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PREFACE 

The research and development described in this document was conducted within the U.S. 
Department of Energy's (DOE) Solar Thermal Technology Program. The goal of this pro­
gram is to advance the engineering and scientific understanding of solar thermal tech­
nology and to establish the technology base from which private industry can develop solar 
thermal power production options for introduction into the competitive energy market. 

Solar thermal technology concentrates the solar flux using tracking mirrors or lenses 
onto a receiver, where the solar energy is absorbed as heat and converted into electricity 
or incorporated into products as process heat. The two primary solar thermal technol­
ogies, central receivers and distributed receivers, employ various point- and line-focus 
optics to concentrate sunlight. Current central receiver systems use fields of heliostats 
(two-axis tracking mirrors) to focus the sun's radiant energy onto a single, tower­
mounted receiver. Point-focus concentrators up to 17 m in diameter track the sun in two 
axes and use parabolic dish mirrors or Fresnel lenses to focus radiant energy onto a 
receiver. Troughs and bowls are line-focus tracking reflectors that concentrate sunlight 
onto receiver tubes along their focal lines. Concentrating collector modules can be used 
alone or in a multimodule system. The concentrated radiant energy absorbed by the solar 
thermal receiver is transported to the conversion process by a circulating working fluid. 
Receiver temperatures range from 100°c in low-temperature troughs to over 1500°c in 
dish and central receiver systems. 

The Solar Thermal Technology Program is directing efforts to advance and improve each 
system concept through solar thermal materials, components, and subsystems research 
and development and by testing and evaluation. These efforts are carried out with the 
technical direction of DOE and its network of field laboratories that work with private 
industry. Together they have established a comprehensive, goal-directed program to 
improve performance and provide technically proven options for eventual incorporation 
into the nation's energy supply. 

To successfully contribute to an adequate energy supply at reasonable cost, solar thermal 
energy must be economically competitive with a variety of other energy sources. The 
Solar Thermal Program has developed components and system-level performance targets 
as quantitative program goals. These targets are used in planning research and develop­
ment activities, measuring progress, assessing alternative technology options, and devel­
oping optimal components. These targets will be pursued vigorously to ensure a 
successful program. 

This work investigates and documents the results of several aspects of pressure for­
mation of potentially high quality, low cost, and low weight reflector concentrators using 
high strength structural membranes. In particular, we identify and document the impor­
tant load/deformation response trends affecting the optical and structural performance 
of large circular membranes that are uniformly pressure loaded and shaped into nearly 
parabolic contours. The findings will be useful for both dish and heliostat concentrator 
applications where the material membrane response can be either elastic or inelastic. 
This work considers both small and finite deformations in addition to identifying the crit­
ical design parameters that are anticipated to have a major impact on the load/ 
deformation process and hence optical response. 
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SUMMARY 

Objectives 

The objectives of this work are to define the structural/optical membrane response issues 
associated with uniform pressure loading of initially flat membrane surfaces into nearly 
parabolic surfaces. Large deformations and the resulting reflector shapes that are needed 
for parabolic dish concentrator applications and that are accompanied by inelastic mate­
rial response are of particular interest. Further, we wish to identify the various 
structural/material phenomena that make the resulting surface contours nonparabolic 
and to quantify the impact of these effects as much possible. 

Discussion 

Stretched membranes for concentrating solar collectors offer the prospect of being very 
lightweight, structurally efficient, potentially low cost, and potentially similar in optical 
performance compared to the more conventional rigid glass/metal concentrator design 
approaches used in current heliostat and parabolic dish applications. In this work, we 
concentrate on the membrane contour or shape, which is of primary importance to the 
optical performance of the concentrator. In particular, we investigate the structural and 
optical membrane response issues and the class of membrane shapes that result from the 
membrane-formation process. In addition, we examine the deviations from the desired 
parabola resulting from uniform pressure loading of circular, axisymmetric, and initially 
flat membrane surfaces having uniform thickness. Such a pressure-loading, shape­
forming procedure has been used to develop prototypes of stretched-membrane reflector 
modules for both parabolic dish and heliostat applications. The parabola is the basis of 
comparison since it is the most desired contour for both focusing heliostats and parabolic 
dishes, and the degree to which the parabola is approximated will determine the collector 
performance. We also discuss the limitations and the optical-quality implications of 
using this approach to form the membrane reflector surface. Though the results of this 
study are applicable to both membrane heliostats and dishes, the major emphasis of this 
work is on dish applications. 

Unfortunately, as described in more detail later, homogeneous and axisymmetric mem­
branes that are uniformly pressure loaded will in general assume a surface shape that is 
not parabolic. In fact, for most cases, the limiting shape will be spherical rather than 
parabolic. This is because, as can be shown for a uniformly pressure-loaded membrane, 
with constant thickness and with uniform tension in the membrane (both spatially and in 
direction), the resulting membrane surface is spherical based on equilibrium consider­
ations alone. This is true whether the membrane material response is elastic or inelastic. 
Note, however, that in some situations, the sphere can provide a quite adequate 
approximation to the parabola. 

The following three primary issues are addressed in this report to assess the adequacy of 
pressure-forming optical reflector surfaces: ( 1) the adequacy with which a spherical sur­
face can approximate the ideal parabola, (2) shape distortion relative to parabolic and 
spherical contours caused by elastic material response, and (3) membrane surface shapes 
resulting from inelastic material response. A quantified description of the structural/ 
surface contour response of the optical membrane surface is provided to aid in the design 
of stretched-membrane concentrators. Since the emphasis of this investigation is on dish 
applications, the most extensive descriptions and discussions are presented for the large 
deformation analyses in which inelastic material response is dominant. 

V 
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Conclusion 

We have studied the shape-distortion effects relative to the desired parabolic reflector 
shape associated with uniform pressure forming of initially flat, circular membranes sup­
ported only at the edges, and have related these surface-distortion effects primarily to 
variations in focal length over the membrane surface. Based on the analysis results 
obtained, and the assumptions defined in more detail in the report, we have reached the 
following major conclusions: 

• Pressure-loaded membranes tend to be spherical in shape, which sometimes can closely 
approximate an ideal parabolic surface. A close approximation for larger f

0
/D's* is 

the sphere, but for very small f
0

/D's this approximation becomes increasingly poor. 
Elastic membranes are always flatter in the center region and more sloped near the 
outer radius than the perfect sphere that has the same curvature at the membrane 
center. In addition, the spherical shape, which is approached with plastic deformation, 
always has more curvature (i.e., lower radius of curvature and shorter focal length) at 
the outer radius than does the nominal perfect sphere. Thus, it appears that the sphere 
is the best approximation we might approach with the elastic/plastic forming of the 
metal membranes that are uniformly pressure loaded. 

• When the membrane responds elastically, the degree to which the final shape approxi­
mates a spherical surface depends on both f

0
/D and the dimensionless stiffness param­

eter (Modulus x membrane thickness/initial tension = Et/T 
0

). Shapes that are nearly 
spherical and that approximate the ideal parabola quite closely can be attained with 
totally elastic membrane systems if f0 /D > 2.0 and if Et/T

O 
is small. When Et/T Q is 

large, then nonuniform tension states in the membrane can cause unacceptable 
distortions. Further, if Et/TO is large, the required f

0
/D for acceptable surface 

contours may grow appreciably above 2.0 to limit the distortions caused by elastic 
material response. Further, if fQ/O < 2.0 even when Et/T

O 
is small, the disagreement 

between the sphere and parabola can be a concern from an optical performance 
perspective. 

• Figure 5-1 shows findings with respect to pressure forming an initially flat membrane 
to a specific f

0
/D and facet size. Here we see that, for optical elements having 

f
0

/D > 10 that are typical of heliostat designs, elastic designs resulting in good para­
bolic surfaces appear to be feasible. Also for f

0
/D's < 10, elastic distortions start to 

become a concern with many metal membrane designs, but good elastic contours using 
polymer membranes may be possible for f

0
/D values somewhat below 3.5. Further, 

inelastic designs are required for steel, aluminum, and many polymer designs for f ofD 
values below approximately 3.5, 2.0, and 1.0, respectively. Moreover, for optical 
elements with f

0
/D < 2.0, the number of small-diameter optical facets required to 

approximate a large area, single-facet dish with f
0

/D = 0.6 is small and decreases with 
decreasing f

0
/D. Conversely, for reflector elements with f

0
/D > 2.0, the facet size 

decreases and the number of facets required to produce a given concentrator area 
increases. Finally, for nominal f

0
/D's < 1.5, focal length variations relative to the 

parabolic shape become quite noticeable. 

