
•

•

MCR-80-1377

,~OFTWARE/FIRMWARE DESIGN SPECIFICATION

FOR

10 MWe SOLAR THERMAL

CENTRAL RECEIVER PILOT PLANT

OCTOBER 1980

Prepared Under Contract No. DE-AC03-80SF10539

By

Martin Marietta Corporation

For

Department of Energy

•

•

Section

1.0

1.1

1.2

: 1.3

: 1.3.1

1.3. 2

2.0

i3.0

3.1

3.1.1

3.1.1.l

3.1.1.2

I 3.1.1.3

3.1.1.4

3. 1.2

i 3.1.2.1

3.1.2.1.l

3.1.2.1.2

3.1.2.1.3

3.1.2.2

3.1.2.3

3.1.2.4

3.2

3.2.1

3.2.1.l

3.2.1.2

3.2.1.2.l

3.2.1.2.2

3.2.1.3

3.2.1.3.1

3.2.1.3.2

3.2.1.4

TABLE OF CONTENTS

INTRODUCTION

Scope

Problem Statement

Design Approach

Baseline Definition

Design Methodology

APPLICABLE DOCUMENTS

DESIGN REQUIREMENTS

System Functional Description

Hardware System Description

HAC Computer System

HFC Microprocessor

HC Microprocessor

Chromatics Intelligent Terminals

Software/Firmware System Description

HAC Software Description

Terminology

Operating Modes

Functional Overview

HFC Firmware Description

HC Firmware Description

Chromatics Intelligent Terminal (GDC) Software
Description

HAC Software Design

Man-Machine Interface Module - (MANMIF)

Purpose

Requirements

Design Requirements

Derived Requirements

Design Approach

Functional Allocations

Resource Budgets

Design Description

i

1

1

1

2

2

3

4

5

5

5

5

10

10

11

11

11

11

12

13

17

17

18

18

19

19

19

19

20

21

21

29

29

r

Section

3.2.1.4.1

3.2.1.1+.1.l

3.2.1.4.1.2

3.2.1.4.1.3

3.2.L4.l.4

3. 2.1.401.5

3.2.1.4.1.6

3 • ? • l. !~ • 1. 7

3.2.J.l+.l.8

3.2.1.4.1.9

3.2.1.4.1.10

3.?.1.4.1.11

3.2.1.4.1.12

3.2.1.4.1.13

3.2.1.4.1.14

3.2.1.5

3.2.1.6

3.2.2

3.2.2.l

3.2.2.2

3.2.2.2.l

3.2.2.7.2

3.2.2.3

3.2.2.3.1

3.2.2.3.1.l

3.2.2.3.1.2

3.2.2.3.2

3.2.2.4

3.2.2.4.1

3.2.2.4.1.1

3.2.2.4.1.2

3.2.2.4.1.3

3.2.2.4.1.4

3.2.2.4.1.5

TABLE OF CONTENTS (con't.)

Title

Module Structure

Submodule I - MMI

Submodule II - MMIWRD

Submodule III - MMICHK

Submodule IV - MMINUM

Submodule V - MMJMAP

Submodule VI - MMIERR

Submodule VII - MMIRSP

Submodule VIII - MMIAID

Submodule IX - MMISTR

Submodule X - MMIREF

Submodule XI - DSK

Submodule XII - DSKAIM

Submodule XIII - DSKBIA

Submodule XIV - CFO

Interface Description

Test Requirements

Corrnnancl Processor Modu'ie (CMDPRC)

Purpose

Requirements

Design Requirements

Derived Requirements

Design Approach

Functional Allocations

Task Activations

Task Satisfaction of Derived Requirements

Resource Budgets

Design Description

Module Structure

Submodule I - CMD

Submodule II - CMDSCK

Submodule III - CMDFAD

Submodule IV - CMDBAD

Submodule V - CMDINO

; i

29

33

43

43

45

50

53

57

60

62

66

68

74

76

79

79

83

83

84

84

85

87

88

91

92

93

93

95

101

107

116

122

•

•

•

•

•

•

Section

3.2.2.l• .l.6

3.2.2.4.1.7

3.2.2.4.1.8

3.2.2.4.1.9

3.2.2.4.1.10

3.2.2.4.1.11

3.2.2.4.1.12

3. 2. 2. 4. 1. 13

3. 2. 2. 4. 1. 14

3.2.2.4.1.15

3.2.2.4.1.16

3.2.2.4.1.17

3. 2. 2. 4 0 1. 18

3.2.2.4.1.19

3.2.2.4.1.20

3.2.2.4.1.21

3.2.2.4.1.22

3,2.2.4.1.23

3.2.2.4.1.24

3.2.2.4.1.25

3.2.2.4.1.26

3.2.2.4.1.27

3. 2. 2. 4. 1. 28

3. 2. 2 .4. 1. 29

3,2.2.4.1.30

3.2.2.4.1.31

3.2.2.4.1.32

3,2.2.4.1.33

3.2.2.5

3.2.2.6

3.2.3

3.2.3.l

3.2.3.2

3.2.3.2.1

TABLE OF CONTENTS (con't)

Submodule VI - CMDARA

Submodule VII - CMDSAL

Submodule VIII - CMDTRK

Submodule IX - CMDDSK

Submodule X - CMDPOS

Submodule XI - CMDSBY

Submodule XII - CMDSDN

Submodule XIII - CMDBCS

Submodule XIV - CMDSUP

Submodule XV - GET

Submodule XVI - GETINI

Submodule XVII - GETAIM

Submodule XVIII - GETALl

Submodule XIX - GETAL2

Submodule XX - GETWSH

Submodule XXI - GETSTO

Submodule XXII - GETSAR

Submodule XXIII - SEQ

Suhrnocht le XXIV - SEQGAT

Submoclule XXV - SEQBPf

Submodule XXVI - SEQCCK

Submodule XXVII - SEQCOR

Submodule XXVIII - SEQADD

Submodule XXIX - SEQRLK

Submodule XXX - SEQDEL

Submodule XXXI - BHI

Submodule XXXII - BHISH5

Submodule XXXIII - BHC

Interface Description

Test Requirements

Sun Vector Module - SUNVEC

Purpose

Requirements

Design Requirements

iii

J 27

UJ

139

145

147

151

15'3

156

158

161

163

167

173

176

178

181

186

190

llJ7

202

205

209

212

219

221

225

228

228

2·12

232

237

237

237

237

Section

3.2.].2.2

3.2.J.J

3.2.3.3.1

3.2.3.3.2

3.2.3.4

3.2.3.4.1

3.2.3.t+.l.1

3.2.3.4.1.2

3.2.3.4,t.3

3.2.3.4.1.4

3.2.3.4.1.5

3.2.3.4.1.6

3.2.3.5

3.2.3.6

3.2.4

3.2.4.1

3.2.4.2

3.2.4.2.l

3.2.4.2.2

3.2.4.3

3.2.4.3.1

3.2.4.3.2

3.2.4.4

3.2.4.4.1

3.2.4.4.1.l

3.2.4.t,.1.2

3.2.4.{}.1.3

3 • 2 • /+ • I} • 1 • 4

3.2.4.f}.l.5

3.2.4.4.1,6

3.2.4.4.1.7

3.2.4.5

3.2.4.6

TABLE OF CONTENTS (con't)

Title

Derived R<'quirc•mc'nts

Design Approach

Functional Allocations

Resource Budgets

Design Description

Module Structure

Submodule I - SUN (Main Routine)

Submodule II - SUNPOS

Submodule III - SUNDJ

Submodule IV - SUNCON

Submodule V - SUNPOL

Submodule VI - SUNDMA

Interface Description

Test Requirements

Field Communications Processor Module - FLDCOM

Purpose

Requirements

Design Requirements

Derived Requirements

Design Approach

Functional Allocations

Resource Budgets

Design Description

Module Structure

Submodule I - FCP

Submodule II - FCPOUT

Submodule III - FCPIN

Submodule IV - FCPCllO

Submodule V - FCPCHI

Submodule VI - FCPUPD

Submodule VII - FCPSWH

Interface Description

Test Requirements

2'37

2 \7

237

2'39

239

239

240

241

245

245

249

251

253

253

255

255

255

255

256

256

260

261

266

266

266

269

272

27 ')

278

280

281

28 l

286

•

•

•

•

•

•

Section

3.2.5

3.2.5.l

3.2.5.2

3.2.5.2.l

3.2.5.2.2

3.2.5.3

3.2.5.3.1

3.2.5.3.2

3.2.5.4

3.2.5.4.1

3.2.5.4.1.l

3.2.5.4.1.2

3.2.5.4.1.3

3.2.5.4.1.4

3.2.5.4.1.5

3.2.5.4.1.6

3.2.5.4.1.7

3.2.5.4.1.8

3.2.'..).4.l.9

3. 2. 5. 4. 1. 10

3.2.5.4.1.11

3.2.5.4.1.12

3.2.5.4.1.13

3 .,2. 5. 4. 1. 14

3.2.5.4.1.15

3.2.6

3.2.6.l

3.2.6.2

3.2.6.2.1

3.2.6.2.2

3.2.6.3

3.2.6.3.l

3.2.6.3.2

TABLE OF CONTENTS {con't)

Alann Processor Module - ALARMS

Purpose

Requirements

Design Requirements

Derived Requirements

Design Approach

Functional Allocations

Resource Budgets

Design Description

Module Structure

Submodule I - ALM

Submodule II - ALMDTC

Submodule Ill - ALMFLD

Submodule IV - ALMLNE

Submodule V - ALMHFC

Submodule VI - ALMHC

Submodule VII - ALMGET

Submodule VIII - ALMCLT

Submodule IX - ALMRPT

Submodule X - ALMBLK

Submodule XI - ALMQUE

Submodule XII - ALO

Submodule XIII - ALOBLD

Submodule XIV - ALODQU

Submodule XV - ALOCVT

Status Display Module - STATUS

Purpose

Requirements

Design Requirements

Derived Requirements

Design Approach

Functional Allocations

Resource Budgets

V

287

287

287

287

287

287

287

292

293

293

295

297

299

301

303

305

307

31 '3

314

316

320

322

324

328

331

334

334

334

334

334

336

'J'.\6

·339

-·

TABLE OF CONTENTS {con' t}

Section Title
Page •

3.2.6.li Design Description
3.51

3.2.6.li.l Module• Structure
3.51

3.2.6.4.1.1 Submodule• I - STS 351

3.2.6.4.1.2 Submodule II - STSGET 352

3.2.6.4.1.3 Submodule III - STA 3.55

3.2.6.4.1.4 Submodule IV - STAFLD 357

3.2.6.l,.l.5 Submodule V - STAIND 357

3.2.6.4.1.6 Submodule VI - STAMOD 360

3.2.6.4.l.7 Submodule VII - STARNG 362

3.2.6.4.1.8 Submodule VIII - STAGET 364

3.2.6.5 Interface Description
366

3.2.6.6 Test Requirements
366

3.2.7 Data Base Initialization Module - DBINIT 368

3.2.7.1 PurpoSL'
368

3.2.7.2 Requirements
'168

3.2.7.2.1 Design Requirements
'\68 • 3.2.7.2.2 Derived Requirements
168

3.2.7.3 Design Approach
369

3.2.7.3.1 Functional Allocations
376

3.2.7.3.2 Resource Budgets
387

3.2.7.4 Design Description
388

3.2.7.4.1 Module Structure
388

3.2.7.4.l.l Submodule I - Task DIN 388

3.2.7.l,.l.2 Submodule II - DINLOC 399

3.2.7.4.1.3 Submodule III - DINTRF 418

3.2.7.L+.l.4 Submodule· IV - DINING
I-, 1 q

3.2.7.l,.l.5 Submodule, V - DINSRT 4:.U.

3.2.7.4.1.6 Submodule VI - DINTTL 425

3.2.7.4.1.7 Submodule VII - DINANG 428

3.2.7.4.1.8 Submodule VIII - DINPAC 432

3.2. 7.4.1.9 Submodule IX - DINFLG 4 'lb

3.2.7.4.1.11 Submodule XI - DBI (Task) 43CJ

3.2.7.!+.l.12 Submodule\ XII - DBIFAC
!1 !1 I •

•

•

•

Seel ion

3.2.7.4.1.U

3. 2. 7 . 4 .1.14

3. 2. 7. 4 .1.15

3.2.7.4.1.16

3. 2. 7. 4. 1. 17

3.2.7.4.1.18

J.2.7.4.1.19

3. 'l. 7. 4. J. 20

].2.7.Li.1.21

3. 2. 7. 4. l.. 22

3.2.7.4.l.23

3. 2. 7. 4. l. 24

3. 2. 7. 4. 1. 25

3.2.7.4.1.26

3.2.7.5

3.2.7.6

3.2.8

3.2.8.l

3.2.8.l.l

3.2.8.L.2

3.2.8.1.2.l

3.2.8.1.2.2

3.2.8.1.3

3.2.8.1.3.1

3.2.8.1.3.2

3.2.8.1.4

3.2.8.1.4.l

J.2.8.l.4.1.1

3.2.8.1.4.1.2

'3.2.8.l.4.l.3

3.2.8.1.Li.l.11

3.2.8. l.4.1.5

3.2.8. L.4.1.6

3.2.8.1.4.1.7

•

TABLE _OF_ CONTENTS _(con '_t_)

Tit] e

Submodul.e Xlll - DBLCRT

Submodule XIV - DBIGRF

Submodule XV - DHIMBD (Stub)

Submodule XVI - DBlTRP

Submodule XVII - DBIDT/\

Suhmo(h1le XVIII - DBIDSK

Suh111odu]e X]X - DBICOH

S11bmodulc XX - DBl/\lM

Submodule XXI - l)BlBCK

Submodule XX! I. - JrnJERR

Submodule XX1Tl. - CLK (Task)

Submoudule XXIV - CLKEST

Submodule XXV - CLKONL

Submodule XXVI - CLKACT

Interface Description

Test Requirements

Operating System Modifications Module - MAXIVM

Bufrer Management Function

Purpose

Requirements

Design Requirements

Derived Requirements

Design Approach

Functional Allocations

Resource Budgets

Design Description

Module Structure

Submodule J - QINIT

Submodule 1T - LEASE

Submodule Ilf - FREE

'.,uhmodul(~ IV - EN()lJF:

Submodule V - DE<)UE

Suhmodule VI - QRST

Submodule VII - BMFlF

Vi i

443

446

449

452

454

456

L1S9

46')

467

471

476

477

479

482

486

486

488

488

488

488

488

489

489

489

489

489

489

489

1+90

49'3

!1 l) ·3

496

499

501

Section

3.2.8.1.5

3.2.8.1.6

3.2.8.2

3. 2. 8. 2. I

'.l. ?. 8. 2. 2

'l.2.H.2.2.1

3.2.8.2.2.2

3.2.8.2.3

3.2.8.2.3.1

3.2.8.2.J.2

3.2.8.2.L,

3.2.8.2.4.l

3.2.8.2.4.l.l

J.2.8.2.4.l.2

3.2.8.2.5

3.2.8.2.6

J. 2. 8. ·i

3.2.8.J.1

3.2.8.3.2

3.2.8.3.2.1

3.2.8.3.2.2

3. 2. 8. 3. 3

3.2.8.3.3.1

3.2.8.3.3.2

3.2.8.3.4

3.2.8.3.4.1

3.2.8. 3.4.l.l

3.2.8.3.4.1.2

J.2.8.J.5

:3.2.8.3.6

3. 2. 8. !1

3.2.8.Li.l

'!~1\B_L_l~ _()_F_ __ CON'f'll_N'l'_S J_c_on I
l •)

Title

Interface Description

Test Requirements

"C.l ock" Function

l'urpose

Jles I gn l{equirernents

Derived Requin•rnents

Design Approach

Functional Allocations

Resource Budgets

Design Description

Module Structure

TOK - Major Interval Timer

TlK - Minor rntcrva] Timer

Lnterfacc Description

Tc~;t Requirements

K1.•ce iver Tri.p

l'urpuse

Requirements

Design Requirements

Derived Requirements

Design Approach

Functional Allocations

Resource Budgets

Design Description

Module Structure

Submodule I - RTH

Submodule II - RTL

Interface Description

Test Requirements

Switching Function

Purpose

.~ .,! ,:

Page

501

506

512

51 '.'

512

51 2

513

513

513

513

513

513

516

519

519

522

522

522

522

522

522

522

522

522

522

523

524

524

524

528

528

•

•

•

•

•

Section

3.2.8.4.2

3.2.8.4.2.l

3.2.8.4.2.2

3.2.8.4.3

3.2.8.4.3.

3.2.8.4.3.2

3.2.8.4.4.l

3.2.8.li,l+.l

3.2.8.Li.4.l.l.

3.2.8.4.4.1.2

3.2.8.4.4.1.3

3.2.8.4.5

3.2.8.4.6

3.2.9

3.2.9.1

3.2.9.2

3.2.9.2.1

3.2.9.2.2

3.2.9.3

3.2.9.3.1

3.2.9.3.2

3.2.9.4.1.1

3.2.9.4.1.2

3.2.9.4.1.3

3.2.9.5

3.2.9.6

3.2.10

3.2.10.l

3.2.10.2

3.2.10.2.1

3.2.10.2.2

3.2.10.3

TABLE OF CONTENTS (con't.)

Title

Requirements

Design Requirements

Derived Requirements

Design Approach

Functional Allocations

Resource Budgets

Design Description

Module Structure

DBICPU

SWI

Failover Interrupt Handler

Interface Description

Test Requirements

Graphics Display Processor Module - (GRAPHC)

Purpose

Requirements

Design Requirements

Derived Requirements

Design Approach

Functional Allocation

Resource Budgets

Submodule I - GRF (Task)

Submodule II - GRFSEG

Submodule III - GRFFLD

Interface Description

Test Requirements

External Interface Module - EXTINF

Purpose

Requirements

Design Requirements

Derived Requirements

Design Approach

ix

528

528

528

528

528

529

529

l'i29

529

529

530

532

532

534

534

534

534

534

535

535

546

546

550

555

557

557

559

559

559

559

559

560

Section

3.2010.3.1

3.2.10.3.2

3.2.10.4

3.2.10.4.1

3.7..10.Lf 0 l.l

302.10.4.1.2

3.2.10.4.1.3

3.2.10.5

3.2.10.6

3.2.11

3.3.1

3.3.1.l

3.3.1.2

3.3.1.7..1

3.3.1.2.2

3.3.1.3

3.3.1.3.1

3.3.1.3.2

3.3.1.4

3.3.1.4.1

3.3.1.4.1.1

3.3.1.4.1.2

3.3.1.4.1.3

3.3.1.4.1.4

3.3.1.4.1.5

3.3.1.4.1.6

3.3.1.4.1. 7

3.3.1.4.1.8

3.3.1.4.1.9

3.3.1.4.1.10

3.3.1.4.1..11

3.3.1.4.1.12

TABLE OF CONTENTS (con't.)

Functional Allocations

Resource Budgets

Design Description

Module Structure

Submodule· I - CSI Task (Main Rout:l1w)

Submodule II - CSO Task

Submodule III - EXI Task

Interface Description

Test Requirements

BCSMOD - TBD

Data Base Design

Purpose

Requirements

Design Requirements

Derived Requirements

Design Approach

Functional Allocations

Resource Budgees

Design Description

Structure

Global Connnon Area COMlSl

Global Common Area COM1S2

Global Corranon Area COM1S3

Global Connnon Area COM1S4

Global Common Area COM1S5

Global Connnon Area COM8Sl

Global Connnon Area COM8S2

Global Connnon Area COM8S3

Global Common Area COM8S4

Global Connnon Area COMINl

Global Connnon Arca COMIN2

Global Connnon Area COMINJ

560

562

562

567

569

569

569a

570

570

570

571

572

577

577

578

578

578

578

579

580

581

584

590

591

592

593

593

59/f

59/f

•

•

•

•

•

•

Section

3.3.1.4.1.13

3.3.1.4.1.14

3.3.1.4.1.15

3.3.1.4.1.16

3.3.1.5

3.3.1.6

3.4

3.4.1

3.4.1.l

3.4. 1. 2

3.4.1.2.l

3.4.1.2.2

3.4.1.3

3.4.1.3.1

3.4.1.3.2

3.4.1.4

3.4.1.4.1

3.4.1.4.2

3.4.1.4.2. 2

3.4.1.4.2.3

3.4.1.4.2.4

3.4.1.4.2.5

3.4.1.4.3

3.4.2.4.3.1

3.4.1.4.4

3.4. 1.4.4.1

3.4.1.4.4.2

3.4. 1.4.4.3

3 .4. 1.4.4.4

3.4.1.4.5

3.4.l.4.5.l

3.4.1.4.5.2

TABLE OF CONTENTS (con't.)

Global Common Area COMIN4

Free Storage (COMQUE)

Free Storage (COMQU2)

Disk Data Base

Interface Description

Test Requirements

HFC Finnware Design

HFC Finnware Module - HFCMOD

Purpose

Requirements

Design Requirements

Derived Requirements

Design Approach

Functional Allocations

Resource Budgets

Design Description

Module Structure

Submodule I - Command Interpreter (CMDI)

CMDI Subroutine I - CMDCMD

CMDI Subroutine II - CMDINI

CMDI Subroutine III - CMDS4

CMDI Subroutine DJ - POLlHC

Submodule II - Corridor-Walk Calculation (CWCALC)

Main Routine

Submodule III - HC Operations (HCOPS)

Main Routine

HCOPS Subroutine I - HCOSSC

HCOPS Subroutine II - HCOCRR

HCOPS Subroutine III - HCOPOL

Submodule IV - Emergency Corridor-Walk Operations

(ECWOPS)

Main Routine

ECWOPS Subroutine I - ECWMG

xi

597

600

601

601

604

604

622

622

622

622

622

623

623

623

624

624

624

626

627

632

632

6'35

635

635

638

638

641

641

641

645

I.

Section

3.4.1.4.5.3

3.4.1.4.6

3.4.1.4.6.1

·3. I~ • l • I,. 6. 2

3.4.1.4.6.J

3.4.1.4.7

3.4.1.4.7.1

3.4.1.4.8

3.4.1.4.8.1

3.4.1.4.9

3.4.1.4.9.1

3.4.1.4.10

3.4. 1.4.10.1

3.5

3.5.1

3.5.1.l

3. s. l. 7.

3.S.1.2.l

3.5.1.2.2

3.5.1.3

3.5.1.3.1

3.5.l.3.2

3.5.1.3.2.1

3.5.1.3.3

3.5.1.4

3.5.1.4.1

3.5.1.5

3.5. 1.6

3.6

3.6.l

3.6.2

3. 6. 2 .1

TABLE OF CONTENTS (can't.)

Title

ECWOPS Subroutine II - ECWSEQ

Submodule V - HFC Timer Interrupt Handlers (HFCTMR)

Main Routine

HFCTMR Subroutine I - llFCTOC

HFCTMR Subroutine II - HFCTOF

Submodule VI - HAC Input Interrupt Handler (HACIN)

Main Routine

Submodule VII - HAC Output Interrupt Handler
(HACOUT)

Main Routine

Submodule VIII - UC Input Interrupt Handler (HCIN)

Main Routine

Submodule IX - HC Output Interrupt Handler (HCOUT)

Main Routine

HC Finnware Design

HC Firmware Module - HCMOD

Purpose

Requirements

Design Requirements

Derived Requirements

Design Approach

Functional Allocations

Resource Budgets

Submodule Priority

Operating System Variables

Design Description

Module Structure

Interface Description

Test Requirements

Graphic Display Console (GDC) Software

Purpose

Requirements

D<'sign Rcquir(~mcnts

649

653

653

657

661

661

661

661

663

663

667

667

667

667

667

667

668

668

676

676

676

676

685

688

688

689

689

689

689

•

•

•

•

•

Section

3.6.2.2

3.6.3

3.6.3.1

3.6.3.2

3.6.4

3.6.4.1

3.6.4.1.1

3.6.4.1.2

3.6.4.1.2.l

3.6.4.1.2.2

3.6.4.1.2.3

3.6.4.1.3

3.6.4.1.3.1

3.6.4.1.3.2

3.6.4.1.3.3

3.6.4.1.4

3.6.4.1.S

3.6.4.1.6

3.6.4.1.6.l

3.6.4.1.6.2

3.6.4.1.6.3

3.6.4.1. 7

3.6.4.1.7.1

3.6.4.1.7.2

3.6.4.1.7.3

3.6.4.1.8

3.6.4.1.8.1

3.6.4.1.8.2

3.6.4.1.9

3.6.4.1.10

3.6.4.1.11

TABLE OF CONTENTS (con't.)

Derived Requirements

Design Approach

Functional Allocations

Resource Budgets

Design Description

Module Structure

Submodule I - EXEC (Main Routine)

Submodule II - RCV

Subroutine 1 - RCVISR

Subroutine 2 - HACAVAIL

Subroutine 3 - HACDATA

Submodule III - KBD

Subroutine 1 - K.BDISR

Subroutine 2 - K.BDAVAIL

Subroutine 3 - KBDDATA

Submodule IV - SEND (Main Routine)

Submodule V - DIALOG

Submodule VI - FFDISP

Subroutine 1 -FFDISPI (Full-Field Display
Initialization)
Subroutine 2 - FFIDSPU (Full-Field Display Updata)

Subroutine 3 - FFIDSPD (Full-Field Display Delete)

Submodule VII - SEGDISP

Subroutine 1 - SEGDISPI (Segment Display Initial

ization)
Subroutine 2 - SEGIDSPU (Segment Display Update)

Subroutine 3 · SEGDISPD (Segment Display Delete)

Submodule VIII - HELP

Subroutine 1 - HELPI (Initialize HELP Display)

Subroutine 2 - HELPD (Delete HELP Display)

Submodule IX - PROHAC

Submodule X - FFPREP

Submodule XI - SEGPREP

xiii

694

695

696

696

696

698

698

700

700

700

704

704

706

706

710

711

711

713

716

716

716

718

721

721

721

723

723

723

728

Section

3.7

3.7.1

3.7.2

3.7.3

3.7.4

3.7.5

3.7.6

3.7.6.1

3.7.6.2

3.7.6.3

3.7.6.4

3.7.6.S

4.0

4.1

4.2

4.3

4.4

4.5

5.0

TABLE OF CONTENTS (con't.)

Title

System Interfaces

HAC/HFC Interface Description

HFC/HC Interface Description

HAC/OCS-DAS Interface Description

HAC/GDC Intc~rface Description

HAG/Receiver Interface Description

Man-Machine Interface Description

Command Input Mode

Conunand File Execute Mode

Conunand Logging Mode

Alarm Response Mode

Status Display Mode

SOFTWJ\Rl~/FJRMWARE SYSTEM VJ\LIDAT10N

Test Phases

Functional Testing

Integration Testing

Breadboard Integration Testing

System Level Testing

ACRONYMS

731

731

n_1

731

731

7 32

732

732

732

732

73'3

733

797

797

797

797

798

798

799

•

•

•

•

•

Figure

3.1-1

3.1-2

3.1-3

3.1-4

3.2.1-1

3.2.1-la

3.2.1-lb

3.2.1-2

3.2.1-3

3.2.1-4

3.2.1-5

3.2.l-;6

3.2.1-7

3.2.1-8

3.2.1-9

3.2.1-10

3.2.1-11

3.2.1-12

3.2.1-13

3.2.1-14

3.2.1.15

3.2.2-1

3.2.2-2

3.2.2-3

3.2.2-4

3.2.2-5

3.2.2-6

3.2.2-7

3.2.2-8

3.2.2-9

3.2.2-10

3.2.2-11

3.2.2-17.

LIST OF FIGURES

Title

"Prime"

11 Backup11

HAG Computer System Hardware Configuration

HAG Task Activation Flow

MANMIF Hierarchical Overview

MMI Functional Overview

DSK and CFO Functional Overview

Flowchart - MMI

Flowchart - MMIWRD

Flowchart - MMICHK

Flowchart - MMINUM

Flowchart - MMIMAP

Flowchart - MMIERR

Flowchart - MMIRSP

Flowchart - MMIAID

Flowchart - MMISTR

Flowchart - MMIREF

Flowchart - DSK

Flowchart - DSKAIM

Flowchart - OSK.BIA

Flowchart - CFO

Hierarchy Diagram for the Command Processor

Module (CMDPRC)

Module CMDPRC Qverview

CMD Hierarchy

Task GET Hierarchy

Task SEQ Hierarchy

Tasks BHI, BHC Hierarchy

Flowchart - CMD

Flowchart - CMDSCK

CMDSCK Input/Output Buffers

Flowchart - CMDFAD

Flowchart - CMDBAD

Flowchart - CMDINO

xv

6

7

8

j()

JJ

32

38

44

47

51

54

58

61

63

65

67

69

71

75

78

89

90

94

96

97

98

102

108

113

114

121

128

Figure

3.2.2-13

3.2.2-14

3.2.2-15

3.2.2-:-16

3.2.2-17

3.2.2-18

3.2.2-19

3.2.2-20

3.2.2-21

J.2.2-22

3.2.2-7.3

3.2.2-24

3.2.2-25

3.2.2-26

3.2.2-27

3.2.2-28

3.2.2-29

3.2.2-30

3.2.2-:n

3.2.2-]2

3.2.7-33

3.2.2-34

3.2.2-35

3.2.2-36

3.2.2-37

3.2.2-38

3.2.2-39

3,2.2-liO

3.2.2-41

3.2.2-42

3.2.2-43

3.2.2-44

3.2.2-4':i

LIST OF FIGURES (con' t)

Flowchart - CMDARA

Flowchart - CMDSAL

Flowchart - CMDTRK

Flowchart - CMDDSK

Flowchart - CMDPOS

Flowchart - CMDSBY

Flowchart - CMDSDN

Flowchart - CMDBCS

Flowchart - CMDSUP

Flowchart - GET

HC Bias File (HCB)

HC Coordinates (HCC)

Flowchart - GETilU

Aim-Point Arrays File (Alli)

Flowchart - GETAlli

Format and Structure of HC ALTlSTOW Angles Disk

File

Flowchart - GETALl

Fonnat and Structure of ALT2STOW Angle Disk File

Flowchart - GETAL2

Fonnat: and Structure of Wash Angles File; (WSH)

Flov1chart - GETWSH

Format and Structure of RC Stow Angles Disk File

Flov1chart - GETSTO

Tracking Configuration Save File (SAV)

Flowchart - GETSAR

Wait-Sequence List (WAITSQ)

Flowchart - SEQ

Flowchart - SEQGAT

Flowchart - SEQBP"f

Flowchart - SEQCCK

Flov1chart - SEQCOR

Example of ACTLIS Management

Flowchart - SEQADD

132

lli(l

146

149

J52

154

157

15g

162

168

l.69

170

172

174

175

177

179

180

182

183

185

187

191

192

194

1g3

2CH

206

210

21 l

216

2?0

•

•

•

•

•

Fi.gur<'

J. 2. 2-1+6

J. 2. 2-/f 7

3.2.2-48

3.2.2-49

3.2.2-50

3.2.3-1

I 3.2.3-2

3.2.3-3

3.2.3~4

3.2.J-5

3.2.J-6

3.2.J-7

3.2.4-1

3.2.4-2

3.2.4-3

3.2.4-4

3.2.4-5

3.2.4-6

3.2.4-7

3.2.4-8

3.2.4-9

3.2.4-10

3.2.5-1

3.2.5-2

3.2.5-3

3.2.5-4

3.2.5-5

3.2.5-6

3.2.5-7

3.2.5-8

3.2.5-9

3.2.5-10

3.2.5-11

LIST OF FIGURES {con't)

Ti.tll~

Flowchart - SEQRLK

Flowchart - SEQDEL

Flowchart - BHI

Flowchart - BHISH5

Flowchart - BHC

SUNVEC Module

Flowchart - SUN

Flowchart - SUNPOS

Flowchart - SUNDJ

Flowchart - SUNCON

Flowchart - SUNPOL

Flowchart - SUNDMA

Flowchart - FCP Functional Overview

FLDCOM One-Second Connnunications Time Frame

FLDCOM Module

Flowchart - FCP Task

Flowchart - FCPOUT

Flowchart - FCPIN

Flowchart - FCPCHO

Flowchart - FCPCHI

Flowchart - FCPUPD

Flowchart - FCPSWH

Alanns Processing Overview

Alanns Status Levels and Related Tables

Alarms Module Structure

Flowchart - ALM

Flowchart - ALMDTC

Flowchart - ALMFLD

Flowchart - ALMLNE

Flowchart - ALMHFC

Flowchart - ALMHC

Flowchart - ALMGET

Elowchart - ALMCLT

xvii

229

230

233

238

242

246

248

250

25Z

254

262

263

267

270

273

276

279

282

282

284

288

290

294

298

300

302

304

306

308

312

315

Figure

3.2.5-12

3.2.5-13

3.2.5-14

3.2.5-15

3.2,5-16

3.2.5-17

3.2.5-18

3.2.6-1

3.2.6-2

3.2.6-3

3.2.6-4

3.2.6-5

3.2.6-6

3.2.6-7

3.2.6-8

3.2.6-9

3.2.6-10

3.2.6-11

3.2.6-12

3.2.6-13

3.2.6-14

3.2.7-1

3.2.7-2

3.2.7-3

3.2.7-4

3.2.7-5

3.2.7-6

3.2.7-7

3.2.7-8

3.2.7-9

3.2.7-10

LIST OF FIGURES (con' t)

Flowchart - ALMRPr

Flowchart - ALMBLK

Flowchart - ALMQUE

Flowchart - ALO

Flowchart - ALOBLD

Flowchart - ALODQU

Flowchart - ALOCVT

STATUS Module Structure

HAC Operator's Console Synchronous Status Display

STAFLD - Field Status Display

STAIND Display Fonnat

STAMOD Display Fonnat

STARNG Segment Track Status

Flowchart - STS

Flowchart - STSGET

Flowchart - STA

Flowchart - STAFLD

Flowchart - STAIND

Flowchart - STAMOD

Flowchart - STARNG

Flowchart - STAGET

Hierarchy Diagram of the Data Base Initialization

Module (DBINIT)

Functional Diagram of the Disk Initialization Task

Functional Allocation of the l~C Initialization

Task

Functional Diagram of the System Interface Initial

ization Submodule

Functional Diagram of the Data Initialization

Control Submodule

Functional Diagram of the HAC Start-Up Task

HC Numbering Scheme Mappings

Segment Map and Segment Pointer Interaction

Flowchart - DIN

Flowchart - DINLOC

317

319

323

325

329

332

333

337

338

341

344

348

349

153

'1.56

358

359

361

363

365

367

370

371

]72

373

375

396

398

•

•

•

• LIST OF FIGURES (con't)

Figure Title
Page

3.2.7-11 Flowchart - DINTRF 420

3.2.7-12 Inclusion-Area Check Diagram 422

3.2.7-13 Flowchart - DININC
Lf23

3.2.7-14 Flowchart - DINSRT
Lf26

3.2.7-15 Flowchart - DINTTL 429

3.2.7-16 Flowchart - DINANG
4]3

3.2.7-17 Flowchart - DINPAC
4 '37

3.2.7-18 Flowchart - DINFLG
440

3.2.7-19 Flowchart - DBI
442

3.2.7-20 Flowchart - DBIFAC
441+

3.2.7-21 Flowchart - DBICRT 447

3.2.7-22 Flowchart - DBIGRF 450

3.2.7-23 Flowchart - DBIMBD
453

• 3.2.7-24 Flowchart - DBITRP
455

3.2.7-25 Flowchart - DBIDTA 457

3.2.7-26 Flowchart - DBIDSK
460

3.2.7-27 Flowchart - DBICOR
4 61+

3.2.7-28 Flowchart - DBIAIM
Li68

3.2.7-29 Flowchart - DBIBCK
472

3.2.7-30 Flowchart - DBIERR
475

3.2.7-31 Flowchart - CLK
478

3.2.7-32 Flowchart - CLKEST 480

3.2.7.33 Flowchart - Computation of Local Time 483

3.2.7-34 Flowchart - Computation of GMT Parameters 484

3.2.7-35 Flowchart - CLKONL
485

3.2.7-36 Flowchart - CLKACT
487

3.2.8.1-1 Internal Buffer Structure
491

3.2.8.1-2 Flowchart - QINIT
492

3.2.8.J-3 Flowchart - LEASE
4%

3.2.8.1-4 Flowchart - FREE
495

L+97

• 3.2.B.l-'j Massage Struc.ttirt>

3.2.8.1-6 Flowchart - ENQUE
Ii 9fl

3.2.8.1 -7 Flowchart - DEQUE
500

xviv

3.2.8.t-8

3.2.8.1-9

3.2.8. l-10

3.2.8. 1-11

3.2.8.1-12

3.2.8.1-13

3.2.8.1-14

3. 2. 8. 1- LS

3. 2. 8. I -16

3.2.B.2-L

3.2.8.2-2

3.2.8.2-3

3.2.8.3-1

3. 2. 8. 3-2

3.2.8.4-1

3.2.8.4-2

3.2.9-1

3.2.9-2

3.2.9-3

3.2.9-4

3.2.9-5

3.2.10-1

3.2.10-2

3.2.10-3

3.J.1.4-1

3. J. l.Lf-2

3.3.1.4-3

3.3.1.4-4

3.3. 1.L~-5

3.3.1.4-6

3.3.1.l+-7

LIST OF FIGURES (con't)

Titl<'

Flowchart - QRST

Flowchart - BMFIF

Interface Specification for QINIT

Interface Specification for LEASE

Interface Specification for FREE

Interface Specification for ENQUE

Interface Specification for DEQUE

Interface Specification for QRST

Intt•rface Specification for BMFIF

Clock Module, Component Task Interaction

Flowchart - TOK

Flowchart - TIK

Flowchart - RTH

Flowchart - RTL

Flowchart - SWI

Flowchart - Failover Interrupt Handler

GRAPHC Functional Interface Diagram

Functional Allocation of the GRF Task

Flowchart - GRF

Flowchart - GRFSEG

Flowchart - GRFFLD

External Interface Module

Flowchart - CSI

Flowchart - CSO

Format and Structure of the Aim-Point File (AIM)

Fonnat and Structure of the HC ALTlSTOW Angles

Disk File (ALl)

Format and Structure of ALT2STOW Angles Disk File

(AL2)

Format and Structure of File DIN

Format and Structure of the HC Locations Disk

File (HCC}

Format and Structure of the Bias Disk File (HCB)

Alarm Messages Stored in File SAM

502

503

504

505

507

508

509

510

Sll

517

520

525

526

531

5:n

536

541

551

556

558

561

565

568

602

60'.1

605

606

608

609

610

•

•

•

• LIST OF FIGURES (con't)

Figure !ll.k
Page

3.3.1.4-8 Tracking Configuration Save File (SAV) 611

3.3.1.4-9 Format and Structure of HC Stow Angles Disk File 612

(STO)

3. 3.1.4-10 Format and Structure of the Wash Angles Disk File 613

{WSH)

3.4.1-1 HFC Module Structure 625

3.4.1-2 Flowchart - CMDI
629

3.4.1-3 Flowchart - NRMHI
631

3.4.1-4 Flowchart - CMDCMD
633

3.4.1-5 Flowchart - CMDINI
634

3.4.1-6 Flowchart - CMDS4 636

3.4.1-7 Flowchart - POLlHC
637

3.4.1-8 Flowchart - CWCALC
639

3.4.1-9 Flowchart - CKDELTAB 640

• 3.4.1-10 Flowchart - HCOPS
642

3.4.1-11 Flowchart - HCOSSC 643

3.4.1-12 Flowchart - HCOCRR
644

3.4.1-13 Flowchart - HCOPOL
646

3.4.1-14 Flowchart - ECWOPS 648

3.4.1-15 Flowchart - ECWMG
650

3 .4.1-16 Flowchart - MGlHC
651

3.4.1-17 Flowchart - ECWSEQ
65!1

3.4.1-18 Flowchart - HFCTOC 656

3.4.1-19 Flowchart - HFCTOF
658

3.4.1-20 Flowchart - HAGIN 659

3.4.1-21 Flowchart - HACIND
660

3.4.1-22 Flowchart - HA.GOUT
662

3.4.1-23 Flowchart - HCIN
664

3.4.1-24 Flowchart - HCIND
665

3.4.1-25 Flowchart - HCOUT
666

3.5.1-1 HC System Memory Map
669

• 3.5.1-2 Flowchart - INIT
670

3.5.1-3 Flowchart - SYSCLK
671

3.5.1-4 Flowchart - DECODE
672

xxi

LIST OF FIGURES (con't) • Figure Title Page

3.5.1-5 Flowchart - POINT 673

3.5.1-6 Flowchart - READE 67L1

3.5.1-7 Flowchart - AZMOTR, ELMOTR, POWER 6 7 'j

3.5.1-8 Flowchart - SCIO 677

3.5.1-9 Flowchart - CALC 678

3.5.1-10 Flowchart - System Block Diagram 686

3.5.1-11 System State Diagram 687

3.6.2-1 Full Field Display 690

3.6.2-2 3 X 5 Symbol/Color Encoding for Full-Field Display 691

3.6.2-3 Segment Display
692

3.6.2-4 5 X 10 Symbol/Color Encoding For Segment Displays 693

3.6.4-1 GDC Module Structure 697

3.6.4-2 Flowchart - EXEC 699

3.6.4-3 Flowchart - RCVISR 701

3.6.4-Li Flowchart - HACAVAIL 702

3.6.4-5 Flowchart - HACDATA 703 • J.6.!1-6 Flowchart - KBDISR 705

3.6.L+-7 Flowchart - KBDAVAIL 707

3.6.4-8 Flowchart - KBDDATA 708

3.6.4-9 Flowchart - SEND 709

3.6.4-10 Flowchart - DIALOG 712

3.6.4-11 Flowchart - FFIDISPI 714

3.6.4-12 Flowchart .. FFDISPU 715

3.6.4-13 Flowchart - FFDISPD 717

3.6.4-14 Flowchart - SEGDISPI 719

3.6.4-15 Flowchart - SEGDISPU 720

3.6.4-16 Flowchart - SEGDISPD 722

3.6.4-19 Flowchart - PROHAC 724

3.6.4-20 Flowchart - FFPREP 727

3.6.4-21 Flowchart - SEGPREP 730

3.7-1 FLDCOM One-Second Communications Time Frame 73L,

•

•

•

•

Table

3 .1- I

3.2.1-1

3.2.1-Il

3.2.1-Ill

3.2.1-IV

3.2.1-V

3.2.1-Vl

3.2.2-1

3.2.2-Il

3.2.2-Ill

3.2.2-IV

3.2.2-V

3.2.2-Vl

3.2.2-Vll

3.2.5-1

3.2.5-Il

3.2.5-lll

3.2.5-IV

3.2.6-1

3.2.6-Il

3.2.6-Ill

3.2.6-IV

3.2.6-V

3.2.6-Vl

3.2.7-1

3.2.7-Il

3.2.7-lll

3.2.7-IV

3.2.7-V

3.2.7-Vl

3.2.7-Vll

LIST OF TABLES

HAC Computer Hardware Acronyms and Model Numbers

Collector Subsystem Command List

Collector Subsystem Command Addressing Format

MANMIF Errors

Description of ARGADD

OCS/DAS-HAC Commands Fonnat

HAC-OCS/DAS Environment Format

CMD Error Return Codes and Resulting MMI Display
Messages

Operational Commands and Their Valid Initial Orient

ations

MMI/CMD HC Block Buffer

MMI/CMD Corrnnand Buffer

Sequence Data Packet

Disk Data Packet Format

Typical Cell in Active-Sequence List (ACTLIS)

ALARM Tables in Memory

ALARM Detection Tables

Compressed Message Format

ASCII Alarm Formats

Heliostat Mode Definitions

10 MWe Status (STSGET)

HAC-OCS/DAS Environment Status (Field) Format

HAC-OCS/DAS Environment Status (HC) Format

HAC-OCS/DAS Environment Status (Mode) Format

HAC-OCS/DAS Environment Status (Ring) Format

Data Base Card Format - Card Type 1

Data Base Card Format - Card Type 2

Data Base Card Format - Card Type 3

Data Base Card Format - Card Type 4

Data Base Card Format - Card Type 5

Data Base Card Format - Card Type 6

Source Data Error Handling Procedure

xxiii

9

22

27

36

46

81

82

100

103

117

120

134

148

214

310

311

321

326

335

340

342

345

347

350

377

378

379

380

381

382

383

3.2.7-VIII

3.2.9-I

J.7..'J--Il

3.2.9-III

3. 2. 9- IV

3.2.9-V

3.2.9-Vl

3.2.9-Vll

3o2.9-VIII

3.3.l-I'

3.3.1-II

3.3.1-III

3. 3 .1- IV

3.4.1-1

3.5.1-1

3.6.4-I

3.7-1

3.7-II

3.7-III

3.7-IV

3.7-V

3.7-VI

3. 7-VII

3. 7-VIII

3. 7-IX

3.7-X

3.7-XI

3, 7-XII

3. 7-XIII

3. 7-XIV

3.7-XV

LIST OF TABLES (con't)

Title

Error Messages

GDC·- IIAC GDC Command

GDC-IIAC GDC Command

GDC-HAC GDC Command

GDC-HAC GDC Command

HAC-GDC Text Message to GDC

HAC-GDC Graphics Initialization

HAC-GDC Full Field Status

HAC-GDC HAC Segment Status

Task Utilization of Global Common COMDAT

Global Connnon to Task Assignments

Task Utilization of Message Queue Global Common
COMQUE

Task Utilization of Data Base Disk Files

HFC State Transition Matrix

HC System Operating Variables

HAC-to-GDC Record Format

HC Initialization Connnand Format

Beam Pointing Command Format

Coridor-Walk Start-Up Connnand Format

Azimuth/Elevation Pointing Connnand Format

Status Poll Command Format

Four Heliostat Status Response Format

Heliostat Controller Status Bit Breakdown

HFC Status Breakdown

Sun Position Command Format

HFC Initialization Command Format (Subtypes 0,1,2)

HFC Initialization Command Format (Subtypes 3,4,5)

HFC Initialization Command Format (Subtype 6)

HC Sun/Synchronization Command Format (Beam
Pointing)

IIC Sun/Synchronization Connnand Format (Azimuth/
Elevation Pointing)

Sun/Synchronization Command Format (HC Initializa

tion)

542

543

545

547

61!+

619

620

621

628

679

726

735

736

737

738

739

740

742

743

744

745

746

747

748

754

•

•

•

•

•

3.7-XVI

3. 7-XVII

3. 7-XVIII

3.7-XIX

3.7-XX

3.7-XXI

3.7-XXII

3. 7-XXIII

3. 7-XXIV

3.7-XXV

3.7-XXVI

3. 7-XXVII

3. 7-XXVIII

3.7-XXIX

3.7-XXX

3.7-XXXI

3. 7-XXXII

3. 7-XXXIII

3. 7-XXXIV

3.7-XXXV

3.7-XXXVI

3. 7-XXXVII

3. 7-XXXVIII

3. 7-XXXIX

3.7-XL

3.7-XLI

3. 7-XLII

3. 7-XLIII

3.7-XLIV

3.7-XLV

3.7-XLVI

'l. 7-XI.V I I

LIST OF TABLES (can't)

HC Command Response Format

HC Status Poll Command Format

HC Status Response Format

OCS/DAS-HAC Connnands Format

HAC-OCS/DAS Environment Format

HAC-OCS/DAS Environment Status

HAC-OCS/DAS Environment Status

(Field) Format

(Mode) Format

HAC-OCS/DAS Environment Status (HC) Format

HAC/OCS-DAS Environment Status (Ring)Format

HAC/BCS BCS Initialization Request Message Format

BCS/HAC BCS Initialization Response Message Format

HAC/BCS BCS Measurement Initiation Request Message

Format

BCS/HAC BCS Measurement Initiation Response Message

Format

HAC/BCS Hcliostat on BCS Target Message Format

BCS/HAC Heliostat BCS Removal Request Message

Format

Heliostat BCS Removal Response Message Format

BCS/HAC BCS Measurment Results

HAC/BCS BCS Measurements Results Response

HAC/BCS BCS Termination Message Format

HAC/BCS Heliostat Measurement Historical Data

Request Message Format

HAC/BCS Heliostat Ml•asuremcnt Historical Data

Response Format

HAC/BCS Heliostat Bias Results

HAC-GDC Field Position Initialization

HAC-GDC Full Field Status

HAC-GDC Segment Status

HAC-GDC Text Message to GDC

HAC-GDC Graphics Initialization

GDC-HAC GDC Command

GDC-HAC GDC Connnand

CDC-IIJ\C Command

GDC-11/\C t;nc Commaml

Hvcf•iv(•r-Lti-11/\C Trip Si)•,11al l.ogiv

XXV

757

758

759

760

761

762

764

765

767

768

769

770

771

772

774

775

776

778

780

781

782

784

786

788

789

790

791

792

793

7 91~

79'.>

796

•

1.0

1.1

1.2

INTRODUCTION

Scope

This Collector Subsystem Software/Firmware Design Specification

exists as a stand-alone document to provide a complete description

of the software and firmware employed for the operation of the 10

MWe Solar Thermal Central Receiver Pilot Plant Collector Sub

system,

Problem Statement

The software/firmware systems have the capability to allow

operator control of up to 2048 heliostats in the operation of the

10 M\!e Solar Thermal Central Receiver Pilot Plant at Barstow,

California. This function includes the capability of operator

commanded mode control, graphic displays, status displays, alarm

generation, system redundancy and interfaces to the Operational

Control System (OCS), the Data Acquisition System (DAS), and the

Beam Characterization System (BCS) through the OCS, The operation

al commands will provide for the following:

a. Safe beam movement whenever automatic beam movement is

required;

b. Single and multiple heliostat addressing;

c. Emergency heliostat movement for high~wind conditions

and receiver problems; and

d. Recovery for full or partial power-loss conditions.

The control hardware consists of a host computer, the Heliostat

Array Controller (RAC), interfaced to a group of communication con

trollers, the Heliostat Fi.eld Control_lers (HFCs), communicating with

individual processors, the Heliostat Controllers (HCs), which

monitor and command a single heliostat. The system consists

of two HACs and 64 HFCs with up to 32 RC~ per RFC.

The solar position data must be. calculated accurately and often

enough so that the reflected beams remain on target throughout

the day. The status interface must include general field status

updated automatically, while specific helio8tat status is availahle

upon operator request. Alarms must be generated and displayed

for abnormal conditions requiring operator attention.

An interface must be available to the OCS for command input,

status requests and alarms allowing the operator a single Tmster

Chntrol System for plant control. In addition, an interface must

be maintained with the DAS to provide data collection capability

for plant study and analysis. The Collector Subsystem (CS) is one

1

1.3

1.3.1

of the most critical components of the pilot plant thus requiring •
redundant HA.Cs and dual connnunications to the field. This
system redundancy is necessary to minimize interruptions to plant
operations due to computer failures.

Design Approach

Baseline Definition

Discussion of HAC software requirement definitions is best carried
out by separating them into two baselines. The 10 MWe Software/
Finnware Functional Requit'ements Specification dated 12 June 1980,
contains the requirements for the full system development. These
requirements will be implemented in two separate stages and will
be known as the installation baseline and the integration baseline.

The installation baseline will contain the software required to
support the heliostat installation at Barstow, California. This
includes all or part of the following modules:

a. Field Communications Processor (FLDCOM);

b. Sun Vector (SUNVEC);

c. Alarms Processor (ALARMS);

d. Status Display Processor (STATUS);

e. Man-Machine Interface (MANMIF);

f. Data Base Initialization (DBINIT);

g. Command Processor (CMDPRC);

h. Operating System Modification (MAXIVM); and

i. Graphics Display Processor (GRAPHC).

The integration baseline will contain the software required for
the installation baseline plus the software required for integra
tion with the Master Control System. This includes the following:

a. Installation baseline;

b. External Interface (EXTINF);

c. Beam Characterization System (BCSMOD); and

d. Those parts of the installation baseline modules that
were not included in that baseline.

2

•

•

•

1.3.2

•

•

These baselines, although defined separately, are not mutually
exclusive. The design of the installation baseline cannot be
done successfully unless the requirements for the integration
baseline are considered. Consequently, some integration design
will be included in this document where sufficient design information
exists and where the design is considered an extension of the
installation ba~eline. All other integration baseline design
will be deferred. All HFC and HC firmware will be delivered i.n
the installation baseline.

Design Methodology

The method used to design this software/finnware system was to
functionally decompose the requirements into eleven software
modules for execution in the HAC computer, one finnware module
for execution in the HFC microprocessor, and one finnware module
for execution in the HC microprocessor. First the interfaces
between the HAC computer/RFC microprocessor and RFC microprocessor/
HC microprocessor were thoroughly defined. Next, the interfaces
between the individual HAC software modules were defined. Further
decomposition of the modules was performed until each submodule
(independent tasks or subroutines) was defined •

The design of these modules is presented in paragraphs 3.2,
3.4, and 3.5. The data packets have been defined for the interface
with the OCS, BCS, and DAS, but the detailed design of the interface
is deferred to the integration baseline. The graphics data packets
were also defined for interface between the Chromatics terminals
and the HAC •

3

2.0 APPLICABLE DOCUMENTS

The following are the documents applicable to the development of
the software for the project:

a. Department of Energy Request for Proposal No. DE-RP03-
79SF10539 for "Phase II, Collector Subsystem for the
10 MWe Solar Thennal Central Receiver Pilil>ti Plant"
received 7 June 1979;

b. Amendment 2 to RFP DE-RP03-79SF10539, received 16 July,
1979;

c. Amendment 3 to RFP DE-RP03-79SF10539, received 20
July 1979;

d. CS-MCS and CS-Plant Interface Requirements document,
(MDC G7852) dated 18 April 1980; RE changed by
items j and k;

e. Martin Marietta Proposal for Phase II, Collector
Subsytem for 10 MWe Solar Central Receiver Pilot
Plant, dated 6 August 1979

•

1. Volume 1 - Technical Proposal P79-48372-l

2. Volume 2 - Price/Business Proposal P78-48372-2;.

f. Martin Marietta Denver Division Software Development
Procedure (Standard Procedure 1.4 dated 19 May 1978);

g. Martin Marietta Corporation Aerospace Division Software
Standards (Denver Division Engineering Practices Manual
Gl3 dated 2 July 1979);

h. 10 MWe Collector Subsystem Software/Finnware Development
Plan;

i. 10 MWe Collector System Contract Change Order #4, dated
19 February 1980;

j. STMPO letter dated 16 April 1980, Collector Control
System Changes;

k.

1.

m.

n.

STMPO letter dated 5 May 1980, Collector Interface
Meeting on 28 April 1980;

10 MWe Collector System Contract Change Order #8, dated
30 May 1980;

Martin Marietta Denver Division Policy T0-8-Dl, Software
Davelopmont Managemant and Control. •

10 MWe Collector Subsystem Software/Finnware Functional
Requirements Specification, MCR-80-1341 dated 12 June 1980.

4

• 3.0

3.1

•

3. 1.1

3.1.1.l

•

DESIGN REQUIREMENIS

The requirements satisfied by each module of the ~oftware/firmware
system are taken from the 10 MWe Collector Subsystem Software/
Firmware Functional Requirements Specification. In addition, this
section details the design of the modules to satisfy the require
ments, the interfaces between the computers, the software system
structure, and the computers in which the software and firniwarc will
execute.

System Functional Description

The top-level flowchart diagrams of the HAC "Prime" and "Backup"
software system are shown in Figures 3.1-1 and 3.1-2 and show
the data flow of the system. The structure of the software system
relies heavily on the Request Executive Services feature of the
MAX IV Operating System which allows tasks to suspend themselves
until a specified time has elapsed, and to activate other tasks
which have been suspended. These tasks remain memory resident,
but use no processing time until activated. The structure of the
software system in the HAC computer can be described as a synchronous
sequence of tasks and an asynchronous sequence of tasks.

The synchronous sequence tasks execute in one-second intervals or
"frames. 11 The purpose of these "frames" is field synchronization
and connnunications. During the one-second frame: the sun position
vector is transmitted to the entire field; a new sun position
is calculated to be used in the next "frame;" a status poll is
generated and status is received from one-eighth of the field;
status is updated and reported based on the status data; alarms are
generated automatically for irregular heliostat operation; global
data required for failover is transferred to the "Backup" computer;
status data is made available for transfer to the Graphics terminals;
and processed connnands are transmitted to the field.

The asynchronous sequence of tasks is initiated by connnand input
from the CS Control Console, data received from the Chromatics
Terminals, command input from the OCS or DAS, or activation by
another task within the system. Inter-task conununication is
handled via the global conunon data base.

Hardware System Description

The computer systems of the Control Subsystem are the HAC
computer, the HFC microprocessor, the HC microprocessor,
and the Chromatics Intelligent Terminals. Each of these
computers is described in the following paragraphs.

HAC Computer System

The HAC computer system hardware configuration is shown in
Figure 3. 1-3 and the HAC computer hardware Acronyms and
Model Numbers are listed i.n Table 3.1-·I. This consists of

5

°'

HCs

r
t HCMOD

HFCs ~----~
! l

i
:----;

i
1

HFCMOD

-- - -

i
I
: OCS •••• BCS DAS I .

)Trutime
:Dc 60
'WWVB
Receiver

~
Operatio~-
al Files l

!

~nitial
l ization

~20
L Terminal

•

External
Interface
Module
(EXTINF)

Command
Processor
Module
(CMDPRC)

Data Base
Initial
ization
(DBINIT)

!Man-Machine
i Interface
I (MANMIF)

i

\,__...,....._~.--~- ~-·- •--•- -.l

Field
Communication
Processor
(FLDCOM)

COMDAT

(In-core Data Base)

1sun

~ector
fl'lOdule
!(SUNVEC)

Beam
Character- · ·

-
J. ization Sys- l !

tern (BCSMOD) j l
I

i .--------. l
Status Alarms Graphics I !
Display Processor Display :Jj. i.

Processor (ALARMS) Processor i
!

1 '. _________ _,,,.,.

l

Backup

Receiver

Power Loss

, ISC 800lG\, llTelet e
40

; l;1 ___ 8_1_0_J--, ,,,.chromatic\ /Chromatic\

/ Color Graphif p . typ l P . t /1999 Intel- 1
1

/ 1999 Intel- \

\
. • r1.n er · r1.n er . . ' . I

"- Terminal / ___ ____; \liger:it Ter- / _ligent Ter-
1

"' · /_.-- _/'-- , m1.nal / '·, minal / _________ - --..__,___~--,, '·,_. ______ ; ---~·

Figure 3.1-1 "Prime"

• e

----,

-..J

•
ocs •••• Bcs ~

Operatio..,
al Files

Initial-

•zation
Files

External
Interface
Module
(EXTINF)

Command
Processor
Module
I (CMDPRC)

f ----,
1Data Base I
:Initial- i

HCs

HCMOD

•
HFCs

HFCMOD

Field .
Coa:nnunicatio~
Processor l
(FLDCCl-1) ;

COMDAT

(In-core Data Base)

----- - -,
jTrutime 1
IDC 60 I

IWWVB t
Receiverj
L - ~ -

Operating sy .. -
tem Modifica

Sun
Vector
Module

! (SUNVEC)

~ - V: ~;=~~-n_) __ _
/~-Track\/! r

I
~---1~.' r---·~-----

1 Beam Charac- /
terization ·
System
(BCSMOD)

~
1800 bpi I 1 1Man-Machine
, . Magneti9 1· I Interface
~pe ,,. . (MANMIF) --

/

/rsc
/Color Graphit
\,Terminal /

..... ____ ./

Status
Display
Processor
(STATUS)

,---
1 Teletype 40
: Printer

I
.... _ - _...,,,..

l Alarms
Processor
(ALARMS)

Graphics
Display
Processor
(GRAPHC) ____ _.,,.

1- -~--- -1

I TI-810 1

: Printer

.,,,C"h . \

- - _j
--- ,,, ___ .,,...

/ romat1c
/ 1999 Intel- ~
\. ligent Ter-,

'--.. minal 1
-----✓

Figure 3.1-2 "Backup"

Prime

Receiver

Power Loss

..,-----\
/Chromatic 1

11999 Intel- \
\ ' , ligent Ter- /
', minal 1

•

C0

i (_ I a.:,s i'c. CPU
,;rg1o1

TI- 82 a; Ccris
(TY) A

"'4D5 Memor ✓ i :
;:5:.., K Wod ~ ' f Disk "11.3 '1

. ; " 1 J ~ .•·,_,, ',) 1 1 ,1
D-~K/L::ll",S0~e. r-" I,, 1 -✓ ,J..,-:,.1..

1
c~nfroi (er 3'1~ ·

r

wed DNP
3'111

Comm, ?rx ..
3i0q

I

I -'V 'ii CAB 3

p
C
I

4
9
0
3

' I
' ~I l-Ffe'.J:S ?C.~ -49 G)~

_.-'1 <: I {cl " ~oi'1' ,r1 ..uvs ; o,i(
\ . ' .I ~ ,¼ 1-.i .:... ...

1-~fb~ .:.A.-Z.. .

~~11
l.~·j:: / j

t•
'-L

H82_.1i
5t,('. L.-"' k
~ J5)1lc

~:JC2,
• t)A;s~

?
I'
L,

, '-.J8·1i l .,-. _._ l ..l...

/Ci i•L 3 j 11
! I --,

11 - I 9
1------l~8Z~ : 0

Ser, Li'r1iJ :3
C.:,)5)1lo

! ~ t · TI -52.0 l.o,~:o.
Ci'/) A

V1.::k l/:131 .
I(
i ,'.M,:/:, ~ 1 ~

.... , -~ ..L

i
l

----------•----~
•-- --------~ ---··-------

8 ~
) L-'

1. CAf:> 6

res ½=i@w q r,
)Lr

t.l'dli I i../8:...i '-1221'
1{;; }9 io, A 1.l\8

C!:1::-,$ic C.Pu
'l8lv i

N02;. ,,·,emory
:Z6iP K Word

D l.o '
1~.k I~ i:,nt:OH~--

3'1 G5

Du.,li Dt-tP
3'11 .1.

Con,m. ?roc.
31~9

PC.I +'i$3

Comm.Sy\ 18,2.
19 J '1-A· ,_

,~St£i~)

~--------t~-__:_+ ~cc, Lo) /f;;~ ,li~:J l,L~ ,I ----- ·-----=-==-::~--:-:_~-~~TL ;.LT-"~:----·-·-·-···•·-, ___]

~]'2,_,rf,.-?A :"L -~·: .. J.. , _, \LI ,._ '- Y , Cl;::,.:, 1 0 l .,__ · ,.,, .
-:-::;- a ·;: , f -1 o ~ --! i -1 ,5--:-:2--:;-·1 -1 o :. 1 I -1 :; :: -:f ·--~·1

,fq".Z·)-2/ h.=1s:2.t5

I .J' ,,; ~ 0 ·;:; ~
- · -~ -· - - ' ~- .J.. I .;.,. ! ~ _;. I .:.. · __ , . .:... I "· ' .. ' -'- .. ,. ' •-· .J- i

(. ; . ___ . .1~~:r: I 2 , 3 I ,, 1 " . '" ~ i s ri~,1 ~: 1 c
I

D "' I ;~1
\.A'· ,-< -~~-~ ~,-.• ,, ~~ru,, _, ! 1 ~_.L_' I ~-. ..,.-.,_,1~~..,_,_,-~-~-~..c,l~=~-'..' ---'·'~~_,.,..~....-L~~.i....--+--___.

' - ' .. ',,_ . - (1-,c:,tJ [A~l'i [A(y .. q U',~,;,,) lA~:!o) (M 2'• A 1,•~HA1t..'i (Ai-e) (A.Zt>H,"'-4i. ,L.4) [A2 1
..:,, u\2t"," 3(1))

:q:z,1

:~:•,: rr+~11
! ! •

'--- •
,-.-_-;-; r---1
J'~ ..L I I iHV C!J' l i ! - ,,_ _.

.--,-1

!~ j:r ~-JI•· ~ l' -~-'-! :
--~...!

_H~--,
r.. -· -

:)

-;-

.,

-- ~- .. --1

Figure 3.1-3 HAC Computer Sy.ardware Configuration •

•

•

•

7861

CPU

3765

4137

Tl-820

3771

4903

4906

4824

4811

4411

4227

4228

3109

1907-A

1930

1931

PCI

PCS

CP

4148

HAC COMPUTER HAROOARE ACRONYMS AND MODEL NUMBERS

MODCOMP Classic Central Processing Unit.

See "7861"

Combination 4137 disk and operator's console controller board

Disk pack drive, with one removeable and one fixed disk •. Each
disk has 816 tracks, 24 sectors per track, 256 bytes per sector
(total 10 megabytes per drive). These drives are also known
loosely as "200 TPI" drives.

Hard-copy operator's console, manufactured by Texas Instruments,
capable of 120 characters/second.

Dual port direct memory access (DMP) processor.

Chassis box and power supply for containing peripheral controllers.
Also known as a Peripheral Controller Interface (PCI).

Same as 4903, but containing electronics allowing one of two CPUs
to connect itself to the enclosed peripherals either manually or
via automatic control. Also known as a Peripheral Control Switch
(PCS).

One half of a full duplex CPU-CPU serial link, operating at
125K baud.

General purpose asynchronous controller, with two independent
full duplex channels.

DMP card reader with controller.

Teletype Model 40 printer with controller.

Tl Model 810 RO tenninal, used as low-speed printer.

Communications Processor (CP), an independent microprocessor
controlled communications controller.

Communications line multiplexor.

Chassis and power supply for communications handlers, such as 1931s.

A two channel, full duplex asynchronous controller.

See 4903.

See 4906.

See 3109.

Nine-track 800 bpi magnetic tape

Table 3.1-1

9

3. L 1. 2

3.1.1.3

two MODCOMP CLASSIC computers (117861) each with 256K words of
MOS memory, combination disk and operator's console controller
(#3765), dual-port direct memory access (DMP) processor
(#3765), Connnunication Processor (CP) option (#3109), and two
Peripheral Controller Interfaces (PCis) (#4903). One of the
PCis contains a communication Une multiplexer (#1907-A-2)
for communications with the field, the other contains a general
purpose asynchronous controller (1/4811) for communications with
the OCS and DAS and a CPU-CPU serial link (4/4824) for communica
tions with the other HAC computer. The field communications is
handled via the 1907-A-2 which addresses either the normal or
alteniate two-channel asynchronous controllers (l/1931) within
the Universal Communications Chassis (111930).

For the peripheral equipment, each RAC computer contains a
TI-820 terminal for a systems console and a 10 Megabyte Disk
unit (#4137). The other peripheral equipment is referenced
by one of two Peripheral Control Switches (PCS) (1/4906). One
PCS contains a 300 cards-per-minute card reader (/!4411), a
nine-track 800 bits-per-inch magnetic tape unit (#4148), a
TI-810 low-speed printer (#4228) and a Chromatics Terminal
(#1999). The other PCS contains a WWVB receiver, an ISC
8001 Color CRT, a Teletype 40 printer (114227) and another
Chromatics Terminal (#1999).

HFC Microprocessor

The HFC microprocessor is a Motorola //6803 microprocessor with
4096 8-bit bytes of read only memory and 1152 8-bit bytes of
random access memory. Communications with the RAC computer
is maintained by the microprocessor's two external ACIA's,
with accompanying line drivers and receivers to provide re
dundancy and switchable communications lines. Communications
with the RC microprocessor is through the HFC microprocessor's
serial input/output port. In addition, the HFC microprocessor
requires a dead-man timer, as well as a dip switch, to tell
the RFC which one he is. These two devices are accessed through
the microprocessor's parallel input/output port.

HC Microprocessor

The HC microprocessor is a Motorola #6803 microprocessor with
2048 8-bit bytes of read only memory and 256 8-bit bytes of
random access memory. Communications with the RFC micro
processor is maintained through the microprocessor's serial
input/output port. Like the RFC microprocessor, the HC
microprocessor uses a dead-man timer and dip switches,
accessed through the microprocessor's parallel input/output

10

•

•

•

•

•

•

3.1. 1. 4

3. 1. 2

3.1.2.1

3.1.2.1.1

port. In addition, the HC uses an external parallel interface
adapter (PIA), through which the HC interfaces with the azimuth
and elevation incremental encoders. The motor drive signals
also use this PIA.

Chromatics Intelligent Terminals

The graphics display systems consists of two identical Chromatics
CG1999 intelligent color graphic terminals and their associated
peripherals. These systems include user-programmable Z-80
microprocessors with 33K bytes program random-access memory (RAl'f),
18K bytes system program read-only memory (ROM), 128K bytes
of screen refresh memory, 512x512 resolution, 19-inch diagonal,
8-col.or display CRT, dual 256K bytes floppy-disk drives,
RS232C serial input/output Port, a light pen, and an alphanumeric
keyboard with user-definable function keys.

Software/Firmware System Description

The HAC Software Design is located in Sections 3.2 and 3.3 .
The HFC Finnware design is located in Section 3.4, and HC
Firmware design is located in Section 3.5, and the Chromatics
Intelligent Terminal software design is located in Section 3.6.

HAC Software Description

Terminology

The software for the HAC computer consists of modules, tasks
and submodules. The definition of each and the scheme used to
identify them are as follows:

a. Module - Six. unique alpha characters that identify a
specific function (i.e. SUNVEC for the sun vector
generation function). The module name does not identify
a piece of code, it represents a function of related
tasks and submodules.

b. Task - Three unique alpha characters that identify a
specific task within a module. The task has code associated

11

3.1.2.1.2

with it either as a stand-alone program or a main sub- •
module and a series of submodules. If the task calls a
series of submodules, it will be considered the main
submodule.

c. Submodule - Six alpha characters, the first three equal
to the task name which calls the submodule, and the sec
ond three are a unique des<.'.ription of the submodule.
Submodules called by more than one task will be identified
by the most frequent calling task.

Operating Modes

All tasks within the HAC will be executing under the MODCOMP MAXNET
IV operating system. These tasks are subdivided into one of three
operating modes: system initialization mode; synchronous mode; and
the asynchronous mode.

The system initialization mode is composed of both an offline and
a real-time portion. The offline portion is designed to initialize
the disk resident data base files and provides initialization data
to the Chromatics Tenninals. An offline activity was elected
because of time considerations and added flexibility for the
operator. This portion of the initialization process may be done
at the operator's convenience. The real-time system initialization
mode consists of those tasks within the DBINIT module that execut.
in response to system boot-up. These tasks initialize the global
connnon data base, CS control console and backup system, establish
tasks and system interfaces, and provides initialization and
synchronization of the universal and local system time base. The
system initialization tasks will no longer exist in main memory when
the initialization function ;i_s complete.

The synchronous mode is initiated upon activation by the timing
tasks within the MAXIVM module. This mode consists of those tasks
which automatically operate every time frame and they may be
activated by other tasks within the synchronous loop or self
activated by time delays. Synchronous processing is required by
the FLDCOM, SUNVEC, MAXIVM, CMDPRC, ALARMS, and STATUS modules.
The tasks required for synchronous processing in general will be
given higher priorities than the asynchronous tasks in order to
ensure that the synchronous processing is accomplished each time
frame.

The asynchronous mode consists of those tasks which are activated
only when processing is necessary. These tasks may be activated
by any other task within the system, specifically when commands
or status requests are entered or when the graphics software
requires data for displays. The asynchronous tasks may emulate the
synchronous tasks as long as there is an outstanding request for
a specific task's function. For example, the sequencing task of
the CMDPRC module wi.11 operate periodically as long as there is •

12

•
3.1.2.1.3

•

•

an active command sequence within the system. As soon as all
command sequences have been terminated, the command sequence
task will be inactivated and only reactivated when required by
another sequence command. Asynchronous processing is required
by the MANMIF, MAXIVM, CMDPRC, ALARMS, STATUS, GRAPHC, BCSMOD
and EXTINF modules.

Functional Overview

The functional overview of the system is presented in the
following paragraphs (see figure 3.1-4).

The HAC software is readierd for system operation through the
initialization process. This process is broken into the offline
initialization phase and the real-time initialization phase.

DIN, the offline initialization task of the Data Base Initial
ization module (DBINIT), is executed at the operator's convenience
well in advance of anticipated field control. DIN edits source
data from cards or magnetic tape to create the disk-resident
data base and transmits required initialization data to the
Chromatics graphic terminals. This Chromatics initialization
function is handled offline due to the amount of time required
for transmission •

Following the offline initialization of the disk-resident data
base and graphics terminals, the real-time system is booted.
The prescheduled task, DBI (DBI.NIT module), is automatically
activated to initialize the real-time system including global
common and system interfaces. Communications with the backup system
is established at this time via the activation of the switching
task, SWI, of the Operating Systems Modification module (MAXIVM).

In order to release wemoty for subsequent tasks, DBI activates a
smaller task, CLK (DBI.'1.HT module), for real-time task establishment
and activation, and then terminates. After all resident tasks
have been established, CLK activate§, TOK and TIK, the timekeeping
tasks of the MAXIVM module. Task TIK, is subsequently self
activated once per second to maintain the time in the global
common data base and to initiate the synchronous loop for each
time frame by activating the Field Communications Processor
module (FLDCOM) task, FCP.

The task FCP transmits the sun position vector to the entire
field. It then activates the sun position calculation task,
SUN, of the Sun Vector module (SUNVEC). The task FCP then
suspends itself, to be reactivated at approximately 310
milliseconds into the frame for status polling. During this
time, the SUN task calculates the sun position to be used in
the next frame. It then suspends itself until activated in the
next frame. At the time for status poll of the field, FCP is
reactivated by the operating system. The task polls the heliostat
field, receives status in format ion for up to one-eighth of the
field, and stores the Btatus data in the data base. FCP then
perfonns preliminary checking of the status data to detenuine
communications status. If alarm conditions are found, this data

13

t-'
.i:--

)
-.>-

OFFLINE

INIT

\
-------~----
CHROMATICS

:i:'.. !

lQJ

RMINALS

/~

()
__,,,'

CRT CRT l

I

•

REAL TIME

INITIALIZE

0
.,,T

I DBI ----,...

CLK

·,

) j

HAC TASK ACTIVATION FLOW

SWI

REAL TIME

SYNCHRONOUS

I
l
i:

TOK TIK
~

REAL TIME

ASYNCHRONOUS

I l '

i I I
:T r-L I RTH ~.L I

'J/ r l ~ GRF

I V ~ I .
i • I

~

I i,J ; j J,J,

; / t l
I , / I I

-- SUN I l ! Ji . . f1 cso h
: L_ CFO .J .__ __ I i i
!

~ BHI I:
I '--' -----'
!

i I
I .-----, ,
H ALM f-Bi1- ALO
i I
I

STS
STA

4j BHC 11

~~QI

I

I
I

F
! i

Figure 3.1-4 HACi Activation Flow

-

•

•

is passed to the alarm task for alarm display. FCP then activates
the HFC initialization task, BHI, of the Command Processor module
(CMDPRC). the alarms monitoring task, ALM, of the Alarms Processor
module (ALARMS), and the synchronous status task, STS, of the
Status Display Processor module (STATUS), and suspends itself
until time to transmit the operational commands to the field
(approximately 725 milliseconds into the nframe 11

).

BHI monitors the HFC status determining which HFCs, if any,
require initialization data. It then begins the initialization
process for the indicated HFCs and suspends itself until activated
in the next frame.

ALM executes to monitor the status data and generates alarms for
irregularly operating heliostats. If alarms are generated, ALM
activates the alarms output task, ALO (ALARMS module), to display
the alarms and suspends itself until activated next frame. If
ALO is activated, it displays all successfully queued alarms and
suspends itself.

STS executes to process the latest received status and report the
field status on the CS Control Console. It checks to determine
if there is an operator status request pending, and if so, STS
activates the asynchronous status task, STA (STATUS module), and
then suspends itself until activated next frame. Task STA will
determine the type of status requested, scan the status data
array, format the status message, and transmit the status via the
console output task,CSO, or the external interface task, EXI,
of the External Interface Module (EXTINF), depending on the
requesting source. It then suspends itself.

When the time to transmit operational commands arrives, FCP is
reactivated by the system. It scans its buffer of commands
ready for transmission and transmits any commands waiting. After
command transmission, FCP checks the data base buffer to see if
CMDPRC has additional commands to be transmitted. If so, FCP
transfers these commands into its buffer of commands waiting for
transmission. Task FCP then activates task BHC (CMDPRC module),
and suspends itself until started by the timekeeping task at the
start of the next II frame. 11 Task BHC checks the array of 2048
possible heliostat commands. If commands. are ready for transmission,
and the HFC buffer of commands in the data base is available for
a new command, the task will compress all similar HC commands
into an HFC command (with the HC bit mask) and load the new
command into the HFC command buffer. The task will then suspend
itself.

The asynchronous sequence of tasks is also initiated by the
start-up control task, CLK (DBINIT module}. The communications
tasks within EXTINF that establish and maintain connnunications
with the OCS, DAS, CS Control Console, and Chromatics terminals
are activated by CLK. EXI establishes and maintains communications
with the OCS and DAS. EXI accepts commands and status requests

15

from tlw OCS and status requests fr<>m the DAS, and passes these •
i.nputs to the MMI task (MANMIF module) for syntax checking and
proct•ssing. EXI will also transmit the resultant data from these
requests back to the respective source, OCS or DAS. The console
interface task, CSI (EXTINF module), accepts inputs from the CS
Control Console an~ Chromatics terminals and routes the input to
either the MANMIF module for connnands, or to the Graphics Display
Processor Module (GRAPHC) for graphic display status requests.
CSO will transmit responses back to the CS control console. When
the graphics processing task, GRF (GRAPHC module), receives a
request for data, it determines the type of request and scans for
the appropriate data in the status array created by the synch-
ronous STS task. The status packet is formatted and held for
transmission pending a request to send message from the CSI task.
Once the data has been transmitted, GRF terminates itself.

The Central Receiver requires constant monitoring in order to
prevent receiver damage. Consequently, CLK activates the receiver
trip high task, RTH, and recelver trip low tl!l'.sk, RTL (MAXIVM
module), to monitor receiver status. This status consists of
two signals, one the inverse of the other, which when reversed
from no1~nal, cause a DEFOCUS donnnand to be transmitted to MMI.

When MMI receives a connnand from any source through a series of
priority queues (the emergency cormnand queue is highest priority).
it checks each connnand for valid syntax and source. If an error
occurs, the source of the connnand will be notified, and MMI will
suspend itself until activated by another connnand. If the connnand
is valid and requires disk updating, task DSK (MANMIF module)
will be activated to process the connnand, and MMI will suspend
itself. DSK processes all connnands that only require updating of
the disk data base. If the valid connnand requires a connnand file
from disk to be started, MMI will activate task CFO (MANMIF
module) to process the connnand file and then suspend itself.
If the connnand is a status request, MMI will notify STA via the
data base that status has been requested and then suspend itself.
If the valid connnand requires communication with the field, MMI
will build a data packet, activate task CMD (CMDPRC module) and
then suspend itself •

. CMD will check the command for reasonableness and report via the
data base an error code or a success ratio. _MMI will report
either the error or the success ratio to the operator. If an
error occurred, CMD will terminate itself; otherwise the task
will begin processing the connnand. CMD will build the HC connnands
array and mark the connnands ready for BHC to map into HFC connnands.
If the connnand requires data from disk to complete processing,
CMD will activate task GET (CMDPRC module) to read the disk data
and then suspend itself. Once the disk operation is complete, CMD
is resumed to finish processing. If the connnand requires a
sequence for implementation, task SEQ (CMDPRC module) is activat.
to perform this processing. After CMD builds the necessary connn·
and activates or resumes the appropriate tasks, it terminates
itself.

16

•

•

•

3. 1. 2.2
I

3.1.2.3

SEQ, once activated, will run periodically by setting timers

for self-activation as long as there are sequences to process.

The system allows up to 16 concurrent sequences, and SEQ is

reactivated on an optimal basis to monitor one particular

sequence per "visit" ill a modified round-robin fashion. When

there is no longer an active sequence, SEQ terminates itself.

HFC Firmware Description (see Figure 3.4.1-1)

The HFC firmware interposes between the HAC and the HCs. The

HFC firmware performs command translation from HAC to HC,

status collection and formatting from HC to HAC, corridor-walk

sequenci.ng, and emergency corridor-walk sequencing. RFC firm

ware consists of a set of foreground (interrupt level) and

background (non-interrupt) tasks.

HAC input and RAC output are two foreground tasks which do

byte to/from message packet translation to allow the RFC

background tasks to communicate on a message basis. HC input

and RC output are the two foreground tasks which perform the

same function for HC I/0. HFC timers is a foreground task

which provides delay and dead-man timers of different granu

larities to the background tasks .

Three background tasks operate in a serial fashion under con

trol of the main background task, CMDI. CMDI controls the

operational mode of the RFC (restart, normal, or emergency

corridor walk) according to the current mode and input stimulus,

and processes all commands from the HAC. However, once each

second, whether triggered by a sun/sync message from the RAC

or by an internal timer during emergency corridor walk, CMDI

activates the three other background tasks in order, to per

form the main RFC functions. HC operations task is called

first. HC operations commands the RCs, collects ana formats

command/response information, polls four HCs each second for

status, and collects and formats the returned status. Second

is the corridor walk calculation. The corridor walk calcula

tion task updates the current corridor target points and

handles corridor end conditions. The final task is emergency

corridor walk sequencing. Emergency corridor walk sequencing

normally does nothing, but during emergency corridor walk mode

it generates commands, in sequence, and checks the operation

of the HCs in order to accomplish the emergency corridor

walk. After these three tasks complete, CMDI is ready to accept

any HAC commands again.

HC Firmware Description (see Figure 3.5.1-1)

HC firmware positions the heliostat to commanded or calculated

positions based on direct position commands or target position

coordinates. HC firmware consists of a set of foreground tasks

(Initiated by system interrupts) and background tasks. INIT is

a background task activated by power up or in the event of a

17

3. 1. 2.4

3.2

communi.cations loss. The primary function of INIT is to set
the system operating devices to the proper state (i.e. motor

power, line driver and receiver enables and disables) and
initialize system memory and status flags.

CALC is the second background task activated by the communications

handler (SCIO) upon acceptance of a command requiring position

calculation. The function of CALC is to determine actual azimuth

and elevation positions based on current target, heliostat, and
sun vectors. This involves vector addition, subtraction, and
normalization routines as well as cartesian to polar conversions
utilizing the "cordic algorithm."

SYSCLK is a foreground task activated by a hardware timer. The
primary function of SYSCLK is to assure activation of time criti

cal events such as command response or motor control.

SCIO is a foreground task activated by the internal hardware
transmitter or receiver. The function of SCIO is to handle

communications between the HFC and the HC.

POINT is a foreground task activated by SYSCLK. The function

of POINT is to perform closed-loop control of the heliostat.
This is accomplished by activating azimuth and elevation motors

in either high or low speeds while acquiring data from incre
mental position encoders.

Chromatics Intelligent Terminal (GDC) Software Description

The CDC software module consists of foreground (interrupt
driven) submodules, background (real time) processing submodules

and offline (non-real time) preprocessing submodules.

The offline preprocessors (FFPREP and SEGPREP) are run whenever
the field configuration data base on the HAC is updated. They

manage the formatted data transferred from the RAC and conversion

of that data into run-time efficient, unformatted, disk-resident
files.

GDC online software includes foreground submodules which handle
interrupts from the SID link (RCV) and keyboard (KBD). These

submodules provide data buffering and signal availability of
data to the EXEC, which invokes appropriate background tasks to
process the data. These background tasks include the interactive

user/GDC dialogue controller (DIALOG) and real-time display up
dating tasks (FFDISP and SEGDISP). A collection of utility

functions (UTIL) provides application-oriented numeric and
character-handling capabilities to both off line and online
processes.

HAC Software Design

The detail design of the modules and submodules of the HAC system

software are presented in the following paragraphs.

18

•

•

•

•

•

3.2.1

3.2.1.1

3.2.1.2

3.2.1.2.1

Man-Machine Interface Module - (MANMIF)

Purpose

The Man-Machine Interface Module serves as an interface between
tho operator(s) and the HAC, through which an operator can
implement conunands for helioatat field control and monitoring
and data base updating. MANMIF is comprised of a main module,
MMI, and 13 submodules: MMIWRD, MMICHK, MMINUM, MMIMAP, MMIERR,
MMIRSP, MMIAID, MMISTR, MMIREF, DSK, DSKAIM, DSKBIA, and CFO.

Requirements

Design Requirements

Section 3.1 of the Software/Firmware Functional Requirements
Specification (12 June 1980) lists the following requirements
which concern MANMIF:

a.

b.

Control of up to 2048 heliostats in all modes required
to operate the heliostats.

This requirement indicates the need for operator
entered cormnands to be interpreted, processed, and
forwarded to the CMDPRC module for implementation.

Monitor and display the operational status of all
heliostats.

This requirement indicates the need for an operator
status request to be interpreted, processed, and
forwarded to the STATUS module for implementation.

c. Detect, report, and respond to failures and
irregularities.

This requirement indicates the need for operator
entered response to be interpreted, processed, and
forwarded to the ALARMS module for further processing.

d. Maintain a "Prime" and "Backup" system, as well as
redundant processing in the "Backup" system in order
to keep disk files up to date.

e. Maintain safe beam control.

This requirement indicates a need to perform inclusion
area checking of new aim.,.point data .•

f. Respond to receiver trip for emerg~~. defocus •

This requirement indicates a need t6'~1 fonnat a DEFOCUS
command to be forwarded to the CMDPRC module upon
receiving a receiver trip.

19

3.2.1.2.2

g. Maintain command/response protocol and data transfer
with the OCS.

h.

This requirement indicates a need to detennine the
source of a given com,nand, buiid response messages
appropriate to the command, and send the responses to
the soµrce of the c~a~d.

Provide statµs data to the QAS.
!, ~

This :requirement tndicat:es a n1;1ed f<;>r oper~tor-
en;ered status requests from th~ DAS to pe ·
interpreted, processed, and fo;rwarded to the STA+US
module.

:I.. Provide autom.\.lt;:ic contr.ol of, beam characterization
within th,e HAC •

This requirement indicates the need for operator
entered commands to pe interpreted, processed and
forwarded to the bCSMOD module for implementation.

Derived Requirements

Section 3.2.1.l of the Software/Firmware Functional Requirements
Specification (12 June 1980) lists the following derived
requirements for the MANMIF module:

a. Accept commands from the CS control console, OCS,
DAS, and CS graphics console, and read command files
from disk;

b. Decode command addresses for the Command Processor
Module and convert commands to internal computer fonnat;

c. Check all commands for valid syntax;

d. Generate error messages and route them to the appro
priate output devices;

e. Pass valid operational commands to the Command Processor
Module;

g. Log all commands on the console/printer with
appropriate time stamps;

h. Update a heliostat's bias disk file upon operator
request; and

J •

i. Update aim-point array and perform inclusidn-area
checking.

•

•

•

•

3.2.1.3

•
3.2.1.3.1

•

Additionally, the MANMIF module must be able to:

a. Generate operator-aid menus of various fonnats

upon request:

b. Control operation of execution of command files;

c. Refresh the CS console CRT screen upon request;

d. Generate messages responding to each command,

indicating successful completion of the command, or

syntax or other errors; and

e. Exclude certain commands during emergency processing,

or those from invalid sources.

A list of valid commands and their effects is given in

Table 3.2.1-I, and the addressing fonnats are described in

Table 3.2.1-II. It should be noted that at least the first

four, and up to eight, of the letters of each command are

necessary.

Design Approach

MANMIF is comprised of 14 submodules, including three tasks:

MMI, DSK, and CFO. MMI is the main routine, and may activate

DSK for any disk data updating or CFO for command file

execution. MMI and its nine submodules perfonn

syntax checking of the command string and build data packets

for the CMDPRC, STATUS, and BCSMOD modules. DSK and CFO

handle all disk operations separately from the syntax

checking and operational command processing.

Functional Allocations

MANMIF is comprised of 14 submodules; the basic function of

each is described below.

Main routine for syntax checking and operational commands:

MMI - Accepts operator commands from the CS console,

the OCS, DAS, and Graphics Display via the EXTINF

module, or from command file sequences via submodule

CFO. The EXTINF module, CFO task and the receiver

trip function activate MM.I by enqueing the ASCII command

string in one of five queues as follows:

Queue 0 - Emergency commands from any source

Queue 1 - CS-entered commands

Queue 2 - OCS-entered commands

Queue 3 - DAS-entered commands

Queue 4 - Command file sequences

The queues are checked and processed in order from zero

to four, effectively generating a priority scheme with

21

____ c_o_MMAN=;:;.;.D=------...::~;.:;~;.;;;~,:;.;;R~CE=-----=AD=D'-='RE;:;.S:::;.;S;;..:I;::;.N;.;:G;.._ ____ ~D,;;;:.E=..SC,::;.:R:;,:I::.:::PT:..::.:I=-ON:.:.,_ _________ • ;

.!filIBEASE

STANDBY

POSITION

cs
ocs

cs
ocs

cs

cs

cs
ocs

cs
ocs

cs

cs

Helios tat
Segment
Wedge
Ring
Field Controller
Arc

Segment
Wedge
Ring

Helios tat
Field Controller
Field
Arc

Helios tat
Field Controller
Segment
Wedge
Ring
Field
Arc

Helios tat
Segment
Wedge
Ring
Field Controller
Arc

Helios tat
Segment
Field
Arc

Helios tat
Segment
Wedge
Ritig
Field Controller
Arc

Helios tat
Segment
Wedge
Ring
Field Controller
Arc

Directs heliostat(s) tracking
the STANDBY position to track
the target.

Directs heliostat(s) tracking
the STANDBY position to track
the target. *'k'fhe optional
number address may be used
with this connnand (see Table
Ia.).

This conunand will cause download
of initialization data to the
heliostat controller.

Directs heliostat(s) to move
in both axes such that shafts
pass reference marks on
encoders. Used to determine
accurate heliostat orientation
prior to use.

Directs heliostat(s) tracking
the target to track the STANDBY
position.

Directs heliostat(s) to
respective STOW positions

Directs heliostat(s) to
connnanded orientation. Beam
safety is operator responsi
bility.

No heliostat movement results
from this connnand. Allows
heliostat(s) previously
connnanded OFFLINE to be
connnanded.

Table 3.2.1-I. Collector Subsystem Command List

•

•

•
COMMAND

QfilINE

~ASE

BCSTRACK

RETURN

WASH

•
&'!lSTOW

~STOW

RESTORE

•

INPUT
SOURCE

cs

cs

cs

cs

cs

cs

cs

cs

Table 3.2.1-I.

ADDRESSING

Helios tat
Segment
Wedge
Ring
Field Controller
Arc

Segment
Wedge
Ring

Helios tat

Heliostat

Helios tat
Arc

Helios tat
Segment
Wedge
Ring
Field Controller
Arc
Field

Helios tat
Segment
Field
Arc

Field

DESCRIPTION

Directs heliostat(s) to remain in

current position and accepts no

further commands to these helio

stats until ONLINE comm.and entered.

Directs heliostat(s) tracking the

target to track the STANDBY posi

tion. -A-k'l'he optional number

address may be used with this

command (see Table Ia.).

Directs heliostat to track BCS

target to which it is assigned.

Directs heliostat(s) in BCS mode

to track the STANDBY point.

Directs heliostat(s) to go to

their respective WASH orientation •

This conunand may be unsafe if

used during the period when the

sun is present.

Directs heliostat(s) to respective

SLTlSTOW positions

Directs heliostat(s) to respective

ALT2STOW elevations while main

taining last reported azimuth.

Restores aimpoint array
assignment from saved configu

ration to track target and

heliostat(s) that were tracking

STANDBY points. Only heliostat(s)

in TRACK or STANDBY modes will

respond to this connnand •

Collector Subsystem Command List (cont.)

23

m~ •
____ c;;..;o~MMAN=:;.:.D::_ _____ s'""o..;;.u=RC=E;;;__ _ __,;;AD=D..;;.RE=SS;;..;IN=G _____ __:::Dc.=::E::::...SC::::...R::.:I::.:PT:..::;.;:;I;.:;.ON:;.:._ _________ _

UNSTOW

DEFOCUS

AIMPOINT

HOLD

SAVE

REI.WASH

cs
ocs

cs
ocs
GRAPHIC

cs
ocs
RS
GRAPHIC

cs
ocs

cs

cs

cs

Helios tat
Segment
Wedge
Ring
Field Controller
Field
Arc

Field

Field

(Segment Field),
NN (Array
Number)

Helios tat

Field

Helios tat
Arc

Directs heliostat(s) in one of
STOW positions to track the
STANDBY position.

Directs all heliostats in the
allowable modes to their res
pective STOW positions. No
further commands allowed until
RLHIWIND command is entered.
Those heliostats doing corridor
walk will be allowed to complete
the corridor before responding.

Directs all heliostat(s) tracking
the target or going to the target
to track the STANDBY position.
No further target tracking com
mands accepted until DEFRLSE
connnand.

This connnand will assign aimpoint.
arrays for the segment(s) com-
manded. If any heliostats in the
connnanded segment(s) are tracking
the target, they will be redirected
to the newly assigned aimpoint.

Directs a transitioning heliostat
to maintain current orientation.
Includes those heliostats doing
corridor walk.

No heliostat movement results from
this comrnand. Tracking configur
ation saved for use with restore
comrnand. Aimpoint array assignment
also saved.

This command is the only way a
heliostat may be released from the
WASH mode. No movement occurs
and the heliostat is placed in
the DIRECTED POSITION mode •

Table 3.2.1-I. Collector Subsystem Comrnand List (cont.) •
24

COMMAND

~ANDBY

ESTOW -

!!-J!!W IND

• DEFRLSE

UPAIM

UPBIAS

STATUS

•

INPtrr
SOURCE

cs
ocs

cs
ocs

cs

cs

cs

cs

cs
ocs
DAS

Table 3.2.1-I

ADDRESSING

Helios tat
Field Controller
Segment
Wedge
Ring
Field
Arc

Heliostat
Field Controller
Segment
Wedge
Ring
Field
Arc

Field

Field

NN (Array number
to be updated)

H/NNNN, AZ, EL
NNNN = heliostat
AZ - Azimuth

bias in HEX
EL - Elevation

bias in HEX

Helios tat
Mode
Ring
Field

DESCRIP.t ION

This command allows an operator to
corrnnand heliostats to the STANDBY
mode after power loss and
initialization.

This command allows an operator to
command heliostats directly to
STOW with no beam safety after
power loss and initialization.

No heliostat movement results
from this command. This command
allows heliostat(s) affected by
STHIWIND command to be commanded
again •

No heliostat movement results from
this corrnnand. This command allows
heliostats which were put in
STANDBY mode due to DEFOCUS corrnnand
to be commanded to track again.
This command will not be accepted
if the Receiver Trip signal has
not returned to normal.

This command will replace the
array specified with a completely
new array from magnetic tape.

This command updates the encoder
bias file on disc.

Allows request for STATUS in one
of four forms: 1) individual heliosta:t
STATUS including mode, orientation,
corrnnanded mode and position compare
flag; 2) list of the heliostats
in requested mode; 3) number of
heliostats within ring which are
in the TRACK and STANDBY modes,
and 4) number of heliostats in
all modes.

Collector Subsystem Command List (cont.)

COMMAND

HELP

CFSTART

CFABORT

CFWAIT

REFRESH

BCSSTART

BCSABORT

INPUT
SOURCE

cs

cs
ocs

cs

cs

cs

cs

cs

Table 3. 2 .1-I.

ADDRESSING

Blank, Command
or Address

FFF (File name)

N/A

SSSS (seconds)

N/A

N/A

N/A

DESCRIPTION •
No address will give the operator
a list of all commands available.
By using an individual command,
the information will contain the
format and valid addressing.

This command will cause the exe
cution of a particular command
file to begin.

This command will stop the execu
tion of a particular command file.

This command will hold the execu
tion of a particular connnand file
for the specified number of seconds.

Allows the CS control console to be
completely refreshed.

This command starts automatic BCS
processing.

This command stops automatic BC.
processing

Collector Subsystem Command List (cont.)

•

•

•

COLLECTOR SUBSYSTEM COMMAND ADDRESSING FORMAT

ADDRESS

HELIOSTAT (H)

HELIOSTAT FIELD
CONTROLLER (F)

FORMAT

H/NNNN,NNNN ••• NNNN
WHERE: NNNN IS THE HELIOSTAT NUMBER
EXAMPLE: STOW H/2901

F/NN,NN ••• NN
WHERE: NN IS THE FIELD CONTROLLER NUMBER
EXAMPLE: UNSTOW F/02

------·---··-·- -•··-··-•·----------------------- ·------·---····--·- -- ---------- -----

SEGMENT {S)

WEDGE {W)

RING (R)

ARC {A)

FIELD {ALL)

MODE (M)

{XX)/S/NNN,NNN ••• NNN
WHERE: XX IS THE {OPTIONAL)NUMBER OF HELIOSTATS PER

SEGMENT. IF NOT INCLUDED THE WHOLE SEGMENT
IS ASSUMED.
NNN IS THE SEGMENT NUMBER

EXAMPLE: INCREASE 10/S/302

{SS)/W/NN,NN ••• NN
WHERE: XX IS THE {OPTIONAL) NUMBER OF HELIOSTATS

REQUIRED OUT OF EACH SEGMENT IN THE WEDGE.
IF NOT INCLUDED THE WHOLE WEDGE IS ASSUMED.
NN IS THE WEDGE NUMBER

EXAMPLE: DECREASE OS/W/01
---•-·--·-··-·-- -- ---·· ___ ,. ---------·-··--------

(XX)/R/N,N ••• N
WHERE: XX IS THE {OPTIONAL) NUMBER OF HELIOSTATS

REQUIRED OUT OF EACH SEGMENT IN THE RING.

IF NOT INCLUDED THE WHOLE RING IS ASSUMED.
N IS THE RING NUMBER

EXAMPLE: INCREASE 10/R/S

A/NNNN,NNNN/NNNN,NNNN/ ••• /NNNN,NNNN
WHERE: THE FIRST NNNN IS THE BEGINNING HELIOSTAT

NUMBER.
THE SECOND NNNN IS THE ENDING HELIOSTAT
NUMBER.

NOTE: THESE NUMBERS ARE EITHER EVEN INCLUSIVE
OR ODD INCLUSIVE.

EXAMPLE: WASH A/2901,2909

ALL THE WHOLE FIELD.
---------··-- -----.

TRK - TRACK TRN - TRANSITION
STB - STANDBY WSH - WASH
BCS - BCS DPO - DIRECTED POSITION
STO - STOW OFF - OFFLINE
ALl - ALTlSTOW MRK - MARK
AL2 - ALT2STOW INI - INIT

EXAMPLE: STAT M/TRK

TABLE 3.2.1-11. Collector Subsystem Command Addressing Format

27

emergency conu:nands having the highest priorities, and
command file sequences the lowest.

After dequeueing the highest priority message present,

MMI calls MMIWRD to divide the ASCII command string into

"words," then MMICHK to determine which connnand is being

processed and the addressing used. Depending upon the

command, MMI will call one or more of the following

submodules, then activate CMDPRC for operational connnands,

BCS, DSK, or CFO for other commands.

MMI Subroutines:

a.

b.

MMIWRD - Divides the ASCII command string into
"words" separated by a single delimiter;

MMICHK - Checks a word in the command string
against a list of valid connnands and addressing
formats, and checks for validity of the address
and source of the command (CS, OCS, etc.);

•

c. MMINUM - Checks each requested ASCII numeric
representation for validity for various addressing,

converts from ASCII to binary representation,

d.

e.

f.

g.

h.

i.

and stores the results in a local array; •

MMIMAP - Maps from various addressing schemes to

internal heliostat numbers;

MMIERR - Generates error messages for invalid
syntax or other errors and routes this output
to the source of the connnand;

MMIRSP - Generates messages upon successful
implementation of a command to indicate which or
how many heliostats were affected by the command,

or other success indicators;

MMIAID - Provides operator aid of differing
formats to the CS or OCS consoles, as a result

of the HELP command;

MMISTR - Processes status requests and sets
global command words for the STATUS module; and

MMIREF Clears the CS console CRT screen and
rewrites the ALARMS and STATUS areas of the

screen.

Disk updating operation:

DSK - This task is activated by MMl .and calls one of its •

two submodules to perform disk operations.

28

•

•

3.2.1.4

3.2.1.4.1

•

DSK subroutines:

a. DSKAD1 - Updates the heliostat aim-point file from
card-image input for the UPAD1 command; and

b. DSKBIA - Updates the heliostat bias file for the
UPBIAS command.

Conunand file operations:

CFO - Reads command file sequences and enques MMI with the
ASCII command string at specified time intervals.

See Figure 3.2.1-1 for the MANMIF hierarchical overview.
See Fi~ure 3.2.1-la for the MMI functional overview and
3.2.1-lb for the DSK and CFO functional overview.

Resource Budgets

a. MANMIF's three tasks have the following memory
requirements (estimated):

1. MMI - lOK 16-bit words
2. DSK - 6K 16-bit words
3. CFO - 4K 16-bit words

b. Disk and magnetic tape utilization:

c.

Design

Module

1. MMI - none
2. DSK - Access to the heliostat aim·point array

file, the heliostat bias file, a scratch
disk file, and access to magnetic tape
and/or a card reader.

3. CFO - access to the command file disk file.

Other:

1. MMI - line printer to log commands
2. DSK - none
3. CFO - none

Description

Structure

The MANMIF module is composed of the 14 submodules briefly
described in sections 3.2.1.3 and 3.2.1.3.1, above, and
described in more detail in sections 3.2.1.4~~ .. 1 through
3.2.1.4.1.14.4, below •

29

•-'··•--·-·7

Man-Machine

i
I
I

Interface ,
(MANMIF) i

l ----· -..... --·- .. ______ .. _ -· .. ··- __ J
..----- ---------1-----·-·•»-----.. ·- _., ·---

-··- ----- ., ____________ _
Syntax Checking
and Operational
Commands

Disk Updating
Operations
(DSK)

7
~

Command
File Operations
(CFO)

·---1

I
I

I
(MMI)

I
.1 l -· ·-----·---··-•--· .. ·•"" ... "' __ J

Figure 3.2.1-1 MANMIF Hierarchic.a.I Overview

30

•

•

•

w
......

•

•• J
/

[~mRD ~ MMICHK

i

[

____ _l

MMIRSP

~---·-· --•···-I

) •

MMI

r l

MMINUM

r

l
l
I

MMIMAP

l !

I
I

LMMIAID

------. --- --- --- --··

r-~1S-TR~ i

-·- MM~J

Figure 3.2.1-la

MMI Functional Overview

J •

MMIERR

DSK

~---L_---_------7

l ___ D_S_KA__.Il1 __] I DS~= l

[cro •

• Figure 3. 2. 1-lb DSK and CFO Functional Overview

32

•

•

•

3.2.1.4.1.1

3.2.1.4.1.1.1

Submodule I - MMI

Description

a. Language used - FORTRAN

b. How invoked Activated by EXTINF and CFO via enque.

c. Constraints and limitations - The operator-entered
ASCII command string must follow the syntax rules
described below. Additionally, scanning of the string
ends when two delimiters in a row are encountered.

d. Processing - In the following description, any syntax
or other error in the command will cause an error
flag to be set, MMIERR called, and processing ended.

1. Upon being activated byEXTINF, CFO or the
receiver trip, MMI checks five input queues
as follows:

Queue 0 = Emergency commands from any source
Queue 1 = CS-entered commands
Queue 2 = OCS-entered commands
Queue 3 = DAS-entered commands
Queue 4 = Command file sequences

The queues are checked in order from zero to
four, effectively generating a priority scheme
with emergency commands having the highest
priority and command file sequences the lowest.

2. After dequeueing an ASCII character string
from the highest priority queue containing
data, subroutine MMIWRD is called to begin
processing of the string. Checks are made
on the local common data set by MMIWRD to
check for the presence of a valid number of
characters in the actual command characters.

3. Next MMICHK is called to detennine the
validity of the command (see Table 3.2.1-I),
the validity of the source (CS, OCS, DAS or
command file , and, if emergency command flags
are set, to see if the command is allowable
following an emergency command or during an
emergency sequence (indicated by global word
set in the CMDPRC module) •

4. If the command is STHIWIND or DEFOCUS, as
indicated by MMICHK, control is passed to
Step 9 below. No further syntax checking
of these comm.ands is done.

33

s. Steps (6) through (10) below will refer only
to "operational 11 commands; i.e., those com
mands which may immediately affect the helio
stat field and must be implemented by CMDPRC.
These are connnands "TRACK" through "ESTOW"
as listed in Table 3.2.1-I; and with the
exception of "POSIT ION" and "Ail1POINT" the
remainder of the command string will consist
of an address ("H," "A, 11 "F," "S," ''W," "R, 11

or "ALL") followed by a delimiter, then
followed by addressing parameters (heliostat
or segment numbers, etc.) separated by
delimiters. "POSITION" and "AIMPOINT" have
the above format, with additional parameters
appended. Processing for non-operational
commands continues at step 11, below.

6. Next MMICHK is called again to determine which
addressing is being used and if it is allowable
for the command. If the result indicates an
invalid address and the command is "rnCREASE"
or "DECREASE, 11 MMI calls MMINUM to decode the
possible number; otherwise an error results.

7. Next MMINUM is called to decode the addressing
parameters and stores the results in local
common array NUMARY. Checks are made to
insure that each ASCII number has the proper
number of characters, contains no non-numeric
characters, and that the results are within
acceptable values (see Section 3.2.1.4.1.4,
MNINUM, for details).

8. Next, MMIMAP is called to obtain the heliostat
numbers which are defined by the addressing
format and parameters. The heliostat numbers
are stored in global array HCMAPG (See Section
3.2.1.4.1.S, MMIMAP for details).

9. MMI then activates the CMDPRC module and
suspends itself until reactivated by CMDPRC.
Upon reactivation, global array HCMAPG will
contain success rates for the command, or
global word CPPRTG will contain an error
message number.

10. The final step in processing operational
commands is to call MMmRR, if the command
could not be implemented, or MMIRSP, to
report on the success rate of the command •

34

•

•

•

•

•

• 3.2.1.4.1.1.2

e.

11. Processing of non-operational COIIDllands is
best described on a connnand-by-conmi.and
basis as follows:

a) RLHIWIND - the 11 High 'Wind Stow11

(STHIWIND) corranand lock (LOKSTG)
is cleared.

b) DEFRLSE - the "DEFOCUS" conmi.and lock
{LOK.DEG) is cleared.

c) UPAIM and UPBIAS - the rest of the
string is syntax checked, global
words DISKRG are set, and DSK is
activated.

d) STATUS - is further processed by
MMISTR.

e) HELP - is further processed by
MMIAID.

f) CFSTART - submodule CFO is enqued
with the ASCII file name and the
source of this command.

g) CFABORT - global word CFABOG is set.

h) CEWAIT - the ASCII wait time is
decoded and stored in global word
CEWATG.

i) REFRESH - MMIREF is called for further
processing.

j) BCSSTART - the BCS task is activated.

k) BCSABORT - the BCS .task is aborted.

Error Messages and recovery - Syntax checking of the
connnand string is done from left to right (except for
POSITION or AIMPOINT). If a syntax error is encount
ered, IERR is set appropriately and control passed to
MMIERR for reporting. Other errors (invalid source,
emergency locks set, etc.) are also reported by MMIERR.

CMDPRC will set global word CPPRTG to a non-zero value
if it is unable to implement a cOIIDllartd, and these errors
are also reported by MMIERR •

See Table 3.2.1-III for a list of reported errors.

Data, Logic and Command Paths

35

Syntax Errors (Message contains the part of the command string found to be invalid)

1) Invalid Connnand

2) Invalid Addressing Character

3) This Addressing not allowed for command

4) Non-Numberic character

5) Number of range

6) Improper number of characters

7) Invalid mode request

8) Invalid file name

Non-Syntax Errors

Invalid Source of command

Command not allowed during DEFOCUS

Command not allowed during STHIWIND

1)

2)

3)

4)

5)

6)

7)

8)

9)

Command not allowed during Emergency Sequence

10)

Cormnand File processing not Active (CFABORT

DEFOCUS command not given (DEFRLSE)

STHIWIND connnand not given (RLHIWIND)

BCS processing not active (BCSABORT)

BCS processing active (BCSSTART)

Command File Active (CFSTART)

Errors returned by the CMDPRC module

1) No heliostats in correct mode

2) No heliostats installed

3) All heliostats ,offline

4) BCSTRACK: only one RC/target.

or

5) Command Disallowed: only 16 sequences possible

CFWAIT)

TABLE 3.2.1-III MANMIF Errors

36

•

•

•

•

•

•
3.2.1.4.1.1.3

3.2.1.4.1.1.4

Input data:

AZ - ASCII command string enqued to MANMIF by the EXTINF
module or MANMIF submodule CFO containing two
characters per 16-bit word.

Output data:

Global common: (see section 3.3.1, data base, for more
details on global common.)

CPPG(l) - Command
CPPG(2) - > 0 = IF HCs/block in HCMAPG

, 0 = entire field
0 = entire block in HCMAPG

CPPG(3) - Hex azimuth for "POSITION" command, or
11 AIMPOINT11 array number

CPPG(4) - Hex elevation for "POSITION" command
array of heliostat numbers addressed in the HCMAPG

CFABOG
CFWATG
ISTATG
LOKSTG
LOKDEG
DISKRG

command
- command file abort flag
- command file wait time (seconds)
- array containing status request data
- High-Wind Stow lock indicator
- Defocus lock indicator
- array containing disk operations request data

for submodule DSK

Local common: (MMICOM)

ONWORD

mRR
NUMARY
Al

KMAND
ADDRES
SOURCE

CFSORC
NWORD
CHRPOS

NPBLOK

- word in command string which is being syntax
checked

- error message number
- array of decoded addressing parameters
- ASCII command string containing one character

per 16-bit word
- command number (1-39)
- addressing used (1-7)
- source of command:

1 = CS console
2 = ocs
3 = DAS
4 = command file

- source of CFSTART command
- number of words in command string
- array of character positions of the words in

the command string
- array containing the number of blocks in

HCMAPG per addressing parameter

Internal Data Description

Miscellaneous local pointers and counters.

Flowchart

See Figure 3.2.1-2 for the MMI flowchart.

37

Wf.?..1Tf. £f<.f!t)f!
MESSAGE 1"f>

.S'ISifE'M ~dNSIJ..f;.

c.: a -t I Ef:.f' f.,,,. ,)<.

, 'corr r:·,a nd 100
ii on9 or 710 r.J-•,:1fi ,,
L ••--·•··----------

~-;7
l /'·_I~_;!

'/(I
'• ;

Figure 3.2.1 ... z

38

Flowchart-MM!

Nt·.,i, iH/, t ·10

i .:>o.rl H<'I--IAfYr

•

•

•

•

•

• ··~.

,.,.,,-

'{e;;, N''l<A 1 E = rl>

Figure 3. 2. 1-. 2 Flowchart-MM! (cont.)

39

ALL

i

I
'

i
I

,:}/

p.1~ ~--7
J/~)

! o do 1,r!e.

/\{ t fL /,)tl{r/s ·---· r -----
/,.,. '•, .. _

./ , . y,, .. r ""
<IE KP. > <D .;,--'...~~1 /;, \, " ., ,,,-, I·,, •.. / ' (/ ,,...___,,· ~-··_,,./•' - ,,,

l
~-»•. J~ 0 . ' - •.•

CPPCr:~): ~ ~~'
!_1PPc.,1,:;,c1

-,:=1.··
I f) IA!!
""'·✓/

CALL '
/41WJuH /~,.

,,1rr1-p,,.,"t I
L . . °:.!.'. :1J ('-':'~/~"_('. l

)'.'.
/~, r···,

~ R.R ~:· (4 ;~-::~• I ' ... ·,,,
--......._ r. / ~-/

No

('ppc,-(3)"'

0.1m-pDint orroy
nu r"' 6., r I
··~-'

v,./

Figure 3.2.1-2 Flowchart-MM! (cont.)

40

•

•

•

•

•

•

A/1~·

Of"R/'•\f C ff)

--· /~
/" '

£;(Dn kM~>

~~--///_,./

~-----~------•- -1 ____ ,,_,, ___ ,_ -·-·T------rr-"'-OT_H.f:!<_:~

t>Hfl:SE . LH1 w1NC:, · -TA,Uj Kt:1..P

CALL

U)KDU., "0

F::.1ART C'FAtbRT
l1 ALL Ac..,-' 1/ATf: ,

-------·-i

:x>t CFA60b on

' ··--------.......----"

I

Be:: Jd_):: j j'
-____ l ______ L_

I
!

CF"WAT6· 4:-- -I ,me.
I

I
l

1 ______ -------- -·--··--·- _____ ..,,_ _____ }

Figure 3.2.1-2 Flowchart-MMI (cont.)

41

,,,_,..,,

r--------....
! l>tsUU,-UY- ~)~~NC

!Dt,,iRL-rl/)~- O..IY°! ~
[_ le-

MN !HAP for
HFc •· f\C
r:,_;.mbrr

();~,<t,?t,,{:1k KMAN/)

bl:'.>KR&/2\f.- Hff 14(

r:1:>t-Ro(:1)~ At
[)1~l(Rc,{,.;')~ fLE,/

---- .. ,,,.. ,_ .. -•· ... ,.--

Figure 3.2.1-2

42

(cont.)

•

•

•

•

•

•

3.2.1.4.1.2

3.2.1.4.1.2.1

3.2.1.4.1.2.2

3.2.1.4.1.2.3

3.2.1.4.1.2.4

3.2.1.4.1.3

3.2.1.4.1.3.1

Submodule II - MMIWRD

Description

a. Language used - FORTRAN

b. How invoked - called by MMI

c. Constraints and limitations - Processing of the comrnand

string stops when two delimiters in a row are

encountered.

d. Processing - MMIWRD divides the cormnand string into

"words" (groups of ASCII characters separated by

delimiters), and finds the character position of the

beginning of each "word." Processing ends when two

delimiters (space, comrna, or slash) are encountered,

a~ if the first character checked is a delimiter.

e. Error messages and recovery - None

Data, Logic and Command Paths

Input data:

Al - local connnon ASCII command string

FROM - character position to start processing

TO - character position to end processing

Output data:

NWORD - local conunon number of "wordsir in ASCII string

CHRPOS - local conunon 40-element array containing the

character position of the beginning of each word

Internal Data Description

Miscellaneous local counters and pointers

Flowchart

See figure 3.2.1-3 for the MMIWRD flowchart.

Submodule III - MMIClll{

Description

a. Language used - FORTRAN

b. How invoked - Called by MMI

c. Constraints and limitations - None

d. Processing - MMIClll{ is called by MMI to determine:

43

•

•

•
Figure 3.7.1-3 Flowchart-MMIWRD

44

•

3.2. 1.4. 1.3.2

•

3.2.1.4.1.3.3

•
3.2.1.4.1.3.4

3.2.1.4.1.4

1. If the command syntax is valid;

2. If the command is allowable from its source;

3. Which addressing mode is being used;

4. If the addressing is valid for the given
command; and

5. If the command is allowable while LOKSTG or
LOKDEG are set, or during an emergency connnand
sequence being processed by the CMDPRC module.

e. Error messages and recovery - Returns values for
IERR and ONWORD if syntax or other errors are found.

Data, Logic and Command Paths

Input data (Local common):

KMAND - zero value indicates check for command type, source
validity, and emergency lock checks. Values from
one to 39 indicate check for addressing type and
validity.

IAID - flag to indicate call by MMIAID (only command type
or address type is checked)

Output data (local common):

KMAND - command number returned from valid command check.
ADDRES - addressing number returned from valid addressing

check
IERR - error number returned if syntax or other error

found.
ONWORD - word in string causing error, if any
CHKBUF - array of ASCII data for MMIAID

Internal Data Description

AR.GADD - a forty-word array whose values indicate which
addressing and sources are valid for a command,
and whether the command is allowable during
emergencies. See Table 3.2.1-IV

KMANDS an 8 by 40 word array containing the ASCII
representation of the 39 commands.

ARGU - a seven-element array containing the ASCII
representation of the seven addressing modes.

Flowchart

See figure 3.2.1-4 for the MMICIIl{ flowchart

Submodule IV - MMINUM

45

UITERNAL DATA LAYOUT

APPLICATION MANMIF - MMICHK VARIABLE - ARGADD

Bit ~ROGRAMMER P. Orum
Position

DATE

"Ul.
..._

-3 ..._
-......

-6

8 ---.11
w
......
14

A. HC Addressing Allowed
ARC " II - RFC II II

......
3 SEGMENT II "

--·-------------~
WEDGE II II - RING II II -6 FIELD II 11

NOT USED
-

8 Allowable from Counnand File - DAS
...,;..

ocs -H cs

~ Disallowed when LOKSTG set (STHIWIND)

lHsallowed when LOKDEG set (DEFOCUS)
1L Disallowed during emergency sequence

NOT USED

The above are indicated for the command whose
number (KMAND) is the index to ARGADD if the
appropriate bits are set "on."

Table 3. 2 .1-IV Description of AR.GADD

46

•

(CMDRRC11 • .

•

•

•--.
·~Figure 3 • 2 .1-4

47

Figure 3.2.1-4

,48

Flowchart-MMIClll< (cont.)

•

•

•

• 3.2.1.4.1.4.1

•

3.2.1.4.1.4.2

•

Description

a. Language used - FORTRAN

b. How invoked - called by MMI

c. Constraints and limitations - None

d. Processing - MMINUM is called to decode the ASCII

numberic representation into binary fonn, and store the

results in local common NUMARY.

Prior to actually decoding the data, MMINUM optionally

checks each ASCII number to insure that it has the

proper number of characters, and after decoding,

checks to make sure that the resultant number (N) is

within range as follows:

Addressing type

(1) He liostat

(2) Arc

(3) HFC

(4) Segment

(5) Wedge

(6) Ring

Number of characters

Four

Same as heliostat

Two

Three

Two

One

N/100: 1-29
MOD(N, 100): 1

to the
number of HCs
in row N/100

same as heliostat

N: 1-64

N/100: 1-5
MOD(N,100): 1-12,

unless n/100=5,
whence
MOD(N,100):
4-9

N: 1-12

N: 1-5

e. Error messages and recovery - Errors found in the number

of characters, the presence of non-numeric characters,

or the result being out of range cause IERR to be set.

NUMARY is then cleared.

Data, Logic and Command Paths

Input data:

FWORD
TWORD
Al
CHRPOS
IClll<

- First word to decode

- Last word to decode
- Local common ASCII command string

- Local common character string pointer

1-6 = type of check to make (1 = heliostat, 2 =

arc, etc.
- other= no check to be made

49

3.2.1.4.1.4.3

3. 2. 1.4. 1.4.4

3.2.1.4.1.5

3.2.1.4.1.5.l

ICON - 0 = integer conversion
1 = Hex conversion

Output data:

IERR - local connnon error number returned
ONWORD - local common word which caused error
NUMARY - local common array of converted numbers

Internal Data Description

a. Array containing number of characters necessary for
each addressing type; and

b. Values to check the ranges against.

Flowchart

See figure 3.2.1-5 for the MMINUM flowchart.

Submodule.V - MMIMAP

Description

a. Language used - FORTRAN

b. How invoked - Called by MMI

c. Constraints and Limitations - all input data must
have been validity checked.

d. Processing - MMIMAP obtains lists of the heliostats
which may be affected by a given connnand, for use by
the CMDPRC module. The processing is handled in three
distinct manners for (1) Segment, wedge or ring
addressing; (2) Heliostat or arc addressing; and (3)
HFC addressing.

1. Segment, Wedge or Ring Addressing - MM.IMAP
uses global arrays SEGPIG and SEGMPG to
put lists of heliostat numbers from each
desired segment, wedge or ring into global
array HCMAPG. The index to SEGPIG is
given by:

INDEX= (RING - 1) * 12 + WEDGE

where RING: Ring Number (range 1-5), and
WEDGE= Wedge number (range 1-12). For
Segment addressing:

RING~ SEG4f / 100

and

WEDGE= MOD (SEG4f, 100)

50

•

•

•

• r ___ .. _________ \
\ Ml~lf•./Uf·l ,!

~

~-- __ :r;_ -·-· ·-]/
r-11..;.;:,l11 e.

I
D((l I

r io ble::, ---·· r- --·
_,,,,.,·

•

.. _J

! <:e-i-1-·
l,-, ,· ~ ' I

l't·nr .,;.. t'•''f'J '-J"'

INcM'l\f'f11' ··

L

_J ----·--··-•-·--1

•
(RrTuRN
' -- - ---- -· ' ...,.,.,,

-.,_

Figure 3.2.1-5 Flowchart-MMINUM

51

3.2.1.4.1.5.2

For Ring addressing, the ring number is given
and a loop is made with WEDGE varying from
one to twelve, and for wedge addressing the
wedge number is known, and a loop is made
with RillG varying from one to five to obtain
each index to SEGPTG.

Now SEGPTG(INDEX) points to the beginning of
the list of heliostats in this segment in
SEGMPG. A loop is made, loading these
heliostat numbers from SEGMPG into HCMAPG
in pecking order. If local common word KMAND
indicates that the "DECREASE" command is being
processed the heliostat numbers are loaded
into HCMAPG in reverse pecking order.

2. Heliostat and Arc Addressing - MMTI1AP uses
global arrays MDNPRG and MD2HCG to convert
from MDAC heliostat numbers to HFC-HC numbers.
For a given MDAC heliostat number (MDHC),
the HFC-HC number is given by;

HFCHC = MD2HCG (MDNPRG (MDHC/100) +
MOD (MDHC, 100))

For arc addressing, a loop is made through
the MDAC heliostat number between the given
pair of heliostat numbers. Checks are made
to be sure that both the heliostat numbers
in the given pair are in the same row and
are both odd or even.

3. HFC Addressing - the HFC-HC numbers are
calculated from the given RFC number by:

HFCHC = (HFC-1)*32 + IHC

where IHC varies from one to 32.

e. Error messages and recovery - All input data has been
validity checked by MMINUM, except for checking to be
sure that both HC numbers used in arc addressing are
in the same row and are both odd or both even. These
errors cause !ERR to be set appropriately.

