporary Construction Facilities

DATE 6-8-80 REVISION NO. _____ REVISION DATE _____ PAGE NO. 5.3-14

BLACK & VEATCH Owner D. O. E. - P.S.O.

CONSULTING ENGINEERS Plant NORTHEASTERN STATION Unit 1 Project No. 8784 File No. 8784 23, 0100 Title CONSTRUCTION COSTA
 Computed By
 Lui.
 S.

 Date
 S-16-19
 85

 Checked By
 19
 19

 Date
 67
 19

 Date
 19
 19

 Date
 19
 19

[MAT	ERIAL	LABOR				
ITEM	QUANTITY	LINIT	TOTAL	OTAL HRS.		COST	TOTAL	TOTAL
ACCOUNT NO. 5410 TOWER	COARTIT	COST	MAT'L COST	PER	TOTAL HRS.		LABOR	COST
					<u>}</u>			
A - EXCAVATION & CIVIL			<u> </u>					
AI TOWER FON. EXCONATION	28204	-		.070	20	63.30	1,250	1,250
AZ TOWER FON. BACKFILL	25864	-		200.	9	50.00	452	452
A3 Rock Anchors	102 EA	00.00	8,160	1.896	193	63.30	12,240	20,400
A. Excav. + Civic Total			8160		222		13,942	22,102
· · · · · · · · · · · · · · · · · · ·								
B- CONCRETE								
BI TOWER FON. & SLAS	3964	85.21	3,323	23.359	911	10.89	9,917	13,240
BZ TOWER STANCTURE	890CY	144.45	128,560	43.710	38,902	10.96	426,365	554,925
B3 PLATFORM REIMP. SLABS	1604	112.00	1782	33,3/3	533	11.00	5,863	7,655
B. CONCRETE TOTAL	,		133 675		40,346		442,145	575,820
C- STRUCTURAL STERL								
CI PLATFORM SUPPORTS	3.25 TN	1100	3,575	24000	78	11.20	874	4,449
CZ GRATING	JTT SF	6.00	1062	.200	.35	11.76	416	1,478
C3 HANDRAIL	80.4	12.00	960	.390	31	12.71	397	1,357
C4 CAGEO LADDER	350LF	55.00	19,250	028.	2.98	1). 7km	3,499	22,747
CS STAIR WITH LANOML	18 15	61.00	104P	1.004	18	12.71	z z9	1,827
C. STRUCTURPL STUEL TOTAL			25,945	-	460		5,415	31,360
		, ,						
			L	}	L		,	↓

"GN I7IB

4

5.3-14a

BLACK & VEATCH CONSULTING ENGINEERS

R

Owner D	. O. E.	- PJ	0	
Plant NoA	RTH GASTO	ERN ST	ATCON Linit	
	8734			
	~ JTRVET			

Computed By ω, ε, f Date _____ 30 _ B Checked By_ 19 80 Date 6-6 12 of 24 Page ____

_

]	MAT	ERIAL	<u> </u>	L	ABOR		
ITEM ACCOUNT NO.5419	QUANTITY		TOTAL MAT'L COST	HRS. PER UNIT	TOTAL HRS.	COST PER HOUR	TOTAL LABOR COST	TOTAL COST
RECEIVER STITEM								
D- Builoingr								
DI ROLL-UP STEEL DOOR	140 55	17.86	2,700	,570	80	12.45	994	3,494
DZ HOLLOW METAL DOORS	ZEA	3/2.39	625	8.099	16	10.72	174	799
D3 METAL STUD WALL WITH MSUL.								
METAL PANELING	552 SF	5.90	3,257	.190	705	10.47	/098	4355
P. BUILDIANT TOTAL			6,382		201		2,266	8,648
E- MACHINERY & EQUIPMENT								
EI ELEVATOR	1EA	97,000	97,000	1961	1,961	11.73	Z3 090	-20,000
EZ VENTILATION FANS N/ PAMPERS	ZEA	300	600	17.00	34	11.76	400	1,000
E. MACHINERT & EQNIA. TOTAL		ļ	97600	 	1,995		Z 3, 400	121,000
	,							
			<u> </u>		1			
· · · · · · · · · · · · · · · · · · ·					1			
							· ·	
			·					
					ļ			
					ļ	ļ		
						†		
						<u>†</u>		
	<u> </u>		I	IL	_	L	<u>ا</u> ـــــا	

3 CN 1718

5,3-146

BLACK & VEATCH

Owner	D. 0.	€.	-	נת	0
	NORT				

GN 1718

Plant NORTHEALTERN STATION Unit _
Project No. 2734 File No. 8734. 23. 0100
Title CONSTRUCTION COITS

Computed B	y W- E.J.	
Date <u>5-</u>	- 19 <u>80</u>	
Checked By	Cartist	
Date	<u></u>	To plot water h
Page	3 of 2.4-	

								f <u>C_</u> T
	MATERIAL				LABOR			
ACCOUNT NO. 5410	QUANTITY			HRS. PER UNIT	TOTAI HRS.		LABOR	TOTAL COST
RECEIVER STIFFEM G- ELECTRICAL					†			
GI SOO MEM CABLE-								
CIRCUIT PO3	1050 15	3.73	3,917	.116	122	12.12	1,476	5,393
GZ # 12 AWG CABLE		 						
MON CIRCUITS	16,2006	1.06	17,172	. 087	1,328	12.12	16,100	53,272
G3. 4/0 AWL CABLE RECIRC. PUMP CURCUIT					 			
	9025	1.65	149	.084	8	12.02	92	241
GG #12 CABLE	2							
	7,0000		3990	.082	574	12.17	6957	/0,947
G 5 480 V MOTOR CONTROLCENTER	/ EA	16550	16,550	50.002	s,	12.12	606	17,156
G6 480-120/208 TRANSFORMER	1 E A	1,000	1,000	55100	55	12.12	667	1,667
G7 WALL MTD. LIGHTING & POWER PAREL	I EA	613	613	40,000	40	12.52	485	4802
68 LILATING FITTURES, DEVICE PLATE	-							
1 670	1 65	800	003	99	97	12.12	1,200	2,000
69 LIGHTNING PROTECTION	125	9000	9000	475		12.12	i	
GID FAR OBSTRUCTION LIGHTING			59,500	-				
GII CABLE TARY GIZ 4" RIGIO STEEL CONDUIT PUZ	360 65				t	12.12		7,572
G13 1" RIGIO STEEL CONDUIT UNCUT	1,050 CF	1	20,495			12.12		19,254 68,482
G. ELSCTRICAL TOTAL			142462		1873		119030	ala Cont
								· · · · · · · · · · ·

Owner D. O. E. - Pro

TONSULTING Engineers Plant Northeast can Station Unit 1 Project No. 8734 File No. 8734. 23. 0100 Title Construction Costs
 Computed By
 W - E - J.

 Date
 5 - - 19
 80

 Checked By
 33

 Date
 6-6
 19
 80

 Page
 14
 of
 24

Title CONSTRUCTION	Currs				D	ate _6	-6_1	9 80
					P	age	-61 /40f	<u> </u>
		MAT	ERIAL TOTAL	HRS.		ABOR	TOTAL	
ITEM .	QUANTITY	UNIT	MAT'L	PER	TOTAL	PER	LABOR	TOTAL COST
ACCOUNT NO. 5410		COST	COST	UNIT	HRS.	HOUR	COST	
RECEIVER SYSTEM				[
J- PA-NTING								
JI TOWER EQUIP. ROOM WALLS	&365F	.10	84	.03	22	1129	250	334
J. PRINTING TOTAL			84		22		250	334
					<u> </u>			
		L		L	_			
								<u> </u>
				L	Ļ	ļ		
			ļ					
ļ	┨──────┥		<u> </u>					
		-						
					ļ			
					1			
			·		<u> </u>		·	
	(-							
					ļ			
	┨	<u>}</u>	<u> </u>				·····	
		ļ					· · · · · · · · · · · · · · · · · · ·	
•								
			<u> </u>			<u> </u>		
			 			<u> </u>		
								
					 			
			<u> </u>		1			
	l		 		ļ	 		
			1					
						+		
	l		 		<u> </u>			
	IL	I	I	IL	L	L		

5.3-14d

SYSTEM REQUIREMENTS SPECIFICATION	FILE 8734, 23. 0100
PLANT COST DATA 4	SECTION J.3

TABLE 5.3-42 CONSTRUCTION COST ESTIMATE

CLIENT	D.O.E P.S.O.	DESCRIPTION	
	NORTHERSTERN	ACCOUNT 5420	
	STATION -UNIT!	RECEIVER	C
PROJECT	8734		AF

APPROVED _____

A/C NO.	ITEM & DESCRIPTION	MAN HOURS	LABOR	SUBCONTRACTS	MATERIALS	TOTALS
		-				
A	Excavation & Civil					
в	Concrete					
	Structural Steel	9,238	128, 377	36,358	1, 218, 423	1,383,158
D	Buildings					
E	Machinery & Equipment	20,490	286,959	80,589	5,946,592	6,314,140
F	Piping					
G	Electrical					
H	Instruments	1,190	16,666	4,683	572,772	594,12;
J	Painting					
<u>к</u>	Insulation	29,372	411,355	115 600	1.282,198	1,809,153
		,				
	DIRECT FIELD COSTS	60,290	843, 357	237,230	9,019,985	10,100,577
L	Temporary Construction Facilities		<u></u>			
М	Construction Services, Supplies & Expense					
N	Field Staff, Subsistence & Expense					-
P	Craft Benefits, Payroll Burdens & Insurance		······································			-
Q	Equipment Rental					
				1		
	TOTAL FIELD COSTS					
8	Engineering					
	Design & Engineering					
	Home Office Costs					
	R & D					
S	Major Equipment Procurement		······································			
т	Construction Management					
	TOTAL OFFICE COSTS					
<u> </u>	TOTAL FIELD & OFFICE COSTS					
υ	Labor Productivity					······
v	Contingency					1.517,79
w	Faa		-	-		
					+	+
	TOTAL CONSTRUCTION COST					11, 618, 36

DATE ______ REVISION NO. ______ REVISION DATE ______ PAGE NO. _____

Owner D. O. E. - P. S. O.

