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FOREWORD 

This report is the result of a study perfonned for the Department of 
Energy Advanced Solar Thermal Power Systems Branch in support of the Mater
ials Evalulation task of the PNL contract titled Solar Mirror Quality Assur
ance and Perfo.rmance. Included in the task is a survey of the 1 iterature on 
the lifetime, durability and weatherability of potential solar reflector 
materials. The intent of the survey is to identify materials which could be 
useful in solar reflectors. The survey included optical properties, degrada
tion mechanisms, accelerated and natural aging testing and performance evalu
atio.n techniques. 

The initial phases of the survey used three computer data base services. 
The data bases searched under the DOE RECON system included Nuclear Science 
Abstracts (1967 to June 1976) and the Energy Data Base (1974 to present). 
The data bases searched via the Lockheed DIALOG System included the National 
Technical Information Service (1974 to present), Science Abstracts (1970 to 
present), Chemical Abstracts (1970 to present) and Engineering Index (1970 
to present). Published searches compiled by the Smithsonian Science Informa
tion Exchange were also included. In addition, numerous limited distribution 
publications from private companies and various DOE laboratories were used. 
Some of the key words and phrases used for the initial search are included in 
appendix A for reference. 

The initial phase of the search yielded over 9000 titles and abstracts. 
These were scanned to yield over 600 core articles containing pertinent infor
mation and ·references to begin a more comprehensive search. 

This report gives a brief synopsis of the literature that was reviewed 
in detail. Despite the large amount of literature investigated, very little 
useful information was obtained in the degradation of the materials due to 
outdoor weathering. In particular, infonnation on the optical properties of 
the materials is almost non-existent. 

Due to the nature of this survey, the authors have stated the results and 
opinions found within others• work. No attempt has been made to verify any 
statements or conclusions found in these works and it is not within the scope 
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of this survey to perform such verifications. The survey is intended solely 

to provide useful information and references on material weathering and test

ing and does not represent the opinions of the Pacific Northwest Laboratory 

or its sponsors. 
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SUMMARY 

A review of the available literature on the weatherability/durability 
of materials with possible applications in solar reflectors is summarized. 
A number of techniques used to weather solar materials are reviewed. These 
include both natural and simulated weathering. Little correlation has been 
shown to exist between natural and accelerated weathering, and much work 
needs to be done before results of accelerated aging tests can be used with 
confidence to predict material lifetimes under outdoor exposure conditions. 

Some of the techniques used to measure or monitor material degradation 
are discussed. Emphasis in the literature has been placed chiefly on mech
anical properties or appearance oriented measurements. The need is appar
ent for more detailed optical measurements of materials properties that are 
directly useful in engineering design. Although a great deal of literature 
is available on the materials described in the survey, there is very little 
sol id data on the properties important for solar applications. A brief · 
discussion of some of the applicable data on polymeric materials and glass 

is presented and referenced. The importance of cleaning solar materials is 
emphasized and some attempts at modeling degradation are discussed. 
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INTRODUCTION 

The economic viability of solar energy conversion systems is dependent 
upon the service life of the materials used. The accurate prediction of 
the lifetime of these materials is necessary in order to perform a realistic 
cost/benefit analysis for working systems. Many of the materials including 
those used in solar reflectors are subject to the adverse and variable 
effects of terrestrial weathering. This report summarizes the results of 
an extensive literature survey which was undertaken to assess the present 
"state of knowledge" of the weathering characteristics of materials with 
optical properties that are suitable for solar reflector applications. The 
report emphasizes polymeric materials that could have immediate or near
term applications. Evaluation techniques, testing procedures and modeling 
are also discussed. 

l 



WEATHERING TECHNIQUES 

A number of natural or simulated weathering techniques have been used 
to evaluate the perfonnance and estimate the lifetime of solar materials. 
Natural weathering exposure is perfonned by commercial finns in several 
geographical locations. These include Desert Sunshine Exposure Testing, 
Phoenix, Arizona; Carribean Testing Inc., Caquas, Puerto Rico; Solar Test
ing Services Inc., Pampano Beach, Florida; South Florida Testing Service, 
Miami, Florida; Air Pollution Control Center, Clevelqnd, Ohio and others. 1 

Natural weathering is commonly accomplished by exposing the samples on a 
fixed exposure rack which is tilted at an angle close to the latitude of 
the geographic location or on a rack which tracks the sun. Simulated wea
thering is standard practice for many materials producers. Commonly accept
ed methods of performing the simulations can be found in the standards and 
recommended practices of the ASTM, ASME, ASHRAE and other voluntary stan
dards organizations. 