Data, Logic and Command Paths

Input data:

SEGPrG - contains pointers to SEGMPG

•

•

SEGMPG - contains HFC-HC numbers by segment in pecking order
MDNPRG - contains the total number of heliostats in all rows.

numbered lower than the index
MD2HCG - contains HFC-HC numbers ordered by rows
NUMARY - array of input heliostat, HFC, segment, wedge, or

ring numbers

52

•

3.2.1.4.1.S.3

• 3.2.1.4.1.S.4

3.2.1.4.1.6

3.2.1.4.1.6.1

•

ADORES - local common addressing mode to decode:

l "' HC
2 = Arc
3 "' HFC
4 = Segment
S = Wedge
6 = Ring

KMAND - used to check for "DECREASE" command

Output data:

HCMAPG - global array of HFC-HC numbers

!ERR - local connnon error flag

Internal Data Description

Internal pointers used as follows:

INUM - pointer to NUMARY

IMAP - pointer to HCMAPG

IPI'G - pointer to SEGPI'G

lMPG - pointer to SEGMPG

RCXv - pointer to MDNPR.G

12HC - pointer to MD2HCG

Flowchart

See figure 3.2.1-6 for the MMIMAP flowchart

Submodule VI - ~HERR

Description

a. Language used - FORTRAN

b. How invoked - called by MMI if command errors are found

c. Constraints and limitations - none

d. Processing - MMIERR produces error messages in two

fonnats:

1. A specific error message.

2. A generic error message in which the offending

part of the connnand string is echoed back

along with a short text string indicating

the error type •

See Table 3.2.1-III for a list of thes.e messages.

For producing a specific error response, MMIERR

simply loads a text string from local data into an

output buffer and Enques it to the EXTINF module.

53

•

•

•
c:;4

•

•

•

~\
Jo A ."----\f\/- DMf:;:: f•FC

___ ,/

[
JN UM, C~

1M/1P"0
L ----·-- -· _____ ,.

TrJUf~' TtJut-1 ti
Hk" r•Ju.1,v.RI r1rNMi

bj:.J~D"C,/✓i,1a,,.r,1 J

",,. ·,

--·-·)--·- - _,,_,, __

~;}-~(;~,:>
-{e6

JMAP::: 1Mf,P 1 i 1
HCHM>fr(Jt,-W')'~' ·321·

- ~-----·- '

\rH~--7'11 l
\< n~c >'!•?.. W

~~I---~-=:.-:J
l r··---- -----

1
! IHFUI(' I .
I (HH-D1'32 1 J i-lC

I ..__---·------
1

l :r~-1AP• JM;::·r··1
\Hn-'\APr,· (.1 ~-~, p', :. I
l HFCHC I

I(L.---=r ... -· .. J

~
.~ '. "··,

.-- . ,-- -~'""':---... ,.1,, r·--·--, ..
<....__ __ luDf<f_-;,~ H~;,,---'~ A/3)

r~-- L_,

J NUl--1 ,-,. (l) I
1 MAP" 1 1

..... ..L I

! lt-JuH=JNut--H i i
I '

t""'" '"' °''""" r, ~
N :,~(H~'"1 -------
< ~:~ ,';;')No_JHrHAPmll•l-TN,<l

,__ (// I

r~~_;-};;:· l l --··1 ---
1 , , ' r;t, 1
!rr-J~/1-~oo, ~1-ic.-,100 1 · •. ,_) 16 _i I -.. -
' V

~--. ----=~:-·· ___ !

iJZ f-lC,,.11'1 + :
l~.;r-~Pi<-& 'i~) __ :
~ .
: MD?,!CC,.- (rzt-lc) 1

~- ______ i.:~_.:_ -- .. ~
11 MAP= Jlv{AP1 1. (
; , l
HfMAP6- (Jf,.J,Af-'):; I

· HF(HC

Figure J.2.1~6 Flowchart-MMIMAP (c.ont.)

55

56

r

..... -· •~1 . ::7;-:;i
Nr\c u,,.r? .,~cJj/.1

~,-,>~

1 Ill O MOO' MD1,t'4

't 1,. "•\'> . I l•) ,\ •1 J -.Ji,·- IV>, l, •

~••o-• •~.....,,..."-•' ~-1•~ - '

' i
i

.J

l . --1
!

I
I

~i,'.'r..f AF'fr. __ j
r·· ..
~. _ __.; __ _

•

•

•

•

•

•

3.2.1.4.1.6.2

3. 2. 1. 4.1.6. 3

3.2.1.4.1.6.4

3.2.1.4.1.7

3.2.1.4.1.7.1

For producing a generic error response, MMIERR builds

an output buffer consisting of the offending word in

the command string and a short message. The word from

the command string (truncated to eight characters if it

is longer) is loaded i.nto the output buffer in the same

charncter position as it was in the command string, and

the message loaded into the left side of the buffer, if

it will fit, or into the right, if not. If the output

is to the CS console, additional words are added to the

output string before the word causing the error, and

before the message string, in order to have the error

word appear in a complementary color to the message.

The colors are TBD.

e. Error messages and recovery - MMIERR itself will not

flag any errors.

Data, Logic and Command Paths

Input data (local common):

ONWORD - word in command string causing the error; 0
implies specific message

CHRPOS - character position of ONWORD

IERR - error message number

SOURCE - code indicating where to send message (OCS, DAS

or CS console)

Output data:

ASCII string enqued to EXTINF.

Internal Data Description

MMIERR contains arrays of error messages and an output buffer.

Flowchart

See Figure 3.2.1-7 for the MMIERR flowchart.

Submodule VII - MMIRSP

Description

a. Language used - FORTRAN

b. How invoked - called by MMI

c. Constraints and limitations - None

d. Processing - MMIRSP is called by MMI to output command

success rates returned by CJ\IDPRC in HCMAPG. Each "block"

57

•

•

•
Figure 3. 2. 1- 7 Flowchart--MM.IERR

•

•

3.2.1.4.1.7.2

•

of heliostat numbers given to CMDPRC in HCMAPG
will have a 11total affected" returned in HCMAPG.
For 11 N11 blocks, the first "n" elements of HCMAPG will
contain these totals.

1. A loop is made through the addressing
parameters in the corranand string. Each
addressing parameter (two parameters for
ARC addressing) is loaded from the
command string into an output buffer
(if the output is to be sent to the CS
console, additional words are added to the
output data); then a loop is made through
the number of blocks for this
addressing parameter as indicated by local
connnon array NPBLOK (the number
of blocks per addressing parameter will
be one for heliostat, RFC, ARC arid segment
addressing, and may be up to five for
Wedge, and up to 12 for Ring addressing).

2. The loop through the blocks for each
addressing parameter consists of
encoding the values returned in HCMAPG
and loading the ASCII results into the
output buffer, separated by commas.
The output buffer pointer is checked
each time, and after 80 output characters
are loaded, the buffer is enqued to the
source of the connnand.

3. After the loop (2) is complete, processing
returns to step (1) and continues until
all the addressing parameters have been
processed.

Data, Logic and Connnand Paths

Input data:

WORDl - first word in corra:nand string containing an
addressing parameter

WORD2 - as above, but the last word
ADORES - used only for ARC addressing
HCMAPG - global corra:non word containing the totals to

output

Output data:

ASCII string enqued to the source of the command.

59

3.2.1.4.1.7.3

3.2.1.4.1.7.4

3.2.1.4.1.8

3.2. 1.4. 1.8. l

3.2.1.4.1.8.2

Internal Data Description

MMIRSP contains a buffer to hold the ASCII data to output,
and a set of color codes for CS console output.

Flowchart

See Figure 3.2.1-8 for MMIRSP flowchart.

Submodule VIII - MMIAID

Description

a. Language used - FORTRAN

b. How invoked - called by MMI

c. Constraints and limitations - none

d. Processing -

1. After being called by MMI upon receipt of a
"HELP" connnand, MMIAID checks local connnon
NWORD. If NWORD = 1, a general aid message
is loaded one line at a time and enqued to
EXT INF.

2. If NWORD is greater than 1, MMIAID calls MMICHK
to determine if the remaining words in the
command string are valid cormnands or valid
arguments. If the word is a valid cormnand,
an output buffer consisting of this cormnand
followed by a list of its valid arguments is
enqued to EXTINF. If the word is a valid
addressing character (or "ALL"), the output
buffer will consist of the addressing character
followed by a short description of the
addressing. If the word is neither a valid
cormnand nor a valid addressing character, the
output buffer will consist of the word in
question followed by a message indicating
its validity.

e. Error messages and recovery - words in the cormnand
string which are neither valid cormnands nor addressing
parameters are flagged as described in part

11

d" above.

Data, Logic and Connnand Paths

Input data (local cormnon):

Al - ASCII string
SOURCE -
CID.<BUF -

flag indicating where to output data
array containing ASCII data from MMICHK

60

•

•

•

•

• -

•

; TP0,P ·::,

i 1 1 !AP,. ti I . ,, .
jl\L,)W:. ~ .

.. Ml:,n::.·/
, 'l 1Jr.

''

, ______ jYt·:
I

i I ADDvJ: 2
I

. ~-F:--.. ~--1
; ___ w
' --····_,..

')

/

\;

-• . _, .. 1 ~~ ~I . , .

Aclrl ,~oLold
,>QliJ ·Ir, :'),r•f•Jf·,

1
6,, r11 c IPoc,T

i ·- j :
1 i
k-···--------':j

r-· -.. ~
I Tok r '"k~t'[~, ·: r .. ,.~ ·

ifi '.):\,) 'rx,;

J;nto J,X1 f::.1 r-,
l . --·

r '1 --
11,,r,V i 1 ,,,rd. '
I d ::."\ 0 ln 1M •,;y.,NJ.
!

. I
i

::,\"'~':::"~
! : I

1
JC.

(.:_))
FJp;urc ·~.7.1-8 F lowehart- MMll{'.l p

61

'-,
: '(?• : '..,,,

'V
F tv:,,.1r_ ,)1.,-1 e/.,,:::

·\o [.v.,T,f'ff,

1 PouT" ,t,

(A
'1

· ,

-to E:C': 1 IF

J,/c,

.I

3.2.1.4.1.8.3

3.2.1.4.1.8.4

3.2. 1.4. 1. 9

3.2.1.4.1.9.1

Output data:

ASCII output buffer Enqued to EXTlNF

Internal Data Description

MMIAID has local arrays containing ASCII help data.

Flowchart

See figure 3.2.1- 9 for the MMIAID flowchart.

Submodule IX - MMISTR

Description

a. Language used - FORTRAN

b. How invoked - called by MMI

c. Constraints and limitations - none

d. Processing - MMISTR is called by MMI to complete the
processing of a STATUS request and set global common
words ISTATG for the STATUS module. First MMISTR
calls MMICHK to determine the addressing used ("H,"
"R," or "ALL"), and if this test fails, an internal
test is made for ''M" (Mode) addressing. The four
addressing modes are treated as follows:

l. "M" (Mode) addressing - a check is made against
an internal list of mode characters (TRK,
BCS, STB, etc.), and after a match is found,
the now known mode number is loaded into
ISTATG(l).

2. "H'' (Helios tat) addressing - MMINUM is called
to decode the MDAC heliostat number, then
MMlMAP is called to obtain the HFC-HC number.
ISTATG(l) is set to 14 to indicate heliostat
addressing and ISTATG(2) is set to the HFC-HC
number.

3. "R" (Ring) addressing - MMlNUM is called to
decode the ring number, a check is made to
insure that the ring number is between one
and five, then ISTATG(l) is set to 15 to
indicate a Ring request, and ISTATG(2) is
set to the Ring number.

4. "ALL" (Field) addressing - ISTATG(l) is set
to 13 to indicate a Field request.

62

•

•

•

•
,,~

•

•

·+-·····-
·•,_

,, N v,J(,~. r -. > J . -- ,-~o \/. __ / A----'\
, ,. z.,)
·--~

'/ .. ,, ...

I
i

. I :---i

owe art- MMIAID Figure 3.2.1-9 Fl h

63

3.2.1.4.1.9.2

3.2.1.4.1.9.3

3.2.1.4.1.9.4

3.2.1.4.1.10

3.2.1.4.1.10.1

In all cases ISTATG(3) is set equal to local COllD.llon

word SOURCE to tell STATUS where to send the output.

e. Error mesi:;age_~_ and -~_overy - errors detected in any

of the above processes wTI.i cause IERR to be appropri

ately set and processing ended.

Data, Logic and Ccnmnand Paths

Input data (local conunon):

Al - ASCII connnand string
SOURCE - source of request

Output data:

ISTATG - global array for use by the STATUS module

IERR - local connnon error flag

Internal Data Description

MMISTR contains a list of three-digit ASCII mode codes as

follows (in order by mode nlOllber):

TRK, STB, BCS, TRN, STD, ALl, AL2, MRK, DPO, WSH, INI,

and OFF.

See section 3.2.6, STATUS, for more details of the "STATUS"

connnand fonnats.

Flowchart

See figure 3.2.1-10 for the :MMIS'rn f'Lowchart.

Submodule X - MMIREF

Description

a. Language used - FORTRAN

b. How invoked - called by MMI

c. Constraints and limitations - CS console not in

"scroll" mode.

d. Processing - MMIREF clears the CS console screen and

rewrites the two AI.ARMS areas, the synchronous STATUS

area, and outputs global words MODEG and GTIMEG.

Data is output via the EXTINF module.

e. Error messages and recovery - none

64

•

•

•

•

•
JHc

I
••-' -"".,_ -"·--· --····Jl ffl.rL I

-·-•""''" -··------·--·,
1')1~1f/w .. ~ fo, I
,1,·1, ;;ri.
I • • ,

. --i--·- -....

/
.r.,..·

Jtfo
[;:';,.\ p fr,r lj l
I e' r l , ~1 r I , ,,.

; r. , ,"(~er . -- -- r----- --
- j , I

],C,•/',"{r I J), . <I

·r'. r n :, (i ·r HFC He.

I_ ·-- _________ J
.. 1, ________ , .. '¥ .

•

lYe:'.,
." __

.-f..,,,,. ,.,,,

_,,/· (o:,e Dn

,· (\,l/11':_:1.Yfr'

'{,•\\
1"Cf.P > © >•--;,r

-."---
"ri1o ... --- ,.v ~,, .. _..,

j 1:;;A1G(1)•·15
1

IJ,.,f\11 r·,' -v,.,, ::t I ~, . :'.'t "'-; r-., r"fl.Y

I

...... ' r ·,•r', '·'· ,-.·I•.'.. · • 11 • · ,,,,__,, ,. /' i 1 .. '" 1

1-f<\<'. , r2>CS, ," ",
' ,'

1 ..
.-Z

,/'_,·· '""-........
/; l 1<' ''·• .. , tJ,., 1

<_ ~"' on e. 0,, .. ~----71

"'--·--... "i /
'·,,r.(,

,.. ---··-· ~, ... , ,,., "~-~-· ,., ,, ,.~.-.•- ··1

'

Figure 3.2.1-10 Flowchart-MMISTR

65

3.2. 1.4. 1. 10.2

3.2.1.4.1.10.3

3.2.1.4.1.10.4

3.2. 1.4.1.11

3.2.1.4.1.11.1

3.2.1.,4.1.11.2

3.2.1.4.1.ll.3

Data, Logic and Command Paths

Input data:

MODEG - field status infonnation
GTil1EG - local time and date

Output data:

ASCII string enqued to EXTINF

Internal Data Description

MMIREF contains variables defining the CS console display.

Flowchart

See figure 3.2.1-11 for the MMIREF flowchart.

Submodule XI - OSK

Description

a. Language used - FORTRAN

b. How invoked - activated by MM.I

c. Constraints and limitations - Disk operations are
aborted if they are active when an emergency command
is received.

d. Processing - DSK checks global common word DISKRG(l)
to detennine which of its submodules to call. All
disk updating is done through MAXNET to the prime and
backup disk files.

e
0

Error messages and recovery - none; each submodule
reports its own errors.

Data, Logic and Command Paths

Input data:

DISKRG(l) - contains a connnand number set by MMI, used to
detennine which submodule to call as follows:

DISKRG(l)

28
29

Internal Data Description

Miscellaneous data only.

66

Connnand

UPAil1
UPBIAS

Submodule

DSKAil1
DSKBIA

•

•

•

•

•

•

Mfv11KfF

C. I ear /{AC

C R:r -::c reen

Wv-',te out
A \orlY'o ,)rrct
r1r,) S-tr.111:.,
-t; i I t15

Wr·i-\e ou't
Mo Of c,- ~
C:i11,Hf&-

Figure 3.2.l•ll Flowohart.:.MMIREF

67

r

3.2.1.4.1.11.4

3. 2. 1. 4. 1. 12

3 . 2 • 1. ,, . 1. 12 . 1

Flowchart

See Figure 3.2.1-12 for the DSK flowchart.

Submodule XII - DSKAIM

Description

a. Language used - FORTRAN

b. How invoked - called DSK

c. Constraints and limitations - none within the con

straints upon DSK.

d. Processing - DSKAIM updates the heliostat aim-point

array file from card-image input data.

1. Since DSKAIM must check the validity of the

data on each card, a scratch disk file is

used for temporary data storage as the cards

are read. Pertinent data from each card-image

record are:

a) MDAC heliostat numbers;
b) Aim-point array numbers; and
c) Aim-point X, Y, and Z coordinates.

As the cards are read, the above data is

validity checked before the data is packed

into the scratch output buffer, which is
written to the scratch file when full.

When an end of file on the input is reached,

the buffer is written if it is partially

filled.

2. After all card-image data has been checked

and written to the temporary scratch file,

this file is rewound and the data read from

the scratch file into the scratch output buffer.

A loop is then made through each heliostat's

data in the buffer to determine the record

number of the aim-point array file to read.

This aim-point record is read, the aim-point

X, Y, and Z values are replaced, and the
heliostat number in the scratch buffer is

zeroed to indicate that its processing is

completed. The rest of the scratch buffer

is then checked to see if there is any more

updating to perform on the given aim-point

file record (NOTE: this will not happen if

only one aim-point array number is being pro

cessed. If more than one array number is

68

•

•

•

•

CALL

• CALL

b~KLST

EX,;-··)
_ ____ ,_ ____ , ---·· ·••

• ~
Fi 3 2 1 12 Flowchart•DSK gure •• -

69

3.2.1.4.1.12.2

3.2.1.4.1.12.3

3.2.1.4.1.12.4

updated, disk I/0 will be minimized by
ordering the card-image input by heliostat
number,) This process repeats until the
last scratch record has been finished.

e. Error messages and recovery - the following input
errors will be flagged and processing stopped:

1. Card-image input read error
2. Array number out of range or invalid
3. Aim-point coordinates invalid
4. MDAC heliostat number invalid

Error message(s) include the offending card's
numerical position,

Disk I/0 errors will be flagged and processing
stopped.

Data, Logic and Command Paths

Input data:

DISKRG(2) - aim-point array number to update

•

DISKRG(3) - card-image input device code •

Card-image data - heliostat number, aim-point array number,
and aim-point coordinates

Output data:

Written to the aim-point array file

Algorithms:

The aim-point coordinates are checked to be sure they lie

within the receiver volume.

Internal Data Description

Scratch buffer format (126 words), seven 16-bit words per heliostat

l 2 3 4 5 6 7 8 13 14

Aimpoint
X.Y,Z

Array HFC
9 10 11 12
Aimpoint

X.Y.Z
Array HFC

II HCII II HCII

7 words/heliostat 7 words/heliostat

This format allows the 126-word scratch buffer to hold data

from 18 input cards.

DSKAIM also has arrays containing ASCII error messages.

Flowchart

See Figure 3.2.1-13 for the DSKAIM flowchart.

70

etc.

•

,,,,

•

•

• ~

DSKAIM

< ,,_

r:5(-+"_'A 1MEl<f.
i t-v r J,-10.l(J
/ or (i). y r'\ 1..t""'ber
r on Tc.i.D ----@~J

'Set AtNEr?. IZ
+o ;nd;ca.+t..
I /p error-

_- @J,
;f'

ll?f/N.S Ft>f<M Cbt>f·

I CHi-t K F'R \

AIM'i'orN 8£/Ntr

1N -rt1cL.IJS /0 ,-;

/
/

HFC·HC. 6l:

Ye6

~
w;~:+:~ei·,-~ -,~
SCRDUT"c: Srk'ouT+

1Pou"f-:, -l..o

Figure 3 ~. 2 • 1-13 Flowchart- DSKAIM

71

,(Nari:

No

SEI!. SJI.c.T/4NS

:? • ,). , 7, '"/ • / • 3 hN 0
:J•~•1, 9,/· 'I

Set A1MERR.

.fur ~JO.d
0 . .101 p<>,n-t ~Y:

Se+ A1M£.f(f!.

+or baJ MDAC

1-\C nv.m bu

,.

\ I

< 1Povf >¢
"'--,, ?

' '
Y.e!>

rt~~r~~~t~: y_R&!F ! r) l .

1 " 1, JPouT t lo
s _,,.. ~-,-., - ._..,., __ ""' •• , -

©
f<ECtJD -=-

'.:."<RC'i.J(- (n1c '1·1

?

No

r:.1'11J r-er.o<d f/fc.rJO
0(oim-po,'"t

• A1MB:.,1.F

L----

MvNut-: f-7
:?'£'6~,1~/-~•~¥1--1ll

/l,,H;d? ~' - - -1

-~~~~:~~-_?~_J

r
A1M611F- 1X,,.,,,,..-,(~•A---,j

~ 1 -D= ~Ruf'

T" J/:,
-·-- ---···;•- -~------

l;;P&~F;:~o~ q)~0
(/ I I' I I -, I '.l ir, /).f. l ,::1ont)

IA ___ ,
f7_,No/ ,,
\ L /re::--< DNL!r,IE-1- '-,"
·-~.,, ~ ? __ ,.,,,,/

' /'
/'{e~

ARt/NuH""
Scfl.&if= (H'f-.tJ

A1MX:{! =
AR'/Nt<H ~-:,,-,.,)

~1P-<f\uFlA1Hl'.'i-HKj
~R6t.A.ft!*1 t K-'1

I<., i 5
' ------.----- --·::J ~f (l'll-':J) =~

:;:~o:~)j
(s)

Figure 3.2.1-13 Flowchart-DSKAIM (continued)

72

•

•

•

"

•

•

fo,.mct A~,C. TI

nif~'$Cl31' ',ra:r1.d,~~

te5u.l¼ (~ conh)

En'l'-''- Ue!.Soje
to EXT1 IJF
{ to C5 only)

(n;:R0

Figure 3.2.1-13 Flowchart-DSKJ\IM (conoinued)

73

3 • 2 • 1. 4. 1. 13

3.2. 1.4. 1.13. 1

3. 2. 1. 4. l .13. 2

3.2.1.4.1.13.3

3.2.1.4.1.13.4

Submodule XIII - DSKBIA

Description

a. Language used - FORTRAN

b. How invoked - called by DSK

c. Constraints and limitations - none within the constraints
upon DSK

d. Processing - DSKBIA is called by DSK to process the
''UPBIAS" command and update the heliostat bias file.
DSKBIA calculates the record number and the two words
(Azimuth and Elevation) to replace with the new value,
reads this record, replaces the two words, and writes
the record back to the bias file.

,,_' e.
/

Error messages and recovery - disk I/0 errors are
reported.

Data, Logic and Command Paths

Input data (global connnon):

DISK.RG(2) - HFC-HC number
DISKRG(3) - New Azimuth value
DISKRG(4) - New Elevation value

Output data:

Written to the heliostat bias file.

Algorithms :

Calculation of record number and words in record to
replace:

REC NUM = (HFCHC - 1) / 64 + l
AZ WORD== (HFCHC - (RECNUM - 1) * 64) * 2
EL WORD = AZ WORD + 1

Internal Data Description

Bias file format:

See section 3.2.7, DBINIT, for the bias file format.

DSKBIA contains an array of error messages.

Flowchart

'
See figure 3. 2. l• 14 for the DSKBIA flowchart &

74

•

•

•

•

•

(_DSt< 5_:A _)

J{E('"' (HFc Hl. - i)tH l
He, r Mr He ·-

(rRE c. - f'J ¥&•¾

WORD= HL--¾Z.

K'e.c\DCe. ~ ~
Bu.Fri (1110~0)-::A?:

Bu.FFi(t!Dfl.£> 1 j)c fl

--~~........---.. - . _,,__,,.,...

wr:-1-t 6uFF-Y

bo.c k ; n +o r ttE.C.

E nq1,;e. error

rn rs SL\f} e.

lligure 3,2.1-14 Flo\tichart-DSKBIA

75

i
~\ .,

3.2.1.4.1.14

3. 2. 1. 4. 1. 14. 1

3.2.1.4.1.14.2

3. 2. 1. 4. 1. 14. 3

Submodel XIV - CFO

Description

a. Language used - FORTRAN

b. How invoked - activated by MMI

c. Constraints and limitations - processing stops if an
emergency sequence is in operation.

d. Processing - CFO reads ASCII command strings from
disk at specified intervals and enques them to MMI.

1. CFO deques the ASCII file name, converts it
to CAN code and looks for this file in the
SED directory, and if found, positions on
the first record of the file.

2. A record containing the delay time and an
ASCII command string is read; then CFO
suspends itself for the indicated delay
time plus the time indicated by global word
CFWATG (set by the CFWAIT command).

3. After being reactivated, CFO zeroes CFWATG
and checks global word CFABOG (set by the
CFABORT command). If CFABOG is not set,
CFO enques the command message to MMI, and
reads the next record as above.

e. Error messages and recovery - The following errors
are reported and processing stopped:

1. File name not in SED directory
2. Disk read error
3. Invalid delay time

Data, Logic and Command Paths

Input data:

File name and "CFSTART" command source - Enqued from MMI
CFWATG - global common, additional wait time
CFABOG - global common, abort flag

Internal Data Description

The command strings will reside in a din:ctoried SED source
partition of 100K bytes, containing up to 100 source files .

Each record will have the following format:

ssss,ccccc
where SSSS is the time delay in seconds,

76

•

•

•

•
3.2.1.4.1.14.4

•

•

and CCCCC is the command string.

The right justified delay is the time to wait before implement

ing the crnmnand string CCCCC

Each record may contain up to 80 bytes (characters): four bytes

of time delay, and up to 76 for the command string.

Flowchart

See Figure 3.2.1-15 for the CFO flowchart,

77

C CFD ________)

... _ .. ,~~---
s.ii;Dn 01'1 /~f-

t'c'(Drd ;11 f\le

FFF
1~Ec.""Q)

It<EC. ,._!fiEC. ti
Read. o..

rHord

iWAIT-t--
c. F W It IT" (ti.i-1
.CCE:PR CFWA11

_J

, Send CF refld
UrDr Mt:,::.a:3e.
+o source.

jSend C'F
·{e~A&RTE:~

,me~-::,L,P ~llSOttf. L ..

1H,,mep 'L2. l-15 Flowchart-CFO

ror rrat ~+..-;r'\'3
11ncl oend fo
:sou rr e of
(lF STfl.R'f

[

Enq_u~~I
wi'+h ASC.IT
buffer

C !ear CfABoR'r

-+- CFWATfr

L ____, __ __,

78

•

•

•

• 3.2.1.5

3.2.1.6

•

•

Interface Description

Input ASCII commands are enqued to MANMIF through the five
queues in MMI. Operator entered commands are enqued by the
EXTINF module, command file commands by MANMIF submode CFO,
and the Receiver Trip function may enque a DEFOCUS command.
Responses to commands are enqueued to EXTINF by MMIRSP or
MM.IERR. Responses to commands are sent to the source of the
command {except for emergency commands, where the response
is sent to the source of the CFSTART,~ommand). See tables
3.2.1-V and 3.2.1-VI for these message fonnats.

MANMIF communicates with the CMDPRC module via global words
CPPG, HCMAPG and CPPRTG, and with the STATUS module through
global words ISTATG. Communication with submodule DSK is via
global words DISKRG, and with submodule CFO via global words
CFABOG, CFWATG and via initial enque.

Test Requirements

The MANMIF module~s main routine, MMI, must be tested to be
sure that each type of command is being properly processed by
its submodules. The submodules should be tested as follows:

MMIWRD - insure that proper values of NWORD and CHR.POS result
for all types of character strings.

MMICHK - insure that commands and addresses are properly
identified and that addressing and source allowability
checks work properly

MM.INUM - insure that the vaildity checks for the numerical
data work properly, and that the ASCII input data is
correctly decoded.

MM.IMAP - insure that HCMAPG has the proper format and the
calculated heliostat numbers are correct.

MMIERR - insure proper error message for a given error code
number.

MM.IR.SP - insure that the values returned in RCMAPG are
properly displayed.

MM.IAID - insure that the information provided is correct for
the request.

MMISTR - insure that global words ISTATG are properly set for
all STATUS command· formats •

MM.IBEF - insure that the CS console is prqperly refreshed and
that the status display is correct.

79

DSK • insure that the proper submodule is called.

DSKAIM - insure that error detection and file updating is
correct.

OSK.BIA - same as for DSKAIM.

CFO - insure that the command strings are properly enqueued
to MMI and that the delay times are properly decoded •

80

•

•

•

•

•

MESSAGE LAYOUT

OCS/DAS

APPLICATION OCS/DAS - HAC MESSAGE TYPE COMMANDS

PROGRAMMER P. Orum DATE

5

0

5

2

2

HEADER

1

2

?.

•

ASCII 0--0CS Originated
D--DAS Originated
H--HAC Originated

ASCII Message byte count*

ASCII
Position 4-79 will contain the command,
addressing mode and arguments according
to the format in Table Ia an.d Table lb.

*NOTE: This message can contain up to
80 ASCII characters with byte 80 con
taining the checksum. If less than 80
characters are transmitted the checksum
will occupy the last position sent and
the header byte count will reflect the
actual characters sent including the
header and checksum.

Table 3.2.1-V OCS/DAS-HAC Conunands Format

81

MESSAGE LAYOUT

HAC
APPLICATtON HAC OCS/DAS MESSAGE TYPE ENVIRONMENTS

PROORAMMER P Orum

5

0

5

2

?.

HEADER --- Message byte count

E M

R s ASCII

R G

A E S* ASCII
L R T
A R A
R 0 T 1
M R u

s
M M
E E
s s
s s
A A
G G
E E

T T
E E
X X
T T

2

?.

•

CHECKSUM Checksu,n

Table 3.2.1-VI .. HAC-OCS/DAS Environment Format

82

or

•

•

•

•

•

•

3.2.2

3.2.2.1

COMMAND PROCESSOR MODULE (CMDPRC)

Purpose

The purpose of the Command Processor Module is to convert high

level operator commands from the Man-Machine Interface Module

(MANMIF) into explicit commands for the field of heliostats.

These commands are output by the Field Communications Module

(FLDCOM) to the field of heliostat controllers (HCs). Phase II

command processing is designed as follows:

a. CMD (Command Processor) - This task checks commands

sent by the MANMIF module for reasonableness (proper

orientation) and separates the HCs involved into HC

number arrays depending upon their current orientation.

It determines whether a sequence (multiple HC commands

required) is needed, whether a new sequence may be

added (16 simultaneously is maximum), and generates

output commands for those HCs which may be immediately

commanded. CMD consists of 14 submodules and activates

tasks GET and SEQ as needed.

b. GET (Get Disk Data for HC Commands) - This task is

activated by CMD or SEQ if disk data is needed to com

plete the operator input command. CMD activates GET

for those commands that require disk data prior to any

HC commands being completed. GET is activated by SEQ

for those commands that require disk data after a corri

dor walk to complete a sequence. GET consists of eight

submodules.

c. SEQ (Sequence Control Processor) - This task is respon

sible for monitoring and commanding HCs involved in one

or more concurrent sequences. It is activated by CMD

whenever a new sequence must be processed. When one or

more sequences are active, SEQ reactivates itself via

a system timer to monitor one particular sequence per

"visit". SEQ activates GET for those commands that re

quire disk data after a corridor walk to complete a

sequence. SEQ is activated by GET to terminate a se

quence. SEQ consists of eight submodules.

d. BHC (Build Heliostat Commands) - This task is activated

once each frame by the FCP task following output of HC

commands. BHC is responsible for building RC commands

in a format such that FCP can output them to the field

of heliostat controllers. Since only one HC command

per frame may be sent to the HFC, a HC command priority

scheme is used by BHC when searching for HC commands.

If identical HC commands are found for HCs connected

to the same HFC, the BHC task will compress these comm

ands into a single command. BHC consists of one sub

module.

83

3.2.2.2

3.2.2.2.1

3.2.2.2.2

e. BHI (Build HFC Initialization Commands) - This task •
will be activated by FCP in each frame. This will
occur just after FCP processes the last status res-
ponse input from the field. BHI is responsible for
monitoring HFC status, building HFC initialization
commands, if required, and placing them in the output
buffer used by FCP. BHI consists of two submodules.

Via the flags and buffers that CMD, GET, and SEQ set for BHC,
the Command Processor Module becomes the interface between certain
asynchronous man-machine activities and the field-oriented
synchronous ones.

Requirements

Design Requirements

The software requirements listed in Section 3.1 of the 10 MWe
Collector Subsystem Software/Firmware Functional Requirements
Specification, 12 June 1980 that apply to the CMDPRC module are:

a.

b.

Control operational phase sequences as required for
integrated control of a field of up to 2048 heliostats;

Generate and transmit heliostat mode commands as re
quired by the phase sequences during either operational

c.

or maintenance phases while maintaining safe beam control;.

Maintain safety through controlled beam movement and
inclusion-area processing; (inclusion-area processing

d.

e.

not applicable to this module);

Transmit emergency DEFOCUS command upon receiver trip;

Provide automatic HFC initialization and the capability
to command heliostats away from the receiver following
initialization within 60 seconds after power restoration.

Derived Requirements

The software requirements listed in Section 3.2.1.2 of the 10
MWe Collector Subsystem Software/Firmware Functional Require
ments Specification, 12 June 1980, that. apply to the CMDPRC
module are:

a. Check command arguments for reasonableness;

b. Check heliostat's state for ability to execute commands;

c. Translate operational commands and command sequences
into individual HC commands;

d. Maintain commanded heliostat mode table;

e. Allow up to 16 command sequences atrany one time;

84

•

•

•

•
3.2.2.3

f. Obtain individual target or HC initialization infonna

tion from disk; and

g. Combine HC commands into HFC groups for faster through

put, whenever possible.

Further software requirements which are an expansion of those

above and others, not stated, are:

h. Allow the STHIWIND and HOLD connnand processing to rob

heliostats from existing sequences;

i. Ignore processing of heliostats ~hich are involved in

automatic operations except for STHIWIND;

j. Allow only one emergency sequence (STHIWIND) at any

given time;

k. Provide feedback to MMI on the "degree of success'• (how

many HCs are in proper orientation) for each operator

input command;

1. Provide appropriate error-message feedback to MMI if

no HCs can respond to the operator input command;

m. Obtain orientation angles for Stow, Altlstow, Alt2stow,

and Wash positions from disk;

n. Ability to stow and retrieve the field tracking configura

tion on disk;

o. Terminate all sequences in the HAC upon detection of

full-field power loss;

p. Allow only one sequence to walk a given corridor at any

particular time due to beam safety constraints;

q. Reestablish management of current sequences in the backup

HAC upon HAC failover;

r. Provide a priority scheme for HC output commands;

s. Determine eligible HCs in pecking-order-dependent opera

tor commands; and

t. Automatically reinitialize any HFC which reports a power

loss.

Design Approach

The following is a list of assumptions used in the design of the

CMDPRC module:

85

has been checked for beam safety and/or reasonableness
during off-line operations;

b. All files referenced for HC data have been created and
initialized;

c. If task GET ,~xperiences any disk error, an alann mess
age is sent to Alanns Output task (ALO), the entire
disk is considered unusable, and HAC failover criteria
is established; and

d. If a full-field power loss occurs and is then restored,
it is assumed all sequences have been terminated prior
to subsequent HC initialization.

Terms which are used in the following design approach are de
fined below:

a. Orientation - the current mode/submode and position
compare information which establishes a heliostat's
status;

b. Command phase - generation of an RC output corrnnand based
upon the input command and the HC's orientation;

c. Sequence - the actions and/or necessary data required
to move a set of HCs through one or more corridors to
the desired destination;

d. Sequence command - an input command possibly requiring
more than one HC corrnnand (multiple command phases) to
be sent to the field over a predetermined time interval
(Example: track to stow via corridors);

e. Critical (emergency) corrnnands - those input commands
which require quick movement (or cessation of movement)
of HCs for safety purposes; these commands will have
the "critical command" bit set in the HC's HCCMDG word;
type 1 critical commands are DEFOCUS and STHIWIND; type 2
critical corrnnands are HOLD and LOAD;

f. Software offline - the status condition produced when
the operator wishes to isolate a normally-operating
HC from further positioning (until an ONLINE command
is entered for the HC);

g. Field error offline - the status condition produced when
the software detects an abnormal field status for an HC;
the abnormal status bits in the HC's HCST2G word are:
conununication error, serious alarm, unmarked, and time
out (Note: the ONLINE command will reset all except the
unmarked bit);

h. Block - a set of HC numbers passed to task CMD from MMI

86

•

•

•

•

•

•

which represent an operator-addressable group of the

entire field (i.e., arc, segment, wedge, ring); the

degree of success in commanding each input block is

reported back to MMI for each input connnand;

i. Sequence state - sequences can exist in one of three

states: non-corridor gather, corridor(s) management,

and waiting for corridor(s);

j. Non-corridor gather - the command phase of a sequence

which requires collecting a group of HCs at the upper

or lower-limit points of one or more corridors; the

HCs at the upper or lower-limit points of one or more

corridors; the HCs are not moving within any corridors;

k. Corridor management - the command phases of a sequence

which require corridor-walk commands, RC timeout checks,

and issuance of the appropriate beam-pointing commands

to those HCs completing the corridor walks;

1. Waiting for corridor(s) - the command phase of a se

quence which examines the corridor status words

(CORRSG) for all corridor(s) required; when all corri

dor(s) are free, the sequence state is changed to

corridor management;

m. Enque - operating system service call which allows one

task to activate another and simultaneously pass a

data buffer;

n. Deque - operating system service call which allows

one task to retrieve the contents of a data buffer

passed by the task (using Enque);

o. Internal HC numbers - a contiguous set of integers in

the range: one is less than or equal to N which is

less than or equal to 2048 used to index into data arrays;

MDAC numbers input by operator(s) are translated into

the internal numbering system by the MANMll' module.

Functional Allocations

the COllmUlnd Processor Module is decomposed into the following

functional areas:

a. Check input command reasonableness and translate into

individual RC commands;

b. Fetch disk-resident data for certain input commands;

c. Manage sequence commands;

d. Monitor HFC status and reinitialize ff necessary; and

87

3.2.2.3.1.l

e. Build and combine RC commands on a priority basis
for output to the field of RCs.

This function is shown in Figure 3.2.2-1.

The requirements for module CMDPRC are met by the five tasks
briefly described in the purpose section above. Their interrela
tionship is shown on the module overview, Figure 3,2.2-2. Only
the most pertinent global common arrays are shown.

Task Activations

There are ten activations into the CMDPRC module:

a. Module MANMIF activates task CMD whenever a new oper
ator-input command needs to be processed; the MANMIF
task (MMI) suspends itself until resumed by CMD;

b. CMD activates task SEQ whenever an input command requires
multiple RC commands (sequence); CMD buiids the appro
priate RC commands; if some HCs involved can be moved
immediately (not requiring corridor walks); CMD will
not initiate any corridor walks itself;

c. CMD activates task GET when an input command needs disk
data to build HC commands or requires data to .be saved
on disk;

d. SEQ reactivates itself periodically depending on se
quence load and timing decisions;

e. SEQ act,ivates GET whenever a sequence has completed a
corridor walk and now requires disk data for the final
phase of HC commands;

••

•
f. GET activates SEQ whenever the final HC commands have been

prepared for a sequence and the sequence is to be de-
leted;

g. Module FLDCOM activates task BHI every frame to deter
mine if any RFC needs to be reinitialized;

h. Module FLDCOM activates task BHC every frame to detect,
build, and group (by RFC) all types of RC commands
except sun-position data;

i. Module MAXIVM activates SEQ to terminate all seQuences
when it detects a full-field power ioss; and

j. Module MAXIVM activates. SEQ to reestablish seQuence manage-
ment whenever a RAC failover occur:~.

Data :transfer takes place via global common. or disk files. Perti-•
nent areas of global common are shown on the overview figure
(Figure 3.2.2-2) as well as the specific disk files accessed by
task GET.

88

(X)

'°

,,.
,)

L -----
.. ,__.,.L,....,.._,_j ----~----1

REASO!-IABLENESS
CHECK,
TRANSLATION
INTO OUTPUT oms

I
IiISK-RESIDENT \

DA'l'A'mPU'f
AND OUTPUT

f

~----.J

).
COMMAND

PROCESSQR

·--·-·------ l
I

L
I

SEQUENCE HFC STATUS
COMMAND MONITOR &

MANAGEMENT INITIALIZATION

l I
I

1.-...------_l

Figure 3.2.2.-1 Hierarchy Diagram for the Command Processor Module (CMDPRC)

HELIO
OUTPUT
GROUPI

PRIOR

) •

----,

STAT
CMD

NG BY
ITY

;

- ~..-·- -~. I

(MANMIF-)

11~~~~~t1on: - - - - - ----- -~--L-- -------- - -\
Data Flow: ---------- I ------·---····-·•·- · ·7
Synchronous Task: * l__. __ '1----- -~9_~0N __ . /

HCMAPG f l
CPPG j

f COMMON il- I 1 - -----~TG ___ }

/. .. ----.------r I ,- -. I / HCCMDG I l i \ L -- - - - - - - --- - ··- -- -- - - - 1

i :~~~~~ ~------"JI , _.Jk__ = _·_ . - . --~-~~r,:,.t
: -- -------- I SEQ I GET I -

l
I (- =~~:;- --.. -- ---------.. l

> _, - --,~-~---"

Figure 3.2.2-2

I

COMMON

HCCMDG
CMDBFG
HFCSIG

--- ·-· '

Module CMDPRC Overview

QO

AIMPOINT
ARRAYS

1-20

.....___ ________ /,,,,

•

•

•

• 3.2.2.3.1.2

•

•

Task Satisfaction of Derived Requirements

The functions of the five tasks in the CMDPRC module are:

a. CMD - Evaluate operator input commands for reason

ableness and executability; determine current orienta

tion for all HCs involved in the input connnand; deter

mine whether a sequence is required by examining the

input command and current orientations; invoke the

error exit if 16 sequences active and input command

requires sequencing; rob HCs in an active sequence

for the HOLD and STHIWIND emergency input commands;

respond to emergency DEFOCUS command; provide task

BHC with a count of type 1 and 2 critical commands;

build HC commands for those HCs which may be comman

ded immediately; prepare buffers to be used by tasks

GET and SEQ; aetivate GET if HC command data is not

memory-resident; allocate new sequences; ~ctivate SEQ

if a new sequence is required; report back to the

MANMIF module how many HCs were able to participate

in the input command; report an error number to the

MANMIF module if no HCs were able to participate in

an input command. This task meets derived require

ments "a" thru "e," and "h" thru "l," and "s."

b. GET - Determine disk data request type and build

appropriate HC commands after disk access; fetch

HC Coordinates data and HC Bias data for LOAD commands;

fetch Stow azimuth/elevation angles for final phase of

STOW commands; fetch Altlstow azimuth/elevation angles

for final phase of ALTlSTOW commands; fetch Alt2 stow

elevation angle data from disk for final phase of

ALT2STOW commands; fetch Wash azimuth/elevation angles

for WASH commands; fetch aim-point data by aim-point

array number for AilfPOINT commands; write field track

ing configuration for SAVE commands; fetch field track

ing configuration data for RESTORE commands; report

any disk errors to the ALARMS module via global common;

activate SEQ after building HC commands for final phase of

sequence commands. This task meets derived require-

ments "c," "d," "f," "m," and "n."

c. SEQ - Accept (Deque) new sequences from CMD; determine

whether a sequence must wait for corridors or join the

corridor management group of sequences whi.ch are active

ly moving and monitoring their set of HCs; recompute the

minimum expected time and maximum expected time associated

with an active sequence monitoring; determine which non

waiting sequence must be analyzed during "visit"; gather

HCs at their respective CULPs or CLLPs; tag any HC which

does not report position-compare by the sequence phase

maximum time (set HC's timeout bit); build HC collllD.ands

for initiating corridor walks; reactivate itself depend

ing on sequence loading and timing decisions; activate GET

91

3.2.2.3.2

whenever disk data is needed to complete the sequence;

reorder the active-sequence list whenever a sequence

has been completed and deleted; examine waiting se

quences to detect one or more candidates eligible for

insertion into the active-sequence list; manage lists

of HCs belonging to the individual sequences; allow

deletion of all sequences upon detection.of a full

field power loss; allow assumption of control of exist

ing sequences upon HAC failover. This task meets

derived requirements "b" thru "e," and "o" thru "q."

d. BHC-Scan RC-Command array for new HC commands; act on

any type 1 or type 2 comrnands first; build and combine

HC connnands for the appropriate HFCs; format these

similar cormnands for output transmission by task FCP.

This task meets derived requirements "g" and "r."

e. BHI-Scan HFC status array to detect any HFCs requesting

an initialization series of connnands; relieve the

operator of the HFC reinitialization duties. This task

meets derived requirement "t."

Resource Budgets

This section represents currently available module information •

•

a. Memory requirements:

1. C:MD - 6K •
2. GET - 2K
3. SEQ - 2K
4. BHC - 3K
s. BHI - 2K

b. Timing:

1. CMD - asynchronous upon operator input

2. GET - asynchronous from CMD or SEQ

3. SEQ - asynchronous from CMD or GET; periodic when

active sequences dictate

4. BHC - synchronous after FCP outputs commands

available in global common buffer CMDBFG

(55 msecs steady state)
5. BHI - synchronous after FCP processes last status

response (5 m~ecs steady state)

c. Disk files:

1.
2.
3.

4.

HC Coordinates (HCC) - 20,480 bytes, 64 records

HC Biases (HCB) - 8,192 bytes, 32 records

Aim-point file (AIM) - 524,288 bytes total,

2,048 records
Altlstow AZ/EL angles (ALl) - 8,192 bytes, 32

records

92

•

•

•

•

3.2.2.4

3.2.2.4.1

5. Alt2stow EL angle (AL2): 8,192 bytes, 32
records

6. Wash AZ/EL angles (WSH): 8,192 bytes, 32
records

7. Tracking Configuration Snapshot (SAV): 524,288

bytes, 2,048 records
8. Stow AZ/EL angles (STO): 8,192 bytes, 32 records

d. Disk accesses:

e.

f.

Design

Module

GET - maximum is 2,048 for field addressing AIMPOINT

command

Magnetic tape access - none

Task priorities:

The tasks within the Command Processor module are respon

sible for qualifying and translating operator commands

into HFC-compatible commands. They need a priority

number just below that of the synchronous timing and

field input/output tasks due to command through-put

requirements. CMD has higher priority than GET or

SEQ because the MMI task is suspended until CMD's

completion.

1. CMD - just lower than BHC
2. GET - just lower than CMD
3. SEQ - just lower than GET
4. BHC - just lower than BHI
5. BHI - just lower than timing and FCP tasks

Relative priority numbers - TOK TIK FCP BHI BHC
GET SEQ

Description

Structure

CMD

The structure of module CMDPRC is depicted in the overview figure

(Figure 3.2.2-2). The five tasks communicate via scheduling (MAX

IV REX Activate or Enque or its FORTRAN equivalent), global common,

and various operational disk files. These tasks and their associ

ated submodules are briefly described below:

a. CMD - Command processor task (see Figure 3.2.2-3)

1. CMDSCK - orientation test control

2. CMDSAL - sequence packet build
3. CMDTRK - track-the-target processor
4. CMDDSK - disk packet build
5. CMDPOS - AZ/EL-pointing processor
6. CMDSBY - track-the-CULP processor
7. CMDSDN - down-corridor sequence preprocessor

93

'° +'-

)

CMDSAL
Sequence
Packet
Build

CMDFAD i

Field 1
Addressing l

1 Commands l
I

• CMDBAD
Block

Addressing
1

~Olllffi~ I

1-----------------·-

CMDINO
Initial

Orientation
Tests

CMDPOS

AZ/EL
Pointing ! _________ j

CMDARA

HC Output
Buffer
Tests

'
I CMDSBY I

Track

1 the
~--C"-ULP i

)

CMD

Task
Control

CMDSCK
Orientation

Test
Control

r-

1 CMDTRK I
1 Track ,
' I ! the 1 I ,
I Target I
!.----·- -,·- j

I
CMDBCS
Track

the BCS

!
l

CMDDSK
Disk

Packet
Build

Target j

Figure 3.2.2-3 CMD Uierarchy

• •

i

CMDSDN
Down

Corridor
Prep

7
'

I

l
CMDSUP

Up
Corridor

Prep

)

•

•

•

•

3.2.2.4.1.1

3.2.2.4.1.1.1

8. CMDBCS - track the BCS-target processor

9. CMDSUP - up-corridor sequence preprocessor

10. CMDFAD - field addressing connnands

11. CMDBAD - block addressing connnands

12. CMDINO - initial orientation tests

13. CMDARA - RC output buffer tests

b. GET - Disk data acquisition task (see Figure 3.2.2-4):

1. GETINI - RC-initialization processor

2. GETAIM - Aim-point update processor

3. GETALl - Altlstow-angles processor

4. GETAL2 - Alt2stow-angles processor

S. GETWSR Wash-angles processor

6. GETSTO - Stow-angles processor

7. GETSAR - tracking configuration save and restore

c. SEQ - Command sequence control task (see Figure 3.2.2-5):

1. SEQGAT - RC-gathering processor

2. SEQBPT - Beam-pointing processor

3. SEQCCK - Corridor availability test

4. SEQCOR - Corridor-walk processor

s. SEQADD - Add sequence to active list

6. SEQRLK - Relink sequence in active list

7. SEQDEL - Delete sequence from active list

d. BHC - Task to build and combine RC connnands into HFC

packets by priority levels (see Figure 3.2.2-6)

e. BHI - Automatic RFC initialization task (see Figure

3.2.2-6):

BHISHS - Bit-shift processor for building HFC

initialization commands

Submodule I - CMD

Description

CMD is the submodule (task) which gains control when an operator

input command is to be processed for possible RC output commands.

CMD accepts operator input commands in binary format from task

MMI of the MANMIF module. All addressing parameters have been

translated into their respective internal HC numbers (l-2048).

Commands specifying "field" addressing have no HC numbers

passed to CMD. Only if no RCs can respond to an input connn-

and, will an error number be sent back to MMI.

a. Language used - FORTRAN IV

b. How invoked - activated by MMI to process all opera

tional commands (MMI is suspended until CMD completes).

c. Constraints and limitations - None

95

,--

GETINI

HC
INITIALIZATIO!i
--------------, --

--1 GETAL2

ALT2STOW -

Figure 3.2.2-4

GET J
Task

Control

-T··-·-
1

.

GE TAIM

POINT
DATE

AIM
UP

........ J-••·-~--

--
GE

w

-~- ···-

1
GETSAR

TRACKING
CONFIGURE

L

Task GET Hierarchy

96

.,

GETALl :]

ALTlSTOW

---------.:--

•
GETSTO

STOW

•

•
Issue

Corridor
Walk

SE

Task
Control

SE BPT
Issue

Beam

SE ADD
Add
New

·--~quence

SEORLK

Relink
Sequence

Figure 3.2.2-5

97

SEQCCK
Check

Corridor
Sta.tus

SEODEL

Delete
Sequence

··-------·

Task SEQ Hierarchy

BHC

Group HC
Commands
by HFC

BHI

Auto. HFC
Initialization

BHISHS

Bit-shift
Processor

Figure 3.2.2-6 Tasks BHI, BHC Hierarchy

98

•

•

•

3.2.2.4.1.1.2

•

d. Processing -

1. Initialize by zeroing the disk-data required

flag (DISDAT) and the sequence-required flag

(SEQREQ). If the command is STHIWIND test

the emergency-sequence-in-progress flag

(EMSEQG). If the flag is not set, go to step

(2). If set, set CPPRTG equals six and go to

step (6). If the command is AIMPOINT, get the

aim-point array's validity flag AIMOKG(CPPG(3)).

If zero, set CPPRTG equals seven and go to

step (6).

2. Submodule CMDSCK is called to interpret the

input command.

3. Upon return from CMDSCK, the error flag CPPRTG

is checked. If set, control is passed to the

exit processing, step (6). See Table 3.2.2-I

for all error codes.

4. If no error is returned, SEQREQ is checked to

determine if the operator command requires a

sequence. If a sequence is needed, submodule

CMDSAL is called to allocate a sequence and

build the sequence packet for task SEQ. Task

SEQ is Enqued.

S. The disk-data flag DISDAT is checked. If set,

task GET is Enqued.

6. Task MMI is resumed via the REX RESUME service

call and task CMD relinquishes control.

e. Error messages and recovery - all error codes for CPPRTG

(referenced in Table 3.2.2-I) are set in other submodules

except codes 6, and 7.

Data, Logic and Connnand Paths

Input data:

a. Global COllllilon:

1.
2.
3.
4.

CPPG(l)
CPPRTG
EMSEQG
AIMOKG

b. Local common:

- command number
- CMD error return word to MMI
- emergency-sequence-in-progress flag

- valid aim-point arrays array

1. SEQREQ - sequence-required flag
2. DISDAT - disk-data required flag

99

CMD Error Code

l

2

3

4

5

6

7

MMI Error Display Message

NO HC IN CORRECT MODE

HC OFF-LINE

NO HC INSTALLED

BCSTRACK ALLOWS ONLY l
RC/TARGET AT A TIME

COMMAND DISALLOWED; ONLY
16 SEQUENCES POSSIBLE

EMERGENCY SEQUENCE
ALREADY IN PROGRESS

AIMPOINT ARRAY NOT VALID

Table 3.2.2-I CMD Error Return Codes and Resulting MMI Display Messages

100

•

•

•

•

•

•

3.2.2.4.1.1.3

3.2.2.4.1 .• 1.4

3.2.2.4.1.2

3.2.2.4.1.2.1

Output data:

a. Global common:

CPPRTG - CMD error return word to MMI

b. Enque of task SEQ

c. Enque of task GET

d. Local common:

1. SEQREQ - sequence-required flag

2. DISDAT - disk-data required flag

Internal Data Description

a. Sequence-required flag:

SEQREQ = 0: none
not 0: sequence required

b. Disk-data required flag:

DISDAT ~ O: none
not O: disk data required

Flowchart

See Figure 3.2.2-7 for the CMD flowchart.

Submodule II - CMDSCK

Description

CMDSCK is responsible for determining type of input command

to be processed, how to size the HC number buffers (Il1ARAY,

SQARAY, SBARAY, COARAY), which type of addressing is speci

fied, how many HCs are able to respond, whether a sequence

is required, which output command processing submodule to

call, and setting the MMI error return word CPPRTG.

a. Language used - FORTRAN IV

b. How invoked - called by CMD

c. Constraints and limitations -

1. Accepts only those operational commands

listed in Table 3.2.2-II
2. Allows up to 16 non-emergency sequences

simultaneously
3. Allows only STHIWIND and HOLD to rob HCs

from sequences
4. LOAD command does not apply to HCs in a sequence

101

CALL ---- l
!
'

fl• 'D'SAL ! ' l-,,...., 3 (• I'.

l I

E X/1

...,,

I:::~::~ E ~]

.J ___ {,_ __
CALL

•
Figure 3.2.2-7 Flowchart - CMD

• Acceptable
Conunand No. Command Abbreviation Valid Initial Orientations

1 TRACK (TRAC) Standby
I

2 INCREASE (INCR) Standby

3 LOAD (LOAD) All

4 MARK (MARK) Stow

5 STANDBY (STAN) Track

6 STOW (STOW) Initialization
Altlstow
Position
Mark
Standby
Track

7 POSITION (POSI) Stow
Altlstow
Alt2stow

•
Position
Standby

8 ONLINE (ONLI) Offline

9 OFFLINE (OFFL) Stow
Altlstow
Alt2stow
Position

10 DECREASE (DECR) Track

11 BCSTRACK (BCST) Standby

12 RETURN (RETU) BCS

13 WASH (WASH) Position
Stow
Altlstow
Alt2stow

14 ALTlSTOW (ALTl) Stow
Position
Standby
Track

• 15 ALT2STCM (ALT2) Position
Standby

' .,,,

16 RESTORE (REST) Track: at or approaching
the target

Standby

Table 3.2.2-Il Operational Commands and Their Valid Initial Orientations

103

Acceptable • Command No. Command Abbreviation Valid Initial Orientations

17 UNSTOW (UNST) Stow
Altlstow
Alt2stow

18 STHIWIND (STHI) Initialization\
Altlstow
Position
Mark Position
CLLP compare
Standby or in
Track I. transition
BCS
Corridor walk
In transition to Wash

19 DEFOCUS (DEFO) Track: at or approaching
the target

20 AIMPOrnT (AIMP) Track: at or approaching
the target

21 HOLD (HOLD) Any transition: position
compare

• false

22 SAVE (SAVE) Track
Standby

23 REI.WASH (RELW) Wash

24 ESTANDBY (ESTA) Track: at or approaching
the target

Standby: at or approaching
the CULP

25 ESTOW (ESTO) In corridors
At or approaching the CLLP

Table 3.2.2-II Operational Commands and Their Valid Initial Orientations (cont'd) •
104

•

•

•

d. Processing -

1. Initialize all appropriate flags and counters.

2. Determine the proper offset into the initial
orientation array (INORIE). Determine the
non-sequence orientation count (IMCNT) and the
sequence orientation count (SQCNT).

3. Determine the sizes of the HC number buffers
by examining the I.MODE array. The LMODE array
specifies which MODEG words are required to
calculate the appropriate buffer size.

4. Determine the input addressing type in CPPG(2);
see Figure 3.2.2-8. If field addressing (is
less than zero,) call submodule CMDFAD. Other
wise, addressing is of block type; call sub
module CMDBAD.

5. Upon return, determine whether any HCs can respond
to the input command. If none, set CPPRTG and
go to step (10) •

6. Detennine if a sequence is required. If not,
go to step (9). Check if the maximum-sequences
flag (MAXSEQ) is set. If so, go to step (8).
Otherwise, check if the command is STHIWIND.
If not, go to step (9).

7. If the command is STHIWIND, set the emergency
sequence flag (EMSEQG), and go to step (9).

8. Check if the command is STHIWIND. If not, set
EFLAGI equals five, and go to step (10). If
STHIWIND, use REX option number ten to output
to the system console the message:

STHI WITH 16 SEQUENCES ALREADY IN PROGRESS

and go to step (10).

9. Submit the command number to a CASE statement
to detennine the proper processing submodule
for output commands. All submodules return to
step (10). The submodule branch,decisions are:

a) Call CMDTRK for T~CK or INCREASE (comm
and number equal to 1 or 2);

b) Call CMDDSK for tc)AD, WASH, ALT2STOW,
SAVE, AIMPOINT, RESTORE, or ESTOW(comm
and number equals 3,13,15,16,20,22, or
25);

c) Call CMDPOS for MARK, POSITION, ONLINE,

105

3.2.2.4.1.2.2 Data,

OFFLINE, HOLD, or RELWASH(connnand
number equals 4,7,8,9,21, or 23);

d) Call CMDSBY for STANDBY, DECREASE,
RETURN, DEFOCUS, or ESTANDBY(command
number equals 5,10,12,19, or 24);

e) Call CMDSDN for STOW, ALTlSTOW, or
STHIWIND(command number equals 6,14,
or 18);

f) Call CMDBCS for BCSTRACK(command
number equals 11); and

g) Call CMDSUP for UNSTOW(command number
equals 17).

10. Set the MMI-error return flag CPPRTG to the
value of the internal-error flag(EFLAGI) and
return to CMD.

e. Error messages and recovery - If maximum-sequence flag
set and a sequence is required:

Logic

1. If not STHIWIND, set CPPRTG equals five, and
return to CMD.

2.

and

If STHIWIND, output text message to system con
sole and return to CMD.

Connnand Paths

Input data:

a. Global connnon:

1. MODEG - RC-mode array

2. CPPG(l) - connnand number

3. HCMAPG - connnand success value(s)

b. Local common:

1. IOPTR - INORIE pointer array

2. INORIE - orientation-value and mask array

3 •. MODPTR
(

4. I.MODE

I.MODE pointer array
(I

MODEG/value 1array
' I 'i i

s. SUCPTR - HCMAPG output success pointer

6. MAX.SEQ - maximum-sequences flag

Output data:

a. Global common:
EMSEQG - emergency sequence-bf-progress flag ' . .

b. Local common:
1. EFLAGI - internal error value

2. IMCNT - non-sequence orientation count

•

•

•

•

•

•

3.2.2.4.1.2.3

3.2.2.4.1.2.4

3.2.2.4.1.3

3.2.2.4.1.3.1

3, SQCNT - sequence orientation count

4. IMSIZE - IMARAY size

5. SQSIZE - SQARAY size

6, SBSIZE - SBARAY size

7. COSIZE - COARAY size

8. CNT - HC number array size

9. ECNT - non-sequence MODEG-value count

10. KIN - non-sequence INORIE pointer

11. LIN - sequence INORIE pointer

12. IMSPTR - static IMA.RAY pointer

13. IMDPTR - dynamic IMARAY pointer

14. SQSPTR - static SQARAY pointer

15. SQDPTR - dynamic SQARAY pointer

16. SBSPTR - static SBARAY pointer

17. SBDPTR - dynamic SBARAY pointer

18. COSPTR - static COARAY pointer

19. CODPTR - dynamic COARAY pointer

Internal Data Description

There is no data internal to this submodule.

Flowchart

See Figure 3.2.2-8 for the CMDSCK flowchart.

Submodule III - CMDFAD

Description

CMDFAD is responsible for initial processing of input connnands

using field addressing. Because the HCMAPG array is not used

for this type of addressing, every installed HC is initially

considered as involved. Those HCs which are able to respond

to the input corranand are placed in the appropriate HC-number

array by submodule CMDARA. Only one word in HCMAPG is set for

the input command's success count.

a. Language used - FORTRAN IV

b. How invoked - called by CMDSCK

c. Constraints and limitations - None

d. Processing -

1. Perform DO-UNTIL processing where HC equals

107

(tHDr K)
/lero a.·)\

/tia3:-, and \
\r 1)1,n+('rs /

---- _ __j

i oris!'-!- I rdn i'n ,t Ill
i ' ' '' 1or 1•r·1t1.i1on array: t .:oF:'iR: (Cff'fr(1))

. r

[

.:.·.ure pc~.'.i +:v~
t-set r,

N ==- J • <IF '7F Ft=

·-·--· ·-

[
~.~~i::Tr:;,c:u~t,
N!NT~ !NOf<.ff{K.1,.;

···········--·······--~

L.11.lc i<1~J 't' Z ¥

iUOJT ~ i

iSf'Oul'n,e 0r-"1u1ft1-

I hon C t)trnt:

I t)s9f i)i ,~ 1 f,,)Of?J{,

L
{UN) __ ,, __ L .

r····•-- --.. --
1 I

I Uri/-=_ LIN1t

\A . --

tAf?.AY Poin,'tr,5 ~
MDP11< =-

IN ~P-rP. = i
----- ~ ,_

i Ot+sd 'in-lo NODfb

j~f'-menf o.rray:
LoDP'TRLcPPc,-/1))

EA~v.re po~i f,·v~

offoet ~
K= J,:f.t 1FFF

--· ---y---· r.;----.l-]
IIVDfl• ;.,(:'tdnU'.
I< r., ' ··1~- • I .-',.•'\.Al' •

j [CAJT 0 U-toD£(,'()

L. l .. ~

[
C~ur~0 I

....f .. ·.~
I

I

I

I
L

~--· --......

r Y.re:c;I I~:;,._; .. :=.~:-
--T F: i

1 ------·· '·

'
!

l
I
j

I
I
I

'J/

!Vz.

Acc.umuia ie. si,J.e
of lMAPld ~

<'.I.JT == CAJT-r
/-,{ o/Jf(:,- (LNDDl:(K)

---...... """'"~•-· -~~------,

::vmP1R -:. ~,6) S~=

I~{ sPrR f (' N 1""

V ~- f<'.' HAY',,'l'.e o , ... o •
('4t af He:; ,r
1·,ock)
(tJ,~ f,.IDDEtAi

Figure 3.2.2-8 Flowchart - CMDSCK

108

oBARA.Y~n¼1
S5DPT~ "':':..f:~nR
c S&5Pf",<. -+C~YT

'

I

@

•

•

•

• ·-,

•

• -~-

No

i$fQ. Re&'D F'lM~ ~
~fQf'.fO:;, S6)51t£

t'S6'5 lz.f -r C o;<..1ZE

CALL

CMDFAD

-1
(F"LA&Ir 5 I

L_ ili _ __J

f°ml.'<''3t'liC'J Set
i'n Proc.rc~s ~

Sf:CJ:>C..-"' 1

r
!t.</1 .---1 UA... I
l_./ .---__,ii---~

f<Ex JJ.ESSAM.i..

[rror· mfsso3e.
';-_," Si: It 1t,J,ii.W
11, :; r a '-'- rrir e":;

MHI Error F/c,3
CPf'R'f&-=- 11,J'f.

fJror f/o.q ~·

Figure 3.2.2-8 Flowchart - CMDSCK (continued)

109

~ I __
! i CALL I

AR.G •1 or 2 1
CI..ADTRt. l I

~~_J_
CALL

C ~---1 D .SU P
AR.G "f 'f

•

l _ c~. A[Sf_~;· _····.11_ r -~-!~~ -~1 l
j A Rb~ 3', 13) l:'.,) I Al?& - '4) ?/l, · 1 j
' !~"..,.?02_~~-)? =•., j 9.1,"' 2 3 l

C'NoS5'{ C.1-.fDSbN . - - f

/tRo- ~ 5) 1211q! : Ar,? fr"- L,, 1 N> K.& 0 11 :
I _······-·1_ .. ,..-...... - ... , .. _____.....

~ •
Figure 3.2.2-8 Flowchart - CMDSCK (continued)

•

i

•

one to 2048. If RC is greater than 2048, set

the final success count by:

HCMAPG (SUCPTR) = SUCCNT

and return to CMDSCK.

2. Check if HC is installed by examining HCST2G(HC).

If value is less than zero (not installed), set

EFLAGI to equal three and go to step (1). Other

wise, call the initial orientation processor

submodule CMDINO for this HC.

3. Upon return, check the initial orientation-okay

flag(PASS). If greater than zero, HC has passed

normal initial orientation tests for this input

command; go to step (4). Otherwise, HC did not

pass normal tests; check if connnand is STHIWIND.

If not, set EFLAGI to equal one, and go to step

(1). If STHIWIND, set bit 7 of HCST2G(HC) to

infonn the ALARMS module that this HC could not

respond to STHIWIND; go to step (1).

4. If connnand is not ESTANDBY, go to step (5). For

ESTANDBY commands, determine the orientation when

full-field power loss was detected:

FLDORI = PWHC1G(RC).AND.#7C.

If FLDORI equals 4FZO(Track), go to step (6).

Otherwise, if FI.DORI equals #30(Standby), go to

step (6). If neither, set PASS to equal zero

and EFLAGI to equal one; go to step (1).

5. If the command is not ESTOW, go to step (6).

6.

For ESTOW commands, determine the orientation

when full-field power loss was detected:

FLDORI = PWHClG(HC).AND.#70

If FLDORI equals 4fo40(Corridor), go to step (6).

Otherwise, if FLOOR! equals #SO(Corridor), go to

step (6). If neither, set up other test by:

FLDORI = PWRClG(RC) .AND.#7C

If FI.DORI equals {,l-34(CLLP), go to step (6).

Otherwise, set PASS to equal zero and EFLAGI to

equa~ one; go tp step,/ (1) •
1

. •
1

, . ,. / ,
11 1 11

Determine if thb RC i~ in a se/quence by examin'.:

ing RCST3G(HC),: bits 11 through 15. I,f zero, go

to step (7). If nonzero, check if command is

STHIWIND. If not, go to step (1). If STRIWIND,

determine if RC is in a. Stow sequence by examin

ing HCST3G(RC), bit 7. If set, ignore this RC

because STHIWIND also sends Hes to the Stow

orientation; go to step (1). I£ not set, delete

(rob) the HC from its sequence by zeroing bits

11 through 15 of HCST3G(HC).

111

3.2.2.4.1.3.2

3.2.2.4.1.3.3

3. 2. 2.4. 1.3.4

7. Call submodule CMDARA to place the HC number

into one of four HC number buffers (see Figure

3.2.2-9). •
8. Upon return, increment the success count (SUCCNI)

by one, and go to step (1).

e. ~rror messages and recovery - EFLAGI is set to one if an

HC is not in the correct orientation and set to three if

an HC is not installed.

Data, Logic and Command Paths

Input data:

a. Global common:

1. HCST2G - HC installed status

2. CPPG(l) - command number

3. PWHClG - HC orientation at power fail

4. HCST3G - HC sequence assignment

b. Local common:

1. SUCCNT - command's success count

2. PASS - initial-orientation okay flag

3. HC - current HC number

Output data:

a. Global common:

1. HCMAPG - command's success array

2. HCST2G - STHIWIND alarm bit

3. HCST3G - HC sequence assignment

b. Local connnon:

1. EFLAGI - internal error flag

2. FLDORI - field orientation

3. PASS - initial-orientation okay flag

4. SUCCNT - command's success count

S. SUCPTR - HCMAPG output-success pointer

6. HC - current HC number

Internal Data Description

There is no data internal to this submodule.

Flowchart

See Figure 3.2.2-10 for the CMDFAD flowchart.

112

•

•

•

•

GLOBAL __ . 0
L~-~-

CMDSCK

GLOBAL T
HCMAPG

00 __ ...__ __ _,

0. LOCAL

l._ .. ~NORIE

'~

4a -r·------
1 ··· GLOBAL

I HCSTIG
.__I ____)

r~-~
L-/ HCCMDG

L_ ----- -. ---···-·

7f0 __ __j__~L,
I / LQCAL ___ _ j_ __ LQ.CAL_. __ _

!
/

p!S !-LOCAL ____ f
I COARAY /

/ IMARAY
L_-e. ___ ___,

Event

1
2
3
4a
4b

Sa
Sb
Sc
Sd
6

/ SQARAY / SBARAY j) '

I I --___ ,,,,, ~.,.,.,}

Description

Get command#, addressing type

Get all valid initial orientations for command

Get addressed HC #s (if non-field addressing)

Get last reported orientation for HC

Get last commanded orientation

Store RC Ifs for immediate, non-sequence movement

Store HC Its for non-corridor, sequence movement

Store HC #s for corridor, sequence movement

Store HC Its for corridor walk gather (STHI only)

Store connnand's degree of success in buffer

Figure 3.2.2-9 CMDSCK Input/Output Buffers

113

I _____ ,._J.-. ... ,.,., __

CA._;_ -~
C~tAF'A

---- --- ..

~ . ••---·,
~J. 111((~>"·1''1,,.r:1"' i.:-;u,1(t1t'

rrun-t: i
SuCCNr:: Sut(vfrJ;

•

•

•

•

•

• '"""

Get p0Wtr-f11'1 I

l')(:l';d~-t:on:

FL!)OR! ::

'Pw'f-lc 1fr r He 'r· r.t,;;c

'(GS ~~;r • ft 30 , -~Aa~.v
No A

--·--~---J~.-,.~----7
[

tFLAG1= 1 I
I

L,L j

L(\/1 J
-✓

~-'
Gd p,,,,1r,:;.{1, \

ori(;'~cd-i()r.

Ft..Dol<.t ~
PwHC .1 &l 14lJ• -.t:9~

Figure 3.2.2-10 Flowchart - CMDFAD (continued)

115

3.2.2.4.1.4

3.2.2.4.1.4.1

Submodule IV - CMDBAD

Description

CMDBAD is responsible for initial processing of input commands
using block addressing (see Table 3.2.2-III). Only those RC
numbers contained in the blocks of RCMAPG are initially con
sidered as involved. Those RCs which are able to respond to
the input command are placed in the appropriate RC number
buffer by submodule CMDARA. A success-count value for each
HCMAPG block is inserted into HCMAPG for MMI feedback to the
command input source.

a. Language used - FORTRAN IV

b. How invoked - called by CMDSCK

c. Constraints and limitations - None

d. Processing -
1. Set the INPTR augment value (INPIRA) to one.

If command is not INCREASE or DECREASE, go

•

to step (2). Otherwise, check for the optional
number allowed with INCREASE or DECREASE
commands, CPPG(2). If zero (use entire block),
go to step (2). Otherwise, add the negative
block length (see Table 3.2,2-III) to CPPG(2). •
If the result is greater than zero, go to
step (2). If less than zero, set the INPTR
augment value:

INPTRA = -HCMAPG(INPIR) - CPPG(2) + 1.

This value is used to increment INPTR to point
to the next negative block count whenever the
current block has been completed. Set LOOP
to equal CPPG(2) to only process the optional
number of HCs for the INCREASE or DECREASE
command. Go to step (3).

2. Set LOOP equal to -HCMAPG(INPIR) to process
all the HCs in the block.

3. Perform DO-UNTIL processing where I equals one
to LOOP. If I is greater than LOOP, go to step
(13).

4. Increment the HCMAPG input pointer (INPTR) by one
to point to the next HC number in the block.
Extract the HC number by:

HC = HCMAPG(INPTR).

Check if the HC is installed by examining
HCST2G(HC). If less than zero (not installed),
set EFLAGI equal to three, and go to step (3).
Otherwise, call the initial orientation process-·
or submodule CMDINO for this RC.

5. Upon return, check the initial-orientation okay

116

•

•

•

I. MMI-to-CMD (Single block of HC #s)

II.

Array (Element)

HCMAPG (1)

(2)

(N +l)
t

(Nt+2)

MMI-to-CMD (Multiple

HCMAPG (1)

(2)

•

.
(N1+1)

(N
1
+2)

(N
1
+3)

.

.
•

(N
1
+N

2
+2)

.

NB

-N t

HC #

HC if

-999910

blocks of

-N 1

HC 11

•

•

HC 11

-N
2

HC #

.

.
HC if

Description

Total# of HCs in block

End of data

HC 1Fs)

if of HCs in 1st block

N
1

HCs in pecking order

of HCs in 2nd block

N
2

HCs in pecking order

(b Ni+NB+l) -9999 10 End of data
i "" 1

I

~
J

Where NB=# of blocks inherent in command addressing

Table 3.2.2-III MMI/CMD HC Block Buffer

117

1st block

2nd block

III. CMD-to-MMI Statistics (degree of success)

Array _Q:lement)

HCMAPG (1)

(2)

(N+l)

Value

of HCs successful from 1st block or
for field addressing

of HCs successful for 2nd block

(End of data)

NOTE: These statistics reflect initial success rate; any subsequent HC
timeout problems are reported via alarms.

Table 3.2.2-111 MMl/CMD HC Block Buffer (cont'd)

118

•

•

•

•

•

•

flag (PASS). If greater than zero, HC has
passed the normal initial orientation tests
for this input corrnnand; go to step (7).

6. HC did not pass all initial orientation tests.
Set EFLAGI to equal one, and go to step (3).

7. Check if command is HOLD. If not, go to step
(8). For HOLD, do two additional tests. Get
HC's field orientation:

FLDORI = HCST1G(HC).AND.#7C.

If FLDORI equals #18 (initialization), ignore
this HC by going to step (3). Otherwise, get
HC's last commanded orientation:

FLDORI = HCCMDG(HC).AND.#D07C.

If FLDORI equals #9030, HC is participating
in a DEFOCUS action; ignore this HC by going
to step (3). If HC is not being commanded via
a DEFOCUS command, go to step (8).

8. If command is not ESTANDBY, go to step (9). For
ESTANDBY commands, determine orientation when
full-field power loss was detected:

FLDORI = PWHC1G(HC).AND.#7C.

If FLDORI equals ho (Track), go to step 0.0).
Otherwise, if FLDORI equals #30 (Standby), go
to step (10). If neither, set PASS equal to
zero and EFLAGI equal to one; go to step (3).

9. If command is not ESTOW, go to step (10). For
ESTOW commands, determine orientation when full
field power loss was detected:

FLDORI = PWHClG(HC).AND.#70.

If FLDORI equals #40 (Corridor), go to step (10).
Otherwise, if FLDORI equals #SO (Corridor), go to
step (10). If neither, set up other test by:

FLDORI = PWHC1G(HC).AND.#7C.

If FLOOR! equals #34 (CLLP), go to step (10).
Otherwise, set PASS to equal zero and EFLAGI
to equal one; go to step (3).

10. Determine if HC is in a sequence by examining
HCST3G(HC), bits 11 through 15. If zero, go to
step (11). If non-zero, ~check if command is
HOLD. If not, go to step (6). If HOLD,
delete (rob) the HC from its sequence by zero
ing bit 7 (Stow sequence status) and bits 11
through 15 (sequence number) of HCST3G(HC).

11. Call submodule CMDARA to place the HC number
into one of four HC number buffers (see Table
3.2.2-IV).

119

Array (Element)

CPPG(l)

CPPG(2)

CPPG(3)

CPPG(4)

Description

Command# (range: 1 to 25)

>O: # of HC's/block (used only for pecking order
related commands; e.g., INCREASE 10/R/5 would
cause the number 10 to appear in this word)

=O: Use entire block

<O: Use entire field

Azimuth (for POSITION commands) or Aim-point Array
(for AIMPOINT commands) or 0

Elevation (for POSITION commands) or 0

For "segment", "wedge", or "ring" addressing, a block is a segment. For

"field controller" addressing, a block is a HFC. For "heliostat" or 11 arc"

addressing, a block is the set of addressed HCs. For "field" addressing,

CPPG(7) <O and no blocks of HC numbers are passed in the HCMAPG array

(Figure 3.2.2-8). HC numbers involved in a non-field command are trans

mitted in the HCMAPG array.

Table 3.2.2-IV MMI/CMD Connnand Buffer

120

•

•

•

•

• 3.2.2.4.1.4.2

•

12. Upon return, increment the block's success
count (SUCCNT) by one, and go to step (3).

Block processing has been completed. Section to look
for end of data or next block:

13. Set block's final success count by:

HCMAPG (SUCPTR) = SUCCNT.

Set INPTR to next block count by:

INPTR = INPTR + INPTRA.

Zero the block's success count (SUCCNT).

14. Examine the next block count word in HCMAPG
to check for end of data (-9999). If -9999,
return to CMDSCK. Otherwise, another block
is present. Increment the success-count
pointer (SUCPTR) by one, and go to step (1).

e. Error messages and recovery - EFLAGI is set to one if
an HC is not in the correct orientation and set to three
if an HC is not installed •

Data, Logic and Command Paths

Input data:

a. Global connnon:

1. HCST2G - installed bit

2. CPPAG(l) - command number

3. PWHClG - HC orientation at power fail

4. HCST3G - HC sequence assignment

b. Local common:

1. SUCCNT - block's success count

2. PASS - initial-orientation okay flag

3. RC - current RC number

Output data:

a. Global common:

1. HCMAPG - ~ommand's success array

2. HCST3G - RC sequence assignment

b. Local common:

1. EFLAGI - internal error value

2. FLDORI - field orientation

3. PASS - initial-orient~tion okay flag

4. SUCCNT - block's success count

s. SUCPTR - HCMAPG output-success pointer

6. HC - current RC number

121

3.2.2.4.1.4.3

3.2.2.4.1.4.4

3.2.2.4.1.5

3.2.2.4.1.5.1

Internal Data Description

There is no data internal to this submodule.

Flowchart

See Figure 3.2.2-11 for the CMDBAD flowchart.

Submodule V - CMDINO

Description

CMDINO is responsible for determining whether the input HC is

in a valid initial orientation for the input command. It also

tests for non-software offline (field problem) and participa

tion in the automatic BCS operations. The initial-orientation

okay flag (PASS) is non-zero for an HC in a valid orientation.

a. Language used - FORTRAN IV

b. How invoked - called by CMDFAD or CMDBAD

c. Constraints and limitations - only STHIWIND can rob an

HC from automatic BCS operations.

d. Processing -

1. Zero the initial-orientation okay flag (PASS)

•

and the RC-in-sequence orientation flag (SEQOR) ••
Check the non-sequence orientation count (IMCNT).

If zero, connnand is ONLINE or LOAD and all
orientations are valid; set PASS to equal one
and go to step (9). Otherwise, check HC to be
offline due to a field problem by examining
HCST2G(HC), bits 1 through 4 and 8. If non-
zero (field problem), go to step (10). Other-
wise, set the non-sequence, initial-orienta-
tion array (INORIE) index K to equal KIN. KIN
was set in CMDSCK to point to the input command's
first non-sequence orientation value in INORIE.

Test HC to be in a non-sequence orientat.ion. This means
a sequence will not be required to move the HC to the

final destination specified in the input command.

2. Perform DO-UNTIL processing where M equals one
to Il1CNT. If Mis greater than Il1CNT, check the

input command's sequence-orientation count (SQCNT).
If greater than zero (sequence orientations exist

in INORIE), go to step (5). If zero, go to step
(10).

3. Get the next valid non-sequence orientation for

the input command:

ORIENT= INORIE(K).

Increment K by one and get the corresponding mas.

122

•

•

• .""'

(CJ--{Df3AD)
------ __,

r··-----L---~
!

! ::HPrRPi ,. 1

1
l---------1

No

S~t lNP~ 0~•3IW'A
vci.11.Ae ~ INh/11/\--=-
-HcwPcrl tNt>rr)-
LE~~(.i1 !.!_ ___ _

r:oo P , CP p1,-!il
! __________ _

&-+ bloJ<.'o
;::,.,.1;C(P!>~- (Ount,
r-lu-1A-P~(~1.u P ra)
,. ~\).CC t-11' -©

l.OOf"'

-ltO·tAf&{11·../Pff.)

::-,e -t T t-J t-'TR. +o
ne.'.lt block(/)[,,.'''
I/'JPT({== JNP1R.+-

r,-.Jf>-r~A

sucri,rz~
5u.cP11<-+ i

Figure 3.2.2-11 Flowchart - CMDBAD

123

l

. 7

ir{o/
:'(---<. Hm D ,,>
j 7 / i
' .i

r-·--------
1

De !e+r. (((DE,) IK.

;'.',om Set~

I
HCS'f 3&-(Kc)=-

f IC~,T 31:,(Hc.)•it'Ft=E <l>

;
I

I C.HDAfA u_ .. _ __._.
r··•"··---···--·· ... ·-·····-
1 Increment·
j '61.J.cu':5.c, .- ount:
I I ~,U((•IT::
L '5W C r,ff • j_

Figure 3.2.2-11 Flowchart - CMDBAD (continued)

124

•

•

•

•

• ······"'

·~
2.2-11 Figure 3. (ontinued) CMDBAD c Flowchart -

125

for HC's field orientation:

MASK= INORIE(K).

Get the current field orientation by:

FLDORI = HCSTlg(HC).AND.MASK.

See Figure 3.2.2-9 for overview.

4. Compare the valid orientation value against the
field orientation value. If they match, set
PASS to equal one and go to step (9). If not,
increment K by one, and go to step (2).

Test HC to be in a sequence orientation. This means a
sequence will be required to move HC to final destination
specified in the input connnand.

5.

6.

Set the RC-in-sequence orientation flag (SEQOR).
Set the sequence, initial-orientation array
(INORIE) index L to equal LIN. LIN was set in
CMDSCK to point to input command's first se
quence orientation value in INORIE.

Perform DO-UNTIL processing where M equals one
to SQCNT. If Mis greater than SQCNT, HC is
not in a proper orientation; go to step (10) •

•

7. • Get the next valid sequence initial orientation
for the input connnand, ORIENT equals INORIE(L).
Increment L by one and get the corresponding
mask for HC's field orientation, MASK equals
INORIE(L). Get the current field orientation by:

FLDORI = HCSTlG(HC).AND.MASK.

See Figure 3.2.2-9 for overview.

8. Compare the valid orientation value against the
field orientation value. If they match, set
PASS to equal one and go to step (9), If not,
increment K by one, and go to step (6).

Test successful HC to be in automatic BCS operations:

9. Get the automatic BCS status by:

BCSFLG • HCSTJG(HC).AND.#80.

If zero, go to step (10). Otherwise, check
command to be STHIWIND. If not, ignore HC by
setting PASS to equal zero, and go to step (10).
If STHIWIND, delete(rob) the HC from automatic
BCS by:

HCST3G(HC) = HCST3G(HC).AND.#FFEF.

10. Return to caller.

e. Error messages and recovery - None

126

•

•

•

•

3.2.2.4.1.5.2

3.2.2.4.1.5.3

3.2.2.4.1.5.4

3. 2. 2.4.1.6

3.2.2.4.1.6.1

Data, Logic and Command Paths

Input data:

a. Global connnon:

1. HCST2G - HC offline status

2. HCSTlG - HC field status

3. HCST3G - HC automatic BCS status

4. CPPG(l) - command nlllllber

b. Local common:

1. IMCNT - non-sequence orientation count

2. SQCNT - sequence orientation count

3. KIN - non-sequence orientation pointer

4. LIN - sequence orientation pointer

5. INORIE - initial-orientation value and mask

array

Output data:

a. Global common:

HCST3G - HC automatic BCS status

b. Local common:

1. PASS - initial-orientation okay flag

2. SEQOR - sequence orientation flag

3. K - non-sequence orientation into INORIE

4. L - sequence orientation into INORIE

5. ORIENT - valid orientation value from

6. MASK - field-orientation mask value
INORIE

7. FLDORI - masked field orientation

8. BCSFLG - automatic BCS status

Internal Data Description

There is no data internal to this submodule.

Flowchart

See Figure 3.2.2-12 for the CMDINO flowchart.

Submodule VI - CMDARA

Description

127

for HC

INORIE

from

r·•-··-----
1

I K." klN
I

L ·•·

Figure 3.2.2-12

12R

/~)
(/_ \
'~ ·~--

flAa::-: •or f,dd
or,~,,. afion 1

iJk,•. ·. 11-io, If (K)
I
L ~--·~-- ·~ -·- -··.------'

I G ~-/ (,'e f,i jy ',t'f,+.:

I FU)OR! 7

l.1c~~r1~ .ir·>·•t~•<.,, !': .._,ij..._ ,_, I • I'"~!'.

L _______ .

•

I k:c K·d.

L __ ~

"---~

I
.. '

•

•

• .. --,

• ~-

~?

r Sm~,~ L

: -. -·r ... --~--

M, 1 · ~·rd e·, 1

.---.------~ H -Li / M>-:..ou-ff? [____ j --... --........._ r Jo

M,M-fi --------1-.•. -- -· ---- - ----· j

--,
Mo..sk {or f, e td I

' !
01"1 fl';'Lt t(0(\ ~ I
,__1AS~•711Dl?1F.(L)I

I
--~- . ·~-,.., ,.._,,,, .J

FL"DolcI :;

Figure 3.2.2-12 Flowchart - CMDINO (continued)

129

CMDARA is responsible for inserting the HC number specified in •
local common word "HC" into the appropriate HC number buffer for
subsequent processing. The value of flag SEQOR dictates whether
the HC number goes into the non-sequence buffer {IlfARAY) or one
of the sequence buffers (SQARAY, SBARAY, COARAY). The non-sequence
buffer is used to build a disk packet for those input commands
requiring disk data. The sequence buffers are used to build a
sequence packet for those input commands requiring sequence
processing.

a. Language used - FORTRAN IV

b. How invoked - called by CMDFAD or CMDBAD

c. Constraints and limitations - None

d. Processing -

1. Determine the type of orientation found for
the current HC by examining flag SEQOR. IF
greater than zero, HC must be command with
sequence processing; go to step (2). If zero,
put the HC number in IlfARAY by setting
HCARAY(IMDPTR) to equal HC. Increment the
dynamic Il1ARAY pointer (IMDPTR) by one and in
crement the IMARAY size (IMSIZE) by one; go to
step (6).

2. Ignore the position-compare bit when getting
HC's field orientation:

FLDORI = HCST1G(HC).AND.#7C.

If FLDORI equals #20 (Track), go to step (3).
If FLDORI equals if2C(BCS), go to step (3). If
FI.DORI equals #60 (Stow), go to step (3). If
FLDORI equals #70 (Altlstow), go to step (3).
Otherwise, go to step (4).

3. Put the HC number in SQARAY by setting HCARAY
(SQDPTR) to equal HC. Increment the dynamic
SQARAY pointer (SQDPTR) by one and increment
the SQARAY size (SQSIZE) by one; go to step (6).

•

4. If FLDORI is not #30 (Standby), go to step (5).
Otherwise, put the HC number in SBARAY by setting
HCARAY(SBDPTR) to equal HC. Increment the
dynamic SBARAY pointer (SBDPTR) by one and incre
ment the SBARAY size (SBSIZE) by one; go to step
(6).

5.

6.

Orientation is corridor walk and only used by
STHIWIND command. Put the HC number in COARAY
by setting HCARAY(CODPTR) to equal HC. Incre
ment the dynamic COARAY pointer (CODPTR) by
one and increment the COARAY size (COSIZE) by
one; go to step (6).

Return to caller.

e. Error messages and recovery - None

130

•

•

•

•

3.2.2.4.1.6.2

3.2.2.4.1.6.3

3.2.2.4.1.6.4

3.2.2.4.1.7

3.2.2.4.1.7.1

Data, Logic and Command Paths

Input data:

a. Global common:

HCSTlG - HC field status

b. Local common:

1. SEQOR - HC's sequence-orientation

2. FLOOR! - field orientation

3. ll1DPTR - dynamic IMA.RAY pointer

4. IMSIZE - IMARAY size

s. SQDPIR - dynamic SQARAY pointer

6. SQSIZE - SQARAY size

7. SBDPTR - dynamic SBARAY pointer

8. SBSIZE - SBARAY size

9. CODPTR - dynamic COARAY pointer

10. COSIZE - COARAY size

11. HC

Output data:

- current HC number

Local common:

a. HCARAY - overall HC-number buffer area

b. FLOOR! - field orientation

c. IlIDPTR - dynamic IMA.RAY pointer

d. IlfSIZE - IMA.RAY size

e. SQDPTR - dynamic SQARAY pointer

f. SQSIZE - SQARAY size

g. SBDPTR - dynamic SBARAY pointer

h. SBSIZE - SBARAY size

i. CODPTR - dynamic COARAY pointer

j. COSIZE COARAY size

Internal Data Description

There is no data internal to this submodule.

Flowchart

See Figure 3.2.2-13 for the CMDARA flowchart •

Submodule VII - CMDSAL

Description

flag

CMDSAL is responsible for determining a sequence number when

131

I
I

i1HfJAf:cA
",.._~ -T·

/ ~ --rr.'' ~,·J. ~.:,.-ll .. I
~/ ,A I.._ t-) , 1,,, It\ I

/'..fc,.·,• •E~n. 'f'I., Nu··'·{'~ 6 1r,.
~~f (~{)~ >G?S ')........._. 1

1

V 't,.,j r.,.J I_ r•
HCf'.h?AY (1NDf"rt)-=

. ~~
:',

Gr" f:elct

' i r uv:.,n -.·
j_~IC,1 Us (HC.) • :# '1C.

<fwoR1·•:"•.J >(p,: ~, ... ,,.nd.D'/ 0~ti.,;,,t.

·~r ~, e,v; / :~,v(se,DPr~')"~J

J nYrt J/('. fi , ,; · I
r-- •, ~ c: , ls6DPTR= ;1
l orr,a.or.vt'(f.C;-U.1, , - (

ri~Af:A.i(ro~~r..\- j S6Df>TK-t1.. '

1

1~:oPr, ,~~ --- [~~~-;~~- --- i

CoPPr~d :s6:.:1zft!...

L___ I -··· . _J
, _____ ,_'(_,., .. ·7

!

('D517.F:!

t _,. ___ _

'.J0wllE ;..

SG,S1LE • 1

Figure 3.2.2-13 Flowchart - CMDARA

132

•

•

•

•

•

•

the input command requires sequence processing. It then deter

mines all of the corridors needed for the sequence. Then it

builds the sequence packet (see Table 3.2.2-V) required for

CMD to Enque task SEQ. Possible sequence commands are UNSTOW,

STOW, STHIWIND, and ALTlSTOW.

a. Language used - FORTRAN IV

b. How invoked - called by CMD to allocate a sequence

for the input command and build a sequence packet.

c. Constraints and limitations - assume maximum number of

corridors is eight.

d. Processing -

Allocation of sequence number:

la. Set loop count (LOOP) to equal 16 for the
maximum number of sequences.

lb. Perform DO-UNTIL processing where I equals
one to LOOP. If I is greater than LOOP,
set CPPRTG to equal five and go to step (31).

le~ If SEQLSG(I) is greater than zero, go to
step (lb).

2 • When a negative number is found in SEQLSG(I),

take the two's-complement and update this
array element. Set the allocated sequence

number (SEQNO) to this positive value. Incre

ment the active-sequences count (SEQNMG) by

one, and if SEQNMG equals 16, set the maximum

sequences flag (MAXSEQ). Otherwise, clear
MAXSEQ.

To determine all the corridors required by this sequence:

3. Clear the corridors-required array (CORARY),
zero the corridors-required count (CORCNT),
zero the RC-buffers count (BUFCNT), and zero
the command-phase word (CPHASE).

4. If the size word (SBSIZE) of the HCs-in-standby

array (SBARAY) is not greater than zero, go to

step (7). If greater than zero, set LOOP to equal

SBSIZE, set CPHASE to equal five, and set
CALLER to equal one.

S. Perform DO-UNTIL processing where I equals one

to LOOP. If I is greater than LOOP, go to step (7).

6. Set N to equal SBARAY(I) and call internal
search routine (steps (32) to (36)) to find the

corridor associated with this HC in SBARAY.

The routine increments CORCNT when inserting a

unique corridor number in CORARY. Upon return,
check CORCNT to equal eight (maximum number of

corridors). If so, go to step (13). Otherwise,

go to step (5).

7. If the size word (SQSIZE) of the HCs-not-at
standby array (SQARAY) is not greater than zero,

133

1

2

3

4

5 to N

N+-1

N+2

N+3

N+4 to M

MH

M+2

M+3 to L

L+l

L+2

L+3 to K

DESCRIPTION

COMMAND 11= = 0 :
6:

14:
17:
18:
88:

FIELD PWR LOSS
STOW
ALTlSTOW
UNSTOW
STHI
RE-ESTABLISH
SEQ. CTL ON FAILOVER

COMMAND PHASE 11= = 4: GATHER HCs GIVEN IMMEDIATE COMMANDS

= 5 : WAIT FOR ALL CORRIDORS TO BE FREE

= 10: END SEQ.

SEQUENCE#: RANGE 1 to 16

1/= OF CORRIDORS REQUIRED: RANGE 1 to 8

CORRIDOR 1/=(s) REQUIRED

4t OF BUFFERS IN PACKET:

RANGE: UNSTOW - 1
STOW - 2
ALTlSTOW - 2
STHI - 3

BUFFER ORIENTATION 1H:

1: HCs MOVING TO CULP
2: HCs AT CULP
3: HCs MOVING IN CORRIDOR(s)
4: HCs MOVING TO CLLP

BUFFER SIZE #1: RANGE: 1 to 1818

RC #s REFLECTING ABOVE ORIENTATION

BUFFER ORIENTATION #2 (IF NECESSARY)

BUFFER SIZE 11= 2

RC 41=s REFLECTING ABOVE ORIENTATION

BUFFER ORIENTATION #3 (IF NECESSARY)

BUFFER SIZE 1/=3

RC 11s REFLECTING ABOVE ORIENTATION

Table 3.2.2-V Sequence Data Packet

134

•

•

•

•

•

•

8.

9.

io.

go to step (10). If greater than zero, set
LOOP to equal SQSIZE, increment BUFCNT by one,
set CPHASE to equal four, and set CALLER to
equal two.

Perfonn DO-UNTIL processing where I equals one
to LOOP. If I is greater than LOOP, go to
step (10).

Set N to equal SQARAY(I) and call internal
search routine (steps (32) to (36»to find
the corridor associated with this HC in
SQARAY. The routine increments CORCNT when
inserting a unique corridor number in CORARY.
Upon return, check CORCNT to equal eight (max
imum number of corridors). If so, go to step
(13). Otherwise, go to step (8).

If the size word (COSIZE) of the HCs-in-corridor
walks array (COARAY) is not greater than zero,
go to step (13). If greater than zero, set
WOP to equal COSIZE, increment BUFCN't by one,
set CPHASE to equal four, and set CALLER to equal
three.

11. Perform DO-UNTIL processing ~here I equals one to
WOP. If I is greater than LOOP, go to step (13) •

12. Set N to equal COARAY(I) and call internal
search routine (steps (32) to (36)) to find the
corridor associated with this RC in COARAY. The
routine increments CORCNT when inserting a unique
corridor number in CORARY. Upon return, check
CORCNT to equal eight. If so, go to step (13).
Otherwise, go to step (11).

Determine size of sequence packet:

13. Determine the sequence packet size using the
equation:

PACSIZ = 5 (words 1 to 4 and N+l in Table
3.2.2-V) +
CORGNT (size for wo~ds 5 to N in Table

3.2.2-V) +
BUFCNT*2 (total number of buffer

orientation and size words
in Table 3.2.2-V) +

SQSIZE (size of HCs-not-at-standby
array)+

SBSIZE (size of HCs-in-standby
array)+

COSIZE (size of HCs-in-corridor
walks array) •

14. The local common area used for building the packet
is BUFR.

Set up the packet header:

135

15. Set BUFR(l) to equal CPPG(l), the co~and

number. Set BUFR(2) equal to CPHASE, the
command phase. Set BUFR(3) to equal SEQNO,

the allocated sequence number. Set BUFR(4)
to equal CORCNT, the corridor count. Set LOOP

to equal CORCNT and set BUFR index J to equal
five, the first location for corridor numbers
in the packet.

16. Perform DO-UNTIL processing where I equals one
to LOOP. If I is greater than LOOP, go to step

(18).

17. Set BUFR(J) to equal CORARY(I), which transfers

corridor numbers to the packet area. Increase

J by one, and go to step (16).

18. Set BUFR(J) to equal BUFCNT, the number of HC
buffers to be passed in the packet. Increment

J by one.

Move HC numbers into the packet:

19. If SQSIZE is not greater than zero, go to step

(23). If more than zero, check.command to be

UNSTOW. If so, set the first buffer orienta
tion word BUFR(J) to equal four to describe

this set of HC numbers as moving towards their

CLLPs. If not UNSTOW, set BUFR(J) to equal one

to describe this set of HC numbers as moving
towards their CULPs.

20. Increment J by one and set BUFR(J) to equal
SQSIZE to specify size of first buffer. Set
LOOP to equal SQSIZE and increment J by one.

21. Perform DO-UNTIL processing where I equals one

to tOOP. If I is greater than LOOP, go to step

(23).

22. Set BUFR(J') to equal SQARAY(I) to move the HC
number into the packet area. Increment J by

one, and go to step (21).

23 •. If COSIZE i~ not greater than zero, go to step

(27). If greater than zero, set BUFR(J) to equal

three to describe this set of HC numbers as
moving in their corridor(s). This buffer will

only be used for the STHIWIND command.

24. Increment J by one and set BUFR(J) to equal
COSIZE to specify size of this buffer. Set LOOP

equal to COSIZE and increment J by one.

•

25. Perform DO-UNTIL processing where I equals one

to LOOP. If I is greater than LOOP, go to step

(27).

26. Set BUFR(J) equal to COARAY(I) to move the HC •

number into the packet area. Increment J by one,

136

•

3.2.2.4.1.7.2 Data,

• Input

and go to step (25).

27. If SBSIZE is not greater than zero, go to step

(31). If greater than zero, set BUFR(J) equal

to two to describe this set of RC numbers as

being at their CULPs.

28. Increment J by one and set BUFR(J) equal to

SBSIZE to specify size of this buffer. Set

LOOP to SBSIZE and increment J by one.

29. Perform DO-UNTIL processing where I equals one

to LOOP. If I is greater than LOOP, the sequence

packet is completely built and ready for the

REX Enque call in CMD; go to step (31).

30. Set BUFR(J) equal to SBARAY(I) to move the HC

number into the packet area. Increment J by

one, and go to step (29).

31. Return to CMD.

Search routine to add corridor number to array of required

corridors:

32. Determine HC's corridor number by setting

CORR= HCST3G(N).AND.#FOOO

and shift right 12 bits. Set LOOP equal to

eight for the maximum number of corridors.

33. Perform DO-UNTIL processing where I equals one

to LOOP. If I is greater than LOOP, go to

step (35).

34. If CORARY(I) equals CORR, go to step (36). If

not, go to step (33).

35. Add the corridor number found to CORARY array

by setting:

CORARY(CORCNT+l) equals CORR.

Increment the corridor count (CORCNT) by one.

36. Return to calling section by using flag CALLER.

If CALLER equals one, go to step (6). Other

wise, go to step (9) for CALLER to equal two.

If CALLER equals three, go to step (12).

e. Error messages and recovery - If an unused sequence number

is not found in SEQLSG, the MMI-error return value (CPPRTG)

is set to five and control is returned to CMD.

Logic and Command Paths

data:

a. Global common:

1. SEQLSG - sequence-number list array

137

3.2.2.4.1.7.3

2. SEQNMG - active-sequences count

3. HCST3G - HC corridor assignment

b. Local common:

1. SBSIZE - SBARAY size

2. SBARAY - HCs-in-standby array

3. CORCNT - required-corridors count

4. CORARY - required-corridors array

s. CALLER - search-routine caller flag

6. SQSIZE - SQARAY size

7. SQARAY - HCs-not-at-standby array

8. COSIZE - COARAY size

9. COARAY - Hes-in-corridor-walk array

10. BUFCNT - HC buffers-in-packet count

11. CPHASE - comm.and phase for packet

12. SEQNO - allocated sequence number

Output data:

a. Global common:

1. SEQLSG - sequence number list array

2. SEQNMG - active sequences count

b. Local common:

1. SEQNO - allocated sequence number

2. MAXSEQ - maximum-sequences flag

3. CORARY - required-corridors array

4. CORCNT - required-corridors count

s. BUFCNT - HC buffers-in-packet count

6. CPHASE - comm.and phase for packet

7. CALLER - search-routine caller flag

8. CORR - right-justified HC corridor

9. LEASAD - leased buffer address

10. PACSIZ - sequence-packet size

c. Call to Lease for packet buffer.

Internal Data Description

a. Required-corridors count:

CORCNT has range of one thr,ougb eight

b. Required-corridors array:

assigrnnent

CORARY is a lx8 array used to collect up to eight

138

•

•

•

•

•

3.2.2.4.1.7.4

3.2.2.4.1.8

3. 2. 2.4. 1.8.1

3.2.2.4.1.8.2

unique corridor numbers necessary to control the
allocated sequence.

c. HC buffers count:

BUFCNT has a range of one through three to indicate
the differing orientations of the HCs involved in
t:his s,equence command.

d. HC corridor assignment:

COfffi_ has a range of one through eight.

e. Packet buffer:

Flowchart

BUFR is a 2067-word area used for building a se
quence packet.

See Figure 3.2.2-14 for the CMDSAL flowchart.

Submodule VIII - CMDTRK

Description

CMDTRK is responsible for building beam pointing/target HC
commands for the TRACK and increase input commands. It uses
the HC numbers placed in the IlfARAY array by CMDARA.

a. Language used_- FORTRAN IV

b. How invoked - called by CMDSCK

c. Constraints and limitations - None

d. Processing -

1. Set LOOP equal to Il1SIZE.

2. Perform DO-UNTIL processing where I equals one
to LOOP. If I is greater than LOOP, return to
caller. Let N equal IMARAY(I).

3. Set HCDATG(N) equal to AIMPTG(N) for all five
words of target X,Y,Z coordinates.

4. Set HCCMDG(N) equal to #8020. Go to step (2).

e. Error messages and recovery - None

Data, Logic and Connnand Paths

Input data:

a. Global connnon:

AIMPTG - memory-resident aim-point array

b. Local common:
1. IMARAY - non-sequence RC number array

2. Il1SIZE - IMARAY size

Output data:

a. Global common:

139

l"
I
j

I
!tPf '(-, t·•\ - c;., l . . . ~·

l

\---~

J

r···· Set rno.t- ·

~e 1._u r Me r I uj

.. _____ /

Figure 3.2.2-14 Flowchart - CMDSAL

140

LooP ('£JuN1 •

.Sf?:,~ Ii.' E.

•

•·

•

•

•

• ~

l buf!'./\JT-:.

f.iuUNf ti

w ·1
/ ",,,

/ · , "'-~Nuf;v., 11 < ro~ 11: e. n1 -~· . ri:''.l,. 1
"" ' J ~.• .I

""-, ··..,_✓/ '

-(e.5

1 BufCI\/T:r:.

I &,FrNTti

_:=;[__ '"'.I

A•'f- , ~ •·"t

l ____ .. _[___ . J

1:~-:~~0-,:- I

L--·~·-- ______ _J ------......... .,.., .. _,,., ·-~-,
'

LOOP CDuN1::

(lO~tt..c

Figure 3.2.2-14 Flowchart - CMDSAL (continued)

141

A/s

Co !cu ! cdr. A:..,ket ~;;-z
,/A(:'.,/)"~ '.Si((Y<.Ulr1

I 6 J re NT" ->. z -t- S&Y7

I~ s&,itE tc~11f., I

f

____ c_i
! fo (<(!lo(ff<.,/i)J

;-~uc./2~ • -I

l:c:;6~J
(;r:a)-~E&ND j

·--- ---·,
6urR(J") ~ I

" ·) f :D'A;:_J
[J~:,~- -·7

6ufi(.r)::: 1..

Figure 3,2.2-14 Flowchart - CMDSAL

142

--7
'

8uF~(:r) """'+ j

L.~ ____ J
1-------i

·-·· ~--•··--- ··1

. :r-- J -ri
,, _______ !

SG:.\11..E
j
I

t
,__----.--·--•-· !

•

•

•

•

• ··""

•

._ _______ i

j ~u;~ (r)"'-7 CoA«A'l('z:")

r--·I•--·---
i j"-J,,1

Figure 3, • -

[
------·-· ·"·- , -

6u(. (<{:r) 2

-·--••e0••-"--• .. ,-.-.... -,_, --.-

·--------
151)(~ (J-) ":.

"-:6~:•l l.t.

owchart - CMDSAL (continued)

143

•

•

~. •
Figure 3.2.2-14 Flowchart - CMDSAL (continued)'

144

•

•

•

3.2.2.4.1.8.3

3.2.2.4,1.8.4

3.2.2.4.1.9

3.2.2.4.1.9.1

1. HCDATG - HC data output array

2. HCCMDG - HC connnand output array

b. Local connnon:

LOOP - loop count

Internal Data Description

There is no data internal to this submodule.

Flowchart

See Figure 3.2.2-15 for the CMDTRK flowchart.

Submodule IX - CMDDSK

Description

CMDDSK is responsible for building the disk packet of HC numbers

to be sent to task GET for those connnands which require disk
data to determine the output connnands. This submodule is either

called by CMDSCK for the LOAD, WASH, SAVE, RESTORE, ALT2STOW,

AD1POINT, and ESTOW input commands, or may also be called by

CMDSDN submodule when certain addressed HCs can move to the
Stow or Altlstow positions without beam-safety requirements.

a. Language used - FORTRAN rv

b. How invoked - called by CMDSCK or CMDSDN

c. Constraints or limitations - None

d. Processing -

1. A local buffer area is used to build the disk
packet for task GET. Set up the header as
follows:

a) BUF(l) = CPPG(l), the command number

b) BUF(2) = command phase equals three

c) BUF(3) = O, sequence number

d) BUF(4) = CPPG(3) if command number
equals 20 (AD1POINT) this is
the aim-point number specified
by operator

= 1 otherwise to indicate one
buffer being passed

2. If command is RESTORE, set BUF(S) equal to zero
and go to step (5). Otherwise, set BUF(5) equal
to IMSIZE to record the buffer size and set
LOOP equal to IMSIZE. Set the buffer pointer
J equal to six.

3. Perform DO-UNTIL processing where I equals one
to LOOP. If I is greater than LOOP, go to step
(5).

145

•

tp (',," f'J.: ... ·-

51 r f

,____. ---- --

•

•
Figure 3.2.2-15 Flowchart - CMDTRK

•

•

•

3.2.2.4.1.9.2

3.2.2.4.1.9.3

3.2.2.4.1.9.4

3.2.2.4.1.10

3.2.2.4.1.10.1

4. Move the HC numbers in the IMARAY array to
the GET packet. Increment J and go to step (3).

S. Set the disk-data flag (DISDAT) and return to
caller.

e. Error messages and recovery - None

Data, Logic and Command Paths

Input data:

a. Global common:

1. CPPG(3) - aim-point array number for command
number equals 20.

2. CPPG(l) - command number

b. Local common:

1. IMARAY - non-sequence HC number array

2. IMSIZE - IMARAY size

Output data:

Local common:

a. Local common buffer BUF used to build disk packet
(see Table 3.2.2-VI for format)

b. DISDAT - disk-data flag

c. LOOP - loop count

Internal Data Description

There is no data internal to this submodule.

Flowchart

See Figure 3.2.2-16 for the CMDDSK flowchart.

Submodule X - CMDPOS

Description

CMDPOS is responsible for building all AZ/EL pointing output
commands (MARK, POSITION, INLINE, OFFLINE, HOLD, and RELWASH)
which do not require disk data. It also processes the ONLINE
command which only resets global common bits in the HC's
HCST2G word.

a. Language used - FORTRAN IV

b. How invoked - called by CMDSCK.

c. Constraints and limitations - ONLINE processing will not
reset HCs which are unmarked.

d. Processing -

1. Set LOOP equal to IMSIZE.

2. Perform DO-UNTIL processing where I equals one

147

WORD

1

4

2

3

5

6

•
DESCRIPTION

COMMAND 4fa

AIMPOINT ff (IF COMMAND 4fa = 20)

4F OF RC BUFFERS (FOR ALL OTHER COMMANDS)

COMMAND PHASE:

= 3: WHEN CMD ENQUES GET

= 9 : WHEN SEQ ENQUES GET

SEQUENCE 41 :
= 0: WHEN CMD ENQUES GET

I- 0: WHEN SEQ ENQUES GET

BUFFER SIZE

HELIOSTAT #fas •
INVOLVED

• Table 3.2.2-VI Disk Data Packet Fonnat

148

•

B\) f c 1) ~ C HD u:

•

----~··-j 'fo.,
BuF (1l):-A11-1 ~Ri.11.

l., ·- _____ ,__, __ _

<t<~i_.;J C 2()
'--.,, ([,,H) ,,

,, 7 /

---~··,

[
., t.o ---·-7

5ur (Li/= i

, - ~ -·· . ,_ ----·-·-·· ... _..,.

l
"''•··•-··-·-1 Bu f (z. 1" 3

<1ti[; PH/1:.,f::)
.~,.,,_ .. , ,••-·--··----,-

tsurf :J')-~ I +;·1
elem<"r•~ of [
H,1,M.f\-{ 1

J.T~j • V ' _L

'< Lr-

•
. Figure 3.2.2-16 Flowchart - CMDDSK

3.2.2.4.1.10.2

to LOOP. If I is greater than LOOP, return
to caller. Let N equal IMARAY(I).

3. If command is ONLINE, reset HCST2G(N), bits
1 through 3 and 8. Go to step (2).

'
4. If command is MARK, insert the local Mark mode

values into HCDATG(N). Set HCCMDG(N) equal to
#8064, and go to step (2).

5. If command is POSITION, insert the operator
specified AZ/EL contained in CPPG(3) and CPPG(4)
into HCDATG(N). Set HCCMDG(N) equal to #806C,
and go to step (2).

6. If command is OFFLINE, set HCST2G(N), bit three
and set HCDATG(N) to AZil1G(N) and ELEVG(N), the
last reported AZ/EL values from the field. Set
HCCMDG(N) equal to #806C, and go to step (2).

7. If command is HOLD, set HCDATG(N) equal to
AZil1G(N) and ELEVG(N). Set HCCMDG(N) equal to
#906C. Increment EMCClG(2) by one to tell the
BHC task how many type-2 critical commands exist
in the HCCMDG array. Go to step (2).

e. Error messages and recovery - None

Data, Logic and Command Paths

Input data:

a. Global common:

1. CPPG(l) - command number

•

•
2. CPPG(3) - operator-specified azimuth for POSITION

3. CPPG(4) - operator-specified elevation for
POSITION

4. AZil1G - last reported azimuth array

5. ELEVG - last reported elevation array

b. Local common:

1. IMA.RAY - non-sequence HC number array

2. IMSIZE - IMA.RAY size

3. MARK.AZ - Mark mode azimuth

4. MARKEL - Mark mode elevation

Output data:

Global conunon:

a. HCDATG - HC-data output array

b. HCCMDG - HC-command dutputarray

c. HCST2G - HC derived-status array

d. EMCC1G(2) - type-2 critical connnand count

150

•

•

•

•

3.2.2.4.1.10.3

3. 2. 2. 4. 1.10. 4

3.2.2.4.1.11

3.2.2.4.1.11.1

3.2.2.4.1.11.2

Internal Data Description

There is no data internal to this submodule.

Flowchart

See Figure 3.2.2-17 for the CMDPOS flowchart.

Submodule XI - CMDSBY

Description

CMDSBY is responsible for building non-sequence, beam pointing/
track-the-CULP output commands for the STANDBY, RETURN, DEFOCUS,
DECREASE, and ESTANDBY input commands. It uses the HC numbers
placed in the IMARAY array by CMDARA.

a. Language used - FORTRAN IV

b. How invoked - called by CMDSCK

c. Constraints and limitations - None

d. Processing -

1. Set LOOP equal to IMSIZE •

2. Perform DO-UNTIL processing where I equals one
to LOOP. If I is greater than LOOP, return to
caller. Let N equal IMARAY(I).

3. Determine the HC's corridor assignment, J
equals HCST3G(N), bits zero through three. Set
HCDATG(N) equal to CORRCG(l-5,J) for all five
words of CULP X,Y,Z coordinates. If command is
not DEFOCUS, go to step (5).

4. Set HCCMDG(N) equal to #9030. Increment EMCClG(l)
to tell task BHC how many type-1 critical commands
exist in the HCCMDG array. Go to step (2).

5. Extract the BCS target assignment for the HC if
the command is RETURN. If not RETURN, go to
step (6). Right-justify the BCS target

(TGT) = HCST3G(N).AND.#60.

Compute the mask for BCSBY'G by:

BCSMSK = 2~GT.

Reset the BCS-busy status bit in BCSBYG by:

BCSBY'G = BCSBYG.XOR.BCSMSK.

6. Set HCCMDG(N) equal to #8030, and go to step (2) •

e. Error messages and recovery - None

Data, Logic and Command Paths

Input data:

151

r-1L,...,.._,., 'I) r,..,...,
I c..,uv \, 'u 'I

l
®

! I, ---·
I i1Cl:>ATt1lN! ~
j Al /H &UJ~ a_n&
i ELEVG"lN)

L----....-----J
l .. ----7
) t=!M'9
1r1crement

EHCCi& (ZJ'

Figure 3.2.2-17 Flowchart - CMDPOS

•

•

•

•

•

•

3.2.2.4.1.11.3

3.2.2.4.1.11.4

3.2.2.4.1.12

3.2.2.4.1.12.1

a. Global common:

1. CPPG(l) - command number

2. HCST3G - HC corridor and BCS assigmnent

3. CORRCG

4. BCSBYG

b. Local common:

- corridor coordinates

- BCS-busy status

1. IMARAY - non-sequence HC number array

2. IMSIZE - IMARAY size

Output data:

a. Global common:

1. HCDATG - HC data output array

2. HCCMDG - HC conunand output array

3. EMCClG(l) - type-1 critical

4. BCSBYG - BCS-busy status

b. Local common:

1. LOOP - loop count

2. TGT - BCS assignment

3. BCSMSK - BCS status mask

Internal Data Description

There is no data internal to this submodule.

Flowchart

See Figure 3.2.2-18 for the CMDSBY flowchart.

Submodule XII - CMDSDN

Description

command count

CMDSDN is responsible for building output comrnands, if necessary,
for the STOW, STHIWIND, and the ALTlSTOW input comrnands. If any
involved HCs are in a non-sequence orientation, they are assembled
into a disk packet in submodule CMDDSK. Sequence orientations
are checked and HCs are moved towards their respective CULPs if

required,

a. Language used - FORTRAN IV
b. How invoked - called by CMDSCK for down-corridor initial

processing

c. Constraints and limitations - None

d. Processing -
1. Check IMSIZE to be non-zero. If so, there are

some involved HCs which can be moved without

153

CHb5R'!

llo~o r ,)IH,-f-,,

J~.~:ST? E

~r~••--•• --•-••~ -----'

I Le1-;,/~ T ti,

I elttr,l'vi+ d
I

j]t..U\Rf\l

l.---··--------,-•-----·•··--
'

1· r ,nd ~-C ':s- ··-- J
I (. . , L~: "'": .,,,, ml
G_J ___ J I;/ DP.1'hf r-/) "' .,

1\Ud<Ch(! ~,.T)
' 1 / "I ' I • I'_}-'' (_ol,t•(IOr tt')

/~

'"'-
((''.-~ nJD> -- ~: / --.. . .,✓,; t) ,_ y !1.c...1

-·-•--· _'('._._' --~,
HCCHbb{N):;t·q~"i~

.......,__~ .. _, __ _]
J --.----

: lnc remen-t
i
I I I

Figure 3,2.2-18

f'ic·,e,·v& 1±)
f>(:-:, I A5 t<

Flowchart - CMDSBY

•

•

•

•

•
3.2.2.4.1.12.2

•

beam-safety requirements. Call CMDDSK•to

handle this orientation. If IMSIZE equals

zero, go directly to step (2).

2. Check the sequence-required flag (SEQREQ),

and if not set, go to step (9). If set, check

if the command is STHIWIND. If so, set

BIT3 equal to #1000; otherwise, set BIT3 to

zero. This word is used later in building

the HCCMDG word (bit 3 is the critical-command

bit).

3. Set LOOP equal to SQSIZE.

4. Perform DO-UNIIL processing where I equals

one to LOOP. If I is greater than LOOP, go

to step (9).

5. Set N equal to SQARAY(I) to determine RC number.

6. Determine the HC's corridor assignment J equal

to HCST3G(N), bits zero through three. Set

HCDATG(N) equal to CORRCG(l-5,J) for all five

words of CULP X,Y,Z coordinates.

7. Set HCCMDG(N) equal to #8030 plus BIT3.

8. If BIT3 is non-zero, increment EMCClG(l) to

tell task BHC how many type-1 critical connnands

exist in the HCCMDG array. If not ALTlSTOW, set

stow-sequence bit in HCST3G, and go to step (4).

9. Return to caller.

e. Error messages and recovery - None

Data, Logic and Command Paths

Input data:

a. Global common:

1. HCST3G - HC corridor assignment

2. CORRCG - corridor coordinates

b. Local common:

1. IMARAY - non-sequence HC number array

2. IM.SIZE - lMARAY size

3. SQSIZE - SQARAY size

4. SQARAY - HCs-not-at-standby array

s. SEQREQ - sequence-required flag

Output data:

a. Global common:

1. HCDATG - HC-data output array

2. HCCMDG - RC-command output array

3. HCST3G - RC-in-Stow-sequence status bit

155

3.2.2.4.1.12.3

3.2.2.4.1.12.4

3.2.2.,~.1.13

3.2.2.4.1.13.1

b. Local common:

LOOP - loop count

Internal Data Description

Critical-command bit value:

BIT3 = 0: non-critical connnand

= #1000: critical command (STHIWlliD)

Flowchart

See Figure 3.2.2-19 for the CMDSDN flowchart.

Submodule XIII - CMDBCS

Description

CMDBCS is responsible for building manual BCS output commands

whenever the BCSTRACK input connnand is entered. Only one HC

may be tracking a BCS target at one time.

a. Language used - FORTRAN IV

b. How invoked - called by CMDSCK

c. Constraints and limitations - only one HC may be
for each entry of the BCSTRACK connnand.

Processing -

commanded

1. Set HC equal to Il1ARAY(l) as this will be the
only HC processed.

2. Extract and right-justify the HC's BCS target
number (TGT) from HCST3G(HC), bits nine through
ten. It will have a range of zero through three.

3. Determine BCS-busy mask by setting:

BCSMSK = 21rnTGT.

4. Determine the BCS-target busy status by setting:

BCSSTA = BCSMSK.AND.BCSBYG.

5. If result is non-zero, set the internal-error
flag (EFLAGI) to four, and go to step (9). If
result is zero, set the BCS-target busy by
setting:

BCSBYG = BCSBYG + BCSMSK.

6. Set TGT equal to TGT plus one for index purposes.

7. Set HCDATG(HC) equal to BCSTGG(l-5,TGT).

8. Set HCCMDG(HC) equal to #802C.

•

9. Return to caller.

e. Error messages and recovery - If the BCS target is al
ready busy, EFLAGI is set to four. •

•

•

• . ~

CHD5DN

C.HDD$K
t=",'nd µe's

C'orr.tdor nu.l'Vl.ber

HC'DAT~ (N),.

CoRRll1'(\-~>:,r)

£1 ::.(',._.H;J,,r #")

/
<tt~"'~i&~\1> ,, ; ,./

1

-•--·•··-lyf s
Irv re met'\+

I E ,,,H'C J($ ({)

,./
,.,,.,,;.r'

<"AL'1 i 5l'1W
··,...,,_) , .