• Inelastic material response 1=an lead to significantly smaller deviations from a perfect 
sphere than will elastic material response. This is because the plastic deformations 

*F is the focal length at the dish center and is sometimes referred to as the nominal 
foial length. D is the dish diameter. 

VI 



Sphere not similar I 
~ parabola I 

Preforming may [ • be required 

1 

I 

I 

Plastic designs I Elastic design 
required . possible 

Sphere/parabola 
very similar 

i 
Preforming I I 
preferred I 

1 ~umber of Number of required 
required facets I facets gets I 

4
~~s_m_a_n_ag_e_a_b_le_• t--v-er_y_la_r_ge_· ___ ,.• 

1 Seams required for 

I 
metals and some / 
polymers (D = 15 m, 

I • assumed) I 

I 
Optical distortions I 
due to elastic 

I • stresses in polymers I 

Optical distortions 

1

1 

due to elastic 
st;,.esses in metals / 

______ _J_ ______ L__ _____ _,__ __ ___,_ ___ .L-----,} I 
1.0 2.0 3.0 3.5 4.0 10 

Focal length/diameter, f0 /D 

•i.e., the number of small-diameter, large f0 /D facets required to approximate a single, large­
diameter facet with f0 /D = 0.6 

Figure S-1. Surface Shaping and Response Phenomena as a 
Function of tofD for Pressure-Formed Membranes 

"' a, 
,._ 
0 
0 

TR-3025 

will tend to relieve stress nonuniformities caused by elastic deformations and will thus 
make the stress distribution over the membrane surface more uniform; hence the 
membrane will become more spherical. 

• The effect of work hardening on surface contour, which was considered in this study, 
did not appear to have a large deleterious impact on the surface contour, although for 
the cases studied, non-work-hardening material response always led to somewhat 
better focal-length uniformity. The major negative impact of work hardening appears 
to be due to the somewhat greater stress nonuniformity at the edge of the membrane 
when work hardening is present. 

• A reduction of the forming pressure on a membrane that has undergone large plastic 
deformations results in worsening of the focal-length nonuniformity in the membrane 
center region with some increase in focal-length uniformity at the edge. It is possible, 
because of the area effect at large radii, that the overall optical performance may be 
improved. A more complete optical analysis is needed to verify this. 

This report does not address the distortion effects caused by membrane seams, thickness 
nonuniformities, material anisotropy, and spatial modulus variations nor does it address 
those distortions caused by support frame displacements, rotations, and nonuniform and 
nonaxisymmetric pressures. Hence these additional problems, when combined with the 
deleterious effects studied here, suggest that preforming of the membrane against a 
mandrel would be quite beneficial, especially if high-performance facets with f

0
/D < l 

Vll 
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are required. However it is too early to rule out the potentially inexpensive pressure­
forming technique. This is especially true if larger f /D facets, or if facets with less­
stringent* optical-quality requirements, are desired. <purther, the potential benefits of 
nonuniform but axisymmetric forming loads may prove to be attractive. It is recom­
mended that we carry out more detailed optical analyses of the shape-distortion effects 
defined in this work. This will help us ensure that the effects already identified will not 
prevent this forming approach from being applied to realistic designs. 

*For example, such lower optical-quality facets may yield acceptable performance when 
combined with secondary concentrators. 

Vlll 
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1.0 INTRODUCTION 

Stretched membranes for concentrating solar collectors offer the prospect of being very 
lightweight, structurally efficient, potentially low cost, and potentially similar in optical 
performance compared to the more conventional rigid glass/metal concentrator design 
approaches used in current heliostat and parabolic dish app,lications. Since details of the 
relative benefits offered by stretched membranes are given elsewhere, we will focus on 
other issues that are essential to realizing the full benefits of stretched-membrane 
reflectors. In particular, in this work we will concentrate on the membrane contour or 
shape that is attained by pressure loading the surface. The membrane contour is of pri­
mary importance to the optical performance of the concentrator. For optical reflector 
concentrator applications, the parabola is the most desired contour for both focusing 
heliostats and parabolic dishes, and the degree to which the parabolic contour is approx­
imated will determine the collector performance. In this report, we investigate the 
structural/optical membrane response issues and the class of membrane shapes resulting 
from pressure forming. Such a pressure-loaded, shape-forming procedure has been used 
in the development of stretched-membrane prototype reflector modules for both para­
bolic dish [l-7] and heliostat [8-11] applications. We will examine the deviations from 
the desired parabolic shape resulting from uniform pressure loading of circular, 
axisymmetric, and initially flat membrane surfaces having uniform thickness. We will 
also discuss the limitations and the optical quality implications of using this approach to 
form the membrane reflector surface. Though the results of this study will be applicable 
to membrane heliostats and dishes, the major emphasis of this work is on dish 
applications. 

Unfortunately, as described in more detail later, homogeneous and axisymmetric mem­
branes that are uniformly pressure loaded will in general assume a surface shape that is 
not parabolic. In fact, for most cases, the limiting shape will approach a spherical rather 
than a parabolic contour. This is because, as can be shown quite clearly in Refs. 12-14, 
for a uniformly pressure-loaded membrane with constant thickness and uniform tension in 
the membrane (both spatially and in direction), the resulting membrane surface is 
spherical based on equilibrium considerations alone. 

Further, it is easily shown that if the tension state in the membrane is nonuniform, a 
nonspherical membrane shape can be expected. This is true whether the membrane 
material response is elastic or inelastic. Note, however, that in some situations, the 
sphere can adequately approximate the parabola; the situations that can lead to mem­
brane shapes that are quite close to the desired parabolic shape must be more fully 
understood. 

Nonuniform tensions in uniformly pressure-loaded membranes result from nonuniform 
straining when a flat sheet is formed into a doubly curved surface such as that approach­
ing a sphere; thus geometric compatibility constraints require that nonuniform strains 
will exist. Hence, if the material is elastic, nonuniform stresses caused by the non­
uniform deformation and straining will also exist. Further, even when the membrane 
material responds in an inelastic manner, some stress nonuniformity can be anticipated. 
For example, in the case of initially flat, circular membranes, the circumferential 
constraints at the edge lead to the largest nonuniformity in the strain distribution near 
the rim of the membrane when the membrane is deformed under the pressure load. 

In prior work [8], which studied the response of membranes that exhibited elastic mate­
rial response, we found that a uniform tension state in the membrane is approached only 
if either the nominal focal length/dish diameter (f /0) attained was large, or if the 
quantity Et/T

O 
was sufficiently small; then the desire8 optical shape was attained. Here, 

1 
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E is the Young's modulus of the material, t is the thickness of the membrane, and T
O 

is 
the initial tension in the membrane. The numerator in this factor (Et) represents the 
effective mechanical stiffness of the membrane while T gives a measure of the geo­
metric-induced stiffness based on the initial tension. Tius, if the membrane is quite 
compliant (i.e., Et is small), it can assume its deformed shape with little increase or 
variation in the stress field due to that deformation; then the spherical shape is 
approached. Further, if the initial membrane tension is large, then the average stress 
increments in the membrane attributable to moderate deformations can be relatively 
small compared to the initial uniform tension, and again the overall tension state will 
remain nearly uniform and the spherical shape will be approached.* 

If we consider pressure-forming cases where large finite deformations are required, such 
as for dish applications and when the membrane material exhibits inelastic material 
response under the applied load, it would also seem possible to attain a spherical shape. 
This would most likely occur if the material yields and has a very uniform and low plastic 
modulus as suggested in Refs. 1, 2, and 3. Then the stresses in the membrane material 
that has yielded will be nearly uniform and, for a membrane of uniform thickness, the 
resulting pressure-loaded shape again will approach a spherical contour. 

Thus the following three major issues must be addressed in more detail to assess the ade­
quacy of pressure-forming optical reflector surfaces: (1) the adequacy with which a 
spherical surface can approximate the ideal parabola, (2) shape distortions relative to 
parabolic and spherical contours caused by elastic material response, and (3) membrane 
surface shapes resulting from inelastic material response. These three issues will be 
addressed in the above order, and we will provide a quantified description of the 
structural/surface contour response of the optical membrane surf ace to aid in the design 
of stretched-membrane concentrators. Since the emphasis of this investigation is on dish 
applications, the most extensive descriptions and discussions will be presented for the 
large deformation analyses in which inelastic material response is dominant. 

