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FLUX DISTRIBUTION AND INTERCEPT FACTORS IN THE FOCAL REGION OF 
A FACETED PARABOLOIDAL DISH CONCENTRATOR 
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Illumination of the full moon has been adapted for photographic determination of spatial distribution of energy in · the focal region of a faceted paraboloidal dish concentrator. The observed flux distribution is shown to be represented by the composition of two Gaussian distributions whose peaks coincide in the focal plane and are displaced apart in other parallel planes. The expression for the intercept factor as a function of aperture size is derived. Sample computational results are presented. The procedure outlined is particularly important in design of receivers/absorbers for point focussing systems whose optical characteristics and manufacturing tolerances are difficult to be modelled mathematically. 
INTRODUCTION 

Parabolic dish solar collector systems have received steadily increasing attention during this decade as a viable means for high temperature heat production for electricity generation and industrial processes. Such systems consist of two-axis sun-tracking dish concentrators with a receiver (usually a cavity-receiver) mounted at their focus. Evaluation of their optical/thermal performance requires knowledge of the energy flux distribution in the focal plane and an expression of the intercept factor as a function of receiver aperture size. Over the years many theories have been advanced to assess the flu,x distribution in the focal plane ( See for example Wen et al (1980) for a review). In general, realistic optical systems are very complex and statistical in nature. Approximations and assumptions are, therefore, inevitably made for mathematical manageability. An approximation often used in this connection was devised by Duff and Lameiro (1974) and it assumes the flux distribution and related variables · in the focal plane as of Gaussian distribution. 
In recent years the use of surface receivers and modified cavity receivers has been suggested for application in low cost dishes of short focal length and rather imperfect optics (Schmidt et al (1983), Kaneff (1983)). Evaluation of systems with these receivers requires knowledge of flux 



distributions and intercept factors in the whole focal region and not just 
in the focal plane. Theoretically, such a determination is · cumbersome 
and does not account for the factors resulting from manufacturing 
tolerances. In the following, we present a procedure ·and results of a 
relatively simple method for the determination of flux distribution . and 
intercept factors in the focal reg}on·of a dish concentrator. 

EXPERIMENTAL DETERMINATION OF.FLUX DISTRIBUTION 
A suitable experimental procedure (Thomas and Whelan (1981)) is similar 
to that of Hisada et al (1957) used for solar furnace measurements. It 
is based on the fact that the apparent diameter (diameter/distance from 
earth) of the moon is about 31.l', almost equal to the sun's (whose intense 
radiations would produce very high temperatures in the focal region). 
Illumination by the moon may therefore be adapted for the determination 
of flux distribution in the focal region. The determination, however, 
embraces an assumption that the surface brightness of the moon is 
proportional to that of the sun. 

Measurements are made on the night of full moon. In the present example, 
the paraboloidal· dish collector is 5m diameter, 19.8m 2 aperture area and 
1.808m focal length (Kaneff, 1983), The dish s~ell is of 6mm thick 
fibreglass, has a rim angle of 70° and is rim supported. The reflector 
is formed by shaped 100mm x 100mm plane glass mirror segments. The dishes 
are integrated in a steel frame modular unit employing altitude and azimuth 
tracking driven by a control unit normally acting in response to sun sensor 
signals. For ,the measurements, a translucent mylar sheet ( thickness = 
.006cm) was placed in the focal plane where the ·moon's image was 
photographed with a calibrated camera using various exposure times. The 
brightness of the moon's image at the periphery of each pattern is assumed 
proportional to the reciprocal of the exposure time. This yielded contours 
of constant brightness. Fig. l depicts such contours. Similar measurements 
were made in other planes parallel to the focal plane but at different 
axial distances from it. The relative intensity variations obtained from 
these measurements are shown in Fig. 2. 

INTERCEPT FACTOR: FORMULATIONS 

From the experimental measurements plotted in Fig, 2, it is apparent that 
the focal flux distribution may be represented by a composition of two 
Gaussian distributions. In a plane parallel to the focal plane (x-z plane) 
and at a distance y we have: 
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If dE is the energy received between circles of radii x and x + dx in the 
plane parallel to the focal plane and distant y

0 
from it, then 
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Intercept factor is defined as 
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RESULTS OF COMPUTATIONS 
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The assumed expression of focal flux distribution given by equation ( 1), 
could be fitted into the observed variations as shown in Fig. 2. The values 
of corresponding parameters are as follows. 

I 212 -2 k o = .00024 (mm) - 2 
C = .000125 (mm) 
Cz = .60 

Using these parameters and equations (7) and (8), ¢ (x ,Y ) wos calculated 
for different values of x and y • The results ~re

0 
1fiustrated in Fig. 3. 0 0 

DISCUSSION 

For a dish concentrator, focal flux distribution information is usually required for design of the receiver/absorber. One approach is to perform __ 
slope error measurements with optical or contact probe methods (eg. 
Gri l ikhes (1968) and Krasilovskii and co-workers (1978)) and to obtain 
slope error statistics which may be used to compute focal flux distribution 
by numerical methods which are generally expensive. An alternative approach 
is to adopt the method outlined in the present paper, which seems easier 
and more meaningful. 

In physical terms, representation of flux distribution by the composition 
of two Gaussian functions seems logical. Petit (1977) used the sum of two normal distributions to describe the angular distribution of light 
reflected from a metal or polymeric mirror. In the present case, reflection 



1-0 

0·8 
,& 

1..: 

Yo(mm} 

0 ----==== 20 
40 

--- 60 

is from flat glass mirror segments 
and the reflected beam profile can 
be adequately represented by a Gauss
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