Figure 3.2.2-19 Flowchart - CMDSDN

157

3.2.2.4.1.13.2

3.2.2.4.1.13.3

3.2.2.4.1.13.4

3.2.2.4.1.14

3.2.2.4.1.14.1

Data, Logic and Command Paths

Input data:

Global common:

a. HCST3G - HC's BCS target number

b. BCSBYG - BCS-target busy status

c. BCSTGG - BCS target coordinates

Output data:

a. Global common:

1. HCDATG - RC-data output array

2. HCCMDG - HC-connnand output array

3. BCSBYG - BCS-target busy status

b. Local common:

1. TGT - BCS target index

2. BCSMSK - bit mask for BCSBYG

3. EFLAGI - CMD-error flag

4. BCSSTA - BCS-target busy status

Internal Data Description

a. BCS target index:

TGT has value of zero through three when right

justified from HCST3G(HC).

b. Bit mask for BCSBYG:

BCSMSK has value of one, two, four, or eight.

Flowchart

See Figure 3.2.2-20 for the CMDBCS flowchart.

Submodule XIV - CMDSUP

Description

DMDSUP is responsible for building output commands for the

UNSTOW input command. If any involved HCs are in the Alt2stow

orientation, they are innnediately commanded to their CULPs

without beam-safety requirements. HCs in the Stow and Altlstow

orientations are commanded to their CLLPs as the first step of

the up-corridor sequence.

a. Language used - FORTRAN IV

b. How invoked - called by CMDSCK

c. Constraints and limitations - None

d. Processing -

1. Check IMSIZE to determine if any HCs can be

158

•

•

•

•
I nurno;r ,n

1MARAY

-
1, 'RT~ Su ::;r.

.

H(S13/:,(1-ic),
b q-1¢

E
--·-
~SK • 2.)< ~Tls:f

..... -.- ,·--··-------

ll3C.~ Tc.r'3e.t b..,6.y

i s+11 +u 6 = &:SH ~t<

r;: r,'i. fr([)(f!a3

l~--~~D:_ ~s-~~~--

S TA1u5 ""' 4
' -;:,

&~BY& "' i 0
&.::i5vG .or. ,
5C::iMGk:'.

,-------.__--,
l
i

,-·----------i HC bAT&- (H C) :<

jc,C ~.r 6(,- (: - '5 J T~:)

l

Figure 3.2.2-20 Flowchart - CMDBCS

159

3.2.2.4.1.14.2

moved without beam-safety considerations. If
zero, go to step (6). Otherwise, set LOOP
equa 1 to Il1S IZE.

2. Perform DO-UNTIL processing where I equals one
to LOOP. If I is greater than LOOP, go to
step (6).

3.

4.

s.
6.

7.

8.

9.

Set N equal to Il1ARAY(I) to detennine HC number.

Detennine the HC's corridor assignment, J
equals HCST3G(N), bits zero through three. Set
HCDATG(N) equal to CORRCG(l-5,J) for all five
words of CULP X,Y,Z coordinates.

S~t RCCMDG(N) equal to ffo8030, and go to step (2).

Check the sequence-required flag (SEQREQ) to
determine if any involved RCs are in a Stow or
Altlstow orientation. If not, go to step (11).
If so, set LOOP equal to SQSIZE.

Perform DO-UNTIL processing where I equals one
to LOOP. If I is greater than LOOP, go to step
(11).

Set N equal to SQARAY(I) to determine RC number.

•

Determine RC's corridor assignment J equals
RCST3G(N), bits zero through three. Set
RCDATG(N) equal to CORRCG(6-10,J) for all five •
words of CLLP X,Y,Z coordinates.

Set RCCMDG(N) equal to #8034, and go to step (7). 10.

11. Return to caller.

e. Error messages and recovery - None

Data, Logic and Command Paths

Input data:

a. Global common:

1. RCST3G - RC corridor assignment

2. CORRCG - corridor coordinates

b. Local common:

1. IlfARAY - non-sequence RC number array

2. IMSIZE - IMARAY size

3. SQARAY - RC-not-at-Standby RC number array

4. SQSIZE - SQARAY size

s. SEQREQ - sequence-required flag

Output data:

a. Global common:

1. HCDATG - RC-data output array

2. HCCMDG - He-command output array

b. Local common:

LOOP - loop count

•

•

•

•

3.2.2.4.1.14.3

3. 2. 2. 4. 1. 14. 4

3.2.2.4.1.15

3.2.2.4.1.15.1

Internal Data Description

There is no data internal to this submodule.

Flowchart

See Figure 3.2.2-21 for the CMDSUP flowchart.

Submodule XV - GET

Description

GET is responsible for disk-data accesses for operational
commands. HC numbers are passed in a disk packet. GET Deques
the entire packet into a local buffer DBUF and preserves the
format in case it needs to send it back to the task SEQ for
sequence deletion.

a. Language used - FORTRAN "IV

b. How invoked - Enqued by CMD or SEQ

c. Constraints and limitations - DBUF buffer is 2048 words
long, assuming no more than 2048 HC numbers may be passed
in a packet •

d. Processing -

1. Initialize:
Zero the SEQ-call flag (SEQCAL), the
disk-error flag (DKERR), the record
numbers in memory (MRECl, MREC2), and
set the DBUF Index J to five.

2. Call Deque REX service to obtain the disk data
packet and have it transferred to local buffer
DBUF.

3. Examine DBUF(2). If set to nine, set SEQCAL to
one. Set LOOP equal to DBUF(5) to establish the
loop count.

4. Submit the connnand number in DBUF(l) to a CASE
statement to determine appropriate processing
submodule to call: ·

a) Call GETINI if command number = 3(LOAD);

b) Call GETAIM if command number = 20(AIMPOINT);

c) Call GETALl if command number = 14(ALT1STOW);

d) Call GETAL2 if command number = 15(ALT2STOW);

e) Call GETWSH if c~and number = 13(WASH);

f) Call GETSTO if command number = 6, 18 .or
25(STOW,
STHI, or
ESTOW); and

161

r
I

f;,~+;;;n°\f\t. w:
l nu.m 6-.,..-
ki, CJ)ARA'({I_)
i

lt: ... -l -7
('Or(:cior n1,,1rrit.lfr I

--------____,,-----J
f--,-·~-... --------
'1• H n ·· 11,-, I'\ I \ i),., ._,-iN;.,,

I (ori'f/.c c.-((,,-10 ,:i)

I
I- ~ LJ = (O~j(,,-\.)

f --:J
IHCCMC,<, I H)•_::i

i

!

I
' i
!

<

Fi 3 2 2 21 Flowchart - CMDSUP gure .. - .

:... ;,..,..

•

•

•

•

•

•

3.2.2.4.1.15.2

3.2.2.4.1.15.3

3. 2. 2.4. 1.15.4

3.2.2.4.1.16

3.2.2.4.1.16.1

g) Call GETSAR if command number= 16 or 22
(SAVE or
RESTORE).

S. All submodules return to this step. Examine

DKERR. If zero, go to step (6). If non-zero,

Enque the alarms output task ALO with a disk

read error critical-alarm message. Go to step

6.

(7).

Examine the SEQ-call flag (SEQCAL).

to step (7). Otherwise, revise the

phase word in DBUF by setting it to

sequence-command phase). Enque SEQ

DBUF address.

7. Relinquish control of task GET.

If zero, go
cormnand
ten (delete
using the

e. Error messages and recovery - a disk-read error message

is sent to task ALO for any disk error.

Data, Logic and Command Paths

Input data:

Local common:

a. Buffer DBUF contains all packet information

b. DKERR - disk-error flag

c. SEQCAL - SEQ-call flag

Output data:

a. Enque of SEQ

b. Enque of ALO

c. DBUF(3) - connnand phase

Internal Data Description

See Table 3.2.2-VI for disk data-packet format.

Flowchart

See Figure 3.2.2-22 for the GET flowchart.

Submodule XVI - GETINI

Description

GETINI is responsible for fetching the HC bias AZ/EL angles from

file HCB, the HC X,Y,Z coordinates from disk file HCC, and

the last reported AZ/EL angles for the LOAD input command. HC

numbers come from the local buffer DBUF.

a. Language used - FORTRAN IV

b 0 How invoked - called by GET

163

I

SfGCAL -;c !l>
bk'E:fZR=-0
NRUi d/;
f.) KU Z."' it>

LooP (OuNT

-::: DB!JF' (~')

L--~--"

---·-·-•--"-----
} = ;S

0

SE.GCAL-= 1
! ___ J

/4oc'G PAi
<,Af.l:J a: [J.li)~

··-.._

i I f'ALI I ~ .. ·- - ·___ -----~-
CALL

GETA1H.

(AR.6" 20)

-4
l _cf··.··--~ . I CALL --1

1' I! GETINI l' CAR&,,3)

CALL

GE1wst-f
{Af?.i':1::: !5)

i
•

CALL

GET5TD
j

ET /,: ... 1 Gt:TALZ i

RG: !'1·: {ARb" 1'5) I
-·-··· ·--- ---- L_.____ __ _,1

! __ CALL

i C,ET:SAR

! (AR l:s = /f.p o< 22) CM& ~ fr,) I i,or25

[. , ·-···•--'-J

r1~·--
: l
l-"", •. " ,•--~-,- ... ,~-, .. -~.,,-~

Figure 3.2.2-22

164

Flowchart - GET

•

•

•

•

•

£/'JQ;IE.

ALO

(c,._,/,D PHA5f\

[X 11'

Figure 3.2.2-22 Flowchart - GET (continued)

165

3.2.2.4.1.16.2

c. Constraints and limitations - None

d. Processing -

1. Perfonn DO-UNTIL processing where I equals one
to LOOP. If I is greater than LOOP, go to
step (16).

2. Increment J by one.

3. Set HC equal to DBUF(J).

4. Zero out all bits in HCST2G(HC) except the
not-installed (bit O) and the error-reporting
(bits 11-15).

5. Set the unmarked bit (bit 4) in HCST2G(HC).

6. Compute the HC bias record number:

BREC=((HC-1)/64)+1.

•

7. Test if the bias record is already in memory by
checking BREC equals MRECl. If so, go to step (8).
If not, read the bias record into memory and set
MRECl equals BREC. If disk error occurs, set
DKERR, and go to step (16).

8. Compute the HC's offset into the bias record.

9.

10.

Insert the bias AZ/EL angles into the first two
words of HCDATG(HC).

Compute the HC coordinates record number:

CREC=((HC-1)/32)+1.

11. Test if the coordinates record is already in
memory by checking CREC equals MREC2. If so,
go to step (12). If not, read the coordinates
record into memory and set MREC2 equals CREC.
If disk error, set DKERR, and go to step (16).

12. Compute the HC's offset into the coordinates
record.

13. Insert the five word HC X,Y,Z coordinates into
words three through seven of HCDATG(HC).

14. Set HCCMDG(HC) equal to #9818.

15. This is a type-2 critical command. Increment
EMCC1G(2) to tell task BHC how many type-2
commands exists in the HCCMDG array. Go to
step (1).

16. Return to caller.

e. Error messages and recovery - for disk error, set DKERR
and innnediately return to caller.

Data, Logic and Command Paths

Input data:

166

•

•

•

•

•

3. 2. 2.4.1.16.3

3.2.2.4.1.16.4

3.2.2.4.1.17

3.2.2.4.1.17.1

a. Local buffer DBUF contains HC number, size and HC
numbers

b. Disk file HCB (see Figure 3.2.2-23)

c. Disk file HCC (see Figure 3.2.2-24)

Output data:

a. Global connnon:

1. HCST2G - derived HC status

2. HCDATG - .]:lC-data output array

3. HCCMDG - RC-command output ~rray

4. EMCC1G(2) - type-2 critical command count

b. Local common:

1. MRECl - bias record number in memory

2. MREC2 - coordinates record number

3. BREC - fetched record

4. CREC - fetched record

5 • DKERR - disk-error flag

Internal Data Description

There is no data internal to this submodule.

Flowchart

See Figure 3.2.2-25 for the GETINI flowchart.

Submodule XVII - GETAIM

Description

number for

number for

in memory

bias

coordinates

GETAIM is responsible for fetching the target aim-point X,Y,Z

coordinates from the disk file AIM for the All1POINT input command.

This data updates the memory-resident aim-point array AnlPTG. It

also must test each HC whose number was passed in the data packet

to determine if that HC is at, or approaching, the target. If so,

the new target coordinates are sent to the HC. HC numbers come

from the local buffer DBUF.

a. Language used - FORTRAN IV

b. How invoked - called by GET

c. Constraints and limitations - None

d. Processing -

1. Set the aim-point record offset (OFSET) equal
to DBUF(2) which is the aim•point array number.

2. Perform DO-UNTIL processing where I equals one
to LOOP. If I is greater than LOOP, go to
step (9).

167

'·.

,/

I • I
·--.

I
I

r ---- -- --
1 VJOHD 'l> VI OF~t, 1.
·---------·_-- -· ----- ··-··1·-- ----- ·---------- ---_--- ·"' ----- ·· · -.r•·------- -----------------·--·

B'{-rr: (J) 8 YTE 1 l3YTE 2. BYTE 3
--.,~---~----- -- .. ----~~- _...,, .. , -~, .. , •··- _,_ -- ., .. ,, _ _, ~ •-·· ,., ~ ·~,.

AI \MUTH ELE VA1 ION

Figure 3.2.2-23 HC Bias File (HCB) •
1 f,R

•
·"·•- .. -,--~ ---~--"'~ . ',

f; r,
,, ,...,.
;)- \

f E
·E

C. C
I \

Ii 2
' -•• •-- •'h-.-•----~•--•••------· ••

--~"" . --- ------

• --.

---- ----
'··

.... -~----•-•·------··-----~"···• . - --~:,,,,

Figure 3.2.2-24 HC Coor.dinates (HCC)

169

~-tDh1(:r (1)Hc) 0

Ar v(l' ,e
l·\Ct,f'Jl~(2,~•r) 0

UEC =

tk._:-1 + 1
3Z. . ..,_

_.... <,•~--~· ... •-

Off::,p-/ irdD

CoM?C:6 f?.ec:
5 ~(t-lC-(C~Ec-1)
*32)-k(

HCDIYH1 (3·'\ii1
=- ~-- Wr>II! 0 :

x 1'1 1r.. cooec>SI
In rerD(·,4 I

cb

HCn--1DG (,.,r·\

-cce:t±·q{ _jl

11:---;I;-;:::-:: · 1
1
EH cc.LC,.,. 1 - :

!FMCC. iC:h) -r i

f<eo.J. HCc. /

(BREC ') /

~--J

N" / r ·,.,
~;sk ~rro~__,,>

,·------L-- : /
I ,/

j Yes
I ~-fffC :l =: Bf<'EC..

/1
\7

N'.ERR 'i

..___ _ __, ____ ---•···..!

~ 1 ·-. l RETuR~J)

Figure 3.2.2-25 Flowchart - GETINI

170

•

•

•

•

•
3.2.2.4.1.17.2

•

3. Increment J by one.

4. Set HC equal to DBUF(J).

S. Set the aim-point record number equal to HC and

read the aim-point record into memory. Compute

the offset to the HC data:

HOFSET = S*(OFSET-1).

If disk error, set D~RR, and go to step (9).

6. Update the memory-resident aim-point array,

AIMPTG(HC) equals HC aim-point X,Y,Z coordinates

in record.

7. Test the HC to be at, or approaching, its target.

If:

HCST1G(HC).AND.#007C = #0020,

go to step (8). Otherwise, go to step (2) for

next HC.

8. Set HCDATG(HC) to the five words of aim-point

X,Y,Z coordinates. Set HCMMDG(HC) equal to #8020,

and go to step (2).

9. Return to caller •

e. Error messages and recovery - for disk error, set DKERR

and immediately return to caller.

Data, Logic and Command Paths

Input data:

a. Global common:

HCCMDG - last commanded status

b. Local connnon:

1. OFSET - offset into aim-point record

2. Local buffer DBUF for HC numbers

c. Disk file AIM (see Figure 3.2.2-26)

Output data:

a. Global common:

1. HCDATG - RC-data output array

2. HCCMDG - RC-command output arrar

3. AIMPTG - memory-resident aim-point array

b. Local common:

1. LOOP - loop count

2. OFSET - offset into aim-point record

3. HOFSET - aim-point offset

4. DKERR - disk-error flag

171

•

. /

•
/

/

Figure 3.2.2-26 Aim-Point Arrays File (AIM) •
172

•

•

•

3.2.2.4.1.17.3

3.2.2.4.1.17.4

3.2.2.4.1.18

3.2.2.4.1.18.l

3.2.2.4.1.18.2

Internal Data Description

There is no data internal to this submodule.

Flowchart

See Figure 3.2.2-27 for the GETAIM flowchart.

Submodule XVIII· GETALl

Description

GETALl is responsible for fetching the Altlstow AZ/EL angles
from disk file ALl for the input connnand ALTISTOW. HC
numbers come from the local buffer DBUF.

a. Language used - FORTRAN IV

b. How invoked - called by GET

c. Constraints and limitations - None

d. Processing -
1. Perfonn DO-UNTIL processing where I equals

one to LOOP. If I is greater than LOOP, go
to step (8) •

2. Increment J by one.

3. Set HC equal to DBUF(J).

4. Compute the record number:

BREC = ((HC-1)/64)+1.

5. Test if record number already in memory by
checking BREC equals MRECl. If so, go to
step (6). If not, read the Altlstow record
into memory and set MRECl equal to BREC. If
disk error, set DKERR, and to to step (8).

6. Compute the HC's offset into the Altlstow
record.

7. Insert the Altlstow AZ/EL angles into words
one through two of HCDATG(HC). Set HCCMDG(HC)
equal to #8070, and go to step (1).

8. Return to caller.

e. Error messages and recovery - for disk error, set DKERR,
and iurnediately return to caller.

Data, Logic and Connnand Paths

Input data:
a. BREC - fetched record number

b. Local file DBUF

c. Disk file ALl (see Figure 3.2.2-28)

173

(-Rf. ~-u PJ,I
,,_. __ ,., ____ . ·--· ,_ . .,_ ..

A1MPTC.,(1-k) =-

6 ··· word .X)\7

c oords ir1
re c.orcl

,------.. •··-·,.,_ ,.
I HC1" l
Hc~T1Crl 1-1c) • I

fr'l[

He DATr.,- (1-5/·!c)

= A1~1PT&(1-5{(;

HCCHDG (He)

-::.-tt.<t,02(1,

•

•

-~ •
Figure 3.2.2-27 Flowchart - GETAIM

.. 174

•

• -~-

I ! ---r-- ----· ·-"· ----·-·-- ---· ---·· r··. --- --
I REC R£C RE.C l j f\EC

2 3 1-J I i_

-~---- _______ L_ ------~-" ,----- -
/

[. - _··_1R;f ;·;~~-

I
I

✓-

/
/

,/ -"
"·

-----------·---·4---·~---- , .. _
I -~-4 C.....,J · ------

[Worm '£ I "' OR'() j_ --

i B ~Tf. a:, I BYr{ 1jB'<i£_ZJ6'1'TE.3

AL 11 ST ow i ALT J..STtJW
Al! MUTH I E Lt \!~~2.'!:)~ _

Figure 3.2.2-28 Format and Structure of HC ALTlSTOW Angles Disk File

) 1. 1 :· L l ,' i . I.

175

3.2.2.4.1.18.3

3.2.2.4.1.18.4

3.2.2.4.1.19

3.2.2.4.1.19.l

Output data:

a. Global common:

1. HCDATG - HC-data output array

2. HCCMDG - HC-connnand output array

b. Local common:

1. LOOP - loop count

2. MRECl - record number in memory

3. BREC - fetched record number

Internal Data Description

There is no data internal to this submodule.

Flowchart

See Figure 3.2.2-29 for the GETALl flowchart.

Submodule XIX - GETAL2

Description

GETAL2 is responsible for fetching the Alt2stow elevation angle
from the disk file AL2 for the input connnand ALT2STOW. HC
numbers come from the local buffer DBUF. The azimuth angle
for the output connnand comes from the AZIMG array.

a. Language used - FORTRAN IV

b. How invoked - called by GET

c. Constraints and limitations - None

d. Processing -

1. Perform DO-UNTIL processing where I equals one
to LOOP. If I is greater than LOOP, go to step
(8).

2. Increment J by one.

3. Set HC equal to DBUF(J).

4. Compute the record number:

BREC = ((HC-1)/64)+1.

5. Test if record is in memory by checking BREC
equals MRECl. If so, go to step (6). If not,
read the Alt2stow record into memory and set
MRECl equal to BREC. If disk error, set DK.ERR
and go to step (8).

•

•

6. Compute HC's offset into the record.

7. Insert the Alt2stow elevation into word 2 of •
HCDATG(HC) and insert AZIMG(HC) into word l of
HCDATG(HC). Set HCCMDG(HC) equal to #8074, and .
go to step (1).

176

•

•

r GET~0_)

[-----]
J-=-T1i

- ---·

AL1 Rec.ord -:ir :

'B~Ec..~

ili-=lt1
(_gy

f<.eod ALi

(5~E C.'i

C ,_,

Hc!)A 1e:r r 1--J. 1H1,

-=- ~U 1
:, Az/EL

in rernrd

l>KERR-ri

(A

Figure 3.2.2-29 Flowchart - GETALl

177

3.2.2.t.,, 1.19.2

3.2.2.4.1.19.3

3.2.2.4.1.19.4

3. 2. 2.4. 1.20

3.2.2.4.1.20. l

8. Return to caller.

c. Error messages and recovery - for disk error, set DKERR
and immediately return to caller.

Data, Logic and Command Paths

Input data:

a. Global common:

AZIMG - last reported azimuth angle for HC

b. Local common:

1. Local buffer DBUF

2. BREC - fetched record number

c. Disk file AL2 (see Figure 3.2.2-30)

Output data:

a. Global common:

1. HCDATG - RC-data output array

2. HCCMDG - RC-command output array

b. Local common:

1. LOOP - loop count

2. MRECl - record number in memory

3. BREC - fetched record number

Internal Data Description

There is no data internal to this submodule.

Flowchart

See Figure 3.2.2-31 for the GETAL2 flowchart.

Submodule XX - GETWSH

Description

GETWSH is responsible for fetching the Wash AZ/EL angles from
the disk file WSH for the input command WASH. HC numbers come
from the local buffer DBUF.

a. Language used - FORTRAN IV

b. How invoked - called by GET

c. Constraints and limitations - None

d. Processing -
1. Perform DO-UNTIL processing where I equals

one to LOOP. If I is greater than LOOP, go
to step (8).

2. Increment J by one.

178

•

•

•

•

•

•

HFC.L*2-2
HC

I
I
I
I
I

.
J

I ~, .. ,..
1--------:-:-c-•------------ - ::..,_,

HC i 1-------,.____ _______________ 4

wo'RD es woR:.," 1. :

BYTE 6 l_ 8 YTE._ i B-'{ !-E ~~ r~_{r.~.I~
~LT2. :)10W ALi2.~,TovJ i
AIIHU,-H f.LE\/1\TION I

1-------~---------···· -------·-]

'-

Figure 3.2.2-30 Fonnat and Structure of ALT2STOW Angle Disk File

'{ ' t. ': A

179

~--- - - --

<AF . ,_,., _, __ ,_.____~

(!~~~N __ _

Ge.t of'fs,t
!nto AL2
rccord

HcDAf(, (i., He)
0 AZIH~ (HO_;

HCbl\fo (Z >Ht)-=
E L Ir. r-eaird

Figure 3.2.2-31 Flowchart - GETAL2

,.180

•

•

•

•

•

•

3.2.2.4.1.20.2

3.2.2.4.1.20.3

3.2.2.4.1.20.4

3.2.2.4.1.21

3.2.2.4.1.21.l

3. Set UC equal to DRUF(J).

4. Compute the record number:

BREC = ((HC-1)/64)+1.

S. Test if record number already in memory by
checking BREC equals MRECl. If so, go to step
(6). If not, read the Wash record into memory
and set MRECl equal to BREC. If disk error,
set DKERR and go to step (8).

6. Compute HC's offset into the Wash record.

7. Insert the Wash AZ/EL into words one through
two of HCDATG(HC). Set HCCMDG(HC) equal to
#8068 and go to step (1).

8. Return to caller.

e. Error messages and recovery - for disk error, set DKERR
and immediately return to caller.

Data, Logic and Command Paths

Input data:

a. BREC - fetched record number

b. Local buffer DBUF

d. Disk file WSH (see Figure 3.2.2-32)

Output data:

a. Global corranon:

1. HCDATG - RC-data output array

2. HCCMDG - HC-connnand output array

b. Local connnon:

1. LOOP - loop count

2. MRECl - record number in memory

3. BREC - fetched record number

Internal Data Description

There is no data internal to this submodule.

Flowchart

See Figure 3.2.2-33 for the GETWSH flowchart.

Submodule XX.I - GETSTO

Description

GETSTO is responsible for fetching the Stow AZ/EL angles from
disk file STO for the input connnands STOW, STHIWIND, or ESTOW.

181

~EC..
1

f.E C. REC.
2. 3

1-1 FC.

~]Cl HC., HC
z Q'.\ I 1

I

__ _.,._. ___

RfC
1-J

--,_-•~ ~--r---~

i-Jrc L * .2 ·· i L* 2· 2
Hcl t-1c. 11:-JC. H .L ;:/10 1 J ~ I ~

cfr~- ,--·-· H~
lz., I

I
I
I
I

------------L,
; ! t.,,,

L ... L --···-'---'---

.._
'------------------.-----"..-'-,

•

•

~ •
Figure 3.2.2-32 Format and Structur.e. .. of Wash Angles File (WSH)

182

•

•
HC = DBuFf J"}

v.JSH' reco<d 'fi·

Bfi'.EC '<

tlc-1 -t 1
(otj

-.------'

RET1~.f<~~J
Figure 3.2.2-33 Flowchart - GETWSH

183

recorci

(}d offset J ,nto vJSH

~· ;I , __
I HCDATb {1-Z, Hd
I

l ~ 1-IC '!) Ai /£.L

L~~~ co._,.r_a_~

HC..CHC>l:r(He;
-it Efb,'.,,f

3.2.2.4.1.21.2

HC numbers come from the local buffer DBµF.

a.

b.

c.

d.

Language used - FORTRAN IV

How invoked - called by GET

Constraints and limitations - None

Processing -

1. Zero, the critical-command bit value (BIT3).

2. If corra:nand is STHIWIND, set BIT3 equal to #1000.

3. Perform DO-UNTIL processing where I equals one
to LOOP. If I is greater than LOOP, go to
step (10).

4. Increment J by one.

S. Set HC equal to DBUF(J).

6. Compute the record number:

BREC = ((HC-1)/64)+1.

7. Test if the record number is in memory by check
ing BREC equals MRECl. If so, go to step (8).
If not, read the Stow record into memory and

8.

9.

set MRECl equal to BREC. If disk error, set
DKERR and go to step (10).

Compute the HC's offset into the Stow record.

Insert the Stow AZ/EL into words one through two
of HCDATG(HC). Set HCCMDG(HC) equal to #8060
plus BIT3. If DBUF(3) equals nine, reset HC-in
Stow-sequence:

HCST3G(HC) = HCST3G(HC).AND.#FEFF.

Go to step (3).

10. Return to caller.

e. Error messages and recovery - for disk error, set DKERR
and immediately return to caller.

Data, Logic and Corra:nand Paths

Input data:

a. Local buffer DBUF

b. BREC - fetched record number

c. Disk file STO (see Figure 3.2.2-34)

Output data:

a. Global common:

1. HCDATG - HC-data output arr~y

2. HCCMDG - HC~command output array

b. Local common:

1. LOOP - loop count

2. MRECl - record number in memory

3. BREC - fetched record number

•

•

•

•

•

• ~.

I

I
I
I

He .

WORD 05 WORD 1.
BYTE rt> -rBYTf.: .1 · l3V'rE/ l}3'tfE X

STOW STovJ
Az..11-{uTH ELE::vAT!ON

Figure 3.2.2-34 Format and Structu~~ of HC Stow Angles Disk File

i ..

185

3.2.2.4.1.21.3

3.2.2.4.1.21.4

3.2.2.4.1.22

Internal Data Description

Critical command bit value:

BIT3 = 0: cormnand is not STHIWIND

#1000: cormnand is critical (STHIWIND)

Flowchart

See Figure 3.2.2-35 for the GETSTO flowchart.

Submodule XXII - GETSAR

Description

GETSAR is responsible for two connnand actions:

a. Write the field's Tracking configuration (those HCs
which are in the Standby and Track orientations) to
disk file SAV; and

b. Fetch the saved Tracking configuration from disk file
SAV and try to restore this configuration to the field.

The local buffer DBUF contains the HCs which are in either Standby
or Track orientation for the SAVE connnand. RESTORE processing
does not get HC numbers in the DBUF buffer and must read every
record of file SAV and input the current HC status from the
HCSTlG array. Alarms bits are set for those HCs which are unable
to return to their saved orientation.

a. Language used - FORTRAN IV

b. How invoked - called by GET

c. Constraints and limitations - None

d. Processing -

1. If the command is not SAVE, go to step (12).

SAVE processing:

2. Perform DO-UNTIL processing where I equals one
to LOOP. If I is greater than LOOP, go to step
(4).

3. Insert the HC number in DBUF(I) into the sort
buffer SOBUF(I) in ascending order, and go to
step (2).

4. Set the SOBUF buffer index J.equal to 1.

5. Perform DO-UNTIL processing where I equals one
to 2048. If I is greater than 2048, go to step
(11).

6. Set record number MRECl equal to I. If J is

•

•

greater than LOOP, set the SAV-file HC number, •
SAVHC equal to zero, and go to step (7). Other-
wise, set the SAV-file HC number, SAVHC equal to
SOBUF(J).

•

•

• .~
·•.

Reod ::.TD

(6f;'.H\I

-~HI····-·

.;:>I

--·-··--

1<'.ETu Rl'l __)

H C ~ DB u f: (J)

2 2 35 Flowchart - GETSTO Figure 3. • -

187

"·· . .._,,
6ur::<3): 9 >

","-, /

X':~------, ,.-.... - '
1-\C'~)T~C:,-(Pc)::. .

~CS13& (He':•

ii-- F'EFF

7. Clear the SAV-file record buffer: SOBUF(l-6)
equals zero. • 8. If I is not equal to SAVHC• go t;o step (9) to write a
blank record in the SAV file for this HC number.
Otherwise, increment J by one and get the HC
status:

HCl = HCSTlG(SAVHC) .AND.4fo7C.

If HCl equals #30 (Standby), set SBUF(l) equal
to minus one, and go to step (9). Otherwise,
set SBUF(l) equal to one (save orientation is
Track) and place the HC's aim-point in the
record, SBUF(2-6) equals AIMPTG(l-5,SAVHC).

9. Write a record to disk file SAV using MRECl
as the record number. If no disk error occurs,
go to step (5).

10. For disk errors, set disk-error flag DKERR
equal to one.

11. Return to caller.

RESTORE processing:

12.

13.

Perfonn DO-UNTIL processing where I equals one
to 2048. If I is greater than 2048, go to step
(11).

Set record number MRECl equal to I. Read a
record from the disk file SAV using MRECl as
record number. If disk error occurs, go to
step (10).

•
14. Get the HC status:

15.

16.

17.

HCl = HCST1G(I).AND.#7C.

If the first word of the SAV record, SBUF(l)
equals zero, this HC was not in Standby or
Track at save time; go to step (12). Other
wise, if SBUF(l) is greater than zero (save
orientation was Track), go to step (19). Other
wise, SBUF(l) is less than zero (save orientation
was Standby).

If HCl equals #30 (Standby), HC is in proper
orientation and requires no movement; go to step
(12). Otherwise, if HCl is not equal to #20,
go to step (18) to set HC's alarm bit. If
HCl equals #20 (at or approaching Track), it can
be commanded back to its save orientation
(Standby).

Get the HC's corridor assignment by:

L=HCST3G(I).AND.#FOOQ.

Right-justify by shifting right 12 bits. to pick.

Set HCDATG(l-5,I) equal to CORRCG(l-5,L)

188

•

•
3.2.2.4.1.22.2

•

up the five-word CULP X,Y,Z coordinates. Set

HCCMDG(I) equal to #8030, and go to step (12).

Alarms processor for RESTORE, one step only:

18 •. Set the RESTORE alarms bit (bit 6) in

HCSTlG(I) to tell Alanns-dection task ALM

that this HC was not in the proper orienta

tion to return to its save orientation. Go

to step (12).

19. If HCl equals #20 (at or approaching Track),

HC is in proper orientation but could be

assigned a different aim-point than the one

saved at save time; go to step (21). Other

wise, if HCl is not equal to #30, go to step

(18) to set HC's alarm bit. If HCl equals

#30 (Standby), fall through to step (20).

20. Set HCDATG(l-5,I) equal to SBUF(2-6) to pick

up the five-word save-time aim-point X,Y,Z

coordinates. Set HCCMDG(I) equal to #8020.

Update the memory-resident aim-point array

by setting AIMPTG(l-5,I) equal to SBUF(2-6).

Go to step (12).

21. If the save-time aim-point located in SBUF(2-6)

is equal to the latest memory-resident aim

point, AIMPTG(l-5,I), no adjustment movement

to a new aim-point is required; go to step (12).

Otherwise, the save-time aim-point must be

sent to the HC in the field; go to step (20).

e. Error messages and recovery - for disk errors, set DKERR

and immediately return to caller.

Data, Logic and Command Paths

Input data:

a. Global common:

1. HCSTlG - HC status

2. AIMPTG - memory-resident aim-point array

3. CORRCG - corridor coordinates

4. HCST3G - HC corridor assignment

b. Local common:

1. DBUF - local buffer of RC numbers

2. SBUF - 6-word SAV record buffer

Output data:

a. Global common:

1. HCDATG - RC-data output array
"'

2. HCCMDG - RC-command output array

3. HCST2G - RC-derived status, restore-alarm bit

189

3.2.2.4.1.22.3

3.2.2.4.1.22.4

3. 2. 2. 4. 1. 23

3. 2. 2. 4. 1. 23 .1

4. Ail1Pl'G - memory-resident aim-point array

b. Local common:

1. MRECl - file record number

2. HC - involved HC number

3. HCl - current HC field status

4. SBUF - 6-word SAV record buffer

c. Disk file SAV (see Figure 3.2.2-36)

Internal Data Description

SAV record buffer:

SBUF - 6-word record buffer for disk file SAV processing

Flowchart

See Figure 3.2.2-37 for the GETSAR flowchart.

Submodule XXIII - SEQ

Description

SEQ is responsible for overall control of sequence processing.
It determines the correct processing path for cormnand phases
4, 5, and 10. The flag "STUB" is used for an Enque of other
command phases (power fail and HAC failover). The Dequed
sequence-data packet follows the format of Figure 3.2.2-38.

a. Language used - FORTRAN IV

b. How invoked - activated via Enque by tasks CMD or
GET or by timer expiration connected and thawed by
this task.

c. Constraints and limitations - None

d. Processing -

1. Call library routine Til1DAT to acquire minutes
and ticks since midnight, or since system boot
up if time not set.

2. Call system routine DEQUE to attempt to acquire
a sequence data packet. If the return status
indicates "queue empty," SEQ was activated by a
timer expiration; go to step (8). Otherwise,
set the stub flag (STUB) to zero. The sequence
data packet is transferred into buffer SQBUF.
If the cormnand phase in SQBUF(2) is not four,
go to step (4).

•

•

3. If the command phase is four, at least some of
the heliostats involved in the sequence connnand
are moving towards either their CLLPs or CULPs ••
Zero the relink flag (RELINK) and call submodule
SEQADD to put sequence in the active-sequence

190

•

• .-..__

·-

·••..--·-•'"···-···

I

f\(C, REL I KEC
I I :fl

_ i _L2_ 1 _3 ______ _

/
/

/

/

/
/

/

/
/

'

\.
\

\
\

\
\

' \
\

/
'

/ -~--- \

:~DIL----~-woR·DI - -woP.~;:~-~oR~-~ l 1tioR6-~flwotiif;;·/

~:~~ __ ~:~r bi~'"t]{~{~ w'-p- ~~,~~~,fJj:tt]

\/Jhm,_ '5o·Je µcJe_ =¢, other
> rt> '! He 1,liJ{, of ·rr0,:·:\ O'l'ld a5 f:,,·m po:r.t l.:'.I in

uJeirch 1 -5

< 0 : He 1..A>a:; ,rt .:S+c, nd by

Figure 3.2.2-36 Tracking Configuration Save File (SAV)

I,

191

.i

r

J::-e·;t Dtu(h)

1Y1io ::,otuF OJ
n o ~Jer1d :,.q
!'l·de, v -· ···- . . ·1 .. -··

r-----·-·· .. ····--7 ·(r<,

l SAVt•f ·,·r/ ·

I ______ ...
T-··-·-···--•.

ri},
\ u) · .. ____ ,,..

Figure 3,2.2-37

1 Q?

w
'J

,r', ~ ' 1'.,..'1

B -l
\ ~

E: ,:,,,c6--i
-··-·T·'"-·· ·-•·- .J

·-••h•• .. -~---

HC l::. J
l". {<:71'-/.,.,,••.1,-\.~r ,., -~- cs . .._-v--. r, , •~.,

l
·-.., .)

_,,,/'Y r------···--- 7
/ Ve

<:✓, :~~ 1 - -tt s ! _,../--=-~ S6u r (1)" -1
, , I

',rh L-····~--

/ ·se)~-,;~ct,·L··· 1

I . ! I s8uF(2·L,) i

I A1MPfo(/· S., :Ai/1ti
I I , .. j I
t ;!< ····--·······-·······---•·••--·-.J,,

/2
~1;;·-:;··::J' ,;-l

I

t--iREC. J.) /

·····-1 · .I

~
Flowchart - GETSAR

•

•

•

• Ah ,t-..,

• -,

Figure 3.2.2-37

S8uF(2-(,,1

----,...----

L~cc;:~:;~:]
_______ } - ,·-1

A11•-1PT6 (i-1Jr

Sf\ur(2-&.·)

Hc::,rzr..,,<r., ::

.------'"'~-'-~ ,., "I\

L ""- HC.ST .5(-J:; • l
#r,1>0@

ShJt R+ :z. b '::: /
' ... ,.,.,,..,.,,_~'""' •. , __ ,

Hc ,...ATr-{1 -·"'> T), .U, .t,;,"""_ """)''

I' , ' 1.-oRRc.c-r { :1- s) :... 1

,--,______,.__ -"'- - . -,
i

HCCt-(D& (r:) = I
-:t:r20aas 1

-....---,J

,-.---- _., __ -7

L'>t<f~~ C 1 I
~------~T- _J

Flowchart -GETSAR (continued)

193

(RE~uR,D

WAIT SEQ.
SLOT

1

15

WAIT SEQUENCE
ENTRY DESCRIPIION

Seq.#,# of corridors, corr #1, ••• , corr #8, packet address

iFFFFF (end of list)

NOTES: All entries are 11 words long with some corridor #s
zero for a given wait sequence.

Sequence#= 0 for unused entries.

All data comes from the dequed sequence data packet •

Figure 3.2.2-38 Wait-Sequence List (WAITSQ)

194

•

•

•

•

•

•

list. Upon return, go to step (11).

4. If the command phase is five, go to step (6)
to add sequence to the corridor-wait list.
Otherwise, if command phase is not ten, the
Enque was caused by MAXIVM for either field
power loss or HAC failover. Set STUB equal to
one, and go to step (11) until further defini
tion is known for these conditions.

5. If the command phase is ten, call submodule
SEQDEL to purge sequence. Upon return, go to
step (7).

6. Add the sequence to the wait-sequence list
(WAITSQ) by searching the array for a zero-first
element. See Figure 3.2.2-38 for format. If a
free entry is not found, use REX service number
ten to print following message on the system
console:

7.

8.

"CANNOT ADD SEQUENCE TO WAIT LIST."

Go to step (11). Insert the sequence number,
number of corridors, and the corridor numbers
required. Since SQBUF is vulnerable to a sub
sequent sequence Enque, the system routine LEASE
is called to move the sequence data into a unique
buffer for this sequence. The lease buffer
address is inserted in the last word of the
WAITSQ entry.

Call submodule SEQCCK to search the wait-sequence
list and determine whether any sequence has all
of its corridors free. If not, go to step (11).
Otherwise, set RELINK equal to zero and call
submodule SEQADD to put sequence in the active
sequence list. Upon return, call submodule
SEQCOR to move the heliostats in the proper
corridors. Upon return, go to step (11).

Activation was due to timer expiration. Deter
mine visit sequence by examining the dummy-cell's
time-link pointer in ACTLIS. If the current time
obtained in step (1) is greater than or equal to
the visit sequence's maximum time, set the time
out flag (TMOUT). Search the leased buffer to
acquire the address of the gather buffer. Call
submodule SEQGAT to gather heliostats arriving
at either their CLLPs or CULPs.

9. Upon return, if the gather process is done, go to
step (10). Otherwise, check if the sequence was
completely robbed by either the STHIWIND or HOLD
command. If sequence was robbed, go to step (5).
Otherwise, set RELINK equal .to one and call sub
module SEQRLK to relink visit time-links in the
active-sequence list. Upon return, go to step (11).

195

3.2.2.4.1.23.2

10. If the gather process is done, check the
command phase to be eight (corridor gather).
If not, all of the involved heliostats are
either at their CULPs or CLLPs, and the
sequence must be taken out of the active-se
quence list and submitted to the corridor-wait
list to check if all corridors are free for use.
Call submodule SEQDEL and upon return, go to
step (6).

If command phase is eight, call submodule SEQBPI'
to command heliostats to Track either their

•

CLLPs or CULPs. Upon return, check command
phase to be ten. If so, go to step (5). Other
wise, last part of command requires disk data
(STOW or ALTlSTOW commands). Construct a disk
packet containing those HCs still in the sequence.
Enque the buffer for task GET and call routine
FREE to release the disk buffer area. Go to
step (11).

11. Exit processing detennines how SEQ was activated
by checking if activation was via Enque. If yes,
go to step (14). Otherwise, if relink flag is
zero, go to step (14). If set, fetch the next
required visit time from the dummy cell of
ACTLIS. If zero, call system routine UNCONNECT •
to release system timer; go to step (14). If
there is a time, check if a password has been
acquired (timer connected). If so, call routine
CONNECT to reconnect timer for next visit. Go
to step (13).

12. If timer is not connected, call CONNECT to obtain
timer and its password.

13. Call routine THAW to unfreeze the timer.

14. Relinquish control of task SEQ.

e. Error messages and recovery - if wait-sequence list has no
unoccupied entries for a new wait sequence, output text
message to system console and go to exit processing
(step (10)).

Data, Logic and Command Paths

Input data:

Local common:

a. SQBUF - deque buffer for sequence packet

b. WAITSQ - wait sequence list (see Figure 3.2.2-38)

c. ACTLIS - dummy-cell time link in active-sequence list
Output data:

Local common:

a. RELINK - relink ACTLIS flag

196

•

•

•

•

3. 2. 2. 4. 1. 23. 3

3.2.2.4.1.23.4

3.2.2.4.1.24

3.2.2.4.1.24.1

b. STUB - future-definition event flag

c. WAITSQ - wait-sequence list

Internal Data Description

There is no data internal to this submodule.

Flowchart

See Figure 3.2.2-39 for the SEQ flowchart.

Submodule XXIV - SEQGAT

Description

SEQGAT is responsible for gathering HCs at either their CLLPs or
CULPs for the sequence being visited. As HCs report position
compare, they are deleted from the gather buffer and inserted
into a leased buffer. When the gather buffer is empty or the
maximum time is reached, the gather process is done. Any HC
not responding by the maximum time will be set offline and out
of the sequence by setting the HC's timeout bit in HCST2G(HC).

a. Language used - FORTRAN IV

b. How invoked - called by SEQ for command phases four and
eight

c. Constraints and limitations - None

d. Processing -

1. Set gather loop count (LOOP) equal to the
gather buffer size.

2. If the sequences-gather lease flag is set, go
to step (3). Otherwise, a buffer must be leased.
Call routine LEASE to obtain an area in which to
put the HCs reporting position compare. Save
the lease-area address in the sequence's ACTLIS
entry. Zero the lease buffer size and set the
gather-lease flag.

3. Determine the lease buffer pointer K equals
lease size plus one.

4. Perform DO-UNTIL processing where I equals one
to LOOP. If I is greater than LOOP, go to step
(9).

5. Set N equal to element I of the gather buffer.
Check if HC is still in the sequence. If so,
go to step (7).

6. Decrement the gather buffer size by one and
delete the HC number from the gather buffer •
Go to step (4).

7. Check if the HC reports position compare. If
so, go to step (8). Otherwise, check if the
timeout flag is set. If not, go to step (4).

197

1L ___ 0_· L_L __
I'

! I T1HDA1

:~ ... · .. --_r:-·
1 1 ('/\LL
1 , ... ,, "'--"'----:..

1

1·)fOu.E
! f~t.~.«F)

/'
/A1 1 r,1o / . (llj ~--, --<jtr.y Me-5.!.u:p~ it>

·· ""- Suflrr
. ""-

',

'i~&

Figure 3.2.2-39

-198

/4,, ··.'--, l~o_J
•• T:;r;) Cl.J11 _,,,✓,>- '

--- {;·;_:
f5'1 ~i . •-·••··--1

iAcid 51"Q<),",f',((: I
to wr, ·, f k,t 1

I
(WA1.T6,'.";l' _J

Flowchart - SEQ

CALL--;]
<',C'Q{'(~.. ; ·:c.J

/ '--.
(\.,1 'rl:i ·,.,. ', . ._

Sf•~u ~r,'.'. Re.:,:,';)
i., ., /j/

; //

, _____ ;

!
r.:5 i

CALL 'i
0EQA[)D 1

--- -·--I- -~-- ----- J
' ---fA-LL .. l l ---- !

1 SE: c;i co R I
-------- -- -.... LI

(Ns1
V

•

•

•

•

•

A!z

f:-ev,':--it Seq.""::.

Ac.TL! 5 (1/i'

CALL ···-

$EGGAT

3.2.2-39 (continued) Flowchart - SEQ

199

Figure 3.2.2-39 _ SEQ (continued) Flowchart

•

•

•

•

3.2.2.4.1.24.2

•

•

8.

9.

If so, set the timeout flag in the HCST2G
word (bit 8), and go to step (6).

Trans fer the HC number from the gather buffer
to the lease buffer. Increment the lease
buffer-pointer Kand the lease buffer size.
Go to step (6).

If the timeout flag is set, go to step (10).
Otherwise, check the gather buffer size. If
zero, gather is done; set return flag equal to
one, and go to step (11). If not zero, gather
is not done; set return flag to zero, and go
to step (11).

10. Check if the lease buffer size is zero. If so,
the sequence was robbed by an emergency command;
set return flag equal to minus one, and go to
step (11). If not zero, gather is done; set
return flag equal to one, and go to step (11).

11. Return to caller.

e. Error messages and recovery - None

Data, Logic and Connnand Paths

Input data:

a. Global connnon:

1. HCST3G - HC sequence assignment

2. HCSTlG - HC position-compare bit

b. Local common:

1. Gather buffer

2. Gather-lease flag

3. TMOUT ~ sequence maximum-time flag

Output data:

a. Global connnon:

HCST2G - HC timeout bit

b. Local conunon:

1. Lease buffer - those HCs reporting position
compare for gather process

2. Lease buffer address

3. Lease buffer size

4. Lease buffer pointer

s • Gather buffer size

6. Gather buffer

7. Gather return flag

201

3. 2. 2. 4. 1. 24. 3

3.2.2.4.1.24.4

3.2.2.4.1.25

3.2.2.4.1.25.l

lnternal Data Description

There is no data internal to this submodule.

Flowchart

See Figure 3. 2. 2-40 for the SEQGAT flowchart.

Submodule XXV - SEQBPI'

Description

SEQBPI' is responsible for issuing beam-pointing output commands··
for tracking either the CULP or the CLLP. When all involved HCs
have been so connnanded, release the corridor resources and free
the buffer leased in submodule SEQGAT if the cormnand is UNSTOW.

a. Language used - FORTRAN IV

h. How invoked - called by SEQ

c, Constraints and limitations - none

d. Processing -

1. Set LOOP to the HC buffer size.

2. Perfonn DO-UNTIL processing where I equals one
to LOOP. If I is greater than LOOP, go to
step (6).

3. Set N equal to element I in the HC buffer to
get HC number. If HC is in the sequence, go
to step (4). If not, decrement the buffer
size and delete the HC number from the buffer.
Go to step (2).

4.

5.

6.

7.

B.

If the command is not UNSTOW, go to step (5).
Otherwise, find the HC's corridor number J and
right-justify. Set HCDATG(l-5,N) equal to
CORRCG(l-5,J) to pick up the five-word CULP
X,Y,Z coordinates. Set HCCMDG(N) equal to 1/8030,
and go to step (2).

If the command is UNSTOW, find HC's corridor
number J and right-justify. Set HCDATG(l-5,N)
equal to CORRCG(6-10,J) to pick up the five
word CLLP X,Y,Z coordinates. Set HCCMDG(N)
equal to 1/8034, and go to step (2).

Initialize for releasing corridor resources by
setting sequence-packet corridor index J equal
to four. Set LOOP equal to number of corridors
in packet, SQBUF(4).

Perform DO-UNTIL processing where I equals one
to LOOP. If I is greater than LOOP, go to step
(9).

Increment J by one and set corridor number

•

•

• COR equal to SQBUF(J). Zero the corridor/sequence

202

•

•

SEoGAr

Loc,p C ou t",t" :.::.

uo..~er t'1v.Hc'<"
Siu

L2i -- =·_j
rA:Uier• l~a~, '(e<

•-Jlo9 ~;et ,/ ·,? ,,
' ' NO

l . ---
1 LfA5E
I

l ____ .1=-·····~ -
'Sa.ve le.o..~e J
o.J d n'S S i ()
Acrus o..oa. __

0
0d r-/ c..

f\/"r(,/'tf/- r In

~·i, +'°''' bu ft ~r
..;

,,,.- ' , j Dec no.~,e. !
<~_lr·.:..1;!1,·n~~)l'b ~•~~Hier bu.f.frr !
~ ,// j·' ;:e. j

1, ~ t _ _, . ., ··-·~-~-

SeJ He +,'mt.tH,h

HC.Sl 'J,& I t-J)-=

I-IC$7H,(t,/l t#'6,t,

~;~t e He~
rfr,.,.,,,. ~et>ff,er

/bu.ffZr
L--·-··---'

Figure 3.2.2-40 Flowchart - SEQGAT

203

•

•

•
Figure 3.2.2-40 Flowchart - SEQGAT (continued)

•

•

•

3.2.2.4.1.25.2

3.2.2.4.1.25.3

3.2.2.4.1.25.4

3. 2. 2.4. 1. 26

3.2.2.4.1.26.l

number element: CORSQG(COR) equals zero.

Zero the corridor status element CORRSG(COR)

equal to zero. Go to step (7).

9. If the command is UNSTOW(corridor-up sequence),

go to step (10). Otherwise, set the command

phase to nine, and go to step (11).

10. For UNSTOW commands, call routine FREE to

release the leased buffer obtained in SEQGAT.

Set the command phase to ten.

11. Return to caller.

e. Error mess~ges and recovery - None

Data, Logic and Command Paths

Input data:

a. Global common:

HCST3G - HC corridor and sequence assignment

b. Local common:

SQBUF - HC sequence packet

Output data:

a. Global common:

1. HCDATG - HC-data output array

2. HCCMDG - RC-command output array

3. CORSQG - corridor/sequence number

4. CORRSG - corridor-status array

b. Local common:

LOOP - loop counter

Internal Data Description

There is no data internal to this submodule.

Flowchart

See Figure 3.2.2-41 for the SEQBPT flowchart. '

Submodule XXVI - SEQCCK

Description

array

SEQCCK is responsible for searching the corridor-wait Ust

(WAITSQ) and determining if any sequence can be added to the

active-sequence list. This is allowed only if all the corridors

required by the s~quence are free. When this occurs, these

quence is deleted from the wait list and the sequence-ready

flag is set.

a. Language used - FORTRAN IV

b. How invoked - called by SEQ

205

! L~)IJO Co\.lr'•'t ...
I a.. r • • 11J,.n·r :Sr ze
I

i
L-·----·-·1 ·----•-----

t

~------·--"!.
. j5d N-::.
t~ E 1rMent I in

.: b•Jffe(

[

i
!

•

•

•
Figure 3.2.2-41 Flowchart - SEQBPT

•

•
Figure 3.2.2-41 Flowchart - SEQBPT (continued)

207

3.2.2.4.1.26.2

c. Constraints and limitations - None

d. Processing -

1. Perform DO-UNTIL processing where J equals one
to 15. If J is greater than 15, go to step (5).

2. See Figure 3.2.2-38 for the WAITSQ array format.
Check WAITSQ(J,l) for a negative number. If so,
this is the end of list; go to step (5). If not,
determine if a sequence is present (WAITSQ(J,l)
is non-zero). If not, go to step (1). If so,
set the loop count LOOP equal to WAITSQ(J,2), the
number of corridors required for the sequence.
Set the WAITSQ corridor index ICOR equal to three
to point at the first corridor number in the
entry.

3. Perform DO-UNTIL processing where K equals one
to LOOP. If K is greater than LOOP, go to step
(6).

4. Set the corridor number COR equal to WAITSQ(J,ICOR).

5.

6.

7.

8.

9.

10.

11.

If CORRSG(COR) equals zero (corridor is free), go
step (3). If not, go to step (1) to get another
wait-sequence entry.

Clear the sequence-ready flag, and go to step (11).

Set corridor index ICOR equal to three. •

Perform DO-UNTIL processing where K equals one to
LOOP. If K is greater than LOOP, go to step (9).

Get corridor number COR equal to WAITSQ(J,ICOR).
If corrnnand is UNSTOW, set command phase equal to
six and set the corridor's status word for ready
to go up, CORRSG(COR) equals one; go to step (7).
If not UNSTOW, set the command phase equal to
seven and set the corridor's status word for
ready to go down, CORRSG(COR) equals two; go to
step (7).

Set SQAD equal to address of the sequence packet
which is contained in WAITSQ(J,11). Delete the
sequence from the wait-sequence list by
WAITSQ(J,1) equal to zero.

Set the sequence-ready flag.

Return to caller.

e. Error messages and recovery - None

Data, Logic and Command Paths

Input data:

a. Global common:

CORRSG - corridor-status array

208

•

•

•

3.2.2.4.1.26.3

3.2.2.4.1.26.4

3.2.2.4.1.27

3.2.2.4.1.27.1

b. Local connnon:
1. WAITSQ - wait-sequence list

2. SQBUF(l) - connnand number

Output data:

a. Global common:
CORRSG - corridor-status array

b. Local common:

1. LOOP - loop count

2. Sequence-ready flag

3. WAITSQ - wait-sequence list

4. COR - corridor assigned to sequence

s.
6.

ICOR WAITSQ-entry corridor index

SQBUF(2) - command phase for sequence

7. SQAD - address of sequence packet

Internal Data Description

There is no data internal to this submodule •

Flowchart

See Figure 3.2.2-42 for the SEQCCK flowchart.

Submodule XXVII - SEQCOR

Description

SEQCOR is responsible for commanding the involved HCs into
their respective corridors. If an HC has been robbed from the
sequence, the HC is deleted from the buffer.

a.

b.

c.

d.

Language used - FORTRAN rv

How invoked - called by SEQ

Constraints and limitations - None

Processing -

1.

2.

Set LOOP equal to buffer size.

If command is UNSTOW (up corridor), set
(HFC corridor-increment word) to zero.
UNSTOW, set HFCCOI equal to four.

HFCCOI
If not

3. Perform DO-UNTIL processing where I equals one
to LOOP. If I is greater than LOOP, go to step

(7).

4. Set N equal to element I in the buffer to get
the HC number.

5. Determine if HC is still in the sequence. If
so, go to step (6). If not, decrement the buffer

209

•

•

•
Figure 3.2.2-42 Flowchart - SEQCCK

210

•

•

• .--.,.., ,, { ·~

,' Of-, o.l \
\ " - \ ,J, "· N }

-------··-- - '"' ,. ··-· . ·-- ~,,,,/

Figure 3.2.2-42 Flowchart - SEQCCK (continued)

211

3.2.2.4.1.27.2

3.2.2.l+.1.27.3

3.2.2.4.1.27.4

3 • 2 • 2 • 4. 1. 28

3.2.2.4.1.28.1

size by one and delete the HC number fr,om the
buffer. Go to step (3).

6. Set HCCMDG(N) equal to #8040 plus HFCCOI, and
go to step (3).

7. Set command phase equal to eight (gather HCs
in corridor) and return to caller.

e. Error messages and recovery - None

Data, Logic and Command Paths

Input data:

a. Global common:

HCST3G - HC sequence-assignment array

b. Local common:

1. Gather buffer

2. HFCCOI - HFC corridor-increment word

3. Gather buffer size

Output data:

a. Global common:

HCCMDG - RC-command output array

b. Local common:

1. LOOP - loop count

2. HFCCOI - HFC corridor-increment

3. SQBUF(2) - command phase

4. Gather buffer

s. Gather buffer size

Internal Data Description

There is no data internal to this submodule.

Flowchart

See Figure 3.2.2-43 for the SEQCOR flowchart.

Submodule XXVIII - SEQADD

Description

word

SEQADD is responsible for either adding a sequence to the active
sequence list (ACTLIS) or merely providing a call to the relink
submodule (SEQRLK). See Table 3.2.2-VII for ACTLIS format.

a. Language used - FORTRAN IV

b. How invoked - called by SEQ

c. Constraints and limitati.ons - None

d. Processing -

212

•

•

•

•

• -,.

i lr)r}(' ! 1), 1 '..rT ---

f' · I (f '-I;: F..._

Figure 3.2.2-43 Flowchart - SEQCOR

213

WORD

1,2

3

4

5

6

7,8

9

10

11

12

13

DESCRIPrION

Til1E SINCE MIDNIGHT (MINUTES, TICKS); THIS IS THE NEXT VISIT
Tll1E FOR THIS SEQUENCE AND INITIALIZED TO THE MINIMUM GATHER
Tll1E.

SEQUENCE# (RANGE: 1 - 16)

Tll1E LINK CELL POINTER; THIS WORD CONTAINS THE CELL# HAVING
THE NEAREST AND MORE POSITIVE VISIT Til1E AS COMPARED TO THIS
SEQUENCE's VISIT Til1E.

NEXT AVAILABLE MEMORY CELL; THIS WORD CONTAINS THE CELL if OF
THE NEXT VACANT CELL

COMMAND lfa

MAXIMUM GATHER Tll1E (MINUTES, TICKS); FINAL VISIT Til1E

GATHER BUFFER ADDRESS; CONTAINS HCs TO GATHER

GATHER BUFFER SIZE

LEASE BUFFER ADDRESS; CONTAINS HCs GATHERED

LEASE BUFFER SIZE

LEASE FLAG (NONZERO IF LEASE BUFFER ACQUIRED)

NOTE: ACTLIS is a 17 x 13 word array. It is a time-linked list of active
sequences (heliostats moving).

Table 3.2.2-VII Typical Cell in Active-Sequence List (ACTLIS)

214

•

•

•

•

•

•

1. If the command phase is four (gather), go to

step (2). Otherwise, set the corridor-walk

gather minimum and maximum times to current

time plus 360 and 424 seconds, respectively.

Go to step (3).

2. Set the non-corridor gather minimum and maximum

times to current time plus 400 and 464 seconds,

respectively.

3. Insert the sequence number and minimum time into

the cell (add cell) referred to as available in

the dummy cell in ACTLIS. Insert the maximum

time, the gather buffer address, and size. Zero

the lease-flag word in the cell. Swap the avail

able memory numbers between the add cell and the

dummy cell. If the dummy time-link cell number

is not equal to zero, go to step (4). If zero,

no other sequences are active; set the dummy

time-link cell number equal to add cell number.

Set the relink flag, and go to step (9). Reorder

the time-linked list (see Figure 3.2.2-44 for

example).

4. Set the old cell equal to zero for dummy reference •

Set the compare cell equal to dummy time-link

cell.

5. Check if the add-cell's time is less than com

pare-cell's time. If yes, go to step (7). Re

order the time-linked list (see Figure 3.2.2-44

for example). Otherwise, check if add-cell's

time equals compare-cell's time. If yes, incre

ment the add-cell's time by 500 milliseconds and

check if the compare-cell's time link is zero.

If not, go to step (6). If so, set compare-cell's

time link equal to add-cell number. Set the add

cell's time link equal to zero (add cell has

largest visit-time value in ACTLIS). Go to step

(9).

6 0 Set old cell equal to compare cell. Set compare

cell equal to compare-cell's time link. Go to

step (5).

7. Check if the old cell equals zero (dummy). If

so, set dummy time link equal to add cell. If

not, set old-cell's time link equal to add cell.

Set the add-cell's time link equal to compare

cell. If old cell equals zero, set the relink

flag, and go to step (8). Otherwise, go to step

(9) •

8. Call submodule SEQRLK to relink all time-link

cell pointers according to visit times.

9. Return to caller.

e. Error messages and recovery - None

215

·~
:)'\

(o

G
(0
\!:
(o
~

J
;\
2)

J
~
o)

DUMMY
CELL

CELL
Ill

CELL
112

CELL
113

Assume ACTLIS to hold 3 seqs.
for this example. Only first 5
words of an entry are used here.
Dummy cell is at top and contains
no visit time value.

Legend:

V.T. SEQ

T.L. A.M.

V.T. - Visit time (minutes,

A.M. - Next available memory

ticks)

cell
when this cell cleared

T.L. - Time link pointing to cell
with next visit time

SEQ - Sequence II

•
I

0
10:06:40

l 0
\o

'-

C
/

/0
\o

'\.

:)
t
1\.
0)

I

1/
1

~
3./
/

' \ 0 \
)

ot
/

Action: Add seq. 1,
cmd phase= 4

- Current time= 10:00

- Seq min= visit time= 10:06:40

- Seq max= 10:07:44

- Av. mem cell in dummy cell is 1
(add cell)

- Insert visit time, seq II in
cell 1

- Swap av. mem. Us between add
cell and dummy cell

- Dummy T.L. = 0? Yes

- Dummy T.L. = add cell

- Set relink flag

I

J I

~
2

/ 10:06:40 1.
1,

\
1./ \2

' 0 /

/_

/10: 07 2\
! 0 '/))
\0 2,

" t
lo o\
!

~ o)

Action: Add seq. 2,
cmd phase= 8

- Current time= 10:01

- Seq min= visit time= 10:07

- Seq max= 10:08:04

- Av. mem cell in dummy cell is 2
(add cell)

- Insert visit time, seq# in cell 2

- Swap av. mem. /Is between add cell
and dummy cell

- Dummy T.L. = 0? No

- Old cell= 0 (Dunnny)

- Comp cell= dummy T.L. = 1

- Add cell V. T. (comp cell V. T. ? No

- Comp cell T.L. = 0? Yes

- Comp cell T.L. = add cell= 2

- Add cell T.L. = 0

Figure 3.2.2-44 Exi of ACTLIS Management

•

N
I-'
-..J

•
~ ~

56 '-
10:06:«¢ 1 "\

\

~ ;)
c0,07 ~

,

~
:' 0

\O ',

Action: Visit seq. 1

- Current time= 10:06:41

- Old cell= 0

Visit cell visit time= 10:06:56

Comp cell

Comp cell

visit cell T.L. = 2

0? No

- Visit time(comp. cell V.T. ? Yes

- Dummy T.L. = visit cell= 1

•
C

o\
i

3)
1

' 1 10:07:12 1\
{ l0/.0t,tt,t, \

~ y
(10,01

~ \1
·i
/

:) ~
Action: Visit seq. 1

- Current time= 10:06:57

- Old cell= 0

Visit cell V.T. = 10:07:12

Comp cell= visit cell T.L. = 2

Comp cell= 0? No

- Visit time <. comp cell V. T. ? No

- Visit time= comp cell V.T. ? No

Comp cell T.L. 0 ? Yes

Comp cell T.L. = visit cell 1

- Visit cell T.L. = 0

- Old cell= 0? Yes

Dunnny T.L. comp cell= 2

¼ ~
3)

/, '
(10: 07: 12 1\
I J ~
G0,07,16 J
/~ --....

0)

~ oJ
Action: Visit seq. 2

- Current time= 10:07

- Old cell = 0

Visit cell V.T. = 10:07:16

Comp cell= visit cell T.L. = 1

- Comp cell= 0? No

- Visit time< comp cell V. T. ? No

- Visit time= comp cell V.T. ? No

0? Yes Comp cell T.L.

Comp cell T.L. visit cell= 2

- Visit cell T.L. = 0

- Old cell= 0? Yes

Dummy T.L. = comp cell= 1

Figure 3.2.2-44 Example of ACTLIS Management (cont'd)

(~ \1
'•.

(a'\
\ I

\2 1/
l 0

I

/

i\ 10:07:12

~
i

1)

0 o\
[l0i07iU l)
\2 cy

l

(io: 01: 16 ~
\ J \ 3
'·~

/ 1 /10:07:32

\3 1/ "' / " /10:14:20

V
I '/J

~

/10:14:20 i\
I \

~ 1/
I

Action: Add seq. 3, crnd phase= 4 Action: Delete Seq. 1

- Current time= 10:07:40 - Old cell= comp cell= 1 - Current time= 10:07:45

- Seq. min= visit time= 10:14:20 - Comp cell= comp cell T.L. = 2 - Old cell= 0 (Dummy)

- Seq. max= 10:15:24 - Add cell V. T. < comp cell T. L. ? No - Comp cell= dummy T.L. = 1

- Av. mem. cell in dummy cell= 3 - Add cell V.T. = comp cell T.L. ? No - Comp cell= 0? No
(add cell)

- Comp cell T.L. = 0? Yes - Comp cell seq#= del seq.
- Insert ,;isit time, seq. II in cell 3

- Comp cell T.L. = add cell= 3
fi ? Yes

- Swap av. mem. #s between add cell
and dummy cell - Add cell T.L. = 0

- Del cell seq#= 0

- Del cell V.T. = 0
- Dummy T.L. = 0? No

- Swap av. mem. #s between
- Old cell= 0 (Dummy) del cell and dummy cell

- Comp cell= Dummy T.L. = 1 - Comp cell T.L. = 0? No

- Add cell V. T. <(comp cell V. T. ? No - Old cell= 0? Yes

- Add cell V.T. = comp cell V.T. ? No - Dummy T.L. = comp cell T.L.

- Comp cell T.L. = 0? No = 2

- Step 6 of SEQDEL

•
Figure 3.2.2-44 Example of -S Management (cont'd)

•

•

•

3.2.2.4.1.28.2

3. 2. 2. 4. 1. 28. 3

3. 2. 2. 4. 1. 28. 4

3. 2. 2. 4. 1. 29

3. 2. 2.4. 1. 29 .1

Data, Logic and Command Paths

Input data:

Local common:

a. RELINK - relink flag

b. SQBUF(2) - connnand phase

Output data:

Local connnon:

ACTLIS - active-sequence list

Internal Data Description

ACTLIS (see Table 3.2.2-VII)

Flowchart

See Figure 3.2.2-45 for the SEQADD flowchart.

Submodule XXIX - SEQRLK

Description

SEQRLK is responsible for reordering the active-sequences list
(ACTLIS) for ascending-order visit times. The visit sequence
is that sequence which has just been processed by submodule

SEQGAT.

a. Language used - FORTRAN IV

b. How invoked - called by SEQ

c. Constraints and limitations - None

d. Processing -
Reorder the time-linked list (see Figure 3.2.2-44 for
example):

1. Initialize by: zero the equal flag (EQUAL).
Set old cell equal to zero (dummy). Update
the visit-sequence's time for next visit by
adding 16 seconds to its value in the ACTLIS
entry. Set the compare cell equal to visit
cell time link. Check if the compare cell
equals zero. If yes, go to step (7).

2. Check if visit time is less than compare-cell
time. If so, go to step (6). If not, check
visit time to equal compare-cell time. If so,
go to step (5). Check the compare-cell's time
link (t.l.) to be zero. If not, go to step (3) •
Set the compare-cell's time link equal to visit
cell and set the visit-cell time link equal to
zero to put the visit sequence at the bottom of
the linked- list temporarily. Go to step (8).

219

--,

,.•·_, .. - ~,\'. !, ·l:t)

\,,,-,e ,;ilorrll
r ,fr,, r·,{ fo In

_, .1,•cr~:1~~1:1 ··-·
Pr/. NfH. +is,,u)op

b€ !(.J?tn cda uU
). ,. -.. a d ,., n1 I"(', y c p-,;

\ ----- r -·-··•-·· ----
---- _J __ --- .

•
,,, 1((/!r-,+ t;r,,e ,
-;· 1J i::,e,-, .. ':'.et·~, ,-.1fr_-. \

. --- -T- - . - !
,----*----------·

l __ ·- -· ____ T ________ _

!

•

©
•

Figure 3.2.2-45 Flowchart - SEQADD

220

•

•

•

3.2.2.4.1.29.2

3. 2. 2.4. 1. 29 .3

3.2.2.4.1.29.4

3. 2. 2. 4. 1. 30

3.2.2.4.1.30.l

3. Set dunnny-cell time link equal to visit-cell

time link and set the visit-cell time link

equal to compare-cell time link.

4. Set old cell equal to compare cell and set

compare cell equal to compare-cell's time

link. Go to step (2).

5. Set visit time equal to visit time plus 500

milliseconds to break conflict when two

sequences have same revisit time. Go to step

(4).

6. Check if equal flag (EQUAL) set. If so, set

the visit-cell time link equal to old-cell's

time link.

7. Check if old cell equals zero. If so, set

dunnny time link equal to visit cell and return

to caller. Otherwise, set the old-cell's

time link equal to visit cell and return to

caller.

8. Check if old cell equals zero. If so, set

dunnny time link equal to compare cell and return

to caller. Otherwise, set old cell equal to

compare cell and return to caller.

e. Error messages and recovery - None

Data, Logic and Command Paths

Input data:

Local common:

ACTLIS - active-sequence list

Output data:

Local common:

a. ASTLIS - active-sequence list

b. EQUAL - visit-sequence's time matched another

sequence's time during processing

Internal Data Description

ACTLIS (see Table 3.2.2-VII for format)

Flowchart

See Figure 3.2.2-46 for the SEQRLK flowchart •

Submodule XXX - SEQDEL

Description

SEQDEL is responsihle for deleting a sequence from the active

sequence list (ACTLIS).

221

i
E q I) (t I F lc.r~ "0 i

I _, i
I I

! J -:_·==~~~~r=-- ---
.// :,, : ' time ·,·
1)::, , f t ; rr.e t-

{' f . omp- re!

v,·s,t 1. L.

l. ·•

Figure 3.2.2-46

222

Comp T.L."]

•J;::,; 1- (r' !

c••··-~------ ·r .
i

<,. D! d (f Ii .,,,

',. /

'--, ./

rr,Jo
.... '~'

,·· ·····-----···1

JDummy'f1.. j ,J,r,:

.·.:.:...":!. :: r "T-' P re- L' ... • ' ·~ :,...1 ' ' '. . ._ __

L----·--r--····

,______ ... -______ J
/J'-----._

/ (,1, \ \ u f

\ /
·•,._,.✓

Flowchart - SEQRLK

•

•

•

• -.,

•

OirlCf,:.c:

Figure 3.2.2-46 Flowchart - SEQRLK (continued)

223

3.2.2.4.1.30.2

a. Language used - FORTRAN IV

b. How invoked - called by SEQ

c. Constraints and limitations - None

d. Processing -

See Figure 3.2.2-44 for example.

1. Set old cell equal to zero (dunnny) and set
compare cell equal to duunny time link. If
compare cell equals zero, go to step (7).

2. Check compare cell's sequence number to delete
cell's sequence number. If equal, go to step
(4).

3. Set old cell equal to compare cell and set com
pare cell equal to compare-cell time link. Go
to step (2).

4. Clear the delete cell by zeroing sequence
number and visit time. Swap the available
memory cell numbers between the delete cell
and the dununy cell. Check if the compare
cell's time link equals zero (no sequence has
later visit time). If not, go to step (5).
If so, zero the relink flag (RELINK) and check
if old cell equals zero. If so, the delete cell
was the only active cell; set dunnny time link •
equal to zero and go to step (6). If old cell
is non-zero, set old-cell's time link equal to
zero, and go to step (6).

5. Check if old cell equals zero. If so, set
dummy time link equal to compare-cell's time link.
Set the relink flag (RELINK), and go to step (6).
If old cell non-zero, set old-cell's time link
equal to compare-cell's time link. Set the
relink flag, and go to step (6).

6. Reset the sequence status in the SEQLSG array
to the negative sequence number by SEQLSG
(SQBUF(3)) equal to minus SEQLSG (SQBUF(3)).
Set SEQNMG equal to SEQNMG minus one to decrement
the number of sequences in progress. If the
command is STHIWIND, clear the emergency-sequence
flag EMSEQG equal to zero.

7. Return to caller.

e. Error messages and recovery - None

Data, Logic and Command Paths

Input data:

Local corranon:

a. ACTLIS - active-sequence list

b. SQBUF(l) - command number

??/,

•

•

•

•

3. 2. 2. 4. 1. 30. 3

3. 2. 2. 4. 1. 30. 4

3.2.2.4.1.31

3.2.2.4.1.31.1

3.2.2.4.1.31.2

Output data:

Local common:

a. ACTLIS - active-sequence list

b. RELINK - relink flag

Internal Data Description

There is no data internal to this submodule.

Flowchart

See Figure 3.2.?.-47 for the SEQDEL flowchart.

Submodule XX.XI - BHI (Task)

Description

a. Language used - FORTRAN IV

b. How invoked - It is invoked by FCP task once each second

after the status response messages have been processed

and before counnands are output to the HFCs.

c. Constraints and limitations - The task BHI is constrained

to send one subtype of HFC initialization command

each second. Task BHI is allowed 40 msec to execute and

shall have a high-priority just below the FCP task.

d. Processing - When activated by FCP, the BHI task shall

check the RFC status to determine if any require

initialization. Checks shall be made to ensure the HFC

is installed, requires initialization, and does not

already have a command ready to be output. If all these

conditions are true, the BHI task will construct the

appropriate subtype initialization message and place

it into the command buffer.

Subroutine BHISHS is called to manipulate a five-word

command input buffer and place the command byte into

the command output buffer. After checking all HFCs,

the BHI task will release control.

c. Error messag~s·and recovery - None

Data, Logic and Command Paths

Input data:

a. HFC status words (HFCSlG, HFCS2G, and HFCS3G).

b. Corridor coordinates (CORRCG).

Output data:

HFC initialization commands in connnand buffer (CMDBFG).

Algorithms:

Logic to calculate corridor assignment masks. BHISHS

formats the command buffer.

225

(5-f(yDf L ~ /
/

•

•

~ •
Figure 3.2.2-47 Flowchart - SEQDEL

•

•

No

C>! d C (Ii s ! L' ,::

1Ju~4Nf T.L.::

C Of . .-<P Cf LL':,

T. L,
I

... J

CoHP CU.L'6 f.L. 1----

r-·-----·

Ddefr ·:c•,•,.~rrcr
tr0m d,, +,,'~,:

'Sf.G>L5CY(:'.r.i/'.svf'. e.J)

"-sfo,:o&r,';.;f.1..,Fr~ - ·-··r ~ •········'

~

D{ (~{;;~: t l
',E Ql'-J t-~ b ··
[,f CHJIJ (:'I - :!. .
... ... - T ... ······ -·

J
✓· ', /2 ',.,, ~)o

~ 'T H ~,,~l • ~.) ~),..

')<.:

t,o,.~,-.b]
® =~-t~=,-··

. (~CiuR~)
.._ __ -- ··• _./

Figure 3.2.2-47 Flowchart - SEQDEL (continued)

227

r

3.2.2.4.1.31.3

3.2.2.4.1.31.4

3.2.2.4.1.32

3.2.2.4.1.32.l

3.2.2.4.1.32.2

3.2.2.4.1.32.3

3.2.2.4. 1.32.4

3.2.2.4.1.33

3.2.2.4.1.33.1

Internal Data Description

Miscellaneous variables for temporary storage.

Flowcharts

See Figure 3.2.2-48 for the BHI flowchart.

Submodule XXXII - BHISHS

Description

a. Language used - MODCOMP Classic Assembler

b. How invoked - called by the BHI task.

c. Constraints and limitations - input and output arrays

are five-word buffers.

d. Processing - the BHISHS routine takes a five-word

input array (i.e. corridor coordinates) and shifts

all ten bytes right, losing the original last byte.

Then it adds the command byte at the first byte loca

tion and places the result in a five-word output array.

e. Error messages and recovery - None

Data, Logic and Connnand Paths

Input data:

a. FORTRAN-compatible input parameter five-word array

(corridor coordinates).

b. Command to be inserted into array.

Output data:

FORTRAN-compatible output parameter is the five-word array

consisting of the shifted combination of the two input para

meters.

Internal Data Description

Seven-word register save area.

Flowchart

See Figure 3.2.2-49 for the BHISH5 flowchart.

Submodule XXXIII - BHC (Task)

Description

a. Language used - FORTRAN IV

•

b. How invoked - invoked by FCP following output of commands

to the HFCs.

c. Constraints and limitations - The task BHC is constrained •.

to send one type of command to each HFC per second. BHC

228

•

•

/'"
1 oHI)

[::'l I~ 1
r------- -~- - -·•-----
' Prepore CuLf

I r.,,_.+ou+ t< "e.

!-~~-~-,,' A :1r~

' r

Prepaa Ct.LP
Ot1ip1II A ~ B

cj - _________ Jt'/' - -----

\ P,-eooa ew_P 7
,')11fru_,+ Cd}) l
('()((; .;)f~ I

L_1TA-;·· Jµj~~-r- r·: '0 1, ' f ,_; ..::·rl-5 ·1.1
i [_L'. .. -~:. _·-:-:"':_J i' ·'- ; .. , -

i Fc<ff'.d+ r,-!'\'.~,;,.:1,1!, 1' llr/), rn,-.• rN'SSo,,f
; l r .J

-- -••-----• .-...... r•~

= st_ .. _ .. -_fl.'.
{) 'I\.-'~ < '
r-f'F.pc'lf"e ,:,,l !·., i
,u-fp:~ f ,• .: : i

o((.-,!t'.'>(• l
---r

,-,-" --- . _-y - - -- -
I . C Au. cw: 2,'1::1 I
\ F'oo o•e' "· •.>;, ;

L _ l

~r~P._'J i /: ;_;;,JJ o

u__ __11 l u. r·--j
~~rf'po re 'DE LT;. 5 ~ l r:-el?;~ (' U LP_, .. ,
1r;u.+pu+ AU, I t:iu • pc,-t Ca D , o~-~ · 1rr,··Pr·~, i __ ,,_ 'J •

'2,u~ pu+
' '
" r-· ··----••·•-

t. ~------
Clw< .T,.,,1 r'n

I Dr::iJr,.<.s;, .se+
',11_1 C c,,,ft r

: __ re.1 'ch/ . b,_) ,l+.s ___ _

- t.
\ i \

··, .. __ "_

('r,<r ',~Oh CO(r,·r()(~

l -----· ---------,------
I

l(~/~L-~~~i~~f:~'
I

ltofr>'laf rrl':Sc,,, :wi
I • .1 ,

I !

''---------~~- -- __ y _____ 1_- __ -----]~------1 ___ J ___ _
! ~:,et 11J -~T · ; (\ I [. , i ·i
1 1 r-rF(-<4' L1FCl , l
1e, :):Y".s.s o. nd 1 _____ '.4
('ll (\ bvff'er bv.s-;! I , I
l _____ - ---- , I~/'_\ • -

(/ \)
/

~-
!

Figure 3.2.2-48 Flowchart - BHI

229

':I

________ c=-,
~}h;n 1N - R': 1

; cw r by l c r ·, 11; !' ..
P-. 3 -R1 ,- [A B X C ['. f F (,.. H -r i . -·--···----··-------· - ----·- . ~:. I

' ,,

I

: -·~1,. --~

(J 15 ie{-/)

') . ' ' ' ' I' ,t)U r, ,,,.,. 1:,,1 , c

l
o(~.3 _,1.,D , /f.,
c•,;y--rr ,. >',~

L,.__ . -- . T .
r ------··--lif----
i Na vP r er I b •1 :· c i ,.
\t,f (Zi:, fo r'.'~•htj ____) K3·f.'". [x:·A--9>~~~:P ... '.': ~-§· ~'

I b,;11? o+ <:· : • (>< 1~ z_ero) L / I \ _______ J ___ . :

f

N ove < om ov) r:d I r _ _ _ ·-·-·---·-·•·•·-----

,i'.n. (r-:'-r ·l.1vir. :. _ -·) R~, pq" [M h B C D E t=
.io !,,H l·.r1·1 ~• ,

I f .:,:•~ ' I ,1 .. ,, _,

-r .
. J~.,

.. ___ · J
lo ;)/ 'i l \It- hy tf .. ~ r_l_'.:~--~-- -- ,, _ _ ·1

IM /\ t:, -?.. !) f: f (., H IJ
I.. . .•. ,•-··--··· , - ·~"' --·- -~·· --,-~,.~---·····-·•'·.,..-··-···

Figure 3.2.2-49 Flowchart - BHISHS

230

•

•

•

•

3.2.2.4.1.33.2

•

d.

will not interrupt an HFC initialization sequence with
HC connnands until the sequence is finished.

Processing - The BHC task, when activated, shall check
to see if any HC commands are ready to be placed in the
command buffer for FCP to output. Since only one
command can be sent to an HFC, a priority scheme will
be used by the BHC task when searching for a HC command
to send out. The priority scheme used from high to low
priority is as follows:

1. Critical-command bit set with beam-pointing
command (Track CULP) or AZ/EL-pointing connnand
(STOW).

2. Critical-command bit set with AZ/EL-pointing
command (Directed Position) or HC initiali
zation command.

3. Corridor-walk startup connnands.

4. All other HC commands.

For each priority level the BHC task will search the HC
connnand array in global connnon to determine if a command
at that level is present. If a connnand is present the
command buffer is filled with the appropriate connnand

data •
To avoid loop processing when no critical commands are
present, there will be two counters, one for each level
of critical commands, in global connnon which are incre
mented when a critical command is to be output.

When BHC processes a critical connnand the appropriate
counter will be decremented. If the counters are zero,
then BHC will not search the HC command array for any
critical connnands. The BHC task also compresses any
HC commands having the same coordinates into an HFC
connnand (see Software/Firmware Functional Requirements
Specification). (i.e. If identical HC commands are re
quired for two or more HCs connected to the same HFC,
the HC connnand mask shall be set to reflect this condi
tion. After checking the HC connnand array, the BHC task

will exit.
e. Error messages and recovery - no error messages are pro

duced by task BHC.

Data, Logic and Connnand Paths

Input data:

a. RC-command status array - (HCCMDG)

b • HC status words - (HCSTlG, HCST2G,

c. Corridor-status flags - (CORRSG)

d. HC command data (HCDATG)

e. Current HC elevation - (ELEVG)

f. Current HC azimuth - (AZIMG)

231

and HCST3G)

3.2.2.4.1.33.3

3.2.2.4. 1.33.4

3.2.2.5

3.2.2.6

g. RFC status - (HFCS2G)

h. Emergency connnand counter - (EMCClG)

Output data:

a. RC-command status array - (HCCMDG)

b. Command buffer - (CMDBFG)

c. HFC status - (HFCS2G)

cl. Corridor-status flags - (CORRSG)

e. Emergency connnand counter - (EMCClG)

Algorithms:

Logic to calculate HC command masks and routine to move
specific bytes.

Internal Data Description

Miscellaneous variables for temporary storage.

Flowchart

See Figure 3. 2. 2- 50 for the BRC flowchart.

Interface Description

The software interfaces for module CMDPRC are depicted in the
overview diagram (Figure 3.2.2-2). The message format for
MMI-to-CMD input connnunication is contained in Tables 3.22-III
and 3.22-IV (RCMAPG and CPPG arrays). The message format for
BRC-to-FCP output communication is contained in Tables 3.7-1
thru 3.7-IV and Tables 3.7-X thru 3.7-XII.

The hardware interface consists of the set of operational disk
files specified in Section 3.2.2.3.2c.

Test Requirements

Due to the accelerated development of the MMI task, input comm
ands can be entered at the HAC operator's console. Diagnostic
tests of each task within this module are to be verified with
output messages to the system console. A utility dump task is
to be used to display global common values.

232

•

•

• \

'
1 • .,, \

' i

•• ~ .,., '•c1

,·ndet;;

:
I
i

.J

~)P 1 Tr, , P ·I ,,

\'.(/'Y•(>IP

I
L. .. ···•··1····-··---•-.

t
. ..

~,,,.,~ FC cor(·. ,,.o fl~

r. b1r[!-?(l::u~'{
·•... ' '

.-''lf Hf'= Com,1.ui'd No
/ -
s~k~

.. ' N
, /~<."D.Ai'f&-: (rw~r~;,'e;;,--1:;1

~ .. ··~ b11,r(~•· -
' I '· '/,

~---']i'e0
·1 A~d. 1-\c. +; u .. «~ .

r,,Cu"J rr ts it. /''-'+
\q,ieun:l L:+ :n
j ~+c_c~~·):T

./ < ;,r

... '¥

Figure 3.2.2-50 Flowchart - BHC

233

l.

\~\
f.,J ,_!ci' t)!od .i
I r· I) rY\ 1\C r·, n d.
Ii,.,, .. ,
I

r .,.-~1:l/

L.

i~f'~ C'l~ffnt_,_,1
/1! lf L {'ron"1

rll<,\>[:£,JG-
1
I

.-t -~
I i~.,. ,'{ ,.i (L.'r,'.). '3_,.~_- !,
j ., - •

. n . -: / .·✓- t r-r nr-· I

,.,/ ~---,,/1
b..'i i'r, ,'·/('{'tl[',{71

I

:·.··-· J. -~~<
(l,.,c (f1r\(')nt- 1

l ('f 1 ,'t·(L'.; - {1 :)r,..,.1i"£1td

i
I
i
I

... J

F -_,

Hei •CC 1

I /.

1.,{:?. ... L:'.;h :,2. µ(~

' '··, 7 ... /

Flowchart - BHC (cnntin~/ Figure 3,2.2-50

"') ,.

•

•

•

•

•

•
. 2 50 Flowchart - BHC (continued) Figure 3.2. -

235

-J, ,/

r,':,9~

<~-;:fiP>Z ~~ror.P wAtid

~1/
__ -- -_-_-f" (Min)

6,1, +cJ ~ bmr'fl.o.nc:l ,'r'\ I

Cn)\ t((L<)D(d. i,

H)vr Hr:(V\:b(\ '.S/)
1-1,/ . .,, ,,.Qn,~ 81,,1-\(~r

! ' - .f -- ,, -
, tu , H DI-I.ASK fo,.

' I'-(', C...+
1 • ·•-i .,-r. -
!I'>-,[) 1l,_LHufct b;-t

•• 1 n r',CrµD(s

[Bi·! - ~~-----+ -____ -_____ ______.:;__k-®

(~ cX lT)

Figure 3.2.2-50 Flowchart - BHC (continued)

•

•

•

•

•

•

3.2.3

3.2.3.1

3.2.3.2

3.2.3.2.1

3.2.3.2.2

3.2.3.3

3.2.3.3.1

Sun Vector Module - SUNVEC

Purpose

The purpose of this module is to calculate a sun-position unit

vector once per second, for transmission to the field of heliostats.

The sun-position vector is used to calculate heliostat pointing

angles to allow tracking of desired targets with the reflected

beam.

Requirements

Design Requirements

The requirements for this software module are given in section 3.1

of the 10 MWe Collector Subsystem Software/Firmware Functional

Requirements Specification. The requirements applicable to this

module are:

a. Control of up to 2048 heliostats in all modes required

to operate the heliostats. The software system requires

the calculation of sun position to be able to operate

the heliostats in the Track mode; and

b. Generate and transmit sun position information (once

per second) to the entire field.

Derived Requirements

The derived requirements for this software module are given in

section 3.2.1.3 of the 10 M.We Collector Subsystem Software/Finnware

Functional Requirements Specification. These requirements are:

a. Calculate a sun unit vector as a function of universal

time, on a once-per-second basis; and

b. Format the sun-position unit vector into the format

required for message packets and store in the data base.

Design Approach

The SUNVEC module consists of one task (SUN) which in turn has

five subroutines which it calls to perform required calculations~

The various subroutines are functionally separated out for ease

of coding, checkout, testing, and maintenance.

Functional Allocations

This module consists of six submodules. The names of these

submodules and a brief description of the function performed by

each is given below. (See figure 3.2.3-1)

237

•

! SUNCON
I
I

I

L ,~--------'

• ·- --- -l
SUNDJ UNDMA

- ' ,e ••• -•«~•~¥_,___.,;

SUNVEC MODULE

Figure 3.2.3-1 •
238

•

•
3.2.3.3.2

•
3.2.3.4

3.2.3.4.l

a. SUN - the task submodule which initializes certain connnon

variables used by other routines, maintains the inter-

nal month-day-year array, IDATE, converts coordinated

universal time from hour-minute-second format to seconds

past midnight and biases time to calculate sun position,

and calls routine SUNPOS to calculate sun-position

vector. This task converts the double-precision,

floating-point, sun vector into a double-precision, integer,

sun vector, scaled at binary point four. The task then

exits and awaits activation in the next one-second frame.

b. SUNPOS - a submodule which calculates the sun-position

unit vector in facility coordinates, corrected for

atmospheric refraction, mean temperature, and mean

pressure. The resulting sun vector is a double-pre

cision• floating-point, three-element array.

c. SUNDJ - a submodule whose function is to calculate the

Julian days elapsed since January 1900, using the month

day-year array IDATE.

d.

e.

SUNCON - a submodule whose function is to maintain the

month-day-year array, IDATE, from the year since 1900

value (GTIMEG(l)) and day-of-year _(GTD1EG(2)) value •

SUNPOL - a submodule whose function is to calculate

the value of a third-order polynomial.

f. SUNDMA - a submodule which performs a specialized

matrix multiplication.

Resource Budgets

This task will execute as a memory-resident task. The estimated

resources are as follows:

a. Memory required - 4000 words;

b. Timing - less than one-half of one percent CPU;

c. Disk files required - none;

d. Disk accesses required - none;

e. Magnetic tape access - none; and

f. Task priority - 110 (medium-high priority).

Design Description

Module Structure

This module consists of six submodules. The submodule SUN is a

stand-alone task, consisting of a main routine which uses the other

239

3.2.3.4.1. l

3.2.3.4.1.1.l

3.2.3.4.1.1.2

five submodules as subroutines. Each of these submodules is .de
scribed in detail in the following paragraphs.

Submodule I - SUN (Main Routine)

Description

a.

b.

c.

d.

Language used - FORTRAN IV

How invoked - activated by the task FCP once each time

frame.

Constraints and limitations - none

Processing - The first section of code initializes
constants, computes geocentric latitude, and calls
SUNCON to update the IDATE array. This section is executed
conditionally where the parameter !DAY has changed and,
by default, when the system is initialized. The geodetic
latitude is obtained from global common and converted
to geocentric latitude with an equation that accounts
for oblateness effects up to the third order. Time is
updated by setting the parameter IDAY to the current day
of the year and the third element of the !DATE array to
the year value. Submodule SUNCON is called to calculate
the month and date from these values, which are stored •
in the IDATE array. After this update is complete, the
universal time parameter (UT) is calculated (seconds
since midnight) from the hours-minutes-seconds values
of coordinated-universal time maintained in the data
base. Submodule SUNPOS is called to calculate the double
precision, floating-point, sun-position, unit vector,
stored in the one by three SVEC array. This main routine
then converts the array to a double-precision, integer
array scaled at binary point four. The main routine
then releases processor control until activation in the
next "frame" by task FCP.

e. Error messages and recovery - none.

Data, Logic and Connnand Paths

The input data to this submodule is in the data base. The same
is true of the output data.

Input Data:

GTil1EG(l) - Current year, since 1900 (e.g. 1980: 80)
GTD4EG(2) - Current day of year
GTIMEG(3) - Current coordinated-universal time since mid-

night in hours
GTIMEG(4) - Current coordinated-universal time in minutes

past the hour
GTIMEG(S) - Current coordinated-universal time in seconds

past the minute

240

•

•

3.2.3.4.1.1.3

•

3.2.3.4.1.1.4

3.2.3.4.1.2

3.2.3.4.1.2.1

•

Output Data:

SUNPOG(l) X-component of sun-position unit vector, in

facility coordinates

SUNPOG(2) Y-component of sun-position unit vector, in

facility coordinates

SUNPOG(3) - Z-component of sun-position unit vector, in

facility coordinates

The only algorithm used in this routine is the conversion from

double-precision, floating-point values to double~precision,

integer values scaled at binary point four. Since integer values

normally have the binary point after the least significant bit,

the way to scale the number (a 32-bit number) is to shift the

binary point left 28 places. Thus, the floating point value

is multiplied by two raised to the 28th power, shifting the

binary point, and the result is integerized.

Internal Data Description

The following is a description of the data internal to this

routine:

IDATE(l) - Current month of year in coordinated-universal

time
IDATE(2) - Current day of month in coordinated-universal

time
IDATE(3)

IDAY

DTOR
PI
RTOD
SLAT
SLONG
T028
UT

Flowcharts

- Current number of years since 1900 in coordi

nated-universal time

- Current day of year in coordinated-universal

time
- constant, degree-to-radians conversion

- constant, value of number of radians in circle

- constant, radians-to-degrees conversion

- site latitude, radians

- site longitude, radians

- Constant, 2 to the 28th power value

- time since midnight, seconds, coordinated-universal

time

See figure 3.2.3-2.

Submodule II - SUNPOS

Description

a • Language used - FORTRAN IV

b. How invoked - called by task SUN

c. Constraints and limitations - none

241

,-~

Se.t
TCW6 'ICsC 3) ~ 1

Tni'·l1al,'.,.e

vo.r ,·o. bles

Convert lcd-
1'tu.dt: {:'(DfY\

Geode•.".:. -lo
Geou.-rdr;c

Con\/Prt lo..i ;;wk.
and lon9:tude.
io ro.d;ans

S4ore, GT• N t G
in locn.1 ·hme.
-\1-om -+',me.

SutJMN
(onv11,t do..y
cl yeo.., +o
rv1011+h If da

f;;;;; c:-oo,dinaittl

u_f\;ll(>f:',ol -t,'Me -to
seco"O.:.j)d!:.t r'f\\d·
r,\ght, (jiaf> Z:>lus
.. ...," "-fL1H1d.l.

Figure 3.2.3-2

242

Cn.lcula.1e
Sun posdi'on
Llro',t vecL:.r

Se..t b;t +hr~e
i n I e_) U. '.:/-/ G
io (25

Flowchart - SUN

•

•

•

•

•

3.2.3.4.1.2.2

•

d. Processing - When called by SUN, the first step in

the submodule is to call submodule SUNDJ to calculate the

number of days elapsed since January 1900, using the

month-day-year array IDATE. From this, the subroutine

calculates the Julian centuries elapsed since January

1900 (DJC). The correction factor due to mean temperature

and pressure is calculated as a function of the current

month. Next, the ephemeris time (ET) is calculated.

This is then calculated as Julian centuries (TOD). Next,

a factor is subtracted to account for the light-time from

sun to earth. If the current date has changed, the

equatorial-to-facility transfonnation (TEF) is recalculated.

Otherwise, the calculation is skipped. The mean obliquity

(OBL2) is calculated as a function of time since 1900.

The mean longitude of perihelion is calculated as a

function of time since 1900 (GAMA). The earth orbit

eccentricity is calculated as a function of time since

1900 (ECEN). Then, the mean anomaly of the earth in

orbit about the sun (ANOM) is calculated as a function

of time since 1900. Using the mean anomaly as a first

guess, the eccentric anomaly is calculated, using the

Newton-Raphson iterative process. Then the true anomaly

(TANOM) is calculated as a function of eccentricity and

eccentric anomaly. The sun-position vector in earth

centered, inertial coordinate system is calculated as a

function of obliquity, mean longitude of perihelion

and true anomaly. Next, the right ascension of the

Greenwich meridian (RAM) is calculated. This is used to

convert the sun position from earth-centered, inertial

coordinates to equatorial meridian coordinates (SVC).

In order to correct for atmospheric refraction, the true

azimuth (TZA) is calculated as a function of sun position.

Note that if the sun elevation angle is less than

zero, this is the apparent azimuth angle (AZA). Two

separate methods are used to calculate the apparent

azimuth angle, if the elevation angle is positive. One

method is used for angles between zero and five degrees,

and another is used for angles greater than five degrees.

The correction factor for apparent azimuth angle is

calculated and combined with the previously calculated

correction for mean temperature and humidity. Using this

apparent azimuth angle, the sun position vector in

facility coordinates is calculated and nonnalized (SVE).

e. Error messages and recovery - none

Data, Logic and Command Paths

This submodule uses input data described below:

UT - seconds since midnight, coordinated-universal

time
IDATE(l) - month of year, coordinated-universal time

243

3.2.3.4.1.2.3

IDATE(2) - day of month, coordinated-universal time

IDATE(3) - elapsed years since 1900, coordinated-universal

time

This submodule generates the following double-precision, floating

point, three-element array as output:

SVEC(l) - X-component of sun position in facility coordinates

SVEC{2) - Y-component of sun position in facility coordinates

SVEC(3) - Z-component of sun position in facility coordinates

The algorithms used in this submodule are a second or third

order polynomial curve fit of certain parameters as a function

of time and the Newton-Raphson iterative process for calculation

of the implicit function eccentric anomaly.

Internal Data Description

Internal data used in this submodule is as follows:

ALTFAC - Correction factor for mean temperature and pressure

ANOM - Mean anomaly of earth in orbit around sun, radians

AZA - Complement of sun's apparent elevation (with refrac-

CAT

DJC
DPC
DTOR
EANOM
ECEN
ET
GAMA

DBLQ
R
RA
RAD
RTOD
SLAT
SLONG
SOL
SPD
SVC

tion), radians
- Nonnalization factor for final sun vector (with

refraction)
- Julian centuries since January 1, 1900 epoch

- constant, days per Julian cent11ty
- constant, degrees-to-radians conversion

- Eccentric anomaly of earth or~it, radians

- Earth orbit eccentricity
- Ephemeris time, seconds since midnight

- Mean longitude of perihelion of earth's orbit,

radians
- Mean obliquity of ecliptic, radians
- Atmospheric refraction correction factor

- R corrected with ALTFAC
- Distance from sun to earth, astronomical units

- Constant, radians-to-degrees conversion

- Site latitude, radians
- Site longitude, radians
- Speed of light, astronomical units per second

- Constant, seconds per day
- Sun vector in facility coordinates - no refraction

correction
SVE - Sun vector in equatorial Greenwich meridian coordi-

SVI
TANOM
TEF

TOD
TZA

nates
- Sun vector in earth centered inertial coordinates

- True anomaly of earth in orbit, radians

- Coordinate conversion matrix from equatorial to

facility coordinates
- Julian centuries elapsed since midnight

- 90 degree minus sun true elevation (without

refraction), radians

244

•

•

•

•

•

•

3.2.3.4.1.2.4

3.2.3.4.1.3

3.2.3.4.1.3.1

3.2.3.4.1.3.2

3.2.3.4.1.3.4

3.2.3.4.1.4

3.2.3.4.1.4.1

Flowcharts

See figure 3.2.3-3.

Submodule III - SUNDJ

Description

a.

b.

c.

d.

e.

Language used - FORTRAN rv

How invoked - called by SUNPOS

Constraints and limitations - none

Processing - The submodule, when called by SUNPOS, cal
culates the day of the year from current month and date.
It then checks for current year being a leap year, and
if so, and the month is not January or February, a day
is added to correct for the leap day. Then the integer
number of Julian days is calculated fo~ years elapsed
since January 1900 epoch to this year, and the days
elapsed in this year are added to get total Julian days
elapsed since the January 1900 epoch •

Error messages and recovery - none

Data, Logic and Command Paths

The input data to this routine are as follows:

IDAYT(l) - Month of current year
IDAYT(2) - day of current month
IDAYT(3) - elapsed years since January 1900 epoch

The output data generated by this submodule is:

DJ1900 - number of Julian days elapsed since January 1900
epoch

Internal Data Description

A twelve element array is used in this submodule, initialized to
values equal to numbers of days in each of twelve months.

Flowcharts

See figure 3.2.3-4.

Submodule rv - SUNCON

Description

245

'------~--

ConvPrt da.te.
io JlA-\;c..n
(leniuree5

Co.I c.u..la.te C.oc
re cf,Dn fa<
He.a.Yi -femper
~~ C:...~.)1e !>~ure..

(\1 Ir,., la-le.
C I • t •
L})}'\Pr>'lef I~ IIY\t

·\fbrY) LJ,;1 ✓U~I
+,me.

Conv,irt f phen,
er i::, ti°1Y1€. \foM

:Se,lw:ls +o
Ju \;or, rentv.r',es

[

o..lcu.luie. +"ime..
,~,ce .. Epoch JC/DD

l Jul,an
f'f'lf u.tie6
.,-·,···•,---

r!lf\~{i,rM ~fOM

E\u~for:a.1 -to
Fo..L.·11 ·,fy
C'oord ,;,,a.+e.e.

Ca.. lcul ,de m~Ml

Obi ;\LA·•~y of
[c\i ptu:,.,

Ca. lcu. la-le.. Mell.fl

Long i fuole.. of
EC1rth-Or· b·,t
Per·, hel ,'on

Ca..l c LA.late.
Earih·Orb;f
Eccen+~, c; iy

C.11.ludcde. Mean
Af\oMa I y af
Earth Orb+

Meun aflomoly:.:.
Eu errtr,'c Clno,"M

F,,-~+ 9ue~~)

lo.Jculcde.
JC.orred;o" ·fo
£c:u.-.1r,'t
Ar1omo.\

Correct
[ccen+r,·c..

Ano mo.I

Cc,.lculo.. • e: -!rue.
)Vr,lill.ly a5 funt._

-l,bn crt Eu,:,r.ir,c.
Af'lot,..,r, I y ~ fw~rrtrV '/

~u.lcu1aie 5.m
un;f Vector,·,,
far-th· Ceniaed

Co.!c1Alo.fe Ri'glit
A:c.c. e.n:sion of
Gree,--,1....>ich
Mer:1cf,on

Calc...cla+e Sun
Unit VNfor \n
t'l_,uc,iM in I Mer -
1d1an CoorrLr'.trte:S

CaJcL-,lc.-fe.. S111\

LJy,,t VerlM l,h

fo{;li'1 y
Coon:l,na1t.s

C1..lrulote. tom
p\eme ni d Suns
rue elevc1+,·o..-,

Co.. I c. u.l a±e.
,-;.-'-_A+MC>6cheric. Cor

r-ed1D() -9or
Elevo..-t; cin l 5 °

Figure 3.2.3-3 Flowchart - SUNPOS

'}.!,.f,

•

•

•

Co. lcv..lll.k A-tMo:,

oher; c Corrut·~:in
tor Elevo..116n<'5°

.omb'ine Atw.o -
P,heric 'R~fra.d1on
~Mec.rn iernp: ~
Preo!l, CorredionS

Ca.kula-te. Qom~e
ment o{ Appo.r
f'ni leni'ih
Clr. I e_

Ca.lc,,la-fe. l..-(off,

poM ,it o{ ~Xo1 -

U,11t \Jedor ~

NorM11l;ra+,'i,n

CoJru\a-te X.tY tom

poneY\iS of Sun
Unit Vu1or i'n rac
i' Ii'+ Coard,'na -+es

Figure 3.2.3-3 (cont.) Flowchart - SUNPOS

247

··~

·''""""-J

Co.lcula:fe.
bo,y -of -Yea.,
f f()r'li "1:)o:+ e_

Culc,.da-te
j,l~\;c.n ~Cly0

'Sliti.. epoch /cioo

Figure 3.2.3-4 Flowchart - SUNDJ

248

••

•

•

•

3.2.3.4.1.4.2

•
3.2.3.4.1.4.3

3.2.3.4.1.4.4

3.2.3.4.1.5

3.2.3.4.1.5.1

•

a.

b.

c.

d.

e.

Language used - FORTRAN IV

How invoked - called by task SUN

Constraints and limitations - none

Processing - This submodule determines the month and date
from a day-of-year input. To do this, an internal,
twelve-element, array is used with the number of days
in each month as elements. The subroutine first updates
the February value, depending on whether the current
year is leap year. Then it loops through, determining
whether pointer points to current month, and subtract
ing days of month from day-df-year value until month is
found. The remainder is the day of month.

Error messages and recovery - none

Data, Logic and Command Paths

The input parameters to this routine are as follows:

IDAY - day-of-year, coordinated-universal time
IDATE(3) - elapsed years since January 1900 epoch

The output parameters generated by this routine are:

IDATE(l) - current month of year
IDATE(2) - current day of month

Internal Data Description

The internal data used in this submodule is a twelve element array
(NDATE), with values of days contained in each month.

Flowcharts

See figure 3.2.3-5

Submodule V - SUNPOL

Description

a.

b.

c •

d.

Language used - FORTRAN IV

How invoked - called by the SUNPOS

Constraints and limitations - none

Processing - SUNPOL is a submodule which calculates the
value of a third-order polynomial.

e. Error messages and recovery - none

249

pa ro rfl e1 fr~

r-Jo

U od o le d-:y-':)-:·1
1'n -r,1 on·~?1 o, /(iy

Pnr \ fn f> yto r
l, _____________ ... ·-----·-·-··-

[""~:- (,,,. rlrr

~-
,,/

r-- -·-- ... ----- ····-

/4ti Y~ < NDA,d.N No C' •

.1 [)(', U'((\f;)T J
dr1 y:. ~N . te:',fi-cl

~) " .

Yr6

C\nrJ ~afc.

-·--···i~~~ -
(---~~

/
-~-. ~ ',... . ~·-·-----~

n11)nth
·- ·- ..,.....,. __ _..__ - ~~

Figure 3.2.3-5 Flowchart - SUNCON

250

•

•

•

• 3.2.3.4.1.S.2
I

3.2.3.4.1.S.3

3.2.3.4.1.S.4

3.2.3.4.1.6

3.2.3.4.1.6.1

•

3.2.3.4.1.6.2

•

Data, Logic and Command Paths

The input parameters to this routine are as follows:

TU - Independent variable
A(l) - A(4) - Polynomial coefficients

The output parameter generated by this routine is:

POLY3 - Resultant value of polynomial expression

Internal Data Description

There is no data internal to this submodule.

Flowcharts

See figure 3.2.3-6.

Submodule VI - SUNDMA

Description

a. Language used - FORTRAN IV

b. How invoked - called by subroutine SUNPOS

c. Constraints and limitations - none

d. Processing - SUNDMA is a submodule which is used to
perfonn a specialized, double-precision, matrix multi
plication. The submodule is called from SUNPOS and per
fonns a double-precision, matrix multiplication of the

type:

A * B = C

Where A is a three-by-three matrix and C is the resultant
three-by-one matrix. SUNPOS uses SUNDMA to transfonn
inertial coordinates to facility coordinates.

e. Error messages and recovery - none

Data, Logic and Command Paths

The input parameters are as follows:

A - generalized three-by-three matrix
B - generalized three-by-one matrix

251

•

•

Figure 3.2.3-6 Flowchart - SUNPOL •
252

•
3.2.3.4.1.6.3

3.2.3.4.1.6.4

3.2.3.5

3.2.3.6

•

•

The output parameter is:

C - Generalized three-by-one matrix

Internal Data Description

There is no data internal to this submodule.

Flowcharts

See figure 3.2.3-7.

Interface Description

This module interfaces with the other modules of the Collector

Subsystem software through its input data (coordinated-universal

time in the data base), its output data (sun position vector in

the data base), and its calling sequency (activated by task FCP).

Test Requirements

This module can be tested in a stand-alone manner by inserting

known, fixed values of universal time in the data base, activating

the task, dumping the resulting values of sun position from the

data base after the program is complete, and comparing the results

to precalculated values •

253

•

•

Figure 3.2.3-7 Flowchart - SUNDMA •
254

•

•

•

3.2.4

3.2.4.l

3.2.4.2

3.2.4.2.l

Field Communications Processor Module - FLDCOM

Purpose

The Field Communications Processor provides communications to the

field of 2048 heliostats. As such i.t provides the interface for

the Command Processor Module to the field via eight communication

lines each with eight HFCs and the interfaces for the Alarm, Backup,

and Status Display Modules. All interfaces are via the global

data base.

The Field Communications Processor Module consists of one task

(FCP) operating at the third highest priority in the system

which, in turn, utilizes six submodules (FCPOUT for output check

ing, FCPIN for input checking and HFC status updates, FCPUPD for

updating HC status, FCPCHO for byte checksum calculations with

checksum storage into output buffers, FCPCHI for checksum calcula

tions without storage and FCPSWH for recording I/0 errors,

detecting communications failure, and performing communications

switchover).

Requirements

Design Requirements

Sect.ion 3.2.1.4 of the 10 MWe Software/Firmware Functional

Requirements Specification states the following requirements for

the FLDCOM module:

a. Synchronize field operations by transmitting to the HFC

computer a sun vector command once per frame;

b. Generate, at the proper time in the time frame, the

polling command for the HFC;

c. Receive the HC and HFC status in response to each

polling command and save same in the data base;

d. Transmit to the HFC, the operational commands generated

by the Command Processor Module;

e. Detect communications errors and automatically switch

over to the redundant communicati.ons lines or the

"Backup" computer, and report these conditions to the

Alarm Processor Module;

f. Mark (calibrate) heliostats in both azimuth and elevation;

g .

h.

Generate proper timing to accomplish all of the above in

conjunction with HFC/HC firmware;

Implement retransmission of HC commands (tracking and

AZ/EL only); and

i. Prevent communications failover upon detection of field

power-loss signal.

255

3.2.4.2.2

3.2.4.3

Derived Requirements

Based upon the design requirements stated in paragraph 3.2.4.2.1,

the following are derived requirements for the FLDCOM module:

a. The FLDCOM module to insure proper timing within the

one-second time frame, will use a delay timer;

b. To detect the occurrence of a communications error,

the FLDCOM maiule will examine the user file tables

(UFTs) and the reported HFC and HC status messages.

Communication errors will be indicated to the ALARM

module via global common;

c. In order to receive the HC and HFC Status, the FLDCOM

module will accept input from the HFC and update the

HFC/HC Status in global common;

d. Automatically switching to the redundant communications

lines implies the changing of the logical device names

present in the user file tables;

e. Requirement "a" of Section 3.2.l+.2.l implies an inter

face with the SUNVEC module;

f. Requirements "a," "b," and "d" of Section 3.2.4.2.1

imply that the FLDCOM module has the ability to output

data and commands to the HFCs; and

g. Requirement "e" of Section 3.2.4.2.1 implies that the

FLDCOM module has an interface with the BACKUP module.

Design Approach

The following is a list of assumptions used in the design of the

FLDCOM module:

a. It is assumed that the equipment configuration defined

in the phase II proposal, Section 3, will be used as

the operational equipment. This implies a primary and

backup HAC each with dual communication lines to the

field of heliostats;

b. There is no requirement to provide the operator with

the capability to manually switch the communication

lines from normal to alternate or from alternate to

normal;

c. The field of heliostats can be powered up in either

sections or in its entirety. The field can be powered

up either before or after the HAC is operational;

256

•

•

•

•

•

•

d. If all of the field of heliostats loses power, an
interrupt will be supplied to both the primary and
backup HAC to indicate the loss of power;

e. The current communication line an<l field status in the
primary HAC 1,hall be transmitted to thl~ backup HAC on a
periodic basi.s once each ti.me frame;

f. Errors can occur anywhere along the communication lines
to the HFCs, and error indications received at the HAC
are of minimal value for diagnostic purposes. Therefore,
1/0 errors indicated by the MAX IV (MAXNET) operatlng
system, in the user file tables (UFTs) which the FLDCOM
module uses to do 1/0, shall be considered line errors;
and

g. There is no requirement to recover from a failure to the
alternate or secondary communications lines.

For purposes of this design discussion various terminology
shall be used and is defined below.

a.

b.

Communication errors - Errors can occur at various levels
in the communication hierarchy: field, line, RFC, and
RC. The definition of these errors follows:

1. Field error - The only error recognized at the
field level shall be loss of communication to
entire field. This error will occur when
all cornmunications to the field is lost and no
power loss interrupt has been detected.

2. Line error - Line errors shall be detected by
examination of the input and output UFTs which
FLDCOM uses to perform I/0 to the field.

3. RFC, RC error - These errors are indicated by
the status messages and UFT status received by
FLDCOM from the field. The UFT status shall
indicate input/output time-out conditions.
RFC/RAC communications failure and RC command
errors shall be detected by examination of the
status response message. These RFC/RC errors
do not differ from phase I and will be flagged
for the ALARM module for operator display.

Communication status - Since communication with the field
is of a hierarchical nature and I/0 errors can occur at
the various levels, status shall be kept at the field,
line, HFC, and HC levels. Definitions of the status
values follow below:

257

c.

1. Field status - The status of the field shall
be set to one of the following values:

a) ACTIVE - initial state prior to estab
lishing communications with the field;
sun/synchs and status poll messages
are being sent, but the field has not
yet responded;

b) ENABLED - communications have been
established with the HFCs in the field,
(i.e. a status response message has
been received from an HFC); and

c) There shall also be bits in the field
status which indicate if a communica
tion failure or power loss interrupt
has occurred.

2. Line status - The status of the lines shall be
one of the following values:

a) IDLE - not currently being used to
communicate with the field (initial
value for the alternate communication

b)

lines);

ACTIVE - line being used to attempt
establishment of communications with
HFCs;

c) ENABLED - I/0 to the field is cur
rently active on this line; and

d) FAILED - failure criterion for this
line has been met and the line has
been declared failed and is not to
be used for communications with the
field.

3. HFC, HC status - This status is the same as that
present in phase I design.

Normal/Alternate line - For the purposes of this design
discussion, the term "normal line" shall refer to the
line initially used to perform I/0 to the field. The
eight normal lines shall all reside in the same MODCOMP
1930 Universal Communication Chassis. There are four
M0DC0MP 1931 dual asynchronous interfaces in each 1930,
each with two communication lines. The term "alternate
line" will refer to the communication lines resident in
the second M0DC0MP 1930 Universal Communication Chassis
and shall serve as the backup communication line to the

field.

258

•

•

•

•

•

The following is a discussion of the design present in the

FLDCOM module.

When the HAC is initialized, the field and eight normal lines

shall be in the active state. The FLDCOM module will send sun/

synch and status poll messages to the field using the eight

normal communication lines. If the FLDCOM module is executing

in the backup HAC, a check shall be made to determine why the

backup HAC is being used. If a communication failure occurred

to the entire field, FCP shall switch to alternate lines.

Otherwise the lines that were in use by the primary HAC will

be used by the backup HAG.

Until the HFCs respond with a status response message, the field

and lines will be considered in the active state and the ALM task

shall not be activated. Once a status response message is re

ceived, the status of the field shall be set to enabled and the

ALM task shall be scheduled on a once-per-second basis.

As HFCs respond, the lines they are connected to will be set to

the enabled state. Cormnunications will then take place with the

field normally in the synchronous loop until the occurrence of

an I/0 error. As I/0 errors occur, they may cause FLDCOM to

initiate a switch to the alternate communication lines or to

the backup RAC. A discussion of these conditions follows:

a. Line Switchover - A switch to the alternate lines shall

be made if one of the following conditions is true:

1. Three consecutive input errors on a line.

(Error present in the input UFT for that line.)

2. Three consecutive output errors on the line.

(Error present in output UFT.)

3. Three consecutive errors (either input or out

put or both) on the line.

4. If communication is lost with two or more HFCs

on a li.ne (HFC input time-out error or output

time-out error).

When one of the above conditions is true the FLDCOM module

shall mark the normal line as failed and initiate a switch

over to the alternate line. Since a MODCOMP 1931 has two

lines, both lines residing in the 1931, both will be

switched to the alternate lines. The alternate line status

shall be changed from idle to active and the sun/synch

and status poll messages shall be transmitted on the alter

nate lines. When a status response is received by the RAC,

the alternate lines shall be set to the enabled state. A

line failure on an alternate line shall result in an alarm

to the operator, however, 1/0 to the field shall remain

active on the alternate line.

259

3.2.4.3.1

b. Backup HAC Switchover - When the FLDCOM module detects•.
a loss of communications with all enabled lines in the
field, it shall initiate a switch to the backup RAC.
The backup HAC shall initiate communications with the
f:leld on the alternate lines. If the backup RAC is not
active, an alarm shall be raised and the FLDCOM module
Bholl nttempt to reer,tablJsli commun:l.cations with the
field on the alternate lines.

The switch to the backup RAC shall be indicated by the
FLDCOM module setting a bit i.n global common which the
BACKUP module shall detect. Upon detection, the BACKUP
module shall initiate an orderly transition to the back
up computer.

If a loss of communication is detected and a power loss
interrupt has occurred, no switchover to the backup HAC
shall be initiated.

Functional Allocations

To accomplish the required processing the FLDCOM module consists
of a single task called FCP. The task FCP consists of four func
tional parts and utilizes six submodules, The four functional
parts of the FCP task perform the following functions:

a. Sun/synch preparation, output, output check, and activa
tion of the SUNVEC task, which calculates the sun vector
for the next second during FCP's idle time;

b. Status request loop (DO-UNTIL eight lines of eight HFCs
each are done) for one-eighth of the field, with output
checks, input checks, status updates, and heliostat
"marking" (calibrating);

c. After all the current HC statuses are updated, ALM
(ALARM) and STS (STATUS) tasks are activated to determine
any new alarms or field status changes. Task BHI of the
Command Processor Module is activated to build any RFC
initialization commands to be output. FCP suspends it
self for 55 msec to give BRI enough time to execute;
and

d. Command output loop (DO-WHILE commands to be sent) with
command buffer copying to "private" command buffers,
command output retries, and output checking. Command
returns (feedback from RCs whether or not commands were
received) are monitored the next second along with RFC
and HC status, If no commands are to be output or when
command output is done, FCP will activate task BRC to
build any new commands to be output during the next time
frame and suspends itself via REX,SUSPEND.

260

•

•

•

•

3.2.4.3.2

•

NOTE: The timing functions necessitated by the field communica
tions lines and the firmware in the HFCs are distributed
over "a" through "d" of the above parts.

Called submodules:

a. Output check routine (FCPOUT);

b. Input check and HFC status update routine (FCPIN);

c. HC status update routine (FCPUPD);

d. Byte checksum routine with storage (FCPCHO);

e. Byte checksum routine without storage (FCPCHI); and

F. Communications system switching routine (FCPSWH).

Utilized Executive Requests (REX calls) in FCP and its submodules
are:

a. DELAY - used for timing;

b. OUTPUT - used to send data on eight RFC communication
lines;

c. ACTIVATE - used to trigger other tasks;

d. SUSPEND - used to "put FCP to sleep." (Expiration of
DELAY timer will wake FCP);

e. INPUT - used to receive data on eight RFC communication
lines;

f. TERMINATE - used to terminate I/0 following error detec
tion; and

g. EXIT - used to terminate FCP until reactivated by TIK.

All REX calls are documented in the MODCOMP Reference Manual for
MAX IV (MAXNET) General Operating System. See the FCP functional
overview Figure 3.2.4-1 for an overview.

Resource Budgets

a. Memory required: 3K of resident memory plus access to
global common COMDAT;

b. Timing: See HAC/RFC/HC timing diagram (Figure 3.2.4-2);

c. Mass storage (disk, tape) required: None; and

261

f.EK 1P✓.i!VATE

Su1t'1
-fo~k

O<J.+puT ;:>'lnttA.S
pol b ·fc, ?? par
lie I Hrc~.f

i(h.ec':-_ouipu+
____ __ _,

Jnpv..t 5-+a:w.s
f, {)(Y\ 't, pa ra.1-
d /-Jr-c. Checkd

u hfe 1/~ field

P,E. x.,11n "'f'-"1 E.

LN<H !l ST5

io.t..k::, fo ?per~fe
n I a.fl"$i 1/,g {1eld

r,Ex
&n: ·ll:,: Id Hrc
i'n',f10 l, i.a+;on
oml'(\LI rd.5 i-f'

(A

Not
done.

RE.x'.
1
AC1iVfTE.

5..._; Id 11 Crom
m,.Hvi!, f'or· nr1
one- ~etcH ,J4-Ca e.

Figure 3.2.4-1 Flowchart - FCP Functional Overview

262

• •·- ------ ---·•-<,• ··7

Ou I p1..(f- r orr-,f
m1nd~- ~ /

checl< o~:p~)

•

•

N
0,.
w

HAC
to

RFC

")

a Sun Synch

I t j I I I I f I I I I t J I

RFC
to

RAC

I I I I l I

-)
Status Poll/Response

Operational
Commands

,--------------

...... , ~I.,.~,.,,,~,., ~,,'I'~,. t .~ ••• ,. ~,,, .~, •• , •••• , , 0.0.D.O,D.D.O.O. ••

) •

ff I 1 I t I I t I

0 100 200 300 400 500 600 700 800 900 1000
msec

HFC
to

HC ~ ~ I . I I' I I I I I I I I.

~
IT~ , 111 ,, r , 1 r 11 1 l Sun[Sync; l ll I ' I II I I I 11 ' II I II II I I I I I I I I I I I I II I I I l ' II I

& H£ C!!L. I I' I I I I 111 I DU
I I r , ' , I Connnand

HC Respons.4:__

to -----
HFC HC Polling

Figure 3.2.4-2 FLDCOM One-Second Conununlr.ations Time Frame

..--...

Time From
Start of Data
Frame, msec

0

20

115

228

231

244

247

260

263

276

279

310

320

355

365

400

410

445

455

490

500

535

545

Duration,
msec

10

90

113

3

13

3

13

3

13

3

13

5

20

5

20

5

20

5

20

5

20

5

20

Data

Sun position data.

Sun position plus operational commands
received in last frame, if any.

Responsf! from ~ach HC, in ordoair, to
indicate correct/incorrect receipt of
commands.