It is generally recognized that there are many stress parameters which 
may effect the ultimate perfonnance of a given material. The most commonly 
used stresses are temperature, moisture and UV radiation. The effects of 
ozone, sulfates and other atmospheric pollutants may also be important. In 
some cases even biological attack of the materials is significant. The 
effects of abrasion and mechanical stress can degrade the optical properties 
of some materials. The list may be extended indefinitely. These stress 
factors may degrade the material alone or they may act synergistically with 
other parameters to change the rate character of the degradation. This 
makes weathering an extremely complex phenomena. 

Accelerated weathering tests are perfonned by either simulating the 
weathering stress factors believed to be most significant for the material 
being tested or by concentrating the natural weathering elements using 
higher, longer or more severe exposures. Examples of machines which con
centrate natural environmental parameters are the follow-the-sun solar 
concentrators, EMMA (Equatorial Mount with Mirrors for Acceleration) and 
EMMAQUA (an EMMA with distilled water spray for 8 minutes out of each hour 
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of operation). 2 These machines concentrate sunlight by a factor of 8 to 12 
times that of the nonnal exposure. Devices used in simulated weathering 
tests include the Atlas 600 series Weather-Ometer, General Products All
Purpose Accelerometer (GPAPA), General Electric G30T8 Germicidal Lamp 
{CALBOX), and others. 3 These devices generally use a single or combination 

of xenon, carbon, or mercury arc lamps for light exposure. They may also 

be equ.ipped to control and cycle various other weathering parameters· {humi
dity, temperature, etc.). 

Although these weathering machines are sometimes useful in ranking 
materials, much controversy exists concerning the validity of correlating 

the results obtained using such devices with the results obtained for 
natural outdoor exposure. For instance, Grossman states that natural wet

ness has a relatively long time cycle, 1-2-16 hours in length. 4 He empha
sizes that the rate at which water permeates a polymer is time dependent 
and simulators should use water cycles on the order of 8-16 hours with a 

40% wetness time. Rapid cycling of water and UV energy does not allow 
water ,enough time to carry out its oxidation function. He also states 

that aerated water should be used for spraying samples to simulate actual 

rainwater and temperature should be used as an accelerator. When compared 
with the operation of the EMMAQUA apparatus which uses 8-minute wetting 
times cycled every hour, distilled water for sample spraying, and intensi
fied insolation for acceleration, it is of no surprise that differences 
exist which lead one to question the results of these tests. As another 

example Isakson has stated that the Atlas Dew Cycle Weather-Ometer is a 

severe degradation device and should not be used to represent acceleration 
of natural weathering because it produces large quantities of ozone and 
has excessive short wavelength energy. 21 

Despite these findings, good correlations relating some materials 
properties to natural weathering have been reported using accelerating 
machines. l,S In general the best correlations are usually obtained 

when a single stress parameter which is independent of other synergistic 
effects can be identified and used. Unfortunately, this is not usually 
possible for most materials. 
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A number of tests are used to measure or monitor materials degradation. 
Most of the emphasis in the literature is on the mechanical properties of 
the materials (tensile strength, elongation, hardness, creep, etc.), and 
very few references are made to the optical properties. When optical char
acteristics _are reported, measurements are generally visual or appearance 
oriented. These include measurements of yellowing, fade, gloss, haze, 
warpage, color and clouding. 6,7,a, 9,lo These measurements have found only 
limited usefulness and are of practically no value for the engineer design
ing a solar conversion system. Only recently have detailed optical measure
ments data of use to the design engineer appeared in the literature. 

In the early literature, the most commonly reported optical parameter 
for solar materials is transmittance. However, this parameter is often 
reported in a manner that is of little value to the engi'neer. For example, 
transmittance is often quoted relative to a control material with unknown 
properties or integrated total transmittance is reported with no reference 
to the integration technique. 

