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PREFACE 

The research and development described in this document was conducted within 
the U.S. Department of Energy's Solar Thermal Technology Program. The goal of 
this program is to advance the engineering and scientific understanding of 
solar thermal technology and to establish the technology base from which 
private industry can develop solar thermal power production options for 
introduction into the competitive energy market. 

Solar thermal technology concentrates the solar flux using tracking mirrors or 
lenses onto a receiver where the solar energy is absorbed as heat and 
converted into electricity or incorporated into products as process heat. The 
two primary solar thermal technologies, central receivers and distributed 
receivers, employ various point and line-focus optics to concentrate 
sunlight. Current central receiver systems use fields of heliostats (two-axis 
tracking mirrors) to focus the sun's radiant energy onto a single, tower
mounted receiver. Parabolic dishes up to 17 meters in diameter track the sun 
in two axes and use mirrors or Fresnel lenses to focus radiant energy onto a 
receiver. Troughs and bowls are line-focus tracking reflectors that 
concentrate sunlight onto receiver tubes along their focal lines. 
Concentrating collector modules can be used alone or in a multimodule 
system. The concentrated radiant energy absorbed by the solar thermal 
receiver is transported to the conversion process by a circulating working 
fluid. Receiver temperatures range from 100°c in low-temperature troughs to 
over 1500°c in dish and central receiver systems. 

The Solar Thermal Technology Program is directing efforts to advance and 
improve each system concept through solar thermal materials, components, and 
subsystems research and development and by testing and evaluation. These 
efforts are carried out with the technical direction of OOE and its network of 
national laboratories that works with private industry. Together they have 
established a comprehensive, goal-directed program to improve performance and 
provide technically proven options for eventual incorporation into the 
Nation's energy supply. 

To successfully contribute to an adequate energy supply at reasonable cost, 
solar thermal energy must be economically competitive with a variety of other 
energy sources. The Solar Thermal Program has developed components and 
system~level performance targets as quantitative program goals. These targets 
are used in planning research and development activities, measuring progress, 
assessing alternative technology options, and developing optimal components. 
These targets will be pursued vigorously to ensure a successful program. 

This report presents work supported by the Office of Solar Thermal Technology 
of the U.S. Department of Energy as part of the Solar Energy Research 
Institute research effort on innovative concentrators. The purpose is to 
document an analysis method, developed over the last year, that describes the 
response of stretched membrane reflector modules and is used in studying var
ious design approaches and the system performance benefits of the stretched 
membrane modules. 

iii 



TR-2626 

I would like to thank both Martin Scheve and Frank Wilkens of the U.S. 
Department of Energy for their support and to express appreciation to 
Daniel Sallis and David Simms for their assistance in preparing the numerical 
computations presented in this analysis. 

The author would also like to thank the following non-SERI individuals for 
their helpful review of, and comments on, the draft document: Clay Mavis, 
Len Napolitano, Chris Tuan, Kumar Romahalli, Jon Peterka, David White, 
Barry Butler, Frank Wilkens, and Martin Scheve. 

Approved for 

SOLAR ENERGY RESEARCH INSTITUTE 

~~-~-__,._~~---
Jdirn P. Thornton, Manager 
Thermal Systems and Engineering Branch 

iv 



TR-2626 

SUMMARY 

Objective 

The objective of the work presented in this report is to describe a new com
puter model that can estimate the structural and macroscopic optical surface 
performance under various loading conditions of various heliostat designs 
using a stretched membrane reflector module. 

Discussion 

The intent of the model is to provide a simple tool that can be used to 
increase our understanding of the structural response of stretched membrane 
modules and the effect that different design approaches have on the per
formance of these modules. This report extends earlier model work by con
sidering a number of important design features that the previous model did 
not. Specifically, for loading normal to the plane of the membrane, the cur
rent model predicts the coupled membrane/frame response and considers the in
plane stiffness effect of the membrane and nonuniform tension states in the 
membrane; the effect of different attachment schemes; and, most important, the 
impact of double-membrane designs. Note that the membrane is assumed to have 
no stiffness to bending but does have in-plane stiffness and that the tension 
increments in the membrane are small compared to the initial membrane pre
tension. 

The model developed in this report is based on an incremental variational 
approach where large deformation, small strain theories are assumed. The 
Rayleigh Ritz procedure and a formalism similar to that used in finite element 
analyses are employed in describing the system stiffness. The solution is 
greatly simplified by expressing both the in-plane and out-of-plane membrane 
displacements as a function of the frame displacements. For in-plane membrane 
response, this is accomplished by using the membrane/frame compatibility con
ditions along with derived solutions for the classical plane stress elasticity 
boundary value problem. 

Some of the important response phenomena and design considerations the model 
describes relative to the double-membrane concept include the following: 

• Unlike the single-membrane designs, the double-membrane approach couples 
the in-plane membrane material stiffness with the deformation process 
even at low loads and low tension levels. 

• Because of this membrane stiffness coupling, the double-membrane module 
is considerably stiffer to lateral loading than is the corresponding 
single-membrane design. This coupling and stiffening to lateral loading 
accrues by two mechanisms; i.e., by constraining the roll of the frame 
and by providing a bending rigidity contribution to the frame, which is 
analogous to a flange section. 

• Attachment design and stiffness is an important design consideration 
since it determines how effectively the stiffness of the membrane can be 
coupled with the frame. It is particularly important in the design of 
double-membrane designs with stiff membranes. 
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Conclusions and Recommendations 

The model agrees quite well with the significantly more comprehensive NASTRAN 
computer model over a range of design parameters. Specifically, the model 
accurately reproduces the NASTRAN results for the dominant response phenomena 
corresponding to laterally loaded, stretched membrane modules, and for either 
single- or double-membrane designs as well as different membrane attachment 
approaches, as long as the model assumptions are adhered to. Further, the 
model faithfully predicts the interaction of the membrane/frame combination 
and the effect that membrane tension has on lateral module stiffness for 
several assumed boundary conditions associated with either single- or double
stretched membrane modules. As such, the model should be valuable in sizing 
and design trade-offs, in establishing trends, and in developing understanding 
of the various stretched membrane response mechanisms and their interactions. 
To this end a much more extensive analysis of various trade-offs using this 
model will be forthcoming. 

A note of caution is appropriate here. As with any model, care should be 
exercised in its use, particularly to ensure that the inherent assumptions are 
consistent with the real problem being analyzed. 

The 4nalysis approach developed here is quite amenable to modifications, which 
can account for various response mechanisms such as different frame support 
boundary conditions that have not been considered in the current model. We 
recommend that these extensions be developed as the need for such information 
is demonstrated. 
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NOMENCLATURE (Continued) 
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displacement coefficient vector 

angular integration variable (rad) 
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The structural response of a stretched membrane frame combination supported by 
periodic attachments located at equidistant points on the circumference and 
subjected to uniform pressure loads normal to the plane of the membrane is the 
problem studied in this report. This problem is of interest in the design, 
evaluation, and optimization of stretched membrane heliostats, which have been 
a research focus for some time (Murphy 1983). * Some aspects of this problem 
also occuring in single-membrane designs were analyzed in an earlier report 
(Murphy and Sallis 1984) where a direct equilibrium approach and a simple 
iterative numerical integration procedure were found to predict deformations 
and internal loads quite close to those predicted by the NASTRAN (Schaeffer 
1979) structural computer code. The approach taken here is different in that 
a variational approach, which yields the appropriate equilibrium equations, is 
used to provide an approximate but accurate description of the load 
deformation response. 

The variational principle developed here uses the concept of potential energy 
and employs the Rayleigh Ritz procedure [see, for example, Thompson and 
Hunt (1984)] where a compatible set of displacement functions (or shape 
functions) describes the displacements within the domain of interest. In this 
procedure each of the displacement functions must independently satisfy the 
boundary conditions, and the set of compatible shape functions forms a set of 
generalized coordinates. The resulting variational principle can then be 
expressed in terms of these generalized coordinates and will yield the desired 
solution by minimizing the resulting functional where an arbitrary variation 
on the constant coefficients multiplying the shape functions is performed. 