* Actually for the cases studied in Ref. 8, _(f
0

/D > 2.0) the ideal parabolic shape can be 
approximated quite well with a perfect spherical shape. 
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2.0 SPHERICAL SURFACE APPROXIMATION TO A PARABOLIC SURFACE 

We now address the question of how closely a perfect sphere approaches the ideal para­
bola. Figures 2-1 through 2-3 illustrate a few relative comparisons of perfect parabolas 
and spheres in terms of common surface shape parameters used in the structural shell 
and concentrator analysis disciplines. Because the comparison assumes perfect shapes, 
and because no detailed optical performance analysis has been carried out, these relative 
comparisons should only be used to indicate where potential problems may exist and not 
as quantified estimates or indicators of likely optical performance of the respective 
concentrator types. 

Focal length is a commonly used parameter to describe concentrating and, in particular, 
imaging parabolic solar reflectors for a wide range of design parameters and appli­
cations. In subsequent discussions, we will denote the focal length at the concentrator 
vertex by f

0 
whether the concentrator is parabolic or not. For a perfect parabolic 

reflector revolved about its axis, any incoming light rays that are parallel to the axis of 
the collector will be redirected to, and focused at, the focal point P as shown in 
Figure 2-la; thus the parabolic reflector is characterized by a single focal length, which 
we will call f as indicated in Figure 2-la. The situation with a perfectly spherical 
reflector is no~ so simple and cannot be characterized by either a single focal length or 
single focal point. Rather, for a perfect spherical surface, the light rays that are paral­
lel to the axis of revolution will be reflected to different points along the axis of the col­
lector. Figure 2-lb shows the geometry considered in these preliminary analyses. q,

0 
and 

<l>e correspond to the rim angle using the ideal focal point (f
0

) and the actual focal point 
corresponding to the edge of the collector (fe), respectively, as described in 
Figure 2-lb. We also assumed that the vertex of the spherical surface has the same posi­
tion and focal length as the parabolic surface of interest. The rim angle of the collector 
is the angle formed between the axis of the collector and the line connecting the focal 
point to a point on the collector rim. We will use this focal-length variation often in sub­
sequent sections to indicate the deviation from a parabola, which is characterized by a 
single focal length, as noted ear lier. 

In Figure 2-2 we show the deviation in focal length between a geometrically perfect 
sphere and a geometrically perfect parabolic surface, each having the same aperture 
area as described in Figure 2-1. Here, the ratio of the focal length (corresponding to the 
edge of the dish) to that of the center (fe/f

0
) is shown as a function of the ratio f

0
/D. 

When using Figure 2-2, remember that a perfect parabola has a constant focal length 
f • On the right ordinate, we show the value of either <I> or <l>e, both as described in 
i:Agure 2-1. In this plot, we see that there is virtually no di?ference between the perfect 
parabola and the sphere approximation above an f /D of 2.0. However, as the value of 
f /D falls below 2, and in particular below about ~.6, the deviation of the sphere from 
tRe parabola is quite dramatic. Indeed, for the spherical surface with an f

0
/D of 0.288, 

which corresponds to a <I> of 90°, <I> has a value of 120°, and rays reflected from the 
edge of the reflector are ~irected to lhe apex of the spherical surface. As a comparison, 
note in this figure that at f /D values of about 0.6, 1.0, and 2.0, the corresponding 
deviations of the spherical surface from the parabolic surface in terms of fe/ f

0 
are about 

0.90, 0.967, and 0.992, respectively. 

Finally, in Figure 2-2 we also indicate on the ordinate the corresponding nominal f /D 
values for various current prototype parabolic dish and heliostat module designs. 'rhe 
test-bed concentrator (TBC) [15,16] with an f

0
/D of 0.6, corresponds to a high­

performance state-of-the-art glass/metal parabolic concentrator developed under DOE's 
guidance; it is not a stretched-membrane concentrator. The TBC [15,16] is typical of 

3 
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numerous current glass/metal concepts with which stretched-membrane concepts must 
compete in terms of cost and performance. The German dish, with an f

0
/D ~ 0.8, cor­

responds to the first-generation German/Saudi stretched-membrane prototype parabolic 
dish design that was designed and fabricated to demonstrate the concept's feasibility 
[1,2,3]. Thus we can see that the range of f

0
/D's from 0.6 to 1.0 is appropriate for large­

facet dish applications. The LaJet [6] concentrator uses many small-diameter stretched­
membrane facet elements, each with an f

0
/D of 3.5 as indicated in Figure 2-2. The 

"typical large heliostat" in Figure 2-2 is representative of many current large glass/metal 
heliostats [17,18] as well as the large stretched-membrane concepts that are currently 
being developed by Sandia National Laboratories [10,11]. Figure 2-2 shows that typical 
large-facet dishes will not only have f

0
/D's in the range 0.6 to 1.0, but that this also cor­

responds to an f
0

/D range in which significant differences between the spherical and 
parabolic shapes start to emerge. 

In Figures 2-1 and 2-2, we assumed one particular "fit" to the parabolic surface (i.e., we 
assumed that the sphere and the parabola had the same position and curvature at the 
vertex). Other fits are possible that may provide a better match between the two sur­
faces for optical performance. We can investigate other fits using an rms surface error 
approach that is often used to assess concentrators in which the slope deviations cor­
responding to a perfect parabola as compared to a sphere (or any specific contour of 
interest) are expressed in terms of a surface averaged rms slope error or deviation. The 
slope deviation approach can be used to accurately indicate the optical performance of a 
given concentrator only when used with a baseline optical analysis if the errors 
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(deviations from the perfect parabola) are randomly distributed and small. When the 
deviations are neither random nor small (such as when considering systematic deviations 
in a sphere as measured relative to a perfect parabola), such an approach cannot in 
general be used to accurately quantify changes in optical performance. This rms slope 
error approach can, however, be used to indicate trends in the deviations between 
specific surfaces and to give a qualitative indication of when two surfaces have signif­
icantly different profiles. We use the rms slope error measure in Figure 2-3 to show the 
effects of using different approaches to fitting the sphere to the parabola. Each of these 
fits corresponds to a different way that a sphere, having the same aperture as the para­
bola, can be configured to approximate the parabolic surface. In the first case, shown in 
Figure 2-3, the parabola is assumed to have the same vertex position and curvature at 
the vertex as the sphere. (This is the same situation as described in Figure 2-1). In the 
second case, the sphere and the parabola are assumed to have coincident edge and vertex 
positions. Finally, in the third case, the spherical and parabolic surfaces are assumed to 
have the same slope and position of the rim edge. We see that each of these measures 
gives qualitatively similar results over the whole range of f

0
/D's regardless of the fit 

procedure used. Further, Figure 2-3 shows that none of the three spherical surfaces 
closely approximates the parabolic shape when f /D is small but all are adequate when 
f

0
/D is large (>3.0). Clearly this whole issue of tie preferred approach for attaining the 

best fit must be coupled with an optical analysis to fully resolve this problem. Such 
analyses are currently being carried out at SERI. 

One can avoid the primary problem of differences between spherical and parabolic sur­
faces associated with short focal lengths since it is possible to approximate a single 
large-area parabolic dish facet having a small f 

0
/D with a number of smaller area facets, 

each with relatively much larger facet f,q/D's. * This is similar to the concept of multiple 
small-area facets developed by LaJet Lb]. This question arises when designers wish to 
avoid primarily the manufacturing problems associated with large-diameter facets that 
have a small f

0
/D and also the associated spherical aberration problem. In Figure 2-4, 

we illustrate the approximate number of small-area facets required to make an equiv­
alent large-area dish having a small f /D as a function of small-area-facet f /D. We 
have done this for two baseline equiva?ent large-area facets with f

0
/D's of o.6° and 1.0, 

respectively. Here we see that many facets are required to approximate a larger area, 
small-f

0
/D dish consisting of small facets that have much larger f

0
/D's. Furthermore, 

we see that the number of required modules can drop significantly if the f
0

/D of the 
nominal larger area dish is increased; consider the drop in the number of required small­
area facets by decreasing the f 

0
/D of the nominal large-area facet from 0.6 to 1.0 as 

shown in the Figure 2-4. 

*We will not go into detail here since it is beyond the scope of this work, but we have 
compared only axisymmetric parabolic and spherical contours having the same axis of 
symmetry. Additional optical and shape-matching difficulties will occur when we try to 
match a local nonaxisymmetric portion of a parabolic shape (e.g., at the edge of the 
parabola) with a corresponding local spherical shape. 
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3.0 SHAPE DISTORTIONS CAUSED BY ELASTIC MATERIAL RESPONSE 

In addressing the membrane deformations corresponding to elastic material response, we 
can use the information developed in Ref. 8 to describe the deformation processes of the 
membranes that are subjected to axisymmetric, uniform pressure loading and with var­
ious levels of pretension. Other assumptions used in Ref. 8, and which are used here, are 
initially flat shapes before pressure loading, uniform membrane thickness, linear elastic 
material response, and a nonlinear strain/deformation relationship. Also, our discussion 
here will focus on assumed rigid-boundary conditions, although we do discuss nonrigid 
membrane attachments in Ref. 8. Further, note that we considered and correlated our 
analysis predictions for nominal f 

0
/D's from about 12.0 down to 3.5 in Ref. 8. As noted 

earlier, ff/D = 12.0 is typical of very short focal-length heliostats, while f
0

/D = 3.5 is 
typical o the small-facet dish concept developed by LaJet [18]. 