BLACK & VEATCH CONSULTING ENGINEERS

Plant NORTH EASTERN STATION Unit _/ Project No. 8734 File No. 8734. 23.0100 Title CONSTRUCTION COSTS

Comput	ted By	. е.	5
Date	6-8.		80
Checke	d By	B	
Date _	6-9	19 .	80
Page	15	of	24

	<u> </u>	MAT	RIAL	[L	ABOR		
ITCAA	QUANTITY	UNIT	TOTAL	HRS.	TOTAL	COST PER	TOTAL LABOR	TOTAL
ACCOUNT NO. 5420	QUANTIT	COST	MAT'L COST	PER UNIT		HOUR	COST	COST
RECEIVER								
C- STRUCTURAL STEEL			¥					
CI RECEIVER STANCTURAL STL	145	1,254,781	1,254,781	7,752	7,752	16.56	128,377	1,383,158
C. STRACTURAL STEEL TOTAL			1,254,981		7,752		128,377	1,383,158
E- MACHINERT & EQUIPMENT								
El Boicer, Maumrinus, i Sioint	15	1,691,700	★ /,69!,708	13291	13,291	14.01	186 141	1,877,841
EZ ECONOMIZER			* 95, 293			14.01	9,313	104,606
ES SUPERHEATER É PIPING			3,741,679					3,829,837
		1	* 498,509			14.01		501,856
Et CIRC. POMP & MOTOR	/ č.	11	*	11	20,490			6,314,140
E. MACHINERT & EQUIP. TOTAL		 	6,027,181		29,47		200,101	0,077,010
		╢────						
H - INSTRUMENTS & CONTROLS	11		*		<u> </u>			
HI CONTROLS	125	577,45	577,455	1,190	1,190	14.01	16,666	
H. INSTRUMENTS & CONTROLS TOTAL		∦	577,455	• -	3190		16,666	594,121
		 -			ļ	 		
K- INSULATION				ll				
KI INSALATION É LAGGING	125	1,397,79	# 1,397,798	29,37	29,372	14.01	411,355	1,809,153
K. INSULATION TOTAL			+ 1,397,798	2	29,37	2	411,355	1,809,153
TOTAL ACCOUNT 5420			9,257,21				843,357	10,100,572
	┨					<u> </u>		
		-∥		-∦	+	+		
		-∥		-∦	·	+	+	┨─────
					_		ļ	
. ,						1		
* MATERIAL \$'S /NCLYDE SUBCO	TRACT	\$ 3.						
	_	!!		-1	-	-	+	5.13-15

A.GN-171B

5.13-15a

	SYSTEM REQUIREMENTS	SPECIFICATION	FILE NO. S	8734.23.0100
$\neg $	PLANT COST DATA	·~	,	Section 5.3

TABLE 5.3-45 CONSTRUCTION COST ESTIMATE

CLIENT D. O. E. - P. S. O. NORTHEASTEAN LOCATION STATION-UNIT! PROJECT 8734

DESCRIPTION_ Account 5450 RECEIVER LOOP SYSTEM

APPROVED _____

A/C		MAN				
NO.	ITEM & DESCRIPTION	HOURS	LABOR	SUBCONTRACTS	MATERIALS	TOTALS
A	Excavation & Civil	106	5,847		6,182	.7 .79
В	Concrete	374	4,115	-	3,120	7, 235
c	Structural Steel	1,687			72,610	91,507
D	Buildings	/100				
E	Machinery & Equipment					
F	Piping	51,139	628,001	-	756335	1,384,336
G	Electrical					
Н	Instruments					
J	Psinting					
К	Insulation	1,476	18,6 45	-	-5,288	33,933
	DIRECT FIELD COSTS	54,782	675,505		853,535	1.529,040
L	Temporary Construction Facilities					75,980
М	Construction Services, Supplies & Expense				1	107,421
N	Field Staff, Subsistence & Expense		<u></u>			172,920
P	Craft Benefits, Payroll Burdens & Insurance				·····	2.14,840
Q	Equipment Rental					67,596
			,,,,,			
	TOTAL FIELD COSTS					638,756
R	Engineering					1,1 97,340
	Design & Engineering		·			
	Home Office Costs					
	R&D					
S	Major Equipment Procurement					45,326
т	Construction Management					213,530
-	TOTAL OFFICE COSTS					1,456,196
	TOTAL FIELD & OFFICE COSTS					2,094,952
U	Labor Productivity					
v	Contingency		·····			229,824
W	Fee	 				
	TOTAL CONSTRUCTION COST					3,853,816

DATE 5- 29-80 REVISION NO. _____ REVISION DATE _____ PAGE NO. 5.3-16

Owner _	\mathcal{D} .	٥.	6.	~	Γ.	5.	0	•

CONSULTIN	5
ENGINEERI	•

R

Project No. 8734 File No. 8734. 23. 0100 Title COMPANERION COJES

Plant NORTHEASTERN STATION Unit -

Compu	ted By(N, 6	ŧ.J.	
			1 00	
Checks	d By	S		
Date _	6.9	1	19 <u>XO</u>	
Page	17	of	24	

	[]	MAT	TERIAL LABOR					
			TOTAL	HRS.		COST	TOTAL	TOTAL
ITEM	QUANTITY		MAT'L			PER	LABOR	COST
ACCOUNT NO. 5850	L	COST	COST	UNIT		HOUR	COST	
Receiver Gon Jussen		ł						
		<u> </u>			 			
A - ExCAVATION & CIVIL			6182		106		5,8+7	12,029
· · · · · · · · · · · · · · · · · · ·		L		ļ				
B - CONCRETE			3,120		374		4,115	7,235
D- CONCRETE								
					. 1 97		18,897	91,507
C- STRUCTURAL VIEL			72,610		1,687		10,011	11,001
						1		
· · · · · · · · · · · · · · · · · · ·								
F- PIPING	·		756,335		51,137	L	623,001	1,384,336
· · · · · · · · · · · · · · · · · · ·		•						
	·						••••••	
K- INSULATION			15,288		1,476	4	18,645	33,933
~	1		<u> </u>	1			· · · · ·	
							<u> </u>	
TOTAL ACCOUNT SASO			853,535	ł .	54,780		675,505	1,529,040
TOTAL ALLOUAT OFF	╢	╟	- /-	╢─.──		<u> </u>		
· · ·								
			T					
	╢────	┨	· · · · · · · · · · · · · · · · · · ·	╢		<u> </u>		
		i)						
	┨────	╢		1				
		┨	ļ	ll		_		
·	-∦	╢────		╢───	+	+	+	
		1						
		╢	+	╢───	+		+	
			1					
	-∦	╢				<u> </u>		
			1					
		-∦		╢───		1		
				┛				┨
		-		-{		+		╢──────
			1					
	_↓						+	╢────
			_ _			- +		3-160

1

5.3-16a

	SYSTEM	REQUIREMENTS SPECIFICATION	FILE g	734.23.0100
5	5	PLANT COST DATA	•	SECTION 5.3

TABLE 5.3-4k

CONSTRUCTION COST ESTIMATE

CLIENT D.O.E. - PS.O. NORTHEASTERN DESCRIPTION_ ACCOUNT 5451 LOCATION STATION - UNIT 1 PIDE SUPPORTS SYSTEM PROJECT 8734 - .

.

CONT. NO. ______ MADE BY ______ CN - E. J. APPROVED _____

A/C		MAN				
NO.	ITEM & DESCRIPTION	HOURS	LABOR	SUBCONTRACTS	MATERIALS	TOTALS
<u>A</u>	Excavation & Civil	/06	5,847 4,115		6,182	12,024
В	Concrete	374	4,115		3,120	7, 2 3-3
С	Structural Steel	1687	. 18,897	-	72,610	91,507
D	Buildings					
E	Machinery & Equipment					·····
F	Piping					
G	Electrical					
н	Instruments					
J	Painting					
к	Insulation					
	DIRECT FIELD COSTS	2,167	28.859	-	81,912	//0,77
L	Temporary Construction Facilities					5,510
М	Construction Services, Supplies & Expense					7,790
N	Field Staff, Subsistence & Expense					12,540
Ρ	Craft Benefits, Payroll Burdens & Insurance					15,580
Q	Equipment Rental					4,902
	TOTAL FIELD COSTS					46,32
R	Engineering					86,83
	Design & Engineering					and the second
	Home Office Costs					
	R&D					
S	Major Equipment Procurement					3,28
т	Construction Management					15, 48
	TOTAL OFFICE COSTS					105,6
	TOTAL FIELD & OFFICE COSTS					151,92
U	Labor Productivity					
v	Contingency	 				16,75
w	Fee					
	TOTAL CONSTRUCTION COST					279,45

DATE 6-8-80 REVISION NO. _____ REVISION DATE _____ PAGE NO. 5. 3-17

	SYSTEM REQUIREME	NTS SPECIFICATION	FILE 8734.23,0100
	PLANT COST	DATA	SECT. ON 5.3
TABLE	5.3-4 CONST	RUCTION COST ESTIMATE	
CLIENT	D.O.E A.J. O. NORTHEATTERN STATION UNIT!	DESCRIPTION Account 5452	
LOCATION	STATION UNIT!	FEEDWATER REDWATER	CONT. NO.

PROJECT_8734

FEEDU	VATER.
A 24 , B , C	SYSTEM

A/C		MAN	······································			
NO.	ITEM & DESCRIPTION	HOURS	LABOR	SUBCONTRACTS	MATERIALS	TOTALS
A	Excevation & Civil					···
8	Concrete					
<u> </u>	Structural Steel					
D	Buildings					····
Ē	Machinery & Equipment				100 400	309 (00
F	Piping	14,715	180,700	-	128,400	309,100
G	Electrical					
H	Instruments					
J	Painting					
<u> </u>	Insulation	3/0	3,9/6	*	3,192	7,108
	DIRECT FIELD COSTS	15,025	184,616		131,592	316,208
L	Temporary Construction Facilities	┝		<u> </u>		15,660
M	Construction Services, Supplies & Expense					15,660 22,140
N	Field Staff, Subsistence & Expense			1		35,640
Ρ	Craft Benefits, Payroll Burdens & Insurance			1		44,280
a	Equipment Rental					13,932
						· · ·
	TOTAL FIELD COSTS					131,652
R	Engineering		······································			246,780
	Design & Engineering					
	Home Office Costs					
	R&D					
S	Major Equipment Procurement		······································	~		9,342
						14 4 10
T	Construction Management					44,010
	TOTAL OFFICE COSTS					300,/32
	TOTAL FIELD & OFFICE COSTS					431,784
U	Labor Productivity					
v	Contingency	 				47,880
w	Fee	 				······
	TOTAL CONSTRUCTION COST	1				795,872

DATE 6-8-80 REVISION NO. _____ REVISION DATE _____ PAGE NO. 5.3-18

SYSTEM REQUIREMENTS SPECIFICATION

FILE \$734. 23.0100 NQ.

PLANT COST DATA

Section 5.3

TABLE 5.3-4 CONSTRUCTION COST ESTIMATE

CLIENT	NT D. O.E P.J. O. NORTHENJTERN
	NORTHERJTERN
LOCATION_	STATION - UNIT!