The approach taken here is to formulate the functional to be varied as a 
function of state vectors, the components of which are the generalized 
coordinates, which results in a stiffness matrix similar to that done in the 
finite element procedure. 

We selected a variational approach rather than extend the direct equilibrium 
approach as developed in Murphy and Sallis ( 1984). This approach allows 
somewhat easier implementation of various response considerations, such as 
multiple membrane effects, the in-plane response of the membrane, and the 
impact of different attachment approaches. The approach also permits 
relatively easy quantification and isolation of the various separate response 
mechanisms when compared with the more comprehensive NASTRAN analysis approach 
(Schaeffer 1979). This occurs because the relevant deformation pattern for 
the frame can be readily deduced and accurately expressed as simple 
displacement functions, and because the in-plane membrane response can be 
determined by classical methods. Further, the general approach is easily 
extended to address other response issues not explicitly considered here, such 

*Sandia National Laboratories at Livermore is currently directing the 
development of the concept, including the design and fabrication of large
scale prototype modules. 
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as the in-plane stiffness response of the frame. The resulting computational 
requirements using this approach are also much simpler and less costly to 
implement than with the iterative direct integration approach. 

2 
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MODEL ASSUMPTIONS 
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Consider a circular stretched membrane reflector support frame assembly as 
shown in Figures 2-1 and 2-2, and let the following assumptions hold: 

• Consideration of single- or double-membrane concepts is allowed. Single
membrane concepts may have the membrane attached at an arbitrary uniform 
height h vertically above the plane passing through the centroid of the 
toroidal frame. Double membranes are assumed to be placed symmetrically 
at ±h with respect to the centroid plane, and the initial tension in each 
of the membranes is assumed to be exactly equal to one half of the total 
tension load (see Figure 2-2). 

• The toroidal frame of mean radius R on which the membrane(s) is (are) 
stretched is supported vertically at any number of equidistant points 
around the circumference. However, the analysis results presented here 
correspond to only three support points. These constraints approximate 
the reactions of a tripod support strut arrangement similar to that found 
in some heliostat designs (Murphy 1983). 

• The frame supports 
the membrane; i.e., 
free to translate 
direction. 

offer constraint only perpendicular to the plane of 
the frame is free to rotate at the supports but not 

vertically. There is no constraint in the radial 

• The principle of linear superposition is assumed to be valid for both the 
deformation and the stress states in the frame and membrane. Thus, 
deformations and stresses caused by the pressure and weight loads applied 
normal to the membrane are superimposed on the initial prestressed and 
pres trained state implied by the initial membrane tension state. Zero 
initial deformation normal to the plane of the membrane is assumed for 
the frame. In the case of double-membrane designs, initial axisymmetric 
and self-equilibrating out-of-plane membrane deformations corresponding 
to a partial vacuum between the membrane are permissible. 

• Small strain, large out-of-plane displacement theory is assumed for both 
the frame and membrane. 

• With respect to the membrane: 

The membrane has in-plane stiffness but 
carries loads only in tension. Thus 
configuration of the surface are required 
the membrane surface. 

no bending stiffness and 
changes in the geometric 
to support loads normal to 

The out-of-plane membrane deformations are assumed to cause negligible 
load increments in the average membrane tension. 

In-plane membrane deformations are small and the corresponding tension 
increments are assumed to be small with respect to the membrane pre
tension and to be induced by one of two mechanisms; either through 
limiting the rotations of the frame or by participating in the out-of
plane bending of the frame with a fixed attachment (this last 

3 



(a) Perspective view - stretched-membrane reflective module; 
pin supported at three equidistant clrcumferentlal points 

w 
2W 

R = 5.0 m 
a = 4.96 m 
2W = 76.2 mm 

(b) Top view - stretched-membrane reflective module 

Figure 2-1. Idealized Stretched Membrane Reflective Module 

mechanism is akin to the membrane providing an additional flange 
frame). Thus, in-plane and out-of-plane membrane deformations and 
increments are coupled only through the frame. 

TR-2626 

on the 
tension 

• Only out-of-plane deformation and twist increments of the ring are 
considered (radial shear and radial ring deformations are ignored).* 
Circumferential compressive loads in the support frame are important, as 
are the normally considered twist, vertical shear, and moment 
resultants. The coupling of the out-of-plane deformation with the 
compressive force in the ring must be considered, but that compression 
force is assumed to remain constant around the circumference in all 
cases. 

*The radial deformation of the frame consistent with the membrane pre-tension 
is assumed to have occurred prior to application of the load normal to the 
plane of the membrane. Note that this radial deformation caused by the 
membrane pre-tension can be of the same order of magnitude as subsequent out
of-plane deformations. 

4 
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(a) Frame and cross-section detail showing displace
ments and the corresponding directions and applied 
loading for a single membrane module. The mem
brane is uniformly loaded with a pressure P. 

/ 
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Single membrane Double membrane 

(b) Perspective of frame and membrane cross section 
showing internal load resultants and local coordinates 

-T0 /2 
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Figure 2-2. Frame and Membrane Cross-Section Details for Either Single
or Double-Membrane Designs 

5 

<{ 

~ 
"' 0 
0 



TR-2626 

• The frame cross section is assumed to be symmetric about the plane, which 
is parallel to the membrane and passes through the shear center of the 
frame.* 

• Displacement compatibility of the membrane at the support frame interface 
attachment is required. 

• The pressure loading is assumed to be uniform over the membrane 
surface. In the case of two membrane concepts, half of the pressure 
distribution is applied to each membrane (see Figure 5-1). This last 
assumption is consistent to a first approximation, with fundings from 
wind-loading studies. 

• Weight effects, which act normal to the nominal plane of the membrane, 
are considered. 

*Nonsymmetric cross sections with products of inertia other than zero lead to 
more coupling terms than appear in the equations below. 

6 
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SECTION 3.0 

VARIATIONAL METHODOLOGY AND HODEL DESCRIPTION 

Before the stretched membrane module was subjected to lateral wind or weight 
loads, it was prestressed by tensioning the membrane. This tensioning induced 
an initial state of compressive stress and deformation in the body 
(membrane/frame assembly), and any additional stress and deformation 
increments caused by external loading must be added to determine the final 
state of stress and deformation in the body. The appropriate variational 
principle based on the concept of virtual work for such bodies subjected to an 
initial state of stress can be defined as in Washizu (1982) by 

(3-1) 

where ai., e:i., and uk denote the Cartesian tensor increments in stress, 
strain, dnd d:t'splacement components, respectively, relative to the existing 

0 stress and deformation state within the volume Vol. The term O'ij represents 
the current state of stress within the body prior to the application of the 
incremental body force per unit volume Pi and the incremental surface traction 
per unit area Fi on the surface S. The term o denotes an arbitrary variation 
of the quantity following it, constraiJled only by compatibility 
requirements. Physically, the term involving O'ij denotes the work done by the 
existing internal prestresses as the body experiences the displacement 

0 increment field corresponding to ui. This term involving aij gives rise to 
what is sometimes called the geometric stiffness effect, which results from 
the change in direction of the internal forces caused by the distortion of the 
structural element under consideration. Both Pi and Fi are assumed to be 
prescribed quantities. For these conditions and for elastic systems an 
appropriate energy potential can be written as 

(3-2) 

Further, for linearized problems the contributions of various response 
mechanisms (e.g., beam bending, twist, membrane rotation) and the applied 
loads can be linearly superimposed, so the potential can be described by 

where Uj corresponds to the internal strain energy increment 
response mechanism. The term Wj corresponds to work done by the 
or body load increment. Both Uj and Wj are defined later in this 

(3-3) 

of the jth 
jth external 
section. 

