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1, INTRODUCTION 

The operation of all types of solar energy collect ors depends upon the 

setting up of an equilibrium between the incoming radiant energy and the outgoing 

energy which comprises the various collector losses as well as the useful components. 

It is customary to group the useful component and the losses together as a function of 

absorber temperature and thus distinguish them from the incoming radiant energy. 

The present author is inclined towards the alternative method of grouping viz. 

to consider both the incoming and outgoing radiative components together and distinct 

from the remaining outgoing components. The advantage of this alternative method 

lies chiefly in the fact that the two radiative mechanisms have much in common 

physically as well as analytically and this enables one to visualise the processes 

of optimisation more readily. 

This paper will develop, through sections 2, 3 and 4, the proof of a useful 

theorem which relates the radiative equilibrium temperature of an absorber to 

geometrical parameters. The consequences of this theorem are explored in sections 

5 and 6, and in 7, these consequences are enlarged upon by introducing the non 

radiative losses and useful output. Finally sections 8 and 9 deal with the overall 

Carnot efficiency of an absorber and thermodynamic conversion system. 

2. ENERGY TRANSFER IN A RAY 

Consider two independent elemental ''black" areas dA
1 

and dA
2 

at respective 

temperatures T
1 

and T
2

• The line joining the two elements is at angles e
1 

and 8 
2 

respectively to the normals of the two elements. 

Consider the radiation dF, received by dA
2 

from dA
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Fig. 2.1 



3. 

4. EQUILIBRIUM OF A NON-STORING BLACK BODY 

Here we consider two black bodies one of which (subscript W) is connected 

to an energy source or store and the other (subscript E) suffers no losses to the 

surroundings other than by radiation and is connected neither to source, sink or 

energy store. We are concerned with the equilibrium temperature of body E given 

the temperature T of body W. 
w 

Using equation 3.1 the energy transfer W to Eis: W 
WE 

Similarly from E to W: W = K TE 
4 

EW 

However the total radiation from E may be expressed by 

= FT 
4 

Ii 

w 
Tw '..e----:,:-e-,.,:~~~-:::·~1~~i~~1:·~-',::,,:-:~~t---....,,.,--,;~ 

K:lE ,:<llC:,Et'e 

Since E is in equilibrium it follows that 

4 4 
F TE = K Tw 

ie 

4 
= KT 

w 

4.1 

where ce is that fraction of the radiation emitted by E that is intercepted by W. 

One practical interpretation of this result is: 

In a collecting system using direct radiation from the sun, the maximum 

possible absorber temperature (black body) is simply derived by considering the 

emission of radiation from the absorber and determining the fraction oC of the total 

that is intercepted by the sun. 



4. 

Then T ~ T . oe.114 
absorber sun 4.2 

0 T can be taken as 5900 K . (Brinkworth, Daniels and Duffie, sun 

A. A. C. a). This is true for absorbers with or without optical concentrators. 

5. EFFECTS OF ATTENUATING MEDIUM AND SELECTIVE ABSORPTION 

Here we consider non-black absorbing surfaces and the effects of non- scattering 

attenuation in the transmission medium. 

Fig. 5.1 illustrates the situation with an attenuating medium in which the power 

of the emitted radiation from W to E is attenuated by factor H. This definition of H 

implies that H is a function of the spectral distribution of the radiation entering the 

attenuating medium. In particular, if the radiation source is a black body at 

temperature T , H is a function of T • w w 

w 
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Fig. 5.1 

If we assume that none of the energy absorbed in the medium reaches back to 

Ethen the essential equilibrium at E occurs between the radiation received and 

emitted at its surf ace. It follows that: 

4 4 KT 4 
HKTW = FTE :::;; E 

oC. 

5.1 



If E is non-black, its optical properties may be described in terms of its 

absorptivity a and emissivity e. These two factors are defined as follows: 

5. 

Absorptivity, a, is the fraction of incident radiation that is absorbed over the 

entire spectrum of the radiation. This definition implies that absorptivity is a function 

of both the spectral distribution of the incident radiation and the spectral behaviour of 

the absorptivity function for the absorbing surface. 

Emissivity, e, is the fraction: 

(emitted power)/(power that would be emitted if emitting surface were 

black and at the same temperature). 

This definition implies that emissivity is a function of the temperature of the emitter 

and the spectral behaviour of the absorptivity function. 

The case of a non-black absorber E is illustrated in fig. 5. 2. 
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6. 

In Appendix I it is shown that the maximum value of (TE /T ) with oc = 1 w 
is defined by: 

5,3 

where T is the spectral temperature of the radiation of power H K T 
4 

received s w 
by E. T is defined in the Appendix. s 

6. EFFECT OF A DIFFUSE SOURCE TOGETHER WITH SELECTIVE 
ABSORPTION 

A diffuse source is a scattering medium which behaves like a source when 

irradiated by another source. In the ideal case the scattered radiation obeys 

Lamberts Law. One might expect to be able to assign an effective temperature T
0 

to the diffuse source and also an effective emissivity {or attenuation) H should the 

scattered radiation be non-black. 