DESCRIPTION ______ Arc OUNT SF53 MAIN STEAM

P. P. NG SASTEM

CONT. NO. _____ MADE BY ____い. ど、 . . APPROVED _____

PROJECT ______ 3 4

A/C NO.	ITEM & DESCRIPTION	MAN HOURS	LABOR	SUBCONTRACTS	MATERIALS	TOTALS
	Excavation & Civil		ومعروب المترافق ومروا ومعرفون			
A						
B	Concrete					
<u>c</u>	Structural Steel					
D	Buildings Machinery & Equipment					
-		23,606	289,889		496,193	786,082
F		-3,000				
G	Electrical		میں ہوتا ہوتا ہوتا ہوتا ہوتا ہوتا ہوتا ہوتا			۵۰۰۰۰ و منظور بر بر این این این ا ین این ا
Н	Instruments					
J	Painting	848	10 7/0		8,320	19,530
ĸ	Insulation	646	10,710	·		
	DIRECT FIELD COSTS	24,454	300,599		505,013	805,612
L	Temporary Construction Facilities					40,020
M	Construction Services, Supplies & Expense					56,58
N	Field Staff, Subsistence & Expense					91,08
P	Craft Benefits, Payroll Burdens & Insurance					113, 160
٥	Equipment Rental					35,604
کستہ ہے۔ میں بی بی ہیں۔ انہ ایک میں ایک	TOTAL FIELD COSTS					336,44
R	Engineering			and the second		630,66
	Design & Engineering]		a alam ang mang mang san alam na kan ka pana ang kana kana kana kana kana kana ka		
	Home Office Costs					······································
	R & D					0
S	Major Equipment Procurement	<u> </u>				23,87
T	Construction Management					112,47
	TOTAL OFFICE COSTS]				767,00
	TOTAL FIELD & OFFICE COSTS					1,103,44
υ	Labor Productivity	+		South and the second		
v	Contingency					/19,70
w	Feo					
	TOTAL CONSTRUCTION COST					2,028,76

DATE 6-8-80 REVISION NO. _____ REVISION DATE _____ PAGE NO. 53-19

SYSTEM REQUIREMENTS SPECIFICATION

FILE 873 4. 23. 0/00

PLANT COST DATA

SECTION 5.3

TABLE 5.3-UM CONSTRUCTION COST ESTIMATE

CLIENT D.O.E. - P.J.D. DESCRIPTION _____ DESCRIPTION _____ ACCOUNT LOCATION STOTION - UNIT !

PROJECT 8734

Account 5454 CONDENSATE PIRING JUSTEM

CONT. NO. _______ MADE BY ______. E. S. APPROVED ____

A/C	ITEM & DESCRIPTION	MAN					
NO.	IS EM & DESCRIPTION	HOURS	LABOR	SUBCONTRACTS	MATERIALS	TOTALS	
			· .				
<u>A</u>	Excevation & Civil						
<u> </u>	Concrete			· · · · · · · · · · · · · · · · · · ·			
<u>C</u>	Structurel Steel		· · · · · · · · · · · · · · · · · · ·				
D	Buildings		·				
<u> </u>	Machinery & Equipment						
F	Piping	12,816	157,412	~	131,742	289,154	
G	Electrical						
<u> </u>	Instruments						
J	Painting		······				
к	Insulation	318	9,019	-	3,276	7, 295	
	DIRECT FIELD COSTS	13,134	161,431		135018	296,449	
L	Temporary Construction Facilities					14,790	
M	Construction Services, Supplies & Expense		• <u> </u>			20,910	
N	Field Staff, Subsistence & Expense					33,660	
P	Craft Benefits, Payroll Burdens & Insurance						
Q	Equipment Rental					41,820 13,158	
	TOTAL FIELD COSTS					124,338	
R	Engineering					233075	
	Design & Engineering						
	Home Office Costs						
	R&D		······				
S	Major Equipment Procurement		<u> </u>		· · · · · ·	9 077	
						8,823	
т	Construction Management					41.565	
	TOTAL OFFICE COSTS					41, 565 283,458	
	TOTAL FIELD & OFFICE COSTS					407,796	
U	Labor Productivity						
v	Contingency					45,486	
w	Fee		``				
	TOTAL CONSTRUCTION COST					749,731	

BLACK & VEATCH CONSULTING ENGINEERS

R

⁹ GN 1718

Owner D.O.E PJO	
Plant NORTHEASTERN STA	1 Unit
Project No. 8734 File No.	
Title CONSPRUETION	Costs

Comput	ed By_	. E.	s
Date	5-28	19	05
Checked	і ву		;
Date	1	19 _	
Page	16	of	24

		MATERIAL			LABOR				
ITEM Account No. 5451	QUANTITY		TOTAL MAT'L COST	HRS. PER UNIT	TOTAL HRS.	COST PER HOUR	TOTAL LABOR COST	TOTAL COST	
Receiver Loor System A - Excavation & Civic									
AI PIDE SUPPORTS EXCAVATION	92001	-		,079	64	63.30	4,079	# ,077	
AZ / " GRAVEL	920 64	6.72	6,182	.014	13	25.99	334	6,516	
A3 DRILLEO PIERS (ZI"\$)	72EA			.399	29	50.00	1,436	1,436	
A. Excavation & CIVIL Total			6,182		106		5,847	12,029	
8 - CONCRETE									
BI PIPE SUPPORTS (HURIZONTAL)	i l			1				5,228	
82 TRUST FOUNDATIONS	72 EN	16.25	1170]{	374		837 4115	7, 235	
B. CONCRETE TOTAL			3724		374				
C - STRUCTURAL STEEL			· · · ·		<u> </u>	 			
CI PIPE SUPPORT STEEL	55.8 TN	1014.17	56,630	Z 7.09	1,339	11.20	14,899	71,629	
CZ PIPE ROLLERS	179 EA	91.89	15,980	Z.101	348	.11.20	3898	19,878	
C. STRUCTURAL STELL TOTAL			72,610	<u> </u>	1687		18,597	91,507	
		╽							
				╂	+				
	_ _	╂		╢───					
		╢───	<u> </u>	╢					
		╢──	<u> </u>	╢					
· · · · · · · · · · · · · · · · · · ·				╢───					
				┨					
		┃ -┃			<u> </u>	<u> </u>	<u> </u>		
· · · · · · · · · · · · · · · · · · ·	_	-∦	<u> </u>						
<u></u>			L					3-20a	

5.3-20a

Plant Plant Unit						Computed By GLL Date $5 - 20 - 19^{\circ}$ 80 Checked By $W. \in S$ Date $5 - 22 - 19$ 39 Page 18 of 24			
]	MATERIAL		LABOR				ليستعلك	
ITEM Account 5453	QUANTITY	UNIT COST	TOTAL MAT'L COST	HRS. PER UNIT	TOTAL HRS.	COST	TOTAL LABOR COST	TOTAL COST	
Receiver Loop System F- Pipino					[
F- Piping Main Steam Piping Sys FI Pipe ASTM 335	50394	72	362,800	4.478	20,565	12 ²⁸	277,100	639,900	
GR P22-3"\$ OD 11.43" IN 8.251"									
F2 10" Globe Valve	IEA	36,207	36,207	16	16	12.28	196	36,403	
ASTM AZIT Q-14 CR									
F3 2" Globe Valve	3EA	1,607.75	5,063	4	12	12.28	147	5,210	
ASTH AI82 2-14CR									
F4 1" Globe Valve	ICEA	332.25	3,323	٢	ZO	12.28	246	3,569	
GRF22									

2 EA 6000 12,000

100 LF

2 EA 35,000 70,000 285 570 12 35 7 000

me,

68 6800 4.235 423 122 52.00

ASTM H182 2-14CR

Oran Pungis - H.S.

Piping CR P22

50 gpm @ 100'H

Drain Tanks -

Main Steam

MISC.

P-GN 171B

F6

ASTM A335 2 4 CR 496,193 Z3606 289,889 786,082 ACCOUNT 5452 Feedwater Piping Su 43576 29 127,200 3.34 14,600 12 2 179,900 ASTM NGG 367,100 6" Pipe **۲** ا SCH XX5 Chemical Feed 125 1,200 1,200 65.147 FZ 65 12.28 800 2000 Equipital cut Account Stratera 128,400 14,715 180,700 309,100 Condensate Pyping Sys 49,500 2.6/ 11,726 12 28 144,000 ASTM ARG 4/500 LA 11 Pipe 193,500 GRB Sch 40 Solar Receiver 1EA 62,000 62,000 407 407 12 25 5,000 F2 67.000 Blowdown Tark 163 12 28 Condensate Ret 1EH 7000 7500 F 3 9000 /63 2,000 Pump 1759 Por H

5.3-206-

77,000

10,00

12,000

Owner D.O.E. - FSO Computed By GLL Northeastern Staunit _____ Plant Northeastern Staunit _____ Project No. 8734 File No. 8734.23.0100 Title Construction Costs Date 5-20-19_ Checked By ______ (J. E. S. Date ______ 19___ 80 Page ______ of ____ Z 4

80

		MATERIAL		LABOR]]	
ITEM	QUANTITY	UNIT COST		HRS. PER UNIT	TOTAL HRS.	COST PER HOUR	TOTAL LABOR COST	TOTAL COST	
F4 4" Globe Values GRUCB HSTM H216 CS-150	3EA	2,241	6723	6	18	12.28	221	6,949	
ASTIM HQ16 CS-150		ļ							
	· · · · · · · · · · · · · · · · · · ·		·	• 1 					
FS Misc Piping	150 LA	4.67	700	3.09	464	1225	5700	6400	
2" Pipe - CS									
ASTM AIOGB									
	10 EN	5 8/. 94	5,819	4.00	40	12.28	491	6,3/0	
Q" Gate Values CS								· · · · ·	
ACCOUNT 5454 TOTAL			/3/,742		12,816		157, 412	289,154	
							, 		
			,						
NOTE: ACCOUNT 5452 AL UALVE (AZIG, GRAD								1	
AFTER THE ESTIMA									
+ 8,200 /v /NCLNDED		11			1				
· ·									
II	11	11	T	11	T	T	5.3	3-200	

P-GN 171B

BLACK &

VEATCH CONSULTING ENGINEERS

Owner DOE. - PSO BLACK & 19_80 VEATCH Project No. 8734 File No. 8734. 23.0100 Title Construction Costs Insulation CONSULTING Checked By ENGINEERS Date _6 - 9 19 80 20 24 Page MATERIAL LABOR UNIT MAT'L PER COST COST UNIT HRS. COST HOUR TOTAL TOTAL ITEM QUANTITY LABOR COST ACCOVNT 5450 COST K - Insulation Account 1553 Torni K, Thermial insul 2520 350 8820 .34 848 1263 10,710 19,530 KI 5039' ASTH H335 G- 122 Main Steam Piping \$ jacketing - 6" Ka Insulation - 912/51 350 3192.34 310 12 3916 7108 23" - 4387 LF ASTM HIUGB Feedwater ACCOUNT 5454 TOTAL 936/17 350 3276 34 318 1203 4019 Insulation -7295 K3 22" - 4500 LF ASTM A106 ACCOUNT 5450 K. INSULATION TOTAL 18,645 33,933 15,288 1,476

5.3-20d

P-GN 171B

SYSTEM REQUIREMENTS SPECIFICATION

FILE 8734. 23.0/00 NO.