The potential Ve can be specialized for the corresponding particular 
configuration of the circular stretched membrane module as described in 
Figure 2-1. Let the displacement increments, which correspond to the 
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prescribed wind and weight load increments, be defined as illustrated in 
Figure 2-2. Then consider the frame bending, frame tors ion, and membrane 
response in succession, followed by a description of the prescribed wind and 
weight load increments according to the problem assumptions defined above. 
The appropriate contribution to the potential energy (Eq. 3-3) from each of 
response mechanisms and loads follows. More specifically, we describe each 
contribution to the energy potential in Eq. 3-3 in terms of the frame 
displacement o and the frame rotation 4>. 

3. 1 FRAME BENDING STRAIN ENERGY 

The strain energy for the ring undergoing out-of-plane bending strains caused 
by the bending moment My is given by 

R M 2 EI I I 2 
u 1 = 2 J Fy" de = j?- J (; - <1>) de (3-4) 

where v and <I> are the lateral and rotational displacement increments of the 
frame as defined in Figure 2-2 and where the moment-curvature relationship 
(Murphy and Sallis 1984; Meek 1969), in terms of the displacement increments v 
and <I>, is given by 

El II 

My = ~ ( v R - <I>) • (3-5) 

The term R is the mean frame radius, E is Young I s modulus for the frame, and 
Iy corresponds to the moment of inertia of the frame cross section about the 
local y-axis. 

Further, the ring under compression (of amount T
0
a) by virtue of the membrane 

pre-tension (T
0

)* provides a geometric distortion contribution to the internal 
strain energy. This is because the compressive load does internal work as the 
deformation increments v and <I> proceed. The magnitude of this effect is given 
by 

Toa J i 2 u2 = - 2R v de, (3-6) 

where a is the mean radius of the membrane that differs from R by an amount l 
(see Figure 2-2). This effect is exactly analogous to the lateral distortion 
effect in an axially compressed simple beam undergoing prebuckling deformation 
(Timoshenko and Gere 1961). 

*It is important to note that the membrane tension T
0 

corresponds to the total 
tension load applied to the frame by the membrane(s). If two membranes are 
employed, then the initial tension in each membrane is assumed to be T

0
/2. 
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3.2 FRAME TWIST STRAIN ENERGY 

Twisting of the frame caused by a local twist moment Mz results in a strain 
energy contribution of 

(3-7) 

where we used the moment-twist relation, 

GK v' , 
Mz = R (R + 4> ) ' (3-8) 

as derived in Murphy and Sallis (1984) and Meek (1969). The terms G and K 
correspond to the frame material shear modulus and torsional constant, 
respectively. 

In addition, as the frame twists there is a geometric internal strain energy 
contribution of 

(3-9) 

which accrues as the frame attachment point is rotated out of its original 
plane by the offset arm of length 1. 

3.3 MEMBRANE STRAIN ENERGY 

We assumed earlier that out-of-plane membrane deformation does not induce 
membrane tension increments but that in-plane tension increments can be 
induced by the frame deformations. This allows us to describe the membrane 
strain energy using decoupled contributions from the in-plane and out-of-plane 
response. 

The elastic strain energy in a membrane caused by 
can be related to the displacements and stresses 
following relationship, 

atm f [ U5 = -2- •rr<a,0) Uao + •re<a,0) 

in-plane strain increments 
at the attachment by the 

u90 ] d0 , (3-10) 

where tm is the membrane thickness and "rr (a, 0) and "re (a, 0) are the radial 
and circumferential tractions, respectively, applied to the circular boundary 
of the membrane. The form for u5 , which is analogous to that of a simple 
spring, is developed in Appendix A; the displacements uao and u00 are related 
to v and 4> by compatibility requirements of the frame at the attachment and by 
the boundary conditions. The resulting definitions hold 

u = h4> ao 

9 

(3-11) 



and 

-ah , 
ueo = R2 v • 
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(3-12) 

Appendix A provides an appropriate description for u5 corresponding to either 
a simple radial attachment or a hard (bond or weld) attachment. 

Consider now the strain energy increment caused by out-of-plane deformations. 
The internal increase in membrane strain energy caused by the work done by the 
initial preload T

0 
(assumed to be constant) during lateral deformation of the 

membrane is given by 

(3-13) 

1 where w,r and - we are the local surface derivatives on the membrane surface. 
r ' 

With respect to Eq. 3-13, two items are worthy of note. First, Eq. 3-13 
represents the classical strain energy normally considered for a membrane 
attached to a rigid support. Second, note that no material stiffness con
stants are present, and the membrane supports the load only by out-of-plane 
distortions. Hence, this strain energy in this case corresponds solely to the 
geometric effect discussed earlier. Note also that the sign of u6 is posi
tive; hence, as the membrane deforms, the stiffness to lateral loading 
increases. 

Murphy and Sallis (1984) showed that the membrane deformation problem under 
the constant tension assumption can be further defined by considering the 
superimposed solutions corresponding to two independent boundary value 
problems. One corresponds to a homogeneous boundary condition with the 
applied uniform load, and one corresponds to the nonhomogeneous boundary 
condition but with no load normal to the membrane. Thfs same kind of 
decomposition can be used to describe the values of w rand - we in terms of 

' r ' the edge displacements (at the frame) plus a term corresponding to the 
membrane deformation when the boundary is fixed (see Appendix B). Further, 
this decomposition will hold only when the mean tension on the membrane is 
constant or nearly so. 

3.4 BODY FORCES AND APPLIED LOADS 

The body force increment terms used to account for the work done by the normal 
component of gravity loading on the frame (W1) and on the membrane (W2 ) are 
defined by 

W1 = pfAfg R cosy f v d0 (3-14) 

and 

(3-15) 

10 



where 

Pf and Pm = 

Af = 
tm = 
g = 
y = 

the density of the frame 
respectively 
the frame cross section area 
the thickness of the membrane 

and 

the acceleration caused by gravity 

TR-2626 

membrane materials, 

angle between the gravity vector and the vector that is 
perpendicular to the plane of the frame. 

The work (W3) done by the external pressure loading increment P (assumed to be 
caused by tfie wind component, which is normal to the plane of the membrane) is 
given by 

w3 =Pf w r dr d0. (3-16) 

Equations 3-4 through 3-16 and Appendices A and B allow us to describe the 
potential energy totally with the frame displacements. The solution follows 
in the next section. Before proceeding, note that when an arbitrary variation 
on the displacement in Eqs. 3-4, 3-6, 3-7, 3-9, 3-13, and 3-16 is performed, 
we get the equilibrium equations as derived by the direct method in Murphy and 
Sallis (1984) for the center-mounted single-membrane concept. 

11 
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SECTION 4.0 

THE SOLUTION APPROACH 

The solution for the displacements results from minimizing the total potential 
energy Eq. 3-3 with Eqs. 3-4 through 3-16 and with an assumed form for the 
displacement increment functions corresponding to v and~- To this end v and 
~ are taken to be of the form 

m 
V = I ak Vk (9) = v(9) (4-1) 

k=l 
and 

m 
~ = I ~ ~k (9) = ~(9) ' (4-2) 

k=0 

where ak and~ are constant coefficients to be determined by the minimization 
process and where vk(9) and <t>,,.(9) are a compatible set of displacement 
increment functions satisfying the boundary conditions. The term m is an 
arbitrary integer selected to attain the degree of accuracy desired. The 
boundary conditions, which are assumed to govern the problem, are similar to 
those discussed and used in Murphy and Sallis (1984).* These conditions 
correspond to zero out-of-plane displacement of the frame at the supports and 
to deformation symmetry of both the frame and membrane about the supports, 
which are assumed to be uniformly spaced at an angular interval p. Thus, the 
boundary conditions are written 

v(0) - v(p) = v'(0) = v'(p) = ~•(p) = ~•(o) = 0. (4-3) 

Then, with these boundary conditions we chose the form for the displacement 
functions to be 

vk(9) = 1 - cos 
21tk

9 p k = 1, ... m (4-4) 

and 

~k (9) = cos 
21tk

9
_ 

p ' k = 0,1, ••• m. (4-5) 

It is also demonstrated in Appendices A and B that both the in-plane and out
of-plane membrane deformations are governed by the frame displacement 
coefficients ak (k = 1, ••• m) and ~ (k = 0,1, ••• m) defined in Eqs. 4-1 

*Note that there is no term corresponding to k = 0 in Eq. 4-1 since this would 
correspond to a rigid body translation. On the other hand, a uniform twist of 
the frame is possible; hence, there is a term corresponding to k = 0 in 
Eq. 4-2. 