Status request to first Jf four HCs
being polled this frarnP.

Status response.

Status request to seco~d of four HCs

being polled this frame.

Status response.

Status requests to third of four Hes

being polled this frame.

Status response.

Status request t11 fourth of four Hes

being polled this frame.

Status response.

Status request to first HFC on data bus.

Status response, including status from

four HCs.

Status request to second HFe on data bus.

Status response, including status from

four HCs.

Status request to third HFC on data bus.

Status response, including status from

four HCs.

Status request to fourth HFe on data bus.

Status response, including status from

! four Hes.

Status request to fifth HFe on data bus.

Status response, including status from

four Hes.

Status request to sixth HFe on data bus.

Status response, including status from

four HCs.

Path

HA.e to HFe

HFC to He

HCs to RFC

HFC to HC

HC to HFC

HFe to HC

HC to HFC

HFe to HC

HC to HFC

HFC to HC

He to HFC

HAC to H.

HFC to 89

HAC to HFC

HFC to HAC

HAC to HFC

HFC to HAC

HAC to HFC

HFC to HAC

RAC to HFC

HFC to HAC

HAC to HFC

HFC to HAC

Figure 3.2.4-2 FLDCOM Oue-Second Conu111111 le.a LI 011:-; Time Frame (con' L.)

264

- ·--

Time From
Start of Data
Frame, msec

580

590

625

635

725

745

765

785

805

825

845

865

Duration,
msec

5

20

5

20

10

10

10

10

10

10

10

10

Data Path

Status request to seventh HFC on data HAC to

bus.

Status response, including status from HFC to

four HCs.

Status request to eighth HFC on data HAC to

bus.

Status response, incluaing status from HFC to

four HCs.

Operational commands, if any, to first HAC to

HFC on data bus.

Operational commands, if any, to second HAC to

HFC on data bus.

Operational commands, if any, to third HAC to

HFC on data bus.

Operational commands, if any, to fourth HAC to

HFC on data bus.

Operational cotmnands, if any, to fifth HAC to

HFC on data bus.

Operational commands, if any, to sixth RAC to

RFC on data bus.

Opel:'ational commands, if any, to seventh RAC to

HFC on data bus.

Operational commands, if any, to eighth RAC to

HFC on data bus.

,Figure 3.2.4-2 FLDCOM One-Second Communications Time Frame (can't.)

265

HFC

HAC

HFC

RAC

RFC

liFC

HFC

RFC

HFC

HFC

HFC

RFC

N
Q\
-.J

•

~--··--
FCP)(l_J

: l:1r'o(C

1
ov-+put UFh

r-· FCPSwrl
Kecord err~r on_-\
Su.:,·, +ch C:irT,rnu

;c-aJiOY' \;Y'\~

FC?CHI

oJc.u! ate. e.h«k1
SufY, for i'r.put- ;

_j

•
'FLOC.OM

F1 e.!c:/
C:irrV/\c1r.

0

1CC<11::,,:,

i<?Ju..ie

--·--

~
I
I

J='eP
fa~k w/o.d1
COmrY u r, ica +es
w i-+J.,. -Hie. .r, e./d

L __

[-'r:-~P!N ;
I

jp:.xf- UFT::, ?-.nd :

l
ic1_Mate HFc/Hc.:

'S.+.:,._·h . .cs '

FC?~PD

up:hte. t-lC.
.sktus

I _J

Figure 3.2.4-3 FLDCOM Module

' P-C'PC rlD

~- p
Jc_he_ck5UM tor

l cu.tpu+

FC PSwt"'I

i f<.e.ce>rd errc.r

I

lard sw\ic\.-. I
~o mrviu n·: ta11·1:ori i ~

•

3.2.4.4.1.1.2

one-eighth of the field is updated every
second and the whole field every eight
seconds. Again, I/0 errors are reported to
the data base and field communications switched
if necessary. DO-UNTIL implementation is
utilized.

L1. The ALM and STS l:isks are activated to oper
ate on the newly arrived status for one-eighth
of the field. Task BI--II of the Conmiand Pro
cessor Module is triggered to fill the command
buffer with any HFC initialization commands
required to be sent to the field. A 55 msec
delay is involved to give BHI enough time.

5. As long as commands to individual HFCs need to
be output (as determined by the local retry
counter or by the command buffer ready bit in
HFCS2G), they are output to the corresponding
HFCs. If for a particular HFC, the local com
mand buffer is not tied up with retries and a
new buffer is ready to be output, it is copied
from the global CMDBFG to the local command
buffer, and the command buffer ready bit is reset
so lliat new conunands can be filled in the next

•

time FCP triggers the BHI and the Bl-IC tasks. •
One to eight HFC Jines are commanded quasi
simultaneously (in parallel) and one to eight
HFCs on each line are commanded in 20 msec
steps (in series). Output errors are reported
to the data base immediately; failure of HCs to
report command returns are reported after three
retries. FCP then initiates the Bl-IC task to
build HC commands required for the next one-
second time frame and suspends itself until the
beginning of the next frame.

e. Error messages and recovery - The FCP task has no error
messages.

Data, Logic, and Co~nand Paths

Input data for FCP:

a. Sun position input from data base location SUNPOG;

b. Input from global common is the commanc;l buffer CMDBFG,
and the associated bit flag HFCS2G (bit 10) indicating
the co~nand buffer is ready to output; and

c. input from each HFC into local holding buffer.

268

•

•

•

•

3.2.4.4.1.1.3

3.2.4.4.1.1.4

3.2.4.4.1.2

3_.2.4.4.1.2.1

Output uatil lor FCI':

a. Output to each UFC forsun/synch, Status requests, and

for commands from local holding buffers;

b. Output of HC statuses to data base for STS and ALM

tasks;

c. Output of I/0 errors to cia tc! b2f:e· fc.-r ALM task;

d. Algorithm for calculating a byte checksum called

FCPCHO; and

e. Command Paths: Activate SUN, ALM. STA, BHI, and BHC

tasks.

Internal Data Description

a. 5-word Register Save area;

b. 2 10-word UFT address tables;

c. 16 10-word UFTs (input and output);

tl. 5 1-word task names;

e. 64 1-word retry counters;

f. 1 8-word buffer for keeping track of connnand outputs;

g. 1 8-word buffer for sun/synch;

h. 8 2-word buffers for polling;

i. 64 10-word local HFC command buffers;

j. 8 17-word status input buffers; and

k. 8 1-wor<l logical device nallll'S for alternate lines.

Flowchart(s)

See attached Figure 3.2.4-4.

Submodule II - Subroutine FCPOUT

Description

a. Language used - MODCOMP Classic Assembler

b. How invoked - It is invoked by FCP after each output

completion.

269

_,,/

<"(omm. tr..
0

,li..re..
, lo C'eld

" ?
Yeo

Ye~

C\ec.u· 1/D

No

No

em,, ,n L1NE~&

t
-, ----

Se+ i'npu+/01.dp,,
Ll FT ~·nes -to
l'rr:ies u .:.,ed by

r1mM1 HAC.

Prep°' re.

'Su 10 /.:, Yl\t

No-+
done

Figure 3.2.4-4 Flowchart - FCP Task

"'"""

- FCPou-r -i
CJ,e ck O:.iipci1
LtFT":> o.nd.

re or t ffr~r~ j

Uni :1 2 Nat
ne~ :L,n1/ done
? /

dor1c
---~:-\

Prepare. 'lx.'l \
I oop and ~hAff
tor {,'r:,+ 8 H Fl s

on i\r,c I i'ne ::.i

•

~-~r@
...-.--R-E-X -'DL-E_L_A_I ~-1•, , --

1-16 MSU. J.1:kif. •
~r Ilo i:om-
ple.+ionan line

[

FCPouT l
C.huk nu--lpv..t
ILFis oxd
r·l"eort err1irs --

FCPIN I
thee k i' n fu--t . I
Lt.FT o.(ld up-
date .:shi:h~

I
I
!

/~'. k a. I 1'-,t-,/J
811nes ,,,,,,~

? _,,/
•/

----~Yes •

•

•

•

l~EX OuTPUT

Pol I hrd 1-IFC
for $1Aru5
(,t)l'th QI.A.IC K.

at ~u .. L'I i
one tlFC".> done ',,,,_ ?

.... , .
D:ine.

Releo:<ie CPU
un-l:1 delay
,,ver

[.

REx.,Ac; 1 vAlE.

Ad,vote AtM

o.nd BHI .

1(.1.Sb

f-:E.)(. ACTIVATf.

Act:vaJe.
STA i-o.~k

R Et Su !>f'r-tJ

Rel ea.!> e CJ'l.l
u.nt;I DELA'/
e.-,: pi '!._cJ._~_J

REX ou1·Pu
Send HFC
C.,)mrno.nd
vJ,ih QUICK..

1:::0 U rd; I
, HFC~ do,1e

~-:"~:
Re 'i .'.°')I.I ~,PE

Rl'lta::.e:. cPa
(\ ntl t<Jd ,'t for
Oeli;,i -to t.>-.-

FCPou-r 1
Che.ck ou+c1.1.t
a.nd reoort
errM5

Nut/Do~~
c1orie --t~c I 1ne~ ~~

.. /

):h>ni
~

Figure 3.2.4-4 Flowchart - FCP Task (continued)

1

RU ACTl\./f-,1f

Ad 11.1.,_te 5H~~:~_ I
··---J~----

f\fX Su·-~fNb

Rdco.:o•~ Cf11-
Lmi: I next
.fr(\ r\'\I'.. ®-

3.2.4.4.1.2.2

3.2.4.4.1.2.3

3.2.4.4.1.2.4

3.2.4.4.1 .3

3.2.4.4.1.3.1

c. Constraints and limitations - Each call to FC~OUT will
check one UFT for errors being present.

d. Processing - This routine when called shall check the
U~'T for output errors and mark the data base with com
munication errors on an output channel basis.

1. A UFT which did not complete will imply an HFC
output time-out condition. All other errors
denote a line error.

2. If an error is found, the routine FCPSWH will
be called to determine if the failure criterion
for the line having the error has been met.

e. Error messages and recovery - There are no error messages
arising from FCPOUT processing. Output errors found are
indicated in the global data base and output by the
ALARM module.

Data, Logic and Command Paths

Input data for FCPOUT:

a. UFTs (user file tables);

b. A flag for retries; and

c. LINE/HFC/HC index.

Output data for FCPOUT:

a. Global data base bits;

b. The local retry table; and

c. Calling of routine FCPSWH.

Internal Data Description

15-word register save area.

Flowchart

See Figure 3.2.4-5

Submodule Ill - Subroutine FCPIN

Description

a. Language used - MODCOMP Classic Assembler

b. How invoked - It is invoked by FCP after each input
completion or time-out of such input.

272

•

•

•

•

•

•

,...../lPA -rL uU_/ , ______ ..,
:So. •;e.
Re<1 ·1 ;it er~.
FU · R l'.5

\(tear ov . ..tpt.At
I f>f'f'llr b'd~ in

I L!NESl, B;b
Li_2"-,3_J__,_ __ __,

C. I ea.(' Du. t Cut
errnr b",-t ·in

Hrc s~&

.Se-+ HFC 01.dpu.t
+ ;me.-o,.-,.+ (!('(or

b;t in HFCS~'1

No

f:?E)(T£~N.;NATE.:

1erm·, f\A te
cx.dpu:t

r--cPSWH
'Set error
i'nd i co. itlf6
1n LINES&

'txcremrnt num
ber cl Hr:Ct.
w'd-h error
{WJE.561

Set retry
COuntfr' fo i

l=C.P.SwH
$t'.t error
it1d1co...fot~ if\
LIII/ESLr

Ret>fore.

re91jtec:i

R 1 - R15

RETuRN

Figure 3.2.4-5 Flowchart - FCPOUT

3.2.4.4.1.3.2

c. Constraints and limitations - FCPIN will check one
input UFT per invocation.

d. Processing_

1. This routine will check the input UFT and the
HFC status response message for input errors.
The various input errors checked for are the
following:

a) If a UFT did not complete (i.e. the
input buffer was not full) it is con
sidered an RFC input time-out error;

b) All other errors indicated in the UFT
are considered line errors;

c) Not enough bytes transferred, a bad
checksum, or if the.input header byte
was not a normal status indicates an
HFC/HAC communication error;

d) The last command sent didn't match the
last command received; and

e) Missing and extra RC comm.and returns
are checked for and marked in HC global

states.

2. If one of these input errors is detected the
routine FCPSWH is called to determine if the
failure criterion for the line has been reached.

3. If no errors were found on the line, the line
status will be set to enabled (if not already
enabled), the number of enabled lines in the
field shall be incremented, and the field status

set to enabled.

4. If no RFC or line errors are present or command
output retries are in progress, then FCPIN will
update HC status by calling routine FCPUPD.
Before returning, the HFC status will be updated
in global common array HFCSlG.

e. Error messages and recovery - None.

Data, Logic, and Command Paths

a. Input data are UFTS (user file tables), input buffers,
and the LINE/HFC/HC index; and

274

•

•

•

•

•

3.2.4.4.1.3.3

3.2.4.4.1.3.4

3.2.4.4.1.4

3.2.4.4.1.4.1

3.2.4.4.1.4.2

b. Output data are data base bits and HC status words
(AZIMG, ELEVG, l!CSTlG - all indirectly via subroutine
FCPUPD) as well as HFC status words (HFCSlG), line
status words (LINESG), and field status (FLDSTG).

Internal Data Description

a. 15-word save area for registers 1-15;

b. Save location for last command;

c. Various bit masks; and

d. Various constants for byte-counts and commands.

Flowchart

See attached Figure 3.2.4-6.

Submodule IV - Subroutine FCPCHO

Description

a. Language used - MODCOMP Classic Assembler

b. How invoked - Called by FCP task to compute checksum
for output bufEer.

c. Constraints and limitations - None ------------·-- - -

d. Processing - This routine calculates an n-byte checksum
and stores the result in byte n+l. It is used for each
output to the field.

e. Error messages and recovery - None

Data, Logic, and Command Paths

Input data for FCPCHO are:

a. Return link address;

b. 5-word save area;

c. Byte count;

d. Buffer address; and

e. Actual buffer to be checksummed .

'l7'j

FCP IN

S~ve re9°1'::>fU:'.'l

~1 - R 15

(lear i'rio t
f'uor b'1+s
i"t1 L,Nr.StA)

t:CPCHI

Co.\ C ula_te..
che£.kouM

G-e+ la.~+ com
ma.nJ ~er'1t

(header byte)

t:: 'b;-;~;1
Ct-tDl:>UF'

--~-..-,·--

Ir-,.c re mt" t
li:et ry
Counter

1:bLlnt; I 32 HCs
a.re checked nnol
+'.la..~(!fd tor
m'is.s,ng f'HD re+ ... r !. _r-
t~;:'~"'

Figure 3,2.4·6 Flowchart - FCPIN

•

•

•

•

Wz
'.:_x:'I up C'NO

t '.' r1\ I .:J : (11-:)
HC~::,

i----··
FC?UPD- l

U,.:,datr -· I

~cu"lge I~ C .J
'::,t c.i LA 5 -r·--- .
A~<~ ~pdcdr -fo,·•,_ No

· LI Hes .. />-
_.,.//

. ~~-----·7
Updllie I Ire s1 (.,.

1

.

f11w<1 re h,rnf'iJ .

s+a+u.s

Ftgure 3.2.4-6 Flowchart - FCPIN (continued)

ff3J
I
.. ----- "l

~crsw •. I
l\econJ 1npv11. j
l,ne errN ;

'-'---~-....li. __

.. _.,. ___ ,,_,,,,

Set Hrc or i
i '/\Out tin1e-oc1JI
error bit in :
t-\ffS2b (fit lo) i

~------- J.... _,
1Se+ up
e rm; r1a te.
'REX. C" 11

[

Rfx 1FRi--l1N··-A;-i__ -;
lt-r m', ,10 le

in ou+ LJ.. F-1 i
______ , __ _!

- --- ~----~ "· 'I

FC.PSw H 1 :
Rec.ord I~ FC !
ef(D(" I

j

3.2.4.4.1.4.3

3.2.4.4.1.4.4

3.2.4.4.1.5

3.2.4.4.1.5.1

3.2.4.4.1.5.2

3.2.4.4.1.5.3

3.2.4.4.l .5.4

Output data for FCPCHO is the (n+l) byte of the buffer which
contains the actual checksum upon exit.

Internal Data Description

None

Flowchart

See attached Figure 3.2.4-7.

Submodule V - Subroutine FCPCHI

Description

a. Language used - MODCOMP Classic Assembler

b. How invoked - It is invoked by FCPIN to compute the
checksum.

c. Constraints and limitations - None

d. Processing - This routine calculates an n-byte checksum
and returns it in Rll. It is used to compare against
actual checksums after input completions.

e. Error messages and recovery - None

Data, Logic, and Command Paths

Input data for FCPCHI are:

a. Return link address;

b. 3-word save area address;

c.. Byte count;

d. Buffer address; and

e. Actual buffer Lo be checksummed.

Output data for FCPCHI is Rll which contains the calculated check
sum upon exit.

Internal Data Description

None

Flowchart

See attached Figure 3.2.4-8.

278

•

•

•

G-e+ ned byte
a.nd a.d d to
c_heck 5ul\.,I

Incr-c"mc1,+

Po;rdcr--

--,"'
No

-... "'·,·

r

______re_~J
Ne9cde

check:::iu./\-1

-- --- ------,----
__ _jl _________ _

es+ore.
!1;~+ers.::
ii - R 1::.:i

Figure 3.2.4-7 Flowchart - FCPCHO

279

3.2.4.4.1.6

3.2.4.4.1.6.1

3.2.4.4.1.6.2

3.2.4.4.1.6.3

Submodule VI - Subroutine FCPUPD

Description

a. La~aE~ used - MODCOMP Classic Assembler

b. How invoked - Called by FCPTN to update HC status
following input of a status response message.

c. Constraints and limitations - Update status for one
HC per invocation.

d. Processing

This routine updates HC status (HCSTlG), Azimuth
encoder position (AZIMG), and Elevation encoder posi
tion (ELEVG) for a single heliostat as reported by
an HC via the HFC to the HAC.

In addition to status updates, FCPUPD shall save the
mark encountered bits if the HC is in the "SEEK MARK"
mode/submode such that all such bits are available for
final evaluation and subsequent mode changes and/or
alarms. FCPUPD does not update AZ and EL if mode/
submode equal zero.

e. Error messages and recovery - None

Data, Logic, and Command Paths

Input parameters for FCPUPD are:

a. Return link address;

b. Buffer pointer; and

c. HC index (0-2047).

Output parameters for FCPUPD are:

a. (HCSTlG) - HC status array;

b. (AZIMG) - Heliostat Azimuth Encoder Position array; and

c. (ELEVG) - Heliostat Elevation Encoder Position array.

Internal Data Description

Internal data used by FCPUPD are three masks:

a. One to define the mode/submode field (4fo007C
bits 9-13);

280

•

•

•

•

3.2.4.4.1.6.4

3.2.4.11.l.7

3.2.4.4.1.7.1

b. A second to define SEEK MARK mode/submode (#0064); and

c. A third to define the two mark-encountered bits (t/0000).

Flowchart

See Figure J.2.4-9.

Submodule VU - Subroutine FCPSWll

Description

a. _!..angua£._E:_ used - MODCOMP Classic Assembler

b. How invoked - Called by either FCPIN or FCPOUT upon
detection of a line or HFC error.

c. Constraints and limitations - None

d. Processing - The FCPSWH routine shall be responsible
for recording the error in global common (LINESG) and
determining if a communications switchover condition
is present (see paragraph J.2.4.3) .

1. The FCPSWH routine begins processing by checking
if all enabled lines have had an I/0 error. If
so then either a communication failure to the
entire field has occurred or the field has suf
t"l•red a power Jo,;:;.

2. If Lhe backup HAC ls operational, the FCPSWH
routine will set a bit in global common to
initiate a switchover. Otherwise a switch to
the alternate lines will be made. No switching
will be performed for a power loss condition.

3. If a communication failure was not detected, the
FCPSWH routine shall record an error in global
common and perform checks to determine if a
switchover condition is present for the indi
cated line. If so, the user file table for
the communication Lines in the same MODCOMP 1931
shall be switched to indicate the alternate
lines. The status shall be set to failed for
the normal] lncs ,rnd to active for the alternate

lines.

e. Error messages and recov~_!'-1. - No error messages are pro

duced by FCPSWH .

281

Sa..ve.
Re~'i:iter.5
f<.i3- Ri'S

Fdch nat bvtt
0..1,J acid to
cl, u k .:; ur,,1

Save. computer

checbuM in RH

~es-for e
re(1i'derj
f;i3-R15

KE TuR!'J

Figure 3.2.4-8 Flowchart - FCPCHI
'HM

!=C Pu PO

C, d H C. .staJu.5
Cl rid ed-rru:t
rYiDde uncl Su

. Ed rn.[t old MAf.i<.
b ;-t,::, o.n~ "Off'
wi1h M.w HC
!', 111. +lA..!>

lup;Jute.. Al
o.fld EL ', n

A.Z.1M&- l ELEI/Cr

RETURN

Figure 3.2.4-9 Flowchart - PCPUPD

•

•

•

• 3.2.4.4.1.7.2

3.2.4.4.1.7.3

•
3.2.4.4.1.7.4

3.2.4.5

•

Data, Logic, and Command Paths

Input data from F'CPSWII are:

a. Line number which had the er t-or;

b. HFC number which had the error;

c. Type of error (input or output); and

d. Global common variables FLDSTG, LINESG, HFCS2G, status
bit for backup Hi\C in HACSTG.

Output data from FCPSWH are:

a. Modified global common words LINESG and FLDSTG;

b. User file tables (UFTS); and

c. Global common bit to indicate switch to backup HAC.

Internal Data Description

The following are internal data used by FCPSWH:

a. 15-word save area for registers Rl - Rl5;

b. Logical file names associated with the alternate
communication system;

c. A mask used to test if the HFC already had an I/0
error present; and

d. Miscellaneous local variables.

Flowchart

See Figure 3.2.4-10.

Interface Description

a. Data Bas"'· Input.:

SUNPOG - Sun Pos.Lt1on Vvctor

GMDllFG - Command Buffer

HCSTlG - HC Status 1

HCST2G - HC Status 2

HFCS2C - HFC Status 2

b. Data Base Output:

HCSTlG - HC Status 1

28'3

'-..,
,,,,.- ,....._

<i;,,e M1.1bled ')-I--C=-0-------Ji.
''--~, _,.,,,.//

----- i~f~----•
Tnc r·ea.tie.. nt1n1-
ber of I ine~
0J I H, error.5

Sd -f;eld o.nd
! i'ne sfo:f u.S fo
od

1

11Je /D..nd clear
erreir b'ds

/e~a~

<P1,Jer :rrturu

",,~~~:

Set Dol.lltr

Yt~ fa; lure.. b;t ;fl
fi'e.ld S-t,:a.il.o

_jt
~:,.:b;~-;~
jteld sAa.iu.~ I
L. ---- --·· -- ----~- .. J

Sw',icki 1°9_'ic~I
t ,I~ Y\AMf. In J/D
UFls. +o ;M;cr.te

Hecno:te. lt'ne!>

Se·l nor Mo. I I; ,H'

s4r,·!u6 1<')
.fa ;1 f'd

Sd a.I ter~:te--]
\,.nt.. s+oJ-us
-lo ACTtl/E.

"--~--·-'-'

Der f"e Meri+ num

ber d t>no..bl,d I
l

0

1ne..'5 l FLDSTG) I
~--....---···-..l •

•

•

•

r ncrra!.e. ni.im btr
of HFC5 olown
'1n LINES.&

A/2.

·-. ~ ••• , ,r' .,. ... ,..,.,.., ,,, ,/ ~

np,...+ /rror-.... Na 'Ou~plA.t aror /:}~
? '-, 7 /,, I
' . ,.,,,

Ye!) e ~

error fla~ flct..g ,n
in LINE.Sb L1NESG-

Increa,~ :~pjf ;:~rea!le ou+-1
error count put error

in L1NES& CDurd in
LINES(:,

r/,,.

,i'' c on:.et u.:f i've.
I rly)1.4f- ef("t)Cj-/

S ... ;,-1,h l~iu,I ilt

011~!1 'in J/o urr~
to i"'J,c,.tc, a Ii -
E'rnAte. !'.I'll'~

'Set notMa..l
I 1ne :Sto.f u.s
t~ fai\ed

~crerntnt nurn
ber o-f l ,'nt'~

e.na.bled
ULD~n.)

Re:>fore..
: re. '3 l!>f-U5

Ri-Ri5

RETURN

Figure 3.2.4-10 Flowchart - FCPSWH (continued)

HCST2G - HC Status 2

HFCSlG - HFC Status 1

IIFCS2G - HFC Status 2

A1/. lMC - AzimuLIJ l'os iLiun

ELEVC - ELevatl.on l'ositiun

CURHSG - Current HC grour being statused

TBUSYG - Task Busy Flag

LINESG - Communication Line Status>~

FLDSTG - Field Status*

1-IACSTG - HAC Status>~

*These data items are required by the FLDCOM module to be

transferred to the backup HAC on a once-per-second basis.

c. Physical Output:

SUN/SYNCH - Active or enabled to eight HFC lines

STATUS POLL (MODCOMP 1931) Packets as described

COMMANDS in 3.2.1.2 of S/W Functional Require

ments Specification.

d. Physical Input:

STATUS - From eight HFC lines (MODCOMP 1931)

Packets as described in 3.2.1.2 of

S/W Functional Requirements Specification.

e. Activation by TIK; and

I. A("ti.vaL!on ol SUN, ALM, llllJ, BIIC, and STS tasks.

Test Requirements

a. Verification of FCP's logic will be done using MAX IV

DEBUG. This system utility allows selective execution

of portions of code, tracing, and modification of memory.

The memory modification feature will be used to simulate

HFC and HC behavior;

b. Verification of timing will be done by repeated execu

tion as well as oscilloscope inspection of communication

lines; and

c. Verification of communication performance to a field of

2048 heliosLats is implied by "a" and "b" because FCP i.s

tlt-sii;nvd to C(lllllllt111ic·,1t:(' witl1 (,l1 IIFCs and 20Li8 hcliosUHs

dl ,II.I tf111t•s. II any LIFC:; 01· lit::-; do 1101 exJsL, 1:rru1-

•

•

ltn11dl l11g loi•,I<· n.•placL'S :;l:1l11:; 11pdntvs, !Jut U1t• timin)', •

does not clt,1uge.

286

•

•

•

3.2.5

3. 2 .. 'i. J

3.2.5.2

3.2.5.2.1

3.2.5.2.2

3.2.5.3

3.2.5.3.]

Alarm Processor Module - ALARMS

Purposl'

The purpose of this module is to dctc·ct and display error
conditions reported by the HCs, llFCs, and other software modules.

Requirements

Design Requirements

Section 3.1 of the 10 MWe Software/Firmware Functional Require
ments Specifications states a requirement for control and monitor
ing of heliostats in all modes. This implies a need for real-time
detection and display of abnormal heliostat responses.

Derived Requirements

Sect ion 3. 2 .1. 5 of the JO MWe Software/Firmware Functional lkquirv
ments Specification imposes the following requirements on the
alarms module:

a. Monitor the heliostat statlrn being returned from the
field;

b. Detect error conditions reported by the HC in that
status;

c. Report the alarms to the HAC operator using the alarms
printer and an alarms area of the CS control console;

d. Send alarm messages to the OCS through the OCS interface;

e. Display alarms detected by other software modules; and

f. Maintain ONLlNE/OFFLTNE status for the heliostats.

Design Approach

Functional Allocations

ALARMS processing decomposes logically into three major
alarms monitoring, alarms queueing, and alanns output.
3.2.5-1 provides a system overview relating these three
to each other and to certain relevant system elements.

functions:
Figure
functions

The alarms monitoring function satisfies those requirements to
periodically examine all heliostat status locations for conditions
that are abnormal and demand operator attention. Additionally,
the alarms monitoring function includes the capability to set
individual heli ostats to an offline mode as required by item (f)
above.

287

,~.

ALARMS PROCESSING

COMMUNICATIONS
PROCESSOR
MODULE
(FLDCOM)

COMMON
DATA
BASE
(COMDAT)

OUTPUT
FORMAT
FILE

MAN-MACHINE
INTERFACE
MODULE
(MANMIF)

ALARMS
MONITORING
FUNCTION

ALARMS
QUEUEING
FUNCTION

ALARMS
OUTPUT
FUNCTION

Figure 3.2.5-1 Alarms Processing Overview

288

Calls from
other
Modules

ALARMS
LOG -----

•

•

•

•

•

The alarms output function exists to provide the visible result

of the alarms monitoring activities. For specific RC problems,

it normally provide.a detailed alarms output but, when necessary,

concentrates multiple HC alarms into higher level messages that

display essential information in an abbreviated format.

The alarms queueing function provides for interfacing the high

speed activities of the alarms output function. It is designed

to minimize the possibility of any alarm data being lost while

accormnodating the response time of an operator interface via the

CRT. Additionally, the stand-alone nature of the alarms queueing

function provides for an easy interface to accept alarm data from

other system modules as required by item (e) above.

A brief description of the functions of Alarms Detection, Alarms

Collection, Alarms Reporting, Alarms Queueing, and Alarms Output

is presented in the remainder of this subsection. Figure 3.2.5-2

shows the four "levels" of status tables referred. to in the text,

as well as related tables which are discussed later in this

ALARMS module section.

Alarms Detection - Consists of a main submodule (ALMDTC)

that integrates alarms detection between status levels,

four specialized submodules (ALMFLD, ALMLNE, ALMHFC, and

ALMHC) that perform the alarms detection at each level

on an individual block basis, and a support submodule

(ALMGET) that determines the table-derived alarm number.

The detection process proceeds from the lowest level status

blocks to the highest level block, and existence of an

unreported alarm anywhere in the system results in a flag

eventually being set at the highest level. Thus, HC alarms

propagate to HFC alarms, HFC alanns to line alarms, and

line alarms to field alarms. The field alarm flag then

triggers the alarms collection function for analysis of

the situation.

The general logic flow of the four specialized submodules

is similar in nature, but the specific error and offline

testing is directly related to the structure of the corres

ponding status words in the cormnon data base. Once the

existence of an alarm has been determined, the alarm number

is computed by ALMGET using the proper alarm detection table.

The error testing is performed in order. of alarm signifi

cance such that less important alarms never replace more

important alarms. The alarm number maintained in the status

word is always the most critical alarm currently in exis

tence regardless of whether lesser unreported alarms exist.

The detection of any alarm at any level results in a Type

One alarm being propagated to next higher level, unless a

different alarm already exists at the higher level. The

lower-level status block is set with the actual alarm

condition number and the reported alarm .flag is cleared

for all new alarms. The alarms collection function event

ually executes and keys on the Type One alarm flags in its

collection process.

289

GLOP,AL

FLDSTG

ALARM TABLES DouBLEWORD

IN MEMORY M~~lES •

F Lt>AJ..M FLDTBL

I LI Wtil lXJ 11 I I

T. ,,,..
1 ~

L.NERLM

[:8u[li
LNETBL

1..NEDBL _j

02
B b'rfs usej"l

'f- 8 Rd1"e; 8 .bcackup

HFCSIG HFCS2G

I b~m
HF'CDBL _j

I I "
i,f l,ds use.if

1,_____,
HCSTI G HCST2G •

I oF

3? Blo~ks

HCDBL

2oi8 l
128

I-------' J
2o"f8 l>i ts useJ

•
Figure 3.2.5-2 Alarms Stat.us Levels and Related Tables

•

•

•

Alarms Collection - This function is invoked only if alarms

detection has indicated the existence of a new alarm con

dition. Alarms collection is accomplished by a single

submodule (ALMCLT) that collects alarms at a given level,

converts them into an alarm at the next higher level, and

maintains doubleword memories for multiple error conditions.

Alarms collection proceeds in a bottom-up manner through

three successive calls to ALMCLT to collect HC alarms to

HFC alarms, HFC alarms to line alarms, and line alarms to

field alarms. When the collection process terminates, the

data base status words are set with all appropriate alann

indicators to be processed by the alarms reporting function.

ALMCLT uses alarm Types One and Two as the key for its pro

cessing. Type One means that at least one lower-level

alarm exists and a search must be made to determine if

multiple alarms exist. Multiple alarms are then flagged

with a Type Two alarm. If a Type Two alarm has been pre

viously detected, the lower-level blocks are searched to

insure that the condition still exists. The Type Two

alarm is cleared if the multi-alarm condition no longer

exists. All new alarms are flagged as unreported.

Alarms Reporting - This function executes only if the

alarms collection functions have been performed. The

alarms reporting function consists of a general submodule

(ALMRPT) that executes once and a support submodule (ALMBLK)

that is called once for each alarm condition that must be

reported. Alarms reporting proceeds in a top-down direc

tion so that low-level alarms reporting is suppressed when

higher-level alarms are in existence. The alanus report-

ing function interfaces with the alarms queueing function

and updates the common status flags as alarms are reported.

ALMRPT sets up the processing loops for each level of status

and tests the alarm reported bit for each level. If re

quired, a call is made to ALMBLK for processing of the actual

alarm. The alarm number is used as an index into the proper

alarm definition table, and the input for subroutine ALMQUE

is constructed. The reported flag is set only after the

ALMQUE submodule returns a flag indicating successful queue

ing of the alarm. Thus, if queueing is unsuccessful, the

alarm report attempt will be retried after succeeding status

updates until the queueing is successful or the alarm condi

tion disappears.

Alarms Queueing - This function provides the interface be

tween alarms monitoring and alarms output. It also pro

vides an interface for other modules in the system that wish

to output alarm messages. This function consists of the

ALMQUE submodule which builds and queues compressed message

blocks into a chain of free storage blocks. To prevent

storage overflow, the chain 1.s not allowed to exceed an ar

bi.trary length. When the chain 1.s full, the oldest alarm

291

3.2.5.3.2

message block is discarded and the newest message block

added. This would normally occur only when one of the

output devices has failed or the console operator is ignor

ing critical alarm messages. A queue-full message (unsuccess

ful queue) is returned only when the free storage system

cannot provide a block for the new alarm message, or the

ALMQUE work area is full.

Alarms Output - This function consists of the alarms out-

put task (ALO) and support submodules to build ASCII mess

ages from data blocks (ALOBLD and ALOCVT) and to dequeue

expended message blocks (ALODQU). The ALO task is activated

by the alarms queueing function when new alarm messages are

added to the queue. It can also be activated by the MMI

task when the console operator acknowledges the presence of

a critical alarm on the screen. ALO executes at a lower

priority level than either the alarms monitor task or the

MMI task. All alarm formats are stored on disk by an off

line initialization program that is described in the initiali

zation module (DBINIT) documentation. Four formats are stored

on each sector, and the records are stored in the order of

the associated alarm code numbers. The message formats

themselves are defined in the same manner as FORTRAN format

statements and are capable of handling H, X, F, E, A, and

Z data conversions.

Normally, submodule ALOBLD reads message prototypes from

disk, inserts the user parameters into the prototype, appends

the time to the message, and writes it to the specified

device. However, special processing is provided for the

first five message types. Messages one, two, and three

include parameters that define which lines, HFCs or HCs

have errors in a multiple alarm message. The particular

units that are defective are designated by the appropriate

bits being set in a doubleword parameter so that the amount

of storage space is minimized. ALOBLD calls ALOCVT to de

code the compressed format and creates the final message

output format. Message Types Four and Five relate to Mark

conditions and require a disk read of the Mark biases to

complete the message. All alanns are output to the general

alarms portion of the operator's screen while only critical

alarms are sent to the area of the screen that requires an

operator response before the next critical alann will be

displayed.

Resource Budgets

15,000 bytes of core to keep alarms processing software resident.

8,192 bytes of core for free-storage buffer area.

6,400 bytes of disk space for alarm message :fcrnnats.

•

•

1 percent of CPU time for monitoring function-no alarms processing ••

292

•

•

3.2.5.4

3.2.5.4.1

CRT with two SO-character alarms display areas.

Printer logging device.

Priorities:

ALM - relatively high (synchronous)

ALO - relatively low (asynchronous)

Design Description

Module Structure

The software organization of the ALARMS processing module

consists of two tasks and thirteen subroutines ("tasks" and

"subroutines" take on the meaning defined by MODCOMP). Refer

to Figure 3.2.5-3 for an overview of the ALARMS module struc

ture.

Tasks:

a. ALM - Alarms Monitoring - main routine which initiates

all Alarms Processor Module actions; and

b. ALO - Alarms Output - handles the output of all system

alarms to the various output devices.

Subroutines:

a. ALMDTC - Alarm Detection - Integrates the alarm status

for two contiguous levels;

b. ALMFLD - Field Test - Performs alarms detection at the

field level;

c. ALMLNE - Line Test - Performs alarms detection at the

line level;

d. ALMHFC - Heliostat Field Controllers Test - Performs

alarm detection at the RFC level.

e. ALMHC - Heliostat Controllers Test - Performs alarms

detection at the RC level;

f. ALMGET - Get Alarm - Does the status bit testing to

determine which alarm bit is set, and returns

an alarm number for that status bit;

g. ALMCLT - Alarm Collect - Collects alatms reported at a

lower status level, sets a higher-level multiple

alarm flag if necessary, and ~aintains memory

doublewords of all multiple ~larms;

h. ALMRPT - Alarm Report - Searches all status from the top

level to the RC level and reports the highest

level alarms that exist;

293

---....--
ALM

(TASK) -·--·-
Main routine ·-

-7 ~.~-,.---·

"i
[~ ADmM s~~;ch top down l
and report J
highest alarms

\/

ALMFLD

Field level
testing

ALMBLK

Prepare blocks
for queueing

i

i
r-

.... '/ ·---······--·
ALO

(TASK)
Alarms Output

-

/ ..

ALOBLD

Build text
of msg.

--· ~--- - ·-- -·--~·- -·--,

·----·

_ __. ______ _ ,--------~
ALMCLT

Colle
alarm
high

/--· ALMDTC
ct low leve retect and
s __ t_o_m_u_l_t_i_p__,e Pro~-a gate a 1 arms
level alarm _

ALM LNE

level
ng

-·-
Line
testi

ALMHFC

RFC level
testing

·-~~· ~---· -•~'" _ .. ,... .,,,.--.I. ,_, .. __ -···•

' I L

·'.J
_ALODQU

Dequeue

, and output it

ALOCVT

Build strings
for mult iph·
alarms

i expended
alarm blocks

Figure 3.2.5-3 Alarms Module Structure

294

ALMHC

HC level
testing

QUEUEING

OUTPUT

•

•

•

•

•

3.2.5.4.1.1

3.2.5.4.1.1.1

i. ALMBLK - Alarm Block - Handles the interface between
the Alarms Monitor Task (ALM) and the alarms
queue Lng systl·m by organizing the parameters
for a call to ALMQLJE;

j. ALMQUE - Alarm Queue - Can be called by Alarms Processor
module (or any other system program) to build a
compressed message block from passed parameters
and to queue up the message block;

k. ALOBLD - Message Build - Reads the disk to build alarm
messages from queued message blocks;

1. ALODQU - Deque - Handles the alarm message chain and
FREEs message blocks when all required output
has been performed; and

m. ALOCVT - Convert - Creates a list of items for multiple
alarms fonnats.

Submodule I - ALM

Description

a. Language used - MODCOMP Assembly

b. How invoked - REX, ACTIVATE issued once a second by FLDCOM.

c. Constraints and limitations - None

d. Processing - The Alanns Monitor submodule (ALM) is the
central element in the alarms processing system and
executes at a relatively high-prlority level in the
system task structure. It provides all of the field,
line, HFC and HC alarm detection and reporting in the
system. It also assumes responsibility for setting
individual heLiostats offline after errors occur and
clears alarm flags when conditions return to normal.

1. ALM accesses CURHSG to determine which one
eighth of the 2048-word HC status arrays is
to be monitored for alann conditions.

2. ALM calls ALMDTC, which calls ALMHC four
times, checking four online HC status words
and maintaining the highest alann for each.
ALMDTC loops 64 times till 256 HCs are processed.

J. ALM calls ALMDTC which calls ALMHFC eight Limes,
checking eight IIFC status words (only Jf in
sta]1ed) and mainta.ining tile highest alarm
for each. ALMDTC loops 8 times till 64 HFCs
are processed.

2.95

3.2.5.li. l.1.2

4. ALM calls ALMDTC which calls ALMLNE eight times,
checking eight line status words and maintain~ng
the highest alarm for each.

5. ALM calls ALMFLD to test the field status word.

6. If an alarm change has not been detected, ALM
terminates; otherwise, ALM continues as follows.

7. ALM calls ALMCLT which steps through 32 words
of HC status if required. The alarms are
counted
exists.
dated.
HCs are

to see if a multiple alarm situation
The HC alarm bit table, HCDBL, is up

ALMCLT loops n4 times until all 2048
processed.

8. ALM calls ALMCL'L' which steps through eight
words of IIFC status if required. The alarms
are counted to see if a multiple alarm situa
tion exists. The HFC alarm bit table, HFCDBL,
is updated. ALMCLT loops eight times until
all 64 HFCs are processed.

9. ALM calls ALMCLT which steps through eight words
of line status if required. The alarms are
counted to see i.f a multiple alarm situation
exists. The line alarm bit table, LNEDBL, is
updated.

10. ALM calls ALMRPT to report alarms to the queue
ing system. ALM tl1en terminates.

To summarize, ALM is act Lvatt•d once each second by the
communications module after one-eighth of the heliostat
field status lias bc•l•n updau·d. ALM then s<.:ans this up

dated HC status as well as all HFC, line, and field
status and sets any necessary error conditions into
global common memory. Alarm detection is the only
function performed by ALM when no errors exists, so
the task execution time requirement is minimal. Detec
tion of alarm conditions forces execution of the collec
tion and reporting subfunctions, and the execution time
increases in proportion to the number of alarms. If an
abnormally large number of alarms occur, the ALM task
is designed to delay detecU on processing and catch up
as time becomes available.

e. Error messages and recovery - None

Dat::i, Log it' and Comm.-ind P.-iths

:.1. Input Description - All input i~; tlirlll1gll g]oli:11 collim(111;

IJ. Output Descriptlon - No cl.irccl oulput;

•

•

•
<.:. Submodules called - ALMDTC, t\LMFLD, ALMCLT, and ALMRPT; and

296

•

•

•

3.2.5.4.1.l.3

3.2.5.4.1..1.4

3.2.5.4.1.2

3.2.5.4.l.2.l

d. Global common usage - CURHSG.

Internal Data Description

The doubleword memory tables HCDBL, HFCDBL, and LNEDBL (refer
ence Figure 3.2.5-2) are physically located here. The use of
these tables is descr.ihed in Submoclulv VIII, ALMCLT (see SecUon

3.2.5.4.l.8).

Flowcharts

See figure 3.2.5-4.

Submodule TI - ALMDTC

Description

a. Language used - MODCOMP Assembly

b. How invoked - Calling Sequence:

BLM,9 AUIDTC

DFC HIPTR

DFC HICNT

DFC LOPTR

DFC LOCNT

DFC SKPCNT

DFC TSTSUB

c. Conslrainti; and 1.imitationi-; - Nunc

d. Processing - ALMDTC integrates the alarm status for two
continuous status levels. It calls the specified test
subroutine for each block at the lower level and sets
alarm flags at the higher level when necessary.

1. The passed parameters are accessed.

2. A high (outer) loop is set up to start at
HIPTR and loop HICNT times, incrementing
the LOPTR by SKPCNT each time through the

loop.

3. A low (inner) loop is set up to start at
LOPTR and loop LOCNT times, calling submodule
TSTSUB eilch time through the loop.

4. l~Xl'cution of the loops begins. LOPTR and
llll'TH point to glol,:11 common i;t:1tu1; ;1rr:.1y:;, :1

297

ALM

In;+ icd,z.e.
Sto..+u~
'Po1·r,1er.:i

Te~;-f fur

HC o..larm.::.

ALMDTC

ie5t ¾~r l t~f(r:dorm6

1LNDfC 7

-re--+ ri I I~., i·Or

1
L ine cdc,r('ll5

[

I. ALI'-'.(L'f .

Coiled HC
() i(JrrYl.:J

' I ALf,.,/(LI
I

Coiled

L ''."' :::::J

[

. -··ALHtPT I

:'.'..w1rti, for

1
.. :·"·,.,> a l,H·rr,.:;

} I

f X it

Figure 3.2.5-4 Flowchart - ALM

298

•

•

•

•

•

•

3.2.5.4.1.2.2

3.2.5.4.1.2.3

3.2.5.4.1.2.4

3.2.5.4.1.3

3.2.5.4.1.3.1

low level and a higher level. If the calls
to TSTSUB detect an Alarm change stepping
through the low loop, and the corresponding
ldgh loop status word has no alarm of its
own, the high-level status word is set to
al.arm one, thus propagating low-level alanns

upward.

5. When the inner and outer loops both complete
execution, the submodule exits.

e. Error messages and recovery - None

Data, Logic and Command Paths

a. Input description

HIPTR - Pointer to high-level status array

HICNT - Number of high-level blocks

LOPTR - Pointer to low-level status array

LOCNT - Number of low-level blocks tested per
high-level block

SKPCNT - Number of low-level blocks not tested
per high-level block

TSTSUB - Pointer to low-level status testing
submodule

b. Output description - There is no output in this submodule.

c. Submodules called - TSTSUH can he ALMLNE, ALMHFC, or ALMHC.

d. Global common usage

FLDSTG, LlNESC, HFCS2G, !ICSTJG, and HCST2G.

Internal Data Description

There is no data internal to this submodule.

Flowcharts

See Figure 3.2.5-5.

Submodule III - ALMFLD

Description

a. Language used - MODCOMP Assembly

b. How invoked - FLM,8 ALMFLD

c. Constraints and limitations - None

299

1,.,.,....--

(!< i)
'---- . -T

\
)

------·___ji_ ___ ······-· .

i ·. P I i J !
I,
I .f' ,;, ,

r

• /\;) f
I

l •< v-J '
1

,., , , 1 rj I n -,1-

; fr /11 ·\ ·; --,:",c

I
I
L.,

t\U·F r1,1~1:fC:··---r l ..
~·~ -- •1•- '

··1··
I·' 1/f J\'

l . .,i r'' I
I

,/

/' (' ,'

Ar·/
1 J (!' :_.

Ovl-

.I
ff_

:~
(I } I

, r/,,

;'!',)

I
~---- ... '!I

i..
·11_")

/

.------\\
/_

\~-

1 Uc L

'- I

{r

f.' .

J '! I'

(·,• ~ ' J

[.

/'

Figure 3.2.5-5 Flowcharts - ALMDTC

JOO

•

•

•

•

•

•

3.2.5.4.1.3.2

3.2.5.4.1.3.3

3.2.5.4.1.3.4

3.2.5.4.1.4

3.2.5.4.1.4.1

d. Processing - This submodule perfonns alarms detection
at the field level. It sets an alarm flag for the
highest-order existing error and clears the alarm
flag when the error condition disappears.

1. The submodule first checks for error bits in
FLDSTG. If none are found and the old alarm
was greater than three, it is cleared. If
the alann was one (a propagated alarm) it
will be propagated higher. The submodule
exits.

2. If an alarm was found, it is resolved with
a call to ALMGET. The alarm number is stored
in FLDSTG but will not be reported if it has
already been reported. The submodule exits.

e. Error messages and recovery - None

Data, Logic and Command Paths

a, Input description
This call must pass registers set up in ALM.

b. Output description
Register 10 is alarm indicator (l=No Alarm; O=Alann)

c. Submodules called
ALMGET

d. Global common usage
FLDSTG

Internal Data Description

FLDALM table - Field alarm detection table; and

FLDTBL table - Field alarm definition table.

Flowcharts
See Figure 3.2.5-6.

Submodule IV - ALMLNE

Description

a. Language used - MODCOMP Assembly

b. How. invoked - BLM,8 ALMLNE

c. Constraints and limitations - None

d. Processing - Thi.s submodule performs alarms detection
at the line level. It sets an alarm flag for the

301

:~

Sd niorrr1-

d1r1,Jf' r1'.)~

'ii

__ ,I

i
I

·V

Figure 3.2.5-6 Flowcharts - ALMFLD

302

i

r---'
I •
J

•

•

•

•

3.2.5.4.1.4.2

3.2.5.4.1.4.3

3.2.5.4.1.4.4

3.2.5.4.1.5

3.2.5.4.1.5.1

highest-order existing error and clears the alarm
flag when the error condition disappears.

1. The submodule first checks for error bits
in LINESG. If none are found and the old
alarm was greater than three, it is cleared.
If the alarm was one (a propagated alarm),
it will be propagated higher. The submodule
exits.

2. If an alann was found, it is resolved with a
call to ALMGET. The alann number is stored
in LINESG but will not be reported if it has
already been reported. The submodule exits.

e. Error messages and ~ecovery - None

Data, Logic and Command Paths

a. Input description
This call must pass registers set up in ALM and ALMDTC.

b. Output description
Register 10 is alarm indicator (l=No alann; O=Alarm)

c. Submodules called
ALMGET

d. Global common usage
LINESG

Internal Data Description

LNEALM - Line alarm detection table; and

LNETBL - Line alarm definition table.

Flowcharts

See Figure 3.2.5-7.

Submodule V - ALMHFC

Description

a. Language used - MODCOMP Assembly

b. How invoked - BLM,8 ALMHFC

c. Constraints and limitations - None

d. Processing - This submodule performs alarms detection
at the HFC level. It sets an alarm flag for the
highest-order existing error and clears the alarm
flag when the error condJtion dfsappears. When an

303

1 \)c·i·'r,-1··-.c .. , ... ~
•
1
. 10:,1,·r, r.1·>',:-,'rl

I l
LJ.

_; (1""

____ -)r ~:> 1 . (er;,
, .._., fl f' r·i..-:,.-,,'7 ,c·:,,,.~-, t

___________ './

Figure 3.2.5-7 Flowcharts - ALMLNE

304

,_ --.. -- ·r-· . _ .. l
r: ~:t ... ·: ·- ·_ -_ _.
1-·:e. .J, ,'.Ir,,,

i "' n :1. n ;~ e. -f i.) 1:l. :

r··

•

•

•

•

•

•

3.2.5.4.1.5.2

3.2.5.4.1.5.3

3.2.5.4.1.5.4

3.2.5.4.1.6

3.2.5.4.1.6.1

HFC communicat:l ons error j s detected, all affected
HCs are set offline.

1. This submodule first checks the not-installed
bit in HFCS2G and exits if true.

2. The next check is for error bits in HFCSlG.
If none are found and the old alarm was
greater than three, it is cleared. If the
alarm was one (a propagated alarm), it will
be propagated higher. The submodule exits.

3. The alarm number is resolved with a call to
ALMGET and stored in HFCS2G, but will not be
reported if it already has been reported.
The submodule exits.

e. Error messages and recovery - None

Data, Logic and Command Paths

a. Input description
This call must pass registers set up in ALM and ALMDTC .

b. Output description
Register 10 is alarm indicator (l=No alarm; O=Alarm)

c. Submodules called
ALMGET

d. Global common usage
HFCSlG, HFCS2G

Internal Data Description

HFCALM - HFC alarm detection table

HFCTBL - HFC alarm definition table

Flowcharts

See Figure 3.2.5-8.

Submodule VI - ALMHC

Description

a. Language used - MODCOMP Assembly

b. How invoked - BLM,8 ALMHC

c. Constraints and limitations - None

305

•

I.• .• .. •,I . r· , ',[,
l I ..)I Lieirru ·,, ;,_ j

! /.,i,,rr1 ,,,,mjy.,- j

L. ! .!
~

/ "- f Ur,:l,1·,·, a f() ((Y'
1 '

.. •-:-..1. V': ·.•rt\ be r \
,,, I

;:· :' :i .-,
.,,,1,_

J , __ _

,,//\.·. ·I,.,
· 1 1).(rf\ r rir,·or ;,.,,; /' • !

-----r I
¥---- ___________ 1_ __ ___ f ______ . V

l
. ... '¥.

. .. - .:+ __ -,. -
' ("" -p ET' I 'R' I-)

\ f'. w .N /

Figure 3. 2. 5-8 Flowchart - ALMIIFC •
306

•

•

•

3.2.5.4.1.6.2

3.2.5.4.1.6.3

3.2.5.4.1.6.4

3.2.5.4.1.7

3.2.5.4.1, 7.1

d. Processing - This submodule performs alarms detection
at the HC level. It sets an alarm flag for the highest
order existing error and clears the alarm flag when the
error condition d.isappears. It sets the HC off1ine b.its

as necessary following alarms <letectlon.

1. This submodule first checks the offline bits
in HCST2G and exits if true.

2. The next checks are for error bits in HCSTlG
(including communication error), then HCST2G,
then a special test for UNMARKED status. If
no errors are found and the old alarm was
greater than three, it is cleared and the sub
module exits.

3. If an alarm was found, the alarm number is
resolved with a call to ALMGET and stored in
HCST2G, but will not be reported if it already
has been reported. The submodule exits.

e. Error messages and recovery - None

Data, Logic and Command Paths

a. Input description
This call must pass registers set up in ALM and ALMDTC.

b. Output description
Register 10 is alarm indicator (l=No alarm; O=Alarm)

c. Submodules called
ALMGET

d. Global common usage
HCSTlG, HCST2G

Internal Data Description

HCALM - HC alarm detection table

HCTBL - HC alarm definition table

Flowcharts

See Figure 3.2.5-9.

Submodule VII - ALMGET

Description

a. Language used - MODCOMP Assembly

b. How invoked -

BLM,14

DFC

DFC
307

ALMGET

ALMTBL

TBLEN

-

, t'\ -: IJ, .• ~, j , f ~-

.-1 ·:)'(r\ o\ tfi C ;

--··· --·1 ·-- ' (~[;{J~~
'------ -----l
I. , ' 11 ·o , f'••· I ' '• 0 I __,: 1 , - , ~

i '.) \~t J' \'),.,.,

i /'; .,,4, ~y ~~ (
, --.-~ ·-

l _______ t __ _

(Alt!\ HC) ,_

~---

.,_

'",,.._
IJI_.J ci 1ri r(Y; -,

",-,..,

,v

Figure 3.2.5-9 Flowcharts - ALMHC

308

I
f-

l
I

I

.1

--- ------------' - ------:;,-
!
:

!

I
·---~

;t,·.1.•,7 l },') y, l

!n:f,')i'. ,,.i

-·- ___ ;}·'
,'.:£+ 0.)1,

Q 0,o ~ ._1 ~~- ') ~
\,

•

·t •

•

•

3.2.5.4.1.7.2

•

3.2.5.4.1.7.3

• 3.2.5.4.1.7.4

c. Constraints and limitations - This submodule is called
with a generic parameter, ALMTBL, which can be FLDALM,
LNEALM, HFCALM, or HCALM as shown in Figure 3.2.5-2.
The contents of these alarm detection tables must be
arranged in descending priority order, and a parallel
table (FLDTBL, LNETBL, HFCTBL, or HCTBL) must exist.
Refer to Table 3.2.5-1.

d. Processing - This submodule does the status bit testing
and translates the highest priority status bit into an
alarm number (four through fifteen) which will fit into
the four-bit field of the status word. The process is
table driven by the contents of ALMTBL, and the output
is correlated to the position wi.thin the table where
the match occurs.

e. Error messages and recovery - None

Data, Logic and Command Paths

a. Input description

ALMTBL - Pointer to table specifying the register
and bit to test for each alarm .

TBLEN - Length of AL}ITBL

Rl2 - Current actual status

Rl3 - Current derived status

NOTE: Each ALMTBL table entry is a two-digit hexadecimal
number that specifies the location and bit number
for each alarm. If the first digit is "C", the
actual status location is to be interrogated, while
a "D" means the derived status location is to be
used. The second digit specifies the bit number
to be tested in either the actual or derived status.
Refer to Table 3.2.5-11.

b. Output description
R.14 - Alarm number for four-bit field in status word

c. Submodules called
None

d. Global common usage
None

Internal Data Description

There is no data internal to this su~module.

Flowcharts

See Figure 3.2.5-10.

309

1ALARM DETECTION 2ALARM DEFINITION
PROVIDES

ACTUAL ALARM
TABLE NAME TABLE NAME LOCATION NOS. FOR

HCALM HCTBL ALMHC RC

HFCALM HFCTBL ALMHFC RFC

LNEALM LNETBL ALMLNE LINE

FLDALM FLDTBL ALMFLD FIELD

1. Alarm detection tables

a. A table of DFCs arranged in descending priority

b. DFC fonnat: # X Y, X #C or #D
-\

registdr status bit

c. ALMGET is entered with a status word(s) in register(s) X.
ALMGET steps through the Alann Detection Table doing a Test
Bit in Register instruction for each table entry until the
status error bit is found; ALMGET returns the index value
(0, 1, 2, ...) of the table entry +4 (i.e. 4 through 15 max.).

2. Alarm definition tables

a. A table of DFCs arranged in the same order as l; the table
effectively starts at 2 (2, 3, 4, ... 15 max.) relative to
the value returned by ALMGET inc. above. Thus, a value of
4 from ALMGET points to the 3rd entry in tile Alarm definition
table.

b. DFC fonnat: # A B C D

r
T. -MSG-;;o. actual (range 0-255)

No. parameters

Level

0 = non-critical

1 = critical

Table 3.2.5-I ALARM Tables in Memory

310

•

•

•

•

•

•

I/C5
IJDA
IIC6
IID7
IID6
flC4
IIC3
/IDB
IID9

/ICl
IIC2
IIC5
IIC6
IIC7
/fCB

IICO
(!Cl

(IC3
I/C4

HC ALARMS (HCALM)

HC Communications Error
Missing Command Return
No Motion Error (AZ or EL)
HC Unavailable (WASH/OFFLINE) to STHIWIND
HC Cannot Return to SAVE Position
EL MARK Encountered
AZ MARK Encountered
Sequence Command Timed Out
Extra Command Returned

HFC ALARMS (HFCALM)

HFC Detected HAC/HFC Communications Error
Firmware Error
HAC to HFC Communications Output Timed Out
HAC to HFC Communications Input Timed Out
Invalid Data Received from HFC
HFC Did Not Receive Last Command

LINE ALARMS (LNEALM)

Line Communications Output Error
Line Communciations Input Error

FIELD ALARMS (FLDALM)

Field Power Loss
Communication Failure With Field

Table 3.2.5 - II ALARM Detection Tables

311

,,"4- _

(.. \
\ Ar11c,r) .,

+

r-·-- ··- .
. ----------·>!

·- .. ., ·---~ ·-·------7
L. o,) ;f ; i C i' ·) --/ ~ ~,+ I
dJ.;l. C; .. : ,.i
.,. I, ~ J [_)'-..'I. •' I
-l (:·.-~ · 'r ~.~/ ru , ·f~. 'Ir,:~

,,,,,.··"'
,.,.,c'

l
_,)V

.. J

<~Fr r(): I:·, -

·(,le\
k--·v -- '{

,.}
r;; ---··· ·-.,·••-··•-:· ··· ·•1

:~onic-t1-lf' ,_1,:)(m!
\ i

iV'l I. U'r\ (- ·
1

Figure 3.2.5-10 Flowcharts - ALMGET

312

•

•

•

•

•

3.2.5.4.1.8

3.2.5.4.1.8.1

Submodule VIII: ALMCLT

Description

a. Lan~1age used - MODCOMP Assembly

b. How invoked - Calling Sequence:

BLM,8 ALMCLT
DFC FLGPTR
DFC HIPTR
DFC HICNT
DFC LOPTR
DFC LOCNT

c. Constraints and limitations - None

d. Processing - ALMCLT collects all alarms reported at a
lower status level and sets a higher-level multiple
alann flag i.f necessary.

1. The pai:-;sed parameters are accessed.

2. A high (outer) loop is set up to start at
HIPTR and loop HICNT times.

3. A low (inner) loop is set up to start at LOPTR
and loop LOCNT times.

4. Execution of the loops begin. HIPTR and LOPTR
point to global common status arrays, a high
level and a low level. If the high-level alarm
is greater than three, the high-level loop pro
ceeds to the next high-level status word. If
the high-level alarm is one or two, the low
level status words (LOCNT of them) are checked
for any alarm, and if one is found, it is
counted and a corresponding bit is set into the
doubleword flag table pointed to by FLGPTR. If
the total count exceeds one at the end of the
low-level loop, the high-level error field is
set to two to indicate a multiple alarm condition;
otherwise it is cleared. If the doubleword
contents has changed from the last time this
subroutine was executed, the high-level status
is marked as unreported.

5. When the inner and outer loops both complete
execution, the submodule exits .

e. Error messages and recovery - None

313

3.2.5.4.1.8.2

3.2.5.4.1.8.3

3.2.5.4.1.8.4

3.2.5.4.1.9

3.2.5.4.1.9.1

Data, Logic and Command Paths

a. Input Description:

FLGPTR - Pointer to alarm flag array
HIPTR - Pointer to higher-level status array
HICNT - Number of higher-level status words
LOPTR - Pointer to lower-level status array
LOCNT - Number of lower-level status words

b. Output Description - Output is to the global common
status tables;

c. Submodules Called - None; and

d. Global Common Usage -
FLDSTG, LINESG, HFCS2G, HCST2G.

Internal Data Description

There is no data internal to this submodule.

Flowcharts

See Figure 3.2.5-11.

Submodule IX: ALMRPT

Description

a. Language used - MODCOMP Assembly

b. How invoked - BLM,l ALMRPT

c. Constraints and limitations - None

d. Processing - ALMRPT searches through all status from the
top level to the HC level and reports the highest-level
alarms that exist.

1. ALMRPT starts at the highest level and works
down (FLDSTG, LINESG, HFCS2G, HCST2G), checking
for alarms.

2. If a FLDSTG alarm exists and is not reported,
ALMBLK is called; ALMRPT then exits.

3. If no FLDSTG alarm exists, the eight words of
LINESG are checked for alarms. If an alarm
is found and not reported, ALMBLD is called.
Then all eight RFC and all (8 * 32) HC alarms
(if any) are skipped for that line, and the
next line is checked.

•

•

•

•

•

I
l
l
f Ho
-it--' F ('d ni 'onL>

Figure 3.2.5-11 Flowcharts - ALMCLT

315

1
I ,y __ _

· 1

I
I

j

. ·ft,

I
i
!

3.2.5.4.1.9.2

3.2.5.4.1.9.3

J.2.5.4.J.9.Li

3.2.'5.4.1.10

5. If the HFCS2G word has no alarm, the 32 HCs
associated with the RFC are checked. If an
alarm is found in HCST2G and not reported,
ALMBLK is called. The next HC is then checked.

6. The submodule exits.

e. Error messages and recovery - None

Data, Logic and Command Paths

a. Input Description
Global common status arrays

b. Output Description
Global common status arrays

c. Submodules Called
ALMBLK

d. Global Common Usage
LINESG, FLDSTG, HFCS2G, and HCST2G.

Internal Data Description

There is no data internal to this submodule.

Flowcharts

See figure 3.2.5-12.

Submodule X: ALMBLK

3.2.5.4.1.10.1 Description

a. Language used - MODCOMP Assembly

b. How invoked - Calling Sequence:

BLM,8
DFC
DFC

ALMBLK
TABLE
UNIT

c. Constraints and limitations - None

d. Processing - This submodule handles the interface
between the alarms monitor function and alarms
queueing. It sets up the alarm parameters for each
type of alarm and calls ALMQUE. It sets the alarm
reported flag once the alarm has been successfully
queued.

ALMBLK isolates the four-bit error field (error numbers
one to fifteen) from the status word and transforms it,

316

•

•

•

•

•

.""

4--
i
I

·-/ ?~
.i(---

--------~ H ·)
,/ .. ,

l~I,
k'-------
1 ·· ·r

,/"-.,_
.'-.

:-":1·•1-. ·,r·fr•-l

Figure 3.2.5~12 Flowcharts - ALMRPT

117

F:F'}ri HC
,J {n ((Y

:.r·

'' '

,,,.,
')t

using the appropriate Alarm Definition Table, into
an actual message code, a parameter count, and level
flag. If AZ and EL are required parameters, they are
pulled from global common AZIMG and ELEVG. The 32
flag bits of the next lower level are pulled (for
multiple alarm reporting). These data values become
parameters for a call to ALMQUE.

e. Error messages and recovery

3.2.5.4.1.10.2 Data, Logi.c and Command Paths

a. Input Description

TABLE
UNIT
Register 2

Pointer to Alarm Definition Table
Number of Field, Line, or HFC
Status word pointer

Register 5 HC index
Register 6
Register 7

Multiple alarm doubleword

b. Output Description
None

c. Submodules Called
ALMQUE

d. Global Common Usage
FLDSTG, LINESG, HFCS2G, and HCST2G.

3.2.5.4.1.10.3 Internal Data Description

Th.ls is the data for the call to ALMQUE:

PARMS +O UNIT
+1
+2

32 bit doubleword +3
+4 HFC No.
+5 HC No.
+6 AZ
+7 EL

MSGODE MSG It
NPARMS ff Parameters

LEVEL Level
QFUL Flag to be tested (0 = not full;

3.2.5.4.1.10.4 Flowcharts

See Figure 3.2.5-13.

318

1 = queue full)

•

•

•

•

• -~

3 2 5-13 Figure • • ALMBLK Flowcharts -

319

3.2.5.4.1.11 Submodule XI - ALMQUE

J.2.5.4.1.11.1 Description

a. Language used - FORTRAN

b. How invoked - Calling Sequence

Call ALMQUE (MSGCDE, NPARMS, PARMS, LEVEL, QFULL)

c. Constraints and limitations - Message formats must be
defined on disk. Caller must test QFUL bit to deter
mine if queueing was successful.

d. Processing - The ALMQUE submodule is the interface
program for all system alarm reporting. It can be
called by any system module to queue a predefined
alarm message to the alarms output system.

1. ALMQUE checks if the (reentrant related)
work area is full and sets the caller's
QFUL bit if true, and returns.

2. ALMQUE attempts to LEASE a free storage
block and sets the caller's QFUL bit if
none is available, and returns.

3. ALMQUE builds a compressed message block
into the free storage block (reference
Table 3.2.5-III).

4. If too many messages are queued, the oldest
message is discarded and the block is freed.

5. The new block is added to the end of the
first-in first-out (FIFO) queue.

6. The ALO submodule is activated.

e. Error messages and recovery - None

3.2.5.4.1.11.2 Data, Logic and Command Paths

a. Input Description:

MSGCDE - Message Code Number (INTEGER*2)

•

•

NPARMS - Number of Parameters in Message (INTEGER*2)
PARMS - Parameter Array (REAL*4)
LEVEL - Alarm Priority Level (0 = Normal; 1 =

Critical) (INTEGER*2)

320

•

•

•

•

O* l* 2* 3* 4* 5* 6* 7* 8* 9*10*11*12*13*14*15*
~--

NEXT

C* COUNT* *NPARMS MESSAGE CODE NUMBER

TIME
---~

PARAMETER NUMBER 1
~--

. .
.

PARAMETER NUMBER NPARMS

NEXT
NPARMS
C
COUNT
TIME

= Pointer to Next Alann (FSB Index)
= Number of Parameters
= Critical Alarm Flag
= Number of Output Devices
= Integer Seconds Since Midnight

Table 3. 2. 5-III Compressed Message Format

321

b. Output Description

QFULL - Success Indicator (0 = Success; 1 =
Queue wus fol I) lNTEGER*2)

c. Submodules Called

LEASE (System Service)

d. Global Common Usage

FIRSTG, LASTG, COUNTG, and PTRSG

3.2.5.4.1.11.3 Internal Data Description

In order to make this subroutine reentrant, a work area is
included to save registers, etc.

3.2.5.4,J.ll.4 Flowcharts

See Figure 3.2.5-14.

3. 2 . 5 . 4. 1. 12 Submodule XII - ALO

3.2.5.4.1.12.1 Description

a. Language used - FORTRAN

b. How invoked - Invoked by ALMQUE or by MANMIF.

c. Constraints and limitations - None

d. Processing - ALO is a submodule that handles the out
put of all system alarms to the various output devices.

1. ALO clears the critical alarms screen if
necessary.

2. ALO outputs a critical screen alarm if
necessary, unless waiting for an operator's
acknowledgement of a previous critical alarm.

3. ALO outputs a non-critical screen alarm if
necessary.

4. ALO outputs a printer alarm if necessary.

5. ALO loops from the beginning if there are
more alarms to output; otherwise ALO termi
nates.

e. Error messages and recovery - None

322

•

•

•

•

•-

Se~ up L.tJM k

Dreo.

r-r--:--:-::-:.:---·'"". ··1

I LEA5E i

I As:.k -to, r re C I
i s+oroge bb,k j
I ----- -,- ------ --

Se+ oueu, - t, /----."-
+c.11 ?1~ ~~' ~::/
L---,--- - ~ 'fr:-:,

5u; Id cor,,p(fS'.,

me:c.:,ocv• ;,,to
the f ~s6
-~-

a;n +LL I. I >
? __ ./ . /,,..,. ,,.

Yi!J

\).ncho; n -- - .'j
r

olde.::'.>+ o!o"m '

-------~

®

Figure 3.2.5-14 Flowcharts - ALMQUE

323

3.2.5.4.1.12.2 Data, Logic and Command Paths

a. Input Description

lnput is provlded by the called programs.

b. Output Description

Message to output device

c. Submodules Called

ALOBLD
ALODQU

d. Global Common Usage

None

3.2.5.4.1.12.3 Internal Data Description

There is no data internal to this submodule.

3.2.5.4.1.12.4 Flowcharts

See Figure 3.2.5-15.

3.2.5.4.1.13 Submodule XIII - ALOBLD

3.2.5.4.1.13.1 Description

a. Language used - FORTRAN

b. How invoked - Call ALOBLD (IDEST)

c. Constraints and limitations - Must be preceded by a
call to ALODQU.

d. Processing - ALOBLD is a support submodule for ALO
that reads the disk to build alarm messages from the
compressed format generated by the alarms queueing
system (refer to Table 3.2.5-IV). The ASCII alarm
is then output to the specified device.

1. Alarm types one through five require special
processing. Messages one, two, and three
include parameters that define which LINEs,
HFCs, or HCs have errors in a multiple
alarm message. A doubleword (32 bits)
specifies which units have errors; sub
routine ALOCVT creates the final message
output format from information in the double
word.

324

•

•

•

•
·L---·

I

l
1.·~,,..,. \.
i. OJ

'· .. -/

)

I
I
I
I
i f _____ _

Figure 3.2.5-15

325

(~
..... ·-~

Flowcharts - ALO

CRITICAL

y
y
y

y
y
y
y

y
y
y
y
y
y
y

N
N
N
N
N
N
N
N
N
N

FIELD ALARMS

HH:MM:SS FIELD POWER LOSS
HH:MM:SS COMMUNICATION FAILURE WITH FlELD
HH:MM:SS MULTIPLE LINE ERRORS; LINE l,2,'3,lf,5,6,7,8

HH:MM:SS
HH:MM:SS
HH:MM:SS
HH:MM:SS

HH:MM:SS
HH:MM:SS
HH:MM:SS
HH:MM:SS
HH:MM:SS
HH:MM:SS
HH:MM:SS

HH:MM:SS
HH:MM:SS
HH:MM:SS
HH:MM:SS
HH:MM:SS
HH:MM:SS
HH:MM:SS
HH:MM:SS
HH:MM:SS
HH:MM:SS

LINE ALARMS

LINE FAILURE AND SWITCHOVER; LINEN
LINE COMMUNICATIONS OUTPUT ERROR; LINEN
LINE COMMUNICATIONS INPUT ERROR; LINEN
MULTIPLE HFC ERRORS; LINEN; HFC 1,2,3,4,5,6,7,8

HFC ALARMS

HFC DETECTED HAC/HFC COMMUNICATIONS ERROR; HFC NN
FIRMWARE ERROR - HFC NN STATUS= XXXX
HAC TO HFC COMMUNICATIONS OUTPUT TIMED OUT; HFC NN
HAC TO HFC COMMUNICATIONS INPUT TIMED OUT; HFC NN
INVALID DATA RECEIVED FROM HFC NN
HFC DID NOT RECEIVE LAST COMMAND; HFC NN
HC ERRORS; HFC NN; HC 123456789/0123456789/0123456789/012

HC ALARMS

HC COMMUNICATIONS ERROR; HFC NN; HC NNNN
MISSING COMMAND RETURN; HFC NN; HC NNNN
NO MOTION ERROR (AZ OR EL); HFC NN; HC NNNN
HC UNAVAILABLE (WASH/OFFLINE) TO STHIWIND:HFC NN; HC NNNN
HC CANNOT RETURN TO SAVE POSITION: HFC NN; HC NNNN
EL MARK ENCOUNTERED: HFC NN; HC NNNN; EL=#XXXX; BIAS=#XXXX
AZ MARK ENCOUNTERED: HFC NN; HC NNNN; EL=#XXXX; BIAS=#XXXX
SEQUENCE COMMAND TIMED OUT; HFC NN; HC NNNN
EXTRA COMMAND RETURNED; HFC NN; HC NNNN
HC MARK POSITION OUTSIDE TOLERANCE; HFC NN; HC NNNN

SYSTEM ALARMS

HH:MM:SS OPERATOR CONSOLE MALFUNCTION
HH:MM:SS CRT MALFUNCTION
HH:MM:SS DISK REAK ERROR: TASK AAA FILE AAA
HH:MM:SS DISK WRITE ERROR: TASK AAA FILE AAA
HH:MM:SS RESTORE COMMAND ENCOUNTERED A HELIOSTAT IN THE WRONG MODE
HH:MM:SS CHANGE IN CLOCK ACCURACY STATUS FROM AAAAAAAA TO AAAAAAAA

Table 3.2.5 - IV ASCII Alarm Formats

326

•

•

•

•

•

•

e.

Message types four and five relate to MARK
conditions and require a disk read of the MARK
biases to complete the message.

2. ALOBLD decodes time into HH:MM:SS format.

3. ALOBLD reads the message format from the disk
and inserts the caller's parameters into the
ASCII string. A check is made for disk read
errors.

4. The completed ASCII message is output to one
of three devices per call: the critical

1

alarms line, the non-critical alarms line, or
the printer. A check is made for output errors.

5. ,.Errors encountered in the execution of this
submodule are queued, like any other alarm,
via a call to ALMQUE. A flag is maintained

,to prevent repetitive queueing of a non
changing error condition. Messages destined
for the printer are transferred to the system
console when the printer is returning error

, ind'icators .

6. The submodule exits.

Error messages and recovery - Error messages are queued
to ALARMS.

, ,

3.2.5.4.1.13.2 Data, Logic and Command Paths

a. Input Description

IDEST - Output destination: 1 = CR; 2
3 = TY

b. Output Description

None

c. Submodules Called

ALMQUE
ALOCVT

d. Common Usage

MSGCDE
OUTPUT

3.2.5.4.1.13.3 Internal Data Description

Local buffers and arrays.

327

OC; and

3.2.5.4.1.13.4 Flowcharts

See Figure 3.2.5-16

3. 2. 5. 4. 1. 14 Submodule XIV - ALODQU

3.2.5.4.1.14.1 Description

a. Language used - FORTRAN

b. How invoked - Call ALODQU (IDEST)

c. Constraints and limitations - None

d. Processing - ALODQU is a support submodule for ALO
that handles the alarm message chain and frees
message blocks when all required output has been
performed.

1. ALODQU copies the compressed message block
from free storage to a local buffer.

2. The FSB queue pointer is updated for DEVICE
in preparation for the next call.

3. The FSB of current interest is dequed and
FREE'd if it has been sent to all devices;
otherwise it is retained in FSB with a
decremented count field.

4. The submodule exits.

e. Error mess11ges and recovery - None

3.2.5.4.1.14.2 Data, Logic and Command Paths

a. Input Description

IDEST - Output destination: 1 = CR; 2 = OC; and
3 = TY

b. Output Description

None

c. Submodules Called

FREE (System Service)

d. Global Common Usage

FIRSTG, LASTG, COUNTG, and PTRSG

328

•

•

•

•

.. • r· __ l i -- ... _ --
: i ALOC.VT :
I i • , :

1 1&,id 1"1\,.d+,- ·
1 /li°l'lt po<M!.

1 i L.., -. ·---.J--'

Rfe, 1 rY\f ~<, •1 :\ e.
r .· r, "
, ()1 i'✓ lr'' ' 1"(ou·,

1 ···

Figure 3.2.5-16 Flowcharts - ALOBLD

329

-

i
I
i

~

. ,,_,, {-'>'f'' ,-rr

1r,J(1r n L1 rn

i -, c:ipe1,1 +-or
' ; tn,•, :"."'\, e
i
I ... ·- ,_,,, ____ _

I ~
i
l.(...
I

/ --\
(?f:;_,1P1,))

--. •-·---·-• , .. ---·-·---'

Figure 3.2.5-16 Flowcharts - ALOBLD {Continued)

330

•

•
,.,.. ,· ; ")(

•

•

•

•

e. Common Usage

MSGCDE and OUTPUT

3.2.5.4.1.14.3 Internal Data Description

There is no data internal to this submodule.

3.2.5.4.1.14.4 Flowcharts

See Figure 3.2.5-17.

3.2.5.4.1.15 Submodule XV - ALOCVT

3.2.5.4.1.15.1 Description

a. Language used - FORTRAN

b. How invoked - Call ALOCVT (FLAG, IB, IC, NC, ICOM, ASC)

c. Constraints and limitations - None

d. Processing - This submodule converts a doubleword of
bits into ASCII integers for each bit that is set and
blanks for each zero bit.

e. Error messages and recovery - None

3.2.5.4.1.15.2 Data, Logic and Command Paths

a. Input Description

b.

c.

d .

FLAG - Array of bits (1-32)
IB - Initial bit to test
IC - Initial character to compute (0-9)
NC - Number of characters (even integer)
ICOM - Flag for inserting commas between each

character
1 = insert commas; 2 = don't insert commas

Output Description

ASC - Array of output ASCII

Submodules Called

TESTB (FORTRAN Library)

Global Common Requirements

None

3.2.5.4.1.15.3 Internal Data Description

ASC - Local buffer for ASCII string.

3.2.5.4.1.15.4 Flowchart

See Figure 3.2.5-18.
331

y;/,,
I I ,

, ··---· :i". --7

U~v,}(1 ic ."/ 1 ;, I
~A)' I , ,, (/ ', i

r~rr,,,-,.,·t r1·0·,1
~-(I, ~:.·_ ,k .r .
l f' p" f :.I

I -l~-;i::<-: - .!
j . ' ,.,,

l I;. , ,·• : -·r
I I
L .(.

Figure 3.2.5-17 Flowcharts - ALODQU

•

•

•

• -~ ..

• -~.

•-
Figure 3.2.5-18 Flowcharts - ALOCVT

3.2.6

3.2.6.1

3.2.6.2

3.2.6.2.1

3.2.6.2.2

Status Display Module - STATUS

Purpose

The STATUS module decodes global status words to report on the
status of the heliostat field. The STATUS module consists of
two tasks: STS, the Synchronous Status Processor; and STA, the
Asynchronous Status Processor. STS, in conjunction with sub
module STSGET, synchronously reports on the status of the entire
heliostat field. STA, in conjunction with submodules STAFLD,
STAIND, STAM0D, STARNG, and STAGET, gives more detailed status
information of varying fonnats upon request. See Table 3.2.6-I
for the heliostat mode definitions.

Requirements

Design Requirements

Section 3.1 of the 10 MWe Software/Finnware Functional Require
ments Specification (12 June 1980) lists three requirements
involving the STATUS module:

a. Monitor and display the operational status of all
heliostats.

This requirement indicates a need to decode each helio
stat's reported status data and format and display this
data.

b. Maintain command/response protocol and data transfer
with the 0CS •

This requirement indicates a need to format requested
status information into the HAC to 0CS message formats
and send this data to the ocs.

c. Provide status data to the DAS.

This requirement indicat.es a need to fonnat requested
status infonnation into the HAC to DAS message fonnats
and send this data to the DAS.

Derived Requirements

Section 3.2.1.6 of the 10 MWe Software/Firmware Functional
Requirements Specification lists the following requirements of
the STATUS module:

a. Monitor heliostat status, from status data reported
by the HCs.

This requirement indicates a need to decode each
heliostat's reported status information.

334

•

•

•

•

•

MODE NO.

1

2

3

4

5

6

7

8

9

10

11

12

MODE NAME

TRACK

STDBY

BCS

TRANS

STOW

ALTl

ALT2

MARK

DIR.POS.

WASH

INIT

OFFLINE

Table 3. 2. 6-I.

DESCRIPTION

Heliostat tracking the primary target

(Standby) Heliostat tracking corridor
upper limit point

Heliostat tracking the Beam Characteri
zation System Target

Heliostat moving from one mode to anotht:r

Heliostat stowed face down

Heliostat in mirror vertical STOW position

Heliostat in mirror face up STOW position

Heliostat successfully positioned by MARK
command

Heliostat in directed position mode for
maintenance

Heliostat commanded to WASH mode

Heliostat being powered up, initialized,
or communication error

Heliostat set offline by OFFLINE command,
timeout or communication error

Heliostat Mode Definitions

335

3.2.6.3

3.2.6.3.1

Fonnat field status.

This requirement indicates a need to format the field
status into a displayable format.

c. Display field status on the STATUS area of the CS
control console, updating display as required.

This requirement indicates a need to synchronously
monitor the heliostat field, and detect changes in the
data to be displayed.

d. Respond to operator-entered conm1ands for display status
as reported from the MANMIF module, and format the status
as requested.

This requirement indicates a need for communication
with the MANMIF module and format the requested data.

e. Output the formatted status to the status printer.

f.

This requirement indicates a need to write to the
status printer when required.

Respond to OCS and DAS generated status requests by
transmitting the requested status to the requestor.

This requirement indicates a need to connnunicate with
the EXTINF module for data transmission, and a cormnun
ication with the MANMIF module to indicate the source
of the request.

Design Approach

Functional Allocations

The STATUS module is comprised of eight submodules. (See
Figure 3.2.6-1 for the STATUS module structure.) The basic
purpose of each is described below:

a. STS (Synchronous Status Processor) - This submodule
monitors, on a synchronous basis, the ntunber of
heliostats in each operational mode. STS scans one
eighth of the field each second. Any changes found in
the data to be displayed cause an update in the data

b.

and display. STS also builds data packets for the
graphics display units, and synchronously outputs date
and time to the HAC operator's console. See Figure
3.2.6-2 for the HAC operator's console synchronous status
display;

STSGET (Synchronous Status Decoder) - This submodule
is called by STS to decode the HC status words
(HCST2G and HCSTlG) to determine the mode of a given

336

•

•

•

I

L

STATUS

! ____ ---··---r--~

I

~J .. __
STSGET· STA

I
---------·--·---

STAFLD [... J L -· ... _J

STAGET

Figure 3.2.6-1 STATUS

Module Structure

337

w
w
0:,

~
0 p:::;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

)

1

I
I

•

1 1
5 0 5

·~

TARGETING MODES

TRACK STDBY BCS

nnnn nnnn nnnn

CONVERSATIONAL
AREA

HAC SYNCHRONOU'~ -,T,\~CS DISPLAY APEA
\
J

C.v.LitJMN

2 2 3 3 4 4 5 5 6 6 7 7
0 5 0 5 0 5 0 5 0 5 0 5

CRITICAL ALARMS AREA

LATEST ALARM AREA

MM/DD/YY _.HH : MM : .SS

STOW MODES
TRAN DIR. WASH \ \ INIT l l OFF-STOW ALTl ALT2 MARK POS. LINE

nnnn nnnn nnnn nnnn nnnn nnnn nnnn ll nnnn LL nnnn

Figure 3.2.6-2 HAC Operator's Console Synchronous Status -Display

•

t
7

8
0

•

•

•

3.2.6.3.2

•

c.

D.

HC. See Table 3.2.6-11 for the mapping from actual
mode to reported mode;

STA (Asynchronous Status Processor) - This submodule
is activated by STS if the Man-Machine Interface module
(MANMIF) has indicated an operator-initiated status
request. Depending on the type of request ("Field,"
''Mode, 11 "Individual," or "Ring'), STA calls one of the
following four submodules: STAFLD, STAIND, STAMOD, and
STARNG;

STAFLD (Field Status Processor) - STAFLD is called by
STA to process "Field" status requests. It formats
the latest status data created by STS (MODEG) and
sends the results to the OCS or DAS consoles, HAC line
printer, or, optionally, the HAC operator's console.
See Figure 3.2.6-3 for the STAFLD output format, and
Table 3.2.6-III for the STAFLD OCS and DAS message
format;

STAIND (Individual Status Processor) - STAlND is called
by STA to process individual status requests. For the
given HC it determines the actual mode, connnanded mode,
segment, azimuth, and elevation. See Figure 3.2.6-4
for the CS console display and Table 3.2.6-IV for the
OCS and DAS message format;

f. STAM.OD (Mode Status Processor) - STAMOD is called by STA
to process "Mode" status requests. It determines all the
HCs which are in the requested mode, formats this list
(see Table 3.2.6-V), and sends it to the DAS or OCS
consoles, CS line printer, or optionally, the CS console
(see Figure 3.2.6-5);

g. STARNG (Ring Status Processor) - STARNG is called by STA
to process a "Ring" status request. It determines all
the segment nW11bers in the ring, the total nW11ber of HCs
in each of the segments, and the numbers of HCs in
TRACK and STANDBY for each segment in the ring. See
Figure 3.2.6-6 for the STARNG CS console display, and
Table 3.2.6-VI for the OCS and DAS Segment Track Status
Message format; and

h. STAGET (Asynchronous Status Decoder) - STAGET is called
by STAFLD, STAIND, STAMOD, and STARNG to decode the HC
status words (HCST2G and HCSTlG) to determine the actual
mode and the commanded mode of a given RC.

Resource Budgets

STATUS requires approximately (5K) words of memory. It is the
lowest priority foreground module in the heliostat system and is
synchronously activated. STATUS requires no disk or magnetic
tape access.

339

10 MWc STATUS (STSGET)

MAPPING FROM ACTUAL STATUS TO REPORTED MODE

ACTUAL MODE

Offline - Not installed

Offline - Cormnunication Error

Offline - Serious Alann

Offline - Operator

Offline - Umnarked

Position, No Compare

Restarted - Power-up or time-out

Restarted - Successive Comm. Errors

Beam Pointing - Track

Beam Pointing - BCS

Beam Pointing - Standby or CULP

Beam Pointing - CLLP

Corridor Walk - Up Corridor A, B, C, or D

Corridor Walk - Down Corridor A, B, C, or D

Az-El Pointing - Stow

Az-El Pointing - Seek Marks

Az-El Pointing - Wash

Az-El Pointing - Maintenance

Az-El Pointing - Altl

Az-El Pointing - Alt2

STATUS MODE

Not reported

OFFLINE

OFFLINE

OFFLINE

OFFLINE

TRANSITION

INIT

INIT

TRACK

BCS

STANDBY

TRANSITION

TRANSITION

TRANSITION

STOW

MARK

WASH

DIR.POS.

ALTl

ALT2

Table 3.2.6-II. 10 MWe Status (STSGET)

340

NO.

-1

12

12

12

12

4

11

11

1

3

2

4

4

4

5

8

10

9

6

7

---------·~--

•

•

•

•
FIELD STATUS

MODE TOTAL

TRi\CK nnnn

STDHY nnnn

BCS

TRANS

STOW

ALTl

ALT2

MARK

• DIR.POS.

WASH

!NIT

OFFLINE nnnn

TOTAL tttt

• Figure 3.2.6-3 STAFLD Field Status Display

341

,•·-,,,+,,

TABLE 3.2.6-III HAC-OCS/DAS ENVIRONMENT S'l'i\'J'IJS (FIELD) FORMAT

' ,,

MESSA~ tAYOUI'

APPLICATION RAC - OCS/DAS !-!ES SAGS TYP:: STATUS - Fl ELD

PROGRAMMER T. Ladewig DATF ?/8/80

HEADER

4 s
T
s
R

"---• ASCIJ H - HAC orig.inated

Message byte ('(ll1nt. (see note for

TablP XXX)

ASCII STS status

,-.-.. ASCII R

-+----------.
Requested

Field F 1----11As CII F
a.-t---~----+--t

1

5

25

TIME

TRACK

1.'.CS

STINDBY

STOW

ALTERNATE 1

STIJW

ASCJT hhmmss Time plant local

SCil NNNN HCs in track

NNNN If Cs in standby

ASCII NNNN HCs in stow

'\42

NNNN = HCs in Alt 1 stow

)

•

I

•

•

HAC-OCS/OAS ENVIRONMENT STATUS (FlEI.D) FORMAT (CONTINUED)

MESSAGE LAYOUT

APPLICATION HAC OCS /DAS

STATUS-FIELD

t-,RSSAGE TYPE (CONTINUED)

PROGRAMMER T. Ladewig DATE 2/8/80

ALTERNATE ?

STOW
ASCH NNNN = HCs in ALT?STOW

TRANSITION ASCII NNNN = HCs in Transition

4 0

WASH r......;-1t1.SCII NNNN= HCs In Wash

45

50

55

DIRECTED

POSITION

OFFLINE

MARK

INI1

5

5

UNUS~ED~_.__,. 6

7

CHECKSUM

ASCII NNNN HCs in directed position

ASCII NNNN = HCs in oft'l fo,i

ASCII NNNN= HCs in Mark

ASCII NNNN = HC:-; lll lNTT

hit checksum such that alt hytes sum to z --ru.

343

INDIVIDUAL STATUS:

HELIOSTAT NUMBER: NNNN

AZIMUTH: SNNN.NN

COMMANDED MODE: MMM

Figure 3.2.6-4

SEGMENT: NNN

ELEVATION: SNNN.NN

ACTUAL MODE: MMM

STAINO Display Format

344

•

•

TABLE 3.2.6-IV HAC-OCS/DAS ENV1RONMENT STATUS (HC) FORMAT

• MESSAGE LAYOUT

-..,, STATUS
APPLICATION HAC OCS /DAS MESSAGE TYPE INDIVIDllAI. !IC

PROGRAMMER T. Ladewig DATE 7/8/80

Y--r---------+--------------~-----~ .. --·----
--.ASCII If"" HAC Origirrnted

lffiADER
r--'L-..aMessnge byte qwnt (SN• note for Table XXI

STS ASCII STS ~ Status

5 5

ASCII R Requested
H ASCII If= Individual Status

0

Til1E

5
HC4F SCII 4 Digit HC N11111ber

2 2

AZIMUTH !ASCII 7 Digit SNNN.NN Azimuth

2 25

ELEVATION ASCII 7 Digit SNNN.NN Elevation

30

')

I I I I I f!J ... /...,1__., _________________ ,

345

,,

-

-.

TABLE 3 • 2 • 6- IV HAC-OCS/DAS ENVIRONMENT STATUS (HC) FORMAT (CONTINUED)

MESSAGE LAYOUT

APPLICATION HAC-OCS / D/1 S

PROGRAMMER T. Lndt•w ig

UNUSED

CHECKSUM 0

STATUS
MESSAGE TYPE fNDIVlDUAL IIC

DATE 5/12/80

ASCIT J Characters. See Table XXlV for
acceptable 3 character cod8s.

ASCIJ T TRANS ITlON
P l'OSIT!ON COMPARE

NOTE: The helio:;tat will be in the mode•
idenlificd if lhe fransition flag
is d .e. The lil·liostat wl 1.1 he in
lransi.Liun Lo the mode idenlif'i ... d
if the transition flag is a T.

346

lf the mode identified is THN then
the hel.iost:1t is within a sequence
and has not yet received the final
command ot the sequence.

•

•

• -.

~

·~

TABLE 3.2.6-V HAC-OCS/DAS ENVTl<ONMENT ST/\TlJS (MODI•:) FORMAT
MESSAGE LA YOtrr

APPLICATION HAC-OCS/DAS

PROGRAMMER T. Ladewig

HEADER

MESSAGE TYPE STATUS--MODE

DATE 2/8/80

ASCII E = HAC originated

Message byte c(,u,,1: (see Note for Tcible
)~XI)

5 STS 5 ----f /\SC I I STS - ST/\'l'llS

CONDITION

M

0 MODE

s TIME

HC/1
2 2

HC/1

2

UNUSED

/\SCI1 I{ = Rcquc·sted
A /\I ,irmr•d>', .

-t ASC JI M Mode

ASCII TRK Track
BCS BCS
STB Sta11rlby
STO Stow
ALl /\LTlSTOW
AL2 ALT2STOW
TRN Transition
WSH = Wash
DPO DirPcted Position
OFF OJflinc
MRK = Mark
INI Init

ASCH bhmmss - Time

ASCII 4 dig i.t IJC number. Additiona I
messages w i 11 be used to transmit
aclc!:itio11;1 I l!Cs.

*NOTE: Alarmed will be used to report
H.Cs unabJe to respond to a
STHlWIND command. HCs in WASH,
OFFLIN~, and DIRECTED POSITION
wiJ.l he transmitted

347

•
MODE STATUS

HELIOSTATS IN MODE MMM:

NNNN, NNNN, NNNN, --- NNNN

NNNN,

NNNN, NNNN

•

Figure 3.2.6-5 STAMOD Display Fonnat •
348

•

•

•

SEGMENT
NUMBER

nnn

nnn

nnn

TOTALS:

SEGMENT TRACK STATUS

RING X

HCs IN
SEGMENT

nnn

nnn

.

.
•

•

nnn

ttt

Figure 3.2.6-6

HCs IN
TRACK

nnn

nnn

•

.

.

nnn

ttt

STARNG Segment Track Status

349

HCs IN
STANDBY

nnn

nnn

.
•

.
nnn

ttt

.... ~,

TABLE 3.2.6-VI HAC-OCS/DAS ENVIRONMENT STATUS (RING) FCRMAT

MESSAGE LAYOUT

APPLICATION I-IAC-OCS/DAS

STATUS

MESSAGE TYPE RING

PROGRAMMER T. Ladewig DATE 5/12/80

1..1 - HEADER

-
J. STS

U..__ _ _.. /\SCH H =c HAC Originated

-t>
-

Message byte count (see note for
Table XXI.)

~ >---·-• ASCII STS - STATUS

~ ________ .._ _____ .,,.----·•AsCII R - Rvque;U·d

R 1-.-1----~----+ ... ---i> ASCll R -- Ring

-lo ..,_ ..

--- .

5

--
-

2C

--
-
--
i--

80

-
_ ______. ASCII Time Plant: Local

TIME --
RTNr. -A~~----i•1_::----~, ASCII 1-di.g i.t l{ i ng number requested

SEGMENT

HCs in
SEGMENT

TRACK

STANDBY

< I

\ REPEAT

~
y

CHECKSUM

··• ASCTJ ·1--digit :;,.,gment 11umbti1·

,_-----.ASCII 2-digi t number of HCs in Segment

2(

BO

ASCil 2-·digit number of HCs in TRACK
in Segment

_,, ASCII 2-digit number of HCs in STANDRY

in Segment

.,__ _ _.. REPEAT as many ti.mes ai; necessary to
cover complete ring - multiple
messagef, m~iy ih' 11t.'c·c:•i~~rnry.

350

•

•

'

•

i - --

•

•

•

3.2.6.4

3.2.6.4.1

3.2.6.4.1.1

3.2.6.4.1.1.1

Design Description

Module Structure

STATUS is divided into eight submodules: STS, STSGET, STA,
STAFLD, STAIND, STAMOD, STARNG and STAGET. STS and STSGET are
synchronously activated by FCP, and STA is activated by STS
if there is a pending operator status request. See Figure
3.2.6-1 for the STATUS module structure.

Submodule I - STS

Description

a. Language used - FORTRAN

b. How invoked - Synchronously activated by FCP

c. Constraints and limitations - None

d. Processing -

1. Upon being activated by FCP, STS determines
which one-eighth of the field is being monitored
and clears the corresponding row of matrix
EMODE.

2. Next a loop is made through the heliostats
in the appropriate one-eighth of the field.
The mode of each heliostat is determined
using submodule STSGET. If the heliostat is
installed (mode returned by STSGET is positive),
the mode number serves as an index to the
columns of EMODE, and the contents of the
appropriate row and column of EMODE is
incremented by one. Additionally, STS stores
the GRSTSG mode numbers in global array for
use by the Graphics Module (GRAPHC). After
this loop is complete, this row of EMODE will
contain the number of heliostats in each mode
for the given one-eighth of the field.

3. The time and date are output to the STATUS
area of the CS console.

4. After the above loop is complete, the one
eighth of field subtotals in EMODE are sunnned
and compared to the total field sum for each
mode and stored in MODEG. If any of the totals
are different, the MODEG array is updated
from the information in EMODE, and this
information is formatted and transmitted to
the CS console via the EXTINF module.

351

3.2.6.4.1.1.2

3.2.6.4.1.1.3

3.2.6.4.1.1.4

3.2.6.4.1.2

3.2.6.4.1.2.1

5. Next, global words ISTATG (set by MMI) are
checked to see if there is a pending operator
request for more status information. If so,
submode STA is activated.

6. STS then exits.

e. Error messages and recovery - None

Data, Logic and Command Paths

Input data:

MODEG - MODEG is a 12-word array, each word containing
the total number of heliostats in the correspon
ing mode (1 to 12). MODEG is updated by STS by

calculating the new subtotals in EMODE and
comparing; and

ISTATG - ISTAtG is a three-word array, set by MMI to
indicate a pending operator status request if
ISTATG(l) is non-zero.

Output data:

GRSTSG - GRSTSG is a 2O48-word array containing the mode
number (1 to 12) of the corresponding heliostat.
GRSTSG is updated by the corresponding one-eighth
of the field.

Internal Data Description

EMODE - EMODE is an eight-by-twelve word array, the eight rows

corresponding to each one-eighth of the field, and the 12

columns corresponding to the 12 possible modes. Each element

contains the number of heliostats in a given one-eighth of the

field in a given mode. This, EMODE (2,5) contains the number

of heliostats in STOW (mode number five) in the second one

eighth of the field.

Flowchart

See Figure 3.2.6-7.

Submodule II - STSGET

Description

a. Language used - FORTRAN

b. How invoked - Called by STS

c. Constraints and limitations - None

352

•

•

•

•

•

···~.

) / 1 I·!'!

) rJ, :~ f ,

fr
i! ···
I
I

I
! 1------· \

,' _____ .:,:,,'

·Y , ,,

(i ,l ! :'H I ,'I ·le.

~,./

____ ,✓

Figure 3.2.6-7 Flowchart - STS

353

3.2.6.4.1.2.2

d. Processing - STSGET decodes the global HC status words
HCSTlG and HCST2G to detennine the mode of a given
heliostat. See data base section J.3.1 for a
description of HCSTIG and HCST2G.

1. Upon being called, STSGET checks the highest
order bit of HCST2G to determine if the
heliostat is actually installed (if it is not
installed, this bit is set). If this bit is
set, the mode number is set to minus one.

2. If the HC is installed, the next three high
order bits of HCST2G are checked, indicating
that the HC is set offline, in which case
the mode number is returned as 12.

3. If the HC is installed and online, as indicated
by HCST2G, HCSTlG is logically ANDed with a
mask (207C hex) to isolate bits 13 (position
compare) and six through two (mode-submode).
The result of the ANDing is checked against an
array containing values which will match the
result if the heliostat is in the mode which
is the index to this arrayo See Table
3.2.6-II for the mapping from mode-submode in
HCSTlG to the reported mode.

If the result of the ANDing indicates that the
mode-submode is "Seek Mark", another ANDing
is made to determine if the ''Mark Encountered"
bits of HCSTlG are set, in which case the mode
is "Transition."

4. If the result of the ANDing(s) does not indi
cate a definite mode, the mode is set to
"Transition."

e. Error messages and recovery - None.

Data, Logic and Command Paths

Input data:

HFCHC - the HFC-HC number (1 to 2148) whose mode is
desired

HCSTlG - HC status word

HCST2G - HC status word

Output data:

MODE - the resultant mode number (-1 or values from
1 to 12)

354

•

•

•

• 3.2.6.4.1.2.3

3.2.6.4.1.2.4

3.2.6.4.1.3

3.2.6.4.1.3.1

•

• 3.2.6.4.1.3.3

Internal Data Description

MASK - Value of 207C hex ANDcd with HCSTlG

MASKR - An array of values, whose index is the heliostat

mode if the result of masking HCSTlG is equal to

one of the array elements.

MASKM - Value of C~~~ hex ANDed with HCSTlG to determine

''Mark Encountered."

Flowchart

See Figure 3.2.6-8

Submodule III - STA

Description

a. Language used - FORTRAN

b. How invoked - Activated by STS if there is a pending

operator status request •

c. Constraints and limitations - None

d. Processing - Upon activation, STA checks the value of

ISTATG(l) to determine which type of status request

is pending, and calls one of the following subroutines

as follows:

If ISTATG(l) = 1 thru 12, STAMOD is called to
process a "MODE" status request.

lf ISTATG{l) = 13, STAFLD is called to process a
"FIELD" status request.

If ISTATG(l) = 14, STAIND is called to process an
"INDIVIDUAL" status request.

If ISTATG{l) = 15, STARNG is called to process a
"RING-SEGMENI" status request.

e. Error messages and recovery - None

Data, Logic and Command Paths

Input data:

ISTATG is used as described above.

Internal Data Description

STA has no pertinent internal data.

355

Figure 3 .2.6-8

Mouf ,,-,_· .. ;_\

C'Tro.n:'."; 1f,o n)

·1

! J 1~1
I

l

l

I
-~

,..,. ___ _
I

Flowchart - STSGET

356

j

I
i
'

i
.. "

•

•

•

• 3.2.6.4.1.3.4

3.2.6.4.1.4

3.2.6.4.1.4.1

3.2.6.4.1.4.2

•
3.2.6.4.1.4.3

3.2.6.4.1.4.4

3.2.6.4.1.5

3.2.6.4.1.5.1

•

Flowchart

See Figure 3.2.6-9.

Submodule IV - STAFLD

Description

a. Language used - FORTRAN

b. How invoked - Called by STA

c. Constraints and limitations - None

d. Processing - STAFLD fonnats global connnon words MODEG
and the local time and date to process a field status
request. See Table 3.2.6-III for the OCS and DAS
message fonnats and Figure 3.2.6-2 for the CS console
display.

e. Error messages and recovery - None

Data, Logic, and Connnand Paths

Input data:

Global words MODEG.

Internal Data Description

STAFLD has an output buffer to store the output data in.

Flowchart

See Figure 3.2.6-10

Submodule V - STAIND

Description

a. Language used - FORTRAN

b
0

How invoked - called by STA

c. Constraints and limitations - None

d. Processing - STAIND calls STAGET to detennine the mode
and commanded mode of the desired heliostat and fonnats
this data with the date and time (see Table 3.2.6-VI
for the message fonnat and Figure 3.2.6-3 for the
display fonnat).

e. Error messages and recovery - None

357

•

l~---~X IT

~ •
Figure 3.2.6-9 Flowchart - STA

358 .~
,I

•
For rn::d t ;',v,C !

da+e 01)r·i ·siai:is

1nfo (~-WDEb)

c·,Oi)fft' :'.)("']

111rrtin, 1 r1 ui"Sf

T

Figure 3.2.6-10 Flowchart - STAFLD

359

3.2.6.4.L.5.2

3.2.6.4.1.S.3

3.2.6.4.1.5.4

3.2.6.4.1.6

3.2.6.4.1.6.1

Data, Logic, and Command Paths

Input data:

ISTATG(2) - contains the desired heliostat number.

ISTATG(3) - contains code number for source of request.

Output data:

Enqued to EXTINF.

Internal Data Description

STAINO has an output buffer.

Flowchart

See Figure 3.2.6-11

Submodule VI - STAMOD

Description

a. Language used - FORTRAN

b. How invoked - Called by STA

c. Constraints and limitations - None

<l. Processing -

1. Local time and date are obtained and local
variables initialized.

2. A loop is made through all the heliostats in
the field; STAGET is called for each one to
determine the mode, and each heliostat in
the desired mode has its MDAC heliostat number
(obtained via HC2MDG) loaded into the output
buffer (see Table 3.2.6-V.) The output buffer
is enqued to the EXTINF module each time it is
filled.

3. When the loop through the heliostats is
completed, the output buffer is sent if
partially filled.

e. Error messages and recovery - None

360

•

•

• ~

• -~

Get t;me.
and d.a1'.

(C,1/Nf&)

CALL
~,A6E1 { -to

Ge--! k_;,.._..,_#i ~
tlt:IAl.i;rw in'h.!r
l'Y'Clt;Dr1 (Ai':.!Mb

ELE. '/('r)

/:"or Milt da ia..

O.r'\d send v;a
EKTtNf:

RfTuRAJ

Figure 3.2.6-11 Flowchart - STAIND

361

3.2.6.4.1.6.2

3.2.6.4.1.6.3

3.2.6.4.1.6.4

3.2.6.4.1.7

3.2.6.4.1. 7 .1

3.2.6.4.1. 7 .2

Data, Logic, and Command Paths

Input data:

ISTATG(l) - contains the desired mode number

GTlMEG - contains local time and date

Output data:

Enqued through EXTINF.

Internal Data Description

STAMOD contains an output buffer.

Flowchart

See Figure 3.2.6-12

Submodule VII - STARNG

Description

a. Language used - FORTRAN

b. How invoked - Called by STA

c. Constraints and limitations - None

d. Processing -

1. STARNG uses global data SEGPTG and SEGMPG
to obtain the heliostat numbers in the
desired ring.

2. A loop is made through these heliostat
numbers, and the mode of these heliostats is
detennined by STAGET.

3. If the mode is Track or Standby, the Track or

Standby counter for this segment is incremented.

4. After looping through all the heliostats in the
ring, the response message (see Table 3.2.6-VI)
is fonnatted from the data and enqued to EXTINF.

e. Error messages and recovery - None

•

•

Data, Logic, and Command Paths

Input data:

ISTATG{2) - Ring nlD.llber. •
362

•

•

• -~

5TAMDD

Forrr1a.t i i'rr1e

ond date
(G1l4f6,)

In·tt;oLxe
va., ioblt:., (Hl')

tD(loap

Pc,+ HC. .::#:
\Y\-\o O 1,1,'tbu:t

'buffer

bu-f{u

pointer

)o c-l",11 \ .h.,«; _/'ju
le.f+ ,,,./

~(Ye:
~

Form,d a
-fput rest

ci buffer

Jr1LreMent
1-lc tt cuict

buff I", po; n+er

Figure 3.2.6-12 Flowchart - STAMOD

363

3.2.6.4.1.7.3

3.2.6.4.1.7.4

3.2.6.4.1.8

3.2.6.4.t.8.l

ISTATG(3) - Code indicating source of request.

SEGPTG

SEGMPG

- Global array ,t--;, 1 to obtain HC numbers from
ring number, in conjunction with SEGMPG.

- Global array used to obtain HC numbers, in
conjunction with SEGPI'G.

See the DBINIT write-up for a more complete description of
SEGPTG a.nd SEGMPG.

The indices of SEGPTG are obtained using the formula:

INDEX(l) = (RING - 1) * 12 + I

I = 1, 12

and the segment numbers obtained via

SEG * (I) = RING ,'c 100 + I

I.= 1,12

Output data:

Enqued to EXTINF

Internal Data Description

STARNG has two 12-word arrays to contain the number of helio
stats in Track and Standby in up to 12 segments in the desired
ring.

Flowchart

See Figure 3.2.6-13

Submodule VIII - STAGET

Description

a. Language used - FORTRAN

b. How invoked - Called by STAINO, STAMOD, STAFLD, and

STARNG.

c. Constraints and limitations - None

d. Processing - Processing is similar to that of STSGET
with the exception that STAGET determines the command
mode of a given HC if its actual mode is Transition •

e. Error messages and recovery - None

364

•

•

•
~"

• ~

STARN&-

U(O Clute CALL

HCP~ff,.) 5E6$) 5,A6fT fo

HCT~K> HC51MI 9et MOctf'.
c£ l·IC

//

'~Zt'"
'4e:;,

C a.Jculcde iride.t
io SEi,vrc..-,
lNbx :.(RINl":r--01'-12

+ T~f<s

TfsE& =-.5£.bi'lbl

:.i: GN. NT -=- "R ,;_, G
t_ I QO _ t.1_:-':>~ (!_

$EC.5(16E.ei1 '°
-::.E6H l'JT

. ,/
Na

/
/-

HC'~'tA~J (1~fo)

- HC311'.N(TSU:,)t1

OUT&l F ~ DAlA

Gr\d. sh; p ·to
I5TATt'.:d3J

f<.ETuRt0

Figure 3.2.6-13 Flowchart - STARNG

365

No

HC1 RAt<. (T::,E&)

:: HCTAAt<.(1~E&)1

~

3.2.6.4.1.8.2

3.2.6.4.l .8.3

3 • 2 • 6 • 4 .1 • 8 • 4

3.2.6.5

3.2.6.6

Data, Logic and Command Paths

Input data:

HFCHC - the HFC-HC number (1 to 2048) whose actual

and commanded modes are desired.

HCSTlG - HC status word.

HCST2G - HC status word.

Output data:

MODE - the resultant mode number (-1 or l to 12).

CMODE - the command mode if MODE is transition.

Internal Data Description

The internal data used by STAGET is the same as for STSGET, but

with the addition of:

a. MASKR - a mask used to find the conunanded mode:

isolates bits six through two of HCSTlG

(mode-submode only). MASKR; 007C Hex

b. MASK.

Flowchart

similar to MASKR but with the "position

compare" bit position set. MASK= 207C Hex

See Figure 3.2.6-14

Interface Description

STS stores the number of HCs in each mode in global array

MODEG and the mode number of each heliostat in global array

GRSTSG for use by the graphics display. Communication between

MANMIF and STATUS is accomplished via global array ISTATG.

Test Requirements

STSGET and STAGET should first be tested to make sure that

they perfonn the correct mapping from the mode representations

in HCSTlG and HCST2G to the reported mode. The other modules

basically fonnat the data decoded by STSGET and STAGET, and the

formatted data can be checked by dumping the ASCII message

buffer.

366

•

•

•

•
[~!)L)f ,. -i

,,~ _1 "~+a I ied)

• .-~-

·--

STA Gt,

MAf:,K 1 for Mt>DE.

No

~?//

----~-~---
M.od.e. +- <t

(M~rk)

MA:;K;:. for ... _]
''C'orvil·no.nded ~

l'-iode ,.
....._ __________ ,,,

'' Com rY'lo nded

Node" = ~

(MDrk)

--.. -·-···-1 ~r!Jr:ln-,., !·-:itd

r--!r,A< ''

det_u.m,nPd
by!:' l I ~ti __

~------··· L I

\ ·---------~----- ,,l;

, H.ode 4
I

{-t,an:;1f1on)

2--•--.
\._~TURN~)

Figure 3.2.6-14 Flowchart - STAGET

367

3.2.7

3.2.7.1

3.2.7.2

3.2.7.2.1

3.2.7.2.2

Data Base Initialization Module - DBINIT

Purpose

The purpose of the Data BaRe Initialization Module (DBINIT) is to

initialize the in-core data base, as well as the disk-resident

data base. Additionally, DBINIT initializes the operator's CRT

console, graphics console, backup system and

system interfaces, and provides initialization and synchron

ization of the universal and local system time base. Upon

establishment of the time base reference, the timkeeping

task is established and activated which, through subsequent

action, will establish and activate the various tasks which

are components of the heliostat system.

Requirements

Design Requirements

Software Requirements listed in Section 3.1 of the 10 MWe

Collector Subsystem Software/Firmware Functional Requirements

Specification, 12 June 1980, that apply to the DBINIT module are:

a. Detect, report, and respond to failures and irregulari

ties;

b. Maintain a "Prime" and "Backup" system, as well as

redundant fieLd conununications;

c. Maintain a stable time base;

d. Provide graphic displays of the heliostat field or

field segments; and

e. Provide a stable time base utilizing the WWV Trutime

input for the "Prime" HAC time and internal time for

the "Backup" HAC time. When "Backupt' HAC becomes

"Prime," the WWV time will automatically be used, if

available.

Derived Requirements

Section 3.2.1.7 of the 10 MWe Collector Subsystem Software/Firm

ware Functional Requirements Specification, 12 June 1980, states

the following requirements fQr the Data Base Initialization task:

a. Define the global-connnon area, accessible to all

applications tasks;

b. Provide an initialization task to initialize the values

in the global data base;

c. Build appropriate data-base files•.for alarm messages,

HC initialization coordinates, HC biases, control group

mapping, BCS targets, Stow position$, Wash positions,

368

•

•

•

• 3.2.7.3

•

d.

e.

corridor coordinates, initialization azimuth and eleva

tion positions, and multiple aim-points;

Read WWV time values from the WWV devide, if it is pres

ent and operating; and activate the "clock" task to

perform time-base maintenance; and

Initiate task execution sequences to the operating

system, and allow for specification of "Primet• or

"Backup" computer; and if "Prime" computer, make data

available for transfer to "Backup," and if "Backup"
computer, accept data from "Prime.•~

Additional derived requirements for DBINIT are:

a. Perform reasonableness checking of the card-image

source data before storing it onto the disk data base;

b. Write error messages on the operator's console with

respect to source data errors; and

c. Provide a hard-copy listing (offline) of the card

image source upon operator request.

Design Approach

The design of the Data Base Initialization Module (DBINIT) is

accomplished with a top-down functional allocation approach. This

top-down approach facilitates both module and submodule devel

opment, implementation, and testing. Figure 3.2.7-1 exhibits the

hierarchical allocation of the DBINIT required functions.

Figure 3.2.7-1 shows that DBINIT is decomposed into three func

tional areas. The design structure of each functional area is

shown in Figures 3.2.7-2 through 3.2.7-6. This design approach

allows for maximum flexibility in requirement fulfillment and soft

ware maintainability.

The disk-resident data base is initialized with the offline task

DIN utilizing Phase I developed software as much as possible. The

~ard-image data source is error checked and converted from

ASCII to internal binary representation and stored on its ap

propriate file. In total, there are 6 disk files created

and filled offline. These files are the RC coordinates, the

Wash angles, Stow angles, Alternate 1 Stow angles, the Alter-

nate 2 Stow elevation angle, and the aim-point arrays. The

file structures format and types are exhibited in Section 3.3.1.

This offline initialization of the above files supports system

flexibility, resource management, and timeliness of the initial

ization process. System flexibility is enhanced by the offline

feature which allows the files to be updated in a batch or back

ground process. Resource management of the disk space is

improved by not storing the card-image source on the disk, and

initialization timeliness is improved by eliminating operator

handling of card decks and/or magnetic tapes during real-time

initialization.

369

.-.
-~

~
-.J
0

)

•

·---------'-~----,
1In·,t;o..i 11.e --the.
di'sk do.fo. ba.t>e i~on,
0cud-,-ma9e 5oun·e.

V_a. o+·Hrne prnce~
:)ln9

)

----- l l r:,J_ +:1 t3o..::ie
l - . , .
I T,;)t1Cd 1 zcd,on
! - '

' i

I
-----·-~ -~-~ ·-"--~-,<-............ ,-1------ "---,

I nAla.(; ;:..e +he. -

i-1AC. Con r;3 u. , a+, on

C\.nct in°! f,a/ \iO ! LI~

do.ta..

'--------~-__)

r---- ---, ----_ -.---
, Es+aDksh o.hd
I I. ' I
/ Cocwa :r1afe t ne..

l a.c+;vo..+1on of the
: HAC rea. I- --I irr.e.
l

modt,_le~
'-'----------------'

Figure 3.2.7-1 Hierarchy Diagram of the Data Base Initialization Module (DBINIT)

•

)

l,l
--.J
~ l

•)

_.,,;:-~

D1NTRF

C.oord,.flQfe frat'6-
~orl'rc1t,"on it 2~-
bt+ pa.cktf'lg

-·-tltr1$R.T

So.t;frt\
o...l9or;ih~

,_.
DIN LOC..

Proc.E!,5 Ca.rd
tvoe.S ~~JI.a

D1N1t.JC...

Inc\u.sion
CLrea.
C.heck.

--DBI ERR

Error meos-1.~

-\c,.,- operator

,.
_~-cfi'

t DIN
'h.

D1N6Rf- I l f:>iNAN&-

-rn·.+,ali-z .. e. The. I /Proce-:,~ ca.rd

f\f"O.p,\c.5 w ;-th l 1+ype6 Z,5
HC loca.+;ons ,

•·

DtNTTL D1N 'PAC.

Source. Sea.let Pu.ck

I i~+i"'S title~ a:z·1n'\u.+h .a e\N;..-
+ton o..n13/e:.

D1N FLb t::81ERR 7
E:rror me.sso.9e. Eao, r,,essdgesl

fla9 tor aper- tor opera.to, l
n.fo,

Figure 3.2.7-2 Functional Diagram of the Disk Initialization Task

) •

I> IN TTL

Source..

I I 1:::iT1na
ht/e_<;,->

I
I

DIN!='.L!.s- I
I

E rrnr mes:. °T
-f!Cl.q -For
opera.tor

•

-··~·~"-----·~--·--·-
DBI

C'.on1rol HAC
0cal- + ime,
ind;a1·1.z!1.hon

,-

-
]>131 FAC

I~1f1a.l1re..
Sy:sieM I
I"'-ter thee;:') •

•
Figure 3.2.7-3 Functional Allocation of the HAC Initialization Task

172

• """"

'

DBI FAC
Tn.1f'ICllit.e

~s+em
_ .rd Prf'o. £. e6

I ~-: : l
D61CRT DBlfrR.F Vi:'>1E.RR

In-1+io.(iu_ the Ir1;+,aliu_ the. fr ro,. me.~sa.9t'.!
r operC\+or ope.retfor'6 ~raph:c.:s fo

console. on5ole_

,.~-

DB1TR? DP>1MBD

In·it;al; z.e. the. In i+i'n 111.e.
-Re.ce;ver Tr;p 0(.5 ~ DAS

rht e,-Pru e
" ~---···-•------

Figure 3.2.7~4 Functional Diagram of the System Interface Initialization
Submodule

373

w
-..J
~

)

I

)
;

DBI DTA
11'\ I
! l)::1,Q.

j ;n: +;°"/ 1~d,cn
I L~n1rcl

-,

l DP.ii D5K j l DB!cOR
lin itial 1:l.e
!Core do.fe.

Ve.r.1.fy disk
dato.. bo.~e.

I

I I

r-

bBlEF!,~

crrc(rr 2:::.:S,1'.l:'~,
J

-tbr O(::t'(J"'"::lr-
1

in-

,-.-~ .,_.,
Dt3IAIM

UD:::late. O.iM

D6r:t o...rro.v

! D51 BCK

lTn;.n::,,er da.ia.l
1,.., ,,~-
1tru,·n , r,me..

!

• Figure 3.2.7-5 Functional Diagram .e Data Initialization Control Submodule

)

•
'""""'

•

tLKEST
E:sta.b\~~h
f-\AC +a.~k:s

D~I ERR

C LK'.
Conirol
'Std rt -up o+
·-the ~1/\C

CLKACT
Act;vate.
HAC. ta0ko

Er rM rn e~sa9es
for op ero.for

CLKDNL

Ini+ia.lii.e. the
HAC +irn;i'lg
frarne

Figure 3.2.7-6 Functional Diagram of the HAC Start-up Task

375

3.2.7.3.1

The in-core data base and peripheral initialization is perfG>fl!led

by a prescheduled task (DBI) which is activated at system boot

via Sysgen. This initial task (DBI) performs the data initializa

tion required then activates a second task (CLI<) to initialize

the real-time operations tasks. This design feature releases main

memory storage required for DBI for establishement of the

real-time operations tasks in core.

Functional Allocations

The offline disk data base initialization task (DIN) consists

of ten submodules and utilizes one submodule from the DBI task.

The functional allocation of the submodules is shown in Figure

3.2.7-2. A brief description of each submodule follows:

a. DIN - performs overall control of operator interfacing

and processing of the card-image source data for the

Heliostat assignments and locations, .heliostat Wash

b.

and Stow positions, Alternate 1 and Alternate 2 Stow

positions, heliostat aim points, BCS target coordinates,

and the corridor definition coordinates. The format

of these card-image source data are shown in Tables

3.2.7-I through 3.2.7-VI. This submodule presents a

menu for operator selection to input the source data and

whether a source listing is desired.

DINLOC - processes source data from card-image types 1,

4, 5, and 6 (Tables 3.2.7-I, 3.2.7-IV, 3.2.7-V, and

3.2.7-VI). This submodule verifies the format, limit

checks the values, performs coordinate transformation and

data packing, inclusion area processing, data base

structuring, and disk storage. As each card-image is

processed, the card type is compared against the operator

requested data type for error processing. The values of

the source data are processed in comparison to the values

exhibited in Tables 3.2.7-I, 3.2.7-IV, 3.2.7-V, and

3.2.7-VI. If during the processing of an input source

record an error is encountered, the error handling

procedure shown in Table 3.2.7-VII is followed, and the

source record is listed on the hard-copy device.

d. DINTRF - performs the coordinate transformation from the

California Lambert grid system to the right-handed

orthogonal site reference system. , Additionally, the

X, Y, and Z transformed values are scaled and packed

into 24-bit words. Both the transformed and packed

values are returned to the calling submodule.

e. DINSRT - is a sorting algorithm which sorts a subject

array in ascending order. The subject array is not

disturbed during the sorting procedure, but rather

•

subject array in an ordered manner~
an array of pointers is established that point to the •

376

w
-.J
-.J

• •
CT
xx
Card columns

1 - 2

6 - 9

12 - 13

15 - 22

24 - 31

33 - 39

42 44

46 - 47

49

51

73 - 80

73 - 74 ,

75 - 76

77 - 78

79 - 80

HC
xxxx

Table 3.2.7-I Data Base Card Format ·-------- __ ., ___ _
Card Type 1 - Heliostat Assignments and Locations

X-Y-Z Coordinates in Lambert California Grid System with Units of Feet

RFC X-COORD. Y-COORD. Z-COORD. SEG PB W

xx ±xxxx.xx ±xxxx.xx xxxx.xx xxx xx x x

Format

Integer

Integer

Integer

F.P.