Section 5.3

PLANT COST DATA

TABLE 5.3-40

CONSTRUCTION COST ESTIMATE

CLIENT _ P. O. E. - P. S. O. NORTHEASTERN LOCATION STATION - UNIT /

PROJECT _ 2734

DESCRIPTION ACCOUNT 5500 MASTER CONTROL SYSTEM

-

CONT. NO. _ MADE BY W. C. S. APPROVED _____

A/C NO.	ITEM & DESCRIPTION	MAN HOURS	LABOR	SUBCONTRACTS	MATERIALS	TOTALS
A	Excavation & Civil	1	·			
в	Concrete					·······
С	Structural Steel		<u>.</u>			
D	Buildings					
E	Machinery & Equipment					
F	Piping					
G	Electrical	2,635	31,928	-	147,548	179,47
H	Instruments	10,531	127,640		Z,004,000	2,131,64
J	Painting					
К	Insulation					
	DIRECT FIELD COSTS	13,166	159,568	-	2,151,548	2,311,116
- <u></u>	Temporary Construction Facilities					114,55
M	Construction Services, Supplies & Expense					161.95
N	Field Staff, Subsistence & Expense					260,70
P	Craft Benefits, Payroll Burdens & Insurance					323.90
Q	Equipment Rental		· · · · · · · · · · · · · · · · · · ·			101,91
1. M			······			
	TOTAL FIELD COSTS					963,01
R	Engineering					1,805,15
	Design & Engineering			<u> </u>		
	Homa Office Costs					ļ. <u></u>
	R&D	[· ·		68,33
S	Major Equipment Procurement	ļ				
т	Construction Management					321,91
	TOTAL OFFICE COSTS					Z,195,4
	TOTAL FIELD & OFFICE COSTS					3, 158, 42
U	Labor Productivity					
v	Contingency					347,13
w	Fee					
	TOTAL CONSTRUCTION COST	+				5,816,66

DATE 5- 29- 80 REVISION NO. _____ REVISION DATE _____ PAGE NO. 5-3-21

BLACK & VEATCH

CONSULTING ENGINEERS

Owner D. O. E. - PJO

Plant NORTHEASTERN STATION Unit _ 1 Project No. 8734 File No. 8734 23. 0100 Title CONVERSETION COITS

Computed By	I. E.J.
Date	19
Checked By	93
Date 6-7	19 80
Page 21	of 24

	<u> </u>	MATE	RIAL		L	ABOR		
ITEM Account NO. 5500	QUANTITY		TOTAL MAT'L COST	HRS. PER UNIT	TOTAL HRS.	COST PER HOUR	TOTAL LABOR COST	TOTAL COST
MASTER CONTROL JUSTEM G - ELECTRICAL								and provide state of the state
GI 125 V DC BATTERT & FUEL	1 64	21,000	24000	15,00	15	12.n	182	21,182
GZ 125 V DC MANEL	1 60	6 580	6580	18.00	18	12.12	218	6,7 98
G3 37.5 KVA RECULATING TANNIF.	16A	1158	1,158	3 9.25	39	12.12	476	1634
64 125 V DC BATTERY CHARLER	Z 64	12,800	Z 55 600	15.00	30	12.12	369	25,964
GS 120 V AC UNINT GREUPTIELS								
POWER PRAVEL	164	79000	70,000	105.00	105	12.12	1,2 73	71,213
G 6 #10 - Z CONDUCTOR COAPER								
CABLE- UPS Zo MULTIPLEVER				~77		17.12	1,636	4,986
IN Tower	5,000 LA	.61	3,54 4	.027	/30		7,00 %	1,70 %
67 Z" RIGIO STEEL CONDUIT - UPS TO MULTIPLEXER IN TOWER	5000 64	1.90	9.00	. 7.75	1125	12.12	13,635	23,135
GP #10-2 CONDUCTOR COPPER					+ +			
CABLE- UNS TO COMPUTER IN								an a
POWER PLANT	1,500 CF	- 67	1005	. 027	41	12.12	491	1,49%
G9 1"RIGIO STEEL CONOVIT -								and a state of the
UPJ To COMPUTER IN POWER						<u> </u>		
PLANT	1,500 4	.88	1,320	. 170	255	12.12	3,091	4,911
GIO HOANT CABLE - BATTERY		┨───						
CHARGERS STANDON SAURCE						17 17	7036	5,336
IN POWER PLANT	2,00025	1.63	5,300	.08	/ 100	12.10	2,036	
GH 3" RIVIO STEEL CONDUIT - BATTERY CHARLERS STANORY	-			╢	1	+		
Source IN Power PLANT		4. 05	2,840	,750) 52	r 12.12	6363	9,163
GIZ 350 MCM / CONDUCTOR CORREL		1	1					
CASLE-DC PANEL TO INVERTER		F 72.67	1,335	-107	5	+ 12.52	6 48	1,983
					_			

P.CN.I7IB

5.3-21a

alack &	$Owner _ D. O. \in - PNO$	Computed By W. C. J.
VEATCH	Plant NORTHEAITERN STATION Unit /	Date 14
CONSULTIN g Engineers	Project No. 8734 File No. 8734. 23.0/00	Checked By
	Title CONSTRUCTION COSTS	Date 19
		Page 22 of 24

		MATERIAL						
17784			TOTAL	HRS.		ABOR COST	TOTAL	TOTAL
ITEM	QUANTITY	UNIT	MAT'L	PER	TOTAL	DED	1 4000	COST
ACCOUNT NO. 5500 CONT'O		COST	COST	UNIT	HRS.	HOUR	COST	cost
MASTER CONTRAL SYSTEM		<u> </u>					F	1
G13 4" RIGIO STEEL CONOUIT-								
DE PANEL TO INVERTER	10045	6 00	600	1.250	175	17.17	100	z,115 1717, 476
			600	11200	160	7606		
G. ELECTRICAL TOTAL			147.54	-	2125		2000	1000 11-11
			17/07	F	2600		-, 7 x r.	1. 1. 4 10
	[] (1						
				L				ļ
	<u> </u>	<u> </u>		·				
		ļ						
								{
				L				
								1
	[]			·				·
	<u> </u>		- ,					
	1							
				<u>-</u> ·───				
				1				
		·						
	┟────┥							
	i li						i.	
	<u>├</u>							
					1		Ì	
	┝━┉────┥							
								1
	┝━━━━━━┫			┝───┤				
					İ		1	l
	├							
					1]]]
	———							
	l							
	- }							
	11				ļ			
	11					ļ	l	
	[]	ļ]]					
						1		
· · · · · · · · · · · · · · · · · · ·							······································	-7 -11

5.3-216-

BLACK & VEATCH

CONSULTING ENGINEERS

R

Owner D.O.E. - PSO - HOU tern Stainit ______ File No. 8734.23.0100 Checked By _____ ______ Daster Control Date 6.7 _______ Date 6.7 _______ Page 23 + AROR _____ Computed By 80 Plant North Custern Project No. 8734 19 70 Cuble Title 24 of

		MAT	RIAL		1	ABOR]
			TOTAL	HRS.		COST	TOTAL	TOTAL
ITEM	QUANTITY	1 1	MAT'L	PER	TOTAL		LABOR	COST
Account 5500		COST	COST	UNIT	HRS.	HOUR	COST	
Account 5500 Flaster Control System	2							
H Instruments ; co	strous							
HI - Cable 10C	40004	1.957	7800	اماه.	2.44	12.12	2,957	10,757
H2-Cable IOC								2739
								12,894
								48226
H5- Cable ICC	100 L F							
H 6-Z"RIGIO STEEL CONDUIT	10,0006	1.90	19,000	. 225	2250	12.12	27,270	46,270
H7	{	 						
12" Dia Core Hing 12" Dia Dritting for 8" Stab	644		-	6.6	40	12.12	480	480
#8					+			
Control Panel			*	· ·				
Амо	125		1,930,009	6600	4 6 601	12.12	80,000	2010,000
Competer Equipment					+		aB (dD	2121 100
H. INSTRUMENTS & CONTROLS TOTA			2,00400	•	10,53	1	121,640	2,131,640
	-	╂				+		
		╢		╢		+		
						-		
			+					
			1					
	-			,				
								-
* INCLOSES \$ 40,000 FOR STA	AT-UP E	The we	ERING	BY	Can TI	eour s	SUR- CONT	eneron.
				_				
	_							2 2/0

5.3-210

R		INTS SP	PECIFICATI		LE 8734.2	3.0100
-7	PLANT C	OST DAT	ra s	3	Sect.	· on 5.3
	~		ON COST ES			an a
С	LIENT D.O.E P.S.O. NORTHEASTERN TION STATION - UNIT	DESC	RIPTION	5600		
.OCA	TION	<u></u>	STEM	ERGY	CONT. NO MADE BY	
PRC	NECT				MADE BY	
A/C	ITEM & DESCRIPTION	MAN		······		
NO.		HOURS	LABOR	SUBCONTRACTS	MATERIALS	TOTALS
A	Excavation & Civil					
B	Concrete		· · · · · · · · · · · · · · · · · · ·			
<u>с</u>	Structural Steel					
D	Buildings			ł		
E	Machinery & Equipment					
F	Piping	64	786		51,187	51,973
G	Electrical					
н	Instruments					
J	Painting					
к	Insulation					
	DIRECT FIELD COSTS	69	786	-	51,187	51,973
L.	Temporary Construction Facilities		<u> </u>			2,610
м	Construction Services, Supplies & Expense			·		3,690
N	Field Staff, Subsistence & Expense					5,940
P	Craft Benefits, Payroll Burdens & Insurance					7,380
٥	Equipment Rental					2,322
	TOTAL FIELD COSTS		· · · · · · · · · · · · · · · · · · ·			21,942
R	Engineering					41,130
	Design & Engineering	l	·			
	Home Office Costs					
	R&D	I T				

S

Т

V

W Fee

Major Equipment Procurement

TOTAL OFFICE COSTS

TOTAL FIELD & OFFICE COSTS

Construction Management

U Labor Productivity

Contingency

_____ REVISION DATE _____ PAGE NO. _____ 22

131, 119

1,5.57

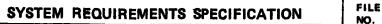
7,335

50,022

71,964

7,182

Owner D. O. E. - PJO


BLACK & VEATCH

CONSULTIN	i Ø
ENGINEER	201

Plant NORTH GAITGRN STATED Unit 1 Project No. 8734 File No. 8734. 23. 0/00 Title CONSTRUCTION COJE