12 



and 4-2 and one other displacement function corresponding 
lateral membrane deformation wl' induced by the uniform 
The term w1 takes the form 
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to the axisymmetric 
pressure increment. 

(4-6) 

Having defined the necessatj, displacement functions (or generalized 
coordinates), the problem is now reduced to finding the appropriate values of 
the spatially constant coefficients ak and bk (k = O, 1, ••• m) to minimize 
the potential energy given by Eq. 3-3 for a given set of load and body forc'e 
increments. This is accomplished in the following manner. 

First, express Eq. 3-3 as a single displacement coefficient vector A defined 
by 

(4-7) 

Using this formalism, Ve can then be written as 

(4-8) 

where U is a (2m+2 x 2m+2) symmetrical matrix with a contribution from 
Eqs. 3-4, 3-6, 3-7, 3-9, 3-10, and 3-13, and where Wis a (2m+2 x 1) column 
vector with contributions from Eqs. 3-14, 3-15, and 3-16. 

Thus, when comparing 

and 

where 

and 

Eq. 4-8 with 

.!.. ,._T:u"- = 
2 

3 

Eq. 3-3, we see that 
6 

1 T .I uj = -2 " (I uj)" 
J=l 

AT W ,T ( f w~ = 
jtl 

Wj = 
j=l 

6 
u = 

;=1 
uj 

3 
w = 

;=1 
wj 

(4-9) 

(4-10) 

(4-11) 

(4-12) 

The terms U and W physically represent the modal stiffness matrix and modal 
load vector corresponding to the _!!elected generalized coor!!_inate functions, 
Eqs. 4-4 through 4-6. The matrix Uj and vector component W1 contributions 
to U and Ware defined in Appendix C for the selected generallzed coordinates 
and for the assumed attachment conditions. 
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By minimizing Ve with respect to A in Eq. 4-8, we determine A; thus 

oVe 
~ = 0 = DA - W = 0 , 

which results in 

-1 
where (u) is defined as the matrix inverse of U. 
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(4-13) 

(4-14) 

Several appendices are provided. Appendix A provides a detailed description 
of the in-plane membrane response corresponding to either prescribed edge 
tractions or edge deformations for the membrane. The derived solutions are 
then related to the desired membrane attachment boundary conditions, and the 
contribution to the U matrix from the corresponding membrane response is then 
determined. Appendix B provides a description of the out-of-plane membrane 
deformation as a function of the frame displacements and the pressure 
loading. Appendix C provides a detailed description of the specific 
contributions to the U matrix from all of the response mechanisms considered 
in terms of geometric and material properties corresponding to specific design 
options for double-membrane modules. Thus, to implement the solution 
presented here we need only use Appendix C with Eqs. 4-1 through 4-3 and 4-14 
along with the desired input parameters. Appendix D provides a short 
description of other useful quantities such as the total rms surface error and 
the stress state in the membrane at the attachment in terms of the solution 
vector. Appendix E gives an even simpler approximate solution based on 
assuming only two displacement functions (one for v and one for~), which can 
be used for first order design trade-offs and for eigenvalue stability 
analyses. The approximations are useful when studying the effects of initial 
imperfection and the amplification of load-induced, out-of-plane deformation. 

14 
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MODEL RESULTS 
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In this section we briefly compare results from the current model with 
predictions from the NASTRAN computer model. The NASTRAN model was 
implemented in the general nonlinear mode and was limited primarily by the 
frame support and bonding assumptions. In other words, most of the 
assumptions, such as no net radial deformation increments of the frame and the 
assumptions of linearity, are not employed in the NASTRAN model. The good 
agreement, which will be demonstrated, thus demonstrates the validity of the 
model assumptions for the range of parameters considered. The results shown 
here correspond to three separate module design approaches composed of two 
double-membrane designs and one single-membrane design as shown in 
Figure 5-1. In the double-membrane design we consider either a radial-only 
constraint or a radial and circumferential (hard) attachment constraint. We 
looked at two different tensions and considered the effects of two materials 
(steel and aluminum). We also considered the predictions for a range of frame 
section parameters. In addition to the geometry of single- and double
membrane designs illustrated in Figure 5-la 9 the loading for the cases 
considered, and assumed to be induced by pressure (due to wind) and weight 
loading, is defined in Figure 5-lb. 

We will consider four design cases. Design Case 1 corresponds to the single
membrane design. Design Case 2 is a double-membrane design with a radial-only 
attachment. Design Case 3 corresponds to a double-membrane design with the 
hard or totally fixed attachment. Design Cases 1, 2, and 3 are all assumed to 
be fabricated with steel membranes and steel frame sections. Design Case 4 is 
similar to Case 3 but with aluminum membranes and aluminum frame material 
instead of steel. 

Figure 5-2 shows the effect of section height on the flexural and torsional 
rigidity for a steel frame of the design shown in the inset (Figure 5-2). 
These respective frame section properties were used in the deformation 
predictions corresponding to Cases 1, 2, and 3 shown in Figure 5-3. 

Figure 5-3 shows the maximum deflection of the frame versus half height of the 
frame for the loading and geometry shown in Figure 5-1 for Design Cases 1, 2, 
and 3 and for a tension of 17,500 N/m (100 lb/in.). Here, we can see the 
strong effect of section flexural rigidity; i.e., corresponding to a change in 
the frame half height. This figure illustrates the kind of variation one 
experiences by changing the frame design. For comparison, the NASTRAN 
numerical modeling results are shown for specific cases, and we can see that 
quite good agreement does occur for the cases investigated. This good 
agreement is also seen in Table 5-1, where the numerical results for Cases 1 
through 4 are compared for two tensions and two frame heights. The maximum 
displacement v corresponds to the predicted peak deflection experienced max. 
midway between the support, and <I> corresponds to the frame rotation that 
occurs at the same location as vmax• 
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Table 5-1. Example Results Comparing NASTRAN Predictions with the Current Model 

h = 101. 6 mm h = 180 mm 

Design Total 

Case Tension, T
0 

NASTRAN Model NASTRAN Model 

(N/m) a 
cj> cj> V cj> V cj> 

vf;m') vmaJ 
(mr) (mm (mr) <:~r (mr) <:~r (mr) 

1 17500 7.399 2.642 7. 212 2.528 2.844 1.403 2.731 1.348 

l 8750 6.707 2.385 6.522 2.274 2.764 1.361 2.653 1.308 

2 17500 5.290 0.695 5. 211 0.682 1.534 0.260 1.497 0.255 
...... 
0\ 2 8750 -- 4.910 0.639 1.567 0.300 1.477 0.254 --

3 17500 3.141 0.425 3.073 0.384 1.040 0.181 1.006 0.165 

3 8750 2.994 0.362 2. 967 0.369 1.026 0.174 0.997 0.167 

4 17500 3.997 0.549 3.916 0.507 1.149 0.201 1.111 0.186 

4 8750 3.364 0.448 3.521 0.451 1.195 0.089 1.083 0.181 

Steel E = 207 x 109 Pa Cases Aluminum E = 75.8 x 109 Pa 

l 
Case 

Properties V = 0.30 1' 2, 3; Properties V = 0. 30 4 

Assumed 0 = 7800 kg/m 3 Assumed p = 2600 kg/m3 

a o) 
vmax• corresponds to the maximum displacement, midway between the support (i.e., ate= 60 ; cj> is measured at the same 

location as vmax· 

UI 
Ill 
N ----, 

I I 
1/ 

1-3 
:;:, 
I 

N 
0\ 
N 
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---------.,,-- Membrane 
thickness 
= 0.254 mm 