F.P.

F.P.

Integer

Integer

Integer

Alpha

Integer

Integer

Integer

Integer

Integer

-·).oO
0 ~ Description

Card type designation, 01 for HAA cards.

Heliostat identification number (HC). (row 1-29, position 1-99)

Identification number of heliostat field controller assigned to HC

(1-64)

HC X-coordinate. Xis positive north. Zero value is at receiver

tower vertical center line. (0 to+/- 1400)

HC Y-coordinate. Y is positive east. Zero value is at receiver

tower vertical center line. (0 to+/- 1400)

HC Z-coordinate. Z is positive up. Zero value is at 1849 feet

above mean sea level. (0 to+ 500)

Segment number. First integer designates ring number, second two

integers designate the wedge nllillber. (ring 1 to 5, wedge 1 to 12)

Pecking order number assigned to HC (1 - 50)

BCS target number assigned to HC (1 - 4)

Corridor-walk letter assigned to HC (A - H)

Generation time of this card.

Month (01 - 12)

Day (01 - 31)

Year of 20th century (79 - 99)

Hour on 24-hour clock. 13 hour at 1 PM. (00 - 23)

GEN.TIME
xxxxxxxx

Units

N.D.

N.D.

N.D.

Feet

Feet

Feet

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

Table 3.2.7-II Data Base Card Formats
,..._--------------------------------~---------------------------------

w
-..J
00

CT

xx
HC

xxxx

Card Columns

1 - 2

6 - 9

16 - 23

25 - 32

39 - 46

48 - 55

73 - 80

73 - 74

75 - 76

77 - 78

79 - 80

-•

Card type 2 - Heliostat Wash and Stow Positions

WASH STOW
AZ EL AZ EL

±xxx.xxx ±xxx.xxx =xxx.xxx ±xxx.xxx
Punched card format description for heliostat wash and stow positions cards

Format

Integer

Integer

F.P.

F.P.

F.P.

F.P.

Integer

Integer

Integer

Integer

Integer

Description

Card type designation, (02)

Heliostat identification number (row 1 - 29; position 1 - 99)

Azimuth angle (AZ). AZ is zero east and positive counter
clockwise. AZ specified o to+/- 180

Elevation angle (EL). EL is zero when mirror is vertical and
positive with glass up. (0 to+/- 180).

Azimuth angle. (0 to+/- 180)

Elevation angle. (0 to+/- 180)

Generation time of this card.

Month (01 - 12)

Day (01 - 31)

Year of 20th century (79 - 99)

Hour on 24-hour clock. 13th hour is 1 PM. (00 - 23)

GEN.TIME

xxxxxxxx

Units

N.D.

N.D.

Degrees

Degrees

Degrees

Degrees

N.D.

N.D.

N.D.

N.D.

N.D.
. ~ -~,-.-.-- --~-,-.. --- ..

•

j
✓~

I.,.)

-...J

'°

CT
xx

•
HC

xxxx

Card Columns

1 - 2

6 - 9

16 - 23

25 - 32

39 - 46

48 - 55

73 - 80

73 - 74

75 - 76

77 - 78

79 - 80
"~

•
Table 3.2.7-111 Data Base Card Format

Card Type 3 - Stow - Alternate 1 and 2 Positions

Stow - A.It 1 Stow - Alt 2
AZ EL AZ EL

-J:xxx.xxx ±xxx.xxx ±xxx.XXX ¼XXX..XXX

Punched card format description for heliostat alternate positions cards.

Format

Integer

Integer

F.P.

F.P.

F.P.

F.P.

Integer

Integer

Integer

Integer

Integer

Description

Card type designation, (03)

Heliostat identification number (row 1 - 29; position 1 - 99)

Azimuth angle (AZ). AZ is zero east and positive counter

clockwise. AZ specified Oto+/- 180.

Elevation angle (EL). EL is zero when mirror is vertical and

positive with glass up. (Oto+/- 180)

Azimuth angle. (0 to+/- 180)

Elevation angle. (Oto+/- 180)

Generation time of this card.

Month (01 - 12)

Day (01 - 31)

Year of 20th century (79 - 99)

Hour on 24-hour clock. 13th hour at 1 PM. (00 - 23)

GEN~TIME
xxxxxxxx

Units

N.D.

N.D.

Degrees

Degrees

Degrees

Degrees

N.D.

N.D.

N.D.

N.D.

N.D.

•

-~

AIM
CT HC PT
xx xxxx xx
Card Columns

-
1 - 2

6 - 9

12 - 13

15 - 22

24 - 31
,-J
00
0

33 - 39

44 - 70

73 - 80

73 - 74

75 - 76

77 - 78

79 - 80

•

Table 3.2.7-IV Data Base Card Formats

Card type 4 - Heliostat Aim Points

LOCATIONS (FEET)
X-COORD Y-COORD Z-COORD

±xxxx.xx ±xxxx.xx xxxx.xx
AIM POINT IDENTIFIER

Format

Integer

Integer

Integer

F.P.

F.P.

F.P.

Alpha'""
Num

Integer

Integer

Integer

Integer

Integer

Descriptions

Card type designation, 04 for HAP cards.

Heliostat identification number (RC) (row 1 - 29; position 1 - 99)

Aim Point number U - 20)

HC X-coordinate. Xis positive north. Zero value is at receiver

tower vertical center line.

HC Y-coordinate. Y is positive east. Zero value is at receiver

tower vertical center line.

HC Z-coordinate. Z is positive up. Zero value is at 1849 feet

above mean sea level.

Aim point identifier. Indicates time of year for which aim points

were generated and generation data.

Generation time of this card

Month (01 - 12)

Day (Dl - 31)

Year of 20th century. (79 - 99)

Hour on 24-hour clock. 13th hour at 1 PM. (00 - 23)

•

GEN.TIME
xxxxxxxx

Units

N.D.

N.D.

N.D.

Feet

Feet

Feet

N.D.

N.D.

N.D.

N.D.

N.D.

N.D .

•

\,;.)

CX>
I-'

~

I
.,
- -s ,~.

' . - ~". -,

Card Columns

1-2

9

15-22

24-31

33-39

CT
xx

Format

Integer

Integer

F.P.

F.P.

F.P.

•
Table 3.2.7-v,: Data Base Card Format

Card Type 5 - BCS Target Coordinates

BCS
NUM

X

LOCATION (feet)
X-COORD. Y-COORD.

±xxxx.xx !xxxx.xx

Description

Z-COORD.
xxxx.xx

Card type designation, 05 for BCS targets

BCS target number (1 to 4)

BCS target X coordinate. Xis positive north.

Zero value is at receiver tower vertical center

line. (0 to+/- 30)

BCS target Y coordinate. Y is positive east.

Zero value is at receiver tower vertical center

line. (Oto+/- 30)

BCS target Z coordinate. Z is positive up. Zero

Zero value is at 1849 feet above mean sea level.

(0 to +300)

Units

N.D.

N.D.

Feet

Feet

Feet

, ___ ~·-~- -·~--~------------ __ , ________ -·-- ---~---------- ··--

•

Table 3.2.7~VI Data Base Card Format

,-----------,---------------------~----------, ---

Card Columns
--
1 - 2

5

8 - 15

17 - 24
w
00
j'v

26 - 32

35 - 42

44 - 51

53 - 59

62 - 67

69 - 74

76 - 80

I

Card Type 6 - Corridor Coordinates

CT 'W CORRIDOR BOTTOM CORRIDOR TOP CORRIDOR INCREMENrS
+ + + +

xx x -±-xxxx.xx ±xx.xx.xx xxxx. xx -xxxx.xx -xxxx.xx xxxx.xx -x.xxx -x.xxx x.xxx

Format

Integer

Alpha

F.P.

F.P.

F.P.

F.P.

F.P.

F.P.

F.P.

F.P.

F.P.

Description

Card type designation, 06 for corridor coordinates

Corridor nl.llllber (A to H)

Corridor bottom X-coordinate. Xis positive 119rth.

Zero value is at receiver tower.vertical center line (0 to +800)

Corridor bottom Y-coordinate. Y is positive east. Zero is at

receiver tower vertical center line. (Oto+/- 800)

Corridor bottom Z-coordinate.
1849 feet above mean sea level

Z is positive up.
(0 to +100)

Corridor top X-coordinate (defined as above).

Corridor top Y-coordinate (defined as above).

Corridor top Z-coordinate (defined as above).

Corridor X-increment (Oto+/- 9.999)

Corridor Y-increment (0 to+/- 9.999)

Corridor Z-increment (Oto+/- 9.999)

•

Zero value is at

Units

N.D.

N.D.

Feet

Feet

Feet

Feet

Feet

Feet

Feet

Feet

Feet

•

•

•

SOURCE DATA ERROR HANDLING PROCEDURE

SOURCE DATA

Card type designator

Heliostat number

HFC assignment

Heliostat Coordinates

Pecking order assignment

BCS target assignnent

Corridor assignment

Wash Angles

Alt 1 Stow angles

Alt 2 Stow angles

DEFAULT SUPPLIED

X

X

X

X

X

X

X

X

X

X

..... ~--- ~---- -- . ____ .,... ________________ ,. ------~----

ACTION
RECORDREJE-ct FILE

X

X

X

X

X

X

X

--------··-~· ··---~,,~~---------~---·--··"·--· .. , ... ~ .. ----·-··---·--··"--··-

I
X Aim-point number X X I

_., ______________ A_t_m_-_point _c_oo_r_d_i_n_a_t,_e_s _ _. --~- ------~----···"-·---,.----L~--X _____ j ___ x_

Table 3.2.7-VII Source Data Error Handling Procedure

383

. ~t:i··.

f.

g.

h.

i.

j.

DINTTL - outputs descriptive titles to the hard-copy ,device.

when source data listings are requested. This

submodule ejects a page, prints the requested title, and ·

returns a variable containing the number of lines

required to print the title.

DINANG - processes source data from card-image source

types 2 and 3 (Tables 3.2.7-II and 3.2.7-III). This

submodule verifies the format, limit checks the values, and

performs data scaling and packing, data base structuring,

and disk storage. As each card image is processed, the

card type is compared against the operator-requested data

type for error processing. The source data values are

processed in comparison to the values exhibited in Tables

3.2.7-II and 3.2.7-III. If during the processing of an

input source record an error is encountered, the error

handling procedure shown in Table 3.2.7-VII is followed, and

the source record is listed on the hard-copy device.

DINPAC - scales and packs the azimuth and elevation

angles into 16-bit integer words.

DINFLG - indicates to the operator the occurance of

errors in source data. This submodule receives an array

of flags corresponding to source data columns and a

count of the errors. If the error count is zero, no

• output occurs; otherwise an 80-character buffer is filled

with ASCII characters such that blank corresponds to no

error in the column or dollar sign($) corresponds to an

error in the column. As the buffer is filled, the input

indicator array is cleared. After the buffer is filled, it

is output to the device indicated via an input parameter.

DINGRF - initializes the graphic processors with the

heliostat field locations. The locations are sent to

the graphics in the format shown in Table 3.2.10-VIII.

The heliostat locations are sent twice, first sorted

by HFC-HC number and then sorted by segment number, sub

sorted by pecking order. Execution of this submodule

requires the concurrent execution of an initializing

program in the graphics processors.

The Data Base Initialization (DBI) task is composed of twelve sub

modules, which execute automatically upon operating system start-up.

The basic purpose of each submodule is briefly described below:

a. DBI - is a task that performs overall control of the

initial operator and system interfacing, in-core data

initialization, disk-resident data verification, and

activation of the timing task (CLI{) £or start-up of the

HAC operations tasks •

384

•

•

•

•

b. DBIFAC - functions as a controlling submodule for five
submodules. This submodule controls the process of
initializing the operator's console, the graphics
consoles, system peripheral configuration and receiver
trip, interface with OCS and DAS, and operator notification
of errors encountered.

c. DBICRT - functions as a submodule of DBIFAC. DBICRT
requests from the operator a designation of either "Prime"
or "Backup." When "Prime" is input, the PCis are configured
to attach the peripherals, and the operator is prompted to
designate whether there is a backup or not. When a
"Backup" is designated, communications are established
via the High-Speed serial CPU-CPU link for message flow.
When "Backup" is input, the CPU-CPU communications 1 ink
listens for messages. After the "Prime-Backup" link
is established, DBICRT clears the color terminal, sel-
ects color schemes, subdivides the console screen, and
sets up screen protection boundaries. DBICRT notifies
the operator that DBINIT'is activated with the message:

"DATA BASE INITIALIZATION"

d. DBIGRF - functions as a submodule of DBIFAC. DBIGRF
functions to initialize the Chromatics 1999 Intelligent
Terminals. Both graphics terminals are configured to
display the entire heliostat field in the color represent
ing heliostat field offline status. If only one graphics
terminal is available, the display opttons only are
listed.

e. DBIMBD - functions as a submodule of DBIFAC. DBIMBD
functions to initialize the OCS and DAS interfaces. These
interfaces protocol are yet to b~ defined.

f. DBITRP - functions as a submodule of DBIFAC. The
receiver trip initialization submodule connects the
interrupt levels to the handlers, enables the inter
rupts, checks for proper state initialization arid
reports trip status.

g. DBIDTA - functions as a submodule of DBI. DBIDTA functions
as a controlling submodule for six submodules. It
controls the calling of submodules in performing disk
verification, in-core global coillillOn initialization, bias
and aim-point array initialization, data transfer for
uPrime-Backupu configuration, and operator interface
for initialization and error processing.

h. DBIDSK - functions as a submodule of DBIDTA. DBIDSK
reads the disk-resident data base verifying the existence
of the disk-resident data files and performs limit

385

checking of the stored values. The data files read and

limit checked are: HC coordinates, Stow angles, Alter

nate 1 Stow angles, Alternate 2 Stow elevation angle, and

Wash angles. An error code is returned to the calli~g

module for processing.

i. DBICOR - functions as a submodule of DBIDTA. DBICOR initial

izes the in-core global common data base for intertask
I

coordination and communications. Section 3.3.1 displays the

data words and arrays that comprise the global conunon I

data base. The data words and arrays are described in '

Section 3.3.1.4 (Global Common Data Base) as: Variable

Name; Size; Initial value; Description; All Modules (Tasks)

that set; All Modules (Tasks) that use; Location; Transfer

Frequency; and Fonnat. DBICOR initializes these
data to the initial values specified under the Initial

Value descriptor. The in-core data base is structured into

three types of data: 1) data that is transferred to the

"Backup" only at initialization; 2) data that is trans

ferred every second; and 3) data that is transferred

every eight seconds. Error monitoring is performed on

all initialization which requires access to disk-resident

initial values. An error code is returned to the calling

module for operator notification and processing.

j. DBIAIM - functions as a submodule of DBIDTA. DBIAil1

verifies the disk-resident aim-point files through

inclusion area processing, and when an aim-point disk

file is verified, its file name is flagged in global

common for use by the Man-Machine Interface task for

UPAIM processing. After the 20 files are processed and

properly flagged, the flagged file with the lowest car

dinal number designator is copied into the in-core data

base for real-time HAC tasks. An error code is

returned from this submodule to its calling module for

processing.

k. DBIBCK - functions as a submodule of DBIDTA. DBIBCK

initializes the "Backup" HAC computer. All the in-core

global common data base and disk-resident data base

files are copied from the "Prime" to the "Backup"

computer. The word in global common indicating the com

puter tag (HPrime" or "Backup") requires special handling

in that the two in-core data bases must contain the

opposite configuration. The handshaking protocol between

the two CPUs is yet to be defined. This submodule

•

returns an error code to the calling module for processing.

1. DBIERR - function~ as a submodule of DBIDTA, DBIFAC, and

the tasks DIN and CLI<. DBIERR proce,sses error codes and

produces errot: messages for the operator. DBIERR pro-

cesses an error code which is classified into three •

types: 1) no error; 2) non-fatal informative errors; and

3) fatal errors. An error code of zero results in no

error; error codes in the range 1 to 20 are non-fatal

386

•

•

3. 2. 7.3. 2

•

errors; while error codes in the range 21 to 40 are
fatal errors. Whenever a disk file can not be accessed,
or a task can not be established or activated, the con
dition is considered fatal and the DBINIT module will
abort. This submodule writes the error message to the
device(s) indicated through an input parameter(s).

The task CLK is composed of four submodules which are activated by
the DBI task after DBI has completed its processing. The basic
purpose of each submodule is briefly described below:

a. CLK - is a task that controls start-up of the real-time
HAC operations. CLK is defined as a one-shot task,
activated by DBI. CLK controls the calling of four
submodules which establish the real-time HAC tasks as
resident in main memory, activate the TOK task, and
activate the other real-time HAC operations tasks for
field control. Any errors detected during this process
are reported via the error processing submodule DBIERR.

b. CLKEST - functions as a submodule of CLK. CLKEST
establishes the HAC real-time tasks as main memory resi
dent. The task three-character name is converted to
ttcan" code for the REX, Establish service. Once the
"can" codes are generated, the REX, Establish service :/F27
is utilized to process through the list of names. The
condition code is monitored after each REX service for
error detection, and reported via an error code returned
to the calling module, CLK.

c. CLKONL - functions as a submodule of CLK. CLKONL
coordinates the starting of the HAC timing frame with the
WWV device and the operator. When the WWV device is
active, it is used as the primary timing device, but when
WWV time is not available, this submodule accepts an
initial time from the operator. When the operator initial
izes the time manually, the input must be coordinated with
real time to -within t TBD seconds for sun tracking
accuracy. An error code is returned to the calling
module for processing.

d. CLKACT - functions as a submodule of CLK. CLKACT
activates the HAC real-time tasks. The tasks previously
established (CLKEST) are activated with a REX service
#16. The condition code is checked for errors and an
error code is returned to the calling module through the
parameter list.

Resource Budgets

a. Memory requirements (estimated)

1. DIN lOK words
2. DBI - 15K words
3. CLK - SK words

387

3.2.7.4

3.2.7.4.l

3~2.7.4.1.l

3.2.7.4.1.1.1

b. Timing - there are no timing constraints for DBINIT

c. Priority

1. DIN - Batch overlay
2. DBI - x-5
3. CLK - x

d. Global common and disk file usage

1. Global common described in Section 3.3.1
2. Disk file structure and format in Section 3.3.l

Design Description

Module Structure

DBINIT is composed of three tasks DIN, DBI, and CLK. The task
DIN initializes the disk data base, DBI initializes the in-core
global common data base and system configuration, and CLK
establishes and activates the real-time HAC tasks for system
operation. Each of these tasks, at the submodule level, is
described below.

Submodule I - Task DIN

Description

a. Language used - FORTRAN

b. How invoked - Offline task activation by an operator.

c. Constraints and limitations - The heliostat locations
{card Type 1) must be processed before the graphics
processors can be initialized. Heliostat locations
(card Type 1) define a heliostat as being installed.
Aim-point arrays must be separated in the input
process by end-of-file marks. Errors found in
processing an aim-point array cause the file to be
rejected. Partial updates of the heliostat locations,
Wash and Stow angles, and Alternate 1 and Alternate 2
Stow angles are accepted under operator direction.
Aim-point array storage on the disk is performed in
totality; all undefined aim points are stored as
zeros (not defined).

d. Processing -

1. Define the disk files for usage by this task.

2. Write the operator's options for input type
to system console:

388

•

•

•

•

•

•

OPTION SELECT ONE DATA TYPE FOR INPUT

L INPUT HELIOSTAT LOCATIONS
2 INPUT WASH AND STOW ANGLES
3 INPUT ALTl AND ALT2 STOW ANGLES
4 INPUT AIM-POINT ARRAY
5 INPUT BCS TARGET LOCATIONS
6 INPUT CORRIDOR LOCATIONS
7 INPUT HELIOSTAT BIAS
8 INPUT ALARMS MESSAGES
9 INITIALIZE GRAPHICS WITH HC LOCATIONS
T TERMINATE TASK

3. Request the operator's response:

ENTER OPTION FROM ABOVE LIST:

Read the operator's response.

4. Test if the response is valid. If it is,
go to step (5); if not, go to step (3).

5. Test if the tenninate task option was
selected. If it was, EXIT the task; if not,
go to step (6) •

6. Test if the selected option requires input
source data. If it does, go to step (7);
otherwise, go to step (19).

7. Write operator's options for a full or partial
update:

OPTION

1 PARTIAL UPDATE (HC LOCATIONS, WASH,
STOW, ALTl, ALT2)

2 .. FULL UPDATE
T TERMINATE TASK

8. Request operator's response~:

ENTER OPTION FROM ABOVE EIST:

Read the operator's response.

9. Test if the response is valid. If it is,
go to step (10); otherwise go to step (8).

10. Test if the terminate task option was
selected. If it was, EXIT the task; if not,
go to step (11).

11. Write operator's options f.or source device:

389

.(

I
I
I

i

OPTION SOURCE INPUT DEVICE

1 MAG TAPE
2 CARD READER
T TERMINATE TASK

12. Request operator's response:

ENTER OPTION FROM ABOVE LIST:

Read the operator's response.

13. Test if the response is valid •. If it is, go

to step (14); otherwise, go to step (12).

14. Test if the tenninate task option was selected.

If it was, EXIT the task; if not, go to

step (15).

15. Write the operator's o~pions for requesting a

source listing:

OPTION SOURCE LISTING

0 NO
1 YES
T TERMINATE TASK

16. Request operator's response:

ENTER OPTION FROM ABOVE LIST:

Read the operator's response.

17. Test if the response is valid. If it is, go

to step (18); otherwise, go to step (16).

18. Test if the terminate task option was

selected. If it was, EXIT the task; if

not, request from the operator if the source

is ready for input:

OPTION

C
T

IS SOURCE READY FOR INPUT

CONTINUE
TERMINATE

ENTER OPTION FROM ABOVE LIST:

Read the response and check it for validity.

Continue requesting respo~e until a valid

•

entry is made by the operlt<>r. When a valid •

response is received, test lf it is the

tenninate option. If it is, EXIT the task; if

not, go to step {i9).

390

•

•

•

19. Branch on the source type selected. If source
Type 1, 4, 5 or 6 was selected, go to step
(20). If source Type 2 or 3 was selected, go
to step (43). If source Type 7 was
selected, go to step (62). If source type 8
was selected, go to step (63); and finally
if source Type 9 was selected, go to step (SO).

20. Zero local common and then test if source
Type 1 was selected. If it was, zero out
the segment pointer and segment map arrays
and go to step (21); otherwise, go to step
(24).

21. Test if a full or partial update is being
perfonned on the heliostat locations. If a
full update is being perfonned, go to step
(24). If a partial update is being performed,
go to step (22).

22. Read the presently defined heliostat locations
from the disk and store in local common. Read
the heliostats' segment numbers and pecking
order numbers and store in local common •

23. Test if a disk read error occurred. If it
did, notify the operator and transfer to
sbep (2); otherwise, go to step (24).

24. Call subroutine DINLOC to process source
Type 1, 4, 5 or 6.

25. Test the flag returned by DINLOC to determine
if any source was accepted. If the test is
true, go to step (26); otherwise, notify the
operator all source was rejected and transfer
to step (2).

26. Test if source Type 1 is being processed.
If it is, go to step (27); otherwise, to to
step (36).

27. Initialize the sorting-pointer array to the
element numbers that contain segment numbers
in local common.

28. Call the subroutine DINSRT to sort the
heliostat locations subject to the segment
number and relative to the sorting pointer •

29. Determine the n~mber of heliostats in a
segment.

391

'I

30. Store the negative of the number of heliost1:1ts
in a segment in the segment-mapping array, and
store the address of this negative number
into the segment-pointer array.

31. Call the subroutine DINSRT to sort the
heliostats in the segment into pecking or
der relative to the sorting pointer.

32. Store the HFC-HC h~liostat numbers into the
segment-map array innnediately after the
negative of the number of HCs in the segment.

33. Test if all the segments have been processed.
If they have, go to step (34); otherwise, go
to step (29).

34. Write the local common arrays containing the
X, Y, and Z coordinates and corridor and
BCS assignments to the disk.

a) Write the MDAC number to HFC-HC
number mapping array (MD2HCG) to disk
(determined a-priori);

b) Write the MDAC number per row array
(MDNPRG) to disk (determined a-priori);

c) Write the HFC-HC number to MDAC
number mapping array (HC2MDG) to disk
(determined a-priori);

d) Write the segment mapping array
(SEGMPG) to disk;

e) Write the segment pointer array
(SEGPrG) to disk; and

f) Write the packed-segment numbers and
pecking-order numbers to disk.

35. Test if any disk write errqrs occurred. If
they did, notify the operator not to use the
disk for lnitializatiop, and in either case
go to step (2). ·

36. Test if source Type 4 (aim:,_1points) is being
processed. If it is, go to step (37);
otherwise, go to step (41).

37. Check if all the aim-point numbers in local
common are the same. If t~~re, go to
step (38); otherwise, notify(-;;the operator the
file is rejected and go to step (2).

392

•

•

•

•

•

•

38. Read one aim-point record from the disk,
insert the present aim point into the record
relative to the aim-point number and write
the record back to disk.

39. Test if a disk read or write error occurred.
If it did, notify the operator and go to
step (2); otherwise, go to step (40).

40. Test if all the aim-point records have been
updated. If they have not go to step (38);
otherwise, go to step (2).

41. Test if source Type 5 (BCS target coordinates)
is being processed. If it is, write the BCS
coordinates in local common to the disk.
Otherwise, write the corrido~ coordinates in
local common to the disk.

42. Test if a disk write error occurred. If it
did, notify the operator, and in either case
go to step (2).

43. Test if a full or partial update was requested •
If a full update was requested, zero local
connnon and go to step (46). If a partial
update was requested, go to step (4~).

44. Test if source Type 2 is being processed.
If it is, read the disk to obtain the Wash
and Stow angles presently stored and store
them into local counnon. Otherwise, read the
Alternate 1 and Alternate 2 Stow angles and
store them into local common.

45. If a disk read error occurred, notify the
operator and go to step (2); otherwise, go
to step (46).

46. Call the subroutine DINANG to process either
source Type 2 or 3.

47. Test if any source records were accepted by
DINANG. If no records were accepted, notify
the operator and go to step (2); otherwise,
go to step (48).

48. Test if processing source Type 2. If it is,
write the values in local connnon to the Wash
and Stow files on the disk; otherwise, write
the values in local common to the Alternate 1
and Alternate 2 Stow files on disk • .

393

49. If a disk write er~or occurs, notify the
operator, and in either case go to step (2').

SO. Read the segment map (SEGMPG) and segment
pointer (SEGPTG) arrays from disk and store
into local connnon.

51. Read the HC locations from disk and store
into local common.

52. If a disk read error occurs, notify the
operator and go to step (2); otherwise, go to
step (53).

•

53. Request from the operator which graphics
processor to initialize with heliostat locations.

OPTION

1
.2

INITIALIZE

CS CONTROL ROOM GRAPHICS
ENGINEERING ROOM GRAPHICS

ENTER OPTION FROM ABOVE LIST:

Read the response and check for validity.
If valid, go to next step; otherwise, request
entry again.

54. Request from the operator if the graphics
processor is ready to receive data.

OPTION

C
T

GRAPHICS READY TO RECEIVE

CONTINUE
TERMINATE

ENTER OPTION FROM ABOVE LIST:

Read the operator's response and check it
for validity. Continue requesting an entry
until a valid response is made.

55. If a terminate is requested, EXIT the task;
otherwise, go to step (56).

56. Construct the graphics initialization message
from the non-zero heliostat locations in
local common.

57. Send the graphics message under a command/
response protocol.

•

58. Test if the full field of. heliostat locations
have been sent. If not, ~Q to step (56); •
otherwise, go to step (59).

]94

•

•
3.2.7.4.1.1.2

•

59. Send an end-of-file message to the graphics

processor under a connnand/response protocol.

60. Send a heliostat location initialization

message relative to a segment pecking-order

scheme.

61. Test if all segments are sent. If they are,

send an end-of-file message and go to step

(2); otherwise, go to step (60).

62. Bias disk file processing; at completion

go to step (2).

63. Alarm messages processing to disk; at

completion go to step (2).

e. Error messages and recovery - Error messages:

1. DISK WRITE OR READ ERROR

2. DISK DATA BASE INVALID DO NOT USE

3. SOURCE FILE REJECTED

4. NO SOURCE RECORDS ACCEPTED

Error recovery returns control to operator to take

action.

Data, Logic and Command Paths

Input data:

a. Operator inputs via the system console;

b. Source data; and

c. Disk stored data.

Output data:

a. Source listings; and

b. Source data stored on disk.

Algorithms:

Three arrays (Figure 3.2.7-7) are internally created to con

vert from the MDAC numbering system to the HFC-HC nurnber

ing system and vice-versa. The arrays MD2HCG and MDNPRG are

used to map from the MDAC number to the HFC-HC nurnber.

The MDAC number is composed of two part:s: the row number

and row-position nurnber. The row number is used to enter

the MDNPRG array and get the subtotal of alEHCs in the

395

2048

J1Q2RC=G,,____ Row MDNPRG

~ f- --- ii!
[~g.!:.!,;HC~ff:...__.,-___,..MDNPRG (ROW#: I +Row posit ion l

301--_1_8_1;..c.8 __ __,

n

n
rows 1,2,2

Total HCs in
field

HFCHC#

2048

Figure 3.2.7-7 HC Numbering Scheme Mappings

396,

HC G..

l -·--·-···- ... •· l
2 ·--·······~

i

I ____ . ..j

MfiAC 4f : ·•···- - ·-·----·- --7
I !

L-----·····••·'

•

•

•

•
3.2.7.4.l.l.3

•

lower number of rows. This is used as a base to which

the row-position number is added for entry into the MD2HCG

array. The MD2HCG array contains the HFC-HC number

corresponding to the MDAC number. Error checking of the

MDAC number is performed by comparing the entry number

against contents of the next highest row number of the

MDNPRG array. If the entry number is greater, then the

MDAC number is invalid. The length of the MD2HCG array

is 2048 elements, and the length of the MDNPRG is 30 elements

where element one is zero and element 30 the total of

all heliostats (i.e., 1818). The third array is the

HC2MDG array and is used to map from the HFC-HC number

to the MDAC number. The entry number (element index) is

the HFC-HC number. The contents of the element is the

MDAC number. Elements that have a value of zero are

invalid HFC-HC numbers. The length of HC2MDG is 2048

elements.

When the heliostat locations are input, two arrays are

created to map the segment numbers into groups of heliostat

numbers. These two arrays (Figure 3.2.7-8) are

the segment-mapping array (SEGMPG) and the segment-pointer

array. The segment-pointer array contains pointers to the

segment-mapping array; where the number of heliostats in

that segment are stored (negative value) followed by the

heliostat numbers of the heliostats in that segment in

pecking order. If a zero value is found in the segment

pointer array, it means that there are no heliostats

assigned to that segment number. The segment number is

decomposed into its component parts of ting number and

wedge number to index into the elements of the segment

pointer array. The value one is subtracted from the ring

numbe~, and the results are then multiplied by 12. The

the wedge number is added. This results in an index

number from 1 to 60 (5 rings - 12 wedges).

Internal Data Description

a. Internal common areas - DINCOM:

1. 7 arrays of 2048 I'k2 words used to process

source data to disk files and vice-versa

2. 9 arrays of 8 I*2 words

3. HC2MDG array 2048 1*2 words

4. MD2HCG array 2048 1*2 words

5. MDNPRG array 30 I*2 worde

b. Disk file DIN layout:

1. Random access file DIN ;:~rd size 128 words.

397

'I
I

SEGMPG
-if of HCs

HCs
in

segment ,/

·-··-·-·· .. w .. _._..,. __ ----1 /

-1F of HCs //

i~~nt I

102 /
1------------11.1

-# of HCs

HCs

in
segment

103

SEGPTG
address

-~_e_fil; __

address
-·-- ""'"•------~---i

1-segment 101

2 -segment 102
3 -segment 103

Figure 3.2.7-8 Segment Map and Segment Pointer Interaction

398

•

•

•

• 3.2. 7 .4. 1. 1.4

3.2.7.4.1.2

3.2.7.4.1.2.1

•

Flowchart

2. Records 1-16 contain the MDAC to HFC-HC
number mapping MD2HCG array (2048 words).

3. Record 17 contains the MDAC number per row

MDNPRG array (30 words - word Oto word 29)

and the segment-pointer array SEGPrG (60 words -

word 50 to word 109).

4. Records 18-33 contain the HFC-HC to l1DAC

number mapping array HC2MDG (2048)words).

5. Records 34-50 contain the segment-mapping
array SEGMPG (2108 words - Record 50 has the

first 60 words used).

6. Record 50 (words 70 to word 93) contains the
BCS target locations.

7. Record 51 contains the corridor locations

(128 words).

8. Records 52-67 contain the HC segment number

and pecking-order number packed together
(2048 words) •

See Figure 3.2.7-9 for DIN flowchart.

Submodule II - DINLOC

Description

a. Language used - FORTRAN

b. How invoked - Subroutine call by DIN task

c. Constraints and limitations - Records read from the

source must contain an end-of-file indication at the

conclusion of the file. Source input records cannot

be duplicatedr Card-image source types should not

be intermixed. Aim-point arrays must be processed

one at a time.

d. Processing -

1. Initialize:

a) End-of- file flag fllse
b) Read error counter;._to ·zE!rQ
c) Number of lines pr;tnted to zero
d) Number of records accepted to zero

399

·~-

t;e{~flt. +he.

d;,k f; le.:i

wc;+e opcra+or'.s
op+, on:'> ior
i r1pu.+ +ype

'Req_v~~· 0-nd
rt>od Opproior~

n:~on5e

Ye.~

Wr1h opero.fof''6
op+;on tof'
:iou.rce de>,,:1re

Rfoue~t n~,d
rrod opern+o,'.s

re~pon:.e.
No xv11.i:ct re6pan$e,,,

~ /

'{05 /<(M1NATE.'

------~ opfir'I

(EYdT
\
'· ·~---__.,

./ Do~G'··'-..
,~· ' . '

~i•~-~::Ju•r;> "'~ Ye.s

We; k opera. tor~
opi1ot'l fur {',.,_1 \

or P,Or+i°o. \ 1Af>-
date

w,'itc opu0-for':.
op+,ori.:, ir.1r CL

•::;ou rc.e I i'::,t; "'')

v-c>ad opero:for~ re6por·~-e.

re~on ~e _ 1. -·- -·
,./~

,.J,'d rr~po~,'1.3>'-=---:ii
~ ·; ,,✓-✓

~-'

Fio:ut'e '3.2 .. 7-9 Flowchart - DIN Coo

•

•

•

•

•

·~

@-fu_

/Re~v,st ,f
/sou~ce. ,~ ready

jfor 1np1.A.t
j

~-----WI

Figure 3.2.7-9 Flowchart - DIN (continued)

401

L.

-------,

terc, local
COrY',mOn

[

eai::I HC loco.t:
('t'.)l'l"; d; ~k o.nd
'\ore ·,n loro.l
rorr mon ---

r;:---·----·
if-Md !;~qrv.e,it ~
crnd peckintJ-ll:rll'f
humbcr .frofl'l A,~k
:<.,-\orr ;h \oo.\ Cotr,

Ne,t;(y o~m• or

s.ourc.t. rejectfJ _N_o_""·

St,d µt iorn-c,·
5u~ed fo 5e111't' t

II rt.>IAt,~e fu
~,od i'n po, nfrr __

'DetPrm ;ne. t: r1.'
HC~ i'n o

sea rre n"t' j'
------------.---·"

·-•- ... ,. '"""'""'.--] Store HC -t-~ ifl

5e~ mer'\+ mc1jC

(1...rro..y

-----'IC-------.. ,
Wrrte lotal (on,rrw1·, ,

ar ro.y (-J.//L rorr;Jo.- &'.5)
fo clit,.k.. ~/r'.+-t. th~ "-'Cw.'.. I
-tl> t!FC:-1-1~ r,,iapp,nq o.r_-rt1.y I
+oe.k,.k WDZH(&), 'Wutr H,~
MDAC nVJ11b:r ptr 'rOMJ ilW>.,.
• o al. i~k (MD~-lf>Rc,), \JJr,\o .. ·\ht
Ht(-Hl tH.,_rnbtr ,o H ('/,(.

YY10frin9 orro'f :o 1:1•~k
{!-\ Cl H Dbl '\A},- d t +he.

!

fRC\rYll"flt rn~p; n1 . j
rfo..y tod,!k (5f6Nl{v1

Wr'rk the ;::,e1m-,rt . !
po,rrt,~ ,:Jrrt1.y -fo J;~k j
f.6E6P'fC'$), !

D15/< wr,fe "·,.t--fo
' t!({t:,(//

~,_? .,/

~e:~---~ No+,ry oprr.,.;N
no+ to use..

,fok dafo b,,e I
___ ,_J

Figure 3.2.7-9 Flowchart - om (continued)

•

•

•

• ··""°'\

."""

r heck i'f a I I
a 1rn-pD;n-t• #-":,

(He -Jhe. 5uYf'I£..

~eaJ. cum p,;vrr
cli°:'.:>k reto rd

r"n~u+ presen1
1m po,nt r-tlo.t,v

+o c~·, r'() * .fc-0111 I« o I
C'Orl' mon j n4o N'C

Wr:• e. a;m ·p0'1,it

re cor& to d 1 ~k.

No

No+; fy optrtrll>r
0 +:le rejerfed

Nt.it'ly Dpu,dor

of d1jk error

wr; te CDf'nd.,>r

~N_o_~coof'd1~6tr)\n
I OUA. I Common

·+o c\1~k

Figure 3.2.7-9 Flowchart - DIN (continued)

403

l)1NAN&

Prot e!'.is rMd
types Zor 3

[w,,tt totAI Com

~/\ L, PS tor Wo.~h
rnd .51/)1,.,{A,.[1)
;~o ,L'.,\:.

Leroi oceil COWl\ot'I

No1; (y opuo..tnr
No record.~
a.c,e.pir-d j
--·----·---

Wr',te l~a.1 ro,_;"'
va.lui>s for Alt i
c..nd Alt 2 Sfo.,.J
fo d,sk

- --- -,v--·-----{A)-A:i.f----· Figure 3.2.7-9

•

•

•
Flowchart - DIN (continued)

• -~-

• -~

[

R~:d HC lo<t).t1~on
tr c,,,., ,li ~k C\nd
Store , 'niu l OCll I
rorn,.non
. -

Re£t_w est tr-om
opem-lor wh,ch

fop->•C!, J'.l<O(/'~Sor
-fo 1n d,aJ,1-e and
rt"o.d rt6 n~e

ft..'.atA.es+ -h-oM
Cpi'~:/or if 9ro. -
0 ,>~ proc e~sor
1~ i-rad

Con::.+r,.,i1 qm°"1'1rs
rY1f'SivJ3t -tfOM :'\011-

-t<:'rt) ! orn \ common
Storr ;h lore.I r,

Figure 3.2.7-9

'Send fof- ·lo
graph;cs flr"c,
rrssor in rom
a5pms l prt> loco l
'----------···•·--·

Flowchart - DIN (continued)

405

e) Number of records read to zero
f) Data accepted flag false
g) Reject file flag false

2. Branch on the source type being processed.

Set the appropriate syntax masks for checking

the source data types. Set the limit check

values for the appropriate source data type.

3. Initialize:

a) Error code to zero
b) Number of errors to zero
c) Column flag counter to zero

4. Increment the number of records read, and read

one record from the source device.

5. Test if a read error occurred. If it did, set

the error code, set the error counter to one,

and increment the number of read errors. Then

go to step (20). If no read error occurred,

to to step (6).

6. If an end-of-file was read, set the end-of

file flag true, and decrement the number of

records read. Then go to step (20); otherwise;

go to step (7).

7. Initialize the syntax checking pointer to

zero.

8. Increment the syntax column pointer and syntax

check the column with the syntax masks.

9. If there is a syntax error, set the syntax

error code, set the number of errors to one,

set the error indicator flag in the column,

and increment the flag counter; otherwise, go

to step (10).

10. Test if all the columns have been syntax

checked. If they have, go to step (11);

otherwise, go·.:to step (8).

ll. Test if the card type and RC number are
acceptable, if not, go to step (20); otherwise

go to step (12).

12. Decode the card type being processed. If a

decode error occurs, set the reject-the-error

•

code and increment the error counter. Then go •

to step (20); otherwise, go to step (13).

406

•

•

•

13. Set an error flag false. Then branch, on the

card type being processed. If card Type 1

is being processed, go to step (14). If card

Type 4 is being processed go to step (28). If

card Type 5 is being processed, go to step (33),

and if card Type 6 is being processed go to
step (38).

14. Card Type 1, check if the following are in

range:

a) HC number;
b) RFC number;
c) Segment number;
d)2 Pecking-order number;
e) BCS assignment number;
f) Corridor assigmnent letter; and
g) X, Y, Z,coordinate values.

If any of these values are not in range, set

the corresponding column indicator flags and

set the error flag true.

15. Test if the error flag is set. If it is, set

the error code word, increment the error

counter and go to step (20). Otherwise, go

to step (16).

16. Call the subroutine DINTRF to transform the

coordinate values and scale and pack the

values into five I*2 words.

17. Add the BCS and corridor assigmuents to the

low-order byte of the fifth word ••

18. Increment the number of records accepted

and set the accept-file flag true.

19. Store the coordinate value words, pecking

order, and segment number into local common

arrays relative to the HFC-HC number address.

20. Test if a source listing or an error code

was set. If either is true, go to step (21);

otherwise, go to step (26).

21. Increment the line number counter.

22. Call the subroutine DINTTL which will produce

a title heading if line number one is being

printed.

23. Write the source ASCII record to the printer.

407

24. Call the subroutine DINFLG which will flag
any indicated column errors.

25. Call subroutine DINERR which will write any
error messages indicated.

26. Test if the end-of-file flag is true. If
it is, go to step (27). Otherwise, test if
three read errors have occurred. Go to step
(3) if they have and set the data-accepted flag
false; return to the calling subroutine.

27. Test if source type 4 is being processed
(aim points); if false, return to the calling
subroutine. Otherwise, test the reject-file
flag. If the flag is true, return to the
calling subroutine. If the flag is false,
set the data-accepted flag true, and then
return to the calling subroutine.

28. Card Type 4 - check if the following are in
range:

a) HC number; and
b) Aim-point coordinate values (X,Y,Z) •

If any of these values are not in range, set
the corresponding column indicator flags and
set the error flag true.

29. Test if the error flag is set. If it is, set
the error-code number and increment the error
counter and flag counter, and go to step (20).
otherwise, go to step (30).

30. Call the subroutine DINTRF to transform the
aim-point coordinates, and scale and pack
the values into five I*2 words.

31. Call the subroutine DININC to test if the
aim point is in the inclusion area.

32. Test if the aim point is in the inclusion area.
If it is, add the aim-point number to
the low-order byte of word five; increment
the number of records accepted; store the aim~
point coordinate values into the local common
arrays r~lative to the HFC-HC number; and store

the aim-point number into a local common
array relative to the HFC-HC number. Then go

•

•

to step (20). If the aim point is not in the

inclusion area, set the error code, increment •
error count, set the column flags and increment
their count, and set the rejectJfile flag true.
Then go to step (20).

408

•

•

•

33. Card Type 5 - check if the following are in
range:

a) BCS target designator; and
b) BCS target coordinates.

If any of these values are not in range, set
the corresponding column-indicator flags and
set the error flag true.

34. Test if the error flag is set. If it is, set
the error code and increment the error counter;
then go to step (20). Otherwise, go to
step (35).

35. Call the subroutine DINTRF to transform the
coordinate values; scale and pack the values
into five I*2 words.

36. Store the scaled and packed values into local
connnon arrays relative to the BCS target
designator.

37. Increment the number of records stored and
set the data-accepted flag true; go to step
(20).

38. Test if the corridor indicator is valid; if it
is, go to step (38). If it is not valid, set
the column flags, increment the count, and
set the error flag true; then go to step (39).

39. Test if the lower-limit point is in range. If
it is not in range, set the column flags,
increment the count, and set the error flag
true.

40. Test if the upper-limit point is in range.
If it is, call the transformation subroutine
DINTRF. If it is not in range, set the column
flags, increment the count, and set the error
flag true.

41. Test if the delta step is in range. If it is,
call the transformation subroutine DINTRF. If
it is not in range, set the column flags,
increment the count, and set the error flag
true.

42. Test if the error flag is set. If it is, set
the error code and increment the error
counter; then go to step (20). If it is not
set, go to step (43).

409

3.2.7.41.2.2

3.2.7.4.1.2.3

3.2.7.4.1.2..4

43. Store the corridor values into local common
relative to the corridor indicator.

44. Increment the number of records accepted and
set the data-accepted flag true. Go to step
(20).

e. Error messages and recovery -

1. Error messages:

a) READ ERROR REC: NNNN
b) SYNTAX ERROR REC : iNNNN
c) DECODE ERROR REC: NNNN
d) SOURCE VALUE OUT OF RANGE REC: NNNN
e) AIM POINT NOT IN INCLUSION AREA; FILE

REJECTED REC: NNNN

2. Error recovery -

Return to calling subroutine with data-accepted
flag false.

Dati, Logic and Command Paths

Input data:

a. Source device number;
b. Source listing requested;
c. Source type number;
d. Source data; and
e. Conversion mappings for MDAC to HFC-HC numbers.

Output data:

a. Processed source data to local common;
b. Number of records accepted; and
c. Data-accepted flag.

Internal Data Description

Data processed from the source input is stored in local common
area DINCOM. The storage of accepted records is always relative
to an indicator on the source record. This storage procedure
allows for partial updating of the processed records to disk.
The HFC-HC numbering system to MDAC numbering system mapping
arrays and vice-versa are contained in local connnon.

Flowchart

See Figure 3.2.7-10 for the DINLOC flowchart.

410

•

•

•

• -,
'

•

.~-
r,.;-l-iaJii.e..: ·-·,1·

fnJ-of - f;k ~\(1~ ta.\1e
~ead-errnr- coi,."-\er -tor.erD
Nu..Mber of /,'11c:, p<m-/eJ io uro
Nu,.,,btr of rru,nL :.b-Pd fo;,ero
D,do arur.+!ld fla.q ·fa(.~,:._

umber of rrco,,:f~ r"l'o.d -lo irl'rD

'PC '!_fi 1~_£!~1~-\~---··-···

// .. '·,.,'-.

..---,--------. d ~~=r.,:: ···-----~
- Ji 7 ~ lfu

[

Sd sy;:+I).}{. Se_.+ ~yn-1-a.i r·Se.t syr,tp.x-1 Se+ S~nt~---1
mo.6b -fur h"\/l.t>b ~r lma6b :;:o, i tr1a.6k~ ~r I

