THE ENTHALPY DIAGRAM FOR THE REACTION

 $\frac{1}{2}$ N₂ + $\frac{3}{2}$ H₂ \longrightarrow NH₃

Energy Conversion Technical Report No. 9

by

R. W. REVIE

1.

Ē.

July, 1975

Department of Engineering Physics Research School of Physical Sciences

THE AUSTRALIAN NATIONAL UNIVERSITY Canberra, A. C. T. Australia

THE ENTHALPY DIAGRAM FOR THE REACTION

$$\frac{1}{2}$$
 N₂ + $\frac{3}{2}$ H₂ \rightarrow NH₃

ENERGY CONVERSION TECHNICAL REPORT NO. 9

by

R.W. REVIE

Engineer

Energy Conversion Group Department of Engineering Physics Australian National University Canberra, Australia

July 1975

CONTENTS

Page

1.Introduction12.Enthalpy of
$$NH_3$$
13. \triangle H for reaction $\frac{1}{2}N_2 + \frac{3}{2}H_2 \rightarrow NH_3$ 44.Enthalpy of $\frac{1}{2}N_2 + \frac{3}{2}H_2$ 105.Recommendations for Future Work116.References147.List of Figures15

1. INTRODUCTION

The aim of this investigation was to establish the enthalpy diagram for the reaction $\frac{1}{2}N_2 + \frac{3}{2}H_2 \rightarrow NH_3$; i.e., the graph of enthalpy, H, vs temperature, T, at various pressures, P. The establishment of the enthalpy diagram is an essential part of the proposed development of a solar energy plant based on the dissociation and synthesis of ammonia. ⁽¹⁾

The approach to the enthalpy diagram in this report is to determine first, in Section 2, the enthalpy of ammonia using

- (a) standard thermodynamic equations at atmospheric pressure;
- (b) the pressure-enthalpy diagram for ammonia, Figure 1; 2 and
- (c) the graph of enthalpy correction for gases as a function of pressure,
 Figure 2.³

The values of ΔH for the reaction $\frac{1}{2}N_2 + \frac{3}{2}H_2 \rightarrow NH_3$ were then computed, in Section 3, following the approach of Gillespie and Beattie⁴ using the Beattie-Bridgeman equation of state. Finally, in Section 4, the enthalpies of the $N_2 - H_2$ mixture were evaluated from the values of H for ammonia and of ΔH for the reaction. The enthalpies of $N_2 - H_2$ were also checked, in Section 4, by independent calculation.

2. THE ENTHALPY OF AMMONIA

Pressure = 1 atm.

It is conventional in thermodynamics to regard the enthalpy of the elements to be zero in their equilibrium states at 25° C.⁵ Accordingly, the enthalpies of nitrogen and hydrogen were taken as zero at 25° C and 1 atm pressure.

The enthalpy of ammonia at 1 atm as a function of temperature was calculated using the basic thermodynamic equation

$$H_{T} = H_{298} + \int_{298}^{T} C_{p} dT \dots$$
 (1)

For ammonia,

$$C_{\rm p} = 7.11 + 6.00 \times 10^{-3} T - 0.37 \times 10^{5} T^{-2} \text{ cal deg}^{-1} \text{ mole}^{-1}$$
 (6)

The enthalpies calculated in this way are shown in Table 1.

TABLE I

Enthalpy of Ammonia as a Function of Temperature

-H Т °C k cal/mole 11.21 0 10.90 37 10.46 87 10.28 107 10.09 1279.33 207 8,39 300 6.17 500 4.97 600 3.71 700

at Atmospheric Pressure

ELEVATED PRESSURES

Enthalpy calculations at pressures greater than 1 atmosphere were based on:

1. Pressure-enthalpy diagram for ammonia, reproduced in Figure 1. ⁽²⁾

Graph of enthalpy correction for gases as a function of pressure reproduced in Figure 2. ⁽³⁾

3.

Calculations based on the P-H diagram (Figure 1) were limited to temperatures below 580° K (307° C), the maximum temperature on the diagram. In using the enthalpy correction graph (Figure 2), the reduced temperature and pressure of ammonia were calculated using the values of 405. 6° K and 111.5 atm for the critical temperature and pressure, ⁽⁷⁾ respectively. The enthalpy values determined are presented in Table II.