Frame width 
76. 2 mm 

Single membrane design 

--------

Radial fix 

Membrane thickness 
= 0.254 mm 

circumferential fix 

Continuous 
weld or bond 

Double membrane design 

(a) Cross-section view for steel frame/membrane combination considered in 
analysis discussion 

---R = 5m---9'1 

P/2 

+ 

P/2 

mg cos 30° = mg cos Y 

(b) Lateral view of assumed weight and pressure loading on module 

0 

" <0 

"' 0 
0 

Figure 5-1. Assumed Geometry and Loading on Modules Considered in Discussion 
of Results 
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Frame half height, h (mm) 

Figure 5-2. Flexural and Torsional Rigidity of Steel Frame Section as a 
Function of Frame Half Height 
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Model predictions 
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co 
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0 I 
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Frame half height, h (mm) 

Figure 5-3. Maximum Frame Deflection as a Function of Frame Half Height 
for Design Cases 1, 2, and 3 (T

0 
= 17,500 N/m) 
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Figure 5-3 shows that both double-membrane designs are considerably stiffer to 
lateral loading than the single-membrane design. This is caused by two 
effects that couple the membrane stiffness with the problem in a manner not 
possible with the single-membrane concept. The curve corresponding to the 
highest overall stiffness and the lowest deflection, Case 3, represents a 
double-membrane concept where the attachment does not allow the membrane to 
move independently in either the radial or circumferential direction (i.e., a 
hard attachment) from that of the attachment point on the frame. Thus, the 
membrane not only inhibits the rolling of the frame, but the membrane also 
must strain the same amount as the frame at its attachment point. This strain 
compatibility effect is analogous to the membrane acting as an additional 
flange attached to the frame. 

For Case 2 in which a radial-only constraint is assumed at the attachment, the 
membrane is allowed to move freely in the circumferential direction but not 
radially. In this case, the membranes exhibit only the roll or twist motion 
of the frame. However, this is a significant effect since frame twist and 
out-of-plane frame deflection are strongly coupled. 

Figure 5-3 also shows that the relative benefit of double-membrane concepts 
increases with frame height primarily since the membrane offers more effective 
roll restraint as the membranes are spread farther apart and the effective 
moment arms are increased in length. Further, the benefit of "hard" versus 
"radial" attachment decreases as frame height increases because the bending 
resistance of the frame increases relative to the membrane induced "flange" 
effect previously discussed. Thus, for the cases considered here the roll
resistance effect is more dominant than the flange-induced effect. 

6 

E 
5 

E 
> 
c:: 4 
0 -u 
Q) - 3 Q) 

"O 
Q) 
C: 
ca 
Q. 2 

I -

-----------------------------,1 
Case 2 
T0 = 17,500 N/m 
h = 0.1016m 

.._ NASTRAN </) 

• NASTRAN v 

0.5 

0 

-,._ 
E -
C: 
0 
~ ca -0 ,._ 
Q) 

E 
ca ,._ 

0 
I -0.5 LL -::J 

0 1 

0 
0 20 40 60 80 100 

Angle from support (degrees) 

Figure 5-4. Frame Deflection and Twist as a Function of Angular 
Distance between the Support for Case 2 (T

0 
= 17,500 N/m; 

h = 0.1016 m) 
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Finally, also for comparison, both v and q, are shown as a function of the 
circumferential coordinate 0 for the Case 2 design in Figure 5-4 along with 
the NASTRAN predictions for a typical design. This particular figure 
corresponds to Case 3 (steel design) with a frame half height of 101.6 mm, and 
a total membrane tension in the two membranes of 17,500 N/m (100 lb/in.). 
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OONCLUSIONS 
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The model described in this report, based on the comparisons with the more 
general NASTRAN computer code, appears to do a very good job of predicting the 
response of a stretched membrane module frame for the assumed geometric, 
lateral loading, and support conditions. For instance the model appears to 
faithfully predict the interaction of the membrane/frame combination for sev
eral assumed boundary conditions associated with either single or double 
stretched membrane module. As such the model should be of value in performing 
sizing and design trade-offs, and in developing understanding of the various 
stretched membrane response mechanisms and their interactions. To this end, a 
much more extensive analysis of various trade-offs is presented in a 
forthcoming report (Murphy, forthcoming). 

The model does have limitations. As with any model, care should be exercised 
in its use, particularly to ensure that the inherent assumptions are con
sistent with the real problem being analyzed. Many of the assumptions, such 
as the requirements for uniform compressive force in the frame and the 
assumption of small strains with large displacement increments, appear to be 
quite adequate for the range of cases studied. However, the most sensitive 
and potentially problematic assumption appears to be the requirement that the 
in-plane membrane tension increments that result from the frame distortions be 
much smaller than the net initial pre-tension in the membrane. Without nearly 
uniform tension in the membrane the predicted surface deformation may be quite 
inaccurate. The exact value of tension increments relative to the initial 
tension, which results in unacceptable inaccuracies for the predicted surface 
deformations, is unknown, but it is clear that compressive loads in the mem
brane are not acceptable. Thus, the model can be used to indicate where a 
potential problem might exist but not to determine the full effect of the 
problem. The assumption of small tension increments will tend to be valid 
with higher initial pre-tensions, lower overall out-of-plane frame defor
mations, and possibly for cases where highly compliant membranes are coupled 
to a relatively stiff frame. However, the validity of the assumption may be 
required to result in good optical qualities since a nonuniform tension in the 
reflector membrane will result in additional and nonuniform deformations 
relative to the deformations experienced in a uniformly tensioned membrane. 

The nearly constant membrane tension assumption also implicitly eliminates 
consideration of large axisymmetric diaphram deformation. Here again, if the 
pre-tension is reasonably high, then a very large axisymmetric deformation 
field, which would also imply unacceptable optical quality for heliostats, 
would probably be required (Murphy 1983). 

We recommend that the consistency of the assumptions with the physical problem 
being studied always be compared with the predicted results where possible. 
For instance, if it is found that the calculated in-plane tension increments 
are comparable in magnitude to the stresses corresponding to the initial 
tension, then the predicted membrane surface deformations as noted above may 
have significant error even though the frame deformations may be quite accu
rately predicted. When it is not possible to verify the assumptions we 
recommend that additional care needs to be exercised in using the model. 
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There are clearly several phenomena, though not believed to be dominant, that 
may still be important and deserve further investigation. They include: non
uniform pressure loads, the effects of in-plane loads, the effects of initial 
imperfections including the superposition of initial model shapes with periods 
different from the frame support pattern, the effect of radial frame defor
mation increments (the initial radial deformations associated with the pre
tensioning are implicitly accounted for), and potential effects caused by dif
ferent frame support conditions that may introduce local radial hard points 
and bending moments at the supports. Many of these effects can be accounted 
for by adding appropriate modifications to the current model. 
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IN-PLANE MEMBRANE RESPONSE 
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The description for the in-plane membrane response follows from the plane 
stress/strain analysis of Sokolnikoff* where complex potentials are used. In 
this approach the linear equilibrium equations are transformed into a simple 
boundary value problem where either the tractions or displacements are defined 
on the boundary. The resulting boundary value problem is described in terms 
of two analytic functions of a complex variable z. The solution to the 
boundary value problem is obtained by describing both the analytical functions 
and the prescribed displacement or loading condition on the boundary with a 
complex Fourier series and then by determining the coefficients to the series 
for the analytical functions by satisfying the boundary conditions. 
Sokolnikoff provides a description of the needed displacements and stresses in 
terms of the analytic functions ~(Z) and ¥(Z) within the region as well as the 
appropriate coefficient constraint conditions for a circular region, and for 
either prescribed displacements or loads on the boundary. The details of this 
analysis will not be reproduced here, but the principal results for two cases 
will be given. The two cases correspond to either harmonic displacements or 
harmonic stresses prescribed on the boundary of the circular region. This 
approach is motivated by the assumed displacement function for the frame and 
the compatibility conditions, Eqs. 3-11, 3-12, 4-4,and 4-5. 