Computed By	w, E.S.
Date	28-19 80
unecked By	~ ~
Page Z4	of

		MATERIAL		LABOR				
ITEM Accover No. 5600	QUANTITY	UNIT COST	TOTAL MAT'L COST	HRS. PER UNIT	TOTAL	COST PER	TOTAL LABOR COST	TOTAL COST
FOSSIL ENERGY SYSTEM F- PIDING								
FI 12" STOP-CHECK VALVE	I EA	57,187	51,187	.64	64	12.28	785	51,973
F. P.D. NG TOTAL		. 	51,187		69		786	51,973
				·				
		L						
	·							
· · · · · · · · · · · · · · · · · · ·		·						
· · · · · · · · · · · · · · · · · · ·								
	ll 4┣━━━━━━	 				<u> </u>		
		·			· ·		 	
·			 				ļ 	
				· 	<u> </u>			
							5	3-22

- (9) Direct accounts in most cases include only direct labor and material costs. Distributable items are included in field cost categories. Exceptions to the above statements are as follows.
 - (a) Account 5310-E-Machinery & Equipment (total installed heliostat costs figured at \$260/M²).
 - (b) Account 5420 Codes C, E, H, K Babcock & Wilcox receiver contract is all-inclusive.
- (10) Distributable and indirect costs are spread by account as a function of the direct field costs in all but two cases. The exceptions are Accounts 5310 - Heliostats and 5420 - Receiver, where pricing is all-inclusive due to contract or DOE input information. No additional distributable dollars are spent against these items.
- (11) A contingency allowance of 10 per cent is included. A diligent effort has been exercised to include a cost for all items of facility design, to price each item according to the best available design information, and to obtain a realistic price for all items. No other adjustment factors or hidden contingency costs are included in the estimate. Contingency allowance has not been included on the installed heliostat cost.

5.3.2.2 <u>Methdology</u>. The methodology used to prepare the estimate is outlined by the following.

- (1) Current design data for all items to be estimated is obtained.
- (2) Quantity takeoffs are prepared from the design data, as required, to estimate costs. A punch list of items requiring pricing is also prepared.
- (3) All quantity takeoffs are priced; the method of pricing varies with the item considered. Some prices are based on recent B&V contract prices for similar tasks or items. Vendor quotations were requested for items that differ significantly from those recently purchased for clients by B&V.

Common items of defined design are priced from vendor price books. Published estimating books are used to estimate some items.

(4) All takeoffs, unit prices, price projection, and mathematical manipulations are carefully checked.

5.3.3 Operations and Maintenance Cost Estimate

The operations and maintenance cost estimate for the life of the facility is summarized in Table 5.3-5. A detailed description of the operations and maintenance cost is shown on Table 5.3-6.

37,7	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8	734.23.0100
¥/	PLANT COST DATA			SECTION 5.3

TABLE 5.3-5. OPERATIONS AND MAINTENANCE COST SUMMARY

OM100 Operations	\$ 127,290
OM200 Maintenance Materials	55,130
OM300 Maintenance Labor	61,300
Annual Total Operations and Maintenance Cost Estimate	\$ 243,720

TABLE 5.3-6. ANNUAL OPERATIONS AND MAINTENANCE COSTS¹

R

	<u>Cost</u> \$/yr
OM100 Operations	¢∕y⊑
OM110 Personnel	
Roving Control Room Operator(s) (.5 men)	9,130
Roving Plant Operator(s) (2 men)	32,560
Total	41,690
OM120 Operating Consumables	41,000
Nitrogen (60,000 Scf/yr) ²	81,000
Makeup Water (4,000,000 lbm/yr) ³	600
Water Treatment Chemicals (phosphates,	000
hydrazine)	4,000
Total	85,600
OM130 Fixed Charge Rate	
OM100 Total	127,290
OM200 Maintenance Materials	
OM210 Spare Parts	
OM211 Site	
None	
OM212 Site Facilities	
No change from existing facilities	
OM213 Collector System ⁴	
Reflective units	13,600
Drives	5,000
Motors	4,400
Control Electronics	2,500
Total	25,500
OM214 Receiver System	
Boiler Tubes	750
Superheater Tubes	1,500
Economizer Tubes	200
Valves	5,000

SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
PLANT COST DATA		SECTION 5.3

TABLE 5.3-6 (Continued). ANNUAL OPERATIONS AND MAINTENANCE COSTS¹

	Cost
	\$/yr
Pumps	4,000
Elevator and Crane	500
Aircraft Warning Lights	600
Gasket	500
Total	13,050
OM215 Receiver Loop System	
Controls and Sensors	500
Pumps	750
Valves	3,000
Total	4,250
OM216 Fossil Energy System	
(No change from existing facilities)	
OM217 Master Control System	
Computer Main Frame	2,000
Moving Head Disc	400
Printer	600
Total	3,000
OM218 Specialized Equipment	
Heliostat Washing Equipment	500
Maintenance Vehicle	400
Total	900
OM220 Materials for Repairs	1,000
(Materials presently in use at plant, e.g., welding rods, paint, lubricants, etc.)	
OM230 Other	
Heliostat Washing Solution (82,000 gal/yr) ⁵	2,000
Heliostat Rinsing Solution (190,000 gal/yr)	230

-	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
7	PLANT COST DATA		SECTION 5.3

TABLE 5.3-6 (Continued). ANNUAL OPERATIONS AND MAINTENANCE COSTS¹

	Cost
	\$/yr
Pyromark Receiver Paint (15 gal/yr)	900
Maintenance Vehicle Fuel (800 gal/yr)	1,000
Heliostat Washing Vehicle Fuel (2,700 gal/yr)	3,300
Total	7,430
OM200 Total	55,130
OM300 Maintenance Labor	
OM310 Scheduled Maintenance Labor	
OM311 Site	
Mowing of Heliostat Field Area (180 man-hours/yr)	1,350
OM312 Site Facilities	
Normal facility upkeep (painting, etc.)	5,000
OM313 Collector System	
Inspection (752 man-hours/yr) ⁷	6,730
Cleaning (2,700 man-hours/yr) ⁸	_24,190
Total	30,920
OM314 Receiver System	
Annual Inspection of drums, tubes, etc. (160 man-hours/yr)	1,430
Valve Packing (120 man-hours/yr)	1,080
Pump Maintenance (32 man-hours/yr)	290
Absorptive Surface Painting (120 man- hours/yr)	1,270
Controls Recalibration (32 man-hours/yr)	290
Total	4,360
OM315 Receiver Loop System	
Loop Inspection (24 man-hours/yr)	220
Valve Packing and Inspection (32 man- hours/yr)	290

R

	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
7			

_

PLANT COST DATA

TABLE 5.3-6 (Continued). ANNUAL OPERATIONS AND MAINTENANCE COSTS¹

	Cost
	\$/yr
Pump Maintenance (16 man-hours/yr)	150
Controls Recalibration (8 man-hours/yr)	80
Total	740
OM316 Fossil Energy System	
No changes from existing system	
OM317 Master Control System	
Routine servicing (25 man-hours/yr)	230
OM320 Correctve Maintenance Labor	
OM321 Site	
Minimal	
OM322 Site Facilities	
Minimal	
OM323 Collector System	
Repairs (1,535 man-hours/yr)	13,780
OM324 Receiver System	
Repairs (250 man-hours/yr)	2,240
OM325 Receiver Loop System	
Repairs (100 man-hours/yr)	890
OM326 Fossil Energy System	
No change from existing system	
OM327 Master Control System	
Repairs (200 man-hours/yr)	1,790
OM300 Total	61,300
OM Total (Per Year)	243,720

¹Materials, supplies and labor costs exclude G&A and Overhead.

²Nitrogen blanket applied when receiver pressure drops below 16 psia following shutdown, as in the case of extremely cold winter temperatures or extended cloud coverage. Volume of nitrogen per application is 1,200 scf; 50 applications per year are assumed. TABLE 5.3-6 (Continued). ANNUAL OPERATIONS AND MAINTENANCE COSTS¹

³Makeup is 1 per cent of total receiver steam flow.

⁴Estimates based upon engineering judgment and general discussions with Sandia Livermore personnel.

⁵Based on 12 washings per year, 3 gallons of washing solution and 7 gallons of rinsing solution (deionized water) per heliostat.

⁶Three mowings per year.

⁷Two inspections per year, 5 minutes per heliostat, two men.

⁸Three minutes per wash, 12 washes per year, two men.

5.4 ECONOMIC DATA

The basis for the economic evaluation is described as follows.

5.4.1 Economic Evaluation Assumptions

The economic evaluation involves determining the economic value of the repowered unit to PSO in the context of the PSO system.

Section 5.5.3 discusses in detail the method used to perform the evaluation, but a brief description is needed to understand the assumption required.

The evaluation consisted of the following.

- System expansion plans and schedules were developed by PSO for system generation additions during the period after 1985 for the system with and without the repowered unit.
- (2) System simulation codes were to model the expansion plans and determine the annual productions (fuel and 0&M) costs based on PSO projected fuel costs.
- (3) Annual production costs are combined with PSO projected capital costs of the two expansion plans and, using PSO financial factors, a cumulator comparative cost was calculated.
- (4) Steps 2 and 3 are repeated for DOE projected fuel and capital costs.
- (5) Steps 2 and 3 are repeated for a variation in solar power level using PSO projected costs.
- (6) Examination of comparative costs for the different expansions plans allows the calculation of the value to the PSO system of the repowered unit.

Table 5.4-1 shows the financial factors and the values of fuel and capital cost used by PSO for their projections. Operating and maintenance costs (O&M) (as shown in Section 5.3) for the repowered unit were developed jointly by Black & Veatch and PSO. Black & Veatch determined the components of the O&M cost while PSO provided the regional adjustments for labor and material rates.

2	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO. 8	3734.23.0100
\$I	ECONOMIC DATA		SECTION 5.4

Financial Factors		<u>Per Cent</u>
Discount rate		13.0*
Investment tax credit		10.0
AFUDC rate		10.5
Property tax rate		2.0
General inflation rate		7.0
Combined state and federal income tax rate		50.0
Fuel Cost Projections		
Fuel	<u>1980 Cost</u> \$/MBtu	Escalation Rate per cent
Natural gas	2.80	8
Coal	1.41	8
Lignite	0.99	8
Nuclear fuel	***	***
Unit Capital Cost Projections		
Unit Type	1980 Capital <u>Cost</u> \$/kW	Escalation Rate per cent
Nuclear	861	7
Coal	589	7
Lignite	621	7
Combined cycle (oil)	N/A	N/A
Combustion turbine (oil)	N/A	N/A

TABLE 5.4-1. ECONOMIC EVALUATION PARAMETERS (PSO VALUES)

*Capital structure of 57 per cent debt with a return of 11.5 per cent; return on equity 15.0 per cent.

**Compounded semiannually.
***Varies over first years (actual costs).
1987--\$1.41.
1988--\$1.29.
1989--\$1.17 and escalated at 8 per cent.