TABLE II

Enthalpy of Ammonia as a Function of Temperature at

Elevated Pressures

		-H, k cal/mole								
г ^о с	0	37	87	107	127	207	300	5 00	600	700
P, atn	1					6.1				
1	11.21	10.90	10.46	10,28	10.09	9.33	8,39	6.17	4.97	3.71
100	16.52	15.76	14.75	14.27	12.10	10.04	8.90	6.45	5.17	3.95
300	16.44	15.72	14.79	14.39	13.97	11.81	9.70	6,85	5,53	4.11
600	16.27	15.63	14.77	14.41	14.04	12.43	10.49	7.29	5.89	4. 31
,000	16.05	15.48	14.68	14.36	14.00	12.52	10.69	7.49	6.05	4.47

3. ΔH FOR REACTION $\frac{1}{2}N_2 + \frac{3}{2}H_2 \rightarrow NH_3$

(8) From the definition of enthalpy,

$$dH = TdS + VdP$$
,

where S and V refer to enthalpy and volume, respectively

$$\left. \frac{\partial H}{\partial P} \right|_{T} = V + T \left. \frac{\partial S}{\partial P} \right|_{T}$$

(9) From the Maxwell relation,

:..

$$\frac{\partial S}{\partial P}\Big|_{T} = -\frac{\partial V}{\partial T}\Big|_{P},$$
$$\frac{\partial H}{\partial P}\Big|_{T} = V - T\frac{\partial V}{\partial T}\Big|_{P}$$

Integrating for n moles of gas at constant temperature,

$$H = n \left[V - T \frac{\partial V}{\partial T} \right] dP + nh \qquad (2)$$

4.

where h is the molar enthalpy as $P \rightarrow O$.

From the definition of $\mathrm{C}_{\mathbf{P}}^{}$, the heat capacity at constant pressure,

$$h = C_{o} dT + h_{o}$$

where h_0 is the molar enthalpy at temperature T_0 . As P \rightarrow O, any gas behaves as an ideal gas.

 \therefore $C_P - C_V = R$, ⁽¹⁰⁾

where $\mathbf{C}_{V}^{}$ is the heat capacity at constant volume and R is the gas constant.

$$h = \frac{\int T}{(C_V + R) dT + h_o}$$

. .

$$h = \frac{T}{C_V dT + RT - RT_0 + h_0}$$

$$h = C_V dT + RT + u_0 \dots \dots \dots (3)$$

$$T_0$$

where u_o is the molar internal energy at temperature T_o. The Beattie-Bridgeman equation of state⁽¹¹⁾ explicit in molar volume, V_m, is

$$V_{\rm m} = \frac{\rm RT}{\rm P} + \frac{\beta}{\rm RT} + \frac{\gamma \rm P}{(\rm RT)^2} + \frac{\delta \rm P^2}{(\rm RT)^3} \cdot \cdot \cdot \cdot (4)$$

where
$$\beta = RTB_0 - A_0 - \frac{Rc}{T^2}$$

$$\gamma = -RTB_{o}b + A_{o}a - \frac{RcB_{o}}{T^2}$$

and $\delta = \frac{RB_{o}bc}{T^{2}}$

 A_0 , B_0 , a, b, and c are constants characteristic of each gas, and the values for hydrogen, nitrogen, and ammonia are tabulated in Table III⁽⁴⁾. Differentiating eqn (4) and multiplying by T,

$$T \frac{\partial V_{m}}{\partial T} \Big|_{P} = \frac{RT}{P} + \frac{A_{o}}{RT} + \frac{3c}{T^{3}} + \cdots$$

$$V_{\rm m} - T \frac{\partial V_{\rm m}}{\partial T} \Big|_{\rm P} = B_{\rm o} - \frac{2A}{RT} - \frac{4c}{T^3} + \dots \quad (5)$$

TABLE III

Values of the equation of state constants ⁽⁴⁾ Units: atmospheres, litres mole⁻¹, ^{O}K R = 0.08206

Gas	Ao	a	Bo	b	С		Normal volume
Hydrogen	0,1975	-0,00506	0.02096	-0.04359	0.0504	$\times 10^4$	22.4252
Nitrogen	1.3445	0.02617	0.05046	-0.00691	4.20	x 10 ⁴	22.4015
Ammonia	2.3930	0.17031	0.03415	0.19112	476.87	x 10 ⁴	22.1022

Combining equations (2) and (5),

 \mathbf{n}

$$H = n B_{o} - \frac{2A_{o}}{RT} - \frac{4c}{T^{3}} + \dots dP + nh$$

$$H = B_{0} - \frac{2A}{RT} - \frac{4c}{T^{3}} nP + nh . . . (6)$$

where terms containing powers of P higher than one are omitted.