The more recent literature does include some information on measure
ment techniques, and the data is in a format which is more applicable to 
solar conversion systems. In these reports, spectral transmittance or 
reflectance data is obtained using spectrophotometric and integrating sphere 
techniques. 3, 11 ,27 Useful measurements of specular reflectance are being 
made using bi-directional reflectometry, goniophotometry and other tech
niques.5,12,13,14,15,16 

A number of optical methods have been used to monitor the degradation 
of solar reflector materials. One measurement that is commonly used to 
assess polymer aging is to monitor the material's transmittance at 
360 nm. 17 ,18, 19 A change in the UV transmittance can be caused by photo
chemical reactions within the material and may therefore be indicative of 
the degradation of the polymer. Attenuated Total Reflectance (ATR) has 
also been used to monitor the weathering of solar materials. 19 ,20 This 
method uses infrared reflectance to detect the formation of carbonyl groups 
on the plastic surface which are indicative of the polymer degradation. 
The technique. is not useful for all materials however. One report states 
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that ATR does not appear useful for monitoring the degradation of clear 
films in accelerated tests. 20 Infrared specular reflectance measurements 

have al so been used to study the degradation of polymer films. Still other 

methods include measuring oxygen consumption, 22 observing the height of the 
goniophotometric peak5 and evaluating average molecular weight, viscosity, 
and the formation of volatile products. 23 

POLYMERIC MATERIALS 

There are many materials that have potential application as second 
surface mirror superstrates. According to one report, over 153 specific 
polymeric materials have been identified for use in solar cell encapsula

tion alone.24 Many of these same materials could be used for second sur

face mirrors. For convenience the polymeric materials covered in this 
report have been grouped according to their chemical nature with specific 

materials discussed within each class. 

ACRYLICS 

Of all the polymers surveyed, acrylics seem to be the most durable. 
In tests performed by the Rohm and Haas Company, acrylic compounds based 

on methyl methacrylate and butyl acrylate monomers demonstrate the highest 
outdoor weatherability. The acrylics are available in both thermoplastic 

and thermoset forms. Unmodified, acrylics are transparent and stable 
against discoloration. They are also light weight and show good resistance 
to weathering, breakag~ and chemical attack. 25 However, they have a rela
tively large coefficient of thermal expansion· (6-10 x ,o-5 in/1n/°C} 26, 

and have been reported to exhibit some buckling when exposed in the high 
humidity conditions of Puerto Rico. 1 They are also flammable and have a 

softening point of about 250°F. They may become somewhat brittle with age 
or in cold environments. 

Commonly used acrylic sheets include Plexiglas made by the Rohm and 

Haas Company and Aery-Pane made by Sheffield Plastics, Inc. These sheets 

may be extremely clear with transmission values exceeding that of glass. 
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Samples of the Rohm and Haas Company 11 Plexiglas 55 11
, a crosslinked acrylic, 

were mounted on January 19, 1956 in Albuquerque, New Mexico on a 45° south 
facing rack and removed 17 years and 8 months later. Comparison to a simi
lar, currently manufactured material showed no noticeable change in empirical 
formula. A significant reduction in glass transition temperature indicating 

a decrease in chain length was observed, and a small increase in brittleness 
with a 51% decrease in flexural strength at rupture was noted. Using spec

trophotometric methods and weighting to a 6000°K black body spectrum, the 
solar transmittance shows only a 10% decrease for the aged material with 
approximately 7% of the loss caused by surface roughening and only 3% due 
to changes in the bulk transparency.27 Another report states that after 

120 days exposure in a Weather-Ometer, Plexiglass DR and Plexiglass V-811 

retained 89% and 86% respectively of their original transmittance. 35 

UV radiation is the primary cause of degradation of acrylics. 21 Photo
degradation of polymethyl methacrylate (PMMA) results in a decrease in 

viscosity and average molecular weight; it also contributes to the forma
tion of small amounts of volatile products. Degradation is believed to be 

a combination of thennal and random chain scissions. 23 Projected lifetimes 
for acrylics in solar applications are generally quoted as 20 years. 27 ,19 

HALO CARBONS 

The most commonly referenced product in this class of materials is 
FEP Teflon (DuPont). This flourinated ethylene propylene material has a 

solar transmittance comparable to that of glass and exhibits very good 

UV stability. Manufacturers claim that 15 years exposure in Florida re
sulted in no change in the original 93% transmittance of a 10-mil sample. 28 

Although the specifics are not reported, they also claim that the material 
remained crystal clear with no change in tensile strength. 