In Figure 3-1, we show the geometry for a typical stretched-membrane heliostat or dish 
reflector module. Here the focal length is denoted by f, the local radius by r, the total 
radius of the membrane (which is assumed to be attached to a rigid toroidal support 
frame) by a, the uniform pressure applied normal to the membrane by P, and the radial 
membrane displacement by u. In Figures 3-2 through 3-5, we show the nondimen­
sionalized deformation (w/a) versus normalized radial position (r/a), the slope versus 
normalized radial position, the normalized focal length (f/f

0
) versus normalized radial 

position, and the normalized membrane tensions (Tr/T
O 

and T 8 /T 
0

) as a function of radial 
position, respectively. T 

0
, Tr' and T 8 represent the initial, local radial, and local circum­

ferential membrane tensions, respectively. f
0 

and w o. correspond to the membrane focal 
length and displacement at the membrane center, r = u. 

In Figures 3-2 through 3-5, we plotted results for two specific membrane designs selected 
from those studied in Ref. 8. One membrane design is of steel construction (Case 1) with 
a nominal f

0
/D of 12.2, whereas the other membrane design (Case 2) corresponds to a 

polymer membrane with a nominal, fairly short focal length (nominal f /D of 3.5). The 
material properties and geometry of the short focal-length polymer memirane and longer 
focal-length metal membrane are listed in Table 3-1. Figure 3-2 (normalized displace­
ment versus normalized radial position) shows that based on simple visual inspection of 
the relative surface deformations, there is good agreement between the predicted elastic 
solution and an ideal parabolic solution for these two cases. However, in Figure 3-3, we 
see more clearly the development of deviations in slope from the desired slope corre­
sponding to the parabola. Note that, from an optical performance perspective, differ­
ences in slope will affect the ability to accurately focus the reflected energy at the 
desired focal point quite heavily; this is because surface slope determines the direction in 
which reflected rays are directed. Furthermore, in Figure 3-4, we see the impact on 
optical focusing performance more clearly by investigating the focal-length changes as a 
function of the radial position for the two cases considered. Note that the long focal­
length case in this comparison has a relatively much greater focal-length change than 
does the short focal-length case* because the effective membrane stiffness of the short 
focal-length design is extremely low compared with the effective membrane stiffness of 

*These examples were chosen to demonstrate the important structural/optical response 
phenomena. A more detailed optical analysis is needed to define the impact on total 
concentrator performance since a given fractional focal-length change will have varying 
effects as a function of nominal f /D (e.g., a 10% change in focal length is not a 
significant issue with large f /D he?iostats but it can have significant impact on the 
performance of short f

0
/D dis~ concentrators). 
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the long focal-length metal membrane design (compare the respective values of Et/T
O 

in 
Table 3-1). As a further comparison, we also show in Figure 3-4 the predicted focal­
length pattern for Case 3, which assumes a polymer membrane similar to that used in 
Case 2 but with reduced tension (T

O
= 350 N/m) and increased thickness (t = 0.102 mm); 

see Table 3-1. It is also interesting to note that the effects from the spherical shaping, 

Table 3-1. Geometry and Material Properties of Elastic Membranes 

Case l (Steel) Case 2 (Polyester) Case 3 (Polyester) 

E, GPa (106 psi) 209 (30) 3.79 (0.55) 3.79 (0.55) 

t, mm (in.) 0.254 (0.010) 0.051 (0.002) 0.102 (0.004) 

T 
0

, N/m (lb/in.) 4378 (25) 1751 (10) 350 (2) 

a, m (in.) 5 (197) 0.762 (30) 0.762 (30) 

f0 /D 12.2 3.5 3.5 

Et/T
0 

12,000 110 1100 

Source: Ref. 8. 
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and from the elastic stress nonuniformity, lead to the same qualitative behavior in which 
the focal length is largest in the center and decreases monotonically to a minimum at the 
edge. Study of the membrane stresses gives us further insight into this issue as shown in 
Figure 3-5. We see in Figure 3-5 that for the metal-membrane case, the relative and 
absolute tension increments increase significantly both as a function of radial position 
and in the radial and circumferential directions. However, for the shorter focal-length 
polymer membrane, we see very little increase over the initial tension and hence fairly 
uniform stress contours in the membrane, both in direction and as a function of position. 
Thus, using equilibrium arguments, we see that the optical quality characteristics of the 
short focal-length reflector are better because of the nearly uniform stress state, which 
accrues primarily because of the low effective membrane stiffness, as noted earlier. 
With respect to Figure 3-5, and all the cases studied [8], note that the stress components 
peak in the membrane center and decrease monotonically with radius. Moreover, in all 
cases, the peak stress in the membrane center causes the elastically deformed membrane 
to be flatter in the center and have more curvature near the membrane edge than exists 
for either the spherical or desired parabolic optical shape. 

As noted earlier, we looked at f
0

/D values above 3.5 in Ref. 8. In this particular case, it 
was shown (see discussion of Figure 2-2 in Section 2.0) that the deviation of a perfect 
sphere from that of a perfect parabola (in terms of focal-length variations) is extremely 
small. Hence, it is important to note that change in focal length [8], as seen in 
Figure 3-4, is almost entirely due to the nonuniform stress distribution caused by the 
elastic deformation. This is seen by comparing the surface distortions relative to the 
desired parabolic shape caused by spherical shaping effects and those effects caused by 
nonuniform membrane stresses resulting from elastic deformation by plotting fe./fJJ 
versus f

0
/D as in Figure 2-2. The results of this comparison are shown in Figure J-b, 

where an initially flat membrane was deformed elastically into an approximate sphere. 
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The membrane was assumed (1) to remain elastic during the entire deformation process 
and (2) to have a modulus equal to that of steel even though a real steel membrane yields 
the smaller values of f /D, as shown in Figure 3-6. If we compare the results in 
Figure 3-3 with those in 'Figure 2-2, we see clearly that the focal-length deviation from 
the parabola caused by the elastic stress nonuniformities is considerably larger than the 
corresponding deviation caused by spherical aberrations (by almost two orders of magni­
tude down to f

0
/D values of about 1.0). Further, if we investigate the variation between 

a perfect sphere and a perfect parabola, we do not see signif it ant differences between 
the corresponding focal lengths until f

0
/D becomes smaller than about 2.0. Moreover, 

Figure 3-6 shows clearly the strong dependence of optical quality on f
0

/D and the dimen­
sionless stiffness parameter Et/T 

0
• The deviation from the ideal paranoia decreases with 

increasing f
0

/D and with increasing Et/T
O 

(caused by low material moduli, small 
membrane thickness, and high membrane tension). 
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4.0 MEMBRANE SURF ACE SHAPES CONSIDERING INELASTIC MATERIAL 
RESPONSE 

Before proceeding with the inelastic analyses, we will investigate the onset of inelastic 
effects and the limits to elastic membrane effects by using elastic analysis procedures. 
Subsequently, we will study the elastic/plastic deformation process of the pressure­
loaded membrane using the numerical finite-element procedure embodied in the ANSYS 
[19] computer code. Finally, note that one assumption, which we will use throughout this 
section unless otherwise noted, is that the initial tension in the membrane is zero. Since 
we will be concerned with generally very large deformations and hence strains, this 
assumption will have little impact on our results. We will address this point in more 
detail later. 

4.1 Limits on Elastic Response 

Consider first the limits on elastic deformations. We can use the analysis in Refs. 8 and 
9 to obtain approximate values of stresses and strains attributable to pressure forming of 
the membrane surface. Further, from these analyses, we can make some simple geo­
metric arguments that can help us understand the problems and issues (such as size and 
f 

0
/D limitations) associated with the design and fabrication of large stretched-membrane 

modules with short focal lengths, as well as the elastic and plastic deformation regimes 
that might be anticipated. We will adopt the commonly used term dish concentrator for 
the short focal-length concentrators in subsequent discussions. 