The heat absorbed at constant pressure by a chemical reaction is

$$\triangle H = \Sigma(\mathcal{V}_{i} H_{i}),$$

where \mathcal{V}_i is the number of moles of substance i in the stoichiometric

equation for the chemical reaction, and is negative if the substance disappears in the reaction. Following the approach of Gillespie and Beattie⁴, using eqn (6),

7.

$$\Delta H = \left[\mathcal{Z}(\mathcal{V}_{i}B_{o_{i}}) - 2\mathcal{Z}(\mathcal{V}_{i}A_{o_{i}}) - 4\mathcal{Z}(\mathcal{V}_{i}C_{i})\right] P + \mathcal{Z}\mathcal{V}_{i}h_{i}$$

A solution for $\mathcal{E}(\mathcal{V}_{i}h_{i})$ is found as follows:

$$C_{V_i} = A_i + B_i T + C_i T^2,$$

where A_i , B_i and C_i are constants for each gas, tabulated in Table IV⁽⁴⁾. From eqn (3),

$$h_{i} = \int_{T_{o}}^{T} (A_{i} + B_{i}T + C_{i}T^{2})dT + RT + u_{o_{i}}$$

TABLE IV

Values of the specific heat constants⁽⁴⁾ Units: cal mole^{-1 o}K⁻¹ R = 1.986847

A	10 ³ B	10 ⁶ C	
4.66	0.70	0.00	
4.82	0.33	0.05	
6.04	0.71	5.10	
	A 4. 66 4. 82 6. 04	A 10 ³ B 4.66 0.70 4.82 0.33 6.04 0.71	

$$h_{i} = (A_{i} + R)T + \frac{B_{i}T^{2}}{2} + \frac{C_{i}T^{3}}{3} - A_{i}T_{o} - \frac{B_{i}T^{2}}{2} - \frac{C_{i}T^{3}}{3} + u_{o_{i}}$$

$$\not{\leq} (\mathcal{Y}_{i}h_{i}) = \left[\not{\leq} (\mathcal{Y}_{i}A_{i}) + \not{\leq} (\mathcal{Y}_{i})R \right]T + \frac{\not{\leq} (\mathcal{Y}_{i}B_{i})}{2}T^{2} + \frac{\not{\leq} (\mathcal{Y}_{i}C_{i})}{3}T^{3} - \not{\leq} (\mathcal{Y}_{i}A_{i})T_{o}$$

$$- \frac{\not{\leq} (\mathcal{Y}_{i}B_{i})}{2}T_{o}^{2} - \frac{\not{\leq} (\mathcal{Y}_{i}C_{i})}{3}T_{o}^{3} + \not{\leq} \mathcal{Y}_{i}u_{o_{i}}$$

Following Gillespie and Beattie,⁴

let I =
$$\frac{M}{R} \left[\mathcal{Z}(\mathcal{V}_{i}A_{i})T_{o} + \frac{\mathcal{Z}(\mathcal{V}_{i}B_{i})}{2}T_{o}^{2} + \frac{\mathcal{Z}(\mathcal{V}_{i}C_{i})}{3}T_{o}^{3} - \mathcal{Z}(\mathcal{V}_{i}u_{o}) \right]$$

where M = 0.43429... is the modulus of the common logarithms.

$$\therefore \mathcal{L}(\mathcal{V}_{i}h_{i}) = \left[\mathcal{L}(\mathcal{V}_{i}A_{i}) + \mathcal{L}(\mathcal{V}_{i})R\right] T + \frac{\mathcal{L}(\mathcal{V}_{i}B_{i})}{2}T^{2} + \frac{\mathcal{L}(\mathcal{V}_{i}C_{i})}{3}T^{3} - \frac{R}{M}I$$