Tests performed on aluminized and silvered Teflon exposed at a level 

of ten suns for 34 weeks produced no loss in transmittance. 29 In tests 

performed by Sheldahl, FEP showed no significant change in the 8 mrad spec

ular reflectance after a 6-month exposure on an EMMAQUA apparatus. 13 In 
space, Teflon has survived 4600 hours of solar exposure with no detectable 
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increase of solar absorbancy as. 30 In a NASA report, 1 mil samples of FEP 
lost only 5% solar transmittance after exposure to 16000 equivalent sun 
hours. 11 Other tests have shown that FEP has a high resistance to mois
ture.12 Crosslinking resulting in embrittlement is the predominant aging 

mechanism. 24 

Teflon has two main disadvantages. It has unusually high processing 

temperatures which make it a relatively high cost ($6-$20/lb) material. 26 

It also possesses a highly non-wettable surface which tends ta attract and 

hold dust particles making it difficult to clean. 

Another commonly referenced material in the halocarbon class is Aclar 

(Allied). This material does not exhibit the same high endurance proper
ties of Teflon and· becomes brittle under outdoor weathering conditions. 31 

It also converts to a crystalline form ~t elevated temperatures (60°C). 32 

Poly vinyl idene fluoride (PVF), another halocarbon, has excellent 
transmission characteristics and is relatively unaffected by solar radia
tion. One source states that after 10 years exposure in a semitropical 

ocean environment, PVF samples have not discolored and have r~tained 50% 
of their initial tensile strength. 24 Common names for PVF are Tedlar and 

Teslar (DuPont). Other common halocarbons are Teflon (TFE), PFA Teflon 
(E-TFE), and Viton (HFP-VDF) from DuPont; Kel F (CTFE), and Fluorel 
(HFP-VDF) from 3M; Halon (JFE), Plaskon (CTFE), and Halar from Allied; and 
Kynar (VDF} from Pennwalt. 

SILICONES 

Many silicone compounds have been identified for use in solar conver

sion systems. Many of these materials are not very specular but exhibit 

high values of normal hemispherical solar transmittance. They are generally 
quite stable to UV radiation but show a high water permeability resulting 
in dimensional changes of the material. The compounds most often identified 

in the literature are: RTV 602, RTV 655, RTV 566, RTV 615, RTV 560 (Gener

al Electric); XY-63-488, XR-63-489 (Dow Corning); Sylgard 182, Sylgard 184, 
DC-9350•, 24 Silgrip SR-574 33 and DC-2103.lO 
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The principle disadvantage of most silicones is their soft surface 
properties which allow particulates to become imbedded on their surface. 
One study rejected silicones for use as a solar cell encapsulent due to the 
permanently adhering accumulations of dirt after only 6 months of outdoor 
exposure. 34 

EPOXIES 

Few references regarding epoxies were found in the literature although 
over 40 compounds have been identified for use in solar conversion systems. 
This is probably due to the fact that epoxies tend to darken when exposed 
to UV radiation and have been reported to lose 10-26% of the original trans
mittance in only 610 equivalent sun hours.24 In outdoor exposure, epoxies 
show little change during the first 6 months but begin to darken after 1 
year. At the end of 18 months, they exhibit severe chalking and considerable 
deepening of color. The epoxies are generally brittle and no satisfactory 
UV stabilizers exist for epoxy because of the absorbing nature of the resin. 10 

P01..YESTERS 

The most commonly referenced material in the polyester class is Mylar 
(DuPont). It is available in clear specular sheets and is quite flexible 
in this form (5 mil thickness). Mylar is available in a weather durable form 
suitable for solar use which is roughly 5% less transmissive than the re .. 
gular form. 