1

c°'d -lyp< i
I

C • .-d -1yP'- ~ c • .-J_"'f P'_s \ C~.-d typ~_I

~

;;ti::fa;.;7
() \ue.s tor i

'1.1nl 4ype i l
- -~--·{ ······•·"'·j

Sd u rar c oc1 e. j
Sd e.rror Cour,"f
¾1_; Tncrement
~a.freod error

~

' .-:· --j" 7
Sei I ,m ,, 01<·ck i

f
Sd l/1'11;+ ch(c~

,10.J u e ,';, r~,r
Ca.rd type[,.,

value~ for- j

~~~~ .. -• yt- ~- j 

Flowchart· DINLOC 

411 

'.::d <"nd--of-t',le 
flo.~ trr.1e _, 
h•< remm+ ,ti: o+ 

1 ncod-::. No.cl 
l. .... ,-~--1 . "' 

l.~:~~ 



Incremrnt 

Reji>ct rect1fd 
prror Cod(• 

Figure 3.2.7-10 

.DECODE.. Ci!IJ 

-fype_ 5 

Flowchart - DINLOC 
I, 1 ? 

• 

• 

·-· --·- -l,&. 
DfcoDE. r,,.cJ 

-+ype l:, 

• 



• 

• 

Sd -flogj 4 Coun+ 

No Se.+ errr,r fl°'g 
+rue 

Sd t'la3'5 A l'Oul\t 

.'::e.-t e tYl)r f1i13 
l+rue 

er f lo._¥ 'ii row,t 

Ko .'.::£+ error -t lo~ ''j 
rue 

···=1 ---~ 

Sd fla~ J count 

Se+ r'rror f la.9 
+rue. 

'Se:1- -tla~~ d (ou.n 

:,d ~rrM t tag 
+rue. 

A/3 

··--··--~-./,,/ '-.... .::e{ ~rror cock 

'f r .fl ~Pi>,Yi t, ~(rem. <nt" 

Add 6C5 4 
corr;dor numb,Y 

!Prro.- rou~t I • . 

Figure 3.2.7-19 Flowchart - DINLOC (continued) 

413 

i 



Tnrr~rv1tr+ nurtber 
of rec ,.wd!, ~fared 
4 {: r,} +rut. 

L ........ _.T __ 

~ 
.. --· -i"----~ Store vo. ',,e~ in 

iOCA' r,-:,,rM:")(. 

rrin.-l!ve +o t-\fnlc. 
r:ur"' t~r 
-~ .. ><~•-·-••><•--· .,.,..,......_,,_,......._,,. 

[

Tn,r:-~11t 
1· • 

1\nf er I r,/-er 
C'r:,u rd Pr 
........ ---.....----' 

[ 111{;~::~• 
j ,Wh"' N'7..w red 

L ... L------·· --

~ 
"/e .. _ ___:_ .\,,' 

/ r >-, No 
End c)i , • C ;;,--) 

·~) / 

" 
.,/ 

t
~----

Se-1 do.J Cl.. 
I I• 

uCPf'~ed + /.,3 
+ru.e. 

- --~- -- ___ , 

<'tfira reaA crro.r!> 
~ ") / ' {~ ,,., ... "' 

':r<~ .-, ___ W::,.......' ·: ___ _ 

!Sd do.+a. 
I -' .J r· I I o u e p r(\-< -t- a~ 

l+'Cti~.e-

Figure 3.2.7-10 Flowchart - DlliLOC (continued) 

414 

• 

• 

• 



• 
··~ 

• 

• ~ 

__ 'L] DrNlNC 

}fy-lt1-::-;c>r\ 

c.r,a. 

n:x.f6~1 n~---

------·-·-· ---J 
Set {103s 4 Coui,7 

Se+ error +l.19 
·hue; Rl'Jl'rt t: It 
·--.... --~ -------·-

Set+ loq~ i fmm+ 

Se+ errc.( tfo.j 'rue 

F.ej~d- f, le 

/ Add a ,m-p;, nt- ~ to 

i) a.G-f by-1-e.. 
i lncremrnt J; cf. 
I retords s+-ored 

[ 
.. _ .. ., ..• _ 
SI-ore value. ·, n 

I om! C omoiot, 

re la+ ;,u. -t-o Hf<- t1 

r.,,. fYlber· 

--~· 

Flowchart - DINLOC (continued) 

415 



fl) r.:-.touf• 

CM1d;nt1il?i• 

~_<:I:_~ ~~t i:J 
Store. in IDCo.1 
Comrr :in u.rr1,y 
('elcd1ve 10 3{:) 

Tr1r(l'f'r'Pnr 

numbPr t'lf' 
n•cord:, :::.+0< t'A 

Sd f/1-.q:. d c,-,,_,_n-t 
'-/ 

S<~ f( r,,, ', ·, ,,.1 ..;fof 
J 

'Sd Pu"' rode 

a ,·ncremenT 

<'rfDc wunt 

L .. rgfu . 
' . '/ ---;/ 

Figure 3. 2. 7-10 Flowchart - DINLOC (continued) 

416 

• 

• 



• -~. 

D1 N1f-f 

Tro. r'l!,torr11 

coo rd ,'n;a +e.~ 
Scc,.\t ( Pock 

D1NTRI= 

v' Oro fo(r·!', 
loorA:nt.\.-tP6 
ScQ..!e. 4 Pack 

Trati~ ro(IY\ 

cood .'ria-11'$ 
Sro._te ~ P/l.cl<. 

No 

, No 

Set tlo.s!- #cou 

Se • erroc f' ~ ·fro.e 

~- ... -, .... 

j Se+ tla~!. ~count 

15e+ error H,j i r 
: L_ __ .. ____ ......, 

'--------~!f-----·--··--·---·-·'V 

Figure 3.2.7-10 

·.':,-10,1> ;n \oro I 
_ O ffi/Y\On 'fP \a f ."11e_ 

.Jo ihf..- C or; ,A r>r 

r. umber 

crerv1rn-t Vlv..mbtr 

ot re r o rd.:, s-hxed 

D(i.iO. Cl(c1c>ptecl 
+l~_-f,.

1 
__ _ 

~ 

S,1:+ er,o,· cc-"1e. 

~ I ',vn me." fl'f" 

error- cou t1f-

Flowchart - DINLOC (continued) 

417 



3.2.7.4.1.3 

3.2.7.4.1.3.1 

Submodule III - DINTRF 

Description 

a. Language used - FORTRAN 

b. How invoked - Called by submodule DINLOC. 

c. Constraints and limitations - Coordinate magnitudes 

input must be less than 3,375 feet. This subroutine 

requires 32-bit integer words and a bit-shifting 
function. 

d. Processing -

1. The processing begins by transforming the 

input coordinates, expressed in California 

Lambert grid, to coordinates expressed in site 

reference (East, North, Up). During the 
transformation, the coordinate value units are 

converted from feet to meters. Next the 
transformed coordinate values are scaled and 

packed into a 24-bit format. 

2. Each of the three values is scaled Bl4 and, 
respectively, stored into 32-bit integers • 

3. Each of the three 32-bit integer words is 
bit-shifted left eight places. This shift 
places the 24 bits of interest into the 
left-most 24 bits and the remaining right

most 8 bits are all zero. 

4. The Y-coordinate value is shifted right 
24 bits. This results in 24 leading zeroes 

and 8 bits of the Y-value. This value is 
added to the X-coordinate integer word 
res~!ting in 32 bits which contain 24 bits 

of X value and 8 bits of Y. 

5. The Y-coordinate value is shifted left 8 
places. The Z-coordinate is right shifted 

16 places. The results of these shifts are 

added together resulting in a 32-bit word 
containing 16 bits of Yon the left and 16 

bits of Z on the right. 

6. The Z-value is shifted left 16 bits resulting 

in a 32-bit word with 8 bits of Zand 8 bits 

of zero in the left half. 

e. Error messages and recoverx - This submodule produces 

no error messages. 

418 

• 

• 

• 



• 

• 

• 

3.2.7.4.1.3.2 

3.2. 7 .4. l.3n 

3.2.7.4.1.3.4 

3.2.7.4.1.4 

3.2.7.4.1.4.1 

Data, Logic and Command Paths 

Input data: 

X, Y, and Z coordinate values in a floating-point array. 

Output data: 

a. X, Y, and Z coordinates in Heliostat field reference sys

tem (units of meters) in a floating-point array; and 

b. X, Y, and Z coordinates in heliostat field reference 

system scaled Bl4 and formatted into a 16-bit integer 

word array. 

Algorithms: 

To transform from the California Lambert system (L) to the 

Heliostat field system (H): 

XH = ~ sin a + YL cos a 

YR= X
1 

cos a - Y
1 

sin a 

Where: ZB = offset constant (98) ft. 

a= 0.6650407436 

Internal Data Description 

Equivalence an I*4 integer array of length three to an 

I*2 integer array ofHength five to obtain the 24-bit scaled 

data words in five I*2 integer words. 

Flowchart 

See Figure 3.2.7-11 for the DINTRF flowchart. 

Submodule DJ - DININC 

Description 

a. Language used - FORTRAN 

b. How invoked - Subroutine call by DINLOC 

c. Constraints and limitations - The input aim-point vector 

must be expressed in the heliostat site reference 

system (East, North, Up). 

419 



C DINTRFJ 

-··············] __ , 
l(·n n.::.form ~ oonJ :nn tr. t((m\ 

Lam be rt io ::id r. 
i-derenr-e. u nd -fr/)tn feei lo 
me+er,"). Sio,~ re:::,u I t5 of 
each coonl:n!ite in Cl. 

3.'.}- b:i i ri:f~1~,-·--··-· _ 

.-------'-----·-··· 

Mu. I~ , ply end, 
Coorrl, ~,nit' value by 

2_ 10 

'Sh'1 ft Co.ch 3'.) · b'1t 

1n1e3"• lcH 8 h,b 

___ [ ____ ~~~~-~~:-
Shift Y toord,'r.ate i 

r1~ht .2.Y ti'd.s o.nci ocil i 
--lo i.·coorcf1r10.te. Wu(d. ! 
S¼ore rE'.:,u H5 in wo,d j1 

one. of J:) · 6·,+ i'r-de9t', 
(J..(' ("(J\/ 

Sh.1ftyY-c~L~1:~-: wor]; 
I e{-t 8 b 'it.', . Sh; .r + Z -
Coord; n-.:lte word r-i"3ht 
I~ b~h.Add 11.bove re~I 

and ~Jore : nfo w1>n::I :1 of 
.3:J-b',t mfe N o f"ro. 

,--.---,_,, ~-~-M ---..--.. ---..., 
/ S'H IF r ·rt+E l-coor- J 

d,'n,ri e. word 

\e{t It;, bib. ~-fore re -

~LL I+ :s ; n \Al ord +~,...-ee. af I 

Jj~~'.YJ 

Figure 3. 2. 7-'ll Flowchart - DINTRF 

/. "" 

• 

• 
,;j 



• 

3.2.7.4.1.4.2 

• 

3.2.7.4.1.4.3 

• 3.2.7;4.l.4.4 

d. Pl1ocessing -

1. Compute the difference between the aim-point 

vector and the receiver center-point vector. 

The resulting vector components are X (East), 

Y (North), and Z (Up). 

2. Set the aim point in inclusion-area flag true. 

3. If the East-North components are within the 

receiver cylinder, go to step (4). Otherwise, 

set the aim point in inclusion-area flag 

false and return to the calling subroutine. 

4. If the absolute value of the Up component is 

less than or equal to half the receiver 
(cylinder) height, return to the calling 

subroutine. Otherwise, set the aim point in 

inclusion-area flag false and return. 

e. Error messages and recovery - None. 

Data, Logic and Command Paths 

Input data: 

Aim-point vector 

Output data: 

Indicator flag for aim point being in inclusion area or 

not. 

Algorithm: 

Inclusion area check. See Figure 3.2.7-12. 

The difference vector is projected onto the X-Y plane and 

tested to see if it is within the cylinder radius. 

The difference vector is projected onto the Z-axis to see 

if it is within the height of the cylinder. 

If either of these tests are not met, the aim point is 

not within the cylinder. 

Internal Data Description 

The vector to the center point of the receiver, in site 

reference coordinates, is internally stored. The cylinder 

dimensions (radius and height) are also internally stored. 

Flowchart 

See Figure 3.2.7-13 for the DININC flowchart. 

421 



cylinder 

/ 
// 

/ 
//:' East (X) 

Figure 3.2.7-12 

• 
Up (Z) 

~~ receiver center point 
,, 

✓ difference vector 

./ 
/ 

- -· - -·- aim-point vector • 
>---------------~-)' 

North (Y) 

• Inclusion-Area Check Diagram 

422 



• 

• 

u!NINC.. 

Su lotr.ic ! +he 
rec r, 'If r cenfr,· -
t!f\1 vedo, -\(of'l'I 
he o,...., p;,,,-. ✓uk 

Sd +he ·t lar1-!rii 
V 

Na 

··- -----1 
Set fl 0:3 .fa be 

L----· ----·· . ··- ..... 

Figure 3.2.7-13 Flowchart - DININC 

423 



3.2.7.4.1.5 

3.2.7.4.1.5.1 

SubmcJdule V - DINSRT 

Description 

a. Language used - FORTRAN 

b. How invoked - Called by DINLOC 

c. Constraints and limitations - The pointer array input 
must be preestablished. 

d. Processing - Shell sorting algorithm: 

1. Store the number of elements to sort into a 
local variable. 

2. Integer divide the present local array length 
variable by two. 

3. Test if half of the present local array length 
is less than or equal to zero. If it is, the 
sort is complete; otherwise continue on to 
step (4). 

4. Store the local array length into index 11 j." 

5. Store the difference of index II jn and the 
local array length into index "1.rr 

~- Store the subject array pointer indexed by 
I.I j + 1•r into timporary location ''k. It 

7. Test if the subject array value (pointed to by 
temporary pointer index "kir) is greater than 
or equal to the subject array value (pointed 
to by the pointer array indexed by "j + l"). 
If the test is true, go to step (10), if false, 
go to step (8). 

8. Store the pointer indexed by 11 1 +l" into the 
pointer location indexed by ni - h - 1,ir and 
compute a new index 111.u 

9. Test if the new index 11 11r is greater than or 
equal to zero. If the test is true, go back 
to step (7). If the test is false, go to 
step (10). 

10. Store the temporarily stored pointer 11k 11 

into pointer location indexed by "i + h + 1." 

• 

• 

11. Test if the index II j" should be incremented • 
or it has reaahed the end of the array. If 
"j" is not greater than or equal to the length 
of the array, increment "j'' and go to step 
(5). If the test is true, go to step (2) to 
compute a new local array length. 

424 



• 

• 

• 

3.2.7.4.1.5.2 

3. 2. 7 .4. 1.5.3 

3.2. 7 .4.1.5.4 

3.2.7.4.1.6 

3.2. 7 .4. 1.6.1 

e. ]:Error messages and recovery - None, but if a zero 
or negative number is input as the length of the array 
for sorting, this submodule will return to the calling 
submodule without attempting any sort. 

Data, Logic and Command Paths 

Input data: 

a. The subject array of integer values to sort into 
ascending order. The subject array is not disturbed; 

b. The array of pointers that point to the subject 
array in the order to consider for sorting. This 
array is rearranged during processing; and 

c. The number of elements in the subject array to 
sort. This input is not disturbed during processing. 

Output data: 

The array of pointers sorted so that they point to the 
subject array in ascending order. 

Algorithm: 

The algorithm used in DINSRT is the Shell Sort. 

Internal Data Description 

All the arrays and temporary storage are 16-bit integers. 

Flowchart 

See Figure 3.2.7-14 for the DINSRT flowchart. 

Submodule VI - DINTTL 

Description 

a. Language used - FORTRAN 

b. How invoked - Called by DINFLG, DBIERR, DINLOC, and 
DINANG. 

c. Constraints and limitations - None. 

d. Processing -

1. Initialize the write counter to one • 

2. Compute if the line number input requires a 
title (modulo function). 

425 



• 
h ,,,, 1'1 

i = j-h 

• 

t 
l 

IP ( i -t h-i- 1) = K • 



• 

• s 

3.2.7.4.1.6.2 

• 

3. Test if writing on line one (from modulo 
function). If not on\line one, return to 
calling submodule; otherwise enter a CASE 
construct to write the title. 

4. The input title number causes a branch to the 
proper title for output. In the event an 
unassigned title number is requested, the 
top page default path is taken. 

5. After the title is printed, the line counter 
is set back to the number of lines in the 
title plus one. 

6. A test is made to determine if an output error 
occurred. If no error occurred, a return is 
made to the calling submodule. 

7. If an output error occurred, the write 
counter is incremented and the output device 
number is changed to the other hard-copy 
device. 

8. A test is made to determine whether there is 
an output error on the third try. If there is 
an output error and only the second try, 
branch back to (4). Otherwise return to the 

calling submodule. 

e. Error messages and recovery - if one write error occurs 

this submodule tries to write on the other hard-copy 

device. 

Data, Logic and Connnand Paths 

Input data: 

a. The number of the title desired, corresponding to the 

numbers of the card type source data; 

b. The present line number to write on; and 

c. The device number to write on. 

Output data: 

a. If a title is printed, the line number counter is 
reinitialized for a new page. Otherwise, no changes; 

b. The number of the output device is changed if a 
primary write attempt fails; and 

c. Title for hard-copy device when output is going to 

line one. 

427 



3.2.7.4.1.6.3 

3.2. 7 .4.1.6.4 

3.2.7.4.1.7 

3.2.7.4.1.7.1 

Internal Data Description 

The title messages are stored in format statements. 

Flowchart 

See Figure 3.2.7-15 for the DINTTL flowchart. 

Submodule VII - DINANG 

Description 

a. Language used - FORTRAN 

b. How invoked - Subroutine call from DIN 

c. Constraints and limitations - None 

d. Processing 

1. Initialize three counters which are routine 
dependent and the end-of-file false. 

• 

2. Initialize the error code to zero, the number 
of errors to zero, and the number of syntax 
error flags to zero. These three variables 
are record dependent. • 3. Increment the number of records read counter. 

4. Read one record of the source data into a 
buffer formatted in ASCII characters. 

5. Test if a read error occurred. If the test is 
true, set the error code and increment the 
read error counter. Next set the number of 
error messages counter to one and transfer to 
step (26). If the test is false, go to step (6). 

6. Test if an end-of-file was read. If the test 
is true, set the end-of-file flag true and 
decrement the number of records read counter. 
Then transfer to step (26). If the test is 
false, go to step (7). 

7. Initialize the syntax checking column pointer. 

8. Syntax check contents of column presently 
pointed to. 

9. Test if there is a syntax error; if true, 
proceed to step (10). Otherwise transfer to 
step (13). 

428 

• 



• ·~ 

2, 

Wrde.. w ... :,e. 
-t;tle. to( +:-tic for 
Care\-.\ ype 
1 

ca.rci ty~ 
2 

Chan¥, de1.1;,t 
~Mbtr to c1her 

di"\/;,~. n1.1mbtr 

3 

Wr~te 
+;+le for 
('LI, rrl +y 
3 

Ir,UtMtnT 

t.<'y 
CD1Anier 

___ _.., __ _ 
I(\1+:ali"U.. 
-i ,y nl I fY1b1~ r~ 

-lo one 

C.ompu.te '1f 
+;tie req_u.·u·ed 
on th;s line 

wr;te 
tale f~'),. 
Card type. 
~ 

____ ._,__ __ 
5e.t number 
ct li°Yle~ pn'n+
ed pl1Jt, one 

No 

vJr;+e. 
t:tleror 
C~rc! +yre 
5 

Figure 3. 2. 7-15 Flowchart - DINTTL 

429 

E F-

w,·,1e. r-
I 

+:tie fur I Top r,-~f.-! 
C'MYl typ,. , :iE1 11=-

lo s J '""- ~ & I 
\ t>/1..I>! rrc 1' 

I 



10. Set the error code indicating a syntax error, 
increment the number-of-errors counter, 
set the column indicator flags, and increment 
the column flag counter. 

11. Test if a default value should be supplied. 
If a default value is needed, place the 
default in the columns (ASCII representation). 
Otherwise, go to step (12). 

12. Set the pointers to the next column group
ing and transfer to step (14). 

13. Increment the column pointer. 

14. Test if all the columns needing syntax 
checking are completed. If the test is true, 
go to step (15). Otherwise, transfer back to 
step (8). 

15. Test if the card type and HC number are 
acceptable. If the test is true then go to 
step (16); otherwise go to step (26). 

16. Decode the card type number and HC number • 

17. Test if a DECODE error occurred. If the 
test is true, set the reject-record error code, 
increment the error counter and go to step 
(26). Otherwise, go to step (18). 

18. recode columns 16 through 32. 

19. Test if a DECODE error or the resulting 
values are out of range. If the test is true, 
supply a default value(s), set the error code, 
increment the error counter, set the column 
indicator flags, and increment the column flag 
counter. Otherwise take the null false path. 

20. Call the subroutine DINPAC to scale and pack 
the azimuth and elevation angles into a format 
compatible with the HFC and HC firmware. 

21. Store the HC number and azimuth-elevation 
packed and scaled values into local common 
relative to the HC number. 

22. Decode columns 39 through 55. 

• 

• 

23. Test if a DECODE error occurred or the result-
ing values are out of range. If the test is • 
true, supply a default value(s), set the error 

430 



• 

• 

• 

24. 

25. 

26. 

27. 

28. 

code, increment the error counter, set the 

column indicator flags, and increment the 

column flag counter. Otherwise, take the 

null false path. 

Call the subroutine DINPAC to scale and pack 

the azimuth and elevation angles into a 
format compatible with the HFC-HC firmware. 

Store the azimuth and elevation values into 

local common relative to the HC number. 

Test if a source listing was requested or any 

error codes exist. If the test is true, go 

to step (27); otherwise transfer to step (32). 

Increment the printer line-number counter. 

Call the DINTTL subroutine to produce a source 

listing title when required. 

29. Write the source ASCII to the printer. 

30. Call the subroutine DINFLG to print the 
error flags • 

31. Call the subroutine DBIERR to print the 
error messages. 

32. Test if the end-of-file flag is set or three 

read errors have occurred. If the test is 

true, return to the calling subroutine; 

otherwise transfer back to step (2). 

e. Error messages and ttecovery - Error messages from 

this submodule are: 

1. Error in reading source device Rec: NNNN. 

2. Syntax error in source azimuth or elevation, 

default supplied Rec: NNNN. 

3. Syntax error in card-type designator Rec: NNNN. 

4. Syntax error in HC number Rec: NNNN. 

5. Decode error in card type or HC number 

Rec: NNNN. 

6. Decode error in azimuth or elevation, 

default supplied Rec: NNNN. 

431 



3.2.7.4.1.7.2 

3.2.7.4.1.7.3 

3.2.7.4.1.7.4 

3.2.7.4.1.8 

3.2.7.4.1.8.1 

Data, Logic and Connnand Paths 

Input data: 

a. Card type indicator; 
b. Source device number; 
c. Source listing desired indicator; and 
d. Output device number. 

Output data: 

a. End-of-file encountered flag; and 
b. Local common is used to store the azimuth and eleva

tion values for the HC number. These values are 
stored relative to the HC number. 

Internal Data Description 

An internal array of the ASCII characters rr+, 11 "-, 11 blank, 
11 0," "l,u "2, 11 "3," ,,. "9," and"•" are used to syntax check 

the source record. Default values for the azimuth and elevation 

are stored both in ASCII and floating-point format. 

The local common area is structured so that the first 1*2 

integer array corresponds to the source HC number. The remain

ing four 1*2 int~ger arrays correspond respectively, to the 

azimuth, elevation, azimuth, and elevation. 

Flowchart 

See Figure 3.2.7-16 for the DINANG flowchart. 

Submodule VIII - DINPAC 

Description 

a. Language used - FORTRAN 

b. How invoked - Called by DINANG submodule 

c. Constraints and limitations - the input azimuth and 

elevation angles are limited in magnitude to less than 

360 degrees. 

d. Processing -

The input azimuth angle is divided by 360, 
then multiplied by the scaling factor 213 

The result of this computation is stored in 

a 16-bit integer word. 

• 

• 

2. The input elevation angle. is divided by j60, • 
then multiplied by the scaling factor 21 • The 

result of this computation is stored in a 
16-bit integer word. 

432 



• 

• 

.'"'\ 

D1NAN6 

In1f,r,ltu: read 
f( ( /)( ( illlrJft>1 :-!J j # 

li'ne!J er',nt~ "O·> 
,ri rrcord[;) r PM •D; 

f'rYI (,f -f.'Je fo.k,t 

In i-f ,o li'ztr 
E-nor coc\e. ~o i 

[((D(·~,Oj 

:Jc. t10.9s,. o·, 

Ir.r, Hl'len+ 
nurnbef c,f 
rccon~'.S. fead 

fifAD ~DU((C ·,,.., 

f\lphr1 - numeric.. 
iDUno..t Con~ 
recorct) 

Set number 
of error Met>~ 
;,-y1ge!> -le one. 

Set er-d · c:rf -
f; le . .fla3 1rtJe 

DecreMent fhe. 
number 0f 
re..c.an:b read 

In :.+;a . .1'11.e. 
~y n+A. il." check
I n9 pot r'\ter 

Syn+a. f. C'ht>rk 
(I orderrl~ o.f 
O.Dlumn 

2)e,i Pr('O(' Coae • 
I(\creo\e(\t -ttei~ 
errors, Se.:t c.r:.1-

Mn ~\6 A Count 

jlncremen+ 

D~ columfl 

I po;t14E-r 

Figure 3.2.7-16 Flowchart -,DINANG 



-•-,,, 

?/A 

~pply defa.lAI+ 
V11clue (A5CIJ) 

Point to nex.t 

rolu.mn '3r"oup 

DECODE. Oard 

type. o.nd 1-IC: 
r\umbtr 

Set reject 
error code·) 
I ..--1((f~r"IT 

error l'ount 

Suooly 

de fou It 
Va_Jc,e 

Set error cede;' 
Inc ,emerrt (ouni 

Q(ld cr,lumnflo_<¥, 
and raluMr\ CDU.r,i 

DIN PAC 

Scale ond 

pick dnfo. 

Store I-IC ahJ 
cfo+-o ... '1n locl\\ 
C OrvHY)Df'\ 

DECODE 
colu,mn$ ~-::6 

D1NPAC. 1 
'Sca_le. o.nd 
pa.ck data 

loca..l co"" Mo~, 
R i:'.Ll'-r,.,e ro 
HL 1>'~1Mi3f.R. 

rncr·en1ent J 
pri'nier line 
r,/Jl'Y\bl'f Co,,.n+et 

-- --- r· =~~~ 
D1NT'rL 

Pri'nt -+:+le. 
when 
re u'1red 

DrtvHG-

'D5l E.(R 
Pi-;t'\t 
error 
me:,sa.ge,; 

Figure 3.2.7-16 Flowchart - DINANG (continued) 

/. 'l ,. 

• 

• 



• 

• 

• ·~ 

RETURN 

Figure 3.2.7-16 Flowchart - DINANG (continued) 

435 



3.2.7.4.1.8.2 

3.2.7.4.1.8.3 

3.2.7.4.1.8.4 

3.2.7.4.1.9 

~.2.7.4.1.9.1 

3. Shift the contents of each integer word 
left two bits. 

e. Error messages and recovery - None. 

Data, Logic and Command Paths 

Input data: 

a. The azimuth angle, for scaling and bit packing, is 
input in floating-point fonnat in units of degrees; and 

b. The elevation angle, for scaling and bit packing, is 
input in floating-point fonnat in untts of degrees. 

Output data: 

A 16-bit integer array of length two. The first word 
contains the azimuth angle in the left-most 14 bits in 
units of counts (scaled 360° = 213 counts). The 
second word contains the elevation angle in the left-
most 14 bits in units of counts (scaled 360° = 213 counts). 

Algorithm: 

Where: a= angle, C = counts, D = degrees 

Internal Data Description 

Two 16-bit integer words are fonned that have the fonnat: 

ls rx IX IX IX IX IX IX IX IX IX IX I X ! X ~ 
Assumed binary point 

Where: S • sign, X = angle data bits, and crosshatched 

are zero. 

Flowchart 

See Figure 3.2.7-17 for the DINPAC flowchart. 

Submodule IX - DINFLG 

Description 

a. Language used - FORTRAN 

b. How invow_ - Call by DINLOC and DINANG 

436 

• 

• 



• 

• ~ 

." 
.) 

( DIN PAC'. ) 

IA:. Al -j( Z I?> 
~-0 

Figure 3.2.7-17 Flowchart - DINPAC 

437 



3.2. 7 .4. 1.9.2 

c. Constraints and limitations - None 

d. Processing -

1. If there are no error flags to print, this 
routine returns to the calling submodule. 
Otherwise the processing continues. 

2. A buffer for output to the printer is filled 
with either an ASCII blank or"$" depending 
on the state of an input indicator array. 

3. After the output buffer is filled, the line 
number counter is incremented, and the 
DIN'ITL submodule is called to produce a 
?a6e title if required. Next the ASCII message 
buffer is written to the output device 
requested. 

4. Test if an output error occurred. If there 
is not an error, return to the calling submodule. 
Otherwise, set the output device number to the 
other device. Call the titles routine, 
write the ASCII message, and return. 

e. Error me~sages and recovery - If a write error occurs, 
the other hard-copy device is tried. 

Data, Logic and Co.rnnand Paths 

Input data: 

a. An array of error flag indicators where zero means 
no flag and non-zero means flag it; 

b. The requested output device number; 

c. The number of error flags, where zero means no flags 
required and non-zero means get flag indicators from 
array; 

d. The line number of the output device; and 

e. The title number. 

Output data: 

a. The input array of error flag indicators is cleared 
(set to ze~o) during processing; and 

b. The line number counter is incremented by one • 

438 

• 

• 

• 



• 

• 

• 

3.2.7.4.1.9.3 

3.2.7.4.1.9.4 

3.2.7.4.1.11 

3.2.7.4.1.11.1 

Internal Data Description 

ASCII characters blank and"$" are used to fill the message 
output buffer. The input array of error flag indicators is 
initialized to zero with a data statement. 

Flowchart 

See Figure 3.2.7-18 for the DINFLG flowchart. 

Submodule XI - DBI (Task) 

Description 

a. Language used - FORTRAN 

b. How invoked - Prescheduled task activated at system 
boot time. 

c. Constraints and limitations - The disk data base must 
be established. 

d. Processing -

1. Call subroutine DBIFAC to initialize the system 
interfaces and establish the Prime-Backup 
HAC configuration. 

2. If execution is in the Prime HAC, go to step 
(l). Otherwise, go to step (5). 

3. Call subroutine DBIDTA to initialize the 
in-core global data base. 

4. If the ABORT flag is returned true by DBIDTA, 
go to step (9). Otherwise, go to step (5). 

5. Establish the SWI (Switchover) and CLK (HAC 
Startup) tasks as main-memory resident. 

6. If either of the tasks could not be established, 
notify the operator, and go to step (9). 
Otherwise, go to step (7). 

7. Activates tasks SWI and CI.K. 

8. If either task could not be activated, notify 
the operator, and go to step(~). Otherwise, 
go to step (9) • 

9. EXIT this task. 

439 



DIN FUs 

IH'I u.Wd 
eiua.1 A.".:.tll 
b1o.nk. 

I+h Word e t:1a I 
A'S0 IT"$'' 1 +h 
+ la 3 eq:• al i: t' 0) 

----~II<--~-----_,r_ 

\Nrite A5Cn 
b.uHer fo 
ou.+f>ui" dev;ce 

, ------
1,_? t. TU f<N .. ) 

Incl'"P ,,,en+ 
(I Oc"' n +e.f'" .L 

; Increment 
i line. nU/Ylber 
I 
l Counter
l 
l.--"·,----, ----J 

·- ·-·------
Pri'nt +·,-t le. 
1..0hen 
re~\rl'~ 

wr;te. A6C-II 
hut fer +o out~ 
ptd dev1'(e 

-

• 

~ • 
Figure 3.2.7-18 Flowchart - DINFLG~ 

440 



• 

• 

3.2.7.4.1.11.2 

3.2.7.4.1.11.3 

3.2.7.4.1.11.4 

3.2.7.4.1.12 

3.2.7.4.1.12.1 

e. Error messages and recovery - If either SWI or CLK 

can not be established or activated, the operator is 

notified and the task exits. Also, if the global 

common data base can not be initialized by subroutine 

DBIDTA, this task exits. 

Error messages are: 

1. TASK XXX FAILED TO ESTABLISH, DBI ABORTED 

2. TASK XXX FAILED TO ACTIVATE, DBI ABORTED 

Data, Logic and Command Paths 

Three conditions are considered fatal for the DBI task: 

a. Failure to initialize the global connnon data base; 

b. Failure to establish either SWI or CLK tasks; and 

c. Failure to activate either SWI or CLK tasks. 

Input data: 

a. ABORT flag returned by DBIDTA; and 
b. Global connnon word, CPUSG. 

Internal Data Description 

This task does not use any local data structures. 

See Figure 3.2.7-19 for the DBI flowchart. 

Submodule XII - DBIFAC 

Description 

a. Language used - FORTRAN 

b. How invoked - Subroutine call by DBl. 

c. Constraints and limitations - None. 

d. Processing -

1. Call subroutine DBICRT to determine whether 
execution is in the Prime or Backup HAC. 

2. If executing in the Prime, go to step (3); 

otherwise, go to step {.10) • 

3. Call subroutine DBIERR to output any error 

messages from DBICRT. 

441 



"DBI 

5,nMYts_bJ 

r 
__ l ....... 1 -ue1 r Ac 
.,,. "'. ~-:· ,_,_ .. ~- ........... -~---

J .-1, t,,, Lr, t' 
Sy:,fov> 

, T n-l-rrt-r.<<I'~ 

'DB1t)TA 

rn•,+',11!iu 

Do.to.. Dot,e 

® (A~) 

~ rtJot;fy OfM"'' 'T 
/F~to.~l,~1-: raM~~T.n~.k x,. xx' .~c.:\e~ ~ 
~" ? /// I .!.(I f':S.' (l b ! ' ~ ~' 

[
. ---~,- ... tl •·•-·--·,,------" 
. AtTL"!:.~r. E ,. 

St.Lil i .''L.K 

. ··---·-··• ·-- .... 

""-. -J. iNot'.fv ':!ou--::+orH' 
)~ii'vo.+e frn~~_:-. :'.'.<:~k Xx._'f ~o,ltd I 

·•. 7 / to "ch•.Jo..ie. 1· -.. . ,,,., 

........ N" -----~ ·--- : ~, ' 

C l 1 rl •// I • •. ear uU,~, . ') D•~ 

' ' 
.... ,,,,·---·-~J 

± • 

~. • 
F:tg~r~ 3.2.7-19 Flowchart - DBI 

442. 



• 

• 

3.2.7.4.1.12.2 

3.2.7.4.1.12.3 

3.2.7.4.1.12.4 

3.2.7.4.1.13 

3. 2. 7. 4. 1. 13 .1 

4. Call subroutine DBITRP to initialize the 
receiver trip connnunications. 

5. Call subroutine DBIERR to output any error 
messages from DBITRP. 

6. Call subroutine DBIMBD to initialize the OCS 
and DAS interface communications. 

7. Call subroutine DBIERR to output any error 
messages from DBDIBD. 

8. Call subroutine DBIGRF to initialize the 
graphics processors. 

9. Call subroutine DBIERR to output any error 
messages from DBIGRF. 

10. Return processing control to the calling 
subroutine DBI. 

e. Error messages and recovery - None. 

Data, Logic and Command Paths 

Input data: 

Prime or Backup indicator in global common word CPUSG. 

Output data: 

None 

Internal Data Description 

No internal data structures are1,utilized. 

Flowchart 

See Figure 3.2.7-20 for the DBIFAC flowchart. 

Submodule Kill - DBICRT 

Description 

a. Language used - FORTRAN 

b. How invoked - Subroutine call DBIFAC. 

c. Constraints and lim.itations - Requires the operator's 
designation of either PRIME or BACKUP. 

443 



-·~ 

Dl31CAf 
Dr.~'-1"'<."t
\.Jht"ihrr r:>, -m,. 
or "e,r,ck up 

l 
D6tff:'.IZ 

•"--·--------
(iv.1 p.lt 

_ f'n or mP/,:::; 

. _f~--- ··1 __ })611fH' 

' =r1;+,'o 1-'i.e. 
Kae:ver 1;.;f 

1 
-----'"- --·----,·---_j 

Fi~ut"e 3.2.7-20 Flowchart DBIFAC 

I'-....., 

DBI E~R_ I 
Outpv.t : 
error rf\f::,~ ! 

,...--· _:\I> • 
l~.!~-~ ~ _; 

• 



'I,' 
:1,' 
! 

t1 

:' I 

• 

3.2.7.4.1.13.2 

, 3.2.7.4.1.13.3 

d. Processing -

l. Clear CPUSG. 

2. Request from the operator a designation of 
either Prime or Backup (on the TI-820 
system console). 

3. Read the operator's response and set PR bit 
in CPUSG. 

4. If the operator's response is Prime, go to 
step (5). Otherwise, go to step (9). 

5. Conunand the PCis to connedt the peripherals 
to the Prime. 

6. Request frODl;:the operator a designation of 
whether there is a Backup. 

7. Read the operator's response, and set BR bit 
in CPUSG. 

8. If there is a Backup, synchronize with the 
Backup. Transfer to step (11). 

9. Synchronize with the Prime. 

10. If executing in the Prime; go to step (12); 
otherwise, Soccto step ~15). 

11. Initialize the !CS color console. 

12. Notify the operator ''Data Base Initialization. n 

13. Return to the calling submodule •. 

e. Error messages and recovery - None .• 

Data, Logic and Command Paths 

Input data: 

Operator designated Prime. or Backup 

9utptlt data: 

,Messages to the operator and sets CPUSG in global c~on. 

Internal Data Description 

DBICRT sets the global common word CPUSG as'· a function of whether 
the CPU is Prime or Backup. 

445 



3;2.7.4.1.13.4 

3.2.7.4.1.14 

3. 2. 7. 4 .1.14 .1 

Flowchart 

See Figure 3.2.7-21 for the DBICRT flowchart. 

Submodule.KIV - OBIGRF 

Description 

a. Language used - FORTRAN 

b. How invoked - Subroutine call by DBIFAC 

c. Constraints and limitations - The graphics processors 

must be in an initial state, waiting to receive the first 
message - after transmission of the first. message (the 
tetminal ID message) the command/response protocol is 
followed. Receipt of any message from the graphics 
processor, other than the send-next-message, is con
sidered an error condition during the initialization 
process. 

d. Processing -

1. Set the number of errors to zero. 

2. Set the error code to zero. 

3. Notify the operator to con£igure the graphics 
processors for initialization. 

START THE GRAPHICS PROCESSORS 

OPTION 

1 
2 
3 
T 

INITIALIZE 

CS GRAPHICS CONSOLE ONLY 
ENGR ROOM CONSOLE ONLY 
BOTH CONSOLES 
TERMINATE 

4. Request and read the operator's response: 

ENTER OPrION FROM ABOVE LIST: 

5. If the response is valid, go to step (6); 
otherwise, go to step (4). 

6. If the operator's response is TERMINATE, set 
an error code, set the number of errors 
to one, and return to the .calling subroutine. 
Otherwis~, go to step (7). 

7. Initialize the full-field message buffer with 
the value 12 (indicating .offline heliostat 
status). 

446 

• 

I 
,I 



• 

D61CRT 

C.leo.f CPu{J& 

I 

Synd1roh;lt: 
1.,>itt, Pr;,Y1e 

'---·I .. ------
.. (t'; 

Fi~ure 3.2.1:::H Flowchart 
. :., '. I 

DBICR'l' 

447 

/4,h,l p. ~,lo 

"-~~6 

r
s;:.:!::;:1 

,, O' f t 
: 1.,) ; +h · 60. : b., p ! 1 

' ---T- ~_j l 
····-•··-~ 
Jn'.1·,al•rf TS(,(' lffir 
::v:1rrn1 'SPl-:t-1 (:,I_ , 
Su"c,J;,,;,1_t' 'Saeev1; > 
Sera"' Prot,,d·,i:1r, 
__ fliou nd II n'P$ 

r 1·"':~::_-__ "" 

l
r. -lo-f ,fy o P'_ ro.:k r: 
, • 1:/·'i'?A €cl'IS£ 

1 I),/11 • P\L 11. ATION ,, 

_ _,/ ( "' 
\ 'RETu ~t--1 ) ________ __,) 



8. Test if the operator's re$ponse initiali;zed,.both 
graphics processors. If the test is true, set 
the limit counter to two, and set the. output· 
unit to one. Otherwise, set the limit 
counter to one, and set the unit- to .write to 
equal to the OPTION selected. 

9. Initialize the number of graphics processors, 
to initialize to one. 

10. Compose the initialization message for the 
unit being written to. 

11. Write the initialization message to the 
graphics processor as a function of unit 
number. 

12. Initialize a counter for the one-eighth of 
field to one. 

13. Read the graph;l.cs processor's command. 

14. If the graphics processor's command is not 
"send next message," notify the operator the 
g:·aphics processor is in error and go to step 
(3). Otherwise, go to step (15). 

15. Write the one-eighth of field status 
m?ssage to the graphics processor. 

16. If all the one-eighths of the field status 
m~ssages have been sent, go to step (17). 
Ocherwise, increment to the next one-eighth 
of the field and go to step (13). 

17. If the number of graphics processors 
initialized is less than the number to 
initialize, increment the counter, set the 
unit number to two, and go to step (10). 
Otherwise, return to the calling subroutine. 

e. Error mesRages and recovery - Any errors encountered 
during reading or writing to/from the graphics pro
cessors results in a message to the operator and a 
transfer to step (3) for an operator's decision. 
Error messages: 

GRAPHICS NOT INITIALIZED AT OPERATOR'S COMMAND. 

I/~ ERROR TO/BROM GRAPHICS PROCESSOR. 

GRAPHICS PROCESSOR OUT OF SYNC. 

448 

• 



• 

• 

• 

3. 2 ~· 7. 4 .1. 14. 2 

3. 2. 7. 4. 1. 14. 3 

3.2.7.4.1.14.4 

3.2.7.4.1.15 

3.2.7.4U.15.I 

I 3.2.7.4 0 1.15.2 

Data, Logic and Command Paths 

Input data: 

a. Command messages from the graphics processors; and 

b. Operator's response. 

Output data: 

a. Initialization messages to the graphics processors; 

b. Full-field heliostat offline status messages to the 
graphics processors; 

d. Error messages for operator decision/response; and 

d. Error code and number of errors. 

Internal Data Description 

Graphics message buffers that are filled with initialization 
information and heliostat offline status values (~l). 

Flowchart 

See Figure 3.2.7-22 for the DBIGRF flowchart. 

Submodule XV - DBIMBD (Stub) 

Description 

.a. Lartguage used - FORTRAN 

b. How invoked - Subroutine call by DBIFAC 

c. C.onstraints and limitations - None 

d. Processing -

1. Set the error code to zero. 

2. Set the number of errors to zero. 

•3~ Return to the calling subroutine. 

e. Error messages and recovery - none 

Data, Logic and Command Paths 

Input data: 

None 

449 



-~. 

DBlGRF 

'.:..~1 +he. error 
r-::.tf ~ to cero 

i~o• St operufor 

ln~+;c.l iz.1113 
)"nphic~ 
-~,~•-.--,..,."-~ ---~•-··-··· 

Count~ 2.. 

Un if, 1 

1r1: 1:111;a fo 
;-1rjl 'It, of 
41~·ld 

:h,guxe ). 2. 7-22 Flowchart DB!GRF 

4,0 

·•·· ,. ' 

• 

• 



• 

• 

• •'"' 

rV\crement 'lo 
n~xt 1/'l of 
fie.Id 

A/z 

Wr:rf ~rnrh,'cs un·, 

t11-.f',tld ~ia+....s 
ror Yi of- -\'\eld 

Yes ,.,--- , 4··-- ----- I 
,,/ "' f-Jo - ·J <.,,,.r ~ count '-'. _ Jr1rrPY'l1t'r1f J. , 

--,,,_? // ' 
\/es ... -·--r-

'•...._ ..... ~ .. ,- --·---~✓ 

Figure 3. 2 .. 7-,22 Flowchart•:DBIGl,F ( Continued) 

451 



3.2.7.4.1.15.3 

3.2.7.4.1.15.4 

3.2.7.4.1.16. 

3.2.7.4.1.16.1 

Output data: 

a. Error code; and 
b. Number of nrrors. 

Internal Data Description 

TBD 

Flowchart 

See Figure 3.2.7-~3 for the DBIMBD flowchart. 

&ubmodule XVI - DBITRP (Receiver Trip Initialization) 

(For rationale, s~e 3.2.8.III - Receiver Trip Function) 

Description 

a. Language u ~ - FORTRAN 

b. How invoked - Subroutine call from DBI. 

c. Constraints and limitation&. - The only error undetected 

by DBITRP ls the case of both interrupt levels high. 

In this case the two interrupt handlers in Receiver 

• 

Trip will occupy 100 percent of the CPU time, and • 

nothing more will be accomplished. 

d. Processing - Receiver Trip (R/T) initialization consists 

of establishing and connecting both~receiver trip tasks, 

RTL and RT~, waiting one second, and then sensing the 

RTOP bit ia CPUSG to see if one or the otber of the 

interrupt levels has fired (one should have). If 

RTOP is set, initialization is successful. If no~, 

there is an error in the receiver trip hardware. A 

message 90 stating is issued, and a request is made 

of the operator to retry or ignore th_e lack of receiver 

trip. Receiver trip has been built in such a way that 

even if initialization fails (i.e., the lack of signal 

is explicitly ignored) it can be made to initialize 

itself by providing the proper receiver trip signals at 

any poiot during operations. A spurious DEFOCUS connnand 

to task MMI (Man-Machine Interface Module) may result 

from such operation. RTOP will the~ indicate that R/T 

is operational. 

Note further that RTOP will not indicate that the 

receiver ~rip hardware has gone non-operational once 

it has been imitialized. 

e. Error messages and recovery - None, except as 
stated i.n na." above. 

452 

• 



• 

• 

• . ~ ' ' "!'; 

,,,l 

Figure· 3.2.7-23 

::w1 +he eaor 
C.od e... fo u·ro 

Sd 4-he. 
number of 
('ror6 +o ~ere 

Flowchart DBIMBD 
453 



3. 2. 7. 4. 1.16. 2 

3.2.7.4.1.16.3 

31.2. 7 .4.1.16.4 

3.2.7.4.1.17 

3.2.7.4.1.17.1 

Data, Logic and Command Paths 

The bit ETOP is bit five in the global connnon word CPUSG. 
If on, it may be interpreted to mean the receiver trip 
hardware and softwa~e was operational at initialization; 
if off, then the receiver trip is not operational. 

Internal Data Description 

There is no data in~ernal to this function. 

Flowchart 

See Figure 3.2.7-').4 for the DBITRP flowchart. 

Submodule XVII - JBlDTA 

Description 

a. Language u~ - FORTRAN 

b. How invoked - subroutine call by DBI. 

c. Constraints and limitations - The disk data base 
must be inltialized and accessible. 

d. Processing, -

1. Call subroutine DBIDSK to verify the disk
~esident data base. 

2. O~tput any errors returned by DBIDSK. 

3. If the ABORT flag is returned true by 
DBIDSK, go to step (13). Otherwise, go to 
step (4). 

4. Call subroutine DBICOR to initialize the 
blobal common data base. 

5. Call subroutine DBIERR to report any errors 
returned by DBICOR. 

6. If the ABORT flag is returned true by 
JBICOR, go to step (13). Otherwise, go to 
step (7). 

7. Call DBIAIM to initialize the global common 
aim-point array. 

8. Call subroutine DBIERR to report any errors 
returned by DBIAIM. 

454· 

• 

• 

• 



• 

• 

•• ·~ 

D
I , --7 

e.ay J. :::.ec'.md I 
···--:i; __ _J 

lr::,~i~e- e'l'ror r! t'-lo ~,,/ . ·-,.,' Yes 
I mt'!.$~ae ---~ ..... RToP :a,. e_.t ,,, 
' .; "'?// 
I ........._, _/' 
~-----.----· ...... 

------ ,,.J, -·--

l<ertJl".S+ ocl ton 

,. '' 

~c¾-r ,,// . J'31"0Ct. 
~ -<.,_ 'Kesror~,{' ~+ ef((Jf' (<'.X~e. 

', ,...._ 7 
'"'-,,. ,•' ,.,,, 

Figul!'e· 3.2. 7-24 ·Flowchart ... DBITRP 

455 



3.2.7.4.1.17.2 

3.2.7.4.1.17.3 

3.2.7.4.1.17.4 

3.2.7.4.1.18 

3.2.7.411.18.1 

9. If the ABORT flag is returned true by DBU.:tM, 

go to step (13). Otherwise, go to step (LO). 

10. If bit 13 of global common word CPUSG is set, 

g0 to step (11). Otherwise, go to step (13). 

11. Call subroutine DBIBCK to initialize the 

Backup HAC. 

12. Cr>ll subroutine DB.IERR to report any error 

rAturned by DBIBCK. 

13. Return to the calling task DBI. 

e. Error me~:.§.:1ges and recovery - None. 

Data, Logic and Cum1and Paths 

Input data: 

a. ABORT flag; and 
b. Global connnon word CPUSG. 

Output data: 

ABORT flag. 

Internal Data Description 

DBIDTA does not usl any local data structures. 

Flowchart 

See Figure 3.2.7-25 for the DBIDTA'.,.'flowchart. 

Submodule XVIII - DBIDSK 

Description 

a. Language used - FORTRAN 

b. How invok~d - Subroutine call by DBIDTA 

c. Constraints and limitations - The segment-mapping 

array, 8EGMPG, and the segment-pointer array, SEGPTG, 

must be initialized and stored on disk in file DIN 

(records 17 and 34 to 50). 

d. Process1=.n&. -

1. Set the abort flag false, the error code to 

zero and the number of er~ors to zero • 

456 

• 

• 

• 



• 

• 

D61 D::K 

lerJy ri:·:~. 
d.afo 

_pp! E~Rl:.__ l 
error me~!io{Y'~ I 
-----i ·-- ___ j 

,., ~ 

<A~RT "'--;)!_ __ 
"· ~ // 

JNo __ _ 
D61COR 

I ... I 

~-t61 E 1<1< 
wr;te 01ft 

errnr rM:<,~ 

~rror rr>f6fl.1q"~ ,.,, 

I 
I 

Figure 3.2.7-25 Flowchart DBIDTA 

457 

(F) 
* /' '"-,. y < Abo<+ "-,..__ f$ 

/ 
/ 

No 
.. /.,·· · .. , 

. p ' '•. '.', 0o·k1.1p'-~Q 
.. Av1J.: L1~-le,/ I · .... ,, ,,.,.. I 

~..,f. ;(" I 

~ 
..... ______ ,1. '_'_s -111· Jt:1Fc1.:. 

.

J~1. :·.;;-:, ?~-~-:-~- ! 
+he f:,:1;: <e-10 
n r 
t'( DC f'::, :,o(' 
. --··· ... r--·-------- .. 
..... -.'k'.·---·-- -~ 

' D61EfR ; 
wr;-le out i 

( RETuRrJ) 
'---·. .. . ............ ,-· 



2. Read the segment-map array (S:EGMPG) and 

segment-pointer array (SEGPrG) from disk 

file DIN (SEGPTG - record 17, words 50-109; 
SEGMPG - records 34-50). 

3. If a read error occurs, set the error code, 

increment the number of errors, set the abort 

flag true, and go to step (16). Otherwise, go 
t) step (4). 

4. FJr each HC number in the segment-mapping 

acray (SEGMPG), flag the corresponding element 

in a local array; otherwise, the element is 
z~ ro. 

5. R, ,ad two records of the HC locations from disk 

a 1d store in a local buffer array. 

6. Read one record of Wash angles from disk and 
s·~ore in a local buffer array. 

7. R>-!ad one record of Stow angles from disk and 

store in a local buffer array. 

8. R~ad one record of AltlStow angles from 
disk and store in a local buffer array • 

9. Read one record of Alt2Stow angles from 
flsk and store in a local buffer array. 

10. If there are any read error~, set the error 

code, increment the number of errors, set 

tae abort flag, and go to step (16)~; 
otherwise, go to step (11). 

11. 

12. 

13. 

14. 

Limit check the HC location values indexed by 

the local flag array. 

If any of the HC location values are out of 

range, set the abort flag, print out the HC 

cumber and its Hex value, and set the error 

code and count (limit count). 

Limit check the Wash angles, Stow angles, 

AltlStow angles, and Alt2Stow angles 

indexed by the local flag array. 

If any of the angle values are out of range, 

qet the abort flag and print out the HC number 

angle Hex values, and set the error code and 

count (limit count). 

• 

• 

15. If all the HCs in the segment map are processed,. 

go to step (16); otherwise, go to step (S). 

16. Return to the calling subroutine DBIDTA. 

458 



• 

• 

• 

3.2.7.4.1.18.2 

3.2.7.4.1.18.3 

3.2.7.4.1.18.4 

3.2.7.4.1.19 

3.2.7.4.1.19.1 

e. Error messages and recovery - If HC locations, Wash 

angles, Stow angles, AltlStow angles, or Alt2Stow 

angles are found to be out of value range, the disk 

storage of these values is considered to be invalid. 

The message: 

ERROR HC 4/:NNNN LOCATION XXXXXXXX:XXXXXX 
'and/or 

ERROR HC 4/:NNNN WASH: XXXXXXXX STOO XXXXXXXX 
ALTEXXXXXXXX ALT2 XXXXXXXX 

is printed out. 

Data, Logic and Command Paths 

Input data: 

a. Segment-map array from disk file DIN (records'.34 to 50); 

b. Segment-pointer array from disk file DIN (record 17); 

c. RC-locations disk file; 
d. HC Was.h-angles disk file; 
e. HC Stow-angles disk file; 
f. HC AltlStow-angles disk file; and 
g. HC Alt2Stow-angles disk file; 

Output data: 

a. Abort flag; 
b. Error code; and 
c. Number of errors. 

Internal Data Description 

Local arrays used for checking disk data: 

a. 2048-word flag array; 
b. 320-word HC location array; 
c. 128-word HC Wash-angle array; 
d. 128-word HC Stow-angle array; 
e. 128-word HC AltlStow-angle array; and 

f. 128-word HC Alt2Stow-angle array. 

Limit values for HC locations, Wash angles, Stow angles, 

AltlStow angles and Alt2Stow angles are set in data statements. 

The values are transformed and/or scaled and packed. 

Flowchart 

See Figure 3.2.7-26 for DBIDSK flowchart. 

Submodule XIX - DBICOR 

Description 

a. Language used - FORTRAN 

b. How invoked __ - Subroutine call by DBIDTA 

459 



Read Me rerordof 

Wo..'.)h an~les 11,-.d 

':'.+we in lora l 
1611{ Per 
\ •-"• ·-· .. -•<e••--•-'<-• 

li;c:·1•.··~'t~;;;,1 
/ot '.Stow o~~lu, ,J 
,S'inrt' 11, loct.\i 

!_~~ ffJ.:e.r ................. .. 

(Ji) 

Figure 3.2,7-26 Flowchart DBIDSK 

r--·-
;R'eac1 6ne reror,i 
j(')f A!t ZSfovJ M1qi 

I rrnd :lore '1r1 I ,x~ i 

L~~~:fitr:I.. ... ·- --.. -·---

' ./ '"·,..,__ f Sd Hv error ·-·-, 

•<fny rMA rrrC"::'Ye0_J~ode o.nd coun~i ~ 
'·" ? . ··· 'bet ih~ n bo,1'" I 

"·"--~- .. /,f le1,9 ·-· ·----·-·J 
-.l, 

•• 

• 

• 



c. Constraints and limitations - disk file DIN must 
be initialized prior to executing this subroutine. 

d. Processing -

1. Initialize the abort flag false, the eFror code 
to zero, and the number of errors to2ero. 
Initialize the message queues. 

2. Initialize all of global conunon (COMDAT) to 
zero, except CPUSG and the TBUSYG words. 

3. Initialize the 2048-Qord arrays, ELEVG and 
AZIMG, to: 

ELEVG = -90° * 91.02222 

AZIMG = 0.0 

4. Initialize the 2048-wbrd array, GRSTSG, to 
a value of 12 (heliostats offline). 

S. Initialize the 16-word array, LINESG, to: 

Normal lines = #0800 

• Alternate lines• #0000 

• 

6. Initialize the 16-word array, SEQLSG, to the 
negative of its index number (i.e., SEQLSG(l) = 
-1, ••• , SEQLSG(l6) = :16) 0 

7. Initialize the 64-wo~d array, HFCS2G, to a 
value of #BOOO. 

8. Initialize the double-precision word, SLATG, 
to the site latitude. 

9. Initialize the double-precision word, SLONGG, 
to the site longitude. 

10. Read disk file, DIN, records 1-16 to obtain 
the 2048-word array, MD2HCG, and store it 
in global connnon. 

11. If a read error occurred, go to step (27); 
otherwise, go to step (12). 

12. Read disk file, DIN, record 17 to obtain the 
30-word array, MDNPRG, and the 60-word array, 

SEGPTG. Store both arrays in global common • 

13. If a read error occurred go to step (27); 
otherwise, go to step (14). 

461 



14. Read disk file, DIN, records 18 to 33 to obtain 
the 2048-word array, HC2MDG, and store it in 
global counnon. 

15. 12 a read error occurred, go to step (27); 
otherwise, go to step (16)~ 

16. Read disk file, DIN, records 34 to 50 to obtain 
tne 2108-woud array, SEGMPG, and 20-word 
array, BCSTGG. Store both of these arrays in 
global connnon. 

17. If a read error occurred, go to step (27); 
otherwise, go to step (18). 

18. R~ad disk file, DIN, record 51 to obtain the 
c ,rridor coordinates and store them into the 
120-word global connnon array, CORRCG. 

19. I~ a read error occurred, go to step (27)~ 
otherwise, go to step (20). 

20. I.1itialize the 2048-word array, HCST2G, to a 
value of #8000 (not installed). 

21. Using the SEGPIG and SEGMPG arrays, set the 
indicated HCST2G words to a value of #0800 
(installed, not marked). 

22. R~ad one record (one HFC) of HC location from 
the disk to obtain the HC's corridor and 
Bf!S assignments. 

23. If a read error occurred, go to step (27); 
otherwise, go to step (24). 

24. Initialize the HCST3G words (one HFC) with 
the corridor and BCS assignments (up to 

32 words). 

25. J:nitialize one word of the global connnon 
r,rray, HFCS3G, with the HFC corridor assign
m~nts. 

26. :i'f all the HFCs are processed, go to step 
(28); otherwise, go to step (22). 

27. Set the abort flag true, set an error code and 
~ncrement the number of errors. 

28. Return to the calling subroutine. 

462 

• 

• 



• 

• 

3.2. 7 .4.1.19.2 

i 

I · 3.2.7.4.1.19.3 

3.2.7.4.1.19.4 

3.2.7.4.1.20 

3.2.7.4.1.20.1 

e. Error messages and recovery -Disk read errors result in 

an abort flag being set and an error code returned to 

the calling subroutine, DBIDTA. 

Data, Logic and Command Paths 

Input data: 

Data stored on disk file DIN. 

Output data: 

a. Abort flag; 
b. Error code; 
c. Number of errors; and 
d. Initial values into the global common area /COMDAT/. 

Internal Data Description 

The initial values for the arrays AZIMG and ELEVG are set in 

data statements. The initial values for SLATG and SLONGG 

(site latitude and longitude) are set in data statements. 

Flowchart 

See Figure 3.2.7-27 for DBICOR flowchart. 

Submodule XX - DBIAIM 

Description 

a. Language used - FORTRAN 

b. How invoked - subroutine call by DBIDTA. 

c. Constraints and limitations - The globa! ~ommon 

array HCST2G must be initialized to its installed or 

not-installed state. 

d. Processing -

1~ Set the abort flag false, the error code 

to zero, and the number of errors to zero. 

2. Set the global common array ADIDKG equal to 

one, and set the installed flag false. 

3. Initialize a counter to one. 

4. If the counter I is greater than 2048, go 

to step (14); otherwise, go to step (5). 

463 



r 

® 

Set 11.bnrt tf,:13 
~\,be ·l Se-f error 

roc\e 4 c0unt ~,., 
't'.f'.ro ·····-·•J'""-·· -· 
:~~fil_ N. if _______ ·1 
I -r,.,·,·h'o..liu .. 

t5 ___ 1 
Sd all of &/±.a I 
Cor,it11cn -to z.rrn 
ex.t.ep+- CPu5& 
d TBu~'(& wordj 

HEV& to -90° i 

(Zok/~ words') l
~:r;:t·;:,t-~ ---- . l 

r . . . ~{... .. . l 
·IV'\1+1/l.!,·u 
,(,IZ~T5('.T to 12 

'. r 7. oi4Q t,Jorc:b') I. <l 

' 

j 

I 
..... ---] ·-· ' ' ' 

~

r~~~i:·!l 1 ,-1-; T, ;iis& 
normlll \;M:.:it'o~!OD 

Alt line~~oooo 

1__(!1J'._1rd6) _ 

!r,-,ih11I; z~-s1:ol.Sb-l 
\tothe. rie9Qri'.Je I 

of +he. i r.det: 
1_(1_1.-0 vJ~rd_~}__ 

,Jy'\;+;n\i-z.~~21' 
to if 5000 

(L;,4 w1mb) 

.,.,.___ .,.~---

.:Figure 3.2.7-27 Flowchart DBICOR 1·! 

J,,.f.l, 

• 



• 
'Sei o.bod fla.9 
+rr...te j Sf:'t errot 
c..od t 4 c o i.rn t 

A/2 

Reodon,o re(ord of 
HC loc.a.ii'or.:, -4rom 
d ~ k (,3Pi tor.,.;Jor 
anti &5 Q650nnw11'1:. 
( e>M H~() 

tlear H(t52Lr

not- :n5-h1.llt.A 
b',-\ 

F, I\ Ont u>Md ot 
H FC.S 3G- LA '1th 
Hf( c orriJ Pl" 

nme,.,+~ 

li:su.u 3. 2 ,.7-27 Flowchart - DBICOR (CcmtinuedY' 

465 



5. If the HC is installed, go to step (6); 
otherwise, increment the counter I and go to 
step (4). 

6. Set the installed flag true. 

7. Read one record of the aim-point file indexed 
by the RC number (i.e., I~. 

8. If a read error occurs, set the abort flag 
true, set the error code, increment the 
number of errors, and go to step (16); 
otherwise, go to step (1). 

9. Initialize the aim-point counter to one. 

10. If the aim-point counter is greater than 20, 
increment the counter I and go to step (4). 

11. If the aim-point counter equals the last 
byte of the five-word aim point, go to step 
(13). Otherwise, go to step (12). 

12. Set the AIMOKG element to zero that corresponds 
to the aim-point counter. 

13. Increment the aim-point counter, and go to 
step (10). 

14. If the installed flag is true, go to step 
(17). Otherwise, go to step (15). 

15. Set the abort flag true, set the error code, 
and increment the error counh. 

16. Set the AIMOKG global common array to zero. 

17. If the AIMOKG array is all zero, set the 
abort flag true, set the error code, incre
ment the number of errors, and go to step 
(20). Otherwise, go to step (18). 

18. Read the lowest cardinal-numbered aim-point 
array from disk and store it into the global 
common array All1PTG. 

19. If a read error occurs, set the abort flag 
true, set the error code, increment the number 
of errors, and go to step (20). Otherwise, 
go to step (20). 

20. Return to the calling subroutine. 

466 

••• 

• 



• 

• 

• 

3. 2. 7. 4. 1. 20. 2 

3.2.7.4.1.20.3 

3.2.7.4.1.20.4 

3.2.7.4.1.21 

3.2.7.4.1.21.1 

e. Error messages and recovery - If the processing finds 
that no heliostats are installed or that no valid 
aim-point array exists on the disk, an abort flag 
and error code are returned to the calling subroutine. 

Data, Logic and Command Paths 

Input data: 

a. HCST2G global common array; and 
b. Aim-point arrays from the disk. 

Output data: 

a. Abort flag; 
b. Error code; 
c. Number of errors; 
d. Global connnon array AIMOKG; and 
e. Global common array AIMPTG. 

Internal Data Description 

A 128-word buffer is utilized to read records from the 
aim-point disk file • 

Flowchart 

See Figure 3.2. 7-2.8 for the DBIAIM flowchart. 

Submodule XX.I - DBIBCK 

Description 

a. Language used - FORTRAN 

b. How invoked - Subroutine call by DBIDTA. 

c. Constraints and limitations - This subroutine should 
only be executed when there is a Backup processor. 

d. Processing -

1. Initialize a try counter to zero. 

2. Set the error code and number of errors to 
zero. 

3. Write the global common data base (COMDAT) 
to the Backup processor and exclude the 
CPU-peculiar status word, CPUSG • 

4. If there is a write error, set the error code, 
increment the number of errors, and go to 
step (5). Otherwise, go to step (5). 

467 



r-. . ----1 /<r:s f .. 
, l'-J o · '( n~111 I lrd '. '-... l i I> 1 ./'"'::i:J~)dl,g, .· 

· · --- ·------- Ye6 

,.-.... -~_,,.,._ .!••--, . .,, ___ ,..,. 

1·· ..••• , ..... --· ,, __ _ 

j'Se..+ '1ns+a llrcl. J 
!~l,;,3 -irue 
I 
L..... L -----
r ~;~~i;;e~~~:::j:P, I~ y H C #- I .Y\ to ll 

.{,' . .. + abori . lag I ., ·-..., ___ _ 
,.1, "I::'' r.:.e+· "'t·" r Yeti /R"·. ... .... 
• .... :,. •-' - ' •

0 ,--< · E'ad error/ 

foJ, ~i:~~I ,r,, 
V 0) 

Yigur(! J.2.7-28 Flowchart DBIAIM 

468 

(f) -
J,..,_;+.-a.li:u .. 
Ct i'r",v· po'i nt 
COL1n-ter JD one. 

• 



• 

• 

• 

No 

:5e4 o. hort tlo3~ 
'Sd i:>re:,r code I II 
4 r ocu,·t i 

r-,... . ..... -·-·-· --· .. ·•··-· J l 
! ~· /') '•>--- 1,i 

1 ... 1, ... / 
.,. ___ .✓ r-r--. -A--"•-J -K-.-,--. I 

I .::ie.r I, ,o IJ' I 
larr•t ml!•••• I 
L--.,. ... -- 1,4.--__ ---_-_· _.J 

' i 
i ________ ,'1 

Figure 3.2.7-28 Flowchart - DBtAIM (Continued) 

469 



3.2.7.4.1.21.2 

5. Write the disk data base to the Backup, 

6. If there is a write error, set the error code, 
increment the number of errors, and go to 
step (7). Otherwise, go to step (7). 

7. Write the global common queue area (CQUEUE) 
to the Backup processor. 

8. If there is a write error, set the error code, 
increment the number of errors, and go to step 
(9). Otherwise, go to step (9). 

9. If the number of errors is equal to three, 
go to step (13). Otherwise, go to step ClO). 

10. If the number of errors is equal to zero, 
go to step (13). Otherwise, go to step (11). 

11. Increment the try counter. 

12. If the try counter is equal to three, go to 
step (13). Otherwlse, go to step (2). 

13. Return to the calling subroutine DBIDTA. 

• 

e. Error messages and recovery - If there is an I/0 error, • 
this subroutine repeats the complete Backup initializa· 
tion up to three times. One pass through this sub-
routine which results in three I/0 errors is suf-
ficient to result in not trying again. 

mata, Logic and Command Paths 

Input data: 

a. Global common area, COMDAT (exclude CPUSG); 

b. Disk data base files; 

1. DIN-disk file containing results of offline 
processing. 

2. HC locations. 

3. HC Wash angles. 

4. HC Stow angles 

s. HC Alternate 1 Stow angles. 

6. HC Alter.nate 2 Stow angles. 

7. Field-status save file. 

470 

• 



• 

• 

• 

3.2.7.4.1.21.3 

3.2.7.4.1.21.4 

3.2. 7.4.1.22 

3.2.7.4.1.22.l 

8. HC bias file. 

9. HC aim-point file. 

c. Global common area, CQUEUE, which contains the 
initialized message queue area. 

Output data: 

All the data input is output to the Backup processor. 

Internal Data Description 

A 160-word local array is used to read the Prime disk data base. 

Flowchart 

See Figure 3.2. 7-29 for the DBIBCK flowchart. 

Submodule XXII - DBIERR 

Description 

a. Language used - FO~TRAN 

b. How invoked - Subroutine call from tasks DIN, DBI 
and CLK. 

c. Constraints and limitations - This submodule attempts 
to write messages on the primary output device specified 
via a formal parameter. If a write error occurs, an 
alter.nate output device is selected and tried. If a 
write error occurs again, this submddule returns to 
the calling submodule with no output produced. 

d. Processing -

1. Initialize the counter that tracks the number 
of times an alternate device is tried to one. 

2. Test if there are any error messages to output. 
If there are no error messages, return to the 
calling submodule. If there are messages to 
output, go to step (3). 

3. Call the subroutine DINTTL to"write a heading 
title when required. 

4. Write the error message indicated by the 
formal-parameter array input, and increment 
the printer line-number counter • 

471 



( D51B~ 

In; 1 ;01 iz.e. i '/ 
ro~, n+tr f c, Zefn 

~::D 
ISd errnr code!.. 

Qf"ld COU_ni• to 
'l.ND 

/11hae #le --1 
f bloba! Common 
I ~ll'1;'e. CHPO -lo . 

Set err~or rode.J 
1nrre-merit -errC)(l 
Count- I 

l _____ . l-- j 

L· -'~(_::>'1 -. . .. 
<'/ ''--,, Y, fset Prror rodej 

✓wr;+e e,rr,~ e_w:!f'r(t1Men+ 
? lerror co~, n+ 

It"----------~{, •. 

Figure 3.2.:7--29 Flowchart: '-: DBIBCK 

/'. ,,..,-,..,_ ; 

• 

• 

• 



• 

• 3.2.7.4.1.22.2 

3.2.7.4.1.22.3 

3.2.7.4.1.22.4 

• 

s. If a write error occurs, go to the next step; 

otherwise, go to step (10). 

6. Increment the device try:-counter. 

7. Change the device number to the other device 

number. 

8. If the device try counter is three, return 

to the calling subroutine. Otherwise, de

crement the printer line-number counter and 

go to step (3). 

9. If all the error messages are written, return 

tb the calling subroutine. Otherwise, de

crement the number of error messages counter, 

and go to step (3). 

e. Error messages and recovery - If the primary output 

device indicates an error, a secondary device is tried 

for the output. 

Error messages - See Table 3.2.7-VIII. 

Data, Logic and Command Paths 

Input data: 

a. Number of error messages to print; 

b. Address of error-message codes array; 

c. A number to tag onto an error message when desired; 

d. The output device number; 
e. The current line number to print to; and 

f. The number of the heading title desired. 

Output data: 

a. Line number to print to; 
b. Output device number; and 
c. Error messages to output device. 

Internal Data Description 

The error messages are stored in arrays that are stored into 

a format array for output. 

Flowchart 

See Figure 3.2.7-30 for the DBIERR flowchart • 

473 



ERROR: D[SK READ/WRITE ERROR 

ERROR: 

ERROR: 

ERROR: 

:ERROR: 

ERROR: 

ERROR: 

ERROR: 

ERROR: 

ERROR: 

ERROR: 

ERROR: 

ERROR: 

ERROR: 

ABORT: 

READ IN SOURCE DEVICE REC:NNNN 

SYNTAX ERROR REC:NNNN 

DECODE ERROR REC:NNNN 

SOURCE VALUE OUT OF RANGE REC :NNNN 

AJM POINT NOT IN INCLUSION AREA; FILE REJECTED REC:NNNN 

S'1NTAX ERROR IN SOURCE AZIMUTH OR ELEVATION, DEFAULT SUPPLIED REC:NNNN 

SYNTAX FOR CARD-TYPE DESIGNATOR REC:NNNN 

SYNTAX FOR HC NUMBER REC:NNNN 

DECODE:'.OF CARD TYPE OR H.C NUMBER REC:NNNN 

DECODE OF AZIMUTH OR ELEVATION, DEFAULT SUPPLIED REC:NNNN 

GRAfHICS CONSOLE NOT INITIALIZED AT OPERA,TOR'S REQUEST 

TASK XXX FAILED TO ESTABLISH 

TASK XXX FAILED TO ACTIVATE 

DI:,K DATA BASE He LOCA'l'IONS NOT VALID 

ABORT: CAN NOT READ THE DISK DATA BASE 

ABORT: NO HELIOSTATS ARE INSTALLED 

ABORT: DISK DATA BASE WASH ANGLES NOT VALID 

ABORT: DISK DATA BASE STOW ANGLES NOT VALID 

ABORT: DISK DATA .BASE AL'f 1 STOW ANGLES NOT.VALID 

ABORT: DISK DATA BASE ALT 2 STOW ANGLES NOT VALID 

ABORT: NO AIM-POINT ARRAYS EXIST 

ERROR: CAN NOT WRITE TO .BACKUP HAC GLOBAL COMMON 

ERROR: CAN NOT WRITE TO BACKUP HAC DISK DATA BASE 

Table 3.2.7-VIII Error Messages 

474 

• 



• 

• 

I 
' \ 
' I 
l 

V 

• :~ 

bfc reMer1i 
1;ne t\uv-,,b:>r 

eoun+er· 

No 

'((6<,f~,:;,:· e{~ 

"----., ? 'Y/ 

d , nar:0e ·. t·-1:ce. 

u.rA ber- -+o 
t~'. I' I ,{ f ,}; ( ('. 

-·--·····~ ·-·--·-··--

r
r;__c r-e~·(:'·()·t . ··-· 

+r y co u.. "1f'( 
I 

L-------~ 

-1,-,, 
lL .. > 

Figure 3. 2. 7-30: Flotvchart - 10~IERR 

475 

I 
I 
I 



3.2.7.4.1.23 

3.,2.7.4.1.23.l 

Submodule XXIII - CLK (Task) 

Description 

a. Lsrtguage used - FORTRAN 

b. How invoked - Established and activated by DBI task. 

c. Constraints and limitations - System configuration 
must be initialized, the global common data base must 
be initialized, and the disk data base must be initial
ized and accessible. 

d. Processing -

1. Delay .in the wait mode for one second to 
allow DBI to exit main memory. 

2. Call subrouti.ne CLKEST to estabiish the real
time HAC tasks in main memory. 

3. If a task failed to establish, notify the 
operator and go to step (8). Otherwise,. 
go to step (4) .. 

4. If execution is in the Prime HAC, go to. step 
(5). Otherwise, go to step (8). 

5. .Call subroutine CLKACT to activate the real
time asynchronous tasks. 

6. If a tas.k failed to activate, notify the 
operator and go to step (8). Otherwise, 
go to step (7). 

7. Call subroutine CLKONL to initialize time
keeping and activate the HAC real-time 
synchronous tasks. 

8. If any errors occurred, go to step (9); 
otherwise, go to step (12). 

9. Abort all HAC tasks except CLK and SWI. 

10. Request if the operator wants to try again. 

11. If the operator requests to try again, go to 
step (2). Otherwise, go to step (12). 

12. EXIT this task. 

476 

• 

• 

• 



• 

• 

• 

3.2.7.4.1.23.2 

3.2.7.4.1.23.3 

3.2. 7 .4. l. 23.4 

3.2.7.4~1.24 

3.2.7.4.1.24.1 

e. Error messages and recovery -

1. Error messages: 

a) TASK XXX FAILED TO ESTABLISH 

b) TASK XXX FAILED TO ACTIVATE 

c) ALL HAC TASKS ABORTED 

OPTION 
0 
1 

2, Error recovery: 

TRY AGAIN 
NO 
YES 

Error recovery is an operator's option. 

Data, Logic and Command Paths 

Input data: 

a. Global common word CPUSG; and 
b. Operator's response when required • 

Internal Data Description 

Task CLK does not use any local data structures. 

Flowchart 

See Figure 3.2.7-31 for the CLK flowchart. 

Submodule XXIV - CLKEST 

Description 

a. Language used - FORTRAN 

b. How invoked - Subroutine call by CLK. 

c. Constraints and limitations - The real-time HAC 
tasks must be cataloged and resident on the disk. 

d. Processing -

1. Set the error flag false, and clear the 
task name. 

2. Convert the task names to 11can" code • 

3. Establish the HAC tasks: TOK., TIK, F,CP, 
SUN, BHI, ALM, STS, BHC, CS!, GRF, MMI, CFO, 
DSK, CS.e,, CMD, ,GET, ,SE~,, EXI, STA, a.nd1,ALO. 

477 



,.-.. 
,\ 

second 

f /\/:)({ ( l f'' 0 ' 1( 

[
... · , :

1
, 1 •• YP:_,li: 1'. :,,: ·,vv, 

,: · J, nr : ,; h · ., , . ;..l . , I - . . . 
'·"-. 7 I~ .:J , : ",A : ,, 

•• • I , ' ·, Lr)Ji ,•;nr" 
r'rlo 

' ...... ... :t 
' : CLKO,\J L 

1rv 7;!1' 'r.e 
! .· 

, rre ~.r 1·, _,. 1 

Figure 3.2.7-31, Flowchart - CLK 

478 

• 

• 

• 



• 

• 

3.2.7.4.1.24.2 

3. 2. 7. 4. 1. 24. 3 

3.2.7.4.1.24.4 

3.2.7.4.1.25 

3.2.7.4.1.25.1 

4. If any HAC real-time task fails to establish, 

go to step (5). Otherwise, go to step {7). 

5. Set the error flag true, and set the task name 

in a parameter word. 

6. Deestablish all the HAC tasks that were 

established. 

7. Return to the calling task CLK. 

e. Error messages and recovery - Parameters returned to 

the calling task {CLK) for processing, and tasks 

deestablished. 

Data, Logic and Command Paths 

Input data: 

None 

Output data: 

a. Error flag; and 
b. Task name • 

Internal Data Description 

The HAC real-time task names are initialized in ASCII code 

via data statements. The task names are: TOK, TIK, FCP, SUN, 

BHI, ALM, STS, BHC, CSI, GRF, MMI, CFO, DSK, CSO, CMD, GET, 

SEQ, EXI, STA, and ALO. 

Flowchart 

See Figure 3.2.7-32 for the CLKEST flowchart. 

Submodule XXV - CLKONL {Timekeeping Initialization) 

Description 

a. Language used - FORTRAN 

b. How invoked - Subroutine call from CLK 

c. Constraints and limitations - Time zones are limited 

to Pacific and Mountain, both daylight and standard 

times, and Greenwich Mean Time (GMT). 

d. Processing - CLK.ONL performs all the work required 

to initially establish and provide continued main

tenance of the GTil1EG array (along with the CLOCK 

function, 3.2.8.I). Operator inputs nominally in

clude the local time zone and the local year. All 

479 



Figure 3.2.7-32 

i 

tr-.. ·.·-·--.. ·-_-I.---. ~] 
Crir-,e, 1 fo:<·_ 

n n r't\ P :._·. / n 
i' .-.)( :" ~e 

i i ·' , . : • I i I - ~ ' 

u . "l"" -· 
_./"'-

t I • f, r I ''1' ~ ,",. ~o . ,-. ., - ~ 

r
-~>n~ p:·,·,-._~;1/ 

-- 'L~ _-~--· 1 r, 
I I, i>((•ir" •); 

: j' •. , -· . 'u j ·:' 1: • 
r , 

It·, 1,, r 
I 

L. ---

Flowchart - CLKEST 

4&0 

• 

• 

• 



3.2.7.4.1.25.2 

• 

• 

other data is taken from the WWV receiver. In the 
event the receiver is not operational, the local 
month, day, hour, and minute, as well as a "mark" 
will be rc!quested. TIK and TOK are activated, pL\r

tinent dntn is logged, GTIMEG is wholly initialized, 
and return is made to CLK. 

e. Error messages and recovery - None, except as mentioned 
in "d." above. 

Data, Logic and Command Paths 

Definitions: 

GMT - Greenwich Mean Time, functionally identical 
to UTC, Universal Coordinated Time. 

Local Time - Time kept in the time zone of interest, an 
integer number of hours offset from GMT. 

The GTlMEG array contains all the variables used in time 
computations, as well as being CLKONL's final output: 

Offset FORTRAN 
in Array 

GTil1EG Index Contents Range Mnemonic 

0 1 GMI' year 1980 - GYR 
2100 

1 2 GMT day of year 1-366 GDY 

2 3 GMI' hour of day 0-23 GHR 

3 4 Minute in hour 0-59 MIN 

4 5 Second in minute 0-59 SEC 

5 6 Local year 1980- LYR 
2100 

6 7 Local inonth 1-12 LMO 

7 8 Local day of month 1-31 LDY 

8 9 Local hour of day 0-23 LHR 

9 10 Time Quality 0-5 

10 11 Days in GMI' year 365-366 NDY 

11 12 Days in local month 28-31 NDM 

12 13 Hours offset, local to GMT 0-23 OFF 

13 14 Days in local year 365-366 NDL 

481 



3.2.7.4.1.25.3 

3.2.7.4.1.25.4 

3.2. 7.4.1.26 

3.2.7.4.1.26.1 

The algorithm converting GMT to 1.ocal time is shown in Figure 

3.2.7-33 and the converse algorithm in Figure 3.2,7-34. 

Internal Data Structures 

The only internal data structure in CLKONL is the fonnatte<l 

dntn reccdvecl from tlw WWV rec,•ivPr. It has the fonnat: 

(CTLA,)DDD: HH:MM:SSQ(cR)(u:) 

Where (CTI.Jv, .(c~ and (LF) are the hexadecimal values 

#1, # , and# respectively; DDD, HH, MM, and SS are 
numbers, and Q is one of the set n?," "#,•r 11·-,rr 11 1,rr and 

"blank." 

Flowchart 

See Figure 3,2.7-35 for the CLKONL flowchart. 

Submodule XXVI - CLKACT 

Description 

a. Language used - FORTRAN 

h. How invoked - Subroutine call by CLI<. 

c. Constraints and limitations - Any task that this sub

module activates must have been establishe6 as main

memory resident. 

d. Processing -

1. Set the error flag false, and clear the task 
name word. 

2. Convert the HAC real-time asynchronous task 

names to "can" code. 

3. Activate the HAC tasks: CSI and EXI. 

4. If all HAC real-time asynchronous tasks are 
activated, go to step (7). Otherwise, go to 

step (5). 

5. Abort the HAC real-time asynchronous tasks that 

were activated, 

6. Set the error flag true, and set the task name 

in a parameter word. 

7. Return to the calling submodule. 

482 

• 

• 

• 



-. 

• . --...,, 

UM'.~ UI~: 2).: 
LJy'{~· LC r-· : . 

L Mo <- ! ~·, • ~ 

(;') 
' I , 

'• ·1 

I 

•··· ·····- -v -.. --•·· . 

·( 
l 
' l 

I L '"I''· 

I 

., ...... _.~ , ________ , ___ y 

,.-•·--··,.,+ ... -... --·, 
!~H,H~- ll~nl\lL(,ND<.t 
I , 

'. '<oNi ,:,a) I 

/ ~ 
( l i'-JL"> ) ___ ,. _____ .. 

Figure 3.2.7-33 Flowcha.rt - Computation of Local Time 

483 



··-

/ \ 
( ~,1/\'"PT ) 
,, -- -- -J . . ... -·· 
1"-, · If • '_'(? 

l~ VI~ : u { 
Gf-lf'.•'.- t,,:.i-, -t ~)ff 

····1 
/ " . ' .) : iP, ·~·· ;,i:i;! ?.,: l, 

/ '-., /,, .. 

<. ,,.. ·n· , .. .,_ '·-~ 
·.7HI" ,,-,~v r--,.1,;c·://. ·'(\·{1 f 

.......... / '\ . • ,_'Ii, -·-

', / / : ~.'i'f, L...... ·····r··-··•-····· .. J i'' ---- - V 
I. 

~. r,·✓ -€-· I 
I 

Gr,, -t !1A l}f,,_/1,H) 
i 
! 

• i tfo 
+. 

l~:,i<~,J 

484 

.]. 

') "'· . .. / -.,, ~" 
')-·l'(o 

' ·•·"•-·"' 

J 

r-----•--·•'-•• 
I 

·/f~ i ~ · .•/ ,,.•. ' I ' .· ---~ .,C : r ·· .1. 
,,,/'' i 

... ., ... ___ jl -----·-----

• 

• 

• 



• 

• -.,. 

• 

j 

_J 
..... 

: .,,,,:,' 

·1 1 lo 

C wp .,: c,,;;-l 
fr•)r.· ''.\/,,:; 
~'"- ~ c1: l~F C:r· 

L. . -·1 --------

,v.._ ______ t ----·- ------- -·------·')tf,---- _ .. _. 

--------l~ --
( ,_. \ 

l) / ,, _,, 

Figure 3.2.7-35 Flowchart - CLKONL 

485 

f 

···1~.----·· 

[aor 

>., :'.,,.,,✓·""" 
'•r,r, 

! 

i l 
I~ 

:t":-,pi,;i / ~ 

Jr: n-t· :Jr I Hf G 

,,/'-· -

r ;·e---+ ,, ,,· _ .. {,' . 
1-.."J.,, ' )( .. 

~. ----·1 ':. ~ 

' ,_ ____ - ----•··,~·- --

.'l .... ---··-·•, 
-r:cr:·· ,PI· I 

'· J 
l 



3.2.7.4.1.26.2 

3.2.7.4.1.26.3 

3.2.7.4.1.26.4 

3.2.7.5 

3.2.7.6 

e. Error messages and recovery - Parameters are returned to • 
the calling task (CLK) for processing, and tasks ar'e 
aborted. 

Data, Logic and Command Paths 

Input data: 

None 

Output data: 

a. Error flag; and 
b. Task name. 

Internal Data Description 

The HAC real-time asynchronous task names are initialized in 
ASCII code via data statements. The task names are: CSI and EXI. 

Flowcharts 

See Figure 3.2.7-36 for the CLKACT flowchart. 

Interface Description 

The task DIN interfaces with the Disk Data Base, source 
records from either the magnetic tape or card reader, graphics 
processors, and the operator via the TI-820 console. 

The task DBI interfaces with the Disk Data Base, Prime-
Backup HAC configuration, OCS and DAS communications, graphics 
processors, and the operator via the TI-820 console. DBI 
also establishes and activates the HAC tasks CLK and the 
real-time Prime-Backup HAC switchover tasks SWI, RTH, and RTL. 

The task CLI< interfaces with ~he WWV device, and the operator 
for time initialization. Further, CLK establishes the real-time 
tasks and activates these tasks in the Prime HAC. 

Test Requirements 

The Disk Data Base is dumped onto the line printer and verified 
that the source records are properly initialized. The global 
common data base is dumped onto the line printer and verified 
that the data is initialized correctly. The ISC initial state 
is verified by visual inspection, as is the graphics processors. 
Real-time task establishment and activation is verified through 
system status requests from the system console. Error reporting 
is verified by inputting deliberate errors in source data, and/or 
device state. 

486 

• 

• 



• --

(~-~-,-~ 

~d',:f~rl ::. 
i r, . I ,. l\:t i~c; ;·• (~(), 

i . ·,.,::,..1' Y'·). t·, P 

Figure 3. 2. 7-36 Flowchart ... C:UKACT ' 

487 



3.2.8 

3.2.8.1 

3.2.8.1.1 

3.Z.8.l.2 

3.2.8.1.2.1 

Operating System Modifications Module - MAXIVM 

Buffer Management Function 

Module Identification 

The identities of the buffer management modules are: 

QINIT 
LEASE 
FREE 
ENQUE 
DEQUE 
QRST 
BMFIF 

Purpose 

This group of operating system modules provides two primary 

user services: 

a. The ability to obtain reusable buffers for short-term 

use; and 

b. The ability to communicate between tasks, allowing some 

tasks to be asynchronous and event-driven. 

QINIT initializes one or more buffer areas (one call per area) 

for use by the other services. 

LEASE will attempt to acquire a buffer from a buffer area. 

FREE will return a LEASE'd buffer to the buffer area pool. 

ENQUE will LEASE a· buffer and store the given message in. it, link 

it into a queue of messages, and activate the task associated 

with that queue. 

DEQUE will remove the highest item from a queue, pass the message 

to the caller, and FREE the buffer. 

QRST will restart all queues in the event of failover to Backu~. 

BMFIF is a package which provides FORTRAN access to the above 

services. 

Requirements 

Design Requirements 

There are no requirements in the Software/Firmware Functional 

Requirements document applicable to this function. 

488 

• 

• 

• 



• 

• 

• 

3.2.8. 1.2.2 

3.2.8.1.3 

3.2.8. 1.3.1 

3.2.8.1.3.2 

3.2.8.1,4 

3~2.8.1.4.1 

3.2.8.1.4.1.1 

Derived Requirements 

The ALARMS and other modules require a potentially unlimited number of 
buffers for message management. The dynamic allocation provided 
by these modules is deemed the most efficient way of approxi-
mating that requirement. 

CRT management in previous control systems has been shown to be 
unwieldy in use. A connnon message enquing system is needed to 
support CRT use satisfactorily. 

Design Approach 

Functional Allocations 

Basic buffer management (i.e., allocation and deallocation of 
buffers) is provided by the LEASE and FREE modules. The ENQUE 
and DEQUE modules provide a moderated message dispatching capa
bility from data sources to data sinks, decoupling their depen
dence upon each other. They, in turn, call LEASE and FREE to 
allow dynamic management of their queues. 

All services require the initialization of the buffer area pro
vided by QINIT • 

Resource Budgets,; 

Core 
requirements: 

(words) 

Timing*: 
(.Msecs, nominal 
estimate) 

Q IlHT LEASE FREE 

70 

200 

60 

50-
500 

40 

100 

*plus system overhead for REX call. 

Design Description 

Module Structure 

ENQUE DEQUE QRST 

75 

100-
600 

55 

250-
500 

50 

100 

BMFIF 

50 

20/call 

The first seven submodules are stand-alone assemblies designed to 
be included in the resident portion of the operating system during 
system generation. They require no other subroutines not pro
vided by the standard operating system itself. 

BMFIF will reside in the FORTRAN library • 

Submodule I - QINIT - Buffer Area Initializer 

489 



3. 2 • 8 .. l .4. 1 • 1. 1 

3.2.8.1.4.1.1.2 

3.2.8.1.4.1.1.3 

3.2.8.1.4.1.1.4 

3.2.8.1.4.1.2 

3.2.8.1.4.1.2.1 

Description 

a. Language used - MSA Assembly language. 

b. How invoked - REX call. 

c. Constraints and limitations - No limits on the number or 

size of areas allowed. The entire area must, however, 

reside within the caller's address space. If more than 

one task is to use the area, it must be wholly within 

a particular global connn.on area. 

d. Processing - The area is initialized for use of the other 

routines. Queue headers are built, and the lease area 

cleared. 

e. Error messages and recovery - error indications are 

returned in the event of invalid input parameters. 

Data, Logic and Connnand Paths 

QlNIT must be supplied with the bu:£:fer 
a queue task association table (Q'EA'.ll). 

queue number (zero to number of queues 
specific task name. 

Internal Data Description 

area address, length, and 
The QTAT associates each 

minus one) with a 

• 

• The initial buffer area configuration is shown in Figure 3.2.8.1.l. 

Flowchart 

See Figure 3. 2. 8. 1. 2 for the QINIT flowchart. 

Submodule II - LEASE - Lease ai,uffer 

Description 

a. Language used - MSA assembly language 

b. How invoked - REX call. 

c. Constraints and limitations - none 

d. Processing - Beginning from the end of the last leased 

buffer, the area is searched (with end-of-buffer wrap

around) until a sufficiently large area is found or 

until the entire area has been searched. If an area 

is found, it is set in use, any extra being left free. 

The address is returned to the caller. 

e. Error messages and recovery - error indications are 

returned for the following conditions: 

1. Invalid input parameters. 

2. No room for requested buffer. 

• 



• 

• 

• 

B+O: 
1: 
2: 
3: 

4: 
5: 
6: 
7: 

8: 
9: 
10: 
11: 

4N: 
4N+l: 

44N+2: 
4N+3: 

4N: 
4N+l 

4(N+l)+2: 
4(N+l)+3: 

N-2: 
N-1: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 INIT: 
~-------------------------------------------------------~------J 
I I I 

: VAIJ,JD ( VBUFFER AREA VALIDATION WORD ) : @BM: : 

: CPTR ( POINTS TO NEXT AVAIL BLOCK ) : * ~--1 
: QCNT ( NUMBER OF QUEUES) : NQ : ' 
1 BEND ( END OF BUFFER POINTER ) 1B+N- 2 1 

~-------------------------------------------------------~------J 
QUEUE O ASSOCIATED TASK NAME NAME 

1-6 CHAR, CAN CODE 

1 
POINTER TO HEAD OF QUEUE O 1 0 

1 POINTER TO END OF QUEUE O 1 0 
~-------------------------------------------------------J _____ _ 
·I I 

~ QUEUE" lASSOCIATED TASK NAME : NAME 
I 
I 

1 
POINTER TO HEAD OF QUEUE 1 : 0 

! ____________ POINTER_TO_END_OF_QUEUE_l __________________ J ___ O __ J 

I I I 

: 0 : 0 : 

: 0 : 0 : 

I O I O I L _______________________________________________________ J _____ _ 

I I I 

: QUEUE N-1 ASSOCIATED TASK NAME : NAME : 
I I 
I I 

PO!CNTER TO HEAD OF QUEUE N-1 : 0 : 
1 POIN'irER TO END OF QUEUE N-1 1 0 1 

~ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ~ - - - - - - J~·-· 

: DUMMY BLOCK, FOREWARD POINTER : * :--1 i 
1 IU ! DUMMY BLOCK BACKWARD PO INTER 11 ! 0 : ' L _______________________ z _______________________________ J_______ I 

: CORE BLOCK FOREWARD POINTER : * ~=+-•~--··· 
I ' I I 

1 IU! CORE BLOCK, BACKWARD POINTER 10! * --!- -
~-------------------------------------------------------~------, I . 

I 
I 

I I 

I CORE BLOCK I 
: I I j 

L------------------------------------------------------- I ______ I ) 
I I !'<- · 
: DUMMY BLOCK, FOREWARD POINTER : * ---} ·· ··· 
1 IU! DUMMY BLOCK BACKWARD POINTER :1! -le --}-
L-----------------------1-------------------------------i------ I 

NOTE: ALL POINTERS ARE ABSOLUTE 

Figure 3.2.8.1.l Internal Buffer Structure 

491 



--- .. 

( 0INiT 
'---~--

. ... ½,_,,_, 

Figur'e 3.2.8~1.2 Flowchart - QINIT 

49.2 

• 

• 

• 



• 

• 

• 

3. 2 • 8 • 1.Li • 1. 2. 2 

3. 2. 8. L4. 1. 2. 3 

3.2.8.1.4.1.2.4 

3.2.8.1.4.1.3 

3.2.8.1.4.1.3.1 

3.2.8.1.4.1.3.2 

3.2.8.1.4.1.3.3 

3.2.8.1.4.1.3.4 

3. 2.8 .1.4. 1.4 

3.2.8.1.4.1.4.1 

Data, Logic, and Command Paths 

None. 

Internal Data Description 

LEASE uses the same structure initialized by QINIT (Section 

3.2.8.1.4.1.1). 

Flowchart 

See Figure 3.2.8.1.3 for the LEASE flowchart. 

Submodule III - FREE - Return a LEASE'd Buffer. 

Description 

a. Language used - MSA assembly language 

b. How invoked - REX call 

c. Constraints and limitations - none 

d. Processing - FREE forcibly sets the returned block not 

busy and returns, if it was already in that state. If 

not, FREE will merge it with any adjacent free blocks. 

The primary requirement is that at no time should 

the chain of buffers contain two adjacent free blocks. 

e. Error messages and recovery - errors are indicated to 

the user in the event of invalid input parameters, 

specifically an incorrect returned buffer pointer. 

N6 error is indicated if the buffer is found to be 

already free. 

Data, Logic and Command Paths 

None. 

Internal Data Description 

Same as QINIT (Section 3.2.8.1.4.1.2.2) 

Flowchart 

See Figure 3.2.8.1.4 for the FREE flowchart. 

Submodule IV - ENQUE - Enque a Message and Activate the Associated 

Task 

Description 

a. Language used - MSA assembly language 

b. How invoked - REX call. 

493 



L 

Figure 3. 2 .,8. 1. 3 Flowchart - LEAS,E 
A,fJ,/, 

! 
~-- • • •~•u•,~. _ .. ••••---•• -,. •••'••---• .;-f 

• 

• 

• 



• -, 

• 

8 .1.4 Figurt'! 3.2. _ FREE Flowchart 

495 



3.2.8.1.4.1.4.2 

3.2.8.1.4.1.4.3 

3.2.8.1-4.1.4.4 

3.2.8.1. 4.1.5 

3.2.8.1. 4.1.5.1 

c. Constraints and limitations - See paragraph 3.2.8.1.4.1.5.1. 

d. Processing - a buffer of sufficient size to hold the 
inpu

1t message and some queue control words is leased~ 
The user's buffer contents are copied, and the leased 
buffer is enqued into the desired qu~ue. If the queue 
was previously empty, the associated task is activated, 
which will presumably DEQUE the message. 

c. Error messages and recovery - errors are indicated fqr 
the following conditions~ 

1. No room far buffer LEASE. 

2. Invalid input parameter. 

3. Influence error (from ACTIVATE). 

4. Task not found (from ACTIVATE). 

5. No TCB available (from ACTIVATE). 

Data, Logic and Command Paths 

None. 

Internal Data Description 

The leased buffer is set up in the format shown in Figure 
3.2.8.1.5. Null links, in queue items or the queue data areas, 
are maintained as zeros. 

Flowcharts 

See Figure 3.2.8.L 6 for the ENQUE flowchart. 

Submodul~ V - DEQUE - Get the Oldest Queued Item 

Description 

a. Language used - M5A Assembly code. 

b. How invoked - REX call. 

c. Constraints and limitations - ENQUE and DEQUE work 
in ~oncert, attempting to empty queues by activating 
the tasks which use the queued data. Jammed queues are 
avoided as long as all the queues which address the 
same associated task are in the same buffer area. 

• 

d. Processing - If the indicated queue is empty, return 
is made immediately. The foremost item in the queue is • 
unlinked, and its contents transferred to the caller. 

496 



• 

• 

• 

ADDRESS FROM 
LEASE REX 
+1 

+2 

~--------------------------------~ 
I I 

: POINTER TO NEXT MSS IN QUE 1 
I 

~--------------------------------~ 
: LENGTH OF MSS (WORDS) • I 

~--------------------------------~ 
: MESSAGE : 

~--------------------------------~ 

Figure 3.2.8.1.5 Message Structure 

497 

{------ PTR FROM 
PREVIOUS 
MSS IN QUEUE. 



·~. 

'~ rrrnr 
'· 

/ 

. i'nb ~rd :-if 

i C,l \~" •I•' 

:£ .. 1' {)_ '.';) 0 ~ ');~j 
lrl t),J~~,-( t~>.)' 

! 

Se+ l !J.t:1>( 

!Pr n ~I 
-w~-•--•--- -- -1 - -

·----·- ... :t/ .. 

Figure 3.2.8.1.6 Flowchart - ENQUE 
/_'lf\'O 

• 

f •.. · .. --
! 

'/ 

If r: ., i.,/.., 
( \ .f. ·-

• 

• 



• 

• 

3.2.8.1.4. 1.5.2 

3. 2.8. 1.4.1. 5. 3 

3.2.8.1.4.1.5.4 

3.2.8.1.4.1.6 

3.2.8.1.4.1.6.1 

The area is then FREE'd. If the queue is not empty 

following this removal, an ACTIVATE of the associated 

task is done and return made. If the queue is empty, 

a search is made for any other non-empty queues with the 

same associated task. If any are found, an ~CTIVATE is 

performed. 

e. Error messages and recovery - errors are indicated for 

the following conditions: 

1. Queue requested was empty. 

2. Input parameter invalid. 

3. Influence error (from ACTIVATE). 

4. Task not found (from ACTIVATE). 

5. No TCB available (from ACTIVATE). 

Data, Logic and Command Paths 

None • 

Internal Data Description 

The internal structure is the queue, described in 3.2.8.1.4.1.4.3. 

Flowchart 

See Figure 3.2.8.1,7 for the DEQUE flowchart. 

Submodule VI - QRST - Restore Q•Jeue Activations 

Description 

a. Language used - M5A assembly language 

b. How invoked - REX call 

c. Constraints and limitations - may cause spurious 

activations of queues which did not require restart. 

All tasks which DEQUE items should check for zero 

length returns, indicating nothing left in the queue, 

and exit as a result. 

d. Processing - QRST will scan the queues within a buffer 

area, activating all tasks whose queues are non-empty. 

e. Error messages and recovery - errors returned include 

invalid input parameters, and the activation errors: 

no TCB available; influence limit error; and task not 

found. 

499 



1 
{ b I 

\ 

Figure 3.2.8.1.7 Flowchart - DEQUE 

500 

/ 

-· L'"~ __ __ 
' ' l. I~..,~- ; ,:,-t- l 
: .'~:yr l.1•~:.•~~ •..,_.,-·;'-!--: i 

I 
I 

/ )r' ., 

r ... -- -i 

! f. < ::,u· 'rr.J(' ·~') ! 
l 
I 

.... .l 

r y 

• 

• 



• 

• 

• 

3.2.8.1. 4~ 1. 6. 2 

3.2.8.1.4.1.6.3 

3.2.8.1. 4.1.6.4 

3.2.8.1.4.1.7 

3.2.8.1.4.1.7.1 

3 • 2 • 8 .L 4 • 1. 7 • 2 

3 • 2 • 8 .1. 4 • 1 • 7 • 3 

3.2.8.1.4.1.7.4 

3.2.8~1. 5 

3.2.8.1. 5.1 

3 • 2 • 8 .1. 5. 2 

Data, Logic and Connnand Paths 

Data structures as discussed in QINIT call. 

Internal Data Description 

None. 

Flowchart 

See figure 3.2.8.1.8 for the QRST flowchart. 

Submodule VII - BMFIF - FORTRAN Interface to Buffer Management 

Description 

a. Language used - M5A assembly language. 

b. How invoked - FORTRAN calls. 

c. Constraints and limitations - none. 

d. Processing - For each of the entry points, the parameters 

are gathered and a REX call to the appropriate function 

made. Upon return, parameters are passed and return 

made to the caller. 

e. Error messages and recovery - the FORTRAN routine error 

package is invoked when unexpected errors occur. 

Data, Logic and Command Paths 

None. 

Internal Data Description 

None. 

Flowchart 

See Figure 3.2.8.1.9 for the BMFIF flowchart. 

Interface Description 

QINIT 

See Figure 3.2.8.1.10. 

LEASE 

See Figure 3.2.8.1.11. 

501 



.. { 

Figure 3.2.8.1,8 Flowchart - QttsT 

502 

• 

• 

• 



• 
DINI. f: ! /(-{). _') E,_.,1() 

.. (,.1 (J',b r_, _- ( '.' J V( !' '.):· ff' r 

1·· 
i 

I 
L,ci il'.'1H 
I 

I p (' j '('fU , I 1 > I \ [HY• ,,,,)I,., 

i 
L--~-~ . - ·~-- --~ ·---·----·~-· 

l ___ _ 
-· { 

, ....... , . 

f/, :.l· , ,, ·,.,, 

i 
-- 1 .. i-::-------- -

-·-·•· .. . J'. _____ ,_, 

( PE1ufr·J ~ 

Figure 3.2.8.1,9 Flowchart - BMFIF , 

503 

, •.. ~~ 

.. t .. 
I ; .. · ·-. 
i r\{r) , .. " ,,,. ,. ', ... , 

1,------··-··<0u r ,; 1· r', •/ f" _. 

I 

! 
i 



O: 
1: 

2: 
3: 

RlS - LENGTH OF THE GOMMON BUFFER AREA IN WORDS (N); 
R14 - ADDRESS OF THE BUFFER AREA; 
Rl3 - ADDRESS OF Tl{g QUEUE-TASK ASSOCIATION TABLE (SEE BELOW); 
Rl2 - NUMBER OF QUEUES TO BE SET UP IN THE BUFFER AREA (NQ) 

N> = (NQ * 4) + 9; 

LDI,R8 QINIT(#4A) 
REX,MAXIV 
RETURNED CONDITION CODES: 

NZOC = '1000 -7 
NZOC = '0010 -~ 

NO ERROR, NORMAL RETURN. 
PARAMETER ERROR. 

THE QUEUE-TASK ASSOCIATION TABLE ASSOCIATES THE QUEUE NUMBERS 
(FROM O THROUGH NQ-1) TO SPECIFIC TASKS WHICH WILL BE ACTIVATED 
BY NAME WHEN A MESSAGE IS ENQUEUED IN THE ASSOCIATED QUEUE. 
IT HAS THE FORMAT: 

I 0 1 2 3. 4 5 6 7 8 9 10 11 12 l3 14 15 1 
j - - - - - - - • - - - - - - - - - - - - - - - - - - - - - - ., - - - - - - - - _,_ - ~- ½ - - - - - - - - - -, 

TASK NAME ASSOCIATED WITH QUEUE 0 
1-6 CHARS, CAN CODE 

I 
I 
I 
I 
I 
I 
I I r--------------------·---------------------------------, 

TASK NAME ASSOCIATED WITH QUEUE 1 

I 
I 
I 
I 
I 

I I r----------------------------------------------~--------, 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I r------------------------------•------•--------•------- I I 

TASK NAME ASSOCIATED WITH QUEUE N-1 
I 
I 

(NQ-1)*2+1 :: : r------------------------------------------------------, 
(NQ-1)*2: 

Figure 3.2.8.1.10 Interface Specification for QINIT 

504 

• 

• 

• 



• 

• 

• 

Rl4 - LOCATION OF THE BUFFER AREA, AS PASSED TO QINIT. 

RlS - SIZE OF BUFFER REQUIRED (IN WORDS). 

LDI,8 

REX,MAXIV 

LEASE (4J:4B) 

Rl4 - ABSOLUTE ADDRESS OF THE BUFFER. 

CONDITION CODES AS FOLLOWS: 

NZOC = '0010 -). 
NZOC = '0100 - • 
NZOC = '1000 -• 

PARAMETER ERROR. 
NO ROOM LEFT IN THE BUFFER AREA. 
NO ERROR, NORMAL RETURN • 

Figure 3.2.8.1,11 Interface Specification for LEASE 

505 



3.2.a.1. 5.3 

3.2.8.1. 5.4 

3.2.8.1. s.s 

3.2.8.1.S.6 

3.2.8.1.S.7 

3.2.8.1. 6 

FREE 

See Figure 3.2.8.1.12. 

ENQUE 

See Figure 3.2.8. 1.13. 

DEQUE 

See Figure 3. 2 .8. 1. 14. 

QRST 

See Figure 3.2.8.1.15. 

:SMFIF 

See Figure 3.2.8.1.16. 

Test Requirements 

Testing wiU be perfonned with tes.t .drivers and by data structure 
inspection. Since the number of .cases to be tested is relatively 
limited, this is deemed sufficient. 

506 

• 

• 

• 



• 

• 

Rl4 - BUFFER AREA ADDRESS, AS PASSED TO QINIT. 

R15 - ADDRESS OF THE BLOCK TO BE FREED (AS GIVEN BY LEASE) 

LDI,8 

REX,MAXIV,32 

FREE (#4C) 

RETURNED CONDITION CODES: 

NZOC = '1000 - • NO ERROR. 
NZOC = '0010 - • PARAMETER ERROR 

Figure 3.2.8.1.12 Interface Specification for FREE 

507 



Rl2 - WORD ADDRESS OF BUFFER CONTAINING MESSAGE. 

Rl3 - QUEUE NUMBER (0 -r NQ-1) FOR DESIRED QUEUE. 

Rl4 - BUFFER AREA ADDRESS, AS PROVIDED TO QINIT. 

RlS - LENGTH OF MESSAGE TO BE ENQUED, IN WORDS. 

LDI,8 

REX,MiOCIV 

ENQUE (114D) 

RETURNED CONDITION CODES ARE: 

NZOC = '1000 -~ 
NZOC = '0100 -• 
NZOC = '0010 -,> 
NZOC = '0001 -• 
NZOC = '0000 -• 
NZOC = '0111 -~ 

NORMAL RETURN. 
NO ROOM FOR MESSAGE IN BUFFER AREA. 

PARAMETER ERROR. 
INFLUENCE ERROR (SEE ACTIVATE). 

TASK NOT FOUND. 
NO TCB AVAILABLE. 

Figure 3.2.8.1.13 Interface Specification for ENQUE 

508 

• 

• 



• 

• 

Rl3 - QUEUE NUMBER (O - NQ-1). 

Rl4 - BUFFER AREA ADDRESS, AS PASSED TO QIN IT. 

RlS - USER'S BUFFER ADDRESS TO RECEIVE MESSAGE. 

LDI,8 

REX,MAXIV 

DEQUE (#48) 

Rl4 - REWRNS LENGTH OF THE MESSAGE (IN WORDS). 

CONDITION CODES ON RETURN: 

NZOC = '1000 -;> NO ERROR, NORMAL RETURN. 
NZOC = '0100 -3> QUEUE WAS EMPT¥. 
NZOC = '0010 -;,:. PARAMETER ERROR. 
NZOC = '0001 -~ INFLUENCE ERROR. 
NZOC = '0000 -j> TASK NOT FOUND. 
NZOC = '0111 --3> NO TCB AVAILABLE. 

F.igore 3.2.8.1.14 Interface Specification fer DEQtrE 

509 



Rl3 - QUEUE NUMBER (O - N-1) 

Rl4 - BUFFER AREA ADDRESS, AS PASSED. TO QINIT. 

LDI,8 

REX,MAXIV 

QRST (://4F) 

CONDITION CODES ON RETURN: 

NZOC = '1000 -~ 
NZOC = '0010 - • 
NZOC = '0001 -• 
NZOC = ' 0000 - ',, 
NZOC = '0111 -• 

NO ERROR, NORMAL RETURN. 
PAMMETER, ERROR. 
INFLUENCE: :rm&O.R. 
TASK NOT FOUNU. 
NO TCB AVAILABLE. 

Figure 3.2.8.1.15 Interface Specification for QRST 

510 

• 

• 



• 

• 

• 

CALL QIN! (BUFFR, ISIZE,NQ, !TAB) 
where: 

BUFFR - the area to be used for buffer management; 

!SIZE - length (in words) of the area; 

NQ - number of queues to be managed; 

ITAB - an INTEGER*4 table containing a six-character 

task name (in CAN code) in each 4-byte entry. 

The length of !TAB is NQ. 

LOGICL = LEAS (BUP'PR,NEEDSZ,BUFRTD) 
where: 

BUFFR ,._ 
NEEDSZ 
BUFRTD -

same as above; 
required buffer size, in words; 
the returned subscript of the buffer 
within BUFFR; 

LOGICL - .TRUE. if lease was successful. 

CALL FRE (BUFFR,BUFRTD) 
where both are as described in LEAS. 

LOGICL-= ENQU (BUFFR,LOCBUF,ISIZE,IQ) 

where: 

BUFFR as above; 
LOCBUF - address of message to be enqueued; 

!SIZE - length (in words) of LOCBUF; 

leased 

IQ - queue number (O~ IQ~ NQ) into which to enqueue 

the message; 
LOGICL - .TRUE. if successful. 

-----------------------------------------------------------------------------------

CALL DEQU (BUFFR,LOCBUF,KSIZE,IQ) 

where: 

BUFFR - as above; 
LOCBUF - buffer to receive the next message; 

KSIZE - returned length of the message passed (zero 

if nothing in queue); 
IQ - the queue number from which to get the next 

message • 

Figure 3.2.8.1.16 Interface Specification for BMFIF 

Sll 



3.2.8.2 

3.2.8.2.1 

3.2.8.2.2 

3.2.8.2.2.1 

3.2.8. 2.2.2 

''"Clock" Function 

Purpose 

This function will maintain a stable and accurate universal 

base within the global common area of memory. This (global 

connnon) time base may be accessed by any ot the various tasks 

which are components of the heliostat system. 

Requirements 

Design Requirements 

Section 3.1 of the 10 MWe Software/Firmware Functional Require~ 

ments Specification states the following requirement for the 

"Clock" function: 

Maintain a stable time base. 

Inasmuch as the apparent position of the sun is an important 

assumption of other requirements in the Software/Firmware FRS, 

it is assumed that a "stable time base'' means an accurate representa

tion of UTC (Universal Coordinated Time, same as GMT). 

• 

Derived Requirements 

Section 3.2.1.8 of the 10 MWe Software/Firmware Functional 

Requirements Specification derives the following requirement: • 
Universal time maintenance, using the WWVB Clock as a reference 

standard. 

In order to fulfill both of the Software/Firmware Functional 

Requirements Specification requirements, we derive the folloi.1ing: 

a. The primary requirement is to provide accurate main

tenance of the time data base; 

b. This module, in order to assure accuracy, will execute 

at the highest software priority level allocated to 

heliostat system tasks; 

c, This module must be capable of detecting and reporting 

input errors which may be generated by the WWV device 

or the hardware which interfaces with that device; 

d. In the event of a WWV device error or failure, this 

module must be capable of maintaining (unassisted) a 

stable and accurate time base; 

512 

• 



• 

• 

• 

3.2.8.2.3 

3.2.8.2.3.1 

3.2.8.2.3.2 

3.2.8. 2.4 

3.2.8. 2.4.1 

3.2.8. 2;4.1.1 

e. In the event of a WWV device error or failure, the 
module must allow the operator, after correcting the 
problem, to place the device back on line; 

f. This module is, by nature, time critical and, therefore 
must be coded as efficiently as possible in order to 
maintain accuracy and minimize system overhead; and 

g. Local time (i.e., zone time at the operational loca-
tion) must be maintained. 

Design Approach 

Functional Allocations 

The "Clock" function consists of two component tasks: 

a. Task TOK, which provides/ensures alignment of system 
and WWV time; and 

b. Task TIK, which provides maintenance of global common 
time values and triggers the FCP task into execution 
each second . 

Resource Budget 

This program, when executing, will require use of the following 
system resources: 

a. Software priority levels: TIK - Very high 
TOK - First priority below 

synchronous loop tasks 

b. Core/solid state memory: 400
10 

words (approximate) 

c. System timers: 2 

d. Asynchronous input device: 1 Model 4811 (1 subchannel) 

e. WWV receiver: 1 

Design Description 

Module Structure 

This function consists of two component tasks, the interaction of 
which is graphically represented in Figure 3.2.8.2.1 

TOK - Major Interval Timer 

513 



Figure 3.2.8.2.1 

! 

TASK 
"TOK" 

I TASK 
1 "TIK" 

TASK 
I ''FCP" 

-A 

~ 
I 
V 
A 
T 
E 

7 CONVERTED WWV 
1 DATE AND 
[Ti.ME ... .YALt.iES/ 
I ,- .\ I / 

/,' 

f /i . ,7 r-·. _ _, 
r--· 
I 

i 
. ' 

GLOBAL 
COMMON 
"GTIMEG" 

YEAR 
DAY IN YEAR I 
HOUR IN DAY I 
MIN. lN HOUR i 

SEC. IN MIN. I 

YEAR 

MONTH 

DAY 

HOUR 

i 
i 

TIME QUALITY_ 
DAYS IN GMT 
YEAR 

DAYS IN LOCAt 
MONTH 

'f-- ~ - • 

1 HOURS OFFSET 
1 GMT~ LOCAL l 

t·NUMBER DAYS,; 

1 
IN LOC~-,,-/ 

\ YEiR-·' 
1 ..... ~;',,r' 

Clock Module, Component Task Interaction 

'>14 

GMT 

Local 
time 

• 

• 

• 



• 

• 

• 

3.2.8. 2.4.1.1.1 Description 

a. 

b. 

c. 

d. 

e. 

Language used - MODCOMP MAC assembly language with 

MAX IV REX calls. 

How invoked - Activated by GLKONL (in DBINIT module). 

Constraints and limitations - None 

Processing - The major timer synchronizes the data base 

time to the WWV receiver time. Once a minute, TOK is 

reactivated, reads the WWV receiver (if it is on line), 

updates the data base, and resets itself for execution 

again in one minute. An alarm is issued in the event 

that the time quality factor received from the WWV device 

changes. 

If at anytime the WWV device becomes inoperable, an 

alarm is issued and timekeeping becomes internal. The 

device is still read each minute, however, and if the 

device becomes operable, will revert to normal operation. 

Error messages and recovery - None besides internal time

keeping . 

3.2.8. 2.4.1.1.2 Data, Logic and Connnand Paths 

The useful output of TOK is the global common array GTIMEG. 

is an integer array of the form: 

Address Data System Range 

GTIMEG + 0 Year GMT 1980 - oO 

+ 1 Day-of-year GMT 1-366 

+ 2 Hour GMT 0-23 

+ 3 Minute GMT 0-59 

+ 4 Second GMT 0-59 

+ 5 Year Local 1980 - oO 

+ 6 Month Local 1-12 

+ 7 Day-of-Month Local 1-31 

+ 8 Hour Local 0-23 

+ 9 Time Quality 0-5* 

+10 Days in GMT year 365-366 

+11 Day in Local 28-31 

Month 
+12 Hours offset 0-23 

GMT-local 
+13 Number days in local year 365-366 

NOTE: GMT is Universal Coordinated Time. Local time is 

local zone time, offset from GMT by an integer 

number of hours. 

515 

It 



3.2.8. 2.4.1.1.3 

3.2.8.2.4.1.1.4 

3. 2. 8 .2. 4. 1. 2 

3. 2. 8 .2. 4. L 2 .1 

In addition, bit two of tBUSYG is set to one when TOK is e~ec.µting. 
and reset at exit. 

*Values of indicator are: 

~ Posstb1e .Error 

0 .001 sec 
1 .001 sec 
2 .005 sec 
3 .050 sec 
4 .500 sec 
5 time internal 

Internal Data Description 

The only internal data items are a variable which maintains the 
status (up/down) of the WWV device, and the WWV buffer, which, 
receives the time from the receiver as an ASCII string of the.form: 

<CTLA)DDD:HH:MM:SSQ<CR)(LF) 

where (CTI.A) is Hex 1, (CR) is Hex DJ, and (LF> is Hex A. 
"Q" is a time quality i.ndication cha.fl;lcter. 

Flowcharts 

See Figure 3.2.8.2.2 for the TOK flowchart. 

TIK - Minor Interval Timer 

Description 

a. Language used. - TIK is to be written as MODCOMP II 
assembler code inline within a FORTRAN routine. AU 
REX calls shall be MAX IV compatible. 

b. How invoked - Activated by TIMEUP (in DBINIT module). 

c. Constraints and limitations - None. 

d. Processing - TIK is resumed once a second by a MAX IV 
delay REX. Upon.resumption, time in GT:rnEG is advanced 
once second. If FCP is inactive, it is resumed. 

e. Error messages and recovery - None. 

• 

3.2.8. 2.4.1.2.2 Data, Logic and Comm'3nd Paths 

See Section 3.2.8.2.4.2.2 for description of the global data 
base.affected by TIK. 

Bit three of TBUSYG is used to indicate Til<: ac,tivity. 

516 

• 



• 

• 
Ye,) E.r- nJ r > ------···-----,"' ..., // 

"~ .. 

I F,· -, { 

I GftME..C:,, 

• 
2 2 TOK Flow Figure 3 • 2 · 8 • · 

517 



• 

• 

• 
Figure 3.2.8. 2.2 TOK Flow (Cont'd) 

5,lS 



• 3.2.8.2.4.1.2.3 

3.2.8.2.5 

3.2.8.2.6 

• 

• 

Internal Data Description 

There is no data internal to this function. 

Flowchart 

See 1"1gure 3.2.8.2,'l for tlw TTI<. f".lowchart. 

Interface Description 

TIK and TOK have a single hardware interface (the WWV receiver) 
and several software interfaces (the GTD1EG array, TBUSYG bits, 
and alanns). All have been detailed above. 

Local time accuracy, as reflected in GTD1EG, presumes that 
GTJMEG has been initialized correctly at some time previous. 

Time is maintained to within! 1 second as long as the WWV device 
is available. On internal mode timekeeping, system clock drift 
(guaranteed to within 45 seconds per day, or about .05%) may 
occur. 

Test Requirements 

A special test program, THACK, will alias as FCP (triggered by 
TIK) and allow the current values of GTIMEG to be displayed for 
comparison to the WWV clock. 

Testing TIK and TOK should be for an extended period (approx
imately 12 hours) on both computers, both with and without the 
WWV receiver in operation • 

519 



I 

1A+;1 
V 

Figure 3,2.8.2,3 TIK Flow 
52:(} 

• 

• 

• 



• 

• f r~~-~~e ni" 
I yeo.r (6-t5) 

! C'.s tii>+- i 

• 
Figure 3.2.8.2.3 

521 

@}zl 
'( __ ~ 

:r n (( e (Y\ lUYt-

da.1J C &t t) 
! G·tJ.~ ~ 
l 

l,,____ ••••• -,,,._., •--..--,rv•'" 

TIK Flc,w (Cont'd) 



3.2.8.3 

3.2.8.3.1 

3.2.8.3.2 

3.2.8.3.2.l 

3. 2. 8. 3. 2. 2 

3.2.8.3.3 

3.2.8.3.3.1 

3.2.8.J.3.2 

3.2.8.J.4 

3.2.8.3.4.1 

Receiver Trip 

Purpose 

The Receiver Trip function will kePp a bit in the incore daNi 
ba1,e (here.in identifieJ as the receiver trip bit (RTB)) updated, 
ref lee Ling the staluH of the receiver tri.p signal. It will also 
aler·t MMI whenever the signal is raised. 

Requirements 

Design Requirements 

Paragraph 3. 3. 1. 1. S of the Software/Firmware Functional Require
ments Specification states: 

"The HAG receives two signals (one the inverse of the other) 
from the Receiver System. One signal causes an emergeficy 
Defocus action; its inverse will allow an operator DeH>cus
Release action." 

Derived Requirements 

We assume that the signals mentioned are TTL compatible logic 
levels, one indicating (when high) that the Defocus action is 
desired; the other (when high) that the release is possible. 

• 

The Receiver Trip module shall keep the RTB bit current, thus • 
allowing the command interface to validate any Defocus Release 
command. Receiver Trip shall also inform the interface explicitly 
of the signal transition of receiver trip to high state (farce 
Defocus). 

Design Approach 

Functional Allocations 

There will be three parts to the receiver trip module: two tasks 
and an initialization routine. Each of the two signals will be 
wired to separate external interrupt levels in the MODCOMP CPU 
(levels 1/9 and I/A). The initialization routine (further described 
in the DBINIT module) will CONNECT the interrupt levels to the 
handlers, enable the interrupts, check for proper state initializa
tion, and report trip status. 

Resource.Budgets 

Memory -·zo words 

Timing - less than 100 microseconds/activation 

Hardware Interrupts - 2 (1/9 and I/A) 

Design Description 

Module Structure 

The Receiver Trip module consists of two interrupt activated 

. S.22 

• 



• 

• 

3.2.8. 3.4.1.1 

3.2.8. 3.4.1.1.1 

3.2.8. 1.4.1.1.2 

submodules. One submodule is activated when the receiver trips 

and the oth~r is activated when the rl'cl'i.ver returns to normal. 

Submodule I - RTH 

Description 

a. Language used - MODCOMP assembly 

b. How invoked - when interrupt occurs on hardware level #9. 

c. Constraints and limitations - the receiver signals that 

are wired to the MODCOMP interrupt levels must be opposite 

for tasks RTH and RTL to successfully operate. If they 

are both high then the system will "hang" in a high 

priority loop. If they are both low then neither RTH 

or RTL will be activated. 

d. Process:!:!!_g - upon activat:l.1111 by au interrupt on ls've] 119. 

task RTH will set the receiver trip bit (RTB) of CPUSG. 

It will then check to determine if the initialization 

successful bit (RTOP) is set. If the bit is set, then a 

DEFOCUS command will be Enqued to the MANMIF module. If 
the bit is not set, RTH will set the bit to indicate 

successful initialization, disable level #9, enable 

level #A and exit. If a DEFOCUS command was Enqued to 

the MANMIF module and was successful the RTOP will be set, 

level #9 disabled, level #A enabled and RTH will exit. 

If the Enque to MANMIF was not successful, it will be 

tried once each second until successful. 

e. Error messages and recovery - None 

Data, Logic and Command Paths 

Input data: 

Global common word CPUSG 

Output data: 

Global common word CPUSG 

4 5 

1

~1 ~ 
B. 0 

!p 

CPUSG 

RTB - receiver trip state - 0 - receiver trip signal low 

1 - receiver trip signal high 

RTOP - initialization successful flag - 0 - receiver not 
operational 

1 - receiver operational 

523 



3.2.8. 3.4.1.1.3 

3.2.8. 3.4.1.1 .• 4 

3.2.8. 3.4.1..2 

3.2.8. ].4.1.2.1 

3.2.8, 3.4.1.2.2 

3.2.8.3,4.l.2.3 

3.2.8.3.4.1.2.4 

3.2.8. 3.5 

3.2.8.3,6 

Internal Data Description 

There is no data internal to this function. 

Flowchart 

See Figure 3.2.8.3.l 

Submodule II - RTL 

Description 

a. Language used - MODCOMP MSA Assembly Language 

b. How invoked - when interrupt occurs on hardware leve1. #A. 

c. Constraints and limitation~ - same as RTH 

d. Processing - upon activation by an interrupt on level #A, 
task RTL will reset the receiver trip bit (RTB) and will 
set the initialization successful bit (RTOP). It will 
disable level #A, enable level 119 and exit. 

e. Error messages and recovery - None 

Data, Logic and Command Paths 

Input data: 

Global common word CPUSG 

Output data: 

Global common word CPUSG 

Internal Data Description 

There is no data internal to this function. 

Flowchart 

See Figure 3.2.8,3.2 

Interface Description 

The hardware interface consists of connection of the proper TTL 
signals to the HAC. The software interfaces are two: The RTB and 
RTOP bits shall reside in global common, accessible to all, and 
the R/T high handler shall deliver the ASCII message "DEFOCUS" 
to the MMI module through the REX service "ENQUE", through queue 
number O. 

Test Requirements 

Testing shall be performed to test the reaction of the Receiver 
Trip module in the following cases: 

• 

• 



• 

• 

• -~. 

:F ' l I I :U, I 
: Yl r..t o ! r r r II!" , .~ ! 

' -. -- ·r·--- . i 
~ __ J,,,' 

FigurJ 3.2}8.3.l 

525 

j
'"" ____ ,,_,, ---

f /,. •;- ' 
-- ••• I (' ( .. ~ I 

- · I , ') 1 , .I, '.:./! ,· ,".\ r, ! 
I 

I 
L 

Flowchart - RTH 

. I 
----·-----.------···--·---J 

,1,. 
(/:\) 



• 
(~~--~---__________ .,, 

• 

• 
Figure 3.2.8. 3,2 Flowchart - RTL 



• 

• 

• 

Condition . . 

Both signals low 
RT high, RTNOT low 

RTNOT high, RT low 

527 

~_2<_p~_c;ted results 

Error message from initialization 
DEFOCUS on, command to MMI on 

transition 
DEFOCUS off 



3.2.8.4 

3.2.8.4.1 

3.2.8.4.2 

3.2.8.4.2.1. 

3.2.8.4.2.2 

3.2.8.4.3 

3.2.8.4.3.1 

Switching Function 

Purpose 

The purpose of the switching function is to prepare and main
tain the data bases in the backup machine in the event of 
switchover. It must establish and handle the CPU to CPU 
communications,' mon:ltor switchover criteria and initiatt\ and 
control switchover when it does occur. 

Requirements 

Design Requirements 

The following .paragraph from the 10 MWe .Software/Firmware 
Functional Requirements Specification (FRS) states the basic 
switching requirement: 

"3. 1. d. Maintain a "Backup" system by providing redundant 
field communications and providing data transfer 
sufficient to allow one-way "Backup" fail-over 
with tninimal degradation;'' 

Derived Requirements 

The FRS further states: 

"3.2.1.8 f. Monitor status between computers to deter
mine if the "Backup" should take over; 

g. Perform peripheral switching when necessary;" 

Functionally, these three requirements frotn the FRS may be re
stated: 

a. Establish and maintain communications such that the 
backup system is able to perform the complete HAC 
task with minimum disruption in the event of switch
.over; 

b, Sense failure of the prime system and initiate and 
cohtrol CPU and peripheral switchover; and 

c. Prevent irlterference from a failed prime system. 

Design Approach 

Functional Allocations 

The SWITCH mGdule contains four functional parts--the DBIB.CK 
subroutine (called by the DBI task) which initializes the 
prime and backup configuration and CPU-CPU communications, 
the SWI task, which performs periodic data base update and 
switchover, and the failover interrupt handler. 

DBIBCK is discussed under the DBINIT module. 

• 

• 

• 



• 

• 

• 

3.2.8.4.3.2 

3.2.8.4.4 

3.2.8.4.4.1 

3.2.8.4.4.1.1 

3.2.8.4.4.1.2 

3.2.8.4.4.1.2.1 

3.2.8. 4.4.1.2.2 

Resource Budget 

Code - SWI and handlers - 500 words (approximately) 

Timers - SWI will use one. 

Design Description 

Module Structure 

DBIBCK will be a subroutine called by the DBI task. SWI 
will be a standalone task, while the failover interrupt handler 
will be loaded as part of the MAXNET operating system. 

DBIBCK (see Section 3.2.7.4.1.21 within the description of the 
DBINIT module). 

SWI 

Description 

a. Language used - MODCOMP Assembly Language 

b. How invoked - activated by DBI within the DBINIT module. 

c. Constraints and limitations - the switching task performs 
switching in only one way; after switchover is performed, 
no further action is performed except to monitor the 
Peripheral Control Switch (PCS) status. 

d. Processing - This routine is a periodic task which 
writes selected parts of the data base to the backup, 
scans for switchover criteria, and issues alarms based 
on abnormal PCS status sensed by the PCS handler. If 
SWI is in the backup CPU, it will read the CPU-CPU link 
for current data base, waiting for switchover criteria. 
If switchover is sensed, the PCSs are demanded, the PR 
& SW bits in CPUSG are set, a failover interrupt is 
issued to the former prime machine, an alarm is issued, 
and SWI permanently exits. 

e. Error meSSE,$!=:_1:i and re~_ove.r_y - SWI issues the following 
error condition warnings: 

BACKUP HAS FAILED 

SWITCHOVER HAS OCCURRED 

There is no recovery from either; they are for information 
purposes only. 

Data, Logic and Command Paths 

Global common directly used by SWI include the words CPUSG and 
SWOVG. 

CPUSG (never transferred to backup): 

529 



3.2.8.4.4.1.2.3 

3.2.8. 4.4.1.2.4 

3.2.8. 4.4.1.3 

3.2.8. 4.4.1.3.1 

Bit 

PR 

SW 

BR 

FS 

RT, 

0 1 2 3 4 5 12 13 14 15 

R R B ~ !Hts 0-3 T 'I' F I 

Unused 0 s R w R 
p 

, __ •------ ----------·----- -·----. -- ___ ,.,. 

RTOP 

Description 

Set by DBICPU to indicate that this machine is the 
prime. Also set by SWI when changing the backup 
machine to prime status during switchover. 

Set in the backup computer to indicate that switchover 
has occurred. 

Set in the both computers to indicate that there is an 
operational backup ready in the event of switchover. 

Set in prime or backup computer by any task which wishes 
to force a switchover to occur. 

Used by the Receiver Trip Function 

SWOVG: (1 second transfer rate): 

0 

0 

SW 

14 15 

0 s 
w i 

Set by SWI in the prime machine, this bit commands the 
backup CPU to initiate switchover. 

Internal Data Description 

There is no data internal to this function. 

Flowcharts 

See Figure 3.2.8.4.1 for the SWI flowchart. 

Failover Interrupt Handler 

Description 

a. Language used - M5A Assembly Language 

b. How invoked - Directly Connected Interrupt (Level 117) 

c. Constraints and limitations - None 

d. Processing - the failover interrupt is sent by the SWI 
task in the backup CPU to the prime CPU to indicate that 

• 

• 

• 



• 
-~,,. 

• -

•-

---- ------------------------------~ 

( ~)(J)J__ __ ) 

--T-
---1 

' '(.,; :,·, 1') , 

)_J 
/\~D 

r •-------- J:{n __ ., .. ~ 
I <.' I_ • I _y1-J tJ;T '" 

I --: 6'J 5'( :::,· I 

t I . - ___I 

:s;~·,:~r·:;;·--~~/ ~,, k,;,:-; ;~~c:;;·• 
' , ' L c::, ''(,;g, r ' ) r ". No I ' ' I I ' 'fl' ~ 
1rJ1•r ,, ,·_,';-' , ,r, fl''' t'./ ;.,--~•,,>1•• 

I '. ',, -~ // ! 
l - ",✓ '. r------

1 

f f!.~;r-~ , .. 1 •1 1 n i t,:,1:;.·. j 'De l11 v ·)(1,1 n ~/\_ 
, I 

I
D,_l.oy ~-- ~-~(0r,d 

:::~-4 c,,--n":!E,vYr 

L_ r-
/ I 

,,·[,.)~) 't•·;·,~'i,_,'tJ( ... ,. ~- Q 

~-,. ·,i,,-•c:·:,.J, / :~- ·71 '"' '). _.-· 

r

--- .,_ J'(~~-
;.:;e+ ~1; d~ici1c)•J,,.,-

r;:;:;··:;,·+• ""' . 
I 'f'• d,. -l1' I 

:---~- .. , -- . _I 

! l 
i,i ,,/' 
~ .,.,,,, 
i r.lo/~ 
~- ~ r?r-r,m •f'o, :ure ;, 

/,/ 
' ,, 

' ,<i,.. 

l.1.,. t_ :~_' -7 
I Ale, r ff : fmr ~-,D ,_ 
I I I / 

' ~o,!ua ~----~ 
i "-

. I 

--· ,.J 

i. " I 
! 1_1 C,, 'n r '\-,~•:, ~:. 

1 

.,,----- l 
( /1 ) j\ I" 

__ ( __ 
/~ ( e,) 

'·· •.. ., .,,tl 

\. 
1' 

I 

Figure 3.2.8,4.1 
1

Flowchart - SWI 

i l"' • r l 

1 •· i' ·•.-·v-.,,,•et· \~-'-' ' , .. 

I i~b (~-
-------i~- -- ·-- ... 

r
-C I e o r t "':, ; ~ _--
:t: 'J.:·, ( ':, 

L _______________ l . 

! 

I 
I 

.J 



3.2.8.Li.4.1.J.2 

3.2.8.4.4.1.3.3 

3.2.8.4.4.1.3.4 

3.2.8.4.5 

3.2.8.4.6 

it has taken over the prime's functions and causes 
the prime CPU to drop out of the control system. 

e. Error messages and recovery - None 

Data, Logic and Comrnan<l Paths 

None 

Internal Data Description 

There is no data internal to this function. 

Flowchatt 

See Figure 3.2.8.4.2 for the Failure Interrupt Handler flowchart. 

Interface Description 

The primary interface with other software modules is via th<~ 
CPUSG word, of which bit 15 indicates whether the software is 
in the prime or the backup CPU. At switchover, this bit in tlie 
backup GPU will be set, and the ap-pli.cations software will 
operate in the primary mode. 

Hardware lnterfact'! for the PCS lntEirrupt Handler is through tlte 
MAX.NET operating system. 

Test Requirements 

Testing of the SWITCH function shall be performed through failing 
of various hardware components during integration testing. In 
particular, correct functioning will be verified in the following 
cases: 

a. Failed prime CPU; 

b. Failed backup CPU; 

c. Failed 4824 output (from prime CPU); 

d. Failed 4824 input (to prime CPU); 

e. Failed field communications in prime CPU. 

f. External setting of the prime CPU's FS bit in CPUSG . 

• 

• 

• 



• 

• ;\!1tP(f'u~t 
' 

• ~ 
Figur~ 3. 2. 8. l+. 2 Flowchart - Failover Interrupt Han<il.e1: 

533 



3.2.9 

3. 2. 9. I 

3.2.9.2 

3.2.9,2.1 

3.2.9.2.2 

Graphics Display Processor Module (GRAPHC) 

PurpoFw 

The purpose of the Graphics Display Processor Module 
(GRAPHC) is to provide the functional interface with the 
Chromatics CG1999 intelligent color graphics systems in a 
command/response protocol. This module is software struc
tured into one task (GRF) consisting of three submodules. 
GRAPHC includes the following functions: 

a. Reading requests from the Graphics processor and 
returning data to support the current display; and 

b. Reading messages from the Graphics requesting a High.
Wind Stow or Defocus. 

RequirementH 

Design Requirements 

Software Requirements Hsted in Section 3.1 of the 10 MWe 
Collector Subsystem Software/Firmware Functional Requirements 
Specification (FRS) dated 12 June 1980 that apply to the 
GRAPHC module are: 

a. Control of up to 2048 heliostats in all modes required 
to operate the he Ho.stats; 

b. Monitor and display the operational status of all 
heliostats; 

c, Provide graphic displays of the heliostat field or 
field segments; and 

d. Provide data transfer to the Chromatics Graphics Termin
als sufficient for display of a finite number of 
graphic displays of the heliostat field or field seg
ments and supporting alphanumeric information, 

Derived Requirements 

Section 3. 2. 1. 9 of the FRS, states the following .requirements 
for the Graphics Display Processor Module (GRAPHC): 

a. Provide the functional interface with the graphics 
system in a command/response protocol; 

b. Provide the graphics system with sufficient data for 
graphics displays; 

c. Accept High ... Wind Stow (STHIWIND) and DEFOCUS commands 
from the CS control room graphics function switches; 

• 

• 

• 



3.2.9.3 

• 
3,2.9.3.1 

• 

d. Output data to the Chromatics Graphics Terminals 

only when reque:-,ted; and 

e. Tnterfact~ wl.Lh the Cl1romaUc; Craphlcs Termlnali-; 

through two cllstlnct Dunl Asynchronous Communication 

Channels ( 1/4811). 

Design Approach 

The Graphics Display Processor (GRAPHC) is composed of one 

asynchronous task (GRF) which is activated by the External 

Interface Module (EXTINF) or by self activation (via DEQUE). 

Figure 3.2.9-1 displays the functional interface diagram of 

the two Chromatics CG1999 graphic systems, the External Inter

face Module, the Man-Machine Interface Module, and the sub

ject. Graphics Display Processor Module. Command messages 

originate in the Chromatics CG1999 and are read. by the External 

Interface Module. The External Interface Module checks for 

an emergency command from the CS control room graphics con

sole and, upon receipt, the emergency command is placed into 

the Man-Machine Interface emergency command queue. Otherwise, 

the incoming message is source tagged and queued for the 

Graphics Display Processor. The command messages received 

by the Graphics Display Processor are shown in Tables 3.2.9-I 

through 3.2.9-IV. Detailed discussion of these messages and 

their resultant action by the Graphics Display Processor is 

given in the following subsection. Figure 3.2.9-2 exhibits 

the functional allocation of the graphics task (GRF) into 

three submodules. 

Functional Allocation 

GRAPHC is comprised of three submodules. The basic purpose 

of each submodule is briefly described in the following para

graphs: 

a. GRF (Graphics Display Processing Task) - dequeues a 

command message from the graphic's queue, and deter

mines the message's source and type. The message 

type indicates what action GRF is to perform, and 

the source indicates where to send the action taken. 

Listed below are the message types received and the 

action taken: 

1. Message type 1 (Table 3. 2, 9-1) - Emergency 

Hlgh-Wfod Stow (WTHIWIND) or DEFOCUS command 

from the Engineering Evaluation Room results 

in establishing an ASCII error message 

(Tabl~ 3.2.9-V) for the requesting source . 

2 .. Message type 2 (Table 3.2.9-II) - Resetting 

· the Chromatics Terminal results in estab

U.shing a reset message (Table 3.2. 9-VI) 

for the requesting Chromatics Processor. 

535 



" f 

) 

High~Wind Stow or 
Defocus command 
from CS control ~. 

) 

All command messages from 
__ Chromatics, except Emergency 

i command from CS control room. 

} 

room only ___ \ ..-------~_.,-... _~_ ·-~·-
!External 

'Interface 

I----·~ 
/ :Message 

I I I 

r-----·-·--···· -·-
i Graphics 
: 

Display 
Man-Ma;~~:-1 7 \ 
I t f 

t ~mergency)_· 
n er ace I v i 

1 t.essage , f ~ueue for~ \ • (EXTINF) 

1 1Queue fo~ 
; 4raphics ~ )l Processor (MANMIF) 

(DEQUE) t!ANMIF i (ENQUE) [(ENQUE) I l(DEQUE) ' (GRAPHC) 
' I 

L---~-l 

' \ : I 

l , 
L, ___ ___J 

~~ 

// \ '-.~ 

J 
' '-. / 

/1, 
,/ J\ 

,./ ii, 
' 

\ ·---....__ 

command messages \ ~ / .,,. 

\ 
/ , ,,,,. ' 

\ // ; 
. , 

, Status data 
L for display 

or ASCII text 
from the Chromatics \ /~ · 

\ ~ , 
~---~ --·-, ·-·--- ll_ ··-7 

,Chromaqcs 
CG1999 
Graphics 

i_System #1 

(Engineering 
Evaluation 
Room) 

Figure 3.2.9-1 GRAPHC Functional Interface Diagram 

,Chromatics 
iCG1999 
fGraphics 
1system #2 __J 

(CS control 
Room) 

• • • 



• 

• 

• 

Table 3.2.9-I GDC-IIAC CDC Command 

MESSAGE LAYOUT 

APPLICATION GDC-HAC 

PROGRAMMER: D, Pettit 

s 

0 

s 

2 

2 

3 

Emergency 

Message 

1 

2 

3 

537 

MESSAGE TYPE : GDC Command 

DATE: June 9, 1980 

ASCII Message byte count= 1410 

ASCII 

Position 4-13 contain either: 

GlOSTHI~~~ or, 

Gl0DEF0~~~-

NOTE: Byte positions 4-13 contain 
the emergency message for 
MANMIF in tbe expected format 



'T'nhle 3,2.9-II GDC-HAC GDC Command 

MESSAGE LA YOIIT 

APPf.JCATION ; GDC - HAC MESSAGE TYPE : GDC Command 

PROGllMolMER: D. Pettit DATE: June 9, 1980 

Header Byte 11-------e 2 = Reset 

5 5 

0 1 

s 

2 

2 ' 

3 3 

• 

• 

• 



• 

• 

• 

Table 3.2.9-III GDC-HAC CDC Command 

MESSAGE LAYOUT 

APPLICATION : GDC - HAC MESSAGE TYPE : GDC Command 

PROGitAMMER : D. Pet tit 

te 

5 Segment 5 

0 1 

5 

2 2 

,. 

30 

DATE ; ,Jpne 9, J 9BO 

3 = Full field or segment 

ASCII Message byte count 

Position 4 -f, contains segment number 
being displayed. Segment number 
000 implies a full field display. 

539 



Table 3. 2. 9-IV GDC-HAC' Command 

MESSAGE LAYOO'l 

• Affl,I@TION . : . GDC-:-HAC MESSAGE TYPE : GDC Command 

PBOGIWfHER : Ps Pettit DATE : June 9; 1__980 

s s 

0 1 

'• s 

2 ,. 

3 

• 



• 

• 

• 

[::r:i:" c:::::: :c, 
, I 

j and data retrieval · 
L. -- . ·••o-· • - • •-

l 
I 

I 
Retrieval and forma~, 

send data for a l 
I segment __ dis_P_:~~ _____ _ 

I 

1 _.,...... ,. ••• ,. . -·····~···-·--1 
GRFFLD_, .. ., 

I 

Retrieve, format, I 

rand send data for I 
I a full-field displat 
L 

Figure 3.2.9-2 Functional Allocation of the GRF Task 

541 



I 
I 

Table 3.2,9-V HAC-GDC Text Message to CDC 

MESSAGE LAYOUT 

• APPLICATION : HAC-GOC MESSAGE TYPE : · Text message to GDC 

PllOGB.AMMER: D. Pettit 

5 

0 

s 

2 

2 

3 

ASCII 
Message 

• 

1 

,. 

DATE : June 10, 1980 

3 = Text message 

bit O=l, bits 1-7 binary value 

bit 0=1, bits 1~7 binary value 
(1-80) 

bi ts 0-7 ASCII code 

• 

• 



• 

• 

• 

Table .3.2.9-VI HAC-GDC Graphics Initializat.ion 

MESSAGE LAYOUT 

APPLICATION : HAC-GDC 

PROGRAMMER : D. Pettit 

eader b te 
Terminal ID 

s 5 

0 l 

5 

2 2 

7. 

3 3 

MESSAGE TYPE : Initialize Graphics 

DATE: June 10, 1980 

4 - Set graphics terminal ID 
Bit 0=l, Bits 1-7 binary 410 

~Bit O=l, Bits 1-7 binary value 
where 

543 

0 = CS Control Room 

1 = En5ineering Evaluation 
Room 



3. Message type 3 (Table 3. 2. 9-III) - Request • 
status information for either a full-field 
display or a segment display, results in 
establishing e.i ther a full-field status• mess-
age (Table 3.2.9-Vll) or a segment status 
message (Table 3. 2. 9-VIII) - A segment numbt•r 
of zero implies send a full-field status; 
otherw.lse the segment number states which 
segment dh;play is actlve. Po:lnters, courtt'ets, 
and source indicators are initialized to 
support the graphics request. 

Note that the above three commands do not result in 
any direct output to the graphics processors, but 
they establish the response to be output upon receipt 
of the next message. 

4. Message type 4 (Table 3.2.9-IV) - Send the 
next data or text stream to the Graphics Dis
play Processor. Receipt of this message results 
in output being sent to the requesting graphics 
terminal. If a full-field status was requested, 
submodule GRFFLD d::s called to output the one
eighth of field status from the global common 
array, GRSTSG. If an individual segment status 
was requested, the submodule GRFSEG is called • 
to output the status information required to 
support the currently active segment display. 
Otherwise a text. message is output to the 
grapM cs. 

This submodule dequeues one and only one command per 
activation. This implies that upon activation only 
one of the two graphics terminals will receive data, 
but only when the dequeued message is a type. 4 command 
(send next message). 

b. GRFFLD-submodule supplies status for one-eighth •Of .a full 
field. Formal parameters indicate for which one-eighth 
of the field to send status information, and another 
formal parameter specifies the destination. This sub
module extracts status information from the global 
common array GRSTSG and packs it into the message for
mat shot-min Table 3.2.9~VII. After the message is 
formatted, it is output to the requesting graphics 
P'rocessor. 

c. GRFSEG - submodule supplies status data for the present
ly active segment display. Inputs, via the formal para
meter Jlst, are the total number of heliostats for status
ing, starting pecking-order number, source designator, 
and the segment number. The total number of heliostats • 
must be positive and less than or .equal to 21. The 
pecking-order number must be positive and less t.han or 



• 

• 

• 

Table 3.2.9-VII HAC~GDC. Full Field Status 

MESSAGE LAYOU't 

APPLICATION HAC-GDC 

PROGRAMMER D. Pettit 

s 5 

0 1 

5 

2 2 

MESSAGE TYPE : HAC Full Field s;·atus 

DATE ; June 9 ~ 1280 

Bit 0=1. Bi.ts 1-7 binary 110 
Bit 0=l, Bits 1-7 binary 110 to a10 
Bit 0=l 

Bits l to 7 Binary Heliostat Status 

-1 = not installed 

1 = Track 

2 = Standby 

3 = BCS 
4 = Transition 

5 = Stow 

6 = Alternate 1 stow 

7 = Alternate 2 stow 

8 = Mark 

9 = Directed Position 

10 = Wash 

11 = Initialization 

12 0ffline 

Each status byte corresponds to 
each of the heliostats in order 
of the HFC-HC polling 

545 



3.2.9.3.2 

3.2.9.4. 1.1 

3. 2. 9. 4.1.1.1 

equal to 50, and the segment .number must be a valid 

segment designator. This submodule uses the formal 

parameters to process the segment's lwliostats 

through the segment-to-he1iostat mapping arrays, 

SEGPTG and SEGMPG. Once the heliostat number is ob

tained from the mapping, the present azimuth angle 

is obtained from the array AZH1G and the elevation 

angle is obtained from the array ELEVG. The present 

aim-point values and designator are obtained from the 

global array A1MPTG. The present status is obtained 

from the global common array GRSTSG. After all the 

information for a heliostat is collected, it is for

matted and placed into the message format shown in 

Table 3.2.9-VIII. This procedure repeats for the 

total number of heliostats requested. When the 

entire message is built, it is output to the request

ing graphics processor. 

Resource Budgets 

GRAPHC uses approximately 2000 (estimated) words of memory. 

It is a low-priority module in the HAC system. It requires 

two Chromatic 1999 intelligent graphics consoles each inter

faced to the MODCOMP through individual 4811s. One message 

queue is required to interface with the External Interface 

Module. 

Submodule I - GRF (task) 

Description 

a. Language used - FORTRAN 

b. How invoked - Activated by Enque in External Inter

face Module (EXTINF) or Deque in Graphics Display 

Module (GRAPHC). 

c. Constraints and limitations - To support a segment 

graphics display, this task requires up to three 

activations to supply the full data stream. 

d. Processing -

1. Set TBUSYG bit for Graphics and, dequeue a 

message from the Graphics Processor. 

2. Store the device number N, and store the 

message type number in local variables. 

3. 

4. 

If the message type number is one, set message 

code 1 word for device N, and go to step (32). 

Otherwise, go to step (4). 

If the message type number is two, set message 

• 

• 

• 



• 

I 
I . 

• 

• 

Table 3.2.9-VIII IIAC-GDC BJ\C Segment Status 

MESSAGE LAYOUT 

APPLICATION, HAC-GDC MESSAGE TYPE: HAC Segment Status 

PROGRAMMER: P, Pettit DATE June 9, 1980 

1-,,1..JJ~lw:L~ll----JU..t---,2 = Segment updating 

0 

5 

2 

3 

NORTH) 

bit 0=l, bits 1-7 binary 210 
bit 0=1, bits 1-7 binary value 

bit 0=l, bits 1-7 binary value 

bit 0=-1, bits 1-7 binary value 

bit 0=l, bits 1-7 are bits 0-6 of Az wor 

bit 0=l, bits 1-7 are bits 7-13 of Az WO 

same format as azimuth 

)bit 0=l, bits 1-7 are bits 
~it 0=l, bits 1-7 are bits 

4-10 of AP 
11-17 of AP 

AIM POINT 
---- same format as North Aim Point 

(EAST) 

AIM POINT 

UP 

same formht 
s above 12 bytes · 
or the next HC 
in pecking order 
shown in dashed 
line on left) 

2 

,. 

__ ..,. Repeat up to 21 total HCs in pecking 
order (less than 258 bytes) 

d 



code 2 word for device N, and go to step (32). 
Otherwise, go to step (S). 

5. If the message type number is three, go to step 
(6); otherwise, go to step (14). 

6. Get the segment number from types 4 to 6 of 
the message. 

7. If the segment number is zero, set message code 

4 word and clear message code 3 word, both for 
device N. Set the one-eighth of field courtter 
to one for device N, and go to step ( ). Other
wuse, go to step (8). 

8. Get the number of HCs in the segment from 
global common. 

9. If the number of HCs is zero or the segment 
number is invalid, go to step (32). Otherwise, 

go to step (10). 

10. Set the number pf NCs sent to zero for device N. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

Set message code 3 word and clear message code 4 

word, both for device N. 

Retrieve the segment aim-point number from 
global common. 

Store the aim-point number for device N, and 
go to step (32). 

If the message type number is four, go to step 

(15); otherwise, go to step (32). 

If message code word 1 is set for device N, 
write an error message to device N, clear 
message code word 1 for device N, and go to 
step (32). Otherwise, go to step (16). 

If message code word 2 is set for device N, 
write the graphics reset message to device N, 
clear message code word 2 for device N, and 
go to step (32). Otherwise, go to step (17) 

If message code word 3 is set for device N, go 

to step (18); otherwise, go to step (29). 

Compute the number of HCs to send data for 
(number of HCs minus the number of HCs data 

• 

• 

19. 

output for), for device N. • 

If the number of HCs to send data for is greater 

than 21, go to step (20); otherwise, go to 
step (24). 



• 

• 

3.2.9.4.1.1.2 

• 

20. Compute the starting pecking-order number 

for device N. 

21. Increment the number sent by 21 for device N. 

22. Set the number to output to 21 for device N. 

23. Set the corresponding HC numbers for device N 

into a buffer, and go· to step (28). 

24. Set the number to output equal to the number 

to send for device N. 

25. Set the number sent for device N to zero. 

26. Set the HC numbers for device N into a buffer. 

27. Compute starting pecking-order number. 

28. Call subroutine GRFSEG to output the segment 

display data for up to 21 HCs, and go to step 

(32) • 

29. Call subroutine GRFFLD to output one-eighth of 

the full-field status to graphics processor 

device N. 

30. Increment the one-eighth of field counter for 

device N. 

31. If the one-eighth of field counter is greater 

than or equal to eight, set the one-eighth of 

field counter to one, and go step (32). Other

wise, go to step (32). 

32. Clear TBUSYG bit and EXIT this task. 

u. Error messages and recovery - Invalid segment numb<:.'r dts

play requests result in no data output from this task. 

Receipt of a High-Wind Stow or Defocus command results 

in the error message: 

EMERGENCY COMMAND NOT ALLOWED FROM THIS CONSOLE 

An invalid message type from either graphics processor 

results in no data output to the graphics processor. 

Data, Logic and Command Paths 

Input data: 

Graphic's messages from message queue tagged with a source 

code. 

Output data: 

a. Reset message to a graphics processor; and 



3.2.9.4.1.1.3 

3.2.9.4.1.1.4 

3.2.9.4.1.2 

3.2.9.4.1.2.1 

b. ASCII text message to graphics processor. 

Global Common: 

a. SEGMPG (segment mapping); and 

b. SEGPTG (segment pointer). 

Internal Data Description 

Two-word arrays are utilitized to keep track of the internal 
command codes, counters, and buffers, and the two words corres
pond to the two graphics processors. The ASCII test message 
is initialized in a Data Statement, and most of the reset me::;s
age is initialized in a Data Statement. 

Flowchart 

See Figure 3.2.9-3 for the GRF flowchart. 

Submodule II-GRFSEG 

Oescription 

a. Language used - Fortran 

b. How invoked - Subroutine call by GRF 

c. Limitations and constraints - Output buffe.r can only 
accommodate segment-dispL1y data for up to 21 helio
stats. 

d. Processing -

1. Fill word 1 of the message buffer with the 
Header byte and aim-point number byte. Set 
the leading byte bits on. 

2. Initialize two counters, I (HC counter) equal 
to one, and J (message word counter) equal to 
two. 

3. Fill message word J with the pecking-order num
ber and HC status. Set the leading byte bits 
on. 

4. Fill message word J+l with the high-order 
azimuth bits and the low-order azimuth bits. 
Set the leading byte bits on. 

5. Fill message word J+2 with the high-order 
elevation bits and the low-order elevation 
bits. Set the leading byte bits on. 

• 

• 

• 



• 

• 

• 
Figure 3.2.9-3 Flowchart - GRF 

551 



-.. 
I 

f/'✓~·1 
'~ I•.··, ) 

'J' 
,,// >-~ N11JB-~!.' 

<t~ ·:: '-?7 ·-12-:Y 
"[ y,~ 

//"-.._,_' r I wR I Tt. 
· ·//, ""·PP ".,.-,':t, ,I,., ti: f -e "O ~ ✓' ;~~- ._:·· .. ' . '·'' ,i=l"(O '" ., 9"-

'•·. j i or cl e,11,.r. \) I 
'·,,._::~J I 1iodev1a. I\\ ,,, ~ 

' ~40 
! 

de/re r,J 

- -- · r--~:r :1-

t fJ3 _J 
"-,, 

•.~/ 

ex 
.. --< , >>;~ rJ r• 

<_~~:~r,tiir ~;~:(~: :•• >•·····'·---· ··-·--, 

~~ 

i r rw;:+; :5tn f • - : [S~;.-- ~-.-~-~ be r + o 

!ino \)Uk;~~· i lo,,~f-tft E:'qual ·fo 
1 ... } -

iorJ-:nr nu.Ni.:(.Pt· [ '1r .. :.,1Y1ber_· fosenr! 
I I '~ ::I N 

r:,ce,,!-,~----: ;:: ~:::, =tl 
nurrber~:>d by j~J' ,·l!? ✓ ;u,_ •·l 

i :-:1 +or Je ;,,.,_ ·J l~n !: t'r0 

I -_ _ -r- I '.____ ,----

s~1_ ·p·;:_,_L:·~:~~ t~~- I ~ri-"'Hc· number~ 
tH.fl u· tn_.r, 1·;;,, dl'l/;,_.e l'-1 

sci HC l'\,.d{' c:>[~; l(' om pi.de s+ar+ l"'3 
;;1, .J.<•v;(C ti rc:k;n9-orctr.r 

, I • ' 

'~"':' ~';---
.. ~rtF.5Eb· .. _-·l 
Ouipu+- S<'J· 
rr."11+ da.~o 

[___r n ~N _ 

Figure 3.2.9-3 Flowchart - GRF (continued) 

• 

• 

• 



• 

• 

• 
Figure 3.?.9-3 Flowchart - GRF (continued) 



3.2.9.4.1.2.2 

3.2.9.4.1.2.3 

6. Fill message word J+3 with the north aim

point. Set the lending byte bits on. 

7. Fill message word .J+4 with the east aim

point. Set the lending byte bits on. 

8. Fill message word J+5 with the up aim-point. 

Set the leading byte bits on. 

9. Increment the message word counter J by six, 

and increment the HC counter by one. 

10. If the number of HCs is greater than the counter 

I, go to step (3). Otherwise, go to step (11). 

11. Write the message buffer to the graphics pro

cessor (device N). 

12. Return to the calling submodule. 

e. Error messages and recovery - None 

Data, Logic and Command Paths 

Input Data: 

a. Aim-point number; 

b. Pecking-order starting number; 

c. HC numbers in an array; 

d. Number of HCs to supply data for; and 

e. Number of device to write message to. 

Output data: 

HAC segment status message 

Global common used: 

a. AIMPTG (aim points); 

b. AZIMG (azimuth angle); 

c. ELEVG (Elevation angle); and 

d. GRSTSG (heliostat status). 

• 

• 

Internal Data Description 

Bit masks are utilized to extract bits from the aim-points and • 



• 

• 

• 

3.2.9.4.1.3 

3.2.9.4.1.3.1 

azimuth and elevation angles. The UFT array used by the out

put routine, WRlTE, is ln.itlalJzcd in Dnta Statements, l'XCCpt 

word r, the dt•vl ce-dl'p,.•nth•nl word. /\ 2',8--h_ytp mcssnge huff,,r 

IH ,11 located. 

Flowe.harts 

See Figure 3.2.9-4 for the GRFSEG flowchart. 

Submodule III-GRFFLD 

Description 

a. Language used - FORTRAN 

b. How invoked - Subroutine call by GRF 

c. Constraints and limitations - The one-eighth of Held 

requested must be in the range one to eight. 

d. Processing -

1. Retreive the status words for the one-eighth 

of the field and store into a 256-word buffer . 

2. Fill message word one with the header byte and 

the one-eighth of field value. Set the high

order byte bits on. Initialize two counters 

I (HC counter) equal to one, and J (message 

and count) to two. 

3. Set bits O and 8 of message word J. 

4. If the i'th word of the status buffer is 

equal to -1, set the i'th word of the status 

buffer to HEX 7FOO, and go to step (5). Other

wise, go to step (5). 

5. Shift status buffer word I left 8 places to put 

the value in the high-order byte. 

6. If the i'th+l word of the status buffer is -1, 

set the status buffer word to Hex 007F, and go 

to step (7). Otherwise, go to step (7). 

7. Add status buffer word I and status buffer word 

I+l to message word J, and store the results in 

message word J . 

8. Increment the counter J by one and I by two. 

9. If I is greater than or equal to 257, go to 

step (10). Otherwise; go to step (3). 

10. Call subroutine WRITE to output the message to 

graphics processor N. 

555 



,-----

-.. 

c·C~RF~,£&) 
___ --· -1- ·-- -
; r, i I ht·,:d(( /.,yit. 
J ,'la :Se'tf,'r/'.'.(~ {)~('f\ 

I ' \ j r !'Irr ,1_,.:flt' { iy '. t1 

,- Yr".,~ ·><r' ·,1J'lr ~ 1 
i 

- T 
------- 't' -- --
T • 1 
J.. - .L 

.__.. ___ ...,....,_ ---·~·-.,--

' F; 1·1 h'lft:/l,lP. '/,1()(•1 
.; 

J1 ·i 1~d~, Fo~+ 
,oir, fr'li,d:a 

L ...• ,. ~[ ~··· 

(t~) 

Figure 3.2.9-4 Flowchart - GRFSEG 

• 

• 
( 'i<'. fTu~;1.I 

- ., " ____ /· 

• 



• 
3.2.'J.li. l.J.2 

3.2.9.4.1.3.3 

• 
3.2.9.4.1.3.4 

3.2.9.5 

3.2.9.6 

• 

11. Return to the calling submodule. 

e. Error messages and recovery - None 

Data, l.ogl c and Connnillld Paths 

l.nput datn: 

a. One-eighth of field (range 1 to 8); and 

b. Graphics processor device number. 

Output data: 

HAC full-field status message 

Global common: 

GRSTSG (heliostat status) 

Internal Data Description 

Variables for the Hex values 007F, 7F00, and 8080 are initialized 

in Data Statements. A 256-word buffer and a 129-word are allo

cated for use. The UFT array is initialized in a Data Statement, 

except word 1, the device-dependent word. 

Flowchart 

See Figure 3.2.9-5 for the GRFFLD flowchart. 

Interface Description 

The task GRF interfaces with the External Interface Module 

(EXTINF) (Figure 3.2.9-1) via the task CSI. CSI enqueues 

messages from the graphics processors and GRF dequeues these 

messages. GRF outputs directly to the graphics processors 

with data messages. These message formats are shown in Tables 

3.2.9-I to 3.2.9-VIII. 

Test Requirements 

Construct field status arrays, write the data to the graphics 

processors and visually inspect the color display for verifi

cation . 

557 



:r lt1~--i I 
-ip\ocP~ 
L .. --. F 

{(;\ -v 

--------7 

I 

! 
! 
} 

r------·--·-----· ·----·--, 
I I 

t....> 1 , ,I\ "t! r, '(,?_,~ . •, ____ Buitf'r ( lu.- '' Cl&f 

L _____ r-
, 

.. - ·-·- ··---···-·--•·------jl' 

Figu•re 3.2.9-5 Flowchart - GRFFU> 

r;c;9 

• 

• 

• 



• 

• 

• 

3.2.10 

3.2.10.1 

3.2.10.2 

3.2.10.2.l 

3.2.10.2.2 

External Interface Module - EXTINF 

Purpose 

The External Interface Module is responsible for maintaining 
the communication interface between the HAC computer and 
various external sources of I/0. These sources include the 

following: 

a .. ocs computer; 
b. DAS computer; 
c. ISC console (CS control console); 

d. Graphics console 1 (CS control room); and 

e. Graphics console 2. 

The EXTINF module is divided into the following submodules: 

a. External Interface (EXI) - task which is responsible 
for communicating with the OCS and DAS computers 
via the MAXNET operating system; 

b. Console Input (CSI) - task which is responsible 
for accepting inputs from the ISC and the two 
graphics terminals and sending these as messages 
to the responsible tasks; and 

c. Console Output (CSO) - task responsible for output
ting to the ISC for the BCSMOD, MANMIF and STATUS 
modules. 

Requirements 

Design Requirements 

Section 3.1 of the Software/Firmware Functional Requirements 
Specification states the following requirements for the EXTINF 

module: 

a. Maintain command/response protocol and data transfer 
with the OCS; 

b. Provide status data to the DAS; and 

c. Monitor and display the operational status of all 
heliostats. 

Derived Requirements 

Section 3.2.1.10 of the Software/Firmware Functional Require
ments Specification states the following derived requirements 
for the External Interface Module: 

a. Interface with the CS Control Console by: 

55.9 



J.2.10.J 

3.2.10.3.1 

1. Accepting inputs and passing these inputs 
to the respective modules. 

2. Regulating the outputs to the CRT so that 
only one submodule is outputting at a time. 

b. Interface with the Chromatics Terminals by: 

1. Pass emergency STH1WIND and DEFOCUS commands 
to MANMIF module. 

2. Data requests to the GRAPHC module. 

c. Interface with the OCS computer via a command/ 
response and alarm-message protocol; and 

d. Interface with the DAS by accepting a status request 
and transmitting a status response. 

Additional derived requirements include: 

a. The requirement of interfacing with the Chromatics 
and CS control console implies the need for perform
ing I/0 to these devices; and 

b. Outputting to the CS control console implies a need 
to establish a message interface between the CSO task 
and the BCSMOD, MANMIF, and STATUS modules. 

Design Approach 

The External Interface module, to facilitate communications 
with the various external sources, is divided into tasks 
logically split into MAXNET and non-MAXNET interfaces. These 
external sources consist of the OCS and DAS computers, the CS 
control console, and the two Chromatics Graphics Terminals. 
The MAXNET capabilities are used to communicate with the OCS 
and DAS computers. The EXI task associated with the OCS/DAS 
interface is responsible for all connnunications with those 
computers. 

There are two tasks associated with communications with the 
CS consoles and Chromatics Graphic Terminals. The CSI task 
is responsible for processing input from these consoles and 
activating the responsible module to process the input. 
The CSO task is responsible for outputting to the CS control 
console. User tasks wishing to display information on the CS 
control console queue messages to the CSO task. 

Functional Allocations 

To accomplish the required processing, the External Interface 
Module consists of submodules EXT, CSI, and CSO (see figure 
3.2.10-1). A brief description of the function performed by 
each of these submodules is given below. 

• 

• 



\Jl 
0\ 
I-' 

• ) .. 

CSI 

:console input task 

(ISC, Graphic 

'Chromatic Console) 

• } 

[
--·-- .,. --· -----------------, 

EXTINF l 
Externa 1 Interface l 

I , 

i Module 
I 

_ _L_ 
cso 

Console output t~sk 

to ISC console 

Figure 3,2.10 - 1 External Interface Module 

EXI 

Interface task to 

OCS and DAS computers 

) • 



3.2.10.3.2 

3.2.10.4 

3.2.10.4.1 

3.2.10.4.1.1 

3.2.10.4.l.l.l 

a. EXI - This task performs the processing required to 
support the communications interface with the OCS 
and DAS computers. The command/response protocol 
between the computers is supported via the MAXNET 
operating system. Data transfer betweeh the CS artd 
the OCS and DAS computers is accomplished using the 
MAXNET capabilities to read and write data between 
computers. 

b. CSI - The CSI task interfaces with the ISC 8001G 
color graphic terminal and the two Chromatics 
Graphics Terminals. This task is responsible for 
inputting either operator commands from the ISC 
terminal or data messages from the Chromatic Term
inals and queueing the message to the appropriate 
task for processing. 

c. CSO - The CSO task is responsible for outputting 
status messages and operator response messages to 
the ISC console. 

Resource Budgets 

a. Memory required (estimated): 3K of resident memory; 

b. 

c. 

Mass storage (disk, tape) required: None; and 

Task Priority: The CSI task shall be of priority 
just below MANMIF. The CSO task shall be of higher 
priority than MANMIF. The EXI task priority is below CSI. 

Design Description 

Module Structure 

CSI and CSO are tasks associated with inputting and outputting 
to the CS control console and Chromatics Graphics Terminals. 
The EXI task communicates with the OCS and DAS computers. 

Submodule I - CSI Task (Main Routine) 

Description 

a. Language used - MODCOMP FORTRAN IV 

b. How invoked - Activated by DBINIT during system 
initialization. Active throughout the operation of 
the CS computer. 

c. Constraints and limitations - The CSI task inputs 
one character at a time from the operator's console . 

d. Processing - When activated, the csi task opens input 

• 

• 

• 



• 

• 

3. 2. 10. 4. 1. 1. 2 

• 

buffers for the CS console and the two Chromatics 

Graphics Terminals via a REX Read. After initiat

ing the read operations, the CSI task executes a 

REX I/0 Wait, suspending itself until one of the 

input operations completes. 

The MAX IV operating system will resume the CSI 

task upon completion of one of the input buffers. 

Upon being resumed, the CSI task examines all the 

input buffers to see which one has completed. If 

the ISC console buffer completed, the CSI console 

will move the first character input to an internal 

buffer and reinitiate another character-read opera

tion. The character just read is then written back 

to the CS console to display the character to the 

operator. 

If the character was a carriage return or if 80 

characters have been input, signaling the end of 

an input, the CSI task will examine the internal 

buffer for an emergency command. An emergency 

command is queued to the MMI task's emergency queue; 

others go to the CS operator command queue . 

Input buffers received from the Chromatics Graphics 

Terminals will be given to the GRF task for process

ing with an indicator of which graphics console sent 

the input. 

A check is made of the input buffer for the Chroma

tics terminal in the CS control room to determine 

if the input was an emergency command. If an emer

gency command was found, the command is queued to the 

MMI task's emergency queue. 

e. Error messages and recovery - The only errors which 

occur are I/0 errors during communication with the 

various consoles. When an I/0 error is found, a 

error message is output to the operator indicating 

which interface is in error. 

Data, Logic and Command Paths 

a. The input data from the consoles; 

b. The error status from the MAX IV (MAXNET) operating 

system; and 

c. CRTWDG word in global common . 

Output data: 

a. Input message sent to the responsible task; and 

b. Global common word CRTWDG. 

563 



3.2.10.4.1.1.3 

3.2.10. 4.1. 1. 4 

3.2.10.4.1.2 

3.2.10.4.1.2.1 

Internal Data Description 

a. 3 User File Tables (UFTS) for input buffers; 

b. 2 1-word task names; 

c. 1 40-word internal buffer for building ISC messages; 

and 

d. 4 2-word tables to hold the ASCII representations 

of the emergency commands. 

Flowchart (s) 

See Figure 3.2.10-2 for the CSI flowchart. 

Submodule II - CSO Task 

Description 

a. Language used - MODCOMP FORTRAN IV 

b. How invoked - Invoked via an Rex Enque call by either 

the MMI, BCS, CFO, DSK, or STA tasks when an output 

to the ISC console is required. 

c. Constraints and limitations - Only one output line 

(maximum of 80 characters) can be queued at a time. 

If the first character is an ASCII character, "C, 11 

the output message is placed in the conversational 

area (lines 17 thru 45) of the screen. Otherwise, 

it is assumed the output buffer contains the appro

priate control characters. 

d. Processing - When the CSO task is activated, it will 

deque the message sent and place it into an in.temal 

buffer. A check is made to determine if the output 

is td be placed into the conversational area on the 

CS control console. 

If the message is to the conversational area, the 

appropriate control characters are added to the buffer 

and a write operation performed on the line indicated 

by the global common CRTWDG. Otherwise, the buffer 

is output to the ISC console as specified by the 

enqueing task. 

When the write is complete, CSO will exit and await 

further activations. Before each write is initiated, 

a flag is checked in global common to determine if 

an input operation has been initiated. If the flag 

is set, the CSO task relinquishes CPU control until 

the bit is cleared, at which time the output is per

formed. 

• 

• 

• 



• / 

• 

P../1 , .,_ 

• ~-

(f\) 
r---- .· r ---·----
j f.)rp(,? ·'.,,,'), )fi,~r 

J+D ;n '. .•'f r'r':I \ L·,,1-/,., 

I() 11d "' dp,,t- t).; ( ,",., 

; , l - " 
I Kf-,. _) K(AL ____ , I 
i fyt1n 1~e ()r',r: l 
: . - fl : ,'ha,·, · I', mp,_, 1 j 
i bu.( frr I : 

,..,l.) 

~l- ~-
~)~-1 ;.J'.J,e11t:~ lt:-, ,, 

r),:: 
t...) 

'l'' p-,e 

r·-

:-.· '.( . }. •J•-·1· r . . ··.·.• ~,'\ .. 'f. 1 ,_t ·31),:- : 

;[-V'\Jue :f P:~.:;Dj· ~ 

I .\-r, / .. ) I{ I i 

j ,. . .. ,, . ,.,.,,1 
,.-, ' --- - -· 1 

1SC1'JT • o ! 
' 

_J 
t 

([ 
--.. ... __ / 

Figure 3.2.]0-2 Flowchart - CSI 

565 



--
w;-1 
~_l'h.-,_ 

, 
• 

(/\'j<l r~o-<~'fl 1(_rr,:;~t,',, 
1 / ) ,Jt"·,(,1r11, .J •;. / 

' ', ',- / 

'( 
,~ ,, . .,. ... , ... , ... ,,_ 

/ ,6f"e..:~ /{ -~ 

' fr, 

'"'" n,,, _L,, "" 

f 

• 

• 



• 

• 

• 

3. 2. 10. 4. 1. 2. 2 

3.2.10. 4. 1.2. 3 

3.2.10.4.1.2.4 

3.2.10.4.1.3 

3.2.10.4.1.3.1 

3.2.10.4.1.3.2 

3.2.10.4.1.3.3. 

3.2.10.4.1.3.4 

e. Error message and recovery - When an I/0 error is 
detected for the write operation, an error message 
will be output. The error message that is typed is: 

"CS CONSOLE OUTPUT ERROR" 

Data, Logic and Command Paths 

Input data: 

a. Includes the output message queued by the MMI, STA, 
CFO, DSK and BCS tasks; 

b. The CS console word in global common for the CRT 
usage flag, (bit O in CRTWDG); and 

c. CRT line number, (bits 8 - 15 in CRTWDG). 

Output data: 

CRTWDG word in global common. 

Internal Data Description 

a. 1 User File Table (UFT) for the output buffer to the 
ISC; 

b. 1 internal buffer for holdlng the output message; and 

c. Miscellaneous internal pointers. 

Flowchart(s) 

See Figure 3.2.10-3 for the CSO flowchart. 

Submodule III - EXI task 

Description 

(TBD) 

Data, Logic and Command Paths 

(TBD) 

Internal Data Description 

(TBD) 

Flowchart(s) 

(TBD) 

567 



• 

• 

-
'V------jf,.,.-·-------

/~ 
\ ?, J 
./ 

• 
Figure 3.2.10-3 Flowchart - r,so 



• 3.2.10.S 

• 

3.2.10.6 

• 

Interface Description 

a. Data Base Input: 

CRTUSG-CRT usage flag 
CRTLNG-CRT line index 

b. Data Base Output: 

CRTUSG-CRT usage flag 
CRTLNG-CRT line index 

c. Physical Output - Includes the write operation from 
the CSO task to the ISC terminal and the single
character buffer written by the CSI task. 

d. Physical Input - The read buffers associated with the 
ISC console (CS control console) and the two Chromatics 
Graphic Terminals. The input from the ISC terminal 
is a one-character buffer. The input buffers from 
the graphics terminals are 10 words in length. (See 
Section 3.2.9 of the Software Design Specification.) 

e. CSI is activated by DBINIT and CSO is activated by 
MMI, BCS, DSK, CFO, or STA tasks via Rex Enque. 

f. Messages sent from CSI to GRF are appended with a 
graphics console index either zero or one. This is 
used to indicate from which console the input came. 

g. Messages sent to the CSO task have the control charac
ters required to place the output line in the desired 
location. Exception is made when the first character 
is an ASCII "C". Then the output message is placed 
on the next available line as indicated by the global 
common word CRTLNG. 

h. Task CSI activates MMI or GRF. 

Test Requirements 

a. Verification of the ISC input and output will be done 
by operator key-in of various commands and observing 
the output on the CS control console. 

b. Verification of the Chromatics Graphic Terminal will 
be done by observing the updated. screen displays. 

c. Logic of CSO and CSI will be verified by using MAX IV 
DEBUG. This system utility allows selective execution 
of code, tracing and memory modification. 

569 



3. 3. 1 

3.3.1.1 

3. 3. l. 2 

Data Base Design 

Purpose 

The data base, consists of in-core global common areas and disk

resident data files. 

The in-core global common COMDAT serves as a means of communica

tion between individual stand-alone tasks and between tasks and 

their associated support submodules. A number of status words, 

maintained by various external interface tasks, provide communi

cation of real-time conditions describing the field of heliostats, 

devices, and software statuses. Further, data base tables of aim 

points, sun position, and corridor assignments are kept in global 

common to support command construction. Status words for the pri,roe

backup HAC configuration are maintained for system integrity, and 

field address mapping schemes are maintained. 

The global common area COMQUE supports communication processing 

with the OCS, DAS, CS, graphics, receiver trip and alarms inter

faces. 

The disk data base contains tables of: 

a. Heliostat location coordinates; 

b. Wash angles; 

c. Stow angles; 

d. ALTl stow angles; 

e. ALT2 stow; angles; 

f. Heliostat corridor assignments; 

g. BCS assignments; 

h. Aim-point coordinate arrays; 

i. Bias angles; 

j. Field status snap-shot; 

k. Corridor coordinates; 

1. BCS coordinates; 

m. Field address mappings; 

n. Alarm.messages (ASCII); 

o. Alarm messages packed; and 

p. Segment numbers and pecking order. 

Requirements 

570 

• 

• 

• 



• 3.3.1.2.1 

• 

• 

Design Requirement 

Software Requirements listed in Section 3.1 of the 10 MWe 

Collector Subsystem Software/Firmware Functional Requirements 

Specification, 12 June 1980, that apply to the data base are: 

a. Control of up to 2048 heliostats in all modes re

quired to operate the heliostats; 

b. Monitor and display the operational status of all 

heliostats; 

c. Detect, report, and respond to failures and irregu

larities; 

d. Maintain a "Prime" and "Backup" system, as well as 

redundant field communications; 

e. Maintain a stable time base; 

f. Provide graphic displays of the heliostat field or 

field segments; 

g. Maintain safe beam control; 

h. Respond to receiver trip for emergency defocus; 

i. Provide the capability following power loss where the 

field may be commanded again within 60 seconds after 

power restoration; 

j. Maintain command/response protocol and data transfer 

with the OCS; 

k. Provide status data to the DAS; and ""-

1. Provide automatic control of beam characterization 

within the HAC. 

In order to meet these requirements, the software in the HAC 

shall meet the following requirements supported in the data base: 

a. Control operational-phase sequences as required for 

integrated control of a field of up to 2048 heliostats; 

b. Generate and transmit heliostat mode connnands (by HC, 

HFC, Segment, Wedge, Ring, Arc, Field) as required by 

the phase sequences during either operational or main

tenance phases while maintaining safe beam control; 

c. Monitor the operational status of the heliostats as 

reported by the HFCs and report this status and de

tected irregularlties in the form of displays and 

alarms; 

571 



3.3.1.2.2 

d. Maintain a "Backup" system by providing redundant 

field communications and providing data transfer 

sufficient to allow one-way "Backup" fail-over with 

minimal degradation; 

e. Provide a stable time base utilizing the WWV Trutime 

input for the "Prime" HAC time and internal time for 

the "Backup" HAC time. When the "Backup" HAC becomes 

"Prime", the WWV time will automatically be used, if 

available; 

f. Provide data transfer to the Chromatics Graphics Ter

minals sufficient for display of a finite number of 

graphic displays of the heliostat field or field seg

ments and supporting alphanumeric information; 

g. Generate and transmit sun position information (once 

per frame) to the entire field; 

h. Maintain safety through controlled beam movement and 

inclusion area processing; 

i, Transmit emergency defocus command upon receiver trip; 

j. Provide automatic HFC initialization and the capability 

to command heliostats away from the reciever following 

initialization within 60 seconds after power restor

ation; 

k. Accept commands and transmit responses to the OCS 

including status and alarms; 

1. Respond to the STATUS command from the DAS by transmitting 

back the status message; and 

m. Provide automatic control of Beam Characterization upon 

operator request and establish communications and message 

transfer with the BCS task within the OCS. 

Derived Requirements 

The following derived requirements of individual modules have 

introduced the derived requirements of a data base: 

Man-Machine Interface Module {MANMIF) 

a. Accept commands from the CS control console, OCS, DAS, 

CS graphics console, and read command files from disk; 

,1,7? 

• 

• 

• 



• 

• 

• 

b. Decode command addresses for the Command Processor 
Module and convert commands to internal computer 
format; 

c. Check all commands for valid syntax; 

d. Generate error messages and route them to the appro
priate output devices; 

e. Pass valid status commands to the Status Display 
Processor Module; 

f. Pass valid operational commands to the Command Pro
cessor Module; 

g. Log all commands on the console/printer with appro
priate time stamps; 

h. Update a heliostat's bias disk file upon operator 
request; and 

i. Update aim-point array and perform inclusion-area 
checking . 

Command Processor Module (CMDPRC) 

a. Check command arguments for reasonableness; 

b. Check heliostat's state for ability to execute commands; 

c. Translate operational commands and command sequences 
into individual HFC and HC commands; 

d. Mai.ntain commanded heliostat mode table; 

Sun Vector Module (SUNVEC) 

a. Calculate a unit sun vector as a function of universal 
time, on a once-per-second basis; and 

b. Format the sun-position unit vector into the format 
required for message packets and store in the data 
base. 

Field Communications Processor Module (FLDCOM) 

a. Synchronize field operations by transmitting to the HFC 
computer a sun vector command once per frame; 

b. Generate, at the proper tlme in the time frame, the 
polli.ng command for the HFC; 

573 



c. Recieve, the HC and HFC status in response to each 
polling command and save same in the data base; 

d. Transmit to the HFC, the operational commands generated 
by the Command Processor Module; 

e. Detect communications errors and automatically switch 
over to the redundant communications lines or the 
"Backup" computer and report these conditions to the 
Alarm Processor Module: 

f. Mark (calibrate) heliostats in both azimuth and ele
vation; 

g. Generate proper timing to accomplish all of the above 
in conjunction with HFC/HC firmware; 

h. Implement retransmission of HC commands (tracking and 
AZ/EL only; and 

i. Prevent communications failover upon detection of field 
power loss signal. 

Alarm Processor Module (ALAEMS) 

a. Monitor the heliostat status being returned from the 
field; 

b. Detect error conditions reported by the HG in that 
status; 

c. Report the alarms to the HAC operator using the alarms 
printer and an alarms area of the CS control console; 

d. Send alarm messages to the OCS through the interface; 

e. Display alarms detected by other softwar:e modules; and 

f. Maintain ONLINE/OFFLINE statu.s for the heliostats. 

Status Display Module (STATUS) 

a. Monitor heliostat status from status data reported by 
the HCs; 

b. Format field status; 

c. Display same on the STATUS area of the CS control 
console, updating display as required (see Figure 4); 

d. Respond to operator-entered commands for display status 
as reported from the MMI module, and format the status. 
requested; 

e. Output the formatted status to the status printer; and 

• 

• 

• 



• 

• 

f. Respond to OCS and DAS generatc•d status requests by 
transmitting the requested status to the requestor. 

Data Base Module (DBINIT) 

a. Define the global-common area, accessible to all 
applications tasks; 

b. Provide an initialization task to initialize the values 
in the global data base; 

c. Build appropriate data-base files for alarm messages, 
HC initialization coordinates, HC biases, control 
group mapping, BCS targets, STOW positions, WASH 
positions, corridor coordinates, initialization 
azimuth and elevation positions, and multiple aim
points; 

d. Read WWV time values from the WWV device if it is 
present and operating; and activate the "clock" task 
to perform time-base maintenance; and 

e. Initiate task execution sequences to the operating 
system; and allow for specification of "Prime" or 
"Bsckup" computer and if "Prime" computer, make data 
available for transfer to "Backup", and if "Backup" 
computer, accept data from "Prime". 

Operating System Modifications Module (MAXIVM) 

a. Generation of an operating system compatible with the 
peripheral equipment on the computer system; 

b. Universal time maintenance, using the WWVB Clock as a 
reference standard; 

c. Power fail/auto-restart capability; 

d. The HAC receives two signals (one the inverse of the 
other) from the Receiver System. One signal ·causes 
an emergency De:•foc.us action--its inverse will allow 
an operator Defocus-Release action and a return to 
normal operations; 

e. Monitor status between computers to determine if the 
"Backup" should take over; 

f. Perform peripheral switching when necessary; and 

g. Detect a power loss signal and store this information 
in the data base for information to all tasks. 

575 



Graphics Display Processor Module (GRAPHC) 

a. Provide the functional interface with the graphics 
system in a command/response protocol; 

b. Provide the graphics system with sufficient <la.ta for 
graphics displays; 

c. Accept STHIWIND and DEFOCUS commands from the CS 
control room graphics function switches; 

d. Output data to the Chromatics Graphics Terminals 
only when requested; and 

e. Interface with the Chromatics Graphics Terminals 
through two distinct Dual Asynchronous Communications 
Channels (#4811). 

External Interface Module (EXTINF) 

a. Interface with the CS Control Console by: 

1. Accepting inputs and passing these inputs to 
the respective modules; and 

2. Regulating the outputs to the CRT so that 
only one submodule is outputting at a time; 

b. Interface wi.th the Chromatics Terminals by: 

1. Pass emergency STHTWIND and DEFOCUS commands 
to MANMIF module; and 

2. Data requests to the GRAPHC module. 

c. Interface with the OCS computer via a command/response 
and alarm-message protocol; and 

d. Interface with the DAS by accepting a STATUS request 
and transmitting a STATUS response. 

BCS Automatic Processing Module (BCSMOD) 

a. Give the operator selection flexibility by using three 
different heliostat lists; 

b. Provide start capability of the automatic sequence 
that does not require further operator input; 

c. Execute control of a list of up to 30 heliostats and 
up to five blocking heliostats associated with each 
heliostat to be measured. 

576 

• 

• 

• 



• 

• 

• 

3.3.1.3 

3.3.1.3.1 

d. Execute control over these measurements using up to 
four BCS targets in parallel; 

e. Communicate with the OCS for BCS measurements and 
offset values; 

f. Provide operator feedback for errors in automatic 
sequences; and 

g. Calculate azimuth and elevation bias changes using 
OCS measured centroid offsets from up to three BCS 
measurements. 

In each case, inter-task communication is facilitated through 
global common storage of parameters, status, or flags. In 
cases where the data base is not specifically mentioned, its 
(data base) inclusion is designed to accent modular structure. 

Design Approach 

Functional Allocations 

The in-core global common data base is designed to maintain 
the communications and temporary buffer storage for the soft
ware for support of a field of up to 2048 heliostats. As such, 
specific limitations exist on the data base and on certain vari
ables within it. These constraints are outlined following each 
variable definition. 

The general global common area COMDAT is subdivided into 
thirteen specific global commons, namely COM1S1, COM1S2, COM1S3, 
COM1S4, COM1S5, COM8S1, COM8S2, COM8S3, COM8S4, COMINl, 
COMIN2, COMIN3, and COMIN4. A detailed description of each of 
these global common areas is given in Section 3.3.1.4. 
Table 3.3.1-I provides a cross reference for all the variables 
within the general global common area COMDAT and the related 
tasks. Table 3.3.1-II provides a cross reference between the 
global common areas and their associated tasks. 

COMQUE is maintained as a communications global common as it 
must operate as a dynamic buffer. Its function is a message 
buffer for inter-processor communications, and for alarms 
awaiting output. Table 3.3.1-III provides a cross reference 
for all the message queues within global common area COMQUE. 

The disk data base is used to maintain: 

1. Externally supplied data for in-core global common 
initialization; 

2. Heliostat locations for field initialization; 

3. Corridor coordinates; 

4. BCS coordinates; 

577 



3.3.1.3.2 

3.3.1.4 

3.3.1.4.1 

5. Aim-point coordinates; 

6. Stow angles; 

7. Wash angles; 

8. Alternate 1 stow angles; 

9. Alternate 2 stow angles 

10. Heliostat bias angles; 

11. Heliostat field status; and 

12. Alarm messages. 

Tables 3.3.1-IV provides a cross reference for all the disk 
data base files and user tasks. 

Resource Budgets 

The global common data bases COMDAT and COMQUE require a 
total of 59,136 words of main memory at all times (COMDAT-
199 pages; COMQUE - 32 pages). The disk data base requires 
295,168 words. 

Design Description 

Structure 

The following sections individually define variable and array 
structure. Variable and array contents are specifically de
fined and where applicable, individual bit settings are de-
fined. 

3.3.1.4.1.1 Global Common Area COMlSl 

COMlSl utilizes 16 pages of global common and is transferred to 
the backup HAC every second. Unless otherwise noted, variable 
type is INTEGER* 2 and the size is in words. 

• 

• 

• 



• 

• 
3.3.1.4.1.2 

IJ 

VARIABLE 

a. AZIMG 

SIZE 

2048 

SET BY TASK(S) 

DBI, FCP 

USED BY TASK(S) 

ALM, BHC, CMD, GET 

Description - Azimuth angle of HC in counts scaled 215 counts/ 

360 deg, Dl•gat1ve values represented hy two's complement nota

tion. 

Bit 0 
Bit 15 

!six Ix Ix Ix Ix Ix Ix Ix Ix Ix Ix [x Ix fZ~ 
Zeroes 

Resolutation - 0.043945 degrees. 

Constraints and limitations - AZIMG is designed to maintain 

azimuth angles for up to 2048 heliostats. 

b. ELEVG 2048 DBI, FCP ALM, BHC, CMD 

15 
Description - Elevation angle of HC in counts scaled 2 counts/ 

360 deg, negative values represented by two's complement nota

tion 

Bit 0 
Bit 15 

1 s xi x I x , x I x , x I x I x , x , x , x I x , x t??c~ 
Zeroes 

Constraints and limitations - ELEVG is designed to maintain 

elevation angles for up to 2048 heliostats. 

Global Common Area COM1S2 

COM1S2 utilizes 64 pages of global connnon and is transferred 

the backup HAC every second. Unless otherwise noted, variable type 

is INTEGER* 2 and the size is in words. 

VARIABLE 

a. HCCMDG 

SIZE 

2048 

SET BY TASK(S) 

BCS, BHC, CMD, 
SEQ, DBI, GET 

USED BY TASK(S) 

BCS, BHC, SEQ 

Description - Most recent command type sent to HC 

Bit O Bit 15 

r 

·-1 CRITICAL CO-ND L 
COMMAND QUEUED (RESERVED) 

L SUBMODE (SAME AS HCSTlG) 

MODE (SAME AS HCSTlG) 

DATA READY (ALLOWS TASK BHC TO PROCESS COMMAND FOR THIS RC) 

Constraints and limitations - HCCMDG is designed to maintain control 

for up to 2048 heliostats. Further,four modes and eight submodes are 

allowed. 
579 



3.3.1.4.1.3 

VARIABLE 

b. HCDATG 

Description 
HC 

Mode 
Init 

WORD 0 

I AZ 
Bias 

SIZE 

14336 
'(7 X 2048) 

- HCDATG is the 

I EL 
Bias 

SET BY TASK(S) USED BY TASK(S) 

BCS, CMD, GET, BCS, BHC 
SEQ, DBI 

most recent data buffer sent to 

WORD 6 

X y z 
HC Coordinates 

WORD O WORD 6 

Beam Mode I I l 
Point· I 

~:::::::=:.,~---::==-~--:::::::.-..~~--\. ------
1 L Zeroes X y z 

Target Coordinates AIM-POINT ARRAY NUMBERS 

WORD 0 WORD 6 

:~~1 I ~----
~zimuth ~levation Zeroes 

~ngle ~ng le I 

Constraints and limitation - HCDATG is designed to maintain 

commands for up to 2048 heliostats. 

Global Common Area COM1S3 

, I 

COM1S3 utilizes 8 pages of global common and is transferred to 

the backup HAC every second. Unless otherwise noted, variable 

type is INTEGER* 2 and the size is in words. 

VARIABLE 

GRSTSG 

SIZE 

2048 

SET BY TASK(S) 

DBI, STS 

USED BY TASKS 

GRF 

Description - Mode description for the graphics display, where: 

-1 = Not Insta.lled 
1 = Track 
2 = Standby 
3 = BCS 
4 = Transition 
5 = Stow 
6 = Alternate 1 Stow 
7 == Alternate 2 Stow 
8 = Mark 
9 = Directed Position 

10 = Wash 
11 = Initialized 
12 = Offline 

• 

• 

• 



• 3.3.1.4.1.4 

• 

• 

Global Common Area COM1S4 

COM1S4 utilizes 4 pages of global common and is transferred 

to the backup HAC every second. Unless otherwise noted, 

variable type is INTEGER* 2, and the size is in words. 

VARIABLE SIZE 

a. ~CSBY_q_ 

SET BY TASK(S) 

BCS, CMD, DBI 

USED BY TASK(S) 

BCS, CMD 

Description - BCS targets busy status word. 

Bit 0 Bit 15 

South Target Busy 
est Target Busy 

North Target Busy 
East Target Busy 

Constraints and limitations - BCSBYG is designed to maintain 

the status for up to four BCS targets. 

b. BCSHLG 180 BCS, DBI BCS 

Description - BCS heliostat list, including blocking heliostats. 

Bit 0 Bit 15 

I I I I I l I I I ~ I I I I I I j 
I 6one Bit HC Number 
Active Bit 

Constraints and limitations - BCSHLG is designed to maintain 

up to 180 heliostats in the BCS procedure. Bit allocation for 

the heliostat number allows for 4096 heliostats. 

c. BCSHSG 912 BCS, DBI BCS 

(8 X 6 X 4) 

Description - BCS active heliostat status . 

581 



BCS 

HELIOS TATS 

i 

i 

I 
, ••• I 

l 
J 

Constraints and limitations - BCSHSG is designed to maintain 
BCS control for up to four BCS targets with six heliostats 
associated with each target during a BCS subsequence. 

* Copy of HCCMDG (heliostat) 

** Copy of HCDATG (heliostat, 1 to 7) 

d. BCSTAG 4 BCS, DBI BCS ----
Description - Automatic BCS target status 

Word 0 Word 3 

[ ·-----------[ ~------ ·-1--------- j 
1 I I ~ 

South West North East 
Target Target Target Target 

• 

• 

• 



• 

• 

Where each target word is defined as: 

Bit 0 
Bit 15 

l I I I I I I I I I I I I l I I I ,.____; 

0 
l 
2 

Constraints and limitations 
up to four BCS targets. 

VARIABLE 

c. CMDBFG 

SIZE 

640 
(64x10) 

Operational 
Mode 

Non-Operational 
Operational 
In Use 

BCSTAG is designed to maintain 

SET BY TASK(S) 

BHC, BHI, DBI 

USED BY TASK(S) 

FCP 

Description - Command buffer, command information to HFC/HC . 

Constraint~ and limitations -

d. There are seven spare words in this common area . 

583 



3 . 3 • 1 . t, • l • 5 Global common area COMlS'l 

COMl S5 uti.11zes l page of global common and is transferred to 
the backup HAC every second. Unless otherwi.se noted, vari.able 
type is INTEGER* 2 and the size is in words. 

VARIABLE 

a. AIMBSG 

SIZE 

1 

SET BY TASK(S) 

DBI, OSK, MMI 

USED BY TASK(S) 

MMI 

Description - Aimpoint array busy word used when the aim
point is being updated on the disk data base. Values in 
the word have the meaning: 

0 = Not in use 
1-20 = Aim-point array (1-20) being updated (do not access) 

b. ALRMSG ALM, ALO, DBI ALO 

Description - Alarm message response word that has the meaning: 

0 = Tells ALO to clear critical alarms line (Le. acknowledgt~) 
1 = Tells ALO to display next critical message, if any 
2 = Tells ALO to wait for operator acknowledgement of the 

last critical alarm. 

c, CORRSG 8 BHC, SEQ, DBI BHC, SEQ 

Description - Corridor status array; used to initiate corridor 

"walks" and mark corridors in use. 

Word 0 
Word 

I A B C D I E F I G I H 

Corridors 

Where each word has the meaning: 

0 = Free 
1 = Ready for up 
2 = Ready for down 

17 = Going up 
18 = Going down 

Constraints and limitations - CORRSG is designed to maintain 
corridor status for up to eight corridors. 

7 

• 

• 



• 

• 

• 

d. 

VARIABLE 

CORSQG 

SIZE 

8 

SET BY TASK(S) 

SEQ, DBI 

USED BY TASK(S) 

SEQ 

Description - Sequence number using corridor, where there are 

eight corridors corresponding to the eight words. The content 

of the words :Ls the sequence numb£•r ( 1-16) 

Constraints an<l limitations - CORSQG is dt>signed to maintain 

sequence corridor usage for up to eight corridors. 

e. COUNTG 1 ALM, ALO, DBI ALM 

Description - Number of alarm messages in queue. 

f. CRTWRG 1 CSI, CSO, DBI 
MMI, STS 

CSI, CSO 

Description - HAC operator's console visible line count and 

input/output use flag. 

Bit 0 Bit 15 

Operator input in 
progress, hold 
outputs to ISC 

g. CURHSG 1 

CRT line number 

FCP, DBI ALM, FCP 

Description - Current HC being statused by FCP. CURHSG refers 

to the first HC and is incremented in steps of 4 up to 28. 

h. EMCClG 2 BHC, CMD, GET, 
SEQ, DBI 

BHC 

Description - EMCClG(l) is the emergency command counter (type l); 

and represents a dynamic count of critical commands caused by 

either DEFOCUS or HI-WIND-STOW. EMCC1G(2) is the emergency 

command counter (type 2); it represents a dynamic count of criti

cal commands caused by either HOLD or LOAD. 

i. EMSEQG 1 CMD, SEQ, DBI 

Description - Emergency sequence flag, where: 

0 = No emergency sequence active 

BCS, CMD, CFO, DSK, 
MMI 

1 = Emergency sequence active, do not allow another HI-WIND

STOW command. 

585 



VARIABLE SIZE SET BY TASK(S) USED BY TASK(S) 

j. FIRSTG ALM, ALO, DBI ALM, ALO 

Description - Free storage index of first alarm in queue. 

k. FLDSTG 1 ALM, DBI, FCP ALM, FCP 

Description - Field status (communications, power, and error). 

Bit 0 Bit 15 

l Error It 

rror Reported 

Num er of lines enabled to the field 

Communication failure with the fi.eld has 

been detected. 

Power loss interrupt has been detected 

Field status value 

0 = Field is in active state 
1 = Field communications ate enabled (a HFC has 

responded with a status response message 

Constraints and limitations - FLDSTG is designed to maintain 

up to eight communication lines and up to 16 error numbers. 

1. GTIMEG 14 TlK, TOK ALO, Bes, MMI, 
STA, STS, SUN 

Description - Time keeping array, where the words contain: 

Word 0: 
Word 1: 
Word 2: 
Word 3: 

Word 4: 
Word 5: 
Word 6: 
Word 7: 
Word 8: 
Word 9: 

Year (GMT), (1980-00) 
Day of year (GMT), (1-366) 

Hour in day (GMT), (0-23) 
Minutes in hour (GMT), (0-59) 

Second in minute (GMT), (0-59) 
Local year, (1980-0) 
Local month number, (1-12) 
Local day of month, (1-31) 
Local hour, (0-23) 
Time quality: (probable error) 

0 - less than 1 msec 
1 - 1 msec 
2 - 5 msec 
3 - 50 msec 
4 - 500 msec 
5 - internal time 

• 

• 

• 



• 

•• 

Word 10: Number of days in GMf year, (365-366) 

Word 11: Number of days in local month, (28-31) 

Word 12: GMf - Local hours offset, (6-8) 

Word 13: Number of days in local year, (365-366) 

VARIABLE SIZE SET BY TASK(S) USED BY TASK(S) 

m. LASTG 1 ALM, ALO, DBI ALM, ALO 

Description - Free storage index of last alarm in queue. 

n. LINESG 16 ALM, DBI, FCP ALM, FCP 

Description - Communication line status. 

Bit 0 Bit 15 

I 
Error number 

rror reported 

Number of HFC's which are down 

Number of consecutive output errors 

Number of consecutive input errors 

Status value for line 

0 - idle 
1 - active 
2 - enabled 
3 - failed 

Input error has occurred on this line during a one second 

frame 

Output error has occurred on this line during a one second frame 

Constraints and limitations - LINESG is designed for a maximum 

of eight communication lines. 

o. LOKDEG 1 MMl, DBI BCS, CFO, DSK, MMI 

Description - Defocus lock flag, which has the meaning: 

ZERO = Defocus release command given 

NON-ZERO= Defocus command given 

p. LOKSTG l DBI, MMI BCS, CFO, DSK, MMI 

Description - STOW-HI-WIND lock flag, which has the meaning: 

ZERO STOW-HI-WIND release command given 

NON-ZERO= STOW-HI-WIND command given 

587 



l I I 

q. PTRSG 3 ALM, ALO, DBI ALM, .ALO 

Description - Free storage index for the nexf critical, 

critical, and system console output messages. 

r. SUNPOG 6 ---- DBI, SUN FCP 

Variable type - 1NTEGER*4 

Description: Sun position unit vector, where the double 

precision words have the meaning: 

SUNPOG(l) = X component; 

SUNPOG(2) = Y component; 

SUNPOG(3) = Z component; 

and each component is scaled B4. 

s. SWOVG 1 DBI, SWI SWI 

non-

Description - Switchov:er to Backup HAC command word. If bit 15 

is set, command the Backup HAC to initiate switchover. 

t. TBUSYG 2 All 

Variable type - INTEGER*4 

Description - Tasks active word (1 == active, 0 = inactive) 

BCS 
I Module! 1ALARMS MOD, CMDPRC 

iALM 

. IFLD GRA 
;DBINIT EXTINF COM'PHC 
' I I . I 

Task ALO BCSlBHC BHI CMD GET SEQ]CLK DBiiCSI1CSO EXI FCP!GRF 
I 

Bit 0 1 2 3 4 5 i 6 7 8 I 9 10 11 112 13 /14 15 
____ _., 

:CD 

. I . ; I SUN 7 

Module i MANMIF MAXIVM I STATUS I VEC 

Task : CFo 1 DSK MMI RTLT~TH SWI TOK! TIKrSTA STS SUN rSw1-

Bit .____ __ _ 
~ I , i 

16 17 18 19 :20 121 22, 2_3 !24 j25 26 27 28" 29 ! 30 '. 31-' 

The remaining variables in global common area COM1S5 are 

transferred to the Backup HAC every eight seconds. 

VARIABLE 

aa. AIMOKG 

SIZE 

20 

SET BY TASK(S) 

DBI, DSK 

T:JSED BY 'tASK(S) 

CMD, DSK 

Description Array of 20 words corresponding to the 20 aim

point arrays, indicating whether the array can be used or not. 

The contents of the array words mean: 

0 = disk data base aim-point array is not valid 

1 = disk data base aim-point array is valid 

bb. HFCSlG 64 DBI, FCP ALM, BHI 

• 

•• 



• 

• 

• 

Description - HFC status returned from tl1e HFC's once per second. 

BTT 0 

HFC 

BIT 15 

CORRIDOR 

STATE 

0 idle 
1 up 
2 down CORRIDOR C STATUS __________ _ 

SPARE r~ 
INITIALIZATION STATUS_); 

RESTARTED, EXPECT A&B GULPS 
EXPECT A&B CLLPS 

HAC/HFC COMMUNICATION ERROR 4 
5 
6 

EXPECT A&B DELTAS 
RESTARTED, EXPECT C&D CULPS 
EXPECT C&D CLLPS 
EXPECT C&D DELTAS 

HFC HAS BEEN RESTARTED IF: BIT O = l 
GOT C&D DELTAS, 
EXPECT CORRIDOR ASSIGN 
BIT O = 0 
NORMAL, ANY CORRIDOR 
ASSIGN COMMAND ALLOWED 

cc. HFCS2G 64 ALM, BBC, mn, ALM, BHC, BHI, 
DBI, FCP FCP 

Description - HFC derived status 

BIT 0 BIT 15 

ERROR ti 

ERROR REPORTED 

COMMAND BUFFER READY 

INITIALIZATION REQUIRED 

COMMAND SENT TO HFC DOESN'T MATCH 
COMMAND RECEIVED 

HFC COMM. ERROR 

HAC/HFC INPUT TIMEOUT ERROR 

HAC/HFC OUTPUT TIMEOUT ERROR 

NO RESPONSE FROM HFC 

CORRIDOR INITIALIZATION REQUIRED 

INITIALIZATION IN PROGRESS 

HAC/HFC COMM. ERROR 

HFC OFFLINE (NOT INSTALLED) 

589 



dd, MODEG 12 DBI, STS CMD, MMI, STA, 

Description - Number of heliostats in each of the 12 modes. 

Where the contents of MODEG have the Meaning. 

WORD O: Number of HC's in TRACK 

WORD 1: Number of He's in STANDBY 

WORD 2: Number of HC's in BCS 

WORD 3: Number of HC's in TRANSl'l'lON 

WORD 4: Number of He's in STOW 

WORD 5: Number of HC's in ALTlSTOW 

WORD 6: Number of HC's in ALT2STOW 

WORD 7: Number of HC's in MARK 

WORD 8: Number of HC's in DIRECTED POSITION 

WORD 9: Number of HC's in WASH 

WORD 10: Number of HC's in INITIALIZATION 

WORD 11: Number of HC's in OFFLINE 

ee. SEQLSG 16 CMD, DBI, SEQ CMD, SEQ 

Description - Sequence usage pool; unused entries are negative 

integers corresponding to the element number. While used entries 

are positive values corresponding to the element number. 

ff: SEQNMG 1 CMD, SEQ, DBI SEQ, SWI 

Description - Active sequences counter; it reflects the number of 

positive numbers in the SEQLSG array. 

gg, Seven spare words of global common COM1S5 remain. 

3.3.1.4.1.6 Global common area COM8Sl 

STS 

COM8Sl utilizes 40 pages of global common and is transferred to the 

Backup HAC every eight seconds. Unless otherwise noted, variable 

type is INTEGER*2 and the size is in words. 

VARIABLE 

AIMPTG 

SIZE 

10240 
(Sx2048) 

SET BY TASK(S) 

DBI, GET 

USED BY TASK(S) 

CMD 

Description - Aim-point array currently in use, and the order is 

based on ascending HC order (five words/HC) 

WORD 0 WORD 4 

X y I z 

• 

• 



• 

.\ 

Constraints and limitations - AIMPTG is designed to maintain aim

point coordinates for up to 2048 heliostats. 

3. 3 .1. L1 .1. 7 Global common area COM8S2 

COM8S2 utilizes 16 pages of global common and is transferred to the 

Backup HAC every eight seconds. Unless otherwise noted, variable 

type is INTEGER*2, and the size is in words. 

VARIABLE --------·- SIZE SET BY TASK(S) 

a. HCSTlG 2048 DBI, FCP 

Description - HC status 

BIT 0 
BIT 15 

I 
SUBMODE 

MODE 

SPARE 

NO MOTION ERROR (AZ OR EL) 

HFC DETECTED HC COMM. ERROR 

MARK ENCOUNTERED (NO COMPARE) EL 

MARK ENCOUNTERED (NO COMPARE) AZ 

POSITION COMPARE 

~ ENCOUNTERED EL 

MARK ENCOUNTERED AZ 

SPARE 

USED BY TASK(S) 

ALM, BHC, CMD, 
GET, SEQ, STA, STS 

Constraints and limitations - HCSTlG is designed to maintain status 

for a maximum of 2048 heliostats. 

b. HCST2G 2048 

591 

ALM, CMD, DBI, FCP ALM, BHC, CMD, 
STA, STS 



Description - HC derived status 

BIT 0 BIT 15 

I ' t t I I I ' I 

UNMARKED 

I I I , . . I -----I 
HC ERROR 

ERROR REPORTED FLAG 

MISSING COMMAND RETURN 

HELIOSTAT COMMAND AND RETURN 
WITHOUT COMMAND 

TIME OUT (SET FOR SEQUENCES) 

OFFLINE (BY OPERATOR) 

SERIOUS ALARM 

COMM. ERROR 

NOT-INSTALLED 

Constraints and limitations - HCST2G is designed to maintain the 
derived status for a maximum of 2048 heliostats, 

3.3.1.4.1.8 Global common area COM8S3 

COM8S3 utilizes 8 pages of global common and is transferred to the 
Backup HAC every eight seconds. Unless otherwise noted, variable 
type is INTEGER*2 and the size is in words. 

• 

• 
VARIABLE 

HCST3G 

SIZE 

2048 

SET BY TASK(S) 

BCS, CMD, SEQ, DBI 

USED BY TASK(S) 

BCS, BHC, CMD, SEQ 



• 

• 

• 

3.3.1.4.1.9 

Description - Corridor, BCS, and sequence assignments 

BIT 0 BIT 15 

I I J I J I I I I u JJ I T I I j 
CORRIDOR ASSIGNMENT 

0: NOT ASSIGNED 
1-8: ASSIGNMENT 

SEQUENCE# (DYNAMIC) 
O: HC NOT ASSIGNED 

1-16: ASSIGNMENT 

BCS TARGET ASSIGNMENT 
0: SOUTH 
1: WEST 
2: NORTH 
3: EAST 

HC INVOLVED IN AUTO BCS OPERATIONS 

HC IN STOW SEQUENCE 

Constraints and limitations - HCST3G is designed to maintain 
HC assignments for a maximum of 2048 heliostats. Bit assignments 
for the BCS target limit the total to a maximum of four. Bit 
assignments for the corridor assignment limit the total to a maxi
mum of 16. 

Global common area COM8S4 

COM8S4 utilizes eight pages of global common and is transferred 
to the Backup HAC every eight seconds. Unless otherwise noted, 
variable type is INTEGER*2 and the size is in words. 

VARIABLE 

PWHClG 

SIZE 

2048 

SET BY TASK(S_) 

DBI 

USED BY TASK(S) 

CMD 

Description - Last-reported heliostat status (HCSTlG) when field 
power loss processing occurs. 

Constraints and limitations - PWHClG is designed to maintain power 
lost status for a maximum of 2048 heliostats. 

3.3.1.4.1.10 Global common area COMINl 

COMINl utilizes eight pages of global common and is transferred to 
the Backup HAC only at initialization time. Unless otherwise noted, 
variable type is INTEGER*2 and the size is in words, 

VARIABLE 

HC2MDG 

SIZE 

2048 

SET BY TASK(S) 

DBI 

USED BY TASK(S) 

ALO, BCS 

Description - Mapping array to convert from the HAC internal number
ing scheme to the MDAC external numbering scheme. The HAC array 

593 



element number contains the MDAC nuinbcr·. 

Constraints an,d limitations - HC2MDG is designed to maintain a 
maximum of 2048 heliostat numbers. 

3.3.1.4.1.11 Global common area C0MIN2 

C0MIN2 utilizes eight pages of global common and is transferred to 
the Backup HAC only at initialization time. Unless otherwise 
noted, variable type is INTEGER*2 and the size is in words. 

VARIABLE 

MD2HCG 

SIZE 

2048 

SET BY TASK(S) 

DBI 

USED BY TASK(S) 

BCS, MMI 

Description - RAC heliostat numbers indexed through the array 
MDNPRG (MDAC number per row) resulting in a mapping from the MDAC 
numbering scheme to the HAC numbering scheme. 

. . . 
I 
I 

I 
I 

. . . } 

RAC heliostat numbers in row 1, 
in row posJ:t;L_on order 

RAC heliostat numbers in row 29, 
in row position order 

Constraints and limitations - MD2HCG is designed to maintain a 
maximum of 2048 heliostat numbers. 

3.3.1.4,1.12 Global common area C0MIN3 

C0MIN3 utilizes seventeen pages of global common and is transferred 
to the Backup RAC only at initialization time. Unless otherwise 
noted, variable type is INTEGER*2 and the size is in words. 

VARIABLE 

a, HCMAPG 

SIZE 

2109 

SET BY TASK(S) 

CMD, DBI, MMI 

USED BY TASK(S) 

CMD, MMI 

• 

• 

Description - MMI - CMD interface buffer for heliostats involved 
in a command. MMI passes CMD heliostat numbers fo:t the command and • 
CMD returns HCMAPG with the success rate f:tom processing the command. 
This array .is used in conjunction with CPPG, 

,1-01. 



• 

• 

• 

Format: 2 types: 

1. Multiple blocks 

HCMAPG (1): 

(2): 

NB 
(Ni+ NB+l): 

i=l 

-N
1 

#HC's in first block 

HC# N
1 

HC's in pecking order 

-N #He's in second block 
2 

HC# N
2 

HC's in pecking order 

-999910 End of Data 

where NB=# of blocks inherent in command addressing 

2. Single block addressing: 

HCMAPG (1): -N t 
Total #HC's in block 

(2): HCJ Nt HC's 

(Nt +1): 

(Nt+2): -999910 End of Data 

Constraints and limitations - HCMAPG is designed to maintain command 
control over a maximum of 2048 heliostats broken into a maximum of 
60 subsets. 

VARIABLE 

b. MDNPRG 

SIZE 

30 

SET BY TASK(S) 

DBI 

USED BY TASK(S) 

BCS, DBI, MMI 

Description - Each element contains the subtotal of the number of 
heliostats in each successive row of the field. MDNPRG is used to 
convert MDAC heliostats numbers into HAC heliostat numbers. The 
MDAC row number is the index into this array and the array element's 
content plus the MDAC row position is the index into the array 
MD2HCG. 

1 
2 

30 

0 
- Sum row 1 and row 2 
- Sum row 1, row 2 aad row 3 

- Total of all rows 

595 



Constraints and limitations - MDNPRG is designed to maintain a 
heliostat field with a maximum of 29 rows. 

VARIABLE 

c. SEGMPG 

SIZE 

2108 

SET BY TASK(S) 

DBI 

USED BY TASK(S) 

DBI, GRF, MMI 

Description - HAC HC numbers ordered by segment number and subordered 
by pecking order. Each segment is preceded by the negative of the 
number of HCs in that segment. SEGMPG contains information only on 
segments that have installed heliostats. This array is used in 
conjunction with SEGPTC. 

-Nl 

HC// 
HCIJ . . . 
-N'J 

HCII 

HCII . . . 
-N 

3 

-E-number of HCs in segment1 

• HC numbers in segment1 in 
pecking order 

- number of Hes in segment 2 

HC numbers in segment 2 
in pecking order 

Constraints and limitations - SEGMPG is designed to maintain a field 
of 2048 heliostats subdivided into a maximum of 60 segments 

d. SEGPTG 60 DBI DBI, GRF, MMI 

Description - Pointers to the array SEGMPG indicating the start of 
the number of HCs in a desired segment. When the contents of an 
element in SEGPTG is zero, it means that segment does not have any 
heliostats installed. 

1 

2 

3 

59 

60 

-------1 - index to SEGMPG for segment 101 

- index to SEGMPG for segment 102 

- index to SEGMPG for segment 103 

- index to SEGMPG for segment 511 

index to SEGMPG for segment 512 

• 

• 

• 



• 
3. 3. 1.4. 1. 13 

• 

• 

Constraints and limitations - SEGPTG is designed to maintain a 
field subdivided into a maximum of 60 segments. 

Global common area COMIN4 

COMlNl1 utilizeA one page of global commo11 and is transfer.red to 
the Unckup l~C only at initializution tiu~. Unless otherwisP 
noted, variable type i.s 1NTEGER*2 tmd tht> size :ls in wor<lfl. 

VARIABLE 

a. CPUSG 

SIZE 

1 

SET BY TASK(~) 

DBI, SWI 

USED BY TASK(§_) 

CLK, DBI, TIK, TOK 

Description - CPU peculiar status 

BIT 0 

RECEIVER TRIP 
INITIALIZATION 
IS COMPLETE 

STATE OF RECEIVER 
TRIP 

PCS 2 OFFLINE 

PCS 2 IN MANUAL 

PCS 1 OFFLINE 

PCS 1 IN MANUAL 

BIT 15 

THIS CPU 
IS PRIME 

SWITCHOVER HAS 
OCCURRED 

THERE IS A 
BACKUP CPU 

Constraints and limitations - The CPU peculiar status word CPUSG 
must never be transferred to the Backup HAC. 

b. BCSTGG 20 DBI BCS, CIB) 

Type - 24 bit fixed point, scaled Bl4 

Description - BCS target in site reference orthogonal system 

WORD 0 WORD 4 

I~ + + i l 
X y z 

Les TARGET 

0: SOUTrl 
1: WEST 
2: NORTI! 
3: EAST 

597 



Constra.ints and limitations - BCSTGG is designed to maintain 
BCS target coordinates for .a maximum of four targets, 

VARIABLE SIZE SET BY TASK(S) USED BY TASK(S) 

c. CFABOG l CFO, DBI, MMI CFO 

Description - Command file abort flag. 

d. CFWATG 1 CFO, DBI, MMI CFO 

Description - Delay execution of command file execution flag. 

e. CORRCG 120 DBI BHI, CMD, SEQ 

Type - 24.bit fixed point, scaled Bl4 

Description - Corridor coordinates in site reference orthogonal 
system. 

WORD 0 WORD 1 WORD 2 I WORD 3 I WORD 4 

I I 
X - CULP, y r CULP z - CULP1 

··-' Corridor X - CLLP: y ... CLLP z - CLLP: 
1 I 

I I 
X - INC y 

I 
INC z - INC 1 

Constraints and limitations - CORRCG is designed to maintain corridor 
coordinates for a maximum of eight corridors. 

f. CPPG 4 DBI, MMI CMO 

Description - MMI - GMD interface command ,buffer 

WORD 0 WORD 3 

SCALED ELEVATION 
ANGLE; IF NEEDED 

SCALED AZIMUTH 

ADDRESSING: 

ANGLE, IF NEEDED; or 
AIM-POINT ARRAY 
NUMBER 

.> 0, NUMBER OF HCs/BLOCK 
= 0, ENTIRE BLOCK 
< 0, ENTIRE FIELD 

COMMAND NUMBER 

• 

• 

• 



• 

• 

• 

VARIABLE ------
g. CPPRTG 

--·-·--·-

Description -
h. DISKRG 

Description -

WORD 0 

SIZE SET BY. TASK(_S) USED BY TASK_(.?) 

1 

Command 

4 

Command 

CMD, DBI MMI 

processor error return word. 

buffer 

DBI, MMI OSK 

for MMI - DSK interface 

WORD 3 

ELEVATION ANGLE BIAS 

AZIMUTH ANGLE BIAS 

AIM-POINT ARRAY NUMBER, HC NUMBER FOR BIAS, OR 
SOURCE OF COMMAND 

COMMAND NUMBER 

i. HFCS3G 64 DBI BHC, BHI 

Description - HFC corridor assignments 

BIT 0 BIT 15 

I 
II OF CORRIDOR D 

II OF CORRIDOR C 

II OF CORRIDOR B 

II OF CORRIDOR A 

Constraints and limitations - HFCS3G is designed to maintain corridor 

assignments for a maximum of 64 HFCs, and four corridors per HFC. 

j. ISTATG 3 DBI, MMI STA, STS 

599 I 



Des.cription - MMI - STS interface status request indicator. 

:WORD 0 WORD i WORD 2 

1 to 12: 
13: 
14, 15: 

. ~ [ CODE FOR SOURCE OF 

STATUS REQUEST 

HC OR RING NUMBER IF 
ISTATG(l) = 14 or 15 

MODE NUMBER 
FIELD REQUEST 
HC OR RING REQUEST, RESPECTIVELY 

VARIABLE 

k. SLATG 

SIZE 

4 

SET BY TASK(S) 

DBI 

USED BY TASK(S) 

SUN 

Type - Double precision real 

Description - Latitude of facil.ity in de:grE:es (38. 4 degree north) 

1. SLONGG 4 DBI SUN 

Type - Double precision real 

Description - Longit1:,1de of facility in degre.es (-117 ,.0 degrees west) 

3.3.1.4.1.14 Free Storage (COMQUE) 

COMQUE is a dynamic buffer, initialized by task DBI (via QINIT), and 
used to queue and dequeue messages. for output. It is 4096 words in 
size, with a set of internal pointers monitored by sµbmodules LEASE 
FREE, ENQU, arid DEQU. 

The COMQUE global common area consists of the single COMQUE array 
!QUEUE. 

VARIABLE ~ SE.I BY TA$K(S) USE BY TASK(S) LOCATION 

!QUEUE. 4096 EXI; CSI, MMI GRF, cso, CFO Global c.omrnon 
DBI, ALM, ALO ALM, ALO, CMD COMQUE 

Description - Free storage area for messages awaiting out.put. 

• 

• 



• 

• 

• 

FIRSTG 
INDEX TO FIRST QUEUE BLOCK 

LASTG 
INDEX OF LAST QUEUE BLOCK 

3.3.1.4.1.15 Free Storage COMQU2 

0 

0 

0 

PO INTER TO NEXT 
QUEUE BLOCK 
N QUEUE 

COMQU2 is a dynamic buffer, initialized by task DBI (via QINIT), and 
used to queue and dequeue command messages for the Command Processor 

I 

Module. It is 4096 words in size (16 pages), with a set of internal 
pointers monitored by submodules LEASE, FREE, ENQU and DEQU 

The layout of COMQU2 is similar to QOMQUE in Section 3.3.1.4.1.14. 

VARIABLE 

IQUE2 

3.3.1.4.1.16 Disk Data Base 

SIZE 

8192 

SET BY TASK(S_) 

CMD, GET, SEQ 

USED BY TASK(S) 

GET, SEQ 

The Disk Data Base is composed of eteven files residing on the fixed 
disk. A description of each file is given in the following: 

! 

a. Disk File AIM - The AIM file contains the 20 aim-point arrays 
for the heliostat field. This file has 2048 records and 
each record is 100 words. Figure 3.3.1.4-1 provides a 
record layout description of the AIM file . 

b. Disk File ALl - The ALl file contains the Alternate l Stow 
azimuth and elevation angles. This file has 32 records and 
each record is 128 words. Figure 3.3.1.4-2 provides a 
record layout description of the ALl file. 

601 



REC RE.C. REC 

1 C. 3 

/ 
/ 

/ 
/ 

• • • 
! 
I 

IREC 

I [ 
----·-·-- ---···.,....._ __ _,. 

,,· 

.,/ 

'· 

..... "·-·--···--··-·•-··--··--··-·· r 

I 

• • • 
l- ""'•i•'"' 

···········-- --·-····-· --·--·--·· .... j ,. " .. , M. 

Figure 3.3.l.4-l Format and SLruclun~ of the Aim-l'ol.nt File (AIM) 

602 

• 

• 

• 



• 

• 

• 

RE.C. REC 
1 2 

/ 

HC 
(/) 

RE:C R 
3 

/ 

/ 
/ 

/ 

------
7 --------·····i··- - -- --------------1··---

E..C. ~EC RE.C 
~ · L Si 
______ _l ____ - ------ --- - . ---------··· -----· 

/ 
./ 

✓ 

/ 
/ 

------
HFC. i ~Z.-2. HFC i-¾'Z-i 

HC,HC. 
:1 2 

I 

He' HC He-: He ~;c_, i11t; 

_ {___ -· 
31 "]tL -~t 

I 
I 
I 
I 
I -.... 
#--------------- "-

H C j 
WORD rt> i wo.:;D :_ 

BYTf. ~ I BYfE i J 'B'(:f ;:: ! ~.:...'-0~3 
ALT1STOW i ALTlSTow 
AZIMUTH : EL£: VA110N 

HC 
31 

·-E..C, 

32.. 

Figure 3.3.1.4-2 Format and Structure of the RC ALTlSTOW Angles Disk File (ALl) 

603 



,------ -

3.3.1.5 

3.3.1.6 

c. Disk File AL2 - The AL2 file contains the Alternate 2 Stow 
azimuth and elevation angles. This file has 32 recortls 
and each record is 128 words. Figure 3.3.1.4-3 provides 
a record layout description of the AL2 file. 

d. Disk File BAM - The BAM file contains the alarm messages. 
This file has 255 records and each record is 64 bytes. 
Each sector contains four alarm messages (records). 

e. Disk File DIN - The DIN file contains five mapping arrays, 
the corridor coordinates, and the BCS coordinates. This 
file has 67 records and each record is 128 words. Figure 
3.3.1.4-4 provides a record layout description of the DIN 
file. 

f. 

g. 

h. 

Disk File HCC - The HCC file contains the heliostat loca
tions. This file has 64 records and each record is 160 
words. Figure 3.3.1.4-5 provides a record layout descrip
tion of the HCC file. 

Disk File HCB - The HCB file contains the heliostat bias 
azimuth and elevation angles. This file has 32 records 
and each record is 128 words. Figure 3.3.1.4-6 provides 
a record layout description of the HCB file. 

Disk File SAM - The SAM file contains the source alarm 
messages. This file has 255 records and each record is 
128 words. The record contents are provided in Figure 

• 

i. 

3.3.1.4-7. • 

Disk File SAV - The SAV file contains the real-time heliosta 
status, for the HC that are in Track or Standby. This file 

j. 

k. 

has 2048 records and each record is 6 words. Figure 
J.3.1.4-8 provides the record layout of disk file SAV. 

Disk Fi.le STO - The STO file contains the stow, azimuth and 
elevation angles. This file has 32 records and each record 
is 128 words. Figure 3.3.1.4-9 provides the record layout 
description of the STO file. 

Disk File WSH - The WSH file contains the Wash, azimuth and 
elevation angles. This file has 32 records and each record 
is 128 words. Figure 3.3.1.4-10 provides the record layout 
description of the WSH file. 

Interface Description 

The global common data bases COMDAT and COMQUE interface with tasks 
and submodules through FORTRAN INCLUDE statements and simple refer
ence to those variables. Tables 3.3.1-1 and 3.3.1-11 shows cross
reference of all global common variables/arrays and the tasks which 
utilize them. Table 3.3.1-111 cross-reference of all Disk Data 
Base files and the tasks which utilize them. 

Test Requirements 

Verification of global common data bases COMDAT and COMQUE and Disk 
shall be achieved through utilization of "snapshot" techniques, 

indicating global common contents. Modification of global common 
through independent test routine simulation shall be accomplished 
to insure proper design and efficient use. 

e, () I. 

• 



• 

• 

• 

-

R£C REC REC 
1 z 3 

~ 

1-C HC t-t. 
(/; 1 z. 

REC 
!,I 

--· -------·--1-;~~ 1-~(C. ' 
31 :2. 

----- ----- l 

HFC.t.*2--Z I ---~fr C Un - 1 

I 
I 

I 
I 
I 
I 

I-IC. HC. t-lC 
' 51 0 J 

~ 

HC : 
Wo'RD 0 

tl;1 ___ Tr 

.... ,, 
i 

---~ 
WORD i. ! 

1--------1---
B:YTE t> BYTE i BYTE 2 i BYTE .3 

ALT2 ':::,TOW ! ALTZ~Tow 
Al /,-../t.rfH (L£1/AT10"-I 

·, 

' 
-~ 

HC 

31 

Figure 3.).1..4-3 Format and Structure of ALT2ST0W Angles Disk File (AL2) 

/ 

605 



REC REC REC REC RECIRECIREC REC REC!REC1REC1RECIREC1 ~ 
1 2 3 4 5 I 6 I 1 8 9 /10 !11112 113 ! 167 : 

I I i i A_ • - ---~ 

Records 1-16 

These records are used to store the MDAC to HFCHC number 
mapping (MD2HCG), used in conjunction with the MDNPRG array. 
This file is filled from a-priori values whenever card Type 1 
is input through task DIN, and is read from the disk to fill 
the global connnon array. The array is stored in sequential 
fashion with element 1 of the array in record 1, word zero, and 
element 2048 stored in record 16, word 127. 

Record 17 contains the MDAC number per row (MDNPRG) array 
using the first 30 words. 

Record 17 

w 
() 

w 
1 

-... 
I 

1

1 Storage area 
I for MDNPRG 

w 
29 

I w 
'51 

w 
108 

Storage area for 
array, 60 words 

,/ 

Records 18-33 contain the HCZMDG array. Each record contains 
128 words of the HCZMDG array in ascending order 

Record 34-50 contain the SEGMPG array stored in ascending 
elements manner. Record 50 contains the last 60 words 
of the 2108 word array. 

Record 50 

w w last of w 
0 1 SEGMPG array 58 ls: ~/~ w i w / ' 

/ ,-✓;,170 j 92 %<~ 

~cs target 
!location 

Figure 3.3.1.4-4 Format and Structure of File DIN 

• 

• 

• 



• 

• 

• 

Record 51 

w w!w w w w w ! 
1 I 2 

• • • • • • • • • • • 0 3 4 15 127 I 
- ..._ 

- --
ft CORRIDOR BOTTOM CORRIDOR TOP 1CORRIDOR STEP SIZE 

l 

In all, 8 corridor definitions are stored in Record 51, 
using all 128 words in the record. 

Records 52-67, pecking order and segment number packed. 

,~,~ 1~ 1~1:1· • " · I~ I • • .. • .~ • • 11~7 I 
, ... , ... ---,/ --- ----/ _,., - ....... 

/ ---.,..,.. ·-
_,.✓ 

I I 

12!13)14\5 2 3 4 ,5 6 7 '8 9ilO[ll 

19 bits for segment ft 6 bits for peck-
order 1t 

Figure 3.3.1.4-4 (continued) 

607 



-

H 
(!. ,~ 

fi R !R iR 
E: E 

I 

E E 

C: C C C. 
i z 5 '-I 

f 

·-
R I 
f. 
C. 
5 

---

R 
E 
/"I 
'-

---·--·---------------·- --

--· '' ~,. - . --------

-- .__ -- -

• 
i ~(1 
~I 
~~ ! 

:l~~ I 
- ·- .... .J 

- -- ---··. ---·----·---··"'----· . -~-·-, , ...... -··-·-·--·----------· ... ---...,,--·-·····-· ""'" 

I 
-----r::~ -t·-.;,--1 

H IH H iH C S , Hr 11 Ii ,,, ' 
C.jC c. 1c C. C 1(1 " ,, ... • - ~ ~- - -

1 2 5 t-1 5 ~~ ~_:__1_0~'._ 

--- • --- - --
-

----------- -

WORD 0 WO'Rt 1 ' /nR ~-. ,, /- ,_ -- 11 /,')-;:; r-, :: 
•• '>, ... ~ ... ' 

~ jBYTE 1 
.----•--··-

B'<Tf. B'ffE 2 EWTr 5!- ~:·--~·c·::jeYTE ~ f:,'7[ G IBY'TE'i BYTE-8. 8'{1_E_q, 

'i..- Cooi?O Y-
2. ..j b;+~ 2Y 

--·---.-- -------

,,.. 
Loois"D Z- t.,DOR!) 

b'1-t=-, 24 b;t::, 87•~0 ... -- -·-- - - ... 

Bes t1 
/'l .• 

Lorr1do( 

--

Figure 3.3.1.4-5 Format and Structure of the HC Locations Disk File (HCC) • 
608 



, ··---..,.-·-

I I 

-, 

REC REC. REC, REC. REC REC. iH.:C 
I 

i 2 3 I..\ 
. 
l ~1 ~ '> 

-' I-

-----' --·~ ~----

• 
- ____ .... _ ------···-·---- -~------~ ··-- -~------~·--·· . 

HFC. i*2.-Z. HFC. i.*Z-1 

HC HC HC HC HC HC 
?tzcl IHtl . I 

0 1 z. J .Si 1rt, 
----·. 

I - ---I 

/ --I 
I -- -... 

1-'---------------·---
HC. .,t_ -

WORD ~> vJo~<D i 
BYT£ ~ 1 8YT~--~--- --~Y"TE ·2 -- 1 B~-E---~- _-

AZ \MUTH ::LEVA1I0N 
1------------"---·-·-----···-------' 

• 
Figure 3.3.1.4-6 Format and Structure of the Bias Disk File (HCB) 

609 



ALARMDATA REV.000 04/24/79 

2 1 
3 2 
4 3 
5 4 
6 5 
7 10 
8 11 
9 12 

10 13 
11 14 
12 15 
13 16 
14 17 
15 20 
16 21 
17 22 
18 23 
19 24 
20 25 
21 30 
22 31 
23 40 
24 41 
25 50 
26 51 
27 52 
28 53 
29 54 
30 55 
31 56 
32 60 
33 

'MULTIPLE LINE ERRORS; FT.ELD' ,A2, '; LINE' ,4A4 
'MULTIPLE HFC ERRORS; LINE' ,A2, ' ; HFC' , 4A4 
'HC ERRORS; HFC',A2,'; IIC',3(A4,A4,Al,'/',Al),A2 
'EL MARK ENCOUNTERED: HFC 'A2, ' ; HC 'A2, ' ; EL=<fl' Z4, ' , BIAS=//' Z4 
'AZ MARK ENCOUNTERED: HFC 'A2, '; HC 'A2, '; AZ=fl' Z4, ', BIAS=fl 'Z4 
'MISSING COMMAND RETURN; HFC'A2,'; HC'A2 
'ENCODER MOTION ERROR; HFC'A2,'; HC'A2 
'GIMBAL DIRECTION EEROR; HFC'A2,'; HC'A2 
'ENCODER JUMP ERROR; HFC'A2, 1

; HC'A2 
'COMMAND TIMED OUT; HFC'A2,'; HC'A2 
'COMMAND RETURN WITHOUT COMMAND; HFC'A2,'; HC'A2 
'HC MARK POSITION OUTSIDE TOLERANCE; HFC'A2,'; HC'A2 
'HC COMMUNICATIONS ERROR; HFC',A2, '; HC',A2 
'HFC DETECTED HAC/HFC COMMUNICATIONS ERROR; HFC',A2 
'INVALID COMMAND DETECTED BY HFC',A2 
'HAC TO HFC COMMUNICATIONS OUTPUT TIMED OUT; HFC',A2 
'HAG DETECTED HFC COMMUNICATIONS ERROR (NO RESPONSE); HFC'A2 
'INVALID DATA RECEIVED FROM HFC 'A2 
'HFC DID NOT RECEIVE LAST COMMAND; HFC',A2 
'LINE COMMUNICATIONS OUTPUT ERROR; LINE'A2 
'LINE COMMUNICATIONS INPUT ERROR; LINE'A2 
'FIELD COMMUNICATIONS OUTPUT ERROR; FIELD'A2 
'FIELD COMMUNICATIONS INPUT ERROR; FIELD'A2 
'OPERATOR CONSOLE MALFUNCTION' 
'CRT MALFUNCTION' 
'STATUS LPU MALFUNCTION' 
'CRITICAL ALARMS SCREEN MALFUNCTION' 
'ALARMS SCREEN MALFUNCTION' 
'ALAID-lS LPU MALFUNCTION; ALARMS OUTPUT DIRECTED TO OC' 
'DISK READ ERROR IN GETDAT' 
'FIRMWARE ERROR - HFC STATUS= ',Z4 

Figure 3.3.1.4-7 Alarm Messages Stored in File SAM 

610 

• 

• 

• 



• 

• 

• 

i\fC. 
i 

RE.C 

/ 
/ 

'5AV E. 
MODE 

/ 

/ 
/ 

/ 

/ 
/ 

Where. 'So•,1e µi::,Je -=- {j> : oihe, 

\ 
\ 

' \ 
\ 

\ 
\ 

' 

>-C> ·: He 10,1:. :J~ u, '):.r,rl ds A,·m po;,-.t ,.:::, 1r, 

wcrcb :1 - 5 

Figure 3.3.1.4-8 Tracking Configuration Save File (SAV) 

611 



REC. 
1 

REC 
2 

-
I-IC 
0 

REC 
3 

Rfc 
'i 

HFC i.. ~ 2- 2 

HC. HC 

1 z 

I 
I 

I 

I 
I 

t-t..• ;He 

J .J.l. I~. 
.._ ....._ 

-.... 

STOW STow 

A?:__~-~~~2-~-- -~~~- ~ Y!':~:~.{)~_J 

RE:C 
31 

Figure 3.3.1.4-9 Format and Structure of HC Stow Angles Disk File (STO) 

612 

• 
:..~·Ee 

I ·-·-
' ' . 

• 

• 



• 

• 

• 

~EC. ~EC 
1 2 

.,,. 

HC 
(/) 

~~---- ------

Rt.C R£C 
3 1-j 

. -

\-IFC l* 2-2 HFCL*2-1 

HC HC HC 1~ :I-IC HC. 

1/ 
HC 

1 2. J 0 ~ J 
L_ -- -·- I 

I 

I 
I 
I 

HC 
WORD rl> 

B"!'1 E.. </J 8Yn. 1 ·--•·---- ~-----
Az, MUTH 

--------

' ' 

WORD :L 
'BYTE. 2. BYTE: .3 
------ .. --~ ---·-

[LEVA 'Tl ON 

RE:C 
3i 

' 
HC 
~1 

Figure 3.3.1.4-10 Format and Structure of the Wasl1 Angles Disk File (WSH) 

613 



---- --- --- -r-- 7---
c:;t-lDAi' ~ q 2J _ §@ 
V ARL<\BLE ~ -~~ 

~ ~ k1 g µ~ ~ ~-::--: : :- ~- --~----~·-: -~-~- ~ ~- ~- ~ ~~l 
~ u 0 Cll__ u ___ ..:_: ___ _:~ _L_ u u ~-,---~ _ o u o ~ 00: i:::; en --~-~-- Ul en v:i J --r----

' I s ' ' ' 
i ----+---+---f----~ I . _________ I l ; 

::YG lu su u ~~ u - ~i~=F-- s , , s _M_~ -~~~-T; 
BCSHLG _L 5u ____________ ! ~ s -+---------- _ ____ __ I ___________ L _ _J 

AIMBSG 

Al.RMSG 
9~--s;-- -+---·-· 

i s l : ' , 
~c~~-~--l----- ___ ,__~L .... __________________ -+- s 1 ________ _,_____ : -------+- : 

CMDBFG ! I '.- s s s u ! ! _J 
!C_l>_!~_ t---- _ i u ________________ id_ I s ! ! . ! 
--------+-- - -8 -- I , 

coRRSG l ::;u u s i , i _J 
------------- , ! I I 

:;:_-_- !_8 
___ u_· __ -_s_1 _-_l._--_-_--_-_--_--_-_---_-_-_-_ -----u------+j ___ : ____ ! --- ----+---+----- _____ : _ I- __ j J 

, I T -s s , : , 
S:R'.f'WR~ --------i-----:------- ----- -----t------;-----+JL __ p ______ s·--- ----- -- s -{------- ------- l - --j--j 
CURHSG u I _ _,________ I I u ---•--t----~--------t 
ELEVG :u _____ J~ i-~-------.Jl ________ J s l s __ ,_---~------!----------- : !--! 
~~C}_G ~------- __ J__ ___ t:~ _____ s ___ ~_ s I s --~ ! ! --~ 
EMSEQG -- ___ t_lI_[_ ---- su __ -----~t-----s ______ ~--------~-- r -,-ll ___ JJ ___ JJ__: i I 

S S i i i I I i 
FIRSTG U U : : S i 1 _L ___ : _____ _ --·------- -c-s- -------i----t··------------------•--------r----- ------7--------rs- I r I 

-----. ---·- --- +--- --
! 

---·---- -·~ 
I 

; I 
----------·--- '.·------- --, ----, 

. I I ' u I I ' 

--~8~ ---~----- ~-----+-+---------------+--- ----- -- --r--------1 ---

----- --- ---- ---- ----;- ------ --- +----- - I I I u I . --~:;_--_j_L- :~ ~: 
----- ----i~u-l~_!J ________ s_ ___ § __ ~_u_[____ s + I j , -~------l------f-----~ 
HCDATG . - Ls·-·--s--:!l!..~_!} ________ s_ _____ ~ ____ s__j ______ ~_ -- ·rl _________ j_ __ L, __ _J ________ t-- ------ - _____ 11 ____ - __ J ___ j 

- - - . I I . : i- I ' ' ! I 
LAS_TG -- u - u l_ . __ L ___________ - - ----- __ L ___ ___s _______ J ------- - ---- __ '. _____ : ____ j _____________ .L._ ____________ - -- ---- ___ !.__ _______ ____,:,_ ____ I 

• 
Table 3.3.1-1 

(1 Sec 
Task Utilization of Global Common COMDAT 

Transfer Freq. to Backup HAC) 

S = Set 
U = Used 

• 



• 
COKDAT 
VARIABLE LINESG_ Is 

1 

__ - ~ r ;j ~--_ - z--

- __ ,_L I -f'~ ;, 
I s 

J_ 
I~ 
~ 

~.--
I 
1 

~1 gj u H ~ E--1 
:x: :i:: w 
p::: p::: u C,,!) 

LOEDEG I I u I I s 
::: : Su Su I u : 

• r . -
H 0 Hi~ ~ Cl) Cl) :,.:: u 
u u w ~ c., 

I 

8n I u I 

• --··· ----- ------·--~- - ------
l 

I 
0 ~ H ..:l ::z:: H :,G ~ LuJ §3 f;x., Cl) 

~ H H ::i: 0 ..... f-- E--< u t=l p,:; p', Cl) H E--..i t.~ v1 c.n 

I I 
SU I ' I u u 

u u SU 

I :: t- -. ---=:~= I : u I su / . _;_5_1 
:r~us ~--+ ~- s s s s ~---s s s s s s s s s s s s s _ s s s _ ~ ! s s ! s i 

! i ! I 

I ---~- , , ' 
i j ~; -t-------- ! --- ' 

± - : ! ------·--• --- I ' ' ! 
? : ! 

------ -----+--~ ·--'------ ----+---• _J 
• ! ! I 

i 
CJ' - -- I }--I - --{--

\Jl ! ; 
---- I I I -·----- -[·,·----I -; ----=-·j ·-+-=--------·- - _, -+- ------ -- r----- - I I - ---

' 
i 

T 

I 

I 
I 
l 
i 

! -=~=T=t==: ---------- i - --- - -- ! i 
-------r-- --- __________ l -·-----i---' 

' 

--_ -- ~ =:_ T -r ~--- - ---L 4 -- - ----4------- --

·1 _1 ·· ---+I-- -- --- ! -
' ·- --- _ ___,c... -t-- - ~-,----_-:_-_:_-_: _-- I, ------- --

----- I ---- -- I 1 I 
.. --- -- - -·· -~ - I ----· -- t---·• 

Table 3.3.1-I Task Utilization of Global Common COMDAT (con't.) 
(1 Sec Transfer frequency to Backup RAC) 

- ____ .J,,.___ -

S = Set 
U = Used 

... 



~0:,tDAT 
VARIABLE 

- -----,-------r·---- ------------- -

I I O ~ A ! ;I! ;I! ;,s:: ~ 
P:. ;:A U C 

:,,: 
~ 
u 

-- r- ~---~--- -- -•-•-~-•-~------------•--

H ZlH OH 
IJ:l H Cll Ul X 
0 Cl u U ~ 

p. 
u 
~ 

~1~ c., C..) 

~ 
(fl 

0 §11; 
lJj H 
f--; ::;:: 
.:.:; u~ 

)><! 
0 
E-< 

-

~: ~--1 ~-vJ~_j 
I 

:4 .... 
h 

< 
E--
1:/1 

u 
+-------------· ------ - --- ·-.--------

SU 

=t 
i 

AIMOKG ·t I ! 
AIM.PIG l U S S 

IICSTlG u ! f" ll u u u f--!· I I s I I 
l S S S IICST2G 1
8u . u 8u _ _ I ;.----4·= -- --s ·~u -

HCST3G __ j______ U U U _ ~-->----~--- _ 
l ' ~ ----- I 

~;;~----is~ su s~----------- : ---: Is: I ; ----···· l--j 
---- --- ------7----------+--l--------- ----: - i j______J 