Using the constants in Tables III⁽⁴⁾ and IV⁽⁴⁾ and the value of $\mathcal{L}(\mathcal{Y}_{i \circ_{i}}) = -10059.2$ calories, as determined by Gillespie and Beattie⁽⁴⁾, the equation for Δ H is

$$\Delta H = -\left[0.54526 + \frac{840.609}{T} + \frac{459.734 \times 10^{6}}{T^{3}}\right] P - 5.34685T$$
$$- 0.2525 \times 10^{-3} T^{2} + 1.69167 \times 10^{-6} T^{3} - 9157.09$$

where ΔH is the heat absorbed in the formation of one mole of ammonia from its elements in calories, P is in atmospheres, and T is in degrees Kelvin. Values calculated from this equation are presented in Table V.

The data in Table V are in reasonable agreement with those in Figure 3⁽¹²⁾ which shows the $-\Delta H$ of the synthesis reaction as functions of temperature and pressure, as obtained from theoretical and experimental studies. These values consider 100% conversion into NH_3 , and do not include any heat of mixing of NH_3 with the N_2 and H_2 . The corrected values are appreciably different only for pressures above 300 atm; ^(13, 14) for example, at 300 atm and with a 17.6% conversion, the enthalpy at 500°C decreases by 4%, but under the same conditions at 1000 atm, it decreases by 11%.

TABLE V

Heat evolved ($-\Delta$ H) in the formation of one mole of ammonia from its elements at several temperatures and pressures

		$-\Delta$ H, calories						
т ^о с	0	300	500	600	700			
P, atm	to basis 92	and a state of the second		المهور لارويد من	no da sida			
1	10,630	11,990	12,660	12,890	13,040			
100		12, 430	12, 920	13, 110	13, 230			
300		13, 320	13, 450	13, 550	13,610			
600		14,660	14,240	14, 210	14,190			
1000		16, 440	15, 290	15,090	14,950			

4. ENTHALPY OF $(\frac{1}{2}N_2 + \frac{3}{2}H_2)$

The enthalpy of $\frac{1}{2}N_2 + \frac{3}{2}H_2$ as a function of temperature and pressure was calculated from the enthalpy of NH₃ and ΔH for the reaction $\frac{1}{2}N_2 + \frac{3}{2}H_2 \rightarrow NH_3$; i.e., $H(\frac{1}{2}N_2 + \frac{3}{2}H_2) = H(NH_3) - \Delta H$. The data so obtained are presented in Table VI. As a check on the data obtained by this method, independent data for a 3 : 1 H₂-N₂ mixture were also

obtained in the following ways:

- (a) at 1 atm, by calculation using equation (1). For nitrogen $C_p = 6.66$ + 1.02 x 10⁻³ T cal deg⁻¹ mole⁻¹ (15) and for hydrogen $C_p = 6.52 + 0.78 \times 10^{-3} T + 0.12 \times 10^{5} T^{-2}$ cal deg⁻¹ mole⁻¹ (16)
- (b) at elevated pressures, from the generalized charts for departures of enthalpy from ideal gas behaviour, which are based on the theorem of corresponding states. ⁽¹⁷⁾ The critical pressure and temperature of N₂ were 33.5 atm and 126.1° K, respectively. ⁽⁷⁾ For H₂, the critical constants are 12.8 atm and 33.3°K⁽⁷⁾, but, as discussed by Comings, ⁽¹⁸⁾ in using the theorem of corresponding states, the critical constants of low-molecular-weight gases, such as hydrogen, must be increased by 8 in the calculation of reduced temperature and pressure; i.e., in these cases,

$$T_R = \frac{T}{T_c + 8}$$
 and $P_R = \frac{P}{P_c + 8}$

10

where the subscripts R and C indicate reduced and critical, respectively.

Data obtained in these ways are presented in Table VII

TABLE VI

Enthalpy of $(\frac{1}{2}N_2 + \frac{3}{2}H_2)$ calculated from $H(NH_3)$ and $\Delta H(\frac{1}{2}N_2 + \frac{3}{2}H_2 \rightarrow NH_3)$

т ^о С	0	300	500	600	700
P, atm				学教育的一	. 4
1	-0.58	3.65	6.49	7.92	9,33
100		3.53	6.47	7.94	9.28
300		3.62	6.60	8.02	9.50
600		4.17	6.95	8.32	9.88
1,000		5.75	7.80	9.04	10.48

 $H(\frac{1}{2}N_2 + \frac{3}{2}H_2)$, k cal

Comparison of the data in Tables VI and VII shows reasonable agreement between the data obtained by the different methods. The data plotted in the enthalpy diagram, Fig. 4, are those obtained by difference plus the data in Table VII at 0 and $150^{\circ}C$ and pressures greater than 1 atm.