One test shows that the weather durable Mylar showed a 34% loss in 
transmission after exposure to mercury arc lamps for 5895 equivalent sun 

11 · hours. In a test performed by Sheldahl Inc., 5 mil weatherable mylar 
survived approximately 5 years _outdoor exposure with saturated water vapor 
condensing on its back surface. 12 Other reports state that Mylar may be
come very brittle when exposed to outdoor weathering. 31 This has been 
found to be a characteristic of polyesters in general. 1 However, manu
facturers claim that Llumar (Martin Processing Inc.), a UV protected poly
ester, has a useful life of 10 to 15 years or more in outdoor use. 
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POLYCARBONATES 

The polycarbonates have received much attention in the current litera
ture. The most conmonly referenced polycarbonate is Lexan (General Electric). 
It is available in sheet form or it can be applied as a thin film for use 
as a protective coating. 35 Lexan is also available in a UV stabilized form 
for outdoor use although this form has been reported by some researchers 
as not suitable for solar applications. 36 

In one commonly reported degradation mode, a network of microcracks 

forms as a result of relatively short outdoor exposures (30-32 mnnths). This 
cracking is due to a combination of light radiation and cycling of either 
temperature and moisture or temperature alone. The cycling is believed to 
induce stress fatigue and subsequent loss of strength. The cracks grow 
from the surface inward and are V shaped. 37 

Polycarbonates exhibit high impact resistance ( 4 to 6 times that of 
acrylic), high optical transmission (>80%) and are available in relatively 
specular forms (<2% haze). However, these materials exhibit poor solvent 
and abrasion resistance and show a high degree of yellowing. One report 
states that yellowing and clouding had occurred for Lexan samples after only 
90 days of exposure. 18 Samples have also been reported to become brittle 
and retain only "'25% of their tensile strength after 300 days exposure in 
Phoenix, Arizona or Miami, Floritla. 17 The results of a number of test pro
grams show that an acrylic face sheet bonded to a polycarbonate by means 
of an interlayer system is the most satisfactory method of protecting poly
carbonates from degradation by outdoor exposure. 8 

POLYIMIDES 

The material receiving the most attention in this class is Kapton, a 
DuPont Inc. product. Kapton has mechanical properties nearly identical 
to Mylar. 12 The film is flexible with outstanding radiation resistance but 
has poor initial optical transmission properties.24 One test showed that 
Kapton buckles, tears, and breaks up in a relatively short period of time 
when exposed to outdoor weathering conditions. 1 The material was therefore 
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rejected for. use as a solar cell module cover material. 

GLASS 

Many non-polymeric materials are being considered for use in the con

struction of solar conversion systems. Glass is of particular interest in 

many of the concentrating systems. Several methods are referred to in the 

literature for the production of glass. The Foucault and Pittsburg process 

is performed by drawing the glass upward from a molten pool of glass. The 

Colburn or Libbey-Owens process draws the glass horizontally. In the .Pil

kington or float process, the glass is floated onto a molten pool of tin. 

In the Corning fusion process, the glass is allowed to overflow a trough-

1 ike container and fuse below the contai·ner. The gravity-drawn fusion glasses 

are comparable in flatness to the float glasses which fall into the 7 to 15 

fringe per inch flatness range in thicknesses between .080 and .250 inches. 38 

These glasses are of high enough quality to be specified for central receiver 

heliostat designs.39 

The durability of glass to outdoor exposure is relatively good. Aging 

does occur by reaction of alkali ions in the glass with the water in air. 40 

The rate of weathering may be largely determined by the rate of interdiffu

sion of sodium and hydrogen ions in the glass. Weathering becomes less 

prominent as alkaline earth ions are added to the glass. Periodic washing 

has been shown to prevent the buildup of weathering products and thus sig

nificantly reduce permanent damage.41 Very few techniques are effective 

for monitoring the weathering of glass ... Weight change, generated alkali, 

sorbed H20, electron microscopy and haze measurements have all been shown 

to be somewhat inadequate and the most commonly. used technique is visual 

examination.41 

OTHER CONSIDERATIONS 

THE IMPORTANCE OF CLEANING 

In general, cleaning affects the durability of many solar materials. 
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R. S. Berg has stated that the forces adhering particles to a surface in
crease fastest over the first 30-60 minutes of contact and level off after 
24 hours at a level several orders of magnitude greater than the initial 
adhesion forces.42 These accumulations have been shown to reduce the trans
mission of a horizontal glass plate by as much as 50% in only 14 days. 43 

This problem is compounded for plastics which tend to attract particles 
more readily than glass and allow the particles to become imbedded in the 
soft surface making cleaning difficult and ineffective. 