Sokolnikoff (pp. 281-282) gives the following relationships, corresponding to 
a circular region of radius a: 

2Gm (ur + iu9) = e-i0 [r ~(Z) - Z ~• (Z) - ¥(Z)] (A-1) 

"rr + "00 = 4 Re [~'(Z)] (A-2) 

•ee - ~rr + 2i•r0 = 2[2 ~••(z) + ¥'(Z)]e2i0, (A-3) 

where ur and u9 are the displacments in the radial and circumferential 
directions, respectively, and where "r, • 99 , and "re are the normal and shear 
stress components corresponding to cylindrical coordinates. The term Gm is 
the membrane shear modulus and r is a material constant defined in terms of 
the Poisson ratio vm for the membrane by 

3-4vm for plane strain 
r = 

for plane stress 
(A-4) 

The plane stress case is of interest in this current analysis. 

*Sokolnikoff, I. S., Mathematical Theory of Elasticity, 2nd Edition, New 
York: McGraw-Hill, 1956. 
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Also in Eq. A-2 Re denotes the real part of the quantity following it, the 
prime denotes differentation with respect to Z, and the bar over the quantity 
in Eq. A-1 [e.g., <I>'(Z)J denotes the "conjugate of" as defined in complex 
analysis. 

The terms ~(Z) and ~(Z) are defined by 

and 

en Z k 
<I>(Z) = l ck(8) 

k=l 

en k 
~(Z) = l dk(f) ' 

k=O a 

(A-5) 

where ck and dk are complex constants determined from the boundary conditions. 

In the case of prescribed stresses (Tl' T2) on the boundary, the appropriate 
boundary condition is written as* 

Then combining Eqs. A-5, A-3, and A-6 results in 

cl+ cl= Al 

ck= Ak; fork) 2 

en 

k=-cn 

dk = A-k - (k+2)Ak+2; fork= 0,1,2, •••• 

(A-6) 

(A-7) 

In the case of prescribed Cartesian components g1 (8) and g2(0) of the radial 
and circumferential displacements on the boundary, the boundary condition is 
written 

en 

2Gm (g
1

(e) + i g
2

(e)) = I Bk eik8. 
k=-en 

(A-8) 

Then combining Eqs. A-1, A-5, and A-8 results in 

*The subscripts I and 2 correspond to the respective rectangular components in 
the complex plane. 
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dk = - B-k - (k + 2}c'k+2; fork~ 0 • (A-9) 

Using the above approach and definitions, the results for prescribed harmonic 
boundary surface loads or displacements can be calculated in a straight
forward, albeit somewhat tedious, manner and are given in Table A-1. 

The results provided in Table A-1 can now be used to define the response of 
the membrane under different attachment boundary conditions in terms of the 
frame displacement coefficients ak and bk. Hence, using the harmonic 
representation for the stresses and displacements, u5 (Eq. 3-10) can be 
evaluated for the specific boundary conditions of interest. First consider 
the case of a totally fixed attachment where the displacements of the membrane 
(both radial and circumferential) must match the displacements of the frame at 
the attachment. For this case we determine the contribution to u5 from a 
single harmonic displacement set, urk and u9k. Then from Eqs. 3-11, 3-12, 
4-4, and 4-5: 

and 

= hbk cos 21tk 9 
p 

(A-10) 

(A-11) 

For a given urk displacement the stresses from Table A-1 could be of the form 

and 

where from Table A-1 

K11(k) 

and 

~r9k = hbk K12(k) sin 
2
:e 

21tk 
with n = --p 

= Gm [n+l + (n-1)] 
a r = Gm [21tk (l+r) + (1-r)] 

ar p 

(A-12) 

(A-13) 

(A-14) 

Gm [n+l ] Gm [21tk ] K12(k) = 8 r - (n-1) = ar -p- (1-r) + (l+r) • (A-15) 

Physically, K11 (k) and K12 (k) represent the in-plane stiffness, per unit 
cross-sectional area, for the membrane and correspond to the modal 
displacement of period k. 

Likewise, for a given u9k displacement, the corresponding stress increments 
are 

-ah ( 21tk) 21tk (A-16) ~rek = ak Ku(k) sin -0 
R2 p p 

-ah (21tk) 21tk
9 (A-17) ~rrk = - ak K12(k) cos 

R2 p p 
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N 
--.J 

Case 
Quantity 

Boundary 
Conditions 

q, 

'I' 

'trr(a,0) 

'tr0(a,0) 

ur(a,0) 

ue(a,e) 

Table A-I. In-Plane Membrane Response Results 

Applied Normal 
Radial Load at r=a 

n ;;, 2 

T1 = 6T0 cos n0 cos 0 

T2 = t,T0 cos n0 sine 

6TOa(_1_)(£.t+\Hn+l) 0 
2 n+l a 

Applied Shear 
at r=a 
n ) 2 

T1 = -t,S0 sin n0 sine 

T2 = t,S 0 sin n0 cos 0 

t,Soa(_l_) (.!'.. t+l ei(n+l)e 
2 n+l a 

Applied Radial 
Displacement at 

r=a 
n ;;, 2 

gl = Uao cos n0 cos 0 

g2 = uaO cos n0 sine 

Gmuao (.!:.)n+lei(n+l)0 
r a 

Applied Circumferential 
Displacement at 

r=a 
n l> 2 

g 1 = -u9O sin n0 sine 

g2 = ueo sin n0 cos 0 

Gu n+l 
~ (~) ei(n+l)0 r a 

-t,TOa(2!_ )(.!:. t-\i(n-1) 0 
2 n-1 a 

6S0 a ( 2-n) ( .r.t-1 e i (n-1) 0 
2 n-1 a -Gmuao[l + (n;l)](;t-\i(n-1)0 Gmu0o[ 1 - (n;l)](;t-\i(n-1)0 

6TO cos n0 

0 

6Toa[r(n-l) + (n+l)] cos n0 
4Gm . (n+l)(n-1) 

t.~r(n-1) - (n+l)] sin n0 
tiG:l (n+l)(n-1) 

0 

6SO sin n0 

GmUao[n+l + (n-1)] cos n0 -a- r 

Gmuao[n+l _ (n-1)] sin n0 
a r 

t,SOa[r(n-l) - (n+l)] cos ne uao cos n0 
4Gm (n+l)(n-1\ 

6S0 a[r(n-l) + (n+l)] sin n0 0 
4G~ (n+l)(n-1) 

Gue n+l 
~- - (n-1)] cos ne a r 
G u ~n+l 

a r + 

0 

u00 sin n0 

(n-1)] sin n0 

UI 
Ill 
N -.-~ 

II I 
~ ~ 1/ 

~ 
:::a 
I 

N 

°' N 

°' 
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Thus, the contribution to U5 from the kth deformation mode caused by the 
membrane is 

•<m P [ 2Kk ahak 2Tik 2Tik] 21tk
0 Usk = 20f hbk Ku (k) cos -p-e --- (-) K12(k) cos -0 hbk cos de 

R2 p p p 

a tm p{ [-ahak 21tk 21tk 
+ - 2- 0

f ~ (-p-) K11 (k) sin~+ hbk K12 (k) 

/-ahaJ 21tk sin 21tke} de • . 
\ R2/ P P 

(A-18) 

sin 
2;ko] 

Equation A-18 is easily integrated using the orthogonality conditions and 
results in 

where 

and 

= { 1 fork= 0 
Tlk 

1/2 fork= 1,2 ••• m 

{
O fork= 0 

0 = 
1 fork= 1,2 ••• m. 