Figure 4-1 shows one approximation for average strain* versus the nominal f
0
/Dt for an 

elastic membrane material based on the analysis developed in Ref. 8. Here we see that 
for the ranges of f,/D's that are typical of those corresponding to short focal-length dish 
concentrators, such as the U.S.-built test bed concentrator [15,16] and the German [l] 
dish designs (i.e., for f 

0
/D's between 0.6 and 0.8), a significant amount of strain exists in 

these membranes (i.e., between 1.5% and 3% strain on average). This indicates, as we 
will see more clearly later, that inelastic behavior is almost certain to occur with metal 
membrane materials in single-facet dish applications when the f

0
/D's are typically below 

2.0. This is because the strain to yield for typical steel materials is about 0.1 % to 0.15%, 
whereas for typical aluminum materials, the strain to yield is on the order of 0.3% to 
0.35%. 

In Figure 4-2, we show the peak-forming stress in an elastic membrane as a function of 
nominal f /D for the membrane surface. The peak-forming stress is the stress that 
occurs in ~he membrane center because of its shape change, when the initial pretension 
in the membrane is not considered. Four points are illustrated in this particular figure. 
First, with increasing f

0
/D, the peak-forming stress for the different materials rapidly 

decreases. Second, we see that as the modulus of the materials increases, the peak­
forming stress f~x a ~iven f

0
/D increases proportiona6ely ~ Further, w~en we consider 

aluminum mater~l with a modulus of 77 GP a ( 11 x 10 psi) and steel with a modulus of 
207 GPa (30 x 10 psi), along with typical yield stresses for these materials, it is obvious 

* A single uniform average strain over the membrane was assumed, and its amplitude was 
determined using the principle of minimum potential energy. 

tWe will use the term f
0

/D as a measure of the nominal f/D for the dished surface. 
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that steel membranes will typically yield at f /D levels that are below approximately 
3.5. In addition, aluminum membranes will progably yield below f

0
/D levels of about 2.0 

to 2.5. With polymer materials, however, because of the relatively low modulus, it may 
be possible to reach significantly lower f 

0
/D's while maintaining elastic response. 

Clearly, from the shape of these curves, it appears that it would be very difficult to 
make any kind of a totally elastic membrane dish design having an f 

0
/D below 1.0 regard­

less of the membrane material used. 

Using the information in Figures 4-1 and 4-2, we see that anticipated average strains for 
typical single-module dish designs are fairly large (about 3% for f

0
/D values of about 

0.6). This implies that membrane materials will have to be fairly ductile, having a signif­
icant strain-to-failure capability, possibly one that is considerably larger than the 
average strain. This indicates a need for either ductile aluminum or ductile stainless 
steel alloys if common metals are selected for the membrane and if small f 

0
/D designs 

are desired. Further, for these thin-membrane sheets, local necking of the material may 
lead to catastrophic tears unless good ductility is present. This is an especially impor­
tant issue since for many metals strain-to-failure often decreases with membrane thick­
ness. Note, however, that work hardening, which is operative in many candidate 
membrane metals, can help deter catastrophic necking and tearing. Note also that 
although many polymer and composite materials exhibit large elastic strain capabilities, 
rupture failure often (though not always) occurs at the onset of plastic yielding. Hence 
for many of these polymer materials, plastic flow is not an option. 
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4.2 Large Deformations Accompanied by Inelastic Material Response under Increasing 
Loads 

Figures 4-3 through 4-14 describe some of the results from the analysis of large, finite 
axisymmetric membrane deformations with inelastic material response. These analyses 
of pressure-induced, finite-deformation, shape-forming processes were carried out using 
the finite-element code ANSYS [19], which is widely used in the structural engineering 
community. In these analyses, an axisymmetric, conical shell element was used and the 
deformations of the nodal points were calculated. Local-surface curvatures, slope, and 
focal-length predictions were determined by using the ANSYS predicted surface nodal 
displacements along with a central finite difference scheme to determine the higher 
derivatives. The assumptions used in the inelastic analysis are similar to those used for 
the elastic analysis except that the membrane material is assumed to exhibit bilinear 
material response; i.e., elastic response followed by nearly perfect, or perfectly plastic, 
response. The inelastic analyses were performed for a steel (7 .5 m radius) membrane 
having the geometric and material properties described in Table 4-1. Further, as in the 
elastic examples, the membrane is assumed to be attached to a perfectly rigid boundary 
attachment. It is clear that this inelastic material response, described more fully later, 
is nonlinear and nonconservative and that the final deformation, stress, and strain states 
will depend on the loading his-tory. Thus, the deformation process described here using 
ANSYS considers both geometric and material nonlinearities. 
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For all the inelastic analyses performed, a uniform pressure of 500 Pa was first applied 
on the membrane surface. The material response was elastic at this load level. The 
pressure load was then increased to 900 Pa, at which level the material at membrane 
center just began to yield. Inelastic material response became operative thereafter and 

Table 4-1. Geometric and Material Property/Response Assumptions Used 
in the Inelastic Analyses 

Membrane Material 303 Stainless Steela Elastic/Perfectly 
Plastic Case 

Membrane radius, m 7.5 7.5 

Membrane thickness, mm 0.254 0.254 

E, elastic modulus, GPa 193.050 193.050 

Ep, plastic modulus, GPa 0.829 0 

Yield stress, MPa 207.000 207.00 

Yield strain 0.001 0.001 

Ultimate stress, MPa 620.000 207.00 

Ultimate strain 0.50 0.50 

asource: Ref. 21. 
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the pressure load was gradually increased to a peak-forming pressure of 3000 Pa in 
increments of 300 Pa. Further, the pressure was gradually reduced to l 000 Pa in load 
steps of 500 Pa after the peak load was reached, to study the impact of unloading on the 
optical performance of the membrane surface. We were not able to obtain a stable solu­
tion with ANSYS with work-hardening or non-work-hardening material response when the 
pressure was significantly above 3000 Pa. · 

Inelastic material response can, in general, be described by using an appropriate yield 
criterion, a flow rule, and a hardening law. The von Mises yield criterion [20] was used in 
this analysis with ANSYS, which includes the effects of finite deformations and rota­
tions. The assumed flow rule used in these analyses is the one derived by Prandtl-Reuss 
[20], in which no volumetric plasticity will occur. Consistent with the von Mises yield 
criterion and the Prandtl-Reuss flow rule, the concept of equivalent strains is used and is 
employed in subsequent discussions to conveniently reduce the general multidimensional 
stress/strain states in the body under consideration to those associated with a uniaxial 
stress/strain relation, such as that provided by a simple uniaxial tensile-test. Theoretical 
developments of the equivalent strain description using the Prandtl-Reuss flow rule are 
found in Ref. 20. Material stress stiffening was modeled using the kinematic work­
hardening description [20]. Kinematic work hardening is characterized as in Figure 4-3b 
where, if the material has yielded and then unloads (see point A in Figure 4-3b), the 
stress level must be reduced by a value of two times the elastic yield before yielding in 
the reverse direction will occur (see point B in Figure 4-3b). Further, the parameters 
chosen for the kinematic work hardening as given in Table 4-1 correspond to 303 stainless 
steel [21]. Those corresponding to the elastic/perfectly plastic (non-work-hardening) 
material response are identical to the stainless steel parameters except that the plastic 
modulus is set to zero. We will use these two sets of parameters to define the effects of 
work hardening on the large deformation process. In the analysis up to this point, we 
have used f

0 
to characterize the focal length of the surface and to normalize the results 

since the maximum focal length has occurred at the vertex (this is always the case in 
elastic analyses). When large deformations are accompanied by inelastic material 
response, an inelastic region starts to develop from the center proceeding toward the 
edge of the membrane as the pressure load is increased. This central part of the mem­
brane deforms closely into a parabolic shape, which provides a broad, nearly constant, 
focal-length region between the center and the membrane edge. Hence, in subsequent 
discussions, we will use f

0 
to denote this peak focal length as a measure of the nominal 

focal length of the surface. 

In Figure 4-4, we illustrate the predicted required applied pressure to deform the mem­
brane to a given f /D for the work-hardening (i.e., 303 stainless steel) case and the non­
work-hardening (i.t, elastic/perfectly plastic) case.* Here we see the dramatic increase 
in pressure required to reach very small f /D's. This is caused primarily by the shape­
induced stiffness effect, since the more cJrved the shape is the more the membrane can 
support the applied pressure load like a shell. The effect of work hardening is also seen 
at small f /D's where, because of the increased material stiffness, somewhat more pres­
sure loadiRg is required for the work-hardening case. The work-hardening effect is quite 
small primarily because the plastic modulus in the work-hardening case are relatively 
small compared to the elastic modulus (i.e., Ep/E = 0.0043). 