37	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO.	8734.23.0100
	ECONOMIC DATA		SECTION 5.4

5.4.2 Alternate Fuel Cost Assumptions

Table 5.4-2 shows the financial factors and fuel and capital cost values provided by DOE.*

^{*}Solar Repowering/Industrial Retrofit Technical Information Memo Number 6; January 18, 1980.

	SYSTEM REQUIREMENTS SPECIFICATION	FILE NO. 8	734.23.0100
LAN	ECONOMIC DATA		SECTION 5.4

TABLE 5.4-2. ECONOMIC EVALUATION PARAMETERS (DOE VALUES)

Fuel Cost Projections	1980 <u>\$/MBtu</u>	Escalation Rate-Per Cent
011	4.00	12
Natural Gas	2.50	11
Coal	1.25	10
Nuclear Fuel	0.85	9
<u>Unit Capital Cost Projections</u> Unit type	Capital Cost 1980 (\$/kW)	Escalation Rate-Per Cent*
Nuclear	1,000	8.0
Coal	860	8.0
Combined cycle (oil)	360	8.0
Combustion turbine (oil)	190	8.0

*Assumed equal to DOE supplied General Inflation Rate of 8.0 per cent per year.

5.5 SIMULATION MODELS

The following describes the mathematical and computer models that were used to obtain performance predictions and economic evaluations.

5.5.1 Insolation Models

The insolation model used in the solar plant performance calculations was published in the ASHRAE Handbook of Fundamentals. (1)

The direct normal insolation at the surface of the earth on a clear day is represented by the equation

$$I = \frac{A}{e^{B/\sin E}} \qquad Btu/h - sq ft \left[(x) \frac{1}{317.46} = \frac{KW}{m^2} \right]$$

Where A is the apparent solar irradiation at air mass = 0; B is an atmospheric extinction coefficient, and E is the solar elevation.

The values of A and B vary during the year because of seasonal changes in the dust and water vapor content of the atmosphere, and also because of the changing earth-sun distance. The values listed in Table 5.5-1, which take account of these effects, were derived from the results of research at the University of Minnesota, (2) and represent the conditions of average cloudless days.

To implement the equations and data in a computer algorithm, the values of A and B have been approximated by the functional relationships

 $A = 368.5 + 24 \sin [0.0172 (DAY - 265)]$

 $B = 0.172 - 0.033 \sin [0.0172 (DAY - 282)]$

Where DAY is the day of year (beginning with January 1st as DAY = 1). 5.5.2 Plant Performance Models

Predictions of annual system performance were made using the Black & Veatch computer code, Solar Thermal Electric Plant Performance Evaluator

⁽¹⁾ ASHRAE Handbook of Fundamentals, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 345 East 47th Street, New York, New York 10017, 1972, p. 386.

⁽²⁾J. L. Threlkeld and R. C. Jordan: Direct solar radiation available on clear days (ASHRAE Transactions, Vol. 64, 1958, p. 45).

R.	SYSTEM REQUIREMENTS SPECIFICATION	FILE (8734.23.0100
	SIMULATION MODELS		SECTION 5.5

TABLE 5.5-1. INSOLATION MODEL PARAMETERS

	A	B1
Date	(Btuh/Sq Ft)	(Air Mass ¹)
January 21	390	0.142
February 21	385	0.144
March, 21	376	0.156
April, 21	360	0.180
May 21	350	0.196
June 21	345	0.205
July 21	344	0.207
August 21	351	0.201
September 21	365	0.177
October 21	378	0.160
November 21	387	0.149
December 21	391	0.142

5.5-2

(STEPPE). Runs of STEPPE were utilized to estimate monthly and annual steam production by the solar system; these steam production data were subsequently used in PROCOST, a PSO economic dispatch computer code. STEPPE results were also used to establish annual average system efficiency and fuel displacement.

STEPPE predicts performance by integrating time point power traces computed at discrete time intervals (15-minute intervals in this case) throughout representative days of the year. Annual performance was extrapolated from runs for the 15th of each month. System characterization included the following.

- Heliostat field efficiency as a function of sun azimuth and elevation, as computed by the Black & Veatch optical codes.
- (2) Receiver efficiency loss data as a function of input power and dry bulb temperature as provided by B&W.
- (3) Receiver start-up assuming fossil steam preheating, with heat capacities, losses, and temperature ramp rates modeled.
- (4) Solar main steam piping losses and heat-up requirements.
- (5) Conventional system characterizations (e.g., turbine heat rate vs. power generated; fossil boiler efficiency, etc.).
- (6) Existing plant auxiliary power requirements were modified to include solar auxiliary power.

Solar insolation was modeled using the ASHRAE Clear Air Model described in Section 5.5.1. Results were modified to include the effects of cloudy days using per cent sunshine data⁽¹⁾ for Tulsa, Oklahoma. Dry bulb temperature was modeled artifically using normal monthly data for daily low, high, and average temperature.⁽¹⁾

5.5.3 Economic Models

The economic evaluation of the solar repowered facility was performed by explicitly comparing the economic performance of the PSO system with and without the solar repowered unit.

⁽¹⁾Normals based on the 1941-1970 period, "Local Climatological Data, 1978, Tulsa, Oklahoma," National Climatic Center, Ashville, NC.

The economic comparison was performed in several steps.

- (1) Two PSO system expansion plans were developed for the system with and without the solar repowering.
- (2) PSO's system simulation code, a specially developed version of pre-cost, was used to develop the annual system production costs for the alternate expansion plans.
- (3) The production costs were combined with the capital cost requirements of the two expansion plans to developed comparative discounted power costs. This method allows the explicit inclusion of capacity credits in the economic evaluation.
- (4) Comparison of the power costs for the two expansion plans resulted in the determination of the value of the repowered facility.
- (5) Annual production costs, capital costs, and comparative costs were recalculated based on values provided by DOE.

5.5.3.1 <u>System Expansion Plans</u>. Without the repowering option, PSO's Northeastern Station 1 would be retired in December, 1994. The unit lifetime, with repowering, will extend through 1999. The additional life impacts the future capacity difference schedule.

5.5.3.2 <u>Annual Production Costs</u>. Power production costs were estimated through the use of a computerized mathematical model, a specially developed version of PROCOS that simulates PSO system operation. The production costs include fuel costs, operating and maintenance (O&M) costs, and power purchase costs. The PROCOS computer program is the basic tool used by PSO for planning studies and fuel forecasting.

The production cost computer program utilizes as its basis the principle of economic dispatch. A detailed description of this principle is beyond the scope of this document; however, the subject is discussed in a number of references.* The essence is that the optimum allocation of load among a number of generating units is achieved by dispatching each unit so

^{*}See, for example, Leon K. Kirchmayer, <u>Economic Operation of Power</u> Systems, John Wiley & Sons, Inc., 1958.

that all units operate at the point of equal incremental costs. This principle is routinely applied in actual power system operating practice as well as in planning investigations.

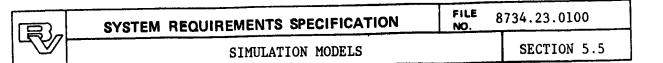
The economic dispatch incremental cost principle is expressed in mathematical terms in a computer code algorithm. Constraints are applied to this optimization algorithm in order to reflect the fact that, in normal utility system operation, the opportunities for mathematicaly true least cost dispatch are modified because of planned and unscheduled unit outages, reliability considerations, unit start-up limitations, system stability requirements, and similar factors. The PROCOS program can thus be characterized as a constrained (optimum) economic dispatch.

- (1) <u>Program Inputs</u>. The program requires three principal inputs in order to perform the optimization. These are as follows.
 - (a) <u>Load Models</u>. A load model is specified for each month for a year. The load models were developed from historical system load data.
 - (b) <u>Generating Unit Operating and Cost Parameters</u>. For each unit which is available during the planning period, unit heat rate data, minimum and maximum loadings, fuel and O&M base year costs, and annual escalation rates are required.
 - (c) <u>Specific Load and Energy Data</u>. For each month, the projected peak load and load factor are computed. The total peak load generation required includes loads to satisfy system losses and any external sales requirements.

The determination of PSO system production costs with solar repowering incorporates the same methods and computer code as used for more typical investigations. However, accounting for the unique technical and economic characteristics of the solar repowered unit requires special modelling so that the heat rate and output power of the repowered unit are properly adjusted to reflect the solar input.

In normal production costing simulations involving fossil and nuclear units, the load model is used to represent the variations in system load and the units are dispatched at varying levels of output to meet the loads.

NO.


However, when a solar unit is to be simulated, the load model must reflect both the time variation in system load and also the time variation in the output of the solar unit.

To represent this time varying capacity in the computer code, an equivalent hours at full solar power was calculated for each month of the year. This discrete representation of the solar unit was combined with the daily load variations by limiting the available hours of solar operation against the system peak load. This simplifying assumption was possible due to the flat natture of the PSO daily load pattern during the periods of peak solar insolation.

Following the loading refinement to the point that the amount of solar capacity available in each load period is accurately represented, the only remaining task in modeling the solar repowered facility was to modify the heat rate curve to reflect the solar input into the thermal unit. Actually, it is not the heat rate curve that is modified but the fuel burn or inputoutput curve. This curve is, of course, related to the heat rate curve. The input-output curve is used in the code to perform the economic dispatch since the slope of the input-output curve is the incremental heat rate.

The heat rate adjustment was accomplished by modeling Northeast Station 1 as a hybrid unit. For periods of full equivalent solar hours, the heat rate of the hybrid unit was adjusted to 57.14 per cent of the fossil fired heat rate. For time periods when the solar systems were not available, the normal fossil fired heat rate was used.

5.5.3.3 Comparative Costs. Combination of the annual production costs with the capital costs for the two generation expansion plans was performed by a PSO discounted revenue requirement code. The code works by calculating total annual revenue requirements--fixed costs of capital plus production costs. The cumulative present worth sum of these annual costs is levelized by use of the annual factor (capital recovery factor).

The equation form is shown below.