(A-19) 

(A-20) 

(A-21) 

Next consider the case of a simple radial constraint, whete the membrane is 
free to slide in the circumferential direction with no resistance but is 
constrained to follow the frame in the radial direction. In this case only a 
radial surface traction is applied with zero shear (e.g., "re= 0) traction at 
the boundary. Further, no restrictions are placed on the circumferential 
displacements by this boundary condition. Then, using the applied traction 
boundary condition and an evaluation process similar to that leading to 
Eqs. A-11 through A-17, the following relations result: 

and 

where 

K22(k) 
Gm = 4-
a 

2'Jtk 
•rrk = hbk K2z(k) cos~ 

"re= O' 

[ n2 - 1 ] = 
Lr(n-1) + (n+l)J 
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Gm 
4-

a 

( (21tk/ _ l) 
p I 

21tk (r+1) + (1-r) 
p 

(A-22) 

(A-23) 

(A-24) 
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Thus, following the procedure above, the contribution of the kth mode to u5 is 
given by 

atm 
Usk = - 2- ~k P K22(k) h 2b~, (A-25) 

where ~k is defined as in Eq. A-19. 

One final point should be noted: Eqs. A-14 and A-24 are valid for cases 
where 21tk/p :> 2. Thus, they are generally not valid for k = 0 or k = 1; no 
further problems will exist for three or more supports. The k = 1 term is not 
of interest since equilibrium will not be satisfied. Further, the k = 0 term 
is not applicable for the u0 displacement. A k = 0 term, however, can arise 
with the ur displacement (i.e., corresponding to uniform frame rotation). The 
appropriate coefficient corresponding to b0 is easily found to be 

(A-26) 
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APPENDIX B 

APPROXIMATE OUT-OF-PLANE MEMBRANE RESPONSE 

Murphy and Sallis* showed that for a linear membrane response, corresponding 
to a constant tension in the membrane, the deformation w can be expressed as 
the sum of two contributions; one corresponding to axisymmetric deformation w1 
caused by the uniform pressure loading and the other corresponding to the 
nonzero boundary conditions arising from the frame (boundary) distortion w

2
• 

The resulting load displacement relations in terms of the uniform pressure P 
and the frame displacements v and~ are given for a single membrane by 

w(r,0) = :;~ [1 - (;/] + ½ 
0
t [v(1;,) + l~(1;,)] di; 

21tk 

+ l l (!.) p 
p k=l a 

cos 21tke f p[v(1;,) + t~(1;,)] cos 21tk1;, di;, 
p O p 

(B-1) 

where pis the symmetry period corresponding to the placement of the supports. 

Now if the expressions for v and ~ ( Eqs. 4-1 and 4-2) are substituted into 
Eq. B-1, then w can be written as 

21tk 

(ak - 1bk) (E) P cos 
a 

21tk0 
p 

Thus, in terms of the 
be determined from the 

arbitrary coefficients ak and bk (k = 1,2 
variational process] w(r, 0) can be wrlt,teh as 

w(r,0) = a 0 ~ - (;/] + I 
k=l 

21tk 
m --

+ 1 l bk(.!.) p 
k=O a 

1 [ r 
2
;k 21tk0l 

ak 1 - (;) cos -p-] 

21tk0 
cos -

p 

(B-2) 

• m) [ to 

(B..!.3) 

where the first term corresponds to w1 , the axisymmetric membrane deformation, 
and the last two summations correspond to the asymmetric membrane deformation 
w2 , as described in Murphy and Sallis. Further, with Eq. B-~ · the 
corresponding expressions for wr and 1/r w0 are easily determined. 

*Murphy, L. M., and D. V. Sallis, Analytical Modeling and Structural Response 
of a Stretched-Membrane Reflective Module, SERI/TR-253-21O1, Golden, CO: 
Solar Energy Research Institute, May 1984. 
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a) w1 axisymmetric portion of membrane deformation 

"Scalloped" or 
deformed shape 

0 

12 
M 
0 
0 

TR-2626 

b) w2 nonsymmetric, "scalloped," membrane shape caused by support constraints 

Figure B-1. Axisymmetric and Nonsymmetric Deformation Patterns Caused by 
Lateral Loading and Support Constraints 
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APPENDIX C 

EVALUATION OF THE STIFFNESS MATRIX AND LOAD VECTORS 

The potential energy was expressed in Eqs. 4-8 through 4-12 in the body of 
this report by 

Ve = .!. }._TU:\ - :\ 1w 
2 (4-8) 

6 
..!_ :\TU :\ = I u. 
2 

j=l 

and 

ATW 
3 

= I Wj ' j=l 
where 

6 
u = I u. 

j=l J 

and 
3 

w = I w. 
j=l J 

where ;\ is the coefficient vector as defined 
to U from U. (j = 1, ••• 6) and to W from W. 
by using tlre coordinate functions as defined 
first as an example the term U from Eq. 3-4: 

J 

-~J (v" \2 ul - 2R R - $/ 
then v and $ can be writ ten 

T-
v = A V 

and 

where 

(4-9) 

(4-10) 

(4-11) 

(4-12) 

in Eq. 4-7. The contributions 
(j = 1, ••• 3) are determined 
in Eqs. 4-4 and 4-5. Consider 

d8 , (4-7) 

(C-1) 

-T ] v = [o,vl,v2, ••• Vm, o, ••.•• 0 (C-3) 

and 

-T 
~ = [O, ••.••. O, ~l • (C-4) 

The derivatives of v also follow from Eqs. C-1 and C-3 and can be written as 

II T - .. 
V = A V ' (C-5) 

32 



where 

-1 I [ I I I I 
v = O, v 1 , v2 • I I ] 

Vm , 0 , 0 , • • • 0 • 

Then, using the above definitions, u1 can be written as 
l 

[EI (-" \(-'' )T ] U = l A :::.::t... JP ~ - $/ ~ - $ d0 
1 2 R 0 R I R 

A • 
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(C-6) 

(C-7) 

Thus, comparing Eqs. 4-9 and 4-11 we can see that U1 is given by 

:.:1. JP (v' I -) (v' I -T) 
ul = R 

O 
T - ~ ~ - ~ d0 , 

where the integration ts carried 
membrane/frame combination. Note 
(2m+2 x 2m+2) matrix. 

out over 
that the 

one symmetry 
quantity in 

(C-8) 

period of the 
Eq. C-8 is a 

u2 through U! tan be written i_!!. an exactly analogous manner along with their 
corresponding contributions to U. 

The contribution to U from u5 (i.e., U5) follows directly from either Eq. A-19 
orlA-25 along with Eqs. A-14, A-15, A-24, and A-26, depending on the boundary 
condition selected. The contribution to U from u6 follows from Eq. 3-13 and 
the definition of w, Eq. B-3. Thus, 

To 2 1 2 
U 6 = 2 ff [ w, r + ( r w, 0) ] r dr d 0 

= 
2
1 AT {T

0 
JP fa [w,r w,T + l w,

0 
l w,T

0
] r dr d0} A, 

0 0 r r r 
(C-9) 

where from Eqs. B-3 and 4-7 we get 

'\T -w = ,~ w ' 
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where 

w = 

and where 

1 - (.!'..) µm e cos µm 
a 

cos 

2nk f\=-p-. 

m+l 
terms 

m+l 
terms 

1 
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(C-1O) 

(C-11) 

The term W. (j = 1, • • • 3) contributes to W in an analogous way. For 
instance, c~nsider w1 and w3 : 

and 

w = p 
3 JP fa w 

0 0 

JP T 
v d0 = A PfAfgR cosy 

0 0 
JP -

v d0 

r dr d0 = JP fa wr dr d0. 
0 0 

(C-13) 

(C-14) 

The values for elements of U and W are now easily determined by performing the 
necessary integrations, which are significantly simplified by using the 
orthogonal properties of the assumed displacement functions. 

-
For completeness the matrices U. (j = 1, ••• 6) 
W. (j = 1,2,3) are presented here. J 

J 

and the vectors 
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0 

Symmetric 

(C-15) 

0 2 

2 
µI 0 

'\ 
-1 '\ 

R '\ 

0 '\ 
'\ 

"' 2 
µm 

0 

Symmetric 

(C-16) 

- -T0 a p 
u =---

2 R 2 

0 0 
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0 

2 
0 µl 

'\ 

1 '\. 
- '\. Symmetric 
R2 '\ 

0 '\. 