~~~G__ ~- u s I u u 
8
u i /

IWHClG l ___ +-------+-- U S -----~ s s
SEQLSG . ---"----+---- U U S ------ '. - --------s ----
SEq~ I S U S

------- i--

I

I u L---- ----+---+-----,1-------- ! !
_j ________ ------- ------ -----+

!

i
--1--

j 11'. ·t---- -~· ···-~ --· ·1 : --+ +--------,----------- I I

I ---- l I -------r---- ---{------!

= =T ;-=--=-= --_ - =r-=·- ~= :f ===~=r=- --_ :=-~--~i ==:_- ---=: t~.: _: ..
+-- ----·------------r--·--------------i----. -- I ! i I 1_ Ii.

i --i---- ! ' ,-----------+--i -L---· --1- ---------· · --- ----- --- , j -- 1 1 i

---------- I r-· ----------------- ---- ---------- i__ --- --- ---1----------- r-- -- ! _ _J

----- - -~=: == :: •===: -= =:· --==--=-+-- =~=-- -- -· -=- =----l- _ · ----~-=· ==-1~~-= 1-1

•
Table 3.3.1-I

(8
Task Utilization of Global Connnon COMDAT
Sec Transfer Freq. to Backup HAC)

(con't.)

S = Set
U = Used

•

,.

COMDAT
VARIABLE

•
0 u -- :I! ~ E-<

t.,::i

•
H en en t ~ 0 ::..:

µ., VJ
.....

rn I u

JjCll_TGG I I : ~ "' ., ·~ ~ "' I - - ----J_':'._ - - I - I - - - -
~ ~

H
::i::
~- ~

u

<.::
O' l ::.::
~ d

H
~
0

s

ZlH 0
0 U U

H
>:
~ µ., 0 U 0 2

s
s

SU s
CFABOG

CFWATG

CORR.CG

CPPG

u u --
u

u s
s

- -l-----·~-
CPPRTG s

---·t--7 S

~IS-~--L-- --1-
HCMAFG

--

.-.,u
s
s

s u s

s
u
-

u s
su

~ ::c:
~ ~

I

ul ----- - -+--------: J ! --------+-----.s.--+---------+--+--+---------+----

•
H M ::.:: I< f;. r:!-;3 0 t"-1
ti) H E-< (f)

I ~'.

-·

l
I i

u JJ ------,
' i
I

u

- - -- u -~- -- I : 1 s t----- __ t~ u : :

-~------ ~_l __ I _____ r ___ su__:u ~-------+--~---+- u+- ______ _J_
1 ~=-~~"'.".:::C.---t---- ------ J ·--- --·----- s ' -- . --I

g~FG --~---+--+----------------
8

u _
8
-"'u--l--------l----+--"'

SLATG

SEGPl'G \ I ___ su su I u
1 ---- ----1.---l· -______ --------_ --\----- s____ \-------T-:·t -=----+_---------4-----1-----J

~~_N§Q __ · ·----1-~ - ----- r- " - -, -- --- L-! . -------t----

! : ll.
·_ lu

=- - ·t---r1 -~-==-=:~:~~=- t-==- =r--:-- _J-1--1-·-·-----1 ---------!----+-~

. ----- -l----·-+----L____ ---·--t-:·---------·--1----------- --1 --------------

1._ . - - -f_ ···-· ·\- --- - -----. - -----·- I

-~----~-~-~---~--- _t=--~~-:~~= --~--~- ~--~ -~-----------~---~L ____ - I t~~-~t-------

Table 3.3.1-I Task Utilization of Global Connnon COM.DAT (con't.)
(Transferred to Backup HAC Only at Initialization)

------'--------~-----'

S = Set
U = Used

A

NilS

SJ,S

V.LS

)1U,

)l(U

IMS

HJ.'8.

'Uci.

IWW

)l'SG

oa:)

.ni:o

IX:3:

;;;J:

I
;::II

Cl)

T
--··-t-I -+--t--+---1-;-----+- -, I I I

I
\ I I i :

I
: I
I I

I i l I
r-t--j-+--t--+---l--L-1-f--- t----1'--+--i-----

:

I
I ,
: j
I I -H : i i

1-,7-t--t-t-·+-4-+-+-~+_j_Lj__JI I l '--+--+--l--'---+-_j_J
i i I I I I
' I I : 1·

I i

• I I I i --'----+-17-~i---t--7-·-r--+-_J ___ L.

I i I I i I
i
I

I I i i

l i-.!---L!--(
1

---+U_ : i !

i
·t--.----J ·--- ---t- -·-t----+-.J.- -

! i . !

i I I
: I

)IT) :=> I +I I i i I I i i I
:---:--t-+-++-+-+~-~-LL 1 1 1 1 1 ·.! 1· I_ 1
I I I I I I l I :

::: 11 r i __ ..,.
1
_..___,

1
·--~---r- +-+-rt--t-ti

i 1

1

I awr1 I , .., I I I

I

. I ! I i I:

IHH I II I I I
I

["H<T -t--+--+--+---L I ! I
.., t1 I I I I l I

I I I I I i I I ! ! ' I
L.... 1· l __ i_T __ 7\-·--·t1-1·-----J__.1··--11·-·~--- I-"!" j--~1:-----,l _______ !-----··+---t--j

I :~:I' r-: l ! .i, i .--, Tr-, -~ r ·tJ
I I I I I • I I i

- I I U ---! _L_ 1_:_ ;__ -- --J l
I
I

.
.j..J

-c::
0
u .._,

H
I

,-1 .
(") .
(")

Q)
,.0

CtJ
E-<

•

•

• •
-·-·---· I----·-r-1
GLOBAL I
COMMON):: ~ I Cll I u ,.J ,_, u ::c:

I <~ <C CQ ~

H
;I::
~

~ u
E-<
t>l
c.,

o
w
G".l

~
..:l u

H
i:Cl
Cl

z
H
Cl

H
Cll
u Cll X U ~ ~ tf.l H H ~ O - H b ~

U W ~- (!) V O ~ 0,: ~--_::: f-; f--< C/) CJ) I !:r.
0 H1~1~10 ~HI~~ H ~ ~,< Cf.llZ

--·------1--
COMlSl l X l j X X X X X ,

~;;_t + ~ X X X ·x X

-+--------

X

X

X

ti I I X ---·-r-
COM1S4 X X X X

X; __

1
~- ! X X -+ X X

-~~ --- -- - - -

X X X X

~=:1 + . X I X : - -x I --: ·1 I I- ' •

------ -- ~- ·--·- I : I I -·-----~
COMilH I X . X I I X ! i '

·-- ----- .-•-·~-·-----. I - ---- 1 -·-----+----------.-------------r-----·-·-----.--- : ---+--1
COMIN2 i i X ! T X X , ~ ' !
--·--··-·----+-·--- . --------·-----[---- i _____ J ______ H

O\~OMIN~ __ _j __ __ : X J _______ ! ___ ______ , ___ ---~---- -·--i---- X X-L---------·----t----J __ ~
I I I ' . : '

~COMIN4 :.· ______ : -~t}S_ ___ ! _____ ~ ____ x , x x I x x x x x x~ x x i x I
·. I ! ,

z:~-[-'' x[Xr=====--x -~ =xt- --- : X X X X X X X X i-- X i ~
! : I i Tl I
i l t ' '

. - __ ---~- -.: --i_;-- ------ ___ -----.--- ----r---_- ---- -1·1----------·---r-- ·r----~ --·--. -. ---··--:~-==---·:-===-~--=~t===-=-~~= .. -
I ' ' i I , ,
i ! i i / l ! I

--· ··- -- -- ~----·---- --·+-- ---·•----- ------- ---+--·-----·+------·-- -+-· '- ··--- --!-------·-· ·-------- ······---··---+--·-·-·----·---l--·--

! ' ~ . I __ , ____ I i !

-- ~-~= ==1 -r-=~~-~-~.:~-~~~.- --+--=~:=~=~-L+---===-=--:--- -- -: -·~-.--t- -{=;
I ! ! I I :

·- -- -===1 == r= ~=::=:- =-= : 1- -== :~: =. _:::: =----+---- --=-- -----~---- ~==--=~j==:~-=--j_ _ _J
1 ! l l l r

---- -·-- - -·' -· - -·- --··· ·- ·-·-· ··-·-··--·---···· - '··- .. ---· - ··--··----- ---·-- --- . ------------~----·· -----·--· - --·--- ·-··-·-- -·- ------· - ---- - -·__J

coM1ss ·---~ .. x I x L-x __ x ___ x
COMBS 1 _ !------ --~- _ I X

COM8S2 lX
--·--··--- ·--+--··

X

X

X

x I
x x1xlxlx x xix xx x x!x x:x

i ----i- i
' I '

x : 1 -1-- --·-t~-iTi
----t-_j

i I

Table 3.3.1-II Global Common to Task Assignments

______ !_~ _j11_ ffi ·~·. ~ }f -~-~ _ti 5 -§-- s-·~ t~1~ -~ -i 1-~ --~- -~ .. ~
' I t !

COMQUE
QUEUES ~ ,

~
s
C/l

-1
!

l-----~
1

------ ------··- --r-- -----+--1------------ ___________ J ____ E________ D I E

2 I I I l I E I I I D

~ _t_ i i___ ------c~ : I • E : • ------ .;-==-:-::
~-~~-JY~:r1-==-··--~=-~.:r~-----· l D i

1

:

1

D >
1

•------l-- EJJ
9 L------l~---- --ti _______ --t----- _D_j_ _ l E I E i

i 1' I ______ ' ____ 'I

~ ! I -------- -- -+-- :,~• 1 , . f -'----i

:•-.~~ i _ J. L ____ --~~----; · ===t~- .l _TD < ___ J __ ---- _ J-1
______ : _____ J___j__________ : I ~1 I : --- ~.:-.:..--.± __ __,_'_ ----~

t i ! I I I ! : : ------ ------+--+_ ----------------------· i-- -----+!-- --+-!:--1--- -------+--' ----- I - --t--1
J I 1] , I j -4

t--- ---- - -·-·i-- ______ ,., -------------- ---=-I~--=- --~~-~- ~--- ---~- l--+-- l--- - _____ L ______ ------ _____ [~--- -:L-=-1
i , I : I :- ------:----:- --- --- --------- -- ----r------- ------ --- · t· ---- ------- ~----t-·-r -- ----- -----1--------- --------r---

, _ - -: t- -- - - ·· r ···- r- -- i ·· c ,_-_--_-_-------+-------------_-_- ------1 -----1- !

----~~jj~~~~~;~~==t __ ~~-;~tII

•
Table 3.3.1-III Task Utilization of Message Queue Global Connnon COMQUE

(Transfer frequency to Backup, Every Second)

•
E = Enqueue
D = Dequeue

-

- • r--- i----------------- ------- - -r ------,-·----- -------

1 I I "' H I "' - - ,- - -, ---

7

1

-------+"-- -------i-----~------ s: ~ . ;; ~ ~ g E I ~ ~ I ~ I
DISK
FILES.1- ,, :5

<
0

~
cn I u H u ~ ::x::
l:Q p::: p:::

~ t1
U 0

o
w
C/'.l

::.::
,-1
u

I-,
.Q
Q

~~----L_ J___j__ _____________ U -- -1----

z
H
Q

U I

H
en
u

0
CJ)

u
H
:,<
w

ti. u
µ..

~
c.,

0
rz.. u

+- ------~--
~l I I - l u U I

AL2 L I I u 1----- u ~ 11------i-----

BAM l u ---t-------=- l
l
I I

Il_~----1- ----+---~------ --- ------ -- ---+-
u

s t

f I -, - - _ ~ _ l

u 1J __ u -----r-- -- I - i
_ - ----- u - - --7

HCB ---+----- -- - __ , ! _ _ -- -----1

-- ! -- -------~,- : ! HC~ - ----t- - I __ -----
{~---- --1-----: ---- - --- -- -- -+

·r -~
i

s~---+ -- u
- ' -

!~~ --~r --=-j r--_ =-~~--- r--- ~~;- ~= -· ~; ---_: ~-~:=-i! '-- - --- : ___ : r ~::r-:
L -, ' ·-- ' ,_ i '-- I --- ' I

----- -~---!-- - ='.:t _ ··· =-= _-_ t_-:___=--r---~-r - + ~-- --_ J_=~=r=l
,____ ' ------ 1- I ' ---~ ' I __ ~

- -~ --- ~--4----------- ----- ---- -- - - - -J- - --=-------- ____ L __ -------~

----~- -----t-----j

------------4----->-------i
'

~- ' ---l- --- ' ------. -c~~ -tJ-=~~-~- _f - ~--==--L==-~ ·- . -----, ' ------- \ _____ L __ -- -·

Table 3.3.l~IV Task Utilization of Data Base Disk Files
(Transferred to Backup HAC only at Initialization)

I = Initialized
U = Used
S = Set

I

3.4

3.4.1

3.4.1.1

3.4.1.2

3.4.1.2.l

HFC Firmware Design

HFC Firmware Module - HFCMOD •
Purpose

HFCMOD is the firmware which performs all HFC functions. These
functions are:

a. HAC I/0 interfacing;

b. HC I/0 interfacing;

c. HAC c01111118nd processing;

d. HC operations;

e. Corridor walk calculations;

£. Emergency corridor walk operations; a~~

g. HFC timer maintenance.

HFCMOD is composed of nine major submodules which perform
the seven RFC functions. These submodules are:

a. HACIN which interfaces to the HAC/HFC input port;

b. HACOUT which interfaces to the HAC/HFC output port;

c. HCIN which interfaces to the HFC/HC input port;

d. HCOUT which interfaces to the HFC/HC output port;

e. CMDI which processes HAC inputs and sun vector time-outs;

f. HCOPS which sequences and performs all RC operations;

g. CWCALC which handles corridor walking sequences;

h. ECWOPS which controls emergency corridor walk-down
sequencing in the event of HAC communications loss;
and

i. HFCTMR which generates two HFC system timers from the
HFC hardware timer.

Requirements

Design Requirements

Section 3.1 of the Software/Firmware Functional Requirements
requires the following of the HFC:

622

•

•
I

•

•

•

3.4.1.2.2

3.4.1.3

3.4. 1.3.1

a. Transmit commands to the HCs;
•

b. Transmit .:;tatus and data to the HAC;

c. Initiate safe stowage commands to the HCs upon

loss of HAC communication; and

d. Control groups of HCs.

Derived Requirements

The following are the derived requirements for this module:

a. Maintain communications with the HAC computer;

b. Transmit the received commands for up to 32 HCs

connected on the RFC and store the parameters for

four corridors;

c. Poll the specified four HCs in response to a

polling command from the HAC;

d. Transmit the status received from the four HCs t:o

the RAC, upon request from the HAC;

e. Detect communications errors in messages from

HAC and HC; and

f. On loss of col"IJIJlunications with HAC computer, control

stow of up to 32 heliostats using an approximate

corridor walk (using last received sun vector).

Design Approach

Functional Allocations

HFCMOD is composed of nine submodules which are briefly

described below:

a. HACIN - collects message bytes receiv,:!d from the

RAC, detects the start and end of each message,

performs checksum calculation, and activates CMDI

when a complete message is collected;

b. HACOUT - transmits messages a byte at a time to the

HAC, calculates the checksum, and appends the

checksum to the end of the output message:

c. HCIN - collects message bytes received from the HC,

detects the start and end of each message, performs

checksum calculation, and reactivates the calling

submodule when a complete message is detected;

623

3.4.1.3.2

3.4.1.4

3.4.1.4.1

d. HCOUT - transmits messages a byte at a time to tP~

HC, calculates the checksum and appends the check··

swn to the end of the output mE•ssag,~;

e. CMDI - controls the mode switching of the HC and

associated processing according to current mode

and current input, processes all HAC commands, an!

invokes CWCALC, HCOPS, and ECWOPS;

f. HCOPS - performs all operations to the HCs including

sun/command output, command response receipt, HC

status polling and receipt, and status reformat

ting;

g. CW'CALC - performs the once··per-second updating of

the corridor coordinates and handles corridor end

points;

h. ECWOPS - generates heliostat mode masks from the

normal heliostat status buffer, sequences the

emergency corridor walk when HAC communications is

lost, and generates HC commands to accomplish the

emergency corridor walk; and

1. HFCTMR - maintains an 833 usec and a 50 msec time.'.'."

for use by the other HFC submodules. The 833

usec timer is used for timing I/0 intervals. The

50 msec timer is used to detect HAC communications

failure and to provide a one second time base

during emergency corridor-walk operations.

Resource Budgets

The HFC is limited to 4096 bytes of read-only memory (1080 of

which are to be unused spare), 1152 bytes of read/write

memory (732 of which are to be unused spare), 1.2288 MHz cycle

time, and one counter/timer. The HFC firmware must fit in the

available memory and execute within a one second cycle time.

HFCMOD is estimated to require 3016 bytes of read-only

memory and 420 bytes of read/write memory.

Design Description

Module Structure (See figure 3.4.1-1)

HFCMOD consists of nine submodules. Five are interrupt

driven and the remaining four are activated serially under

software control. CMDI is the main controller of the four

ground-level tasks (analagous to an executive or taskmaster

in a large computer). Interrupt routines and ground level

routines communicate through flag settings. Whenever the

H}'C is waiting for something to do (RAC input or sun vector

time-out), CMDI loops and tests the RAC input flag and sun

vector timt-out flag. CWCALC, HCOPS, and ECWOPS are

624

•

•

•

•

"' N
l/1

J HAC
llAC INPUT

HAC
OUTPUT

I/0 TIMER

CMD.

SVEC
TIMER

V
PROC.

Figure ? . ;•• 1-1

HFC
TIMERS

STATUS
BUFFER

-
EMERG.

cw
OPS.

I

HFC Module StructuT.~

•

I/0 TIMER

I

UC
OPS.

•

cw
CALC

•

UC
I HC

INPUT

~ HC
OUTPUT

3.4.1.4.2

3.4.1.4.2.l

3.4.1.4.2.1.1

activated by CMDI when the sun vector is received from the

HAC or each second by sun vector time-out when in the emer

gency corridor-walk mode. HACIN, HACOUT, HCIN, and HCOUT

are I/0 interrupt service routines which perform byte oriented

I/0 and checksum calculations. In addition, the input

routines detect message end by byte time-out when there is a

gap in transmission. HFCTMR services the timer interrupts and

provides task timers for the remainder of the HFC submodules.

Submodule I - Command Interpreter (CMDI)

Main Routine

Description

CMDI has three major functions: taskmaster, HFC mode

determination, and HAC command processing. CMDI determines

what processing is to be performed and what mode the HFC

should be in according to the current HFC mode and the type

of input stimulus. The HFC may be in the following modes:

The

a. RESTART - this mode is entered on initial power-up

and after completion of emergency corridor walk.
During this mode the HFC switches between the pri.Jr~ry

and secondary communications lines at a 13-second

rate until HAC communications is established.

The RFC remains on the established line either

primary or secondary until communications is lost;

b. NORMAL - normal mode of HFC;

c. PRE-EMERGENCY CORRIDOR WALK - this mode is entered

when the sun vector times out (loss of HAC communica

tions) to allow ten seconds for HAC recovery; and

d. EMERGENCY CORRIDOR WALK - after eight seconds,

emergency corridor walk begins and the HFC turns

all HAC I/0.

input stimuli are:

a. SUN VECTOR TIME-OUT - this is also used as a

one-second time base when no sun vector is

received from the HAC;

b. SUN VECTOR RECEIVED;

c. HC COMMAND RECEIVED - these are allowed only in

the normal mode and the HFC must have been

initialized;

d. HFC INITIALIZATION RECEIVED - allowed only in

normal mode, and they muse occur in order (A & B

626

off

•

•

•

•

•

•

3.4.1.4.2.1.2

3.4.1.4.2.1.3

3.4.1.4.2.1.4

3.4.1.4.2.2

3.4.1.4.2.2.1

CULPs, A & B CLLPs, A & B DELTAs, C & D CULPs, C & D

CLLPs, C & D DELTAs, and CORRIDOR-ASSIGNS); and

e. HAC STATUS POLL RECEIVED - only allowed in
normal mode.

Table 3.4.1-I is a state table describing the processes

and mode changes of the HFC based on current mode and stimulus.

When in the normal mode, CMDI will process all commands from

the HAC. HC commands are formatted into the HC command

buffer for HCOPs, except corridor-walk commands which are

channeled to CWCALC. Status commands are processed and
completed in CMDI. A normal HAC status poll only requires

output to the HAC since HCOPS has precollected and
formatted the status buffer. HFC initialization :ommands are

checked for correct order, and then the parameters (CULPs,

CLLPs, etc •••) are stored in the HFC data base" Receipt of

a sun/sync packet from the HAC causes CMDI to act as a

taskmaster, invoking HCOPS, CWCALC, and ECWOPS in that

order. During normal and emergency corridor-Yalk modes,

this happens once every second .

Data, Logic, and Command Paths

CMDI input are commands from the HAC. See section 3.4.1.5 for

HAC/HFC communications description. CMDI' s output is t,isk

activations, sun vector and HC command data to the HC
command buffer, corridor-walk data to CWCALC, and HFC initial

ization data to the HFC data base. CMDI's logic and command

paths are described above and in the flowcharts.

Internal Data Description

CMDI has no internal tables or data structures.

Flowcharts (See figures 3.4.1-2 and 3.4.1-3)

CMDI Subroutine I - CMDCMD

Description

CMDCMD is called by CMDI when the HAC is in the normal mode,

a HAC command has been received, and the HFC is fully

initialized. CMDCMD copies the data from the HAC message into

the HC command buffer if the command is AZ/EL pointing, beam

pointing, or RC initialization. Also, the selected HCs are

removed from the corridor-walk command masks. If CMDCMD

decodes a corridor-walk start command, CMDCMD generates the

first corridor-walk command and sets up CWCALC to continue the

corridor-walk operation. In all cases, CMDCMD sets the

command return field in the HFC status.

627

t-i
II)

0-.....
Ill

w .
~
I

H

::.i:
"':I
(")

0--
N Vl
Cl) rt

Ill

" Ill

1-i
t1
Ill
p
en
"
0
::,

;:,::
p
n
t1,
:,(

POWER-UP

I

RE

N

PRE
HOLD

0-

* E
AFTER

START
MODE

RMAL
MODE

MERG.CW
MODE
.0 SECS.

rERG. CW
.0 SECS.

•

I
I

SUN-VECTOR
TIME-OUT

SWAP HAC LINES,
RESET THE TIMER
AND SET THE INIT
PHASE BACK TO
ZERO

GO TO ECW MODE

SWAP HAC LINES, • ,

RESET TIMER, DO
C.W. CALC THEN
llCOPS AND STATUS
REFORMAT I
RESET TIMER, •
DO C.W. CALC THEN
HCOPS AND STATUS
REFORMAT

SUN-VECTOR
RECEIVED

RESET TIMER,
GO NORMAL,
THEN

i RESET TIMER,
DO C.W. CALC
THEN HCOPS
AND STATUS
REFORMAT t

I

RESET TIMER,
GO TO NORMAL
MODE BUT WAIT
FOR NEXT INPU"

IGNORE

HFC COMMAND
RECEIVED

IGNORE

PROCESS
IT IF
INITIALIZED

IGNORE

IGNORE

RFC INIT
RECEIVED

IGNORE

E~

HFC STAT POIJ. DOR
RECEIVED E

IGNORE

PROCESS IT ,BUT I OUTPUT IF STAT
IF WRONG ORDER} 4 HC' s
SET INIT PHASE
BACK TO ZERO

IGNORE IGNORE

IGNORE IGNORE

* When emergency CW is all done, HFC goes to the ~estart mode .

•

~
~
~

tJ:I
r'
0

A
ti
H

e:;
i

•

•
(CMDl) HFC COMMAND

INTERPRETER
.1 A/

!=HAi
-

'

A/1 EVENT "71'\

?

YES
""l.

• DETERMINE
MODE

SWAP HAC
RESTART I/0 LINES "-

GO TO ECW
NORMAL - S.V.T.O.MODE .. -

SWAP HAC I/0 AND REENTER
LINES & REENT

E.C.W. "' ER w/MODE • 7
~

MODE•S IF SUN
RESTART ;. MESSAGE AND

~ r-! I I REENTER

NORMAL
-.

GO TO NORMAL

E.c.w. • MODE IF SUN ..
ttt.;U.t'w MESSAGE

HCOPS TASK -. •
CWCALC

C.W. TASK - ·r

~1.;wur-,

ECWOPS TASK . ..

•
PROCESS

ERRORS .. ERROR ..

A/2

Fi ure 3.4.1•2 g Flowcharts - CMDI

629

·•

Yes

•
CMDI

Figure 3.4.1-:? Flowcharts - CMDI (Cont.)

•
630

•

•

•

NRMI:lI

DETERMINE
TYPI

COMMANDS

STATUS

SUNVEC

HC INIT

CMDINI

NORMAL MODE AND
HAC INPUT RECEIVED

CMDS4

SET CMDI TO
TRIGGER HCOP ,
CWCALC, AND
ECWOPS

RETURN

Figura 3.4.1-3 Flowcharts - NRMHI
631

No

3.4.1.4.2.2.2

3.4.1.4.2.2.3

3.4.1.4.2.2.4

3.4.1.4.2.3

3.4.1.4.2.3.1

3.4.1.4.2.3.2

3.4.1.4.2.3.3

3.4.1.4.2.3.4

3.4.1.4.2.4

3.4.1.4.2.4,1

Data, Logic and Command Paths

CMDCMD's input data is the HAC message from the HAC input
buffer. CMDCMD outputs data to the HC command buffer and

to CWCALC as described above.

Internal Data Description

CMDCMD has no internal tables or data structures.

Flowcharts (See figure 3.4.1-4)

CMDI Subroutine II - CMDINI

Descx:iption

CMDINI is called by CMDI when the RFC is in the normal mode

and an RFC initialization command has been received.
Because there are seven initialization message packets (A & B

CULPs, A & B CLLPs, A & B Corridor Deltas, C & D CULPs, C &
D CLLPs, C & D Deltas, and Corridor Assignments) which

must be received to fully initialize the HFC, CMDINI insures

they are all received by requiring them to be sent in
sequence. Corridor assignments are the exception because they

are allowed any time. If the current packet is received in

sequence, the data is stored in the HFC data base and the
initialization phase is advanced so the CMDINI expects the

next packet in sequence. However, the corridor assignments

being last, cause no phase update, and the initialization
flags are reset. If the recei:ed packet is out of order, the

initialization phase is reset to the start to force reinitial

ization. Finally, CMDINI sets the command return in the HFC
status.

Data, Logic, and Command Paths

CMDINI's input data is the HAC message from the HAC input

buffer. CMDINl outputs data to the HFC data base.

Internal Data Description

CMDINI's only internal data is the initialization phase, IPHASE.

Flowcharts (See figure 3.4.1-5)

CMDI Subroutine III - CMDS4

Description

CMDS4 is called by CMDI when the HAC requests the normal
status for four heliostats. CMDS4 starts the HAC output of

the status buffer and waits in a loop until it is complete.

632

•

•

•

•

•

•

H.C. IN

BEAM
POINTIN

CORRIDO
WALK

IT

G

R

I AZIMUTH
ELEVATIO H

CMDCMD

1

DETERMINE
fflE

Figure 3.4.1-4

CMDI Command Pr ocess

COPY INTO

- HC OUTPUT
BUFFER

COPY INTO
HC OUTPUT ...,
BUFFER -

START C.W.
- OPERATIONS -

COPY INTO
HC OUTPUT

_,
-

BUFFER

C RETURN)

Flowcharts - CMDCMD

633

CMDINI

RESET GET LOCATION
INITIALIZA- ..,_ _______, OF A & B

TION PHASE CULP STORAGE

GET LOCATI
OF A & B
CLLP STORAG

GET LOCATIO
OF A & B
DELTA STO

GET LOCATION
>------OF C & D

CULP STORAGE

GET LOCATION
>---------OF C & D

CLLP STORAGE

ET LOCATION INCRE PHASE
>_. ____

1
..,F C & D

DELTAS

..,_ _______ __. SET COUNT

FOR MOVE

CORRIDOR ASSIGNS

RESET RESTAR
~--.1 BIT IN

GET LOCATION

1-----1..i _OE, [J'O&,\.Gj _ 1---...i
SET COUNT HFC STATUS
OF 16

RESET INI-
TIALIZATION SET RESTART,-.---------•~

BIT IN
PHASE INZ HFC STATUS ._. __ _, _ _.ERROR _____ .,.

Figure 3 .4. 1~5 Flowcharts - CMDINI

634

MOVE DATA
TO STORAGE
BUFFER

RETURN

•

•

•

•

•

•

3.4.1.4.2.4.2

3.4.1.4.2.4.3

3.4.1.4.2.4.4

3.4.1.4.2.5

3.4.1.4.2.S.l

3.4.1.4.2.5.2

3.4. 1. 4. 2 • .5.3

3.4.1.4.2.5.4

3.4.1.4.3

3.4.1.4.3.1

3.4.1.4.3.1.1

Data, Logic and Command Paths

CMDS4's input is the four HC status buffer which was
collected by HCOPS. CMDS4's output is to the HAC via
HACOUT.

Internal Data Description

CMDS4 has no internal data.

Flowchart• (see figure 3.4.1-6)

Of.DI Suoroutine IV - POLlHC

Description

POLlHC status polls a single h~, specified by input argument,
when called by either CMDI or HCOPS. POLlHC first sends out
a status poll command via HCOUT to the requested HC and
then waits in a loop for it to complete. POLlHC then sets
up a read via HCIN and a deadman timer via HFCTMR and waiU
for the event to occur. If HCIN received a byte before the
timer times out, it will be reset for each byte until end-of
message. When POLlHC continues in response to timer time-out,
it returns either one HC's status or a no-response code
depending on the received byte count.

Data, Logic and Command Paths

POLlHC receives the desired HC number as an argument and returns
one HC's status to the calling routine.

Internal Data Description

POLlHC contains a skeleton copy of the HC polling command.

Flowcharts (See figure 3.4.1-7)

Submodule II - Corridor-Walk Calculation (CWCALC)

Main Routine

Description

CWCALC performs the corridor-walking operations in the HFC.
CWCALC processes in two distinct steps. First, corrido-,;
coordinates are incremented (of decremented) and updated in
the HC command buffer. The second step of CWCALC is corridor
end-point detection. If, after the corridor coordinates are
updated, the corridor Z-coordinate is greater than (less than)
the Corridor Upper (Lover) Limit Point. For a walk-up (down)

635

CMDS4

START
HAC
OUTPUT

WAIT FOR
COMPLETION

RETURN

Figure 3.4.1-6

•
CMDI Return 4 HC's Status

FLAG SET BY HACOUT

•

Flowcharts - CMDS4

•
636

•

•

•

POLlHC

START HC
OUTPUT

WAIT FOR
1/0 TO
COMPLETE

WAIT FOR
I/0 TO
COMPLETE

RETURN

Figure 3.4.1-7

STATUS POLL 1 HC

POLL THE HC VIA
HCOUT

FLAG SET BY HCOUT

SET-UP AND INPUT
VIA HCIN

FLAG SET BY HCIN

Flowcharts -POLIBC

637

3.4.1.4.3.1.2

3.4.1.4.3.l.3

3.4.1.4.3.1.4

3.4.1.4.4

3.4.1.4.4.1

3.4.1.4.4.1.1

3.4.1.4.4.1.2

3 . 4 . 1 • 4 • 4 • 1, 3.

operation, CWCALC generates a final corridor-walk command
to the Corridor Upper (Lower) Limit Point. One second later, CWCALC sets the corridor status as "not in use" and reenables
the HC command response for walking the HCs to the HAC.

CWCALC utilizes two subroutines, CKDELTAB and CKDELTCD, to
determine if a delta add or a delta subtract is required to
update the current corridor vector. Endpoint detection is also a function of these subroutines.

The flowchart for CKDELTAB is detailed in figure 3.4.1-9. The CKDELTCD is identical in function to CKDELTAB which
controls the corridor delta updates and endpoint detection
for corridors C and D.

Data, Logic and Command Paths

CWCALC's input consists of CULP's, CLLPs, DELTAs from the
HFC data base and corridor-walk start-up information from
CMDI. CWCALC's output is corridor-walk commands to the HC
command buffer and corridor status to the HFC status buffer.

Internal Data Description

CWCALC has no internal tables or data structures because it
operates directly on the HC command buffer.

Flowcharts (See figures 3.4.1-8 and 3.4.1-9)

Submodule III - HC Operations (HCOPS)

Main Routine

Description

HCOPS performs all normal operations to the HCs except special, single-RC status polls. HCOPS has three subfunctions: HC
sun/sync/command message output, command-response reception
and formatting, and HC status polling and formatting. These three subfunctions are performed by subroutines HCOSSC, HCOCRR
and HCOPOL, respectively. HCOPS calls these three subroutines in order.

Data, Logic and Command Paths

HCOPS calls the three subroutines once each, in order:
HCOSSC, HCOCRR, HCOPOL. HCOPS input is the HC sun/sync/command buffer, the number of the first HC to be status polled, and HC inputs. HCOPS outputs commands to the HCs and updates the
HFC/HC status buffer.

Internal Data Description

HCOPS has no internal tables or data structur~s becalise it
operates on the HC input and output buffers directly.

638

•

•

•

•

•

•

CWCALC

DELTA UP
OR DOWN

RESET A
ACTIVE

HFC STATUS

RESET B
ACTIVE

HFC STATUS

Figure 3.4.1-8

CKDELTCD
DELTA UP
OR DOWN

RESET C
ACTIVE

HFC STATUS

No

RESET D
ACTIVE

HFC STATUS

Flowchart - CWCALC

639

UPDATE
RFC

PHASE

RETURN

CKDELTAB

DELTDNAB

CKDNNDAB

IF CLLP
EXCEEDED
SET APPRO

ADD (UP) OR
SUBTRACT (DN)
DELTA TO CURRENT
TARGET (A OR B)

REQUEST A OR
-,..-. ___ __. B CORRIDOR

INACTI,.l'J!:

RETURN

DETERMINE IF
NEW TARGET
EXCEEDS CLLP (DN
OR CULP (UP)

RETURN

Figure 3.4.1-9

640

DELTUPAB

No

CKUPNDAB

IF CULP
EXCEEDED
SET APPRO
FIAG

Flowchart - CKDELTAB

•

•

•

•

•

•

3.4.1.4.4.1.4

3.4.1.4.4.2

3.4.1.4.4.2.l

3.4. 1.4.4.2.2

3.4.1.4.4.2.3

3.4.1.4.4.2.4

3.4.1.4.4.3

3.4. 1.4.4.3.1

3.4.1.4.4.3.2

3.4.1.4.4.3.3

3.4.1.4.4.3.4

3.4.1.4.4.4

3.4.1.4.4,4.l

Flowcharts (See figure 3.4.1-10)

HCOPS Subroutine I - HCOSSC

Description

HCOSSC outputs the sun/sync/command message to the HCs when

called by HCOPS in response to a HAC sun vector message or

emargency Corridor-walk sun vector time-out. HCOSSC starts the

output operation (carried on by HCOUT) and waits in a loop

until it completes. HCOSSC then clears the command mask and

returns to BCOPS.

Data, Logic and Command Paths

HCOSSC's input co111111and is the sun/sync/command HC out:put

buffer.

Internal Data Description

HCOSSC has no internal dat,i.

Flowcharts (See figure 3.4.1-11)

HCOPS Subroutine II - HCOCRR

Description

HCOCRR sets up the input of the command responses f·::om the HCs

and reformats them into a 32-bit mask in the HFC output status.

HCOCRR first sets up a 112 msec deadman timer and starts an

HC input. HCOCRR then waits in a loop until the 112 msec

timer times out. HCOCRR next decodes the HC number from ,!ach

byte of command response input to know which bits in the com

mand response mask to sec. HCOCRR then returns to HCOPS.

Data, Logic and Command Paths

HCOCRR' s input is the command response byt ,~s from the HCs via

HCIN. HCOCRR's output is the HC command response mask.

Internal Data Description

HCOCRR has no internal data.

Flowcharts (See figure 3.4.1-12)

HCOPS Subroutine Ill - HCOPOL

Description

HCOPOL collects and formats for HAC output from HC's status.

HCOPOL performs the following sequence four times. and .then

641

(HCOPS

I

BCOSSC

'

HCOCRR

'

HCOPOL

RETURN

RC Operations

iutput Sun/sync/co-•d to the BC's.

_JRead
[mask

command response & format the C.R.
in status.

•

_jPoll 4 HC's for status and format for HAC
[output.

CMDI

Flowchart - HCOPS

Figure .3.4.1-10

642

•

•

•

•

•
•

acossc

WAIT FOR
I/0 COMPLETE

CLEAR COMMAND
MASK ON

S/S/C

RE'lURN

HCOPS Sun/sync/command Output Subroutine

-{Flag set by HCOUt

don't clear CW co1Dll16«d masks

BCOPS

Flowchart - HCOSSC

Figure 3.4.1-11

643

via HCOUT

HC0C'RR

SET 112 ru
TIMER

START HC
INPUT

WAIT FOR
112 ms

TIMER

MAKE 32 BIT
MASK FROM
RESPONSES

RETURN

• HCOPS COMMAND RETURN RECEPTION SUBROUTINE

Flowchart - HCOCRR

Figure 3.4.1-12

644

via HFCTMR

Read 32 bytes via HCIN

HC reply only if and received
& HC selected

1 bit per HC

to HCOPS

•

•

•

•

3.4.1.4.4.4.2

3.4.1.4.4.4.3

3.4.1.4.4.4.4

3.4.1.4.5

3.4.1.4.5.1

3.4.1.4.5.1.1

3.4.1.4.5.1.2

returns to HCOPS:

a. Delay five msec to allow message dead space on the
HFC/HC line;

b. Call POLlHC to get the status for the next HC; and

c. Reformat the status into the status output buffer
(destined for the HAC). If no response from HC, set
the "HFC detected HC command error" bit in the ~utput
status.

HCOPOL receives from the HAC sun message the starting HC number
(0, 4, 8, 12, 16, 20, 24, 28) and increments it at the end of
the loop.

Data, Logic and Command Paths

HCOPOL' s input is the HC number to be polled and .the HC
status from POLlHC. HCOPOL outputs reformatted HC status to
the HAC output buffer.

Internal Data Description

HCOPOL operates directly on the HC input buffer and HAC
output buffer.

Flowcharts (See figure 3.4.1-13)

Submodule IV - Emergency Corridor-Walk Operations (ECWOPS)

Main Routine

Description

ECWOPS is activated every second by CMDI either in response to
a received sun vector from the HAC or to a sun vector time-out
during emergency corridor-walk mode. During ECW mode, the sun
vector time-out is the one-second time base. Normally, ECWOPS
returns to CMDI, but when enabled in the ECW mode, ECWOPS se
quences the emergency corridor-walk operations. ECWOPS calls
two subroutines to perform the ECW operations. ECWMG generates,
from the HC status collected by HCOPS, five mode masks used by
the second subroutine, ECWSEQ, which does the actual step-by
step sequencing. ECWOPS calls ECWMG then ECWSEQ once E·ach
second and returns to CMDI.

Data, Logic and Command Paths

ECWOPS uses the HC status from HCOPS to generate the mode ~;>
masks. ECWOPS' output is commands to the HC sun/sync/command~[,(·,-,,,'I·-,

output buffer.

645

HCOPOL

rSET uP LOOP

DELAY

S ms

POLlHC

SET HC COMM.
ERROR IN

STATUS

yES

RETURN

ye.s

JLoop for four consecutive HC's Status

-{status poll the next RC

FORMAT
STATUS FOR

HAC OUTPUT

-{to HCOPS

Flowchart - HCOPOL
Figure 3 .4. 1-13

646

•

•

•

•

•

•

3.4.1.4.5.1.3

3.4.1.4.5.1.4

3.4.1.4.5.2

3.4.1.4.5.2.1

3.4.1.4.5.2.2

Internal Data Description

ECWOPS main routine has four masks generated by ECWMG for ECWSEQ.
See ECWMG, section 3.4.1.4.5.2.

Flowcharts (See figure 3.4.1-14)

ECWOPS Subroutine I - ECWMG

Description

ECWMG is called by ECWOPS once-per-second during ECW mode.
ECWMG generates six mode masks which are used by ECWSEQ to
perform ECW operations. These masks arc:

a. UPHCS - 32-bit mask, one bit per HC, which indicates
which heliostats are pointing on receiver or at
stand-by;

b. WRUPHCS - 32-bit mask, one bit per HC, which indicates
which heliostats are walking up the corridor;

c, WRDNHCS - 32-bit mask, one bit per HC, which indicates
which heliostats are walking down the corridor;

d. DNHCS - 32-bit mask, one bit per HC, which indicates
which heliostats are at any of the lower limit points
(CLLPs);

e. HCPCS - 32-bit mask, one bit per HC, which indicates
which heliostats have "position compare" status bit
set; and

f. BADHCS - 32-bit mask, one bit per HC, which indicates
which heliostats do not respond to commands.

These mode masks have four HCs updated per second from the nor
mal HC status buffer.

Data, Logic and Command Paths

ECWMG generates the five masks according to the following
formulae:

UPHCS
WRUPHCS
WRDNHCS
DNHCS
HCPCS

Where:

(CMD + CR) (RCVR +CULP+ BCS)
(CMD + CR) (UPWIREA + UPWIREB + UPWIREC + UPWIRED)
(CMD + CR) (DNWIREA + DNWIREB + DNWIREC + DNWIRED)
A-CLLP + B-CLLP + C-CLLP + D-CLLP
PC

647

ECWOPS

No

Yes

Ec.wMG

ECWSEQ

RETURN

Emergency Corridor Walk Operations

-IHFC mode • E.c.w.?

l

-{ Generate mode masks from status
collected by HCOPS.

4
l

Do next step of ECW operation .

-{ to CMDI

Flowchart - ECWOPS

Figure 3.4.1~14

648

•

•

•

•

•

•

3.4.1.4.5.2.3

3.4.1.1-1.5.2.4

3.4.1.4.5.3

3.4.1.4.5.3.1

a. CMD is the bit mask of all heliostats commanded in
the past second;

b. CR is the command response mask generated by HCOPs;

c. CULP, RCVR, BCS, CORRIDOR-A, CORRIDOR-B, CORRIDOR-C,
CORRIDOR-D, and CLLP are heliostat submodes;

d. PC is the collection of the position compare bits from
the HCs;

e. $ is logical EXCLUSIVE-NOR;

f. is logical AND; and

g. + is logical OR.

Each second a four-bit slice of each command mask is updated for
the four HCs that were just polled. (CMD + CR) is used full
32 bits each second so that failing heliostats will be removed
from the masks.

ECWMG's input consists of the command response mask from HCOPS,
four HC status from HCOPS, and the command mask for the previous
second from ECWSEQ .

Internal Data Description

ECWMG's only internal data is used as temporary storage during
calculation.

Flowcharts (See figures 3.4.1-15 and 3.4.1-16)

ECWOPS Subrouting II - ECWSEQ

Description

ECWSEQ is called once-per-second by ECWOPS during emergency
corridor-walk mode. ECWSEQ used the mode masks generated by
ECWMG and MGlHC to command HCs from all points at or above the
CLLPs to stow. Eight seconds after ECWSEQ is first called, it
inhibits all HAC I/0 until the emergency walk is completed.

ECWSEQ then commands all HCs at or above the CULP to their
respective CULPs, commands all HCs at the CLLP to stow, and
continues any corridor walks in progress.

Two minutes later ECWSEQ commands any HCs at the top of the
corridor to track their respective CULPs.

Ten seconds later ECWSI<:Q commands all HCs tracking the CULP to
walk down their corridors.

649

• ECWMG Emergency Corridor Walk Mode
Generation Subroutine

UPHCS +- UPHCS. (CMD 9 CR)
WRUPHCS ..- WRUPHCS. (CMD • CR)
WRDNHCS ... Wm"HCS. (CMD 8 CR)

UPHCS+- UPHCS .MSK4
WRUP1:ICS4'- WRUPHCS .MSK4
WRDNHCS ,.._ WRDNHCS • MSK4
HCPCS.,_ HCPCS .MSK4
tmlCS ..,_ DNHCS • MSK4

N

SET UP 4 HC

LOOP

Yes

Flowchart - ECWMG

Figure 3.4.1-15

650

Delete HC's which didn't respond
to a command

Mask out the 4 HC's polled this

Do for four HC's polled this second

•
Set correct mode & state bit in masks

to ECWOPS

•

•

•

•

MG l HC) Generate Mode Bit

~

DETEDIINE
MODE OF HC

RCVR

CULP

CLLP

CORRlDOR
CORB.IDOR
COWDOil
CORRIDOR

CORRlDOR
CORRIDOR
CORRIDOR
CORRlDOR

A UP
B UP
C UP
D UP

A DN
B DN
C DN
D DN

NO
OPERATION

RETURN

.
-.,

~

.

I

SET BIT IN
''WRUPHCS"
FOR THIS HC

•
SET BIT IN SET BIT
"WRDNRCS II "DNHCS"
FOR THIS HC FOR nus

L
,.

)

Flowchart - MGlHC

Figure 3.4.1-16

651

-
'I"

I, ··-
SET BIT IN
"UPHCS"
FOR THIS HC

,
I

IN

HC

for 1 HC

3.4.1.4.5.3.2

ECWSEQ then commands all HCs at the bottom of the corridor to
stow.

Two minutes later, after any corridor walk-downs are complete,
ECWSEQ commands all HCs at the bottom of the corridor to stow.

ECWSEQ then initiates an eleven minute wait to verify all HCs
have achieved the stow position. ECWSEQ then disables its
internal clocks and the HFC hardware initiates a power-on
restart.

Data, Logic and Command Paths

ECWSEQ sequences through nineteen steps or phase~ during the
course of emergency corridor walking. The phase,, and their
descriptions follow:

a. PHASE 1 - Wait eight seconds to get full mode status
from ECWMG, inhibit HAC I/0, advance phase., and command
UPHCS on Corridor-A to A-CULP;

b. PHASE 2 - Comma,·d UPHCS on Corridor-B to B-CULP and
advance phase;

c. PHASE 3 - Command UPHGS on Corridor-C to C-CULP and
advance phase;

d. PHASE 4 - Command UPHCS on Corridor-D to D-CULP and
advance phase;

e, PHASE 5 - command DNHCS t ,> stow and advance phase;

f, PHASE 6 - Initiate two-minute delay to allow HCs
going up the corridor to complete and advance phase;

g. PHASE 7 - If delay has expired, command WRUPHCS on
Corridor-A to A-CULP and advance the phase; if not,
return;

h. PHASE 8 - Command WRUPHCS on Corridor-B to B-CULP
and advance phase;

1. PHASE 9 - Command WRUPHCS on Corridor-C to C-CULP and
advance phase;

j. PHASE 10 - Command WRUPHCS on Corridor-D to D-CULP
advance phase, and initiate a ten-second wait to allow
HCs to reach their respective CULPs;

k. PHASE 11 - Command UPHCS on Corridor-A to walk down
Corridor-A and advance phase;

652

•

•

•

•

•

•

3.4.1.4,5.3.3

3.4.1.4.5.3.4

3.4.1.4.6

3.4.1.4.6.l

3.4.1.4.6.1.1

l. PHASE 12 - Command L"PHCS on Corridor-B to walk

down Cort·idor-B and advance phase.

m. PHASE 13 - Command UPHCS on Corridor-C to walk

down Corridor-C and advance phase.

n. PHASE 14 - Command UPHCS on Corridor-D to walk

down Corridor-D, advance phase, and

initiate a ten-second wait.

o. PHASE 15 - Command HCs at CLLP to STOW and advance

phase.

p. PHASE 16 - Initiate two-minute delay to allow HCs

going down the corridor to comp ·1 ete and

advance phase.

q. PHASE 17 - Command HCs at CLLP to STOW, initiate

an eleven-minute wait and advance phase.

r. PHASE 18 - Wait until delay is complete and advance

phase •

s. PHASE 19 - Force restart of HFC by disabling all

clocks.

Internal Data Description

ECWSEQ creates, each second, a mask for use by ECWMG which

is the logical OR of those heliostats commanded on CORRIDOR

A, CORRIDOR-B, CORRIOOR-C, CORRIDOR-D, and either to beam

or AZ/EL point. ECWPHZ is the phase index which contrtls

the ECW sequence.

Flowcharts (see Figure 3.4.1-17)

Submodule V - HFC Timer Interrupt Handlers (HFCTMR)

Main Routine

Description

HFCTMR consists of two interrelated interrupt routines,

HFCTOC and HFCTOF, which handle the MC6803's TOC and TOF

timer interrupts. These routines maintain 833 usec and

50 msec granularity delay timers, respectively, for use by

the HFC tasks. The routines count down the timers if

active, and trigger the associated task when the count

expires. HFCTMR is not a physical body of code but a

logical grouping of two related functions •

653

ECWSEQ)
I •

DETERMINE
PHASE

ECWSTl ECWST2
- .

ECWST3 ECWST6 --- .

ECWST4 ECWSTS -
ECWST7

~ l<CWSTlO --
ECWST8 ECWST9 ·- -

~

ECWSTll ECWST14 --- -
-..

!ECWST12 ECWST13
~ - •

•
(

,_ ECWST15 ECWST16 f
RETURN) RETURN - . .

•

IECWST17 ECWST18 .__ ,_
"" .

DISABLE ECWST19 -
rw

SYSTEM
INTERRUPTS

I

• Figure 3.4.1-17 Flowchart - ECWSEQ

6.54

•

•

•

3.4.1.4.i.l.2 Data, Logic and Command Paths

See HFCTOC (J.4.1.4.6.2.2) and HFCTOF (3.4.1.4.6.3.2).

3.4.1.4.6.1.3 Internal Data Description

See H.FCTOC (3.4.l.4.6.2.3) and HFCTOF .(3.4.1.4.6.3.3).

3.4.1.4.6.1.4 Flowcharts (see Figures 3.4.1-18 and 3.4.1-19).

3.4.1.4.6.2 HFCTMR Subroutine I - HFCTOC

3.4.l.4.6~2.l Description

HFCTOC receives the MC6803's TOC (Timer Output Co111Pare)
interrupt when the TOC register contents matches the value
of the MC6803's free running counter. HFCTOC adds 040015
(833 µsec at 1.2288 MHz) to the TOC register, subtracts
one from all active timers, and triggers any tasks whose
timers have just expired. HFCTOC then exits the interrupt
level. HFCTOC's timers are used as I/0 byte timers an.d
I/0 delay timers.

3. 4. l. 4. 6. 2. 2 Dat.a Logic and Command Paths

HFCTOC's input is the TOC interrupt and delay timer cell
settings. HFCTOC's output is task triggers.

3.4.1.4.6.2.3 Internal Data Description

HFCTOC's timers are each one byte. ·A positive number in
dicates the timer is counting down. Zero means a task is
to be triggered. Negative indicates an inactive timer.

3.4.1.4.6.2.4 Flowcharts (see Figure 3.4.1-18)

3.4.1.4.6.3 HFCTMR Subroutine II - HFCTOF

3.4.1.4.6.3.1 Description

H.FCTOF receives the MC6803's TOF (Timer over Flow) interrupt
when the free rWlning MC6803 counter goes from FFFF15 to
000016• HFCTOF adds 100015 to the counter to generate the
50 msec TOF interrupt (100015 is an up count of 6144010 which
at 1.2288 MHz is 50 msec). HFCTOF also adds 100016 to the
TOC register to resynchronize the TOC interrupt. Because
the TOC is started out at 120016, this results in an adjust
ment from TOC • 020016 to TOC • 120015. HFCTOF then sub
tracts one from the sun vector timer and triggers CMDI if
it has expired. HFCTOF then exits the interrupt level •

HFCTOC

ADD 40016
TOC REGISTER

SET UP LOOP
ON TlMERS

SUBTRACT 1
FROM TIMER
CELL

TRIGGER THE
, CORRECT !ASK
l

Timer Output Compare Interrupt

-{ 833 •• @ 1.2288 Milz

{ Do for N timer,

NO -{ Timer positive or zero

l Timer zero?

r i bys flag settin8

EXIT / _ The interrupt level

Flow Chart - HFC7UC
Figure 3.4.1-18

656

•

•

•

•

•

•

3.4.l.4.6.3.2

3.4.l.4.6.3.3

3.4.1.4.6.3.4

3.4.1.4.7

3.4.1.4. 7.1

3.4.l.4, 7.1.l

3.4.l.4. 7.1.2

3.4.1.4.7.1.3

3.4.1.4. 7.1'.4

Data, Logic and Command Paths

HFCTOF's input consists of the MC6803 TOF interrupt, the
TOC register, and the sun vector timer cell. HFCTOF's
output is the trigger of CMDI.

Internal Data Description

HFCTOF's sun vector timer is a one-byte down counter.
Positive indicates counting down, zero means task is to
be triggered, and negative is past trigger until reset by
CMDI.

Flowcharts (see Figure 3.4.1-19).

Submodule VI - HAC Input Interrupt Handler (HACIN)

Main Routine

Description

HACIN receives bytes from the HFC's ACIA device (essen
tially a UART) and stores them in the HAC input buffer until
the HAC I/0 byte timer expires indicating no byte received
in approximately two I/0 byte times. BACINO, a subroutine
executed when I/0 timer expires, HACIN also accumulates a
checksum while receiving the message. HACIN resets the byte
timer each time a new byte is received. HAC input start-up
is accomplished by setting HACIN's I/0 byte count positive.
HACIN stores message bytes until its byte count goes nega
tive, zeroing the checksum and resetting the store address.
Reading bytes and accumulating checksum will continue until
I/0 byte time-out, even though no bytes are stored.

Logic, Data and Command Path

HACIN's input is message bytes, one byte per interrupt and
the 1/0 byte timer. HACIN's output is the received message,
byte-count and checksum accumulation.

Internal Data Description

HACIN's internal data consists of a byte-count, transfer
address, and checksum accumulator.

Flowcharts (see Figure 3.4.1-20 and Figure 3.4.1-21).

657

(
. - . ·-----.._
_ HFCTOF)

ADD 1~0016 TO BOTH THE
FREE RUNNING COUNTER
AND TOC REGIS'J:D

SUBTRACT 1
ROM THE SUN

I VEC TIMll

yt=s

TRIGGER
QIDI

'
(
. EXIT

Timer Overflow Interrupt

-{6144010 up count is 50 ms @ l .2288 MHz

_frimer

l

Jzero?
I

,
I

is reset positive by CMDI

~ by a flag settling

l

(
I

~the interrupt level

Flowchart - HFCTOF

Figure 3.4.1-19

658

•

•

•

•

•

•

HACtN

ADD BYTE TO

CHEClCSUM

RESET THE

BYTE TIMER

NO

YES

STORE BYTE VIA TA &

TC+-TC-1
TA-4==TA+l

EXIT)

(CONTINUED)

RAC 1/0 input interrupt

-{Also save ACIA Status

-{ Reset timer for ~ 2 byte times

fCheck if transfer byte count has been
lsatisfied

r
I Store via transfer address and update

......-11 transfer address & byte count
l

f
\

-i The interrupt level

Flowchart - HACIN

Figure 3.4.1-20

, 659 I

HACIND

RESET
THE

ACIA

SET FLAG
·•TO

TRIGGER
QIDI

RETURN

• HAC Input Timer Time-Out

iClean up any end conditions on the ch4n,..l

) HFCTOC

Flowchart - HACIND

Figure 3.4.1-21

660

•

•

•

•

•

3.4.1.4.8

3.4.1.4.8.1

3.4.l.4.8.l.l

3.4.1.4.8.1.2

3.4.1.4.B.l.3

3.4.1.4.8.1.4

3.4.1.4.9

3.4.1.4.9.l

3.4.1.4.9.l.l

3.4.1.4~9.l.2

Submodule VII - HAC Output Interrupt Handler (HACOUT)

Main Routine

Description

HACOUT takes a message buffer created by another HFC task

and outputs a byte at a time to the HFC's ACIA device

(essentially a UART) when the "transmitter buffer empty"

interrupt is received. HA.COOT accumulates a checksum and

outputs it as the last message byte. BACOUT retriggers

the user task after the checksum has been output. BAC

output startup is accomplished by setting HACOUT's byte

count, transfer address, and checksum and then writing the

first byte to the ACIA.

Logic, Data and Command Paths

HACOUT's input is the message buffer from the user task.

HACOUT's output is a byte at a time to the ACIA.

Internal Data Description

BACOUT's internal data is the byte count, transfer address

and checksum.

Flowcharts (see Figure 3.4.1-22).

Submodule VIII - HC Input Interrupt Handler (HCIN)

Main Routine

Description

HCIN receives bytes from the MC6803's internal UART and

stores them in the HC input buffer until the HC I/0 byte

timer expires indicating no byte received in two I/0 byte

times. HCIND, a subroutine executed when I/0 timer expires,

then retriggers the user task. HCIN also accumulates a

checksum while receiving the message. HCIN resets the byte

timer each time•,a byte is received. HC input start-up is

accomplished by setting HCIN's I/0 byte count positive,

zeroing the checksum, and resetting the store address.

HCIN stores message bytes until the byte count goes nega

tive. Reading bytes and accumulating checksum continues

until I/0 byte time-out even though no bytes are stored.

Logic, Data and Connnand Paths

HCIN's input is a message byte per interrupt and the 1/0

byte timer. HCIN's output is the received message, byte

count, and checksum accumulation •.

661

(HACOUT _) _____ ,. , __

/VO

6UTPUT
NEXT BYTE
TO ACIA

TA+TA + 1
TC.TC - 1
ADD BYTE TO

CHECK
SUM

\._ EXIT

HAC Output Interrupt

SET FLAG
TO

TRIGGER
OMDI

Flowchart - HACOUT

Figure 3.4.1-22

662

OUTPUT THE
CHECK
SUM

r
I

Update Transfer
byte count

~ The interrupt level
i

•

•

•

•

•

•

3.4.1.4.9.1.3 Internal Data Description

HCIN'a internal data consists of a byte count, transfer

address, and checksum accumulator.

,3.4.1.4.9.1.4 Flowcharts (see Figures 3.4.1-23 and 3.4.1-24).

3.4.1.4.10 Submodule IX - HC Output Interrupt Handler (HCOUT)

3.4.1.4.10.l Main Routine

3.4.1.4.10.1.1 Description

BCOUT takes a message buffer created by another HFC task

and outputs a byte at a time to the MC6803's internal UART

when the "transmitter buffer empty" interrupt is received.

HCOUT accumulates a checksum and outputs it as the las.::

message byte, and then retriggers the user task. RC output

startup is accomplished by setting HCOUT's bytes count,

transfer address, and checksum and then writing the first

byte to the internal UART.

3.4.1.4.10.1.2 Logic, Data and Command Paths

HCOUT's input is the message buffer from the user task.

HCOUT's output is a byte at a time to the MC6803's internal

UilT.

3.4.1.4.10.1.3 Internal Data Description

HCOUT's internal data is the byte count, checksum, and

transfer address.

3.4.1.4,10.1.4 Flowcharts (see Figure 3.4.1-25) •

663

HCIN

READ
BYTE FRI

SIO PORT

ADD BYTE TO CHECKSUM

& RESET I/0 BYTE
TIMER

• HC Input Interrupt

JAlso save status of Serial I/0 port

l

-{ Reset to ~ 2 byte time•

ye-s

-{Check if transfer byte count has been
satisfied

1110

STORE BYTE VIA TA AND

'IA4"-TA .± 1
TC"1=l'C - 1

EXIT

(CONTINUED) ·

) Store via transfer address & update
, transfer address and transfer byte count
I

(

~ The interrupt level

Flowchart - HCIN

Figure 3.4.1-23

664

•

•

•

•

•

HCIND

SET FLAG TO

TRIGGER USER
TASK

RETURN

HC Input Timer Time-out

-{Clean up any end conditions on the channel

~To HFCTOC

I

Flowchart - HCIND

Figure 3 .4. 1-24

665

HCOUT

OUTPUT
NEXT BYTE
TO SIO

PORT

TA TAfl
TC TC - 1
ADD BYTE TO

CHECK
SUM

EXIT

HC Output Interrupt

SET FLAG TO
TRIGGER

USER

r
I

/ OUTPUT THE
CHECK

SUM

TC TC - 1

lThe interrupt level

Flowchart - HCOUT

Figure 3 .4. 1-25

666

~Update

I Update
-{ & byte

l

•

transfer count

transfer address
count

•

•

•

••

3.5

3.5.1

3.5.1.1

3.5.1.2

3.5.1.2.1

3.5.1. 2.2

HC Firmwe.re Design

HC Firmware Module - HCMOD

Purpose

The following is a description of the Operation of the
Heliostat Controller Firmware, hereafter referred to as
HQfOD. HCMOD consists of the following submodules:

•• INIT - System initialization;

b. SYSCLK - System clock and task activation control;

c. POINT - Encoder data acquisition and motor control;

d. SCIO - Serial communications handler; and

e. CALC - Control Algorithm.

Requirements

Design Requirements

Section 3.1 of the Software/Firmware Functional Requirements
requires the following of the HC:

a. Determine heliostat azimuth and elevation position
requirements;

b. Control gimbal drive motors;

c. Check gimbal axis sensors; and

d. Provide gimbal axis position data to HAC.

Derived Requirements

HC firmware derived requirements are as follows:

a. Maintain communications with the HFC, detecting
communications errors;

b. Calculate t'.1e desired azimuth and elevation angles
based on sun vector and operational commands from
the HFC;

c. Control the azimuth and elevation motors to achieve
the desired position;

d. Maintain the azimuth and elevation encoder'inter
faces to provide gimbal angle information;

e. Provide HC status information to the HFC upon a
poll command;

667

3.5.1.3

3.5.1.3.l

f. Execute an automatic ·reset upon detection of major

errors; and

g. Detect errors of heliostat operation (i.e., in-

operative motors).

ne,ign Approach

The following is intended to show the relationship of the

various HCMOD submodules to system requirements (see Figure

3.5.1-1).

Functional Al.location

INIT - This submodule, activat.r.d by SYSTEM RESET, initiates

system restart operations. System operating configuration

is set, and internal registers and system memory locations

are initialized (see Figure 3.5.1-2).

SYSCLK - This submodule, activated by a r.eal-time clock,

controls the time-critical functions of the HC. Time

critical functions lncj .de the following:

a. HC to HFC command response;

b. Motor direction switching delays,

c. Data acquisition; and

d. Communications time-outs.

Non time-critical functions, such as command decoding, are

enabled for activation by this submodule (see Figure 3.5.1-3

and Figure 3.5.1-4).

POINT - This submodule, activated by SYSCLK, is responsible

for the real-time data acquisition of the gimbal angle in

cremental encoders.

Motor control is also a function of this submodule. Motor

speed control is accomplished by comparison of commanded or

calculated position and actual gimbal position error. If

this error is significant (greater than eight bits), Hi speed

operation is initiated. If the opposite condition exists,

Lo speed operation is then initiated (see Figures 3.5.1-5,

3.5.1-6, and 3.5.1-7).

SCIO - This submodule, enabled by SYSCLK, handles serial

communication with the HFC. Activation of this submodule

is accomplished by receiver and transmitter interrupts.

These interrupts, if enabled by SYSCLK, are vectored into

SCIO directly.

668

•

•

•

•

•

•

Hex Addreea

FFFF

FFFf

FEFF

F800

5003

5000

207F

2000

OOFF

I
0080

007F

I
0000

HC SYSTEM MEMORY MAP

System Interrupt Vector•

HC Control System

Motor Controller
Encoder Data Inputs

EPROM (or ROM} Memory

MCM68A211~L PIA

Sun Vector Buffer
Incoming Command Buffer
Response Buffer

} MCM68Al0CL 128X8 RAM

Stack, System Operating Variables
Enable Byte
Cordie and Control Algorithm
Variables

MCM6803 Intemal RAM

Intemal System Registers
(Serial r/o, Timer, Etc.)
Reserved Area

} MCM6803 Internal Registers

Figure 3.5.1-1

669

°' -..J
0

. ~\

INIT

es

••

BA<lCGROUND TASKS

START COMM
TIMERS

START WATCH
DOG

Figure 3.5.1-2

ENABLE
MOTOR
CONTROL

Yes

Flowcharts - INIT

•

CALL
CALC

~

CUTE
TROL

ALGORITHM

I
I

'

-

•

•

•

ENABLE
RECEIVER
INTEJWJPT

ENABLE
RECEIVER

CLEAR STATU
BITS

RESET FREEZE
FIAG

COMMAND HC
TO CURRENT
POSITION

SET COMM
LOSS BITS IN
STATUS WORD

DISABLE

·SYSCLK

RESET
HARDWARE
WATCHDOG

TIMER

TRANSMITTER __ _.
DO MOTOR
CONTROL

ENABLL
RECEIVER

Figure 3.5.1-3

671

SYSCLK

ENABLE
TRANSMITTER
INTERRUPT

DISABLE
RECEIVER
INTERRUPT

POINT TO
TRANSMIT
VECTOR

RETURN FROM
CIOCK
INTERRUPT

DECODE

STORE SUN
VECIOR

SYNC• l

RESET 1 SEC
SUN TIMER

LOAD
CORR.-WALK 1

VECTOR

LOAD
BEAM-POINT
VECTOR

LOAD
RR.-WALK 2

VECTOR

No

0

LOAD
CORR.-WALK:3
VECTOR

STORE
~.....i VECTOR

AS TARGET

ENABLE
CALC
ACTIVATION

TRANSFER
INITIALIZA
TION DATA

TRANSFER
AZ/EL DATA

LOAD
CORR.-WALK 4

VECTOR

ENABLE
COMMAND
RESPONSE

ENABLE
MOTOR
CONTROL

DISABLE
CALC
ACTIVATION

SET NEW
STATUS BITS

RETURN
TO
SYSCLK

Figure 3.5.1-4 Flowchart - DECODE

672

•

•

•

•

•

POINT

ENABLE
INTEllUPTS

MEMOllY" EN
COJ>IRS BO'l'B
AZ & EL

BUILD MOTOR
WORD

POWER
APPLIES
POWER

TO MOTORS

UPDATES IN MEMORY ENCODERS.
VERIFIES MOVEMENT OF
GIMBALS. SETS FREEZE FLAG
IF INDEX MASKS ARE
ENCOUNTERED.

DETERMINE DIRECTION REQ'D.
FOR AZIMUTH MOTOR, SET
BITS IN MOTOR WORD

DELAYS REQ' D. FOR RELAY
SWITCHING & MOTOR COASTING. '---

No

BUILD MOTOR
WORD

POWER
APPLIES

POWER
TO MOTORS

RESET
POSITION
COMPARE BIT

RETURN
FROM
INTERRUPT

Figure 3.5.1-5 Flowchart - POJNT

673

DETERMINE DIRECTION
REQ' D. FOR ELEVATION
MOTOR. SETS BITS IN
MOTOR WORD.

DISABLE
INTERRUPTS

READE

READ &
DEBOUNCE
ENCODERS

RDI
UPDATE

AZIMUTH
ABS ENCODER

UPDATE
RETURNED
AZIMUTH

DATA

RDl
UPDATE

ELEVATION
ABS ENCODER

No

UPDATE
RETURNED

ELEVATION
DATA

MAINTAIN AZ ABSOLUTE
ENCODER VALUE
Ei.ROR CHECK

NOT EXECUTED IF
DATA FREEZE IN
EFFECT

RETURN
FROM
INTERRUPT

SET NOT
MOVING
BIT

No

Figure '3.5.1-6 Flowchart - READE

674

No

RDl

DETERMINE
DIRECTION
OF COUNT

ADD OR
SUBTRACT
FROM CURREN

SET NO
COMPARE BIT

TRANSFER
BIAS
TO POSITION

RETURN
TO
CALLER

•

,,.

•

•

•

AZMOTR

GET AZ
COMMANDED
POSITION

SUBTRACT
FROM
ACTUAL AZ

ELMOTR

GET EL
COMMANDED
POSITION

SUBTRACT
FROM
ACTUAL EL

RESET SPEED
BITS

No

POWER

GET MOTOR
WORD

CHANGE
MOTOR
DIRECTION

SET APPROPRI

BUILT BY
AZMOTR &
ELMOTR

's TOP MOTOR .
SET DELAY TO
ALLOW COAST

SET Cai BIT
IN MOTOR WD

RESET CCW
BIT IN
MOTOR WORD

ATE DELAY IN .,__ ___ ,.ai

•

SET HI SPEED
BITS, RESET
LOW SPEED
BITS

RETURN TO
CALLER

SET LO SPEED
BITS, RESET
HI SPEED BITS

SET MOTOR
SPEED

Figure. 3.5.1-7 Flowclw.rt - J\ZMOTR, ELMOTR, POWER

675

RETURN TO
CALLER

3.5.1.3.2

3.5.1.3.2.1

3.5.1.3.3

3. 5.1.4

Data checksum and communication error detection (framing and

overrun errors) are also handled in this submodule. Com

munication line turnaround is also a function of this sub

module (see Figure 3.5.1-8).

CALC - This submodule, activated by SCIO, is a Background

Task enabled for operation when a new sun vector is received

from the HFC. This submodule contains the Cordie Positioning

Algorithm (see Figure 3.5.1-9).

Resource Budget•

INIT
SYSCLK
POINT
SCIO
CALC
VECTORS

91
469
457
263
752
16

Bytes
Bytes
Bytes
Bytes
Bytes
Bites

•

Total 2,048 Bytes Read-Only Program Memory

SYSTEM STACK
SYSTEM VARIABLES
CONTROL ALGORITHM

35
44
49

Bytes
Bytes
Bytes

COMMAND AND RESPONSE BUFFERS 121 B!tes

Data Memory. 249 Bytes Read/Writ!

Submodule Priority

Basic operating priority is as follows:

INIT
SYSCLK

SCIO
POINT
CALC

Operating System Variables

See Table 3.5.1-I.

Design Description

The HCMOD is a complete, stand-alone, firmware package de

signed to reside in 2048 bytes of mask programmed read-only

memory.

HCMOD is essentially a foreground - background system de

signed to take advantage of the vectored interrupt capability

of the MCM6803 microcomputer.

676

•

•

•

CLEAll INTER
RUPT FIAG,
ENABLE
TRANSMITTER

Yes

No

GET NEXT
BYTE IN
RESPONSE

PUT BYTE
IN

TRANSMITTER

DISABLE
TRANSMITTER
INTERRUPT

Byte-Checksum

SCIO

STORE BYTE
IN INCOMING
BUFFER

UPDATE
CHECKSUM

No

READ STATUS
OF INCOMING
BYTE

GET DATA
BYTE

ENABLE SERIAL _______,.

I/0
TIMER

CALCULATE
RESPONSE
WINDOW

SET RESPONSE

1.----------t ENABLE BIT

Figure 3.5.1-8 SCIO

677

Yes CLEAR SERIAL

RECEIVE::J
SET HARDWARE
WAKE-UP

Yes

No

CLEAR CHECK
SUM &
BYTE COUNT

COUNT • 7

°' --...J
co

.,_

•

CALC

CALCULATE

T

--~------ - -

I
I
I

NORMALIZE

T

~

RMALIZE VECTCRS
NG

RDIC

POSITION CALCULATIONS

GET COORDINATES & HELIOSTAT COORDINATES
NG CORDIC ALGORITHM

~

ULATE TARGET VECTOR BASED ON

S + T • P

------.... ----J - -

CALCULATE
AZIMUTH &
ELEVATION

r-: NORMALIZED VECTORS _L.:'AIN POINTING VECTOR

DIC ALGORITHM
----,.--......J - - - ~

ORM CARTESIAN TO POLAR
CONVERSION USING

RETURN

Figure 3.5.1-9 Flowcharts - CALC

• •

•

•

•

HC SYSTEM OPERATING VARIABLES

VARIABLE HEX LOCATION SIZE IN BYTES

ENABLE OOAJ l

BIT BREAKDOWN

LSB BIT O - l • New Sun Vector Received and Queued

BIT 1 - 1 - Message Length Timer Enabled

BIT 2 - l • Comm Loss (ISEL) Timer Enabled

BIT 3 - l • Status Response Enabled
BIT 4 - l • System Requests Initialization

BIT 5 - Spare
BIT 6 - l • Control Algorithm Enabled

MSB BIT 7 - l • Motor Control Enabled

TRXOK OOA4 1

Loaded with calculated value that determines when HC responds

with Command Response or Status -- when "0" transmitter is enable:1.

SLOSS

CLOSS

OOAS

Loaded at receipt of incoUling byte, also loaded at time of

out9oing byte - when "f/J" Command Decode is initiated or

ttfans'lllitter operation is disabled.

OOA6

X.Oad&d a,t Sun Vector Receipt Time - when "f/J" HFC Comm Loss has

betn .detected -- HC loads current position into Az and El

Buffers and indicates C011111 Loss ViA Status Bits - Motor Contro,l

•t.t~ active.

OOA8

Used by scto Routine to control entry point of Receiver Buffer

'Pull In.terrupt.

IOVEC. OOAA

Used by SCIO Routine in conjunction with "NEXVEC" to deter!lline

entry point for Receiver Buffer Full and Transmitter Buffer

Empty Interrupts.

Table 3.5.1-1

679

l

2

2

RC SYSTEM OPERATING VARIABLES (Cont'd.)

VARIABLE HEX LOCATION

BYTECT OOAC

Used by SCIO Routine to count bytes of incoming and
outgoing messages used with "CHARS".

CHARS OOAD

CKSM

Used by SCIO Routine to count actual message bytes
received and sent (including Checksum).

OOAE

Accumulates bytes for message checking - compared with
received Checksum byte to determine message validity.

MASK OOAF

8 Bit MASK with 1 bit set - used to determine if received

beam pointing, Az, El, or Corridor Walk Command is valid
for HC - Set bit position determined by Heliostat Address.

MCOUNT OOBO

Counter loaded at motor control time - used to determine
sample time of Encoders and Motor Con::rol operation -
Value currently loaded equals 2.5 ms.

ACOUNT OOBl (Azimuth)

ECOUNT OOB3 (Elevation)

Counters loaded at motor power time - Various counts
appear in these locations based on delay time, required
for Relay Switching, Motor Const, Direction Change.

Table 3.5.1-I (continued)

680

•
SIZE IN BYTE:,

1

1

1

1 •
1

2

2

•

•

•

•

ac SYSTEM OPERATING VARIABLES (Cont'd.)

VARIABLE HEX LOCATION

OLDAZ 00BB

Contains old Z Bit Reading used to determine Direction of
Count for Azimuth Encoder.

ASTU(l(00BC

Used to determine length of time Heliostat: is not moving -
Not necessarily an error condition.

AZABS 00BE

Actual absolute Azimuth Encoder position - Updated during
read of Azimuth Encoder •

AZBAZ 00CO

Downloaded Heliostat Azimuth Encoder Bias.

FRZAZ 00C2

Set to non-zero value by Index Mark Interrupt Handler -
Indicates AZ Mark Encountered. Moves Bias Value (AZBZ)
to Position Buffer (AZABS).

AZNC

AZCP

C3

C4

Variables used in Compare/No Compare Logic.

OLDEL

ESTUCK

ELABS

ELBAZ

FRZEL

EI.NC

OOC5

OOC6

oocs

OOCA

oocc

OOCD

Similar to above variables - for l~levation Motor Control.

ELCP OOCE

Table 3.5.l~I (continued) 681

SIZE IN BYTES

1

2

2

2

1

1

1

1

2

2

2

1

1

].

HC SYSTEM OPERATING VARIABLES (Cont'd.)

VARI.ABLE HEX LOCATIONS

MOTWD 00B5

Bit positions in this memory word correspond directly to
bit positions in Motor Controller Output Register. This
motor word is built by point routine before actually
powering motors.