In Fig. 6.1 Wis a source irradiating an element dD of the diffuser which is 

shown as a· surface. 
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Fig. 6.1 

The energy transferred from W to element dD of the diffuser D is 

dF 
WD 

= K T 
4 

1 w 

6.1 

l 



7. 

p w is the solid angle subtended by W at dD 

G is the angle of incidence shown in fig. 6.1 

Suppose fraction S of this energy is scattered forward (with a Lambert angular 

distribution). The total scattered energy from dD is therefore dF 
2 

= S K
1 

T w 
4

• 

Accepting that the diffuser has, as a source, an effective temperature T.D and 
4 

emissivity H, the energy radiating from element dD is H 6 dS TD which may be 

equated to d F 
2

. 

It follows, with appropriate substitution of 6.1, that: 

E - s ( :w ;4 cos :1 P w 6.2 

For many applications, e.g. where W is the sun and the diffuser is the atmosphere, 

cos S ,!:=. 1 in which case both Hand TD are uniform over the whole of the diffuser. 

Provided H and TD ~ uniform, the diffuser may now be treated as a source 

in the normal way, e.g. as depicted in fig. 5. 2, and equation 5. 2 describes the 

equilibrating temperature of a surface exposed to this source. 

Thus, changing Twin equation 5. 2 to TD and substituting 6. 2 for E, we have: 

for which equation it has been assumed cos e = 1 throughout the diffuser. 

It follows that: 

6.3 

This equation shows that the idea of an effective source temperature and emissivity 

is irrelevant to diffuser sources. 

The derivation of equation 6. 3 is further discussed in Appendix II together 

with some quantitative consequences. 



7. EQUILIBRIUM OF A NON-STORING BLACK BODY INCLUDING NON­
RADIATIVE LOSSES AND USEFUL OUTPUT 

NON AAOlATIVE 
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Fig. 7.1 

Once derived, the equilibrating temperature TE is one of two important 

parameters which together provide the basis for the further calculation of the 

relationship between absorber temperature TA , radiative losses and useful 

energy output. 

The second of the two important parameters is the gross input radiative 

energy W 
1 

. This is determined by the general formula: W 1 = f3 A w 

where 

A is the projected area of the collector on a designated plane (plane X in 

fig. 7. 2), 

w is the incident energy flux on unit area of the designated plane, 

/3 is an efficiency of collection. 

8. 

7.1 
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:The position and orientation of the designated planeX is chosen as a matter 

of convenience in performing th~ calculations and obviously W 
1 

is independent of this 

choice. It is usually most convenient to orientate plane X to achieve maximum w as 

is indicated in the examples of fig. 7. 2. 

9. 

The efficiency of collection, f3 is simply the fraction of energy falling on area A 

that is primarily absorbed. It is possible, in the case of diffuse radiation, for /3 to be 

greater than one but only for actual surface areas greater than A • 

The gross input flux W 
1 

is considered as being divided into the total re- radiated ener· 

gy WR denoted, as before (with TE ➔ ~ ) by WR = F TA 
4 

and the non radiated output 

i.e. 

However it is known from the definition of TE 

-1-c:J 7.2 



Often the non radiative losses are proportional to (TA - TK ) i.e. the sink 

temperature is ~ual to ambient temperature. In this cas~ WL /W
1 

can be cast in 

a more convenie~t form viz ¥(TA - TK) where use is made of the fact that both 

TE TE 

w
1 

and TE are constant as TA is varied. Equation 8.1 may now be written more 

conveniently in terms of a variable x = TA /TE and a constant c = Tk /TE thus: 

or 'YJ = C(U-L) 
w 

where C (= 1 - c/x) is the Carnot factor; 

U (= (l.-x
4
)) represents the maximum useful energy; 

and L (= ¥(x-c) ) represents the thermal loss. 

The factors C, U and Lare illustrated in fig. 8. 2 together with 11w as 

functions of x. 
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Clearly the peak value of "Ylw is a function of c and Y. 

8.2 

8.3 

11. 



It is easily identified that: 

'i/ = f1i_ / F T 3 = ~ T /W 
/ . E ft 1 

where 

9. OVERALL CARNOT EFFICIENCY FOR A SELECTIVE :ABSORBER 

If the discussion of section 7 is followed through again for a selective 

absorber with absorptivity a and emissivity e, equation 7. 2 becomes: 

where the subscripts ref er to the two absorber temperatures TA and TE • 

The effect of this modification on equation 8. 3 is: 

/ "J ws = C (aA U - L ) 

/ 4 where U = 1 - f x 

and 

12. 

8.4 

9.1 

9.2 

Now clearly f is a function of x previously defined,and when x ~ 1, f ~ 1. 