TABLE VII

Enthalpy of $(\frac{1}{2}N_2 + \frac{3}{2}H_2)$ calculated independently

of H(NH_3) and ΔH

$H(\frac{1}{2}N_2 + \frac{3}{2}H_2)$, k cal						
T ^O C	0	150	300	500	600	700
P, atm						
1	-0.35	1.74	3.84	6.69	8.15	9.61
100	-0.36		3.87			
300	-0.41	1.72*	3.84			
600	-0.43	1.71	3,83			
1,000	-0.23 *	2.08*				

* This value obtained from Figure 2.

5. RECOMMENDATIONS FOR ! UTURE WORK

(a) The heat of mixing of NH_3 , H_2 , and N_2 , should be considered for accurate enthalpy calculations including both incomplete dissociation and synthesis of ammonia.

(b) An investigation of the accuracy of the theorem of corresponding states for the $NH_3 - N_2 - H_2$ system needs to be carried out.

REFERENCES

- P. O. Carden, A large scale solar plant based on the dissociation and synthesis of ammonia. Australian National University, Department of Engineering Physics, Technical Report No. 8, November 1974.
- 2. Imperial Chemical Industries, Billingham Division, Research Department, 24 May, 1950.
- 3. O. A. Hougen and K. M. Watson, Chemical Process Principles, Part II, Thermodynamics. Wiley, New York, 1947, p. 494.
- 4. L.J. Gillespie and J.A. Beattie, Phys. Rev. <u>36</u>, 1008 (1930).
- 5. O. Kubaschewski and E. Ll. Evans, Metallurgical Thermochemistry, Pergamon Press, New York, 1958, p. 9.
- K. K. Kelley, Contributions to the data on theoretical metallurgy. XIII. High-temperature heat content, heat-capacity, and entropy data for the elements and inorganic compounds. Bureau of Mines Bulletin 584. United States Government Printing Office, Washington, D. C., 1960, p. 134.
- 7. W.J. Moore, Physical Chemistry, Second ed. Prentice-Hall, Englewood Cliffs, N.J. 1955, p. 14.
- G. N. Lewis and M. Randell, Thermodynamics, Second ed., Rev. by K.S. Pitzer and L. Brewer. McGraw-Hill, New York, 1961, p. 37.
- 9. Ibid., pp. 104, 665.
- 10. Ibid., p. 46.
- 11. J.A. Beattie, Proc. Nat. Acad. Sci. <u>16</u>, 14 (1930).
- 12. C. A. Vancini, Synthesis of Ammonia, Trans. from Italian by L. Pirt. Macmillan, London, 1971, p. 24.
- 13. K. Kazarnovskii, J. Phys. Chem. (Russian) 15, 966 (1941).
- 14. K. Kazarnovskii, ibid. <u>19</u>, 392 (1945).
- 15. Ref. 5, p. 319.
- 16. Ref. 6, p. 79.
- O. A. Hougen, K. M. Watson, and R. A. Ragatz, Chemical Process Principles, Part II, Thermodynamics, Second ed., Wiley, New York, 1959, pp. 569, 593-598.
- 18. E.W. Comings, High Pressure Technology, McGraw-Hill, New York, 1956, p. 254.

LIST OF FIGURES

Figure

Page

- 1. Pressure-Enthalpy diagram for ammonia⁽²⁾
- Enthalpy correction for gases, from the theorem of corresponding states⁽³⁾
- 3. Enthalpy of ammonia gas formation at various pressures and temperatures (not taking into account the mixing heat of NH_3 and $N_2 + 3H_2$)⁽¹²⁾

4. Enthalpy diagram for the reaction

$$\frac{1}{2}N_2 + \frac{3}{2}H_2 \longrightarrow NH_3$$

10

- 10

FIGURE 3.

-•∆H (kcal/kmol)

FIGURE 4

2

6

A MART