MODELING THE EFFECTS OF WEATHERING 

Very few references were found that addressed the problem of modeling 
material degradation. Apparently, little work has been accomplished in 
this area. However, statistical modeling has been recognized as a neces
sary element in the expedient evaluation of systems lifetime under the ef
fects of outdoor exposure. 

In the limited number of references reviewed, several models were 
evaluated for use in the description of physical properties degradation 
in solar materials. These include simple exponential, normal or half 
normal, log normal, gamma, extreme value and Weibull. 45 

Much of the modeling to date addresses the wear-out mode of failure. 
This failure is caused by the gradual degradation of the properties which 
are directly related to the lifetime of the material. 

The exponential model has been shown to be inaccurate when predicting 
the probability of a material failure within a time ~t during outdoor ex
posure. The model indicates that the failure rate is not a function of 
time. For instance, the model will predfct that the chances of a material 
failure within the next 3 weeks will be the same for identical samples 
that have been exposed for 2 months and 24 months. In reality, the chances 
of the 24 month sample failing within the next 3 weeks are much higher than 
for the 2 month sample. The model does not agree with the physical situa
tion it was meant to describe and should not be used. 
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The normal and log normal models are inadequate because they predict 
first an increasing then a decreasing failure rate. These models are given 
by the equation 

Y = A exp -[(x-u) 2/b2 ] 

where Y is the property being studied 
x=t for the normal distribution 

and x=log t for the log normal distribution 

The gamma probability density function is undesirable as a first ap
proximation principally due to its complexity. This model is given as 

r 
f(x) A r-1 -AX 

= i1rJ X e 

The Type 1 extreme value function (minimum) is given in the form 

Y = exp[-exp(x)] 

and meets the requirements of a decreasing function which asymptotically 
approaches the x axis. It also exhibits an increasing failure rate with 
time. The model may be adapted so that physical meaning may be assigned 
to the parameters. For "instance, x may be replaced by (t-b)/a and b is 

related to the characteristic lifetime. 

A Weibull function (one of the extreme value functions) was chosen in 

one study to model the loss in ultimate elongation as a function of time.45 

The Weibull model may be written as 

Y = b1 exp [ - (t;~2 ) b4 ] + b5 

where Y is the percent retention of the property. 

The following constraints and interpretations were found to apply to 

the parameters bi: 

b1: >O, units of percent, is related to maximum property value (b1+b5= max). 

b2: units of time, is related to pre-or-past-aging and in most cases is 

set equal to zero. 

b3: >O, units of time, is related to characteristic life (time to reach 
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37% of initial property value) 

b4: . is related to shape of curve; b4 ~ 1 indicates rapid initial decay; 
b4 > 1 indicates induction period 

b5: :d:0, units of percent, related to asymptotic value of the property 

The model has been fitted to physical deterioration data for diverse 
types of plastics in different climatic areas. It was found to fit well, 
with 95% confidence intervals established for the calculated parameters. 

The Weibull model has been used by others to model the loss in trans
mittance of polymeric materials as a function of the length of outdoor ex
posure with good results. 17 

Care must be taken to avoid prematurely accepting an incorrect model. 
Although small differences may exist between models over the near term data, 
extrapolations to long time intervals can yield varying predictions. For 
instance, one report fits a Weibull model, a log normal model and an em
pirical model to four data points obtained over 5 months of weathering. 
All models fit within the usual experimental errors; however, when the 
curves were extrapolated to yield characteristic·lifetime the results ranged 

17 
between 2.4 and 34 years. 

It is apparent from the results of this literature survey that there 
is insufficient accurate data in most cases for the proper evaluation of 
property modE!ling and the selection of the correct model. The need exists 
for further weathering studies of solar materials with an emphasis placed 
on obtaining accurate data on all of the weathering parameters (rain, 
humidity, insolation, etc.) as well as their effects on a periodic basis. 
Initial weathering studies need to be performed over longer periods of 
time so that models may be constructed iteratively. Models could then be 
used to extrapolate data obtained using accelerated weatheri~g devices to 
accurately and rapidly predict the characteristic lifetimes of solar mat
erials. This work will require controlled, highly instrumented experiments 
if meaningful results are to be obtained. 
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