Fig. 9.1 illustrates how f would vary with a typical e/a function. There are 

two scales, one fore/a as a function of T/T and another for f and U.1 as functions . . w 

.. 
1 

1 

l 
f 

Fig. 9.1 



It is clear that the amount U,,. differs from U is related to how rapidly 

f is varying in the vicinity of x = 1. 

13. 



APPENDIX I 

The question is here posed: what is the maximum possible value of (TE /Tw ) 

(eqn. 5. 2) that can be achieved through manipulation of a and e while taking into 

account the effect of H. 

T<? answer this question it is useful to define the Spectral Temperature of 

radiation. 

Spectral Temperature. Radiation from direction D falling on normal area dA 

through angular aperture cl p_ may be characterised by a temperature T w for 

Fig. I.1 

each spectral frequency • This 

follows from the well known fact that 

the radiation intensity per unit bandwi clth 

dW/a,5. dA. dw 

(figure I. 2). The spectral temperature 

T of radiation from a particular direction 
s 

is defined as the maximum value of T w . 

A corrolary to this definition is that, for radiation H K T 
4 

in fig. 5. 2, T ( T 
w s w 

Using this definition it follows that (uniform) radiation W from a source (e.g. 

radiation HK T 
4 

fig. 5.2) may be represented by: 
w 

W = T ( w) • H (c..>) 
s 

where ,::,0 

X (w) . Y (w) represents the operation / / ( / X .Y .d w )dx.df 
LlX L!.¢ o 

'1A and-'1? are respectively, using the notation of fig. 5. 2, the area of E 

and the solid angle subtended by Wat E; 



T (w) represents the function dW / dp. d.A. d w for th.e radiation from a black 
s ~ .- i.;,;.". -· 

body at temperature T and of the same size and location as the source; and H ( w ) 
s 

is a dimensionless function of w which is 1 at one value of w and := 1 elsewhere. 

The selective absorptivity of the non-black surface can also be represented 

by a function similar to H ( w) - a function which we will call A ( w). 

Radiation T ( w) • H ( w) falling on E will result in power A ( w ) • T ( w). H ('-") 
s s 

being absorbed. In turn, if the surface temperature is TE , the power radiated back 

to the source will be TE (w) • A (w) 

For equilibrium we therefore have 

Now the quantities underlined are in fact the same function of the variable T. 

The following conclusions may therefore be drawn: 

1) If o<. < 1, T <T ; 
E s 

If o(= 1, then either: 

2) H {w) = 1 for all w where A {w) /. o, and then T = T · 
s E. ' 

or 

3) H (w ) < 1 for some w (and always H (w) :f 1), and then TE< T 
8 

. 

The answer to our original question is therefore that TE < Ts ( I. 

Tw T vv 



APPENDIX II 

For the special· case of the diffuser being the atmosphere and the primary 
;• I ' 

I 

source the sun (ex.= 1), equation 6. 3 may also be derived directly from the energy 

balance of the small area .6 E where the incoming flux is S K T 4 and the outgoing 
w 

4 
energy is .6 .6. E TE . 

Equation 6. 3 may also be checked by considering the system illustrated in 

fig. II.1. 

Fig. IL 1 

If element 6 E is close to the diffuser, o( = 1. Further, assume a = e = 1 

and S ;;:; 1. 

It is evident that the radiation crossing an imaginary surface just below 

the diffuser in fig. II. 1 will be the same whether the diffuser is present or absent and 

in the latter case we know from equation 4.1 that TE = T w· 

The same result follows from 6. 3 putting f w = 21i and multiplying by ½ 

to take into account the fact that cos (9 1 averages to this value for every position of the 

element LlE. 

In the special case of the atmospheric diffuser, the result expressed by 

equation 6. 3, viz. 

(:E )4 ~ ! o( S f; 
leads to some '%.teresting conclusions. In this caseO( = 1 and we may take S = • 1 

as a representative real case. Practical selective surface treatments e.g. as developed 



by the csmo, have a/e ~ 10 The solid angle subtended by the sun is 6~sterads 

We may expect therefore for these figures: 

Hence, taking T .= 6000°K, T ~409°K or 136°c. It is possible therefore, with 
W E 

absorbers using this surface treatment, to boil water using diffuse radiation only. 

However, the result of section 7 viz: 

max, possllile collection efficiency =:; = 1-(~ )
4 

indicates that it is not possible to have a thermal output greater than 31 % of the 

diffuse radiation intensity (i.e.~ 31 watts per m 2). When allowance is made for thermal 

conduction and convection losses there is little or no margin for a useful net output. 

On the other hand if a TE of twice the boiling point of water could be 

achieved, i.e. TE~ 746°1(, the maximum collection efficiency for diffuse radiation 

would be close to 1 (i.e. 15/16). This in turn could be achieved by an a/e ratio of 110 

(and, of course, we require a ~ 1). 
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