*It can be easily shown that, for a rigid/perfectly plastic material, 

P · (f/D) = (ay · t)/D 

and that this relation provides a reasonable approximation to the curves shown m 
Figure 4-4. 
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In Figure 4-5, we show the equivalent 
strains as a function of nominal f

0
/D, cor­

responding to the membrane center and at 
the membrane edge for both the work­
hardening and non-work-hardening mate­
rial-response assumptions. The peak 
equivalent strain occurs at the membrane 
center while the minimum equivalent 
strain occurs at the membrane edge. Each 
of these curves shows the same general 
trend with f /D as in Figure 4-4. We see 
that the diffurences between the equiv­
alent strains in the center and at the edge 
are considerably different and increasingly 
so at small f P/D's, whereas at large fp/D's 
they are fairly similar. Further, we see 
that the impact of work hardening is hard­
ly detectable until small fp/D's are reach­
ed. We can also see the cause of these 
differences by investigating the associated 
stress distributions, which will be dis­
cussed later. Also in Figure 4-5, we see 
that the peak-equivalent strain versus 
f
0

/D curves for membranes considered in 
this work are very similar to the elastic 
curve described in Figure 4-1. This sim­
ilarity is essentially attributable to 
compatibility requirements that govern 
the permissible strain-displacement rela­
tionships. Further, Figure 4-5 shows that 
yielding begins (i.e., equivalent strain 
>0.1% microstrain) at the membrane 
center at an f /D value of about 4.2, 
which agrees wi& the information given in 
Table 4-1 and Figure 4-2. 

In Figure 4-6, we have plotted the yield 
locus as a function of applied pressure and 
normalized radial position. The yield 
locus is the maximum radial distance 
measured in the plane of the membrane 
surface, from the center, out to which 
yielding has occurred for a given pressure 
loading, for both the work-hardening and 
non-work-hardening cases; the differences 
between the two loci corresponding to 
work hardening and non-work hardening 
were extremely small and are not detect­
able on the scale presented. We see in 
Figure 4-6 that no yielding occurs until 
the pressure reaches about 900 Pa. 
Beyond pressure loadings of about 900 Pa, 
however, the yield surface moves rapidly 
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Figure 4-6. Membrane Material Yield Locus as a Function of Normalized Radius 
for Work-Hardening and Perfectly Plastic Material Response 

toward the radial fixed attachment at a normalized radius of 1.0 (i.e., r/a = 1.0) with 
very little increase in pressure. However, at a normalized radius of about 0.85, a 
significant pressure rise is needed to extend the plastic yield zone toward the radial 
constraint. This is consistent with the drop-off of the circumferential and radial stress 
components (for the loading cases corresponding to 1500 Pa and below) as a function of 
increasing radius, as we see in Figures 4-7 and 4-8. 

Figure 4-7 illustrates the circumferential membrane stress component in the membrane 
as a function of nondimensionalized radial position r/a for various levels of pressure for 
both work-hardening and perfectly plastic material response assumptions. Here we see 
that when the membrane is still elastic at an applied pressure of 500 Pa, a significant 
variation in the circumferential stress occurs as a function of radial position, which is 
similar in nature to the stress profiles shown in Figure 3-5. At 900 Pa, however, the 
membrane has yielded and the stress contour is fairly flat up to a normalized radius of 
about 0.35. At 1500 Pa, a much greater amount of plastic yielding has occurred and the 
membrane stress contour is again quite flat, now out to a normalized radius of approxi­
mately 0.80. In addition, the effect of work hardening is evident in Figure 4-7 by 
comparing the work-hardening and non-work-hardening cases directly for the different 
loading conditions. The difference between the work-hardening and non-work-hardening 
stress contours corresponding to 900 Pa is quite small since at this pressure very little 
plastic flow has occurred. At 1500-Pa loading, about four times as much plastic straining 
has occurred (see Figures 4-4 and 4-5) in the center and the effect becomes quite notice­
able. Also, at 1500 Pa, the work-hardening and non-work-hardening curves converge at 
large radii where the plastic flow is much smaller. At 3000 Pa, the effects of work 
hardening are much more noticeable in the membrane center region. Further, at a pres­
sure loading of 3000 Pa, significant yielding occurs all the way out to the edge and a 
rapid drop-off in stress does not occur as in the loading cases of 1500 Pa and below. The 
circumferential constraint at the attachment retards the plastic flow at moderate 
pressure loadings. 
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In Figure 4-8, the radial membrane stress component is shown as a function of the 
normalized radius for the same pressure levels described in Figure 4-7. Here again, we 
see effects similar to those described in Figure 4-7 except that the variation with radial 
position is not nearly as great for any of the cases considered. Again, this is consistent 
with the findings from the elastic analyses, where the variation in the circumferential 
stress for a given loading was significantly greater than the variation corresponding to 
the radial stress distribution. This finding is essentially caused by the displacement com­
patibility constraint caused by boundary condition at the membrane edge. 

Note that, with respect to Figures 4-7 and 4-8, the rapidly increasing nonuniform stress 
state near the membrane edge can cause curvature variations relative to the center 
region where the stress is fairly uniform. Thus the membrane surface region near the 
fixed edge will have more curvature than the membrane center region. 

The nonuniformity in both components of membrane stress as caused by the support con­
straint is accompanied by nonuniform slopes especially near the membrane edge 
support. The membrane slope, as a function of dimensionless ratios (r/a), is shown in 
Figure 4-9. The local slopes, curvatures, and focal length of the membrane were cal­
culated using the procedure described in Appendix A accounting for finite in-plane 
stretch as well as the out-of-plane deflection of the membrane. The behavior shown in 
Figure 4-9 is similar to that that occurs in the elastic cases. Here it is clearly seen that 
the slope of the membrane is quite linear until a dimensionless value of about 0.7 is 
reached. This indicates that the membrane deforms into a nearly parabolic shape up to 
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this radial position. Thus, we expect the curvature to be quite constant with r/a until a 
level of r/a = 0.7 is reached. At r/a values greater than 0.8, a significant change in slope 
is quite visible. Close scrutiny of Figure 4-9 also indicates little impact of work­
hardening (for the cases considered) as a function of radial position. Moreover, work­
hardening effects become most noticeable at higher pressure levels, and at these higher 
pressure levels (and hence higher levels of plastic deformation) the slope is more linear 
out to higher values of r/a with higher levels of load and plastic deformation. 

The curvature response of the membrane is shown more clearly in Figures 4-10 and 4-11 
(corresponding to work-hardening and non-work-hardening material response cases, 
respectively). In these figures, surface curvature* versus normalized radius (r/a) for dif­
ferent applied pressures is presented. In both figures it is seen that curvatures vary sig­
nificantly because of nonuniform elastic stress distribution at pressures less than the 
yielding pressure, 900 Pa. As the pressure exceeds 900 Pa, the membrane surface 
deforms over much of the surface to a shape that closely approximates a sphere having a 
constant curvature. Also, by comparing Figures 4-10 and 4-11, we can see that for pres­
sure levels above 900 Pa, the curvature for the work-hardening case is less than in the 
non-work-hardening cases. This is caused by the work hardening and the associated 
stress nonuniformities that grow significantly at larger pressures and deformations. 

For the same cases described in Figures 4-10 and 4-11, we can determine the focal length 
as a function of radial position. This is shown in Figure 4-12 as normalized focal length 
versus normalized radial position, where the membrane-edge response is very similar to 
the elastic case as described in Figure 3-4. We see that once yielding occurs (i.e., 
P > 900 Pa) the focal length becomes much more uniform, and the best uniformity exists 
at 1500 Pa. At 3000 Pa, the uniformity falls off somewhat, partly because of spherical 
aberration effects. In addition, we see that the non-work hardening (at P = 3000 Pa) 
gives greater uniformity as would be expected because of the more uniform stress state 
in the membrane. We can gain further insight into these membrane response effects in 
another manner by describing the response as in Figures 2-2 and 3-6. 