ALRR =
$$\frac{\sum [(FC)_{i} + (AP)_{i}] [1+d]^{-i}}{CFR}$$

where

ALRR = annual levelized revenue requirements (FC)_i = fixed capital costs in year i (AP)_i = annual production costs in year i d = discount rate CRF = Capital recovery factor and CRF = $\frac{1.0 - (1+d)^{-I}}{d}$

5.6 GENERAL DATA

- 5.6.1 Plant Availability Data
 - (1) Solar Receiver Availability. The availability of the solar receiver and its associated components (tower, fluid circulation pumps, etc.) is expected to be higher than that of a conventional fossil-fired steam generator. This is a result of several factors. The exposed configuration of the receiver permits daily visual examination of the heat transfer surfaces and thus, potential failures may be detected before they cause a forced outage. The diurnal shutdown of the solar receiver also permits preventive maintenance and corrective repairs to be effected without diminishing availability. Babcock & Wilcox estimates a conservative availability for the receiver of 96 per cent. Calculations for previous solar receivers have yielded availabilities in excess of 99 per cent.
 - (2) <u>Heliostat Availability</u>. The average failure rate of 2,255 heliostats of the solar repowered plant has been calculated to be approximately one failure every 8 hours of operation. However, the failure of a single heliostat does not result in a forced outage of the entire field of heliostats, and thus does not affect plant availability. It is estimated that 20 per cent (451) of the heliostats must be inoperative at any given time for a forced outage to result. The probability that 451 heliostats would be inoperative at any one time due to electrical/mechanical failures of individual heliostats is essentially zero. Thus, the availability of the field of heliostat is essentially equivalent to the availability of the heliostat master controller: better than 99.5 per cent.
 - (3) <u>Receiver Loop Availability</u>. The Receiver Loop System transports the feedwater to the solar receiver and returns the steam to the plant exiting the receiver. The receiver loop is afforded high availability by the same factors influencing receiver availability: daily inspection is possible and diurnal shutdown permits

maintenance without affecting availability. The receiver loop is calculated to have an availability in excess of 99.9 per cent.

- (4) Solar Repowered Plant Availability. The anticipated availability of the solar portion of the repowered plant is the product of the operational probabilities of its constituents: the solar receiver (>96 per cent), the heliostats (>99.5 per cent), and the fluid circulation loop (>99.9 per cent). The resulting anticipated availability of the solar repowered plant is in excess of 95 per cent. Thus, the solar repowered plant is expected to have an availability significantly above the threshold value of usefulness to the Public Service Company of Oklahoma.
- 5.6.2 Specialized Equipment Data
 - (1) Solar Receiver Equipment.
 - (a) <u>Personnel Access</u>. Access to the electrical equipment room near the top of the receiver support tower is provided by an elevator within the tower interior. Because of space limitations, the elevator is a small, light-duty elevator for personnel and light equipment transport. The elevator platform is approximately 1.0 m by 1.9 m (3'-4" by 6'-4"), with capacity for 1,000 kg (2,200 lb). A caged ladder, within the tower interior, also provides personnel access from grade to the electrical equipment room, providing a backup to the elevator. From this electrical equipment room to the solar receiver atop the tower, access is provided by a stairway.
 - (b) <u>Chain Hoist</u>. Small equipment and components are lifted from the electrical room to the receiver elevation above the tower interior by a chain hoist, supported from the receiver support structural steel. This hoist will be employed to lift repair equipment and replacement parts or components, weighing no more than 1,000 kg (2,200 lb) (elevator capacity) needed at the receiver elevation; replacement boiler tubes and superheater panels will not be handled by this hoist but

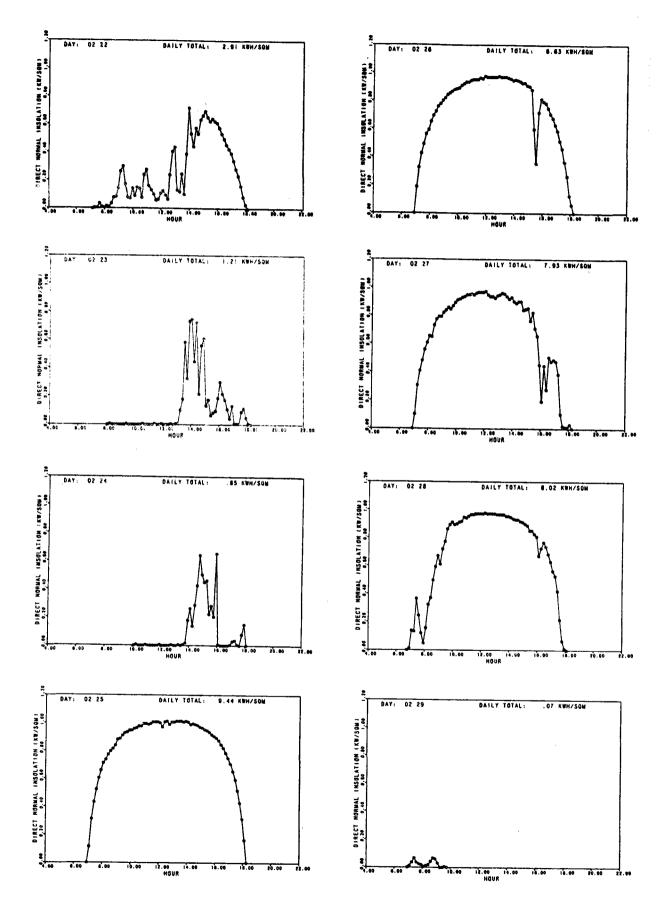
by the polar crane. During construction, a temporary derrick will be used to lift major structural and equipment components of the receiver to the top of the tower.

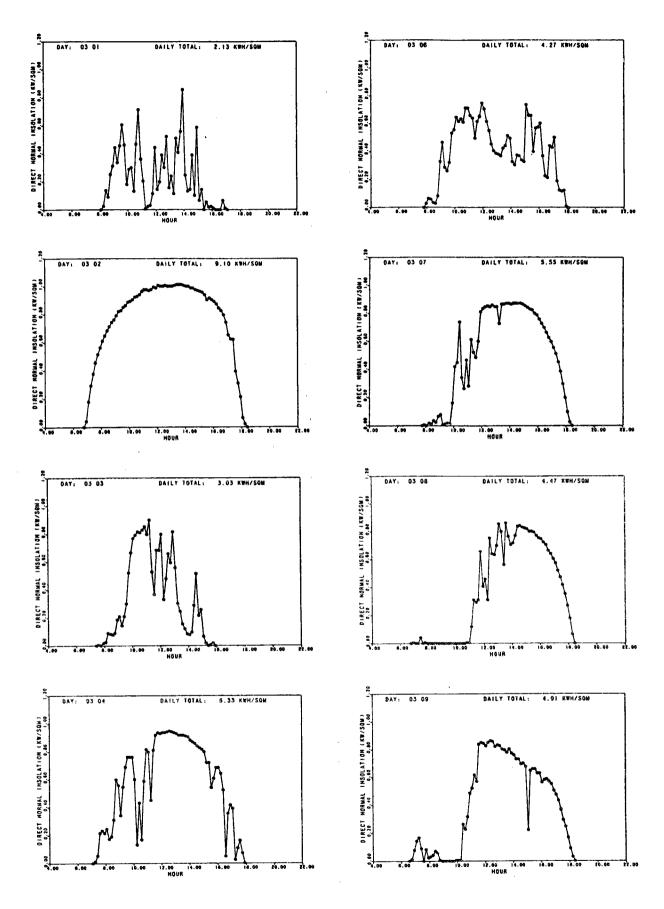
- (c) <u>Polar Crane</u>. A polar crane with a lifting capacity of 9,000 kg (10 tons) mounted atop the solar receiver will be used to lift replacement boiler tubes and superheater panels to the receiver. The polar crane telescopes radially so that it can be withdrawn to be within the outer diameter of the receiver, avoiding exposure to spillage or misdirected solar energy. The polar crane rotates on rails about the vertical axis of the receiver for a full 360 degrees, providing full access to all superheater panels and boiler tubes of the receiver. Equipped with a scaffold, the polar crane will permit close inspection of the solar receiver's surface and, when required, resurfacing of the receiver's high-aborptivity coating.
- (2) Heliostat Equipment.
 - (a) <u>Heliostat Washing Vehicle</u>. The periodic cleansing of the heliostats will require the use of the heliostat washing vehicle. This vehicle consists of a truck-mounted, selfcontained, high-pressure spray system. The vehicle carries tanks of detergent solution and rinse solution and washes the heliostats via vertical spray arms equipped with multiple spray nozzles. The washing vehicle may collect the wash and rinse water runoff via collection troughs along the side of the vehicle.
 - (b) Motorized Elevated Platform. The maintenance and inspection of the drive heliostat drive mechanism will require the use of a motorized elevated platform. This vehicle consists of an elevating work platform mounted on a motorized chassis. The speed and direction of the vehicle is controlled from the platform. This vehicle will facilitate personnel access

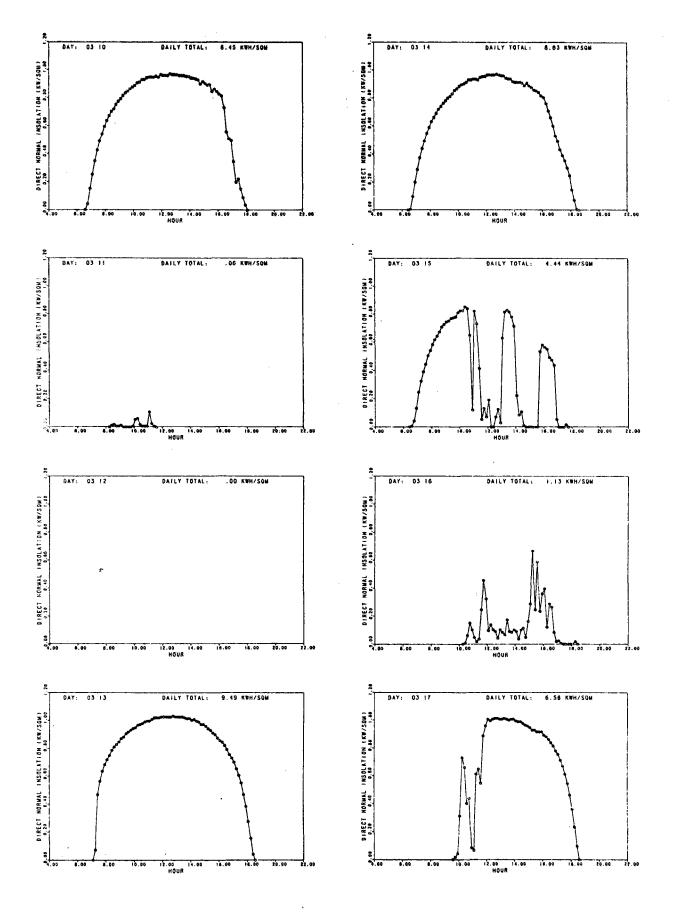
to the heliostats' drive mechanisms which are some 15 feet above ground level.