" '\. 
\. 2 

µm 
- = GK E_ 
u3 R 2 (C-17) 

0 0 

2 
0 µl 2 

0 µl 
-1 \_ \.. 

R " " 
0 

'\. " " 0 '\. 

\_ '\.. 

" 2 " 2 
µm µm 

0 0 

(C-18) 

2 

1 0 
1 

0 

0 

1 
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U5 (for fixed boundary conditions and two membranes) 

0 

Ku(l) 

4Kll (2) Q 

0 

' \. 
\ 

0 

Kl2(1) 

2K 12 (2) 

'\ 
\ 

0 '\ 
'\ 

0 

'\ 
mK12 (m) 

2 

h2 
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Symmetric 

Ku (0) 

Kll(l) 0 
\ 

\. 

' 
0 ' \. 

' '-Kl 1 (m) 

(C-19) 

where Ku (k) is given by Eqs. A-14 or A-26, and K1 (k) is given by Eq. A-15. 
It is interesting to note that the upper left qua~rant of J 5 corresponds to 
the additional flange effect restraint offered by the membranes while the bot
tom right quadrant corresponds to the roll restraint offered by the membranes; 
the off diagonal quadrants correspond to the coupling between the bending and 
roll restraint contributions to the stiffness due to the membrane. 
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U5 (for radial constraint boundary conditions and two membranes) 

0 

0 

2 K22 ( 0) 

K22(1) 
'\. 

" 

0 

"\. 

" '\. 0 '\. ', 

0 

where (K22 (k) is given by Eqs. A-24 or A-26 depending on the value of k. 
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(C-20) 



E.. 
1t 

1 0 
2 

Symmetric 

0 

0 0 

1 0 1 
2 2 

' .,t2 '\ 

' ' 
0 ' '- 0 

' ' m 

The load vectors are given by 

- T [ ] W1 = PfAfRg p cosy 0,1,1, ••• l,O,O,O, ••• 0 , 

W2, for 2 membranes is defined by 

W / = Pm tma 2 g p cos y [ 1 / 2 , 1 , 1 , • • • 1, JI., 0, 0 • • • 0] , 

and 

-T Pa2 
w3 = 2 p [1/2,1,1, .- •• l,Jl.,O,O, ••• o] . 

' '\ 
' 

TR-2626 

0 

\. 

' ' m 

(C-21) 

(C-22) 

(C-23) 

(C-24) 

Note that the stiffness matrices defined by Eqs. C-16, C-18, and C-21 are the 
same for either single- or double-membrane systems (as long as the total load 
on the frame is T

0
). This re!_ults from the geometric and loading symmetry 

assumed. The expressions for U5, Eqs. C-19 and C-20, are different and are 
disc~ssed in Appendix F. Also, for single-membrane systems the expression 
for W2, Eq. C-23, should be divided by 2. 
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APPENDIX D 

SOME OTHER USEFUL QUANTITIES 

The total rms surface error ~ 

presented in Murphy and Sallis,* 
can be determined following the development 
where (see Appendix B also) they show that 

2 
w,r 

1 2 1/2 
+ (; w,e) r dr d0 

(D-1) 

Equation D-1 corresponds to the deformation increments relative to the initial 
configuration and thus considers deviations from the initial shape (the 
initial shape may or may not be flat). 

Now, comparing with Eq. 3-13 and using the notation in Eq. 4-9 we can see that 
~ can be written as 

where 

and 

l.__ ,_1 U6 'r-- 1/2 
To 

}12 

= r(:o) 2 + :n JI k("k -
8 
ti2 1/2 = ~; + ~;)1/2 ' (D-2) 

(D-3) 

(D-4) 

The terms ~ 1 and ~-2 correspond to the surface error for axisymmetric and 
asymmetric deformation, respectively. Thus, ~l corresponds to the err.or if 
the pressure is applied to the membrane with the frame held rigid in the flat, 
undeformed condition, and ~2 . corresponds to the error associated with the 
distortion of the frame only. 

The frame bending MY, and twist Mz moments from which the frame stresses are 
easily derived are of interest and are determined from Eqs. 3-5, 3-8, and 4-1 
through 4-4. The results are 

-~ My - R 
VI I 

R 
-~ - R. 

m 

+ 1 
k=l 

(D-5) 

*Murphy, L. M., and D. V. Sallis, Analytical Modeling and Structural Response 
of a Stretched-Membrane Reflective Module, SERI/TR-253-21O1, Golden, CO: 
Solar Energy Resea~ch Institute, May 1984. 
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(D-6) 

The stress increments in the membrane are determined with Eqs. A-12 through 
A-24, depending on the boundary conditions. For the total fixed boundary 
conditions we see that 

and 

m 

~rr = hb0 K11 (o) + l [hbk K11 (k) - (aR~) akµkK 12 (k)] cos µk9 
k=l 

~re 

For the radial-constraint-only condition we see that 

and 

m 
~rr = l hbk K22 (k) cos µk9 

k=o 
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APPENDIX E 

A TWO-TERM DESIGN APPROXIMATION 

A simple two-term approximate solution is easily derived from the model pre
viously described. If we assume a simple single harmonic solution of the form 

and 

then a 
matrix. 
defined 
from 

or 

(E-1) 

(E-2) 

solution is easily derived, which results in a simple 2x2 stiffness 
Thus, using the symmetric stiffness matrix whose components are 

by Sij (i, j = 1, 2), the solution for a 1 and b1 can be determined 

(E-3) 

(E-4) 

where F j (j = 1, 2) are the appropriate components corresponding to the 
loading vector and where D is defined as the determinant of the stiffness 
matrix: 

(E-5) 

This simple model can be used to approximate the deformations caused by 
uniform pressure loading where simple supports are assumed at uniform 
circumferential intervals of value p. 

Further, this model can be used to estimate the critical bifurcation tension 
level for the structure by solving for that tension, which will make the 
determinant of the stiffness matrix zero. In fact this stability prediction 
approach is identical to the simple eigenvalue approach used in many previous 
studies (Thompson 1984; Timoshento 1961). 

These stiffness matrix elements in Eq. E-4 can be determined from the 
appropriate terms of U. (j = 1, ••• 6) from Eqs. C-15 to C-24. 

J 

Thus, we find that 

+ GK µ 2 - To/~ µ2 - µ \ + at 
R3 1 \R 1 1/ m 

(E-6) 
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S 12 _ s = l?. [-(=.1 + GK) 2 - Toµ t - at 
KA~ 

(E-7) 
21 2 R2 R2 µ1 1 m 

' 

s22 
J?. tEiy GK 2 2 

KBB] 
(E-8) = + - µ + To (µ t + at) + at 

2 R R 1 1 m 

where as before 

21t (E-9) µ1 = p. 
The terms KAA' KBB' and KAB correspond to the double-membrane case (set to 
zero otherwise) and are defined in Table E-1. Here, it is seen that µ1 
corresponds to the number of waves around the circumference where exactly one 
wave occurs between adjacent supports. 

The load components are determined from Wj (j=l,2,3) and are found to be 

(E-10) 

and 

(E-11) 

Here, we assume that the b
0 

term is zero (i.e., no uniform twist). The 
axisymmetric deformation can be easily estimated and superimposed on the 
solutions corresponding to a 1 and b1• Thus, a

0 
is found to be 

(E-12) 

where P and T correspond to the net pressure load on and the tension in the 
membrane of interest, respectively. 

Table E-1. Membrane Stiffness Coefficients 

Totally Fixed Radial Only Constraint 
Constraint 

KAA(n) 2 ah 2 2 
(R2) µ1 Kll (n) 0 

KAB(n) 2 ah 
h K12(n) 0 

R2 
µ1 

KBB(n) 2 h2 Kll (n) 2 h2 K22 (n) 
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