In Figure 4-13, we show the ratio (fe/fp) of the focal length at the membrane fixed edge 
to the nominal center focal length of the membrane f as a function of nominal f /D. 
Three cases are considered in Figure 4-13. In the first gase, the membrane is subje~\ to 
an initial tension of 10,500 N/m (60 lb/in.) and then to additional pressures applied on its 
surface. Here we see that the correlation between the edge focal length and the nominal 
focal length becomes poorer as f /D decreases until the material yields at an f /D of 
about 5.4, where inelastic deform~tions become predominant. The two lower cufves in 
Figure 4-13 correspond to the case where no initial tension was induced in the membrane 
before the pressure was applied. Once the material yields, the surface shape becomes 
more spherical (on average). The agreement between the edge focal length and nominal 
focal length improves until the difference between the sphere and parabola becomes the 
more dominant effect, as described in Figure 2-2. Also, the second and the third cases 
show the effect of work-hardening and non-work-hardening on the peak focal-length var­
iation. Figure 4-13 shows a slight benefit for perfectly plastic material response 
compared to a work-hardening material response for a small f /D design (i.e., <2.0). Per­
fectly plastic material response provides a slightly better f~/f

0 
in this regime since a 

more uniform stress distribution results. Note also that, in the elastic design range, a 
membrane with no initial tension provides a lower value of fe/fp than does one with 

*Surface curvature is defined as the inverse of the local radius of curvature. In this case, 
we looked at only the radial direction. A perfectly spherical shape would have a constant 
surface curvature. 
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initial tension because the untensioned membrane assumes a very nonspherical shape 
even for small loads. However, as the membrane deforms and attains smaller f /D 
values, the strain increases dramatically and the net average tension increases ~nd 
improves the contour for the initially untensioned membrane somewhat. Eventually, as 
the plastic design range is reached, the effects of the initial tension and the correspond­
ing initial elastic strains become negligible compared to the gross plastic effects and the 
significantly more uniform stress states that now exist. 

Before moving on to the next section, note that we carried out analyses corresponding to 
nominal fp/D levels as low as 0.93. For large strain conditions, accuracy limitations with 
the analysis methods restricted the investigation (see Appendix B). This occurs even 
though significantly smaller f/D levels should be attainable in practice, as has been 
experimentally verified in prior [4,5] and in recent unpublished studies being carried out 
by DOE. 

4.3 Deformation Response Caused by Subsequent Pressure Reduction 

Up to this point, we have considered only uniformly loaded membranes with monoton­
ically increasing pressure levels. Note that for small f

0
/D values the required forming 

pressure is quite high relative to the pressure needed to stabilize the membrane in a wind 
environment.* Hence the forming pressure may be significantly reduced in actual oper­
ations, and the impact of doing so should be investigated. 

In Figure 4-14, we illustrate the impact of the unloading effect on membrane focal 
length by plotting the local normalized focal-length ratio as a function of normalized 
radial position. The pressure on the membrane was gradually reduced from 3000 to 
1000 Pa for both the work-hardening and the non-work-hardening cases. The most 
dramatic focal-length variations due to unloading occur in the center and at the edge. 
Proceeding from the membrane center, the focal length is a minimum at the center, rises 
rapidly out to a radius of about 1.5 m, and tends to level out over much of the membrane 
surface until the edge region is reached. We see that the focal-length variation in the 
membrane center actually increases for decreasing pressure load, thus somewhat 
decreased optical performance near the center can occur with decreased pressure load­
ing. For instance, at membrane center the f/f

0 
ratio drops from 0.96 at a pressure of 

3000 Pa to 0.86 at 1000 Pa. This is caused by a significant drop in tension in the mem­
brane center region as the pressure load is decreased, which is in turn caused by the 
release of elastic strain energy. Further, at the membrane edge region, the focal-length 
variation initially decreases with lowered pressure loading, and the optical performance 
might be expected to improve in this region for small pressure drops. For instance, for 
the work-hardening case considered here, the edge focal length variation decreases with 
unloading from 30 l O Pa to about 2000 Pa; further decreases in pressure loading cause the 
edge distortion to increase, resulting in longer focal lengths. Hence, in certain situations 
the benefit of the unloading effects near the edge may result in an overall optical­
performance improvement because of area considerations. Finally, another effect of 
unloading is that the nominal focal length f

0 
increases slightly as the applied pressure is 

lowered. These effects are caused primarily by the overall elastic rebound and reverse 
yielding processes that accompany the pressure unloading. The unloading process can be 
quite complex because of the hysteresis associated with the loading/unloading history at 

*To put this in perspective, typical survival winds are 90 mph or about 40 m/s, resulting in 
a dynamic pressure of about 990 Pa. In a typical drumlike two-membrane design, as 
shown in Figure 3-1, either membrane will experience about half of this load in the worst 
possible situation. 
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each joint in the membrane. An example of this hysteresis is illustrated in Figure 4-3b 
for the assumed inelastic material responses corresponding to an equivalent uniaxial 
state of stress. 

When considering non-work-hardening or perfectly plastic material response, the load­
deformation response will be similar to that observed in Figure 4-14, as shown in 
Figure 4-15; however, several differences exist. First, a somewhat flatter response 
occurs over much of the radial span. Second, the focal-length-ratio variation in the 
membrane center is not as pronounced as in the work-hardening case. For instance, at 
the membrane center the f/f ratio drops from 0.93 at a pressure of 3000 Pa to about 
0.86 at 1000 Pa. Finally, thi peak focal length was increasingly found to be near the 
radial support as the unloading proceeded (we still used the broad flat region in this case 
to define f p). 
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5.0 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

We have studied the shape-distortion effects relative to the desired parabolic reflector 
shape that is associated with the uniform pressure forming of initially flat, circular 
membranes supported only at the edges. In addition, we have defined the causes of those 
distortions and the response mechanisms leading to the final shapes. We have related 
these surface-distortion effects to variations in focal length over the membrane sur­
face. As such, the aforementioned analyses and results clearly indicate the load and 
deformation inclined shape effects that will cause degradation of optical performance. 
More specifically, based on the results obtained and the assumptions defined above, we 
have reached the following conclusions. 

• Significant shape distortions of pressure-loaded, initially flat membranes, relative to 
the desired parabola, can result from a number of mechanisms, especially in dish appli­
cations. The distortions are attributable to nonuniform tension states in the membrane 
and to spherical aberrations relative to the parabolas. The significant nonuniform 
tension states can result from either elastic or inelastic material response. 

• Pressure-loaded membranes tend to have a spherical shape, which sometimes can 
closely approximate an ideal parabolic surface. A close approximation for larger 
f

0
/D's is the sphere, but for very small f0 /O's this approximation becomes increasingly 

poorer. For elastic membranes, the membrane is always flatter in the center region 
and more sloped near the outer radius than is the perfect sphere, which has the same 
curvature at the apex. In addition, the spherical shape that is approached with plastic 
deformation always has more curvature (i.e., lower radius of curvature and shorter 
focal length) at the outer radius than the nominal perfect sphere does. Thus, it 
appears that the sphere is the best approximation we might approach with the elastic/ 
plastic forming of the metal membranes. 

• Reasonably good spherical shapes that quite closely approximate the ideal parabolic 
contours can be attained with totally elastic membrane systems if f

0
/O > 2.0 and if 

Et/TO is small. When Et/TO is large, nonuniform tension states in the membrane can 
cause unacceptable distortions. Further, if Et/TO is large, the required f /D for 
acceptable surface contours may grow appreciably above 2.0 to limit the dis~ortions 
caused by elastic material response. Further, if f

0
/D < 2.0 even when Et/TO is small, 

the disagreement between the spherical and parabolic contours may be a concern from 
an optical perspective. 

• For heliostats with typical nominal f
0

/D values > 12.0, surface distortions induced by 
plastic- and elastic-material response may be easily avoided by good design proce­
dures. Further, at these f

0
/D values, the difference between the corresponding spher­

ical and ideal parabolic shapes is negligible. 

• For large-diameter single modules with an f
0

/O :5 2.0, the use of metals will in general 
lead to inelastic material response. In fact, for steels, the smallest nominal f /0 
(based on average strain arguments) obtainable without plastic material responsg is 
about 3.5, whereas for aluminum, the corresponding smallest f 

0
/0 is about 2.0. On the 

other hand, high-strength polymers with low moduli may be able to attain low f /D 
levels < 1.0 and still remain elastic when pressure loaded; for f

0
/D's < 1.0 ela~tic 

designs do not appear feasible. 

• Elastic-material response can often lead to significantly larger deviations from a per­
fect sphere than plastic-material response. This is illustrated most clearly in 
Figures 4-12 and 4-13. This is because the plastic deformations will tend to relieve 
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some of the stress nonuniformities caused by elastic deformations and will thus make 
the stress distribution over the membrane surface more uniform; hence the shape of 
the membrane will become more spherical. 

• When under pressure loading, the nonuniformity in membrane focal length always 
increases monotonically with radius and is increasingly nonlinear near the edge. 
Inelastic material response in general causes the nonuniformity in focal length to occur 
at larger radii until f/0 values of about 1.5 are reached. 