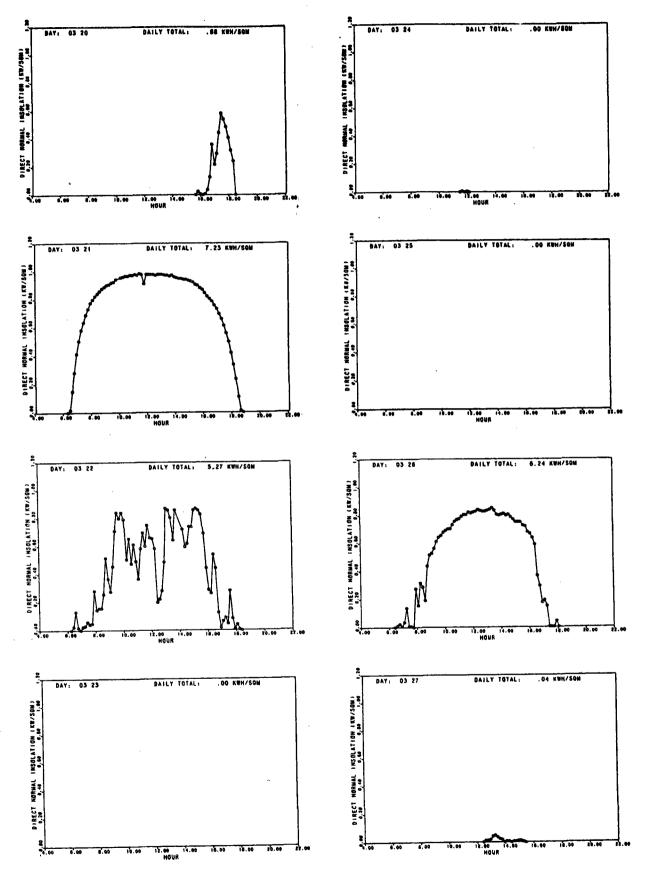
(c) <u>Heliostat Replacement Equipment</u>. The replacement of damaged components or the replacement of an entire heliostat will require the use of component slings and cradles, alignment tools, and the services of a forklift or mobile crane (nonspecialized equipment). The component slings and cradles facilitate the handling and lifting of the heliostat components by the forklift or crane without damage to the components. These will be supplied by the heliostat manufacturer for the initial installation. The alignment tools, specific to make of heliostat, will be employed to properly re-aim the repaired/replaced heliostat such that its image is properly directed onto the receiver. These alignment tools, too, will be supplied by the heliostat manufacturer for the initial installation.

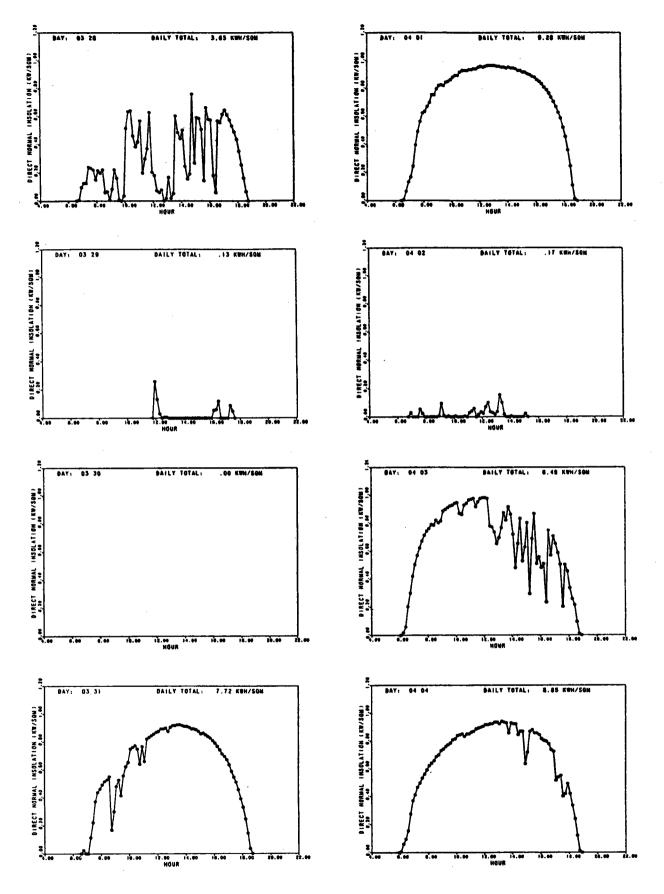
APPENDIX B

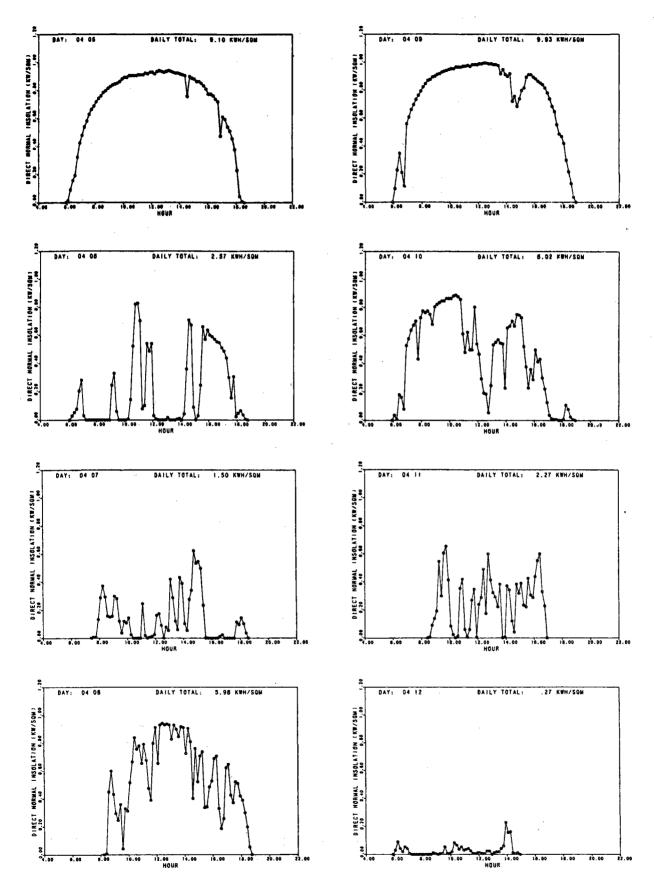

DAILY INSOLATION PROFILES

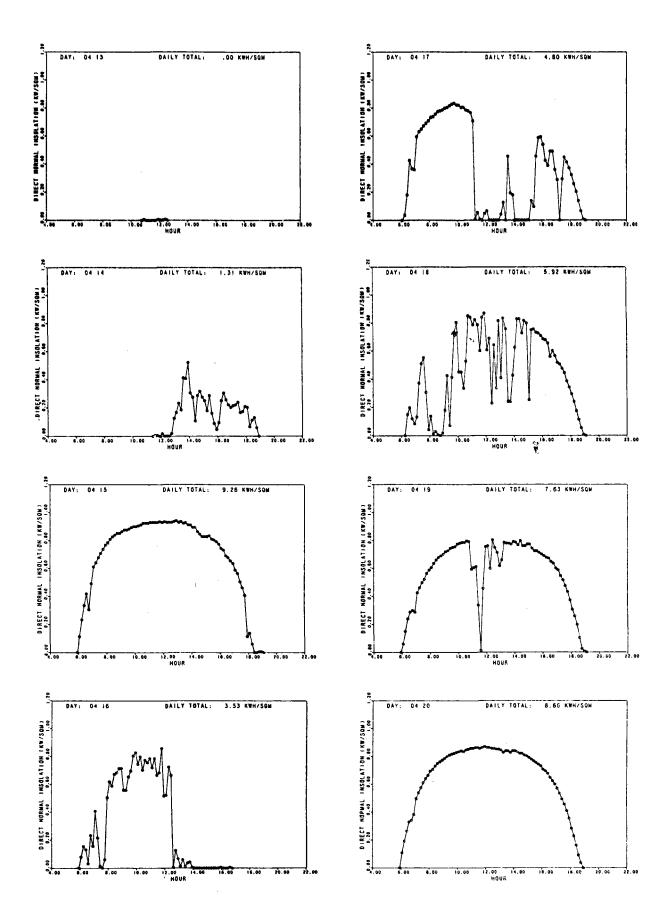

APPENDIX B DAILY INSOLATION PROFILES

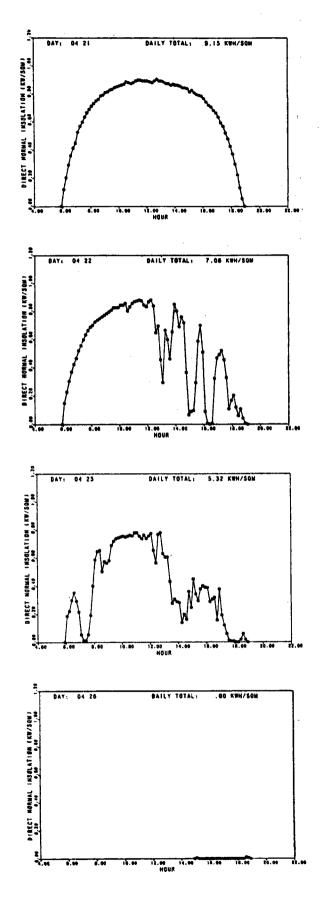

The following daily profiles of direct normal insolation were collected at Oologah, Oklahoma as part of the solar repowering project test program. The profiles are presented as plots of the average insolation occurring over 10-minute intervals; the data points are indicated in the profiles. The total direct normal insolation incident over the day is shown in the top right corner of each profile.

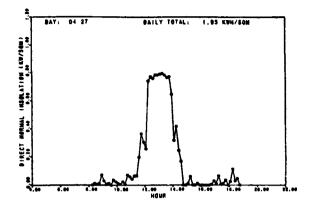

The profiles are shown in chronological order for the period beginning February 22 and ending April 27. Each page begins with the earliest profile at the top left corner of a page, proceeding down the left column first and then down the right column, and ending with the latest profile on the page at the bottom right corner. The data collection date for each profile is shown in the top left corner of the profile. Omitted are profiles for days where, because of equipment malfunctions or power failures, data were not collected.

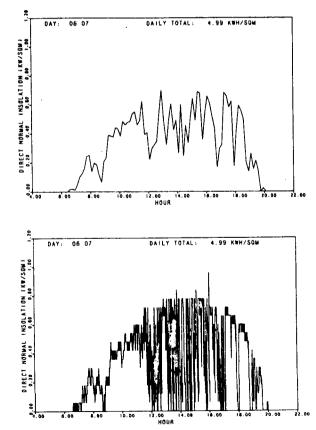

Two insolation profiles for June 7, 1980 are presented at the end of the listing; they show the difference in the pattern of direct insolation when it is averaged over 1-minute and 10-minute time intervals as recorded on the normal incidence pyrheliometer. The flux on the receiver would not have the extreme fluctuations that the insolation has; it would be smoothed by the spatial averaging associated with performance of the 510,000m² (120 acre) heliostat field.











The following two insolation plots show the variation in insolation patterns when averaged over 10-minute and 1-minute time intervals. The 1 Wh/m² resolution of the digital meter output produces the 60 W/m² quantization. The flux on the receiver would be "smoothed" by the spatial average associated with the heliostat field.