MCODE 00B6

ADDR

Parameter used by point routines to · ·etermine which motor
ia being acted upon.

OOB7

Used to store Heliostat Address,

~!SAVE 00B8

Temporary location to store current Motor On/Off Dir Status
while altering.

FREEZE 00B9

SYNC

Indicates Status Poll has not yet Leen received. Disables
update of returned Heliostat position.

OOBA

Indicates a new Sun Vector has been received - Initiates
Control Algorithm activation in background.

SIZE IN BYTES

1

1

1

1

1

1

Locations OOCF - OOFF are variables used by Control Algorithm.

Table 3.S.1-I (continued)

682

•

•

•

•

•

•

VARIABLE

HC SYSTEM OPERATING VARIABLES (Cont'd.)

HEX LOCATION

SUNX

SUNY

SUNZ

CMDT

CMDS

2000

2003

2006

Contain Downloaded Swt Vector Information.

2012

Contain• first byte of last message command type and/or
HC addreH.

2013
Latest Sun Vector sent from HFC.

CMDWIM 2013
Latest ·corridor-Walk 1 Mask.

CMDWIV 2020
Latest Corridor-Walk 1 Vector •

CMDWZM 2029
Latest Corridor-Walk 2 Mask.

CMDWZV 202D
Latest ~orridor-Walk 2 Vector.

CMD\l3M 2036
Latest Corridor-Walk 3 Mask.

CMDW3V 203A
Latest Corridor-Walk 3 Vector.

CMDW4M 2043
Latest Corridor-Walk 4 Mask.

CMDW4V 2047
Latest Corridor-Walk 4 Vector.

CMD 2050
Latesl Beam Point Mask if Beam Pointing.
Latest AZ-EL Mask if being positioned. Azimuth and
Elevation Commanded position .

VECTOR 2058
Beam Pointing Vee.tor if command was Point• Helios tat
Vector if command was Initialization.

SIZE IN BYTES

3

3

3

1

9

4

9

4

9

4

9

4

9

9

The above variables are referred to as the Incoming Command Buffer.

Table 3.5.1-I (continued)

HC SYSTEM OPERA1'ING VARIABLES (Cont'd.)

VARIABLE REX LOCATIONS

HEADER 2061
Contains Heliostat Address and Mode Bits.

STATUS 2062

HZPOS

ELPOS

Contains Heliostat Status Information.

2064

2066

Contains Azimuth and Elevation Position data

is set, contains position at marks.
Freez.e

The above variables are referred to as Response Buffer.

AZB2 2068

ELBZ 206A

Bias Values.

HELIX 2066

HELIY 206F

HELIZ 2072

Current Heliostat Vector if system is Initialized.

CMDAZ 2075

CMDEL 2077

These locations are loaded by Azimuth-Elevation Commands

or by the Control Algorithm upon completion of its

calculation (if Enabled). The Point Routine uses this

information to position the Heliostat.

These locations are loaded with the current Heliostat

position if loss of communications occurs.

Table 3.5.1-I (continued)

684

SIZE IN BYTES

1

2

2

2

2

2

3

3

3

2

2

•

•

•

i.
I

Ii

I I
i/
I!

i

11
j I

!

•

•

3.5.1.4.1 Model Structure

Refer to Figure 3.5.1-10, System Block Diagram and Figure
3.5.1-11, System State Diagram.

On power up, initiated by the RESET interrupt, the system
sets parameters, 1/0 devices, and system status tables.
The system watchdog timer and system clock interrupts are
enabled. At this time the HC will accept HC initialization
and status commands.

Once the initialization command has been decoded and accepted
by the serial I/0 handler (SCIO), motor control (POINT) acti
vation is enabled. Motor power, direction, and speed are
determined from the comparison of calculated or commanded
positions and actual gimbal positions. Previous encoder
readings are stored in memory to determine the existence of
motor or encoder error conditions. Activation is accomplished
during the servicing of the system clock interrupt (SYSCLK).

During the command checking process, performed by the serial
communications handler, command response data is queued and
the proper HC response window is calculated. Transmitter
operation is initiated when the system clock routine deter
mines that the proper delay period has elapsed.

Upon the receipt of a valid beam pointing or corridor walk
command, HC target vectors are updated and the control algo
rithm (CALC) is enabled for activation.

The following system state diagram shows the interrelation
ships of the firmware system.

State Number

1
2
3
4
5
6
7
8
9

System State Table

State Description

Waiting to be initialized
Initialized, no action
Timer happens
Motor control started
Motor control running
Serial character out
Serial character in
Command decoded
Control algorithm

,, 685

RESET

INIT

CALC

POINT

SYSCLK

SYSTEM TIMER

Figure 3.5.1-10

System !Hock Diagra,.-,

686

SCIO

RECEIVER
FULL

TRANSMITTER
E}IPTY

•

•

•

•
SYSTEM STATE DIAGRAM

•

• Fi&ure 3.5.1-11 System Sta'e D1agr8Ul

687

3.5.1.5

3.5.1.6

Interface Description

A complete interface description is detailed in Section
3.6.2.

Te'.-, c Requirements

a. Verification of HCMOD position algorithm will be
accomplished by the use of the SIGMA 5 M6801
Software Simulator.

b. Verification of HFCMOD and HCMOD communication
timing will be accomplished by logic analyzer
and oscilloscope inspection.

c. Verification of HFCMOD and HCMOD logic will be
accomplished by the use of the Heliostat Simu
lator P/N 40ESOOS132775.

d. A complete functional test will be performed to
determine pointing accuracy, motor speed control,
timing, communication protocol, and error detect·
ing capabil:Ly.

688

•

•

•

•

•

•

3.6

3.6.1

3.6.2

3.6.2.l

Graphic Display Console (GDC) Software

Purpose

The primary purpose of the Graphic Display Console (GDC) is to

provide graphical and alphanumberic displays which enhance operator

understanding of the heliostat field operations. The secondary

purpose of the GDC is to provide field connnanding capabilities

complementary to those of the CSS operator console.

The GDC-resident software system implements controls and displays

which support these functions, and maintains necessary connnunications

with the HAC. The allocation of processing functions between the

HAC and GDC is designed to minimize risk to the time-critical func

tions of the HAC without unduly penalizing performance of the GDC.

Requirements

Design Requirements

Section 3.1 of the Software/Firmware Functional Requirements
Specification (12 June 1980) requires:

a. Control of up to 2048 heliostats in all modes;

b. Display of the operational status of all heliostats; and

c. Graphic displays of the heliostat field or field segments.

Section 3.2.1.9 of the Software/Firmware Functional Requirements

Specification requires that the GDC module:

a.

b.

c.

Minimize the workload for the HAC to support graphic
displays;

Interface with the HAC using a connnand/response protocol;

Provide full field and segment displays on operator demand.
Figure 3.6.2-1 depicts the format planned for the full
field display. The shape and color endoding of the 12
different heliostat status symbols for the full-field

display are shown in Figure 3.6.2-2. Figure 3.6.2-3
depicts the format planned for the segment displays. The
shape and color encoding om the 12 different heliostat
status symbols for the segment displays are shown in

Figure 3.6.2-4.

The eight rectangles in the lower left portion of the screen

are labeled and color coded to match the functions of
the BLACK, BLUE, GREEN, CYAN, RED, MAGENTA, YELLOW, and
WHITE function keys. The rrconnnand)" line reflects the

689

>tj
(IQ
i::
>i
(1)

l,.} .
°'
N
I

I-'

>:j
C
I-'
I-'

'rj
I-'-

'" t-'
p..

°' se . Cl
0 I-'-

C/l
'.d
1-1
,Ill
<

" I '\ • 1\1 (l) (l) ij\ lf)

,.) 111 ; .
"s\1 111 ,,,uuilO<D

1
0fll

\;.J 0 ' 1 t 1)tll'1,!\. ,
(',~',) · '.\1 111 . • •l1 1V'i)Wl!l<l•4)

1:11, 1\)11, o•vl\•
~,S) \,I~ ,~

1
,i,,'" 1

. . 1,1 1.110 (l)•OUI
~ ()~ \Si~ . u,u>U) ~ 11:ID fl) (Jlifl

~ r:./: ,/,, ~~~ ~I!.>~~ \Du) w 111 1111.011) •o
t,1'· ~·~ ~l!J ~tSJ ~·(\I l'i)IS)!J) o,1o•'l•tl41HO

0 (~ ts. I',) ~~ 1,1:.4-·\'\1) ;11111i••·l00!
~6 .t,l' r/~ cSI c.:i ~ IS) i,, Iii I\) .t, 1'.'~ '.\ ,,1,

1
l' ''i WtD

0
0

C:F Of, 0 ('J ~ f'y <'II ~l'.ll\l IS)Ol\)'/•\.~i,>"'1.u11:HD
0 G O ~,, C; C\I c,'~ ~u;.,'.l • ' UJIO(l)

0
G & G O ,; tP tS,\'J ,)~ISi U) ,1>iDJ;' Q) !!HO

00 ~ 0 GS G f}'> 0. c & J;,,' ~IS'•iSI ,ti '\'in ID ID ({I
~e s O &G {j 61,& e. i:;.~}'' &~ IS> u•llll');f u)10fDIIHD

0

o
O

&
8

0 r;)o~ ~""- G>IS)'si.s>u1&1S>ti1Du>lo1Do>
t) 0 t) 0 & $ ~ (:} &t\ 0&(',J0~-S.,'~l d)~~

a a a t:HH~ C:J 8 ',JJ ,:y ~ ~,:; ,si -5.: .s,P
e o ea e o 0°0

0 o ,~&t~1 J>'.s,~~1·':ii//J,~ "' ,
0 0 0 GO 8 fJ ""~? ~NiltJl:>l~•~,s. ~~{\l,)_,;t' 'bl JP

8 S t3 6 G G ..,.,.,,,f;flf) ~ -~ l~,

0 osaeoa<)OU-~ · ·
e e 6aaO 8 saGOO~r~(\U~
8 6 e e e ea sa1.,uG l.'1~,1~ i i~I eoaaae eae~o90 t t ~ i

0
a a tie .. ~

:::~::J2!Eii&f ~ { t

UI •ll a,'" rn •. ll ,-,
QI u11,, u, 0, . · ·-:> /iJ

',) :;1,,. •]l,.. ru,,1. ir.o -· ·, ?I ,,, rr,
. ,_!1':....1~.J•r,--. 't.,!'Do ~ tr

(D t,:) 'lJ ,;,
1
,

1
, · ·OJ. I •:>,i, Qj(f}

W<11 q -, .. ' ' ,,.,, .• ;;_-:,,, (i)"J. 0,.,.
. . • '·'•:J ' . ,,.. .,:J.~ ~, .,,,.
.iiJ.1•~ ,-- _ _.),,,, '• n• ~,;..,"• ~ .

,., · .., , .' .·., ,. r, ·q, --~ ib i
.J., ~-J t;, f.•~ r .- ~- ~~ tr, ,_ £Ii ,.

1
1?) {j_J V.J r. '\:',

IU 1t.1u,, .. : •~rn. ~r,J · :)J c>1 <:I, <~ •"
J"h - . V~",._, .. /J~ ,_ (') '71 -lJ C..:t,,, '"".:I" '1-

UI H• (jj Qi (L, ·, ,! . - (,, ~·, . . " . 0
((J(' . '(J, ' - .. , ~ ... "?.; ' (

u fJ)QJ .. ~i, ~ -...: ~-," <J, ~ <.I 'b '> , \
ul111w •·':;,Ill• iJ;;;:;,~ 1"'1i'"n • Q) ,,•:, "; 0
Wru'l>tv00"

1
<1J0'.J0 r."1·',::,-.b ·.u~ ''° 0

a, (l) {!) QJ °&P' t1> 0 0 ell OZA', ,Ji (l, l'J OJ "' <?·;a 0 0 ~ 0
a>%¾(l)QJ%(l.J~iu 00-1.)0 c.'J~ 1<' ,.;00 0 0000 ~ 00
ll>m (J)(JJQJQJ<lJ<lJq,tlJ'-'10 Q, ~-, 0 0 I(} 0 0
· lr, Clla, 0,::0 ~~ ~'0 '<1 lc} 0 0 0 0

(J~;o,1-,;pF'ID<lJ000fl1(})0 0 01.} 0 0 0 0 0 0

,;J~/KM(,i_f!-.2?~$:?"-..0 ""~ lb 0 ~:.."!~' ~
ij{J;~ , ejl,}13~ 1a 0 0 0""..., ""' 0 0
,~· Ola0"'0 0 0 0 0 0 0 0 8

: . .,,,· ,. 0 0~0000000 ae e

-

~000 00000 8
? ~~000iiaae88e

... ~.,v''/YJ""~ ~0ii~08 0 i 0 e 8 8 ':.
·K -~ ~X: laea~ eeeea
·Q't~j-~ \L~ aoeea 8Aeeee
~~~~~ ,i1~1:iitt:: 
tf}/11.· ~~~aoae aeea 

f,[;01 L 0 E\1o o 8 a 
/:/J•t~ (JbJ:(~a333a3: 

~

,, ,1,\i,~~' :JI tt/joo:ea§la 

I
·~•(·;;_ ,I' (-, Ilea~ 

8
ae 

~ ssea"" a 
· & soeet>sa 

-~&~GS&& I a 
»,11,'rr;JJNc_.•~ss&oa & 8& 

~~.G&&6G9 
~~~&(i,~t&, & 
&'"'& && &: &

Command> Display Full Field

Message>

(hit RETURN to enter command) T STCM J.OFFLINE

..
Disrfo y I I D,sp!cy
fu.l. -t~,dd I segment

I ,

[__ _j Detoc.u:; H,gh\,,/;.,: !Help ·1
S-f~,-.,· L

l ALTlSTGl iINITIAL .. qMARK, %ALT2STOW

i.WASH !DIR POS

iTRACK

'rsTAND~Y

limes
; TRANSIT

•

•

•

ST(JJ
(green)

1-- :. -.i

ALTlST™
(green)

ALT2STCM
(green)

WASH
(green)

.. ·r --
J.
~ ·t - -

- --1--i--1-'
, L.;_1 .l

OFFLINE
(blue)

J ... _ -~-•-. :-
. -j J__I

INITIAL
{blue)

MARK
{green)

-' I I

I i
. I

l • I

. - . -.--t -
I, I

--- .. (' ·j
'"•---~ t· i""

DIR POS
(magenta)

TRACK
(red)

STANDBY
(yellow)

Lj
t: i
-+•l

.-•t+·H
-t--...+-l---L-:
: i-±;-1 I

t--,-;-.. l , I I 1 _ ~-~-
TRANSrr
(white)

F!gure 3.h.:l-2 - 3 X .5 Symbol/Color l~ncodtng for Full 1''icld D:fsphy

691

RFC 60

/ 44 't/ 1' 58

Iii 724 'ii 2626 2422 HFC 40

9/ 4. / / - 2ll6 Q ~
/28 ✓ 2424 2324 . IIFC 38 ~ . / /

i 9 ; 28 Q r/ Q ~ 2630 2426 2326 ,30

~- T/ 2530 ✓ f;}/ tj:1 ;_, i32 ✓ 2428 2328 2232

.'., I T 2532 T/ QI '9/
2534 / 2430 2330 2234

~- I T / / ~ ! 9 2 534 { 4. I -t
@ I 2636 . / 2432 2332 2236

tt. I T / / /
5' i ;s36 T Q Q ~ ! IIFC 44 2434 2334 2238

- ' I / I ~ i rs J. Q ~ . 2436 2336 2240

'i1 / / / ~ 2540 T Q i i I 243s 2338 2 i.2

2'i12 r/ r;/ / r 2440 2340 HFC 38

2~44 r/ Q/
/ 2442 2342

I I
RFC 60 RFC 58

RFC 40

----~~-- -

Aimpoint (ft) Gimbals (deg)
North East Up Az El Helio# Mode

2230 TRACK -59.7 +32.3 368.4 -270.35 +90.47
• e ,. .
•
~

.

: + + + + nnnn AAAAAA -nn.n -nn.n nnn.n -nnn.nn -nn.nn

Segment 405 Aimpoint 16

Command> Display segment 405 (hit RETURN to enter connnand) I STOW J.. OFFLINE ~ TRACK -- -;
Message>

: l--M~~r=~rJ1iisplati I r--, ---- ... W, ·- ,segmeotl , ~•focus: . -· -... -.. --- -==--_J ~---- i
! i high wtnd ! :.~~ e= .. : help_ "

1 ALTlSTOW

:C ALT2STOW

1_ WASH

':2INITIAL 'zsTANDBY

~MARK 2Bcs

'inIR POS S?TRANS.

•

•

••

ST~
(green)

ALTlST™
(green)

ALT2ST™
(green)

, WASH
(green)

-r·
' .. ,. j-

·- ·~·r
OFFLINE
(blue)

INITIAL
(blue)

l
MARK
(green)

DIR POS
(magenta)

TRACK
(red)

STANDBY
(yellow)

BCS
(cyan)

TRANSIT
(white)

Figure 3.6.2-4 - 5 X 10 Symbol/Color Encoding for Segment Displays
693

3.6.2.2

3.6.3

3.6.3.1

current command being entered by operator func.tiom. key •
and/or keyboard entries, while the ''Message)ir line
displays prompting or error messages to the operator; and

d. Transmit function switch STHIWIND and DEFOCUS connnands
to the HAC.

Derived Requirements

The following requirements are derived from the explicit require
ments listed in Section 3.6.2.1:

a. The GDC module shall be capable of formatting and trans
mitting operator-entered emergency commands to the HAC;

b. The GDC module shall be capable of receiving field status
information from the HAC and formatting it into displays
requested by the operator;

c. The time delay for status information received from the
HAC shall appear on the display and shall be invariant
with respect to elapsed system run time; and

d. Failure of the GDC or the need to restart shall not
adversely impact operation of the HAC.

Design Approach

Functional Allocations

GDC software is comprised of the following modules:

a. DIALOG - a background task activated by availability of
inputs from the operator.

The inputs which are awaited at any given time depend on
the particular operation being carried out. This task
implements the operator interface, including:

1. Displaying, prompting and feedback messages.

•

2. Processing display requests, including initiation
of display maintenance tasks and sending
requests to HAC.

3. Processing (emergency) commands including sending
command to HAC.

b. FFDISP and SEGDISP - sets of three each background sub
tasks which initialize displays of full-field or segments,
update the current display to reflect new information
received from the HAC, and delete displays when they are
no longer needed. •

!~

•

•
3.6.3.2

•

c. FFPREP and SEGPREP - offlinc modules which preprocess
field configuration data into formats convenient for
rapid generation of run-time displays.

d. EXEC - a set of executive service routines which provide
for task synchronruzation and switching.

e. PROHAC - a background task activated by receipt of a
message from the HAC. This task checks validity of the
message and then activates the appropriate task to update
the display with the new data received from the HAC.

f. RCV - an interrupt handler activated by receipt of data on
the HAC/GDC serial connnunication line. This module
assembles incoming bytes ~nto message packets which are
passed on to other tasks for processing.

g. KBD - an interrupt handler activated by the keyboard/
function-key console strobe interrupt. This module
signals availability of input data from the keyboard/
function-key input port to an application task waiting
for that data.

h. SEND - a module which formats and transmits message packets
to the HAC •

i. HELP - a module which displays explanatory material on
the GDC screen.

Resource Budgets

Resource utilization of the GDC module is estimated as follows:
total

DIALOG

FFDISP

SEGDISP

FFPREP

SEGPREP

EXEC

PROHAC

RCV

KBD

SEND

HELP

number
bytes of
code

number
bytes of
data

12K

2K

695

number
of disk
files

1

120

number of
disk
sectors

64

500

3.6.4

3.6.4.1

3.6.4.1.1

3.6.4.1.1.1

3.6.4.1.1.2

3.6.4.1.1.3

Design Description

Module Structure

The GDC software module consists of foreground (interrupt driven)
submodules, background (real time) processing submodules, and
offline (non-real time) preprocessing submodules.

The offline preprocessors (FFPREP and SEGPREP) are run whenever
the field configuration data base on the RAC is updated. They
manage transfer of formatted data flrom the HAC and conversion
of that data into run-time efficient, unformatted, disk-resident
files.

GDC online software indludes foreground submodules which handle
interrupts from the SIO link (RCV) and keyboard (KBD). These
submodules provide data buffering and signal availability of
data to the EXEC, which invokes appvopriate background tasks to
process the data. These background tasks include the interactive
user/GDC dialogue controller (DIALOG), and real-time display
updating tasks (FFDISP and SEGDISP). A collection of utility
function, (UTIL) provides application-oriented numeric and
character-handling capabilities to both offline and online
processes.

Figure 3.6.4-1 shows the GDC module structure.

Submodule I - EXEC (Main Routine)

Description

The EXEC module will activate the background tasks as data is
received from the HAC and operator keyboard. The interrupt

•
handler, RCV, will set a flag when a complete message packet is
received from the HAC. This flag is used by the EXEC to cause the
background module:PROHAC to be run. PROHAC checks that the message
packet received is correct for the current state of the GDC and
iither issues an error message or sets a flag to activate the appro
priate screen update tas¼.

Similarly, when the KBD interrupt handler receives a keyboard/
function~key interrupt, it will set a flag which causes the EXEC
to activate the DIALOG task. The DIALOG task will echo keystrokes
to the display, and then activate the appropriate tasks for up
dating the display or sending connnands to the HAC.

Data, Logic and Command Paths

The EXEC routine is both the idle loop and task dispatcher for the
GDC. It is initiated at system start-up and runs indefinitely.

Internal Data Description

There is no data internal to this submodule.

696

•

O'

'° -...J

•)

.,,,-..
\) ------- \'-.....__ y ~ ~

l K~---;

I

I

•) • l
.>

EXEC

E 1'-('Cu Ti··J~

HAC

f Rev /5
A

. ,-.-
. L

A
! i .i.::ey bn:1d

!T'· I --

I -----,~- J 51.::l Receive..
- - "1

,::i:: :)I.5 ~-1

i::;....Ll i-.f ,e \ d

o :.::.o'a·:
; I • i . •

'.1·-r:., 4-; 1-J i?.O.. j... 1 J- r,

!~1ri-te,r"t Ip+ l
I . . I

~- . D!AL;;~~
11-roc~;:;s opem~oi ' ,.
jkeyooor~ eni•r-;e.: .~ ~;j
'-·

~---~-----..,~., -

I SEC,Dl6H . "'EL~ I

l~CVY1 fr,t· d1:;c,o~
. $) j • \ • /.

,'iELP d,:S,~-:\Qf 1
' · \:r~~ ·;n J I' f\ :-t;a,i · i.ct-1 ! ?r i

l l\n·~-~~~
., _____ !_

----i
J .. ·---- t. ----··· .
i SEND ,
' --;
IC e , . ..11.
;LYY\ ~f'f_"_-1 ...:.On 1W1il'fllj

j. ••",,-\. (', f ,l .1
;t:> Hf..'-.,._ ~'frm't :31~,.:yo/

15.Elec.-i-,·,,, -l-n ~AC ·
"------------- ~---

Fr-0.:5P D S, E -~ ·::;.:::, ~) C: .., E LPD

fu: --fi;;':i
j::i. :,p·,~,1 d-? i~~e
I
I,,.. •• _

' '
i,Se,:i.rre.r-i d~b-J!
. ...,' l /'

i c'lc;ete.
I

i
-·-·~I

----------,
~·,ctr o I s plJ. /
je_kte

l

Figure 3,6,4-1 GDC Module Structure

l!"i-,tern.,ot
I

PRDI-IAC,

Pro u:' !. :s. ri N2-

mess ::i 3 e ~

(MN_
, '
~n ~....1-r-)

'

--- , .
~ ..)t~.c/oy A:seJI

_•_1, -~ ·'--... - --··•-

:::, E C :);. " P':.1.

. ne~so3e ::,n

; s.:-.re.er1
'.2:.i•10-,e,·Td1:.c'J1 ·

• ,J ;

u.pd.a.~ , ____ , ____ __,

~

1

FFDL5f:..t I i" . r · ,
IFu. 1 :-~,e'.o
i . '
i ·< - . • 1•-0 i J '--f 1 1 .tf ~'- .
L___ [

3.6.4. 1.1.4

3.6.4.1.2

...

3.6.4.1.2.l

3.6.4.1.2.1.2

3 • 6 • 4 • 1.-2 .1 • 3

Flowchart

See Figure 3.6.4-2 for the EXEC flowchart.

Submodule II - RCV

This module is the device driver for the receiving side of the
serial I/0 (SIO) link to the HAC. This module follows the

•
standard Chromatics conventions for device drivers and thus includes
three entry points:

a. RCVISR - the interrupt service routine;

b. HACAVAIL - tests for availability of data in the receive
buffer; and

c. HACDATA - returns the next character from the buffer.

This module is modified from the standard device driver in PROM
as follows:

a. A circular buffer of twice the maximum HAC message
length (258 bytes) is used instead of a 2K-byte buffer;

b. All characters prior to an STX character are discarded;

c.

d.

All characters following an ETX character are discarded;

Eight-bit binary data is stored in the buffer instead
of masking off the high-order bit; and

e. The flag HWATID,:is cleared to indicate that the GDC is no
longer wait~ng for a HAC.

Subroutin1~ l - RCVISR

Description

This routine stores messages from the HAC in the receive buffer.

Data, Logic and Command Paths

This routine is activated at the interrupt level on receipt of
a character on the asynchronous corrnnunication line from the HAC.
This routine maintains the IN pointer to the circular buffer, BUF.
It looks for an STX character and then stores all subsequent
characters up to an ETX character in BUF. When an ETX is
received, the HWAIT flag is cleared to indicate that a complete
message packet has been received.

Internal Data Description

This routine maintains an internal flag indicating whether an
STX character has been received.

698

•

•

•
(E>(EC. __)

~-~-------···-

Tn; +;a /',rnfon

• ,.-.
'•

Figure 3.6.4-2 Flowchart - EXEC

699

3.6.4.1.2.1.4

3.6.4.l.2.2

3.6.4.1.2.?..l

3.6.4.1.2.2.2

3.6.4.1.2.2.3

3.6.4.1.2.2.4

3.6.4.l.2.3

3.6.4.1.2.3.1

3.6.4.1:.2.3.2

3.6.4.1.2.3.3

3.6.4. l.2.3.4

3.6.4.1.3

Flowchart

See Figure 3.6.4-3 for RCVIS.R flowchart.

Subroutine 2 - HACAVAIL

Description

•
This routine is used to check for data in the SIO receiver buffer.

Data, Logic and Command Paths

This routine is called by EXEC to test for the availability of a
HAC message. It returns a non-zero value if a message is available.
It tests the HWAIT flag, which is set by SEND when a clear-to-send
message is sent to the HAC, and is cleared by RCVISR when a complete
message packet has been received from the HAC.

Internal Data Description

There is no data internal to this subroutine.

Flowchart

See Fi.gure 3.6.4-4 for the HACAVAIL flowchart.

Subroutine 3 - HACDATA

Description • This routine returns the next character from the SIO receive buffer.

Data, Logic and Command Paths

This routine is called by all the HAC message-processing modules to
access the HAC message. This routine maintains the OUT pointer
to the circular buffer, BUF.

Internal Data Description

There is no data internal to this subroutine.

Flowchart

See Figure 3.6.4-5 for the HACDATA flowchart.

Submodule III - KBD

This module is the device driver for the alphanumeric keyboard
and function keys. This module follows the standard Chromatics
conventions for device drivers and thus includes three entry points:

•
700

•
(·;;~~~

/J::: • 0-:;i-p_u_+ ___
(~uF .(\,.\I'-.._ Ye~ o-✓er flow

/' '. ,,//~
,,..: ' ' ! ·----. No . A(''I ,- J ,. '{ec
~ T /!, rec e 1 111?.1 -, --::J'<~ ,_ ,tJ m .--1 er ;i 1 ,, ;>----'.c'

~ "? -,: //

'fe-:, No

r
5tr{

1
~ha fad-er

~pdo.fe IN
..... ' -......----'

l\ear STX -
rece', ved f la.9

---·-r1 Set Bu F _

l(mpty
·~-·-----·--·--·--•·~--' _,_,,

Se-1 srx -
re<('11/1'd fta:3

H wA n = <I>

I
---........... ----------------.. --·,:,,

RETURN

'Ftgure 3. 6 •. 4-3 Flowchart - R CVISR
I

701

•

•

•
Figure 3.6 .. 4-4 Flowchart - HACAVAIL

702

• ./"'"" I

•---•.
U f-'c-1a 1 e ('),JT

.. ·T··--· ···---·-

,--! -.J.-1 ---i "...,f' i ,Joi111:> 'o l~:~~-· '" wi i
. - - ··-- I

_____ j/

'

\~.t~!?_~~i)

Figure 3. 6. -5 Flowchart HACDATA

703

3.6.4.1.3.l

3.6.4.1.3.1.1

3.6.4.1.3.1.2

3.6.4.1.3.1.3

3.6.4.1.3.1.4

3.6.4.1.3.2

3.6.4.1.3.2.1

3.6.4. 1.3.2l2'

3.6.4.1.3.2.3

a.

b.

KBDISR - the interrupt service routine; •

KBDAVAIL - test for availability of data in the keyboard
buffer; and

c. KBDDATA - returns the next character from the buffer.

This module is modified from the standard device driver in PROM
as follows:

a. All keystrokes are passed directly to the keyboard buffer
without expansion into escape sequences; and

b. An output to ring the bell is made if the keyboard buffer
overflows.

Subroutine 1 - KBDISR

Description

This routine stores input characters in the keyboard buffer.

Data, Logic and Command Paths

This routine is activated at the interrupt level on receipt of a
keyboard input interrupt. This routine maintains the KIN pointer
to the circular buffer, KBUF. It stores the incoming characters i.
KBUF. If KBUF is full, a keyboard output is done to ring the bell

Internal Data Description

There is no data internal to this subroutine.

Flowchart

See Figure 3,6.4-6 for the KBDISR flowchart.

Subroutine 2 - KBDAVAIL

Description

This routine is used to check for data in the keyboard buffer.

Data, Logic and Command Paths

This routine is called by EXEC to test for availability of keyboard
input. It returns a non-zero value if one or more keystrokes
have been stored in the keyboard buffer. The presence of data in
the buffer is detected by comparing the KIN and KOUT pointers.

Internal Data Description

There is no data internal to this subroutine.

704

•

•

•·-\

Figure 3. 6. 4-6 Flowchart - KBDISR ·

705

3.6.4.1.3.2.4

3.6.4.1.3.3

3.6.4.l:.3.3.l

3.6.4.1.3.3.2

3.6.4.1.3.3.3

3.6.4.1.3.3.4

3.6.4.1.4

3.6.4.1.4.1

3.6.4.1.4.2

3.6.4.1.4.3

3.6.4.1.4.4

Flowchart

See Figure 3. 6. 4- 7 for the KBDAVAIL flowchart.

Subroutine 3 - KBDDATA

Description

This routine returns the next character from the keyboard buffer.

Data, Logic and Command Paths

This routine is called by the DIALOG module to access the
operator inputs. This routine maintains the KOUT pointer to the
circular buffer, KOUT.

Internal Data Description

There is no data internal to this subroutine.

Flowchart

See Figure 3.6.4-8 for the KBDDATA flowchart.

Submodule IV - SEND (Main Routine)

Description

The SEND module is called to transmit a message packet from the

•

• GDC to the HA.C. Since the Chromatics does not support SIO transmit
interrupts, the calling task is suspended until transmission is
complete. The SEND module checks each message sent to the HAC,
and if the message being sent is a clear-to~send {CTS, message
ID= 4), it will set the HWAIT flag to indicate that the GDC is
waiting for a HAC message.

Data, Logic and Command Paths

The SEND module is called by PROHAC to send a CTS message to the
HAC. The SEND module is called by DIALOG to send emergency com
mands to the HAC, and to notify the HAC of which status information
is required for the current display.

Internal Data Description

There is no data internal to this submodule.

Flowchart

See Figure 3.6.4_:9 for the SEND flowchart.

-·
706 '

•

•-,,

···-.

L-----·----.----·-•····-,-L .. --,-" .. ______________________ y

f

(~cTuR!'~--)
.. _____ ,,_ - .. , _____ /

Ei:gure 3.6.4-7 Flowchart - KBDAVAIL

707

(kBDCA-rA)
\, ____ .. .)(-· - j

/ ."-.

/ ··-......., ie:::, \\ou·, ,• '. ,,,,j
<Ki3v F empt/ '>-

'"-. ;;, 1/
' . /

LJ f}~) i C. k: 1YJ-;- I

. . -.J, ___ -·-I
- 1
je-('/:.J l,,e +., I

(.V\a.rn,-,-r ot
KDvT·

... F-=='.J
(-RClLA~t~ .)

Figure 3.6.4-8 Flowchart - KBDDATA:

708

•

•

•

•

Figure 3.6.4-9 Flowchart - SEND

709

3.6.4.1.5

3.6.4.1.5.1

Submodule V - DIALOG

Description

This section describes software modules responsible for implementing

the CDC/operator interface. Specifically, it covers the handling

of keyboard/function-key input, echoing of operator inputs, and

interpretation of corrnnands, as detailed below:

a. Keyboard Input

1. Keyboard Interrupt Service Routine
2. Return Keyboard Buffer Data

b. Input Processing - This section describes the protocol for
echoing and interpreting keyboard/function-key inputs.

c.

Due to the very limited number of commands available to
the operator, a dialogue format which, though operator
initiated, is relatively constraining with respect to
errors the operator can make, seems desirable. Thus, it
should be impossible for the operator to construct
syntactically illegal commands. The following commands

are available as function keys:

1. (Display) Full field
2. (Display) Segment
3. (Command) High-Wind Stow (STHIWIND)
4. (Connnand) DEFOCUS
5. (Display) Help

When a function-key is pressed, the COMMAND line echo
will reflect that command. Pressing another key causes

•
the new selection to replace the previous. Corrnnands are
only acted upon when the RETURN key is pressed. In general,

parameters to commands will be entered via the keyboard.

The command key echo will include prompting information

illustrating the type of parameter required. farameter
echos will replace the appropriate prompting field as
they are entered. Among these commands, only the segment
display requires any kind of amplifying information,
namely the segment to be displayed. When this command
is selected, the user will be prompted to enter the
numeric designator for a segment as RNN, where Risa
decimal digit (1:5) giving the Ring and NN is a decimal
number (1:12) giving the wedge. Only decimal digits will

be accepted as inputs to these fields.

A 11menu11 of color and position-encoded labeled function
keys will be displayed at the bottom of the screen

during normal system operations.

Command Execution - Recognition of commands and arguments

will be communicated to other modules for execution via

global variables and flags. In particular, display

710

•

•

•

•

3.6.4.1.5.2

3.6.4.1.5.3

3.6.4.1.5.4

3.6.4.1.6

3.6.4.1.6.1

3.6.4.1.6.1.1

3.6.4. l.6.L2

commands will invoke the (FULL-FIELD) or (SEGMENT) display

modules, emergency field corrnnands will invoke the ·

(COMMAND-HAC) module, and help requests will invoke the

(HELP) module.

Emergency field commands will only be accepted at the

control-room GDC.

Data, Logic and Command Paths

DIALOG is invoked by EXEC whenever KBIN signals availability of

input. It interprets keyboard and function-key input according to

programmed dialog specifications and signals actions to be taken

to EXEC. Display echoing is handled via calls to utility routines.

Passing of command input is controlled by a table-driven finite·- ·

state recognizer.

Internal Data Description

DIALOG maintains internal state information pertaining to commands

and command arguments entered by the operator and the status of

the command-echo display.

Flowchart

See Figure 3.6.4-10 for the DIALOG flowchart.

Submodule VI - FFDISP

The FFDISP module provides initialization and real-time updating

of the full-field display. It includes the following functions:

a. FFDI$PI - full-field display initiation;

b. FFDISPU - full-field display update; and

c. FFDISPD - full-field display delete.

Subroutine 1 - FFDISPI (Full-Field Display Initialization)

Description

Disk-resident files generated by the full-field preprocessor module

are read in to provide screen position information. Symbol sets

constructed with the utility CHARDEF are read in. Precomputed

display lists for symbol keys and titles are read in and executed.

Non-resident assembly language utilities are rolled into memory

from the disk.

Data, Logic and Command Paths

FFD:n8PI is invoked hy EXEC whenever the foll-field display is

selected by the opL•rator via DIALOG. After initializing memory

resident data structures from disk, FFDISPI schedules FFDISPU

(update) and deletes itself.

711

·""""',,

I .;·1 ---·--·.
(J)j

,c- E- l f·: (' T 0 -· .. ,_ I

:
1 ~-- \ ... "',. -----

1 t J :
'.)('. - O!<'.~r. ; . '

. re;::,> t· ,.) r -~ u,,.ev,-f :
\.,/ I

l 'I ' ·~ (J ~·

'f•'•' I '•:

f Ci'-'>

I
j

.. '

(3) !
. I

j
,.... L. --- ·-·-7
1 (F ~: ~ ')f '-'
I I. •I
I I': ,V.\ 0", I
i ,.J

if'vr()r wr:'.'.\•)•V
! J

I

I
I

'f:•i",(_)

·-· ~ ---·- --- .. -·r ·-----
.. ------,-.. --,.--~-=•

I

(Rf ru.f-rl \ ,. ..

· Figure 3.6.4-10 Flowchart - DIALOG

712

l ·1,,/; fh.\

,, l
·.:1

1 -l:J rf E

··"
i)1

•

•
,.

•

•

•

3.6.4.1.6.1.4

3.6.4.1.6.2

3.6.4.1.6.2.l

3.6.4.1.6.2.2

3.6.4.1.6.2.3

3.6.4.I.6.2.4

Internal Data Description

FFDISPI allocates and initializes PFDISPU loca.l status data base

to 11unknown."

Flowchart

See Figure 3.6.4-11 for the FFDISPI flowchart.

Subroutine 2 - FFDISPU (Full-Field Display Update)

Description

As full-field status messages are received from the RAC (via the

communications processing task, HACREAD) this task is resumed to

update the screen display to reflect status changes. This involves

comparing new status information to previously-displayed data and

updating the color and symbol for changed heliostats.

Data, Logic and Comnand Paths

FFDISPU is invoked by EXEC whenever it is active and data is avail

able for it from SIOIN.

The FFDIDSPU module uses data from two principle sources:

a. Memory-resident copy of disk data base generated by offline

procedure FFPREP; gives screen location of each heliostat

in full-field display; and

b. Incoming real-time status messages, received via SIOIN.

This information is used to update the full-field display. Symbols

for heliostats are redrawn only when a change from most-recently

drawn status is detected.

The assembly langu~ge subroutine FULFLD performs the actual

checking and updating operation.

Internal Data Description

FFDI8PU maintains a local data base containing the status of each

heliostat as most recently drawn on the display. This is used and

maintained by subroutine FULFLD to eliminate redundant display

updating.

Flowchart

See Figure 3.6.4-12 for the FFDISPU flowchart •

713

•

•

1 /""" ."
(P. F -r , i 1-' t.\)

\ '.- ,.,.. r /

• .,.

Figure 3. 6. 4-11 Flowchart - FFDISPI

714

•
I 't\/V.DA,A
I

r19Hh

.1 ~ ,, C-J
1.. ,, i..J.1,

-· "r- -·. ---~--- - . -· _, __ _

I
I

l -

r .

Figure, 3.6.4-12 Flowchart - FFDISPU

715

3.6.4.1.6.3

3.6 • .4.1.6.3.1

3.6.4.L6.3.2

3.6.4.1.6.3.3

3.6.4. 1.6 .3.4

3.6.4.1. 7

3.6.4.1.7.1

3.6.4.1.7.1.1

3. 6 • 4 • 1. 7 •. 1. 2

Subroutine 3 - FFDISPD (Full-Field Display Delete)

Description •
When the full-field display is no longer requested, the module
clears the viewport(s) assigned to it, releases storage, and exits.

Data, Logic and Corrnnancl Paths

FFDISPD is scheduled by DIALOG whenever the full-field display is
active and another display is selected.

It deletes FBDISPU and itself to complete the shutdown operation.

Internal Data Description

Local data base storage used by FFDISP is deallocated.

Flowchart

See Figure 3.6.4-13 for the FFDISPD flowchart.

Submodule VII - SEGDISP

The SEGDISP module provides initialization and real-time updating
of the segment-level display~ It includes the following functions:

a. SEGDISPI - Segment display initialization;

b. SEGDISPU - Segment display update; and

c. SEGDISPD - Delete segment display.

Subroutine 1 - SEGDISPI (Segment Display Initialization)

Description

•
Disk•resident files generated by the full-field preprocessor module
are read in to provide screen position information for both graphical
symbols and A/N table information. Precomputed display lists for
heliostat (HFC) connection lines, labels, symbol keys, and table
headers are read in and executed. Symbol sets constructed with
the utility CHARDEF are read in. Non-resident assembly language
utilities are rolled into memory from the disk.

Data, Logic and Command Paths

SEGDISPI is invoked by EXEC whenever a segment-level display is
selected by the operator via DIALOG.

After initializing memory-resident data structures from disk,
SEGDISPI schedules SEGDISPIJ (update) and deletes itself. Data
includes heliostat screen locations (in pecking order) from
SEGnnn.ARY and background display from SEGnnn.BUF.

716

•

•

•·-~

0!1:?~Lj
Cft1ii, •.,,·w,,lm,.I I

+o:~
tff'((-,:,y}

'/

fl rv I (~~ ·~ ,'J ,j ~;

Ci.Y f 0. I~,
I

Figure 3.6.4-13 Flowchart - FFDISPD

717

3.6.4.1.7.1.3

3.6.4.1.7.1.4

3.6.4.1.7.2

3.6.4.1.7.2.1

3.6.4.1.7.2.2

3.6.4.1.7.2.3

3.6.4.1.7.2.4

Internal Data D£"scription

SEGDISPI allocates and initializes SEGDISPU local status data
base to "unknown. 11

Flowchart

See Figure 3.6.4-14 for the SEGDISPI flowchart.

Subroutine 2 - SEGDISPU (Segment Display Update)

Description

•

As full-field status messages are received from the HAC (via the
connnunications processing task HACREAD), this task is resumed to
update the screen display to reflect status changes. This involves
comparing new status information to previously-displayed data and
updating the color and symbol for changed heliostats. The A/N
table is updated to reflect received information.

Data, Logic and Command Paths

SEGDISPU is invoked by EXEC whenever it is active and data is
available fDom SIOIN. The SEGDISP module uses data from two principle
sources:

a. Memory-resident copy of local disk data base prepared by •
SEGPREP: file SEGhnn.ARY contains screen location of
each heliostat in given segments, and screen location
of A/N table entry for each heliostat; file SEGnnn.BUF
contains a display-list which draws the display back-
ground for the given segment; and

b. Real-time heliostat status update messages from HAC via
SIOIN: contain mode, azimuth/elevation, and target infor
mation.

SEGDISP updates both the graphical and A/N tab6lar displays to
reflect changes in heliostat status.

Internal Data Description

SEGDISPU maintains a local data base containing the status of each
heliostat as most recently drawn on the graphic display and A/N
table. This is used to eliminate redundant display updating.

Flowchart

See Figure 3.6.4-15 for the SEGDISPU flowchart.

718

•

•

• ,.._

Al.Ir;,:~'''··, •,rrF>rJ+-::to·,,~. ~o c.e~
1,).,1 (11f(Pn1'

~·!~ 1,,: :·WJKNOwt
- --~---·-· ---.-•~-,, .--.--

Se·t P11Rff ,rr ~
1) ::jPt_M:' Sf::,:, n,m

Figure 3.6.4-14 ·Flowchart - SEGDISPI

719

•

•

,,,.., •
' Figure 3.6.4-15 Flowchart - SEGDISPU

720

•

•

•

3.6.4.1.7.3

3.6.4.1. 7 .3.1

3.6.4.1.7.3.2

3.6.4.1.7.3.3

3.6.4.1. 7 .3.4

3.6.4.1.8

3.6.4.1.8.1

3.6.4.1.8.1.1

3.6.4.1.8.1.2

3.6.4. 1.8.1.3

3.6.4. 1.8. 1.4

Subroutine 3 - SEGDISPD (Delete Segment Display)

Description

When the segment display is no longer requested, the module clears
the viewport(s) assigned to it, releases storage, and exits.

Data, Logic and Corrnnand Paths

S'EGDISPD is invoked by EXEC whenever SEGDISPU is active and a
different display is selected by the operator via DIALOG. It
deletes SEGDISPU and itself to complete the shutdown process.

Internal Data Description

Local data base storage used by SEGDISP is deallocated.

Flowchart

See Figure 3.6.4-16 for the SEGDISPD flowchart.

Submodule VIII - HELP

The HELP module displays explanatory material on the GDC screen.
It includes the following functions:

a. HELP! - Initialize HELP display; and

b. HELPD - Delete HELP display.

Subroutine 1 - HELPI (Initialize HELP Disp]a y)

Description

This routine reads in a file of explanatory text material and
writes it to the GDC main-display area. The text explains the
overall operating scheme of the GDC.

Data, Logic and Corranand Paths

The HELP! module is invoked by DIALOG when requested by the oper
ator. It displays the (single page) HELP file and returns.

Internal Data Description

HELP! reads in the display buffer file, HELP, and redraws it.

Flowchart

See Figure 3.6.4-17 for the HELP! flowchart •

721

•

•

•
Figure 3.6.4-16 Flowchart - SEGDISPD

722

•

•

•

3.6.4.1.8.2

3.6.4.1.8.2.1

3.6.4.1.8.2.2

3.6.4.1.8.2.3

3.6.4.1.8.2.4

3.6.4.1.9

3.6.4.1.9.1

3.6.4.1.9.2

3.6.4.1.9.3

3.6.4.1.9.4

3.6.4. 1. 10

3.6.4. 1.10.1

Subroutine 2 - HELPD (Delete HELP Display)

Description

This routine clears the screen area used by the HELP display.

Data, Logic and Corrnnand Paths

This routine is invoked by DIALOG when the HELP display is tlw cur
rent display and another display is selected.

Internal Data Description

There is no data internal to this subroutine.

Flowchart

See Figure 3.6.4-18 for the HELPD flowchart.

Submodule IX - PROHAC

Description

This module processes HAC messages and is called by EXEC whenever
a complete message packet is received from the HAC •

The main routine verifies that the message received is valid for
the current state of the GDC and either issues an error message,
displays the error message packet received from the HAC, or causes
the appropriate screen-update program to be invoked.

Data, Logic and Cormnand Paths

This module is invoked by EXEC whenever a HAC message is received.
This module maintains the TERMID variable and tests the DISP
variable which indicates which display is currently on the
screen. The formats of the HAC messages are described in
Section

Internal Data Description

This module extracts MSGID from the first byte of the current
HAC message.

Flowchart

See Figure 3.6,4-19 for the PROHAC flowchart.

Submodule X - FFPREP

Description

This section describes the offline processing required to acquire
non-dynamic data from the HAC and convert it into forms suitable

723 '

.. ,....._, (iJ •

•

----;';,

• . ---·--·------•·"-----···---~ ______ ~ .. ---··- ·---Y

Figure 3.6.4-19 Flowchart - PROHAC

•

3.6.4. 1. 10.2

•
3.6.4.1.10.3

3.6.4. l.'10.4

•

for use by the real-time dynamic full-field display module.
FFPREPROC includes the following functions:

a. Data Acquisition - Data for this operation is sent from
the HAC in formatted ASCII decimal. Each record has the
format described in Table 3.6.4-I and is terminated by
a CR. The records are sorted by (HFC,HC), or equiva
lently, by MMC heliostat number. The full complement
of records (2048 nominal) will be sent even if some helio
stats are not installed.

b. Data Processing - The principle processing required for
the full-field display is the mapping of heliostat posi
tions from the real-world coordinate system to the screen
space used by this disp,1ay. This module will accept window
(real world) and viewport (screen) limits to be used.
The screen x,y pairs thus generated will be saved as a
BASIC array file. Since HFG/HC numbering is implicit in
this file, it is not stored. The segment assignment of
each heliostat in this ordering will be saved to allow
generation of a segment assignment display of the full
field.

Data, Logic and Command Paths

This routine controls data communication, processing, and storage
during full-field preprocessing. Data is obtained from the HAG
via a (software) handshaking protocol controlled by the GDC.
In response to each REQ to SEND, the HAG sends one ASCII record
ended by a CR.

FFPREP creates files on the GDC local floppy disk which supports
real-time processing by FFDISP.

Internal Data Description

RECORD$ - string containing ASCII data record from HAC

NUM$

HXY%

WL

VL

Flowchart

- string containing ASCII representation of numeric
field

- integer array (2,2048) containing screen x,y coor
dinates of heliostats in MMC. (HFC,HC) order

- real array containing limits of user space window
i.e., geographic coordinate boundaries of field

- real array containing limits of display VIEW PORT,
scaled to same proportions as WINDOW.

See Figure 3.6~4-20 f~r the FFPREP flowchart.

725

per Segment in
Pecking Order HFC/HC1/ ,

(IiMC) '

H41 order 'V
IN% ~ecking Order Table Status message

1

2

3

z
I n l.

is\~, /~ TT~,j-·-·1_·-·-1
12, I /

,· < i /',,, I
YI'"-' I ./i '1

: \'1...j I ,_,,, ,.
27 I \ 1 , _, - 4

""-I ~i i

. i'-,"' I : I ; 1 ,~~1 _\.

Row Table:

IN% Pecking Order
i 1-~t--{- -----

: !~,
. \1 ~~

(NR%)-1 : 1 t
I \ I\

(NR%) i_i\ !

\\ '.iH
Max # rows \ \ v 1/

\ \ r I

'\ \~'
start of\ / -
last row\ i I

(Nu<l%) \f--------
t;l/ I/_/ I

(NH%)+1 j~:;>I
l _____ ,. __ ·---..J.

i
I' I •
I

i I i lj Ii : i
I __ i" __ J ____ .J

//
k'

/"
,,

-t~fi ·r·;~;t··r A~/EL.
,,.,/,.-· _______ L ________ _l _________ _

TY%

index into
Pecking-Ordered
run-time tables

-- __ J

Table 3.6.4-I HAC-to-GDC RECORD FORMAT

726

•
data:

xyz

•

•

•
(!re6re)

--·----,.-----

• ',
< ,~-,: f' r ()r re~ ()<j/:

/
Figure 3.6.4-20 Flowchart - FFPREP

727

3.6.4.1.11

3.6.4.1.11.1

3.6.4. 1. 11.2

Submodule XI - SEGPREP • Description

This section describes acquisition and processing of data needed
to support real-time generation of individual segment level displays.
SEGPREPROC includes the following functions:

a. Data Acquisition - Data for this operation is sent from
the HAC in formatted ASCII decimal. Each record is format
ted as per Table 3.6.4-I and is tenninatE:\d by a CR. The
records are sorted by segment and pecking order. Since
segment number information is present on each record, the
identification of segment boundaries in the data stream
is no problem. The order within each segment will he tbe
basis for the identification information sent with real
time status messages.

b. Data Processing - For each segment, the maximum and minimum
north and east coordinate values over all heliostats
in that segment must be determined to allow scaling of
the segment geometry to optimally fit the screen
view port.

The alphanumeric tabular clata accompanying each display
will be sorted on MDAC heliostat number; i.e., the
RRNN"" row, position designation. Thus, each segment must
be sorted on this field to compute the A/N table line
assigned to each heliostat. Additionally, this ordering
is needed to construct the HFC line connections which are
displayed at the segment level.

For each segment, a display buffer file containing HFC
connection lines, HFC labeling, and HC labels (in both
the graphic and A/N table areas) will be constructed
to minimize the time required to bring up displays at
run time. A BASIC array file will be constructed for each
segment. It will contain the (x,y) screen position of
eal:h heliostat symbol and its A/N table position (y).

Data, Logic and Corrrrnand Paths

This routine controls data communication, processing and storage
during segment-display preprocessing. Data is obtained from the
HAC via a (software) handshaking protocol controlled by the GDC.
In response to each REQ to SEND, the HAC sends one ASCII record
ended by a CR.

SEGPREP creates files on the GDC local floppy disk which support
real-time processing by SEGDISP.

7'2.8

•

•

• 3.6.4.1.11.3

• 3.6.4.1.ll.4

•

Internal Data Description

RECORD$ string containing ASCII data record f,.:om HAC

NUM$ - string containing ASCII representation of numeric
field

XYYN% - integer array (4,50) containing screen {x,y),
MDAC HC number, and A/N table (y) per heliostat.
in pecking order

WL - real array containing geographic limits of segment

VL - real array containing screen viewport limits

HFCHC% - integer array (50) containing MMC number per
heliostat

IN% - sort index array (50) used to sort segment by HC
number (MDAC) = row,position for RFC connection
lines

ROW% - index table pointing to IN% indicating start of each
row; integer array (1'>)

Flowchart

Sec Figure 3. 6. 4-21 for the SEGPREP flowchart •

729

,,
/ .

\ >>F hPFf P .

l/_:,_I in(__ }_,-· -.. '
1 I (((\ · / (.-

'1 •?' N () H (,f (-:< ?"-·-··- 'fU'\I .. ''H

: I / 't'.4r,'P1 ·•· l v/ •~I J ~ \

--··r-·----------·1·- ----- r ·-
: . 1·;- - . -· 1
I \. orY\·p'._.,,·L.!

I ! r~rc)=}(~,rH,;(1 ""'!·!
,,,.------.. ±-~ 1-~ '.,_)··,d,,,) I
(\ __ Rf Tl) R~ _ _) L ... ' -· ,r · .,,, ... J

Figure 3.6.4-21 Flowchart - SEGPREP

730

r(t\n '/N t q,;,;,ya~4
t·oo<·!-:t, \i: .. "r-•.>; 1

•

•

•
J ,,,

3.7

3. 7. l

3.7.2

•
3.7.3

3.7.4

•

System Interfaces

The major system interfaces within the Collector Subsystem
are as follows: HAC/HFC interface, HFC/HC interface, HAC/OCS-DAS
interface, HAC/GDC interface, HAG/Receiver interface, and the
Man-Machine interface. Each of these interfaces is detailed in
the following sections.

HAC/lffC InterfaCl' Dl•scription

This interface is fl computer-to-computer interface ovct· wllicli
the HAC computer trtmsmits to the IIFC computer sun position
information, operational commands, and a status poll request.
The HFC computer transmits to the lIAC computer the HFC/HC
status infonnation. The transmissions are on one-second
cycles, and the timing of the cycle is shown in Figure 3. 7-1.
The data is transmitted at .a rate of 19.2 kilobaud. The format
of the message packets are shown in Tables 3.7-I through
3.7-XII.

HFC/HC Interface Description

This interface is a computer-to-computer interfac~ over which
the HFC computer transmits to the HC computer sun position
information, operational commands, and a status request. The
HC computer transmits to the HFC computer its command response
information and status information. These transmissions are
cyclic in nature and arc made on one-second intervals. The
data is transmitted at a rate of 9.6 kilobaud. The format
of the message packets is shown in Tables 3.7-XIII through
3, 7-XVIII.

HAC/OCS-DAS Interface Description

This interface is a computer-to-computer interface over which
the OCS computer transmits commands, status requests and
BCS requests, The RAC computer responds with command responses,
error messages, status information and BCS messages. The DAS
computer transmits over a separate line status requests to which
the RAC computer responds with the appropriate status
data, These transmissions are of a stimulus/response nature
and are transmitted at a 19.2 kilobaud rate. The OCS and DAS
have separate linE!S to the RAC and to the backup HAC. The
format of the message packets is shown in Tables 3.7-XIX
through 3.7-XXXVII.

HAC/GDC Interface Description

This interface is a computer-to-Intelligent Terminal interface
over which the HAC transmits field initialization data, statns
infonnation and text messages. The GDC transmits to the HAC
emergency commands, status requests, send-next-message and a
r(\SCt command. These transmissions arc of a stimulus/response
nature and are transmitted at a 9,6 kilobaud rate. The fonnat
of the message packets is shown in Tables 3.7-XXXVII through

711

3. 7. 5

3. 7. 6

3. 7. 6. 1

3. 7. 6. 2

3. 7. 6. J

·3. 7-XLVl.

HAC/Receiver Interface Description

This interface is a physical four-wire interface with TTL-type
signal levels. Each of the two pairs shall have the opposite
signal of the other. The receiver will transmit a trip signal
and it will remain on the line from the receiver until it has
returned to normal. The HAC will respond to the trip signal
by automatically creating a DEFOCUS command. A set of four
wires wi l] be proviued to both the JIAC and its backup with
the wires grounded at the 1-li\C. The Trip Logic. is shown in
Table J. 7-XLVIT.

Man-Macliinc• Tntt•rfac.e lk•sc.ript.ion

The man-machine interfaces to the Collector Subsystem ean
best be described in fi.ve parts: J) the command i.nput mode;
2) the command file execute mode; 3) the command logging mode;
4) the alarms response mode; and 5) the status display mode.
All of these modes exist in the system simultaneously.

Command Input Mode

Commands may be input to the system from the CS Control Console,

·•

Control Room Graphics Console, and the OCS via a data link or •
from a. comma~d file on disk (see Se~tion 3. 7: 6. :) . The list. of
commands ava1Jable to the operator 1s shown in Tables 3.2.1-1 , an

3.2.1-11, along with the valid sources, addressing formats. mode con
st rain ts, and command descripti.ons. A 11 commands must be
entered with at least four characters of the command, and may
he entered wlth up to as many characters as the command ha,;.
The operator may enter the two emergency commands via function
keys on the Control Room Graphics Console. This input involves
pressing the appropriate function key rather than typing in a
particular command. Commands coming from the OCS will be in
the same format at those entered from the CS Control ConsoJP.
Incorrectly entered commands will result in error messages
transmitted to the inputti.ng source. Table 3.2.1-III shows the
error messages whJch may be displayed.

Command File Execute Mode

This mode allows a sequence of commands and their respective
execute times to be prestored on disk for subsequent automatic
execution. The execute times are relative to the command file
start time, which requires an operator input.

Command Logging Mode

A] 1 commands input to the system are echo printed on the CS
Control Room line printer (logger) with appropriate time stamps. •
This includes commands input from the CS Control Console, command

732

•
3. 7. 6. 4

3. 7. 6. 5

•

•

files, CS Control Graphics emergency commands, OCS commands
and DAS status requests.

Alarm Response Mode

Alarms for irregular Collector Subsystem operation are generaLed
automatically and reported to the operator. Two modes of
reporting are employed. A fixed, protected portion of the CS
Control console's screen is dedicated to alarm reporting. Two
types of alarms are reported on this console. The first class
of alarm is the system critical alarm, which requires an
operator response, or acknowledgement, through the keyboard
before another critical message may be displayed. The second
class of alarms is the system non-critical alarm, which requires
no response and is overwritten automatically by the next non
critical alarm. A historical record of critical and non-criti
cal alarms is also maintained on the CS Control Room line printer.
Table 3.2.5-IV shows a sample of thf' types of alann messages
which will be generated.

Status Djsplay Mode

The status of tile CoJJcctor Subsystem is displayed :In two ways.
A fixed, protected portion of the CS Control console's screen
is reserved for a continuously generated display of field status .
This display shows date and time, and gives a title of the
twelve modes which the heliostats can be in at any time. Beneath
each of the mode titles is the total number of heliostats in
that mode. (See Figure 3.2.6-2.) This field status is updated
on a once-per-second basis, using tile one-eighth of field status
which was received in that second. In addition to the continuous
status displayed on the CS Control console, additional status
may be requested by the operator through the keyboard. This
demand status may be in one of four formats, at the option of
the operator. If the argument entered with the STATUS command
is ALL, the format is a snapshot of the display on the CS Con
trol console printed on the line printer. (See Figure 3.2.6-2
for format.) If the argument entered is an "H/NNNN," where the
"NNNN" indicates the HC number whose status is being requested,
then the HC number, its segment number, its azimuth and eleva
tion angles, and the commanded mode and actual mode are printed
on the line printer. (See Figure 3.2.6-3 for format.) lf the
argument entered with the STATUS command is "M/AAA", where "AAA"
is the mode whose status is requested, then all HC numbers that
are in the requested mode will be listed on the line printer.
(See Figure 3.2.6-4 for format.) If the argument entered is
"R/N," where "N" is the ring number whose status is requested,
then all segments within that ring will be printed on the line
printer. Associated with each segment printed will be the
number of HCs in that segment, the number of HCs in the TRACK
mode and the number of HCs i.n the STANDBY mode. In addition,
totals w111 be summarized for the whole r.ing. (See Figure
3.2.6-5 ror format.)

N<l'l'i':: For M, R or J\1.1. stat.us rl'q111•:.;11;, tlw status c.111 n·l:;o 111•
di:.;played on Ll1e CS Control Con:-;olt: by opl.ional]y typi1l)',
"CHT" after tl1(• cunnnanll ilr)\llllll'nl ..

/lJ

--..J
...,.;
~

HAC
to

HFC

0 Sun S

0

y~~~ I

0

HFC
to

HAC

HFC
to
HC

100

r-sun/Synch
· & HC Cmd

HC
to
HFC

•

Status Poll/Response

I I I' I I I ~

'I~• ~• ~• ~•- ~• '~!] ~L] '~LJ t

200 300

co·mmand . ·1

Response __ ~L...i1-.1
'------

HC Polling

Figure 3. 7-1

400 500 600 700

FLDCOM One-Second Co~@unications Time Frame

•

Operational
Connnands

o.o.oonooo

800

t--

o,~,n .,.J..,

........--i

1000
msec

•

•

... -.

•·-••,

TABLE 3.7-I !IC INITIAT.I7.J\TION COMMAND FORMAT

MJ•:SSJ\Gf; TAYOIIT

HC
INITIALIZATION

APPLICATION HAC HFC MESSAGE TYPE COMMAND

PROGRAMMER D POWELL

BYTE
tf

CAZ

5 CEL• 5

BAZ

BEL
0 I

HX

5 HY

HZ

i,.:2::..:i-_...:C;.;.HE;;;;:.;:;C~KS=.;UM:;.:;.;., __ ~2~-...,...

?5

3 30

DJ\TE 2/8/80

0616
3 bits HFC ff; 5 hits I-IC#

HC current azimuth

l~ current elevation

HC bias azimuth

HC bias elevation

Heliostat field x-coord.
(scaled binary point 14.)

Heliostat field y-coord.
(scaled binary point 14.)

He liostat field z-coord.
(scaled binary point 14.)

8 bit checksum such that
Bll message bytes sum to zero.

7J'5 I,

TABLE 3. 7-II BEAM POINTING COMMAND FORMAT

MESSM.:1•: T.A YOIJT

llEAM POINTING
APPLICATION IIAC IIFC MESS/\C:E TYPE COMMAND

PROGRAMl'-Um D1 POWELL DATE 2/8/80

5

0

5

2

2

3

·--~----------·~--........ -__ .. .a. __ ~ _ _,,~ -

HEADER BYTE

if

HC

SELECT

MASK

BPX

BPY

BPZ

CHECKSUM

HFCit

o's

32 BIT HC
SELECT MASK

o FOR THIS
COMMAND
l==SELECT THIS HC

08 TRACK RECEIVER
OB TRACK BCS
OC TRACK CULP
OD TRACK CLLP

L.-...---o Beam Pointing Target x-coord.

? .5

'30

(scaled at binary point 14.)

Beam Pointing Target y-coord.
(scaled at binary point 14).

Beam Pointing Target z-coord.
(scaled at binary point 14).

don't care

H bit checksum such that all
mess;1ge bytes sum to zero.

___________ ,,. _________________ _

•

•

•

• --

•-··

•--

TABLE 3. 7-III.

APPLICATION HAC IJJ,'C

CORRIDOR WALK START- UP COMMAND FORMAT

MESSAGE LAYOUT

CORRIDOR WALK
START-UP

MESS,\CJ•: 1'Yl'E COMMAfil)

PROGRAMMER D. 1'01,11(' I I DATE ? /8/80

5

0

5

2

2

3

HEADER BYTE

HC

SELECT

MASK

CHECKSUM

5
0

1

25

30

g hits HFCil 1016 c.w. UP-A

bits o's
ll16 c.w. DN-A

1216 c.w. UP-B

32 bit HC 1316 c.w. DN-B

select mask 1416 c.w. UP-C
for this
command 1516 c.w. DN-C

l=select this lol6 c.w. UP-D
HC

17i6 c.w. DN-D

don't care

8 hit checksum such that all
message bytes sum to zero

737

TABLE 3. 7- IV AZ lMUTH/ ELEV AT ION PO INT ING COMMAND FORMAT

't-U~SSAGI·'. TA YOUT

AZ/EL
POINfING

APPLICATION HAC HFC MESSAGE TYPE COMMAND

PROGRAfll>ffiR D. POWELL DATE 2/8/80

5

0

5

2

2

3

-------r-t====;::~======.;:--r.
HEADER BYTE J bits IIFC# 18 AZ/EL STOW

ff 5 bits O , 8 19 AZ/EL SEEK MARKS
IA AZ/EL WASH

H:C

SELECT

MASK

AZ

EL

CHECKSUM

5

1

?.5

10

lil AZ/EL DIR POSITION

{

IC AZ/EL ALTlSTOW
32 bit HC select I Tl AZ/EL ALT?STOW
mask for this connnand.
l=se lect this llC

Connnand azimuth

Command elevation

don't care

J 8 bit checksum such that a 11
bytes of the message sum to zero.

•

•

•

•
TABLE 3. 7-V STATUS POLL COMMAND FORMAT

MESSAGE IAYOUT

APPLICATION HAC HFC MESSAGE TYPE STATUS POLL

PROGRAMMER D. POWgl.L DATE 2/8/80_~--

.-,.-------·,·~=-==-==-::.:::· =-=-==·-==i·---·-·"· . --•·•--•·-··•·-·"---··--·"· --···-·-

!
] hits IIFCi/; , ·1,0

111
STATUS POLL

'j Ii il 1-l IIC it U /• - IIC s

si.ngle UC poll.

HEAI>rm B YTI·:

JI

don't care
CIIBCKSUM

all message hytes sum to zero.

5 5

0 1

5

2 2

2 ?.S

3 30

739

TABLE 3. 7-VI FOUR IU.:LIOSTAT STATUS RESPONSE FORMAT

MESSAGE TAYOUT

APPLICATION HFC HAC

PROGRAfl}mR D4 POWELL ___ .,._
1 HEADER BITE l

II

- COMMAND --- RECEIVED ·-
5

MASK 5 - --
- HC

STATUS

,,_ CAZ
lO 11

.-- CEL

- HC
STATUS

5 11 ' - CAZ

- CEL -
HC

,-

21
STATUS

2(

- CAZ

- CEL

2' HC ?.5 -= STATUS

- CAZ

- CEL -
30 30

HFC - STATUS

4-HC
STATUS

MESS!,GE TYPE RESPONSE

DATE 2/8/8Q_ __
......... --.. .. -.. --------•-·--~----·•-····-~ _____ ., ___

() ')()
. I Ii

-- ~:3
hit IIF'C#;

0 C bit llCff of tlw first HC in the gro11p _)

{'2 bits of command received mask
~ 0°,,this HC did not receive a command

l=!IC received a connnand OK

See breakdown of HC status-
--C HC status for HC#n

- Current azimuth for HCffon ;

., Current elevation for IIC#n

I See breakdown of HC status--
0 HC/1 HC status for n+l !

I.

) Current azimuth for HC# n+l

----0 Current elevation for UC# n+l

See breakdown of HC status--
" HC for HC# n+2 status

- Current azimuth for HC# n+2

::- Current elevation for HCffo n+2

See breakdown of !IC status---
HC status for HC# n+3

'--' Current azimuth for HCft n+3

~ Current ele'v-ation for HC# n+3

See breakdown of m·c status--
)

lffC thif; IIFC status

740

•

•

•

•

•~·•

•-·•-.

TABLE 3. 7-VI (con't)

MESSAGE IAYOUT

APPLICATION HFC HAO

PROGRAMMER D, Powell

3 HFC CMD

CHECKSUM

l+-HC
STATUS

MESSAGE TYPE RESPONSF,__ ___ _

DATE ?/8/80

Current command received by this HFC
of 8016 if none.

8 bit checksum such that all message
bytes sum to zero.

741

Mt:SSAG:: I.A Y0UT

APPLICATION HC STATUS BYTES
HC STATUS

T~_. BIT BREAKDOWN ~XSSAGE: 1.=..

D. Pow<:!]]
DATr 2/8/80

1 MA 1 MSB-Mark enccHmterc>d azimuth
f"-',..... ___ -:-M--E:-------.-. Mark encountered e] evation

PC

MANC

5 MENC

CE

'j

Positi.on compare witlr +8 hits in
both az ,ind e I
M,1rk encountured az and 110 cornp;1n•
M.1rk e11!'our1ten•d l'I ;111d 110 comp;rr·L,

HFC detected ('llflun. error I
NM

'~ --t-----------!"--r El gimhal not moving when commanded.

'10

15

2

25

30

TABLE J.7-VII

MODE SUB
MODE MODE

00 Restart
000 Power-on

SUBMODE I JO I.nit
Ul Comm. Error

0] Beam Pointing
000 Track Receiver

care 0 I I Track BCS
LSB 100 Track CULP

l OJ Track CLLP
110
111

JO Corridor Walking
()()() !11' Corridor-A
001 UN Corridor-A
0 I 0 LIP Corridor-fl
01 I llN Corridor-B
100 UP Corridor-C
IO L DN Corrldor-C
I l 0 UP Corr.idor-D
I I .I DN Corr.idor-D

ll Az/El Pointing
000 Stow
001 Seek Marks
010 Wnsh
011 DIR POSITION

• .1 ()() A.It j Stow
I OJ Alt 2 Stow

JO

HEL lOSTAT CON'l'HOJ.LER STATUS BIT BH l•:AKDOWN
Ui:>

:

I

•

•

•

•

•·~,

MESSAGE LAYOUT

APPLICATION HFC STATUS BYTES
HFC STATUS

~1ESSAGE T\1':: BREAKDOWN

PROGRAMMER D. A. !'owe 11
DAT: ?/8/80

l RST

CE

MSll'--411FC Restaned

----eJIFC/IIAC ('(1111111. vrn,r ------t--1

I.PHASE

5

wcs
110

·WDS

WAS

15
"WBS

2

5 25

')O

HFC .in i. t L1 I i z;1 t i uu · pllil)lC
0 just restarted; expecti.ng A&B CULi'. 1 got A&B Cl/I.l's; expecting A&B CLLPs
2 got A&B Cl,1.Ps; expecting A&B DEL'l'/\ J got A&B DELTAs; expecting C&D CULP

I 4 got C&D CUJ.Ps; expecting C&D CLLPs:
5 got C&D CLLPS; expecting C&D DEL TAJ 6 If RST = I: got C&D DELTAs;

1

.
expecting ('orridor assignments

RST "' 0: normal; any corridor
assignmen I c·ommand allowed.

Corridor-C state: 0 idle
l up
2 down

Corridor-D state: 0 idle
1 up
2 down

Corridor-A st ;1 l P: 0 i.dle
up

'J. down
torrldor-B st.lit•: () id.le

l up
2 down

TABLE 3. 7-Vll'.I. HFC STATUS BIU:Al<llOWl'J

743 ,

',.

MESS AC:: LAYOUT

A?PL!CATION HAC HFC
SUN/SYNC :-:ESSAGE T\"P;:

PROGRIU-!MER D. A. Powe 11
DATE' ? /8180

1 HEADER BYTE --- 80]6 Means SUN/SYNC.
..,.,... ________ _.:,_

SPN ---.al!C number of first of four consecutive
t--.---.::.-=..:;._ __ _.....,_.

HCs to be st.Itus pulled this second.
SX

5

SY

sz

15

CHECKSUM

5

Sun unit vec()r x-coordinate (scaled at binary point 4).

L---... don 't care

Sun unit vcc tor y--coordinate (scaled at binary point 4).

l(._ __ .,. don't c,1re

Sun unit vector z-coordinates (scaled at binary point 4).

~--•don't care

--- 8-bit Checksum such that al.l message J.-+---------+-t bytes, including the Checksum, sum to zero.

2 2
,. ..

2 2

JO JO
}

TABLE 3 • 7 - IX SIIN l'OS I 'I' I ON COMMAND FORMAT
7411

•

I

•

•

•

•~

•

HESS.ACE LA 100'1'

APPLICATION HAC HFC

D. A. Powell

~tESSAGE T\'P::

HFC INIT.
COMMAND
SUBTYPES O,J,2

DATF ?/8/80
l . HEADER BYTE

CULi's

CLLPs

DELTAs

XA

5

YA

ZA
I

l

XB

5 . YB

ZB

CHECKSUM

l

-----------. I>X I 6
Corridor-A · Ex

16
_ X-parameter at

(binary point 14).

Corr.fdor-A
Y-·paramet:er
(binary point 14).

Corridor-AZ-parameter
(binary point 14).

Corridor-BX-parameter
(binary point J /1).

X is HFC/1)

1--•Corridor-B Y-parameter
(binary point 14).

Corridor-B Z-pan1meter
(binary point 14).

__ ..,.8 bi r clw1·ksum siwh that i:~1-~ message ,_...., ____ -,--___ ...,..,. l>y,e"es sum to zero.

2

JO

TABLE 3.7-X

2

j(

HFC INITJALIZATION COMMAND FORMAT (SUBTYPES 0, 1,2)
745 ,

TABLE 3. 7-Xl. HFC INITIALIZATION COMMAND FORMAT (SUBTYPES 3,4,5,)
MESSAGE LAYOUT

APPLICATION HAC HFC

PROGRAMMER E I Madigan

!IBADER BYTE

XC

5 5

YC

zc
0 1

XD

5 YD •

ZD

2 CHECKSUM

;>S

3 30

HFC !NIT.
COMMAND

MESSAGE TYPE SUBTYPES 3, 4, 5

Corr:! dor-C

')X 16

AXl6
X-paraclPter at HX

16 binary point Iii.

Corridor-C
Y-parameter at
binary point 14.

Corridor-C
Z-parameter
at binary point 14.

Corridor-D
X-parametcr at
binary point 14

Corridor-D
Y-parameter at
binary point 14.

Corri.dor-D
?.-parameter at
binary point 14.

DATE 'J /8/80

CULPs

CLLl's

DIU,TAs

(X if HFC#)

8 bit checksum such that all
message bytes sum to zero.

7M,

•

•

•

,.

•••

TABLE 3. 7-XII HFC INITIALIZATION COMMAND FORMAT (SUBTYPE 6)
MESSAGE LAYOUT

APPLICATION HAC HFC

PROGRAMMER E. Madigan

5

0

5

2

?

3

CORRIDOR-A

ASS IGNMJ-:NT

MASK

CORRIDOR-B
ASS IGNMENI'

MASK

CORRIDOR-C

ASSIGNMENT

MASK

CORRIOOR-D

ASSIGNMENT

MASK

CHECKSUM

5

1

;:>S

30

HFC INIT.
COMMAND

MESSAGE TYPE SUBTYPE 6

DATE ? /8 /80

XL 6 = Corridor Assignments
(X = llFCI/)

37 hits or Corr-idor assigmn(•nts
0 not sPlected
I = selected

3? bits of Corridor assignments
0 = not selected
1 = selected

37 bits of Corridor assignments
0 not selected
I = selected

3? hits of Corridor assignments
0 = not selected
1 = selected

don't care

8 hit checksum such that all
message bytes sum to zero.

TABLE 3. 7-XIII HC SUN/SYNCHRONIZATION COMMAND FORMAT (BEAM POINTING)
MESSAGE T.AYOUT

/

APPL !CATION 11.f'C IIC

PROGRAMMER D. Powe I 1

HEADER BYTE

sx

5 5

SY

sz
0

CORRIDOR-/\

SELECT

MASK

5

WAX

WAY

2 ?

WAZ

CORRIDOR-H

?. SELECT

MASK

WBX

3 30

WHY

SlJN/S YNC/CMIJ
MESSM:1,: TYPI~ 111•:/\M POINT rNG

DATE , /8/80

Sun Unit vector

'18
16

Receiver

7H
16

BCS

-coord. at binary ,c
16 point 4.

?Dl6

Sun unit vector
y-coord. at binary
point 4.

Sun unit vector
z-coord. at binary
point 4.

CULP (standby)

CLLP

HC select mask of
point at corr- i dor-A.

orridor-A x-coord. at binary point 14.

Corridor-A y-coord. at binary point 14.

orridor-A z-coord. at binary point 14.

37 bit llC select mask of IICs to
point at Corrfdor-H.

orri.<lor-B x.coor<l. nt binary point 14.

:,lt"r idoi--11 y-coord. ;it hl1111ry poinl 11,.

-Lo-~----·----------------'

•

•

•
'

•

•

•

TABLE 3. 7-XIII HC SUN/SYNCHRONIZATION COMMAND FORMAT (BEAM POINTING) (con't.)
MESSAGE JAYOUT

APPLICATION HFC IIC

SUN/SYNC/CMD
BEAM POINTING

------•---- MESS!lr.1,; TYi'!•: (CONTTNUEn.L__ __ _

PllOGHAMM'ER D. Powt• I I --------~-------··--· ..
5

4

4

5

5"

fiO

65

WBZ

CORRIOOR-C

SELECT

MASK

wcx

I
WCY

wcz

CORRIDOR-D

SELECT

MASK

WDX

WDY

WDZ

BEAM
POINTING

SELECT
MASK

4

50

0

________ IM.TE 7/8/80 __ _

------- --·--"••·-·-------·--·•--·· .. ··-----
Corridor-B z-coord. at binary point 14.

3? bit HC select mask of HCs to point
at Corridor-C

orridor-C x-coord. at binary point 14.

Corridor-C y-coord. at binary point 14.

Corridor-C z-coord. at binary point 14.

3? bit select mask of I~s to point at
Corridor-D

Corridor-D x-coord. at binary point 14.

orridor-D y-coord. at binary point 11+.

orridor-D z-coord. at hinary point 14.

~? hit select mask of HCs to beam point

749

i

ii
'!

'f

' ,i

I
;\
i (
' '

TABLE 3. 7-XIII HC SUN/SUN SYNCHRONIZATION COMMAND FORMAT (BEAM POINTING) (con' t.)

MESS AGE T.A YOIIT

APPLICATION HFC HC

SUN/SYNC/CMD
BEAM POINTING

MESSAGE TYPE (CONTINUED)

PROORAMI-IBR

0

7

8

I
I

BPX

BPY

BPZ

CHECKSUM

D. Powell DATE ?/8/80
--~-----•----"'"--.._,,_ .. ,.._ _...., __ __.__.w,..._~...._..~.....,,.._

on't care

7

1•am pointing x-coonf. 11t binary point l4.

~--•earn pointing y-coord. at binary point 14.

Beam pointing z-coord at binary point 14 .

8-bit checksum such that all message
bytes sum to zero.

7'i0

•

•

•
I

l
·'

• ,··•-··.

....

•-

TABLE 3. 7-XI:V HC SUN/SYNCHRONIZATION COMMAND FORMAT (AZIMUTH/ELEVATION POINTING)

MESSAGE LAYOUT

APPLICATION HFC HC

t>ROGRAMMER D. Powell

5

0

5

2

2

3

sx

SY

sz

CORRIDOR-A

SELECT

MASK

WAX

WAY

WAZ

CORRIDOR-B

SELECT

MASK

WBX

WBY

5

1

')

30

SUN/SYNC/CMD
MESSAGE TYPE AZ/EL POINTING

Sun unit vector
-.:-coon] at
bi.nary poI.nt 4.

Sun unit vector
y-coord at
binary point 4.

Sun unit vector
z-coord at
binary point 4.

DATE 2(8(80

78
16

Stow

"/9 16 Seek Marks

JA
16

Wash

7B16 DIR POSIT ION

7C I 6 ALTlSTOW

7D 16 ALT?STOW

32 bit HC select mask of HCs
to point at corridor-A.

orridor-A x-coord. at binary point 14.

Corridor-A y-coord at binary point 14.

Corridor-A z-coord. at binary point 14.

32 bit HC select mask of HCs
to point at Corridor-B.

Corridor-B x-coord at binary point 14.

Corridor-B y-coord at binary point 14.

751
,'
\

TABLE 3. 7-XIV HC SUN/SYNCHRONIZATION COMMAND FORMAT (AZIMUTH/ELEVATION POINTING) (con't.)

MESSAGE LAYOUT

APPLICATION HFC HC

SUN/SYNC/CMD
AZ/EL POINTING

MF.SSA(;E TYPE (CONTINUED)

PROGRAMMER D. Powel I. DATE ?/8/80

5

4

5

6

65

WBZ

CORRIDOR-C

SELECT

MASK

wcx

WCY

wcz

CORRIDOR-D

SELECT

MASK

WDX

WDY

WDZ

AZ/EL
POINTING

Sl.;I,ECT

MASK

4

5

Corritlor-B z-coord at· binary point "14.

3? hit HC select mask of HCs to
point at Corridor-C

Corridor-C x-coord at hinary point 14.

Corridor-C y-coortl. al binary point 14.

Corridor-C z-coord. nt binary point 14

,---.--.37 bit HC select masl< of HCs to point
at Corridor-D

orridor-D x-coord nt binary point 14.

~orridor-D y-coord at binary point 14.

0

Corridor-D z-coord at binary point 14.

,--,-.,.·p hit s(• I ect masl< o I IICs to AZ/1·:L (Hl i 111.

7<=,?

•

•

•

TABLE

• ·-
3. 7-XIV HC SUN/SYNCHRONIZATION COMMAND FORMA°f (AZlMUTH/ELEVATION POINTING) (con' t)

MESSAGE LAYOUT

APPLICATION HFC HC

PROGRAMMER D. Powe 11

SUN/SYNC/CMD
AZ/EL POINTING

MESSAGE TYPE (CONTINUED)

DATE 2/8/80

----------4-----·---------·~ --~~., ~ ~,,., ~,-·-··-
CAZ

CEL
70

75 on't care

bi.t checksum such that _ill message
bytes sum to zero.

753

·-

--...,

TABLE 3. 7-XV SUN/SYNCHRONIZATION COMMAND FORMAT (HC INITIALIZATION)

MESSAGE LAYOUT

APPLICATION HFC HC
SUN/SYNC/CMD

MESSA<~E TYPE HC INITIALIZATION

PROGRAMMER D. Powe 11 DATE 2/8/80 _________________ __,,,.,.__,_ .. _,. ______ _..._........,_., ___ __
HEADER BYTE r----------- 3 hits = zero,.+--------~µ,..i 5 bits HC4fa

5

0

5

2

2

3

sx

SY

sz

CORRIDOR-A

SELECT

MASK

WAX

WAY

WAZ

CORRIDOR-B

SELECT

MASI

WBX

WBY

5

1

2

30

un µnit vector x-coord at
binary point 4.

un.unit vector y-coord at
binary point 4.

un . .unit vector z-coord at
binary point 4.

? bit HC select mask of HCs to point
at Corridor-A

orridor-A x-coord at binary point 14.

Corridor-A y-coord. at binary point 14.

orridor-A z-coord. at binary point 14.

?. bi.t HC select mask of HCs to point
at Corridor-B.

orridor-B x-coord at binary point 14.

Corridor-B y-coord ;it hfm1ry point 14.

7-';/,

•

•

•

• --..,

•

TABLE 3.7-XV SUN/SYNCHRONIZATION COMMAND FORMAT (HC INITIALIZATION) (con't.)

MESSAGE LAYOUT

APPLICATION HFC HC

SUN/SYNC/C;rID
HC INITIALIZATION

MESSAGE TYPE (CONTINUED)

_P_ROG __ RAMME ___ R ___ p_._,.Pwr.owe.lL__ __________ _
DATE 2/8/80

5

5

65

WBZ

CORRIDOR-C

SELECT

MASK

wcx

WCY

wcz

CORRIDOR-D

SELECT

MASK

WDX

WOY

WDZ

CAZ

Cl~L

...------------ ~-------- ----
orridor-8 z-coord at binary point 14.

32 bit JIC select mask of IICs to point

at Corridor-C

orridor-C x-coord at binary point 14.

Corridor-C y-coord at binary point 14.

3? bit HC select mask of HCs to point
at Corridor-D

Corridor-D x-coord at binary point 14.

Corridor-D y-coord at binaryppoint 14.

Corridor-D z-coord at binary point 14.

r---.-. .. Current azimuth

C11rn~11t elc•vntfon

755
l.'
I..

;,
)

r

··~

TABLE 3. 7-XV SUN/SYNCl:ffi.ONIZATION COMMAND FORMAT (HC INlTIALIZATION) (con't.)

MESSAGE LAYOUT \

SUN/SYNC/CMD
HC INITIALIZATION

APPLICATION HFC HC MESSAGr1 TYPE (CONTINUED)

PROGRAMMER p, Pqwt;ll DATE 2/8/80

BAZ

BEL

HX

HY

HZ

-----··---~··---
t--+--• Bias azimuth

~-•Bias elevation
7

Heliostat x-coord at binary point 14.

Heliostat y-coord at binary point 14.

Heliostat z-coord at hinary point 14.

8 bit checksum such that all message
bytes sum to zero.

•

•

•
.,

'•

•

•

•

TABLE 3. 7-XVI HC COMMAND RESPONSE FORMAT

MESSAGE LAYOUT

APPLICATION HC HFC

COMMAND
MESSAGE TYPE RESPONSE

PROGRAMMER D. Powe 11 DATE 2/8/80

C R. BYTE

5

0

5

2

2

3

5

l

?.

,.

30

3 hits = 6
16

5 hits Helf

--------··---------

757

·'"''""'' '~

TABLE 3. 7-XVII HC STATUS POLL COMMAND FORMAT

MESSAGE J.AYOUT

APPLICATION HFC HC
STATUS

MESSAGE TYPE POLL

-- ----------~

•
PROG'RAMMER D. Powell DATE 2/8/80

HEADER BYTE

CHECKSUM

5

0

5

2

2

3

5

1

2

,.

30

's complement
of first byte.

7"8

{

3 hits = 4
16

5 bits HC#

••

•

•

•

• ,·""""

TABLE ·3.·7-XVIU HC STATUS RESPONSE FORMAT

MESSAGE LAYOUT

STATUS

APPLICATION HC m'C MESSAGE TYPE RESPONSE

PROGRAMMER D. Powe 11 DATE 'J./8/8O

.,_+-_HE ___ AD_E_R_B_YTE __ -+--..f ________ _j 3 bits = 5t
6

5

0

5

2

2

HC See HC status bit 5 bits HCft
STATUS breakdown for HFC

CAZ

CEL

CHECKSUM

l

'

?. 5

30

Current azimuth

8 bit checksum such that ill message bytes
sum to zero.

759

r
TABLE 3. 7-XDC OCS/DAS-HAC COMMANDS FORMAT

MESSAGE LAYOUT

APPLICATION OCS /DAS -· llAC
OCS/ DAS

MF.SSi\GE TYPE COMMANDS

PROGRAMMER T. Ladewig

HEADER

5

0 1

5

2 2

2 ?. 5

DATE 2/8/80

------~-----
ASCII 0--0CS Originated

J)--DAS Originated
~SCII Message byte count*

Position 4-79 will contain the cotmnand,
addressing mode and arguments according
to the format in Table Ia and Table lb,

*NOTE: This message can contain up to 80
ASCII characters with byte 80 containing
the checksum. If less than 80 characters
are transmitted the checksum will occupy
the last position sent and the header byte
count will reflect the actual characters
sent including the header and checksum . •

TABLE 3. 7-XX HAC-OCS/DAS ENVIRONMENT FORMAT

• MESSAGE LAYOUT

HAC
r-. ...

APPLICATION HAC ocs/DAS MESSAGE TYPE ENVIRONMENTS

PROGRAMMER T. Ladewig DATE 'J/8/80

ASCII H = HAC Origi.nator

HEADER Message hyte count (See note for Table
XXI).

A E s {AW
5 L R T ASCII ERR

M R s
STS

A E S* ASCII (See note for Table XXI)
L R T
A R A *See tables XXIII-XXV.

0
R 0 T

1
M R u

s
M M

)
E E
s s
s s

... ..,,.,.,...., A A
5 G G,

E E

T 'r
E E
X X
T T

2 2

'

761

l' . . ,.

.. --...;,

TABLE 3. 7-XXI HAC-OCS/DAS ENVIRONMENT STATUS (FIELD) FORMAT

KESSAC! LAYOUT

APPLICATION HAC - ocs/DAS ~fESSAG'S T~ STATUS - FI::LD

PROGRAMMER T. Ladewig
DATF ?/8/80

1· --• ASCII H - HAC originated

4

1

5

25

HEADER

s
T

s
R

F

TIME

TRACK

BCS

STANDBY

STOW

ALTERNATE 1

STOit'

Message byte count (see note for
Table XXI)

ASCII STS status

ASCII R Requested

ASCII F Field

ASCII hhmmss Time plant local

SCII NNNN HCs in track

NNNN HCs in standby

ASCII NNNN HCs in stow

NNNN = HCs in Alt 1 stow
)

.... ,

•

I

I
•

•

• ,-.,

•-

TABLE 3. 7-XXI HAC-OCS/DAS ENVJRONMENT STATUS (FIELD) FORMAT (CONTINUED)

MESSAGE LAYOUT

APPLICATION HAC OCS /DAS
STATUS-FIELD

MESSAGE TYPE (CONTINUED)

PROGRAMMER T. Ladewig DATE ?./8/80

45

50

55

80

ALTERNATE ?
STOW

TRANSITION

WASH

DIRECTED

POSITION

OFFLINE

MARK

INIT

CHECKSUM

ASCII NNNN = HCs in ALT?STOW
'

..,.ASCII NNNN = HCs in Transition

0

~-1nSCII NNNN= HCs In Wash

ASCII NNNN "" , in directed position

ASCII NNNN = HCs in offl ine

ASCII NNNN= HCs in Mark

5

ASCII NNNN = HCs in INIT

hit checkslfm such t lwt· nl I hytes s11m to z •ro.

763

~ ... , ,,

TABLE 3. 7-XXII HAC-OCS/DAS ENVIRONMENT STATUS (MODE) FORMAT
MESSAGE LA YOtrr

APPLICATION HAC-OCS/DAS MESSAGE TYPE STATUS--MODE

PROGRAMMER T. Ladc:~wig DATE 2/8/80

5

0

5

2

2

HEADER

STS

CONDITION

M

MODE

TIME

HCII

HCII

I

• •
UNUSED

_. ASCll H"" IIAC "riglnal.t-d

---II Message byte count (see Note for Table
XXI)

ASCII STS - STATUS

ASCII R = Requested
A= Alarmed*

M = Mode

TRK = .Track
BCS = BCS
STB -- Standby
S'l'O == Stow
J\Ll = i\L'l'lS'l'OW
AL2 J\LT2STOW
TRN Transition
WSH = Wash
DPO Directed Position
OFF = Off1 ine
MRK Mark
INI = Init

ASCII hhmrnss - Time

----- ASCII 4 digit HC number. Additional
messages will be used to transmit

2

?.

additional HCs.

*NOTE: Alarmed will be used to report
HCs unable to respond to a
STHIWIND command, HCs in WASH,
OFFLINE, and DIRECTED POSITION
will be transmitted

7t:../,

•

•

•

•

•

TABLE 3. 7-XXIII HAC-OCS/DAS ENVIRONMENT STATUS (HC) FORMAT

MESSAGE LAYOUT

APPLICATION HAC OCS /DAS

STATUS

MESSAGE TYPE INDIVIDUAL HC

_PR_OG_RAMME ____ R ___ T_._L_a~ewig __________ _ DATE ?/8/80

H = HAC Originated

HEADER ..---.-Message byte count (See note for Table XXI

... ,. .. _il STS ASCII STS ~ Status

5 5

ASCII R - Request<>cl

H ASCII JI = Individua 1 Status

0 1

TIME

5
HCII SCII 4 Digit HC Number

2 ?

AZIMUTH Digit SNNN.NN Azimuth

2 ?.

ELEVATION 7 Digit SNNN.NN Elevation

30

I I II_ 1//L ____ _______________ _.

.765

TABLE 3. 7-XXlII HAC-OCS/DAS ENVIRONMENT STATUS (BC) FORMAT (CONTINUED)

MESSAGE LAYOUT

APPLICATION HAC-OCS/DAS

PROGRAMM!ll T. Ladewig

UNUSED

STATUS
MESSAGE TYPE INDIVIDUAL HC

DATE 5/12/80

ASCII 3 Characters. See Table XX.IV for
acceptable 3 character codes.

ASCII T = TRANSITION
P = POSITION COMPARE

NOTE: The heliostat wi.11 be in the mode
identified if the fransition flag
is a P. The heliostat will be in
transition to the mode identified
if the transition flag is a T.

If the mode identified is TRN then
the heliostat is within a sequence
and has not yet received the final
command of the sequence.

•

•

•

•

•

•

TABLE 3. 7-XXIV HAC-OCS/DAS ENVIRONMENT STATUS (RING) FORMAT

MESSAGE LAYOUT

APPLICATION HAC-OCS/DAS
STATUS

MESSAGE TYPE RING

PROGRAMMER T. Ladewig DATE 5/12/80

5

0

s

2

80

HEADER

STS

R

TIME

SEGMENT

HCs in
SEGMENT

TRACK

STANDBY

')

V

REPEAT

CHECKSUM

s

ASCII H = HAC Originated

Message byte count (see note for
Table XXI.)

-- ASCII STS STATUS

ASCII R = Requested

--t ASCII R = Ring

_-,; ASCII Time Plant Local

~ASCII 1--digit Ring number requested

·---t ASCII 3-digit Segment number

-ASCII 2--digit number of HCs in Segment

L-..---ASCII 2-digit number of HCs in TRACK

in Segment

0

ASCII 2-digit number of HCs ln STANDBY

in Segment

--
1 REPEAT as many times as necessary to

cover complete ring - multiple

messages may be necessary .

767

TABLE 3. 7-XXV HAC/BCS BCS INITIATION REQUEST MESSAGE FORMAT

APPLICATION

PROGRAMMER

HEADER

B
C

5 s

HAC/BCS MESSAGE TYPE BCS Measurement

T. Ladewig DATE 5/12/80

s

"-----IASCII H - HAC originated

----tMessage Byte Count (See note for Table

XXI.)

-----.ASCH BCS := BCS ml'.ssage

-------t_ _ _..Message number - 1

0

s

2

2

0
1

TIME

BCS
FILE
TITLE

/
~--ASCII BCS file title

3

CHECKSUM

768

•

•

•

•

•

TABLE 3. 7-XXVI BCS/HAC BCS INITIATION RESPONSE MESSAGE FORMAT
MESSAGE LAYOUT

APPLICATION BCS/HAC MESSAGE TYPE BCS Measun•mL•nt

PROGRAMMER T. Ladewig DATE 5/12/80

5

0

s

2

HEADER

B
C
s

0
2

BCS
FILE
Tll'LE

EAST

GO/STOP

.... ,•\ ,-,

ASCII O - OCS origipated

--~Message Byte Count (See note for Table~,
XXI)

S - -- 11\SC J r BCS

3

--f Message number 2

---tASCII BCS f~ic title from BCS-1
title

BCS targets status:
1 operational
0 = non-operational

BCS initiation permission:
1 = go
2 = no-go

..__,...__ ... c,_11 ... 1t:_,C_,K_,Sl .. 1M __ ___ <· .. ll ... 1• ... 1·.,.k ... s ... 11_,m _______________ _.

769

I
I

TABLE 3. 7-XXVII HAC/BCS BCS MEAS\]REMENT INITIATION REQUEST MESSAGE FORMAT
MESSAGE LAYOUT

APPLICATION HAC/BCS MESSAGE TYPE BCS Measurement

PROGRAMMER T. Ladewig DATE 5/12/80

HEADER

B

5 C
s

0
3

0

HELIOSTAT

BCS TARGET

5 MODE

2

2

3

~' ~ -·
0 CHECKSUM

···--- ... ASCll H - HAC originated

---·-• M<.'ssage byte count (st'C note
for Tab le XXI)

2

2

3

ASC!l BCS BCS message

Message number

Heliostat number

BCS Target:
l South
2 =- West
3 North
4 East

3 •

Mode that heliostat is presently
in (fur coding see byte 9-11,
Table XXlV.)

Ch c.: sum

77f\

•

•

•

•

•

TABLE 3. 7-JO{VIII BCS/HAC BCS MEASUREMENT INITIATION RESPONSE MESSAGE FORMAT

MESS.AGE LAYOUT

APPLICATION BCS/HAC MESSAGE TYPE BCS Measurement

PROGRAMMER T. Ladewig DATE 5/12/80

HEADER
._..,_ _________ -·-·-··--

5

0

B
C
s

0
4

HELIOSTAT

··-·_. ASCTl O - OCS ori gt11ated

-·-4 MesHage bytt! co1111t (Set:! note
for Tab.le XXI)

5 --tASCII BCS =·BCS Message

----aMessage number 4

1
--t Helios tat number

BCS TARGET __.Bes TARGET:
1--1----------------11-1 (see byte 13, Table XXIX)

5

2

2 2

3

771

"-

TABLE 3.7-XXIX HAC/BCS HELIOSTAT ON BCS TARGET Ml-:SSAGE FORMAT
MESSAGE LAYOUT

APPLICATION HAC/BCS MESSAGE TYPE BCS Measurement

PB.$RAMMER. T , Lade-wig DATE 5/12/80

HEADER

B

5 C
s

0
5

0

HELIOS'I'AT

BCS TARGET

5
HELIOSTAT

HELIOSTAT
2

HELIOSTAT

2

HELIOSTAT

3

HELIOSTAT

H - HAC origlnated

~·-- Message Byte Count (see note
for Table XXI)

S ~ASCII BCS BCS Message

1

2

2

3

Message number= 5 ,

Heliostat number

BCS Target (see byte 13, Table XXIX)

Blocking/shadowing heliostat numbers
(up to 5)

•

•

•

•

•

•

TABLE 3. 7-XXIX BCS/HAC HELIOSTAT ON BCS TARGET MESSAGE FORMAT (continued)
MESSAGE LAYOITl'

APPLICATION BCS/HAC MESSAGE TYPE RCS MEASUREMENT

5

TIME

0

X

y

z

5

T. Ladewig

4

DATE 5 / 12 / 80

Time For Current Sun
Vector (GMT)

,.
. _ _.X-coordinate or s11n unit vector (l~ast)

-----4Y-coordinate of sun unit vector (North)

Z-coordinate of sun unit vector (Up)

5

Clieck1rnrn

773

TABLE 3.7-XXX BCS/HAC HELIOSTAT BCS REMOVAL REQUEST MESSAGE FORMAT
MESSAGE LAYOUT

BCS/HAC APPLIC!TION MESSAGE TYPE 13CS Measurement

PROGRAMMER T. Ladewig DATE 5/ 12/80

HEADER

B

5 C
s

0
6

0
HELIOSTAT

BCS TARGET

5

2

2

---~ASCil O - OCS Originated

---eMl'HsagP 13yte Count (See Note for
Tab le XX])

ASCII BCS = BCS Message

-----Message number 6

L---~Heliostat number

BCS Target (See hyte 13, Table XXIX)

2

2

CIH•1·.k:-111111

77l,

•

•

•

•
""'I,,•,,

•

•

TABLE 3. 7•XXXI HELIOSTAT BCS REMOVAL RESPONSE MESSAGE FORMAT

MESSAGE LAYOUT

APPLICATION HAC/BCS MESSAGE TYPE BCS Measurement

PROGRAMMER T. Ladewig DATE 5/12/80

5

0

5

2

HEADER

B
C
s

0
7

HELIOSTAT

BCS TARGET

MODE

/\,;"../'_.,,.... .. ,, A./\."

Cit lo'.C:KSLIM

----ASCI C H - HAG originated

,-.+--... Message Byte Count (See note for

Table XXI)

5--~ASCII BCS = BCS Message

r-,.__--t1Message number 7

1~--.Heliostat number

2

2

3

•BCS Target (see byte 13, Table XXIX)

----Mode that heliostat was removed to (for

coding see byte 9-11, Table XXIV)

775

.... ...,..._,

TABrn 3. 7-XXXII BCS/HAC - BCS MEASUREMENT RESULTS

MESSAGE LAYOUT

APPLICATION BCS/HAC MESSAGE TYPE BCS MEASUREMENT

PROORAMMER T. Ladewig DATE 5/12/80

5

0

5

HEADER

B

C

s
0

H.ELIOSTAT

BCS TARGET

MEASUREMENTS

ASCII O - OCS originated

--t Message Byte Count (see note for
Table XXI)

5 ·· i ASCII BCS = BCS Message

- Message Numher 8

Heliostat Number

BCS TARGET (see byte 13, Table XXIX)

L-r--1 Number of BCS scans taken

CENTROID ALARM ___. Centroid Al.arm Flag (l=Alarm)
t--"4---------~t--t

""-"'-::.PO;;.W.:..;,E;;,R;;.;._:ALARM==:.:.....-~~~ Power Alarm Flag (l=Alarm)

SUCCESS FLAG - Measurement Success Flag
1---1-~..,.;;;..~;;.....;~~---i~

?

3

TIME

CENTROID
OFFSET

CENTROID
OFFSET

30

0 = good measurement
1 = spilling target
2 = off targl't
3 = inconsistent measurements

ASCII hhmrnss = Time of day of BCS
measurement

ASCII Horizontal average centroid offset
(±99.99 ft.)

---t ASCII Vertical 11verage centroid offset
(±99.99 rt.)

77(:.

•

•

•

..

•

• ---

TABLE 3. 7-XXXII BCS/HAC - BCS MEASUREMENT RESULTS (CONTINUED)

MESSAGE LAYOUT

APPLICATION BCS/HAC

PROGRAMMER T. Ladewig

VERTICAL

IMAGE

POWER

THEORETICAL

IMAGE

45 POWER

FIELD

INSOLATION

0 LEVEL

~.--v'\./"',/"'-A✓ - ,,.-----

80 CHECKSUM 0

MESSAGE TYPE BCS MEASUREMENT

DATE 5/12/80

Vertical (continued)

Measured average power
(0-99.99 Kwatts)

Theoretical power
(0-99.99 Kwatts)

Measured field insolation level
on which theoretical ~ower is
based (0-9999 watts/rn)

777

• •i
' •'1;

----.

TABLE 3. 7-XXXIII HAC/BCS BCS MEASUREMENT RESULTS lrnSPONSE
MESSAGE LAYOUT

APPLICATION HAC/BCS MESSAGE TYPE BCS Measurement

PROGRAMMER T. LadewJg DATE 5/12/80

HEAOER

B

5 C
s

0
9

0
HELIOSTAT

--f ASCII H - HAC originated

------.Message Byte Count (see note for
Table XX t:)

S ---t ASCII BCS RCS Messnge

--~Message number 9

Heliostat number

BCS TARGET .__ _ _,,BCS Target (see byte 13, Table XXIX)
....,..,__=;:....=:.;.:..:~----1

s

2

2

3

TIME

CENTROID
OFFSET

HORIZONTAL

CENTROID
OFFSET

VERTICAL

AZIMUTH

2

2

3

---, ASCII hhmmss Time of day of BCS
measurement (from bytes
19-24, Table XXXIV)

ASCII Horizontal centroid offset
(from bytes 25-30, Table XXXIV)

ASCII Vertical centroid offset
(from bytes 31-36, Table XXXIV)

~ASCIT Azimuth Bins from measurement data

77P.

•

•

•

...
TABLE 3 , 7-XXXIII HAC/BCS - BCS MEASUREMENT RESULTS RESPONSE (CONTINUED)

• MESSAGE LAYOUT

•

• . _,,,,__

APPLICATION HAC/BCS MESSAGE TYPE BCS MEASUREMENT

PROGRAMMER T. Ladewig
. t

DATE 5/12/80

4

35 AZIMUTH

(continued)

ELEVATION

BIAS

CURRENT

AZIMUTH

0 BIAS

CURRENT

ELEVATION

BIAS

80 CHECKSUM

ASCII ~ NNN.NN

• ASCII ~ NNN.NN Heliostat
Elevation Bias from Measurement Data

•-.-:---.-,SCII ~ NNN.NN Current
Heliostat Azimuth BIAS

g....-~SCII ± NNN.NN Current
Heliostat Elevation BIAS

0

779

-~

TABLE 3. 7-XXX.IV HAC/BCS BCS TERMINATION MESSACE FORMAT

MESSAGE LAYOUT

APPLICATION HAC/BCS MESSAGE TYPE BCS Measurement

PROGRAMMER T. Ladewig DATE 5/J 2/80

s

0

s

2

HEADER

B

C

s
J.

0

TIME

BCS

FILE

TITLE

~sen H - HAC originated

Message Byte Count (see note for Table XXI.

SCII BCS = BCS message

.__,._~Message number 10

1

2

ASCII hhmmss == Time of termination (all
heliostats are back to original mode)

ASCII BCS file title (see bytes 15-24,
Table XXVII.

7SH)

•

•

•

--

•

TABLE 3 .'7wXXXV HAC/BCS m:LIOSTAT MEASUIU;MENT HJ S'l'ORlCAL DATA REQUEST

MESSAGE FORMAT ·
MESSAGE LAYOUT

APPLICATION HAC/BCS MESSAGE TYPE BCS Measurement

PROGRAMMER T. Ladewig DATE 5/12/80

HEADER

B

5 C

s
1
1

0
-HELIOSTAT

5

2

2

80 CHECKSUM

2

2

3

80

ASCII H - HAC originated

Message Byte Count (See note for Table

XXI.)

ASCII BCS = BCS mesHage

•

781

---....,

TABLE 3. 7-XXXVI

APPLICATION HAC/BCS

HAC/BCS HELIOSTAT MJ<~ASUREMENT HISTORICAL DATA RESPONSE

MESSAGE LAYOUT

• MESSAGE TYPE BCS Measurement

PROGRAMMER T. Ladewig DATE 5/12/80

s

0

s

2

2

HEADER

B

C

s
1

2

HELIOSTAT

BCS TARGET

MEASUREMENT

DATE

TIME

.CENTROID

OFFSET

HORIZONTAL

(/Ill/II

2

ASCII H - HAG Originated

Message Byte Count (See note for Table
XXL)

ASCII BCS = BCS Message

•

ASCII Heliostat Number

BCS Target (see byte 13, Table XXIX).

Measurement

1 = 1st
2 = 2nd
3 = 3rd

---\\SCII yymmdd Date of measurement

~SCII hhmmss = Time of measurement

-4ASCII + 99.99 Horizontal Centroid Offset

7A'J

•

•

•
TABLE 3. 7-XXXVI HAC/BCS HELIOSTAT MEASUREMENT HISTORICAL DATA RESPONSE (CONTINUED)

MESSAGE LAYOUT

APPLICATION HAC/BCS

PROGRAMMER T. Ladewig

CENTROID

OFFSET

VERTICAL

MESSAGE TYPE BCS Measurement

DATE 5/1)/80

ASCII~ 99.99 Vertical Centroid Offset

783 _,,

TABLE 3. 7-XXXVII HAC/BCS HELIOSTAT BIAS RESULTS

APPLICATION

PROGRAMMER

5

HEADER

B

C

1

0 HELIOSTAT

5

2

2

DATE

NEW

AZIMUTH

BIAS

NEW

ELEVATION

MESSAGE LAYOUT

HAC/BCS MESSAGE TYPE RCS Hf'a•rnu•ment

T. Ladewig DATE 5/12/80

ASCII H - HAC Originated

11---Message Byte Count (see note for
Table XXI).

5 ~ASCII BCS - BCS Message

--t Message Number = 13

1 ----4 Heliostat Number

u..;.---_.ASCII yymmd<l = Date of bias update

(if applicable)

_______.ASCII= 999.99
New Heliostat Azimuth Bias

2

··--·--1ASCII ~ 999. 00
New Heliostat Elevation Bias

Ill /II/I

,Q'/,'

•

•

•

•

• -

TABLE 3.7-XXXVII HAC/BCS HELIOSTAT BIAS RESULTS (CONTINUED)

MESSAGE LAYOUT

APPLICATION HAC/BCS

PltOCRAMHER T. Ladewig

OLD

35 AZIMUTH

BIAS

0
OLD

ELEVATION

MESSAGE TYPE BCS Measurement

DATE 5/12/80

+
·------tASCII - 999.99 OLD AZIMUTH BIAS

..._____~ASCII ~ 999.99 OLD ELEVATION BIAS

BIAS

ST TS STATUS of BIAS update:

0 = bias update not executed
1 = bias updated
2 = decision pending

785

TABLE 3. 7-XXXVIII HAC-GDC Field Position I nit in l izalion

MESSAGE LAYOUT • APPLICATION HAC-GDC

PROGRAMMER Q. Pettit
___ --1Uank_ ___ _

5

Mac Dae
Heliostat number

t--• -----·-•-··-·--~

0

Blank

HFC-HC
number

Blank
I--+---=:

5

2

2

3

+/-
X

X

X

X

X

X

Blank

+/-
x

X

X

X

X

X

Blank

Segment

NumbL•r

Blank

5

1

2

2

'.30

MESSAGE TYPE: Initialize field position
(1 of 2)

DATE June 10, 1980

All ASCII

Number composed of row number and
row position 1nu11IH'!r

-.... HFC * 32+1 +HC
range 1-201+8

(HFC-HC number)

... Site reference x-coordinate
(East)

Site reference y-coordinate
(North)

• S('gmt•nl: 111rndwr ilSHlg11111,1 11t

I

i
f
t
'

I
i
t

I
!
l .
I
)

•

•

•

•

TABLE 3.7-XXXVIII HAC-GDC Field Position In:itiaJi_z,1tion (cont.)

MESSAGE LAYOUT

APPLICATION: HAC-GDC

PROGRAMMER : D. Pettit

4 Pecking
Order

MESSAGE TYPE: Initialize ftc,l<l positiu,

(2 of 2)

DATE: June 10 2 1980

Heli.os~aL HPgment pecking order
assignment

787

I
!

TABLE 3. 7-XXXIX llAC-CDC Full FJe l.d ~;ta tm;

APPLICATION

PROGRAMMER

5

0

5

2

MESSAGE LAYOUT • HAC-GDC MESSAGE TYPE : HAC Full Field Status

D1 Pettit DATE : June 9. 1280

Bit 0=1, Rits 1-7 binary 1
10

.... BH 0=1, Bits 1-7 binary 1
10

to 8
10

·-------- Bit 0=l

5

1

2

"7Q,Q

Bits 1 to 7 Binary Helios tat Status

-1 "" not i.n::;talled

l = Track

2 = Standby

3 = BCS
4 = Transition

5 := Stow

6 Alternate 1 stow

7 = Alternate '2 stow

8 Mark

9 = Directed Position

10 Wash

11 ,;: InJtialization

12 = 0ffline

Each status byte corresponds to

each of the heliostats in order

of the HFC-HC polling

•

•

• -•,,_

• ,,,,..,._,_,.>

• ·---.,_

TABLE 3. 7-XL HAC-t;uc Sep,ml:il L s Lil tu:;

MESSAGE LAYOUT

APPLICATION: HAC-QDC MESSAGE TYPE: HAC Segment Status

PROGRAMMER: D. PettH DATE June 9, 1980

-,2 = Segmtc'nt updating

,-t--P"l,&.ll,,l~~-'1-=il..J!. _ _J~ bit 0=1,
·, .

b.i_ t}; 1-7 birwry 2
10

I
I

I

I
. I

""'
. ._.hit 0=1, i>.i ls 1-7 binary va.luf'

'-. bit O=l, bi.Ls .l-7 binary value

bit 0=1, bits L-7 binary value

t--t--~L..!~~~~...!:!.;!:.=.:~-f, ____ ~ bit 0=1, bits 1-7 are bits 0-6 of Az wor

1-...... ~~LJ,.!,!JL.!..Jil.!t..JL,!!.-=-i~-f-~ bit O=l, bits :l-7 are bits 7-13 of Az wo d

t--+--u.i.>ll-£.u..>"-"'.11-..1...,._...J.L.u..;:,+-... --- same format as azimuth

AIM POINT

0 (NORTH)

AIM POINT

(EAST)

AIM POINT

UP)

5
same formht
s above 12 bytes
or the next HC
in pecking order

(shown in dashed
line. on left)

2

2

3

____ ,it O=l, bits 1-7 are bits 4-10 of AP

~it 0=1, bits 1-7 are bits 11-17 of AP
l

2

?.5

_ ____., same format ns North Aim Point

---Repeat up to 21 total HCs in pecking

order (less than 258 bytes)

/]

30

789

TABLE 3.7-XLI HAC-GDC Text Message to CDC

MESSAGE LAYOUT • APPLICATION : H.AC-GDC MESSAGE TYPE : Text messagi;~ ~o GDC

PROGRAMMER : D. Pettit

5

0

5

2

?.

3

Header byte

Messa•c len th

ASCII
Message

5

1

?5

30

• '3

\

\

"701"1

DATE: June 10, J,.280

T'ext 111c•:..;s:lge

blt 0-·J. bi.ts L-7 binary value

-e1Jit O"'l, bi.ts 1-7 binary valut;
(l-80)

\
bits L-7 ASCII code

•

•

•

•

•

TABLE 3. 7-XLII HAC-GDC Graphics Initialization

MESSAGE LAYOUT

APPLICATION : HAC-GDC

PROORAMMER: D. Pettit

~ader _Jrrte __ _
Term! nal ID

5 5

0 1

5

2 2

?.5

3 30

791

MESSAGE TYPE : Initialize Graphics

DATE : June 10, 1980

• !1 - Set i•,1·,1pli.iJ·.~; tPrminal TD

Bit. U I, Bils f •. 7 bltwt"y /1
10

-;•Ult (kl, HitH l-·7 b11wry v;iltH·

wt1vn·

0 CS Control Room

Engineeri.ng Evaluation

Room

TABLE 3.7-XLIII GDC-HAC GDC Command

MESSAGE LAYOUT

APPLJCATION ; GDC - HAC

PROGRAMMER : D. Pett I. t

Header Byte Reset

5 5

0 l

5

2 ')

2 ?5

3 30

MESSA(,'E TYPE : CDC Conun,rnd

DATE : .June 9, 1980

r
I
I

•

•

•

•--

TABLE 3. 7-XLIV GDC - HAC c:nc C:0111111;, nd

MESSAGE LAYOUT

APPLICATION : GDC - HAC MESSAGE TYPE : GDC Comm;i nd

PROGRAMMER: D. Pettit DATE; .Iuqe 9, l.9.80

er B te J = Full field or segment

5 Segment

0

5

2

3

5

1

2

,. 5

30

-- -----• ASCII Message byte count

·-----. l'osi t:ion 'j--7 c·o11L,J lns segmenL 11111111,er
being <lisplnyed. Segnwnt nu111l)('1·

000 impllt'i; ., full fi.eld dispL1y.

I
J L--.&-------L~-----------------

793

TABLE 3.7-XLV C:IJC··HJ\C Cum111;uHI

MESSAGE LAYOlIT • APPL'lCATION : GDC-HAC MESSAGE TYPE : CDC Command

PROGRAMMER : D. PetU t DATE : June 9, 1980

Send next message l
I

5 5

0 1

5 •
2 2

t

I
f
' i
f
I

2 2 I
~

!

' I
I
I

3 30 I ·--.. .. • i
I

•·

•

•

TABLE 3. 7-XLVI GDC-IIAC (;I.Jl'. Command

MESSAGE LAYOUT

APPLICATION GDC-HAC MESSAGE TYPE: CDC Command

PROGRAMMER : p . Pett it DATE: June 9, 1980

5

Emergency

Message

0

s

2

2

3

t-+------4ASCII Message byte count = 1/1
10

5

1

2

?.5

30

'-ei\SClI

Position 5-14 contain either:

795

GlOSTHI\.\'616 or,

GlODEFO\,i)S"I'\.

Receiver-to-HAG Trip Signal Logic

Computer/twisted pair * Trip J Operational

I

I
I I
I

I

HAC
I

A - pair 1 I < +2 voe I
I I

+s voe

--·- ····---·--··~-·~-------"·--·-~- ·--- --- -- - ~- ~-·-
l I

HAC A - pair 2

1-

+s voe I
I
I
' ,., -

<- +2 voe

HAC B -- pair 1 < +2 VDC +s voe

HAC B - pair 2 +s voe < +2 voe

•
* All signals TTL Level, 300 ma

TABLE 3.7-XLVII

• 4.0

4.1

•
4.2

4.3

•

SOFTWARE/FIRMWARE SYSTEM VALIDATION

The validation that the software/firmware developed for the

Collector Subsystem meets the requirements imposed by the

10 MWe Collector Subsystem Software/Firmware Functional Require

ments Spec:1 ficati.on and this design specification shall be

accomplished by a tiered level of te.sting. Each element of a

level of testing which lends to the next higher level of testing

will be completed to the .':latisfactlon of the responsible engin(:'er

for that level be fore commencing to the next higher level.

At the completion of each level of testing, a memo will be

generated by the responsible engineer for that level detailing

the tests performed, the results of the test, and listing any

special software or tools used in the test.

Test Phases

All software and firmware developed for the 10 MWe Collector

Subsystem project will be subjected to four levels of testing:

a. Function (or unit) testing;

b. Integration testing;

c. Breadboard level testing; and

d. System level testing.

Functional Testing

Functional testing will be accomplished by the engineer responsible

for the development of the software or firmware module, as each

submodule becomes available. Each submodule will be tested

against the Software/Firmware Design Specification. Testing at

this level will be conducted informally and to the satisfaction

of the responsible engineer. All hard-copy test results generated

at this level will be filed in the Module Development Folder.

Software modules developed for the HAC will be tested in the HAC

computer. Firmware modules developed for the HFC and HC may be

tested on the Motorola 6801 simulator running in the Sigma V

computer system, the Motorola MEK6800D2 development kits, or

breadboard models of the HFC, HC, or Stimulator.

Integration Testing

Integration testing will be accomplished under the cognizance of

the HAC Lead Engineer for software to run in the HAC computer,

and the HFC/HC Lead Engineer for firmware to operate in the HFC

and HC microcomputers. The software and firmware modules will

be integrated into the software system and firmware system, as

the modules become available, and will be tested for complionce

with interface definitions and functions, as defined in the

Software/Flrmware Design Speclficat-ion and Software/Firmware

Functional Requirements Specifications documents. Integration

797

4.4.

4.5

testing will be informal and to the satisfaction of the RAC

Lead Engineer and HFC/HC Lead Engineer. Hard-copy results and

notes generated from this testing will be filed in a file

kept in close proximity to the module development folders and

will be used in preparation of the "as-built" Software/F:irmware

Design Specification.

Breadboard Integrati.on Testing

Breadboard Integration testing will be accomplished under the

cognizance of the Controls Manager. The software and firmware

systems will be tested with the HAC computer connected to and

communicating with a breadboard version of the RFC and HC

microprocessors, with RFC and HC firmware systems operating,

respectively. The software and firmware modules will be tested

for compliance with the interface definitions, the software

and firmware functions, and overall system performance. This

testing will be informal and to the satisfaction of the Controls

Manager. Any hard-copy results and notes generated from this

testing will be filed in a Breadboard Test File and will be

used in the preparation of the "as-built" Software/Firmware

Design Specification. Upon completion of this testing, the.

software and firmware systems will be placed under configura

tion control.

System Level Testing

System Level testing will be accomplished under the cognizance

of the Collector Subsystem Operations Manager. This level of

testing will be accomplished under formal controls against the

Collector Subsystem Functional Test Plan. The test will verify

that the code satisfies the functional objectives and require

ments specifications. Discrepancy reports will be filed for

each failure detected. Any discrepancies will be corrected

by the responsible engineers. Retesting will be performed to

verify that the discrepancies have been corrected. System

Level Test will be run at the Martin Marietta Plant in Denver,

Colorado, by use of a heliostat located in the solar test area

and using the RAC installed at the Space Physics Laboratory.

After successful completion of the System Level Test in Denver,

the RAC will be moved to the 10 MWe Solar One plant site and

used for heliostat installation procedures. The RAC will under

go Acceptance Testing with the field as part of the Collector

Subsystem Acceptance Test.

•

•

•

s.o ACRONYMS
The following is a list of acronyms used with this project:

ASCII - American Standard Code for Information Interchange

AZ - Azimuth

BCS - Beam Characterization Subsystem

CLLP - Corridor Lower Limit Point

CPU - Central Processor Unit - CPU-CPU Link - 4824/4824 link
between Prime and Backup HAC

CRT - Cathode Ray Tube

CS - Collector Subsystem

CULP - Corridor Upper Limit Point

DAS - Data Acquisition System

DOE - Department of Energy

EL - Elevation

EPGS - Electrical Power Generation System

GFE - Government Furnished Equipment

HAC - Heliostat Array Controller

RC - Heliostat Controller

HFC - Heliostat Field Controller

ICD - Interface Control Document

I/F - Interface

I/0 - Input/Output

ISC - Intelligent Systems Corporation

JCL - Job Control Language

MDAC - McDonnell Douglas Corporation

MAX IV - MODCOMP Operating System

MA.XNET - MODCOMP Net Working System Superset of MAX IV

799

ACRONYMS (Cont'd)

MCS - Master Control System

MMC - Martin Marietta Corporation

MODCOMP - Modular Computer Corporation

O&M

ocs

OPDD

PCS

QA

REX

RFP

RS

SCE

SOP

SEO

SFDI

SFRS

STMPO

S/W

TBD

TBS

TCB

TI

TSS

UFT

UPS

wwv

- Operation and Maintenance

- Operational Control System

- Overall Plant Design Description

- Peripheral Control Switch

- Quality Assurance

- Request Executive Services

- Request for Proposal

- Receiver System

- Southern California Edison

- Software Development Plan

- Source Editor

- Solar Facility Design Integrator

- Software/Firmware Functional Requirements Specification

- Solar Ten Megawatt Project Office

- Software

- To be determined

- To be supplied

- Task Control Block

- Texas Instruments

- Thermal Storage System

- User File Table

- Uninterruptable Power Supply

- Nationa!. Bureau of Standards Univ(ir~al Time

broadcasting station at Fort Collins, CO