• Work hardening, which was considered here, did not appear to have a large deleterious 
effect on the surface contour, although for the cases studied here non-work-hardening 
material response always led to somewhat better focal-length uniformity. The major 
deleterious impact of work hardening appears to be due to the somewhat greater stress 
nonuniformity at the edge of the membrane when work hardening is present. 

• When considering inelastic material response, a small amount of work hardening can be 
beneficial since the increased stress can help off set the decreased membrane thickness 
in regions of large plastic flow near the membrane center, thus keeping the net mem­
brane tension more nearly constant. Furthermore, since the maximum strains occur in 
the center, work hardening can make the flow more stable and lessen the tendency for 
rupture in the center region. 

• A reduction of the forming pressure on a membrane that has undergone large plastic 
deformations worsens the focal-length nonuniformity in the membrane center region. 
Initial pressure reductions also result in better focal length uniformity near the edge. 
Hence it is possible, because of the area effect at large radii, that the overall optical 
effect may improve somewhat for some pressure reduction levels. An optical analysis 
is needed to verify this. For large pressure load reductions we observed increased 
distortions near the edge. These response phenomena that accompany pressure 
unloading are caused by elastic rebound and material hysteresis. 

• Material elastic rebound and hysteresis can have a significant impact on the final opti­
cal shape as seen from our focal length predictions. This will be especially true if the 
operational pressure load on the membrane is significantly lower than the pressure that 
was used to form the membrane shape. 

• 5.2 Recommendations for Further Work 

These analyses have addressed only a portion of the structural response issues affecting 
surface contour. Other issues, which we have not addressed but which can significantly 
affect the surface contour and the optical quality of the membrane surface, include mat­
erial property nonuniformities such as anisotropic modulus effects, membrane-thickness 
nonuniformity, "cabling" effects* attributable to the seams, distortion effects from the 
frame (on which the membrane is attached) displacements and rotations, and nonuniform 
pressure loading. Before embarking on a systematic evaluation of these additional 
effects, it is recommended that we carry out more detailed optical analyses of the 
shape-distortion effects defined in this work. This will help us ensure that the effects 
already identified will not prevent this forming approach from being applied to realistic 
designs. Furthermore, the expense of the kinds of inelastic analyses just completed pre­
cludes an extensive study of systems and parameter variations beyond the design 
approaches that are likely to be considered. Moreover, many of the effects that have not 
been analyzed, in addition to the deleterious effects that we have identified and 

*The so-called cabling problem is caused by the additional material thickness and stiffness 
in the welded regions of the membranes. · 
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quantified in this analysis, can possibly be eliminated or at least significantly lessened by 
using different approaches to surface forming. 

Different, potentially attractive forming approaches deserve further consideration as 
means of effectively forming and attaining highly accurate optical surfaces. For 
instance, nonuniform but axisymmetric pressure loading might be used to alleviate some 
of the problems identified in this report. In addition, using a mandrel to form the mem­
brane might be even more helpful. A mandrel could be used for attaining precise pre­
determined shapes either as a form on which a composite membrane might be laid up or 
as a forming tool to plastically deform a metal membrane. When used with metal mem­
branes, the mandrel has the potential not only to alleviate greatly the difficulties 
addressed in this report, but also to significantly reduce cabling effects caused by welds 
and the effects of anisotropic plastic flow. 
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APPENDIX A 

Membrane Focal Length and Curvature Change Corresponding to 
Finite Deformation 

The focal length and local change of curvature for the deformed membrane which 
was initially flat, can be described by the following procedure. First 
describe the tangent vector at point A as shown in Fig. A-1, in terms of the 
local radial (u) and normal surface (w) displacements by 

where 

and 

Hence 

-+ 1::,v 

-+ -+ -+ 
l::,s = l::,r + l::,v 

= (au e 
ar r 

aw -+e ) 
ar y 

1::,r • 

1::,; = [(1 + au)e - (aw) e ]1::,r 
ar r ar y 

(A-1) 

(A-2) 

(A-3) 

(A-4) 

The slope of the surface at point in Figure A-1 which was initially at 
position (r,o) is now easily determined in the limit as 1::,; = 0 by 

tan f; = 

ey, w 

(1 + au) 
ar 

~ 

V + b.v 

( 
ow ) ..... w-ar b.r 8y 

0, 

~ 
0 
0 

Figure A-1. Nonlinear Geometric Relationship for Membrane Surface 
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wheres is the angle between the tangent vector and the r axis. 

The focal length can then be easily determined using Eq. A-5 and the geometric 
construction shown in Figure A-2. Thus f is seen to be 

f = w - w + (r + u)/tan ~ 
0 

(A-6) 

where w
0 

1s the center deflation of the membrane which 1s held fixed at r = a 
with 

tan~= 2 tan ~/(1 - tan2 ~) (A-7) 

Since~= 2~. 

The local curvature(~) in the meridinal direction can be determined from 
R~ 

f ( r) 

r 
Wa 

w(r) 

1 = d~ 
R~ ds 

= d~ dr 
dr ds 

Solar radiation 

! 

-----------a----------

a, 
a, 

~ 
D 
D 

(A-8) 

Figure A-2. Geometric and Focal Length Description for Membrane Subject 
to Large Deformations 
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From Eq. A-5 it is seen that aw 
dr- d -1 
-" = - tan dr dr 

( ar ) 
1 + ~ 

ar 

= 1 [ _ a2w (1 + au) + aw a2u] 
(l + au)2 + (aw)2 ar2 ar ar ar2 

ar ar 

Further, from Eq. A-4, in the limit as 6; = O, it is seen that 

and hence 

Thus, using Equations 

-+ 
ds = (l + au) 
dr ar 

-+ 
e -r 

-+ 
ds = ldsl = ((l + au)2 + (aw)2)½ 
dr dr ar ar 

A-8, A-9, and A-11 it is clearly seen that 

1 1 2 au) + aw a2u] = 
(aw)z]3/2 

[- ~ (1 + 
au)2 + ar2 ar ar ar2 R [ (1 + 
ar ar 
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APPENDIX 8 

Strain Limitations Impacts on Converged Load/Deformation Solutions 

We have not been able to obtain fully converged load/deformation solutions 
adequate for optical parameter estimations corresponding to f /D's that are 
significantly less than 1.0. The convergence problem does not appear to be 
associated with either large deformations or large surface rotations but 
rather with large strain measures. In particular we found that convergence 
was increasingly more difficult to insure when equivalent strain in the 
membrane center exceeded about 3%. We have, however, observed a definite 
trend in being able to obtain adequate solutions at somewhat lower f/D's using 
thicker membranes. We studied this effect for three membranes with thick­
nesses of 0.254, 0.508, and 0.762 mm, respectively (other geometric and 
material properties of the stainless steel membrane with work hardening, as 
described in Table 4-1, were used for this study). In particular, the 
smallest f/D's obtained (corresponding to converged solutions) for these three 
different membrane thicknesses were 1.17, 1.03, and 0.93, respectively. Of 
course higher pressures are required for thicker membranes to reach specific 
f /D ratios. Thus, maximum predicted forming pressure for these three cases 
were 3000, 8200, and 14,700 Pa, respectively. We also investigated the effect 
of membrane thickness on the relationship between f/D and the equivalent 
strain in the membrane center.* 

For elastic membranes the elastic strain-displacement compatibility conditions 
dictate a specific relationship between the equivalent elastic strain at the 
membrane center (which is always a maximum in the initially flat membrane) and 
the f /D ratio of the deformed membrane, regardless of the membrane thick­
ness.+ A similar relationship also would appear to hold for membranes with 
inelastic material response. This is illustrated in Figure B-1, where 
equivalent strain in the membrane center is shown as a function of f/D for the 
three different membrane thicknesses previously given. 

Figure B-1 shows that for the cases considered, a given f/D ratio implies a 
prescribed equivalent strain at the membrane center regardless of the membrane 
thickness. Further, a disproportionate amount of strain corresponding to 
material thinning and rupture was not observed in the cases studied. Such a 
problem, however, may exist at higher strain levels. Finally our analyses 
indicate that for an f/D: 0.6, the equivalent strain at the membrane center 
would be about 8. 7%; thus requiring about three times the peak equivalent 
strain level for which converged solutions have been obtained. 

>'<As in Section 4.0 1n the body, f/D corresponds to the nominal peak focal 
length of the membrane center region. 

tSee Steele, C. R., 
Transactions of the 
shell the equivalent 

if £ < 0.1. 

"Forming of Thin Shells" Journal of Applied Mechanics, 
ASME, pp. 884, December 1975. He shows that for a thin 
strain in the center can be approximated by